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Recent experiments on cuprates show that as a function of doping, the normal-state specific
heat sharply peaks at the doping δ∗, where the pseudogap ends at low temperature. This finding
is taken as the thermodynamic signature of a quantum critical point, whose nature has not yet
been identified. Here we present calculations for the two-dimensional Hubbard model in the doped
Mott insulator regime, which indicate that the specific heat anomaly can arise from the finite
temperature critical endpoint of a first-order transition between a pseudogap phase with dominant
singlet correlations and a metal. As a function of doping at the temperature of the endpoint,
the specific heat diverges. Upon increasing temperature, the peak becomes broader. The diverging
correlation length is associated with uniform density fluctuations. No broken symmetries are needed.
These anomalies also occur at half-filling as a function of interaction strength, and are relevant for
organic superconductors and ultracold atoms.

Introduction.– The pseudogap phase in hole-doped
cuprate superconductors indicates a partial loss of low
energy excitations. The temperature and doping depen-
dent boundary T ∗(δ) of the pseudogap is seen in many
physical properties, but whether it is a phase transition
or a crossover is not always clear [1, 2].

At the doping δ∗ where the pseudogap ends there is
a confluence of several phenomena such as robust super-
conductivity, linear dependence on temperature of resis-
tivity [3], and divergent normal-state electronic specific
heat C divided by temperature T , C/T , versus doping [4].
It has thus been proposed that δ∗ may represent a quan-
tum critical point between competing phases, in analogy
with heavy-fermion systems [5] and iron-based supercon-
ductors [6]. However, the nature of the broken symmetry
state giving rise to the pseudogap has not been clearly
identified since in hole-doped cuprates a divergent corre-
lation length associated to a broken symmetry state has
not been found. The pseudogap may host many broken
symmetry phases [1, 7].

On the other hand, it has been proposed that the
pseudogap can emerge upon doping the Mott insulator
without invoking broken symmetry states: Mott localisa-
tion and short-range antiferromagnetic correlations form
singlet bonds that open a pseudgap [8], whose onset is
marked by crossovers in thermodynamic quantities [1, 9].
From a theoretical perspective, over the years the numer-
ical solutions of the two-dimensional Hubbard model rel-
evant for these systems support the idea that pseudogap
originates from strong correlations [10–15].

How then to interpret thermodynamic anomalies such
as divergent specific heat at δ∗ where the pseudogap
ends [4]? Is quantum criticality the only possible ex-
planation for the specific heat anomaly? Here we answer
these questions. We show that a specific heat anomaly is

not necessarily a signature of a quantum critical point.
It can occur because of the low-temperature critical end-
point of a first-order transition. This situation is not
unique, as demonstrated by the divergent specific heat
at the endpoint of the two-dimensional Ising model or at
the liquid-gas endpoint in water. For cuprates, such an
endpoint emerges from the normal-state solution of the
two-dimensional Hubbard model in the doped Mott insu-
lator regime [14, 16, 17]. This mechanism solves the puz-
zle of a diverging correlation length at the doping level
where the pseudogap ends, without the need of broken
symmetry states.

Model and method.– The results reported in
this Rapid Communication are based on the two-
dimensional Hubbard model on the square lattice,
H = −∑

〈ij〉σ tijc
†
iσcjσ +U

∑
i ni↑ni↓−µ

∑
iσ niσ, where

tij = t is the nearest neighbor hopping, U is the onsite

Coulomb repulsion, µ is the chemical potential, c†iσ and
ciσ operators create and annihilate an electron of spin σ
on site i, and niσ = c†iσciσ is the number operator. We
solve this model within the cellular extension [18–20] of
dynamical mean-field theory [21] (CDMFT). CDMFT
extracts a cluster out of the lattice - here a 2 × 2
plaquette - and replaces the missing lattice environment
with a self-consistent bath of noninteracting electrons.
We solve the resulting cluster in a bath problem using
the continuous-time quantum Monte Carlo method [22]
based on the hybridization expansion of the impurity
action (CT-HYB). In the nearest-neighbor square lattice
model that we study, the Mott transition is hidden by
long-range antiferromagnetic order [23–26]. A model
with frustrated antiferromagnetism would lead to the
decrease of the antiferromagnetic transition temperature
and would show the Mott transition. However, such a
model leads to increased fermion sign problems, so we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/228377051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

0.00 0.04 0.08
δ

0.00

0.05

0.10

T
(a)

(δ∗,T ∗)

correlated

metalpseudogap

Mott
insulator

T dc

maxδ(C/T )T
δc1

δc2

TW

maxT (χ0)δ

minT (ρc)δ

δ

U

(b)

metal

pseudogap

Mott

insulator

0

200

400

T
(K

)

FIG. 1. Normal-state phase diagram of the two-dimensional
Hubbard model within plaquette CDMFT. (a) Temperature
versus doping phase diagram for U = 6.2t > UMIT [14, 17, 29,
30]. At zero doping there is a Mott insulator. At finite doping
there is a first-order transition between a pseudogap phase
and a metal. This first-order transition is bounded by the
spinodal lines δc1 and δc2 and terminates at the critical end-
point (δ∗, T ∗). From the endpoint emerges the Widom line,
TW , here defined as the locus of the maxima of isothermal
charge compressibility κT as a function of doping [14]. The
red squares indicate the loci of the maximum in specific heat
as a function of doping at constant temperature. This is one
of our key findings. The open circles and squares denote ex-
trema in, respectively, spin susceptibility (from Ref. [14]) and
c-axis resistivity (from Ref. [29]). Only below δ∗, does the
Widom line have a high-temperature precursor, where spin
susceptibility drops vs T and c-axis resistivity rises vs T [29].
These indicators are often used to mark the pseudogap tem-
perature T ∗(δ). Crosses indicate the dynamical mean-field
superconducting transition temperature T d

c (from Ref. [31]).
On the right vertical axis we convert into physical units by
using t = 350meV. (b) Sketch of the interaction strength ver-
sus doping phase diagram at low temperature. The blue line
indicates the first-order transition extending from δ = 0 [17].
At δ = 0, for increasing U it separates a metal from a Mott
insulator (vertical green line). The shaded blue region is the
pseudogap, which is an emergent phase that occurs in the
doped Mott insulator. Horizontal (vertical) double arrow de-
notes the doping-driven (interaction-driven) Mott transition.

work with the simpler model. Thus our low-temperature
results aim to give qualitative and not quantitative
understanding of experimental phenomena. In the fol-
lowing calculations, we do not allow symmetry breaking,
so Mott physics is visible at all temperatures. Similarly,
stripe order and other possible charge orders away from
half-filling [27, 28] are not allowed in our calculation.

Phase diagram of the two-dimensional Hubbard
model.– Hole-doped cuprates are doped Mott insulators.
Hence we model these systems with the two-dimensional
Hubbard model with nearest-neighbor hopping t. Fig-

ure 1(a) shows the T − δ phase diagram of this model
solved with plaquette cellular dynamical mean-field the-
ory, for a value of the interaction strength U = 6.2t,
which is larger than the critical threshold UMIT neces-
sary to open a Mott insulator at half-filling. As a re-
sult of intense scrutiny [14, 17, 29], this phase diagram is
known. There is a first-order transition at finite doping
and finite temperature between a correlated metal at high
doping and a strongly correlated pseudogap phase with
predominant singlet correlations at low doping. These
phases have the same symmetry and differ in their elec-
tronic densities at the first-order transition [16, 17]. The
importance of singlets in the pseudogap phase can be
inferred either from direct measurements of singlet cor-
relations on the plaquette [12, 14, 16, 17, 32–34] or from
the fall in the uniform spin susceptibility as tempera-
ture decreases [12, 14, 35–37]. The first-order transition
moves progressively towards larger doping levels and low
temperatures with increasing U . It ends in a critical end-
point at (δ∗, T ∗). From the endpoint, a crossover, TW (δ),
with the features of the so-called Widom line [38, 39],
emerges [14]. The maxima of thermodynamic response
functions at constant temperature [such as isothermal
charge compressibility (open triangles)] converge to that
line asymptotically close to the endpoint. It has a high-
temperature precursor, as indicated by maxima of spin
susceptibility (open circles [14]) and minima of c-axis
resistivity (open squares [29]) versus T . This high-
temperature precursor of TW (δ) would then be associ-
ated with the pseudogap temperature T ∗(δ) in cuprates,
as observed for instance by NMR Knight shift [9].

Figure 1(b) shows a sketch of the U − δ phase diagram
at low temperature. First, the transition between pseu-
dogap and correlated metal is connected, in the U − δ
plane, to the metal to Mott insulator transition at zero
doping. This implies [16] that the pseudogap-metal tran-
sition originates from Mott physics and short-range cor-
relations. Second, the first-order transition moves to pro-
gressively larger doping as U increases. The latter point
has important implications when comparing the phase
diagram of Fig. 1(a) to the experimental phase diagram
of cuprates. U = 6.2t produces a gap at half-filling of
order 0.45eV [14], whereas typical experimental values
are of order 2eV. Hence, to have a Mott insulating gap
as found in experiments, one needs a value of U about
9t − 12t. In that case the pseudogap would end around
δ ≈ 0.12 [12, 17]. The sign problem prevents us from
directly accessing regions with large values of U and low
T . As a consequence, one must keep in mind that in ap-
plying our model to cuprates, the doping at which the
pseudopgap phase ends is smaller by about a factor 4
when compared to experiment. Furthermore, bandstruc-
ture effects taken into account by next nearest-neighbor
hopping are not considered here, and further contribute
to push the doping at which the pseudogap ends towards
larger doping. The experimental relevance of these find-
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FIG. 2. (a) C/T = (∂A/∂T )/T versus hole doping δ for
different temperatures above T ∗ for U = 6.2t > UMIT. We
perform numerical derivative by finite differences between two
temperatures. C/T at T = 1/20, 1/30, 1/40, 1/50 is evaluated
by taking finite difference between T = 1/20 and T = 1/30,
between T = 1/30 and T = 1/40, between T = 1/40 and
T = 1/50, and between T = 1/50 and T = 1/60, respectively.
Maximum of C/T at each temperature is shown in Fig. 1(a)
with red squares. On the right vertical axis we convert into
physical units by using t = 350meV. (b) Isothermal charge
compressibility κT = 1/n2(dn/dµ)T versus doping for differ-
ent temperatures. Maximum of κT at each temperature is
shown in Fig. 1(a) with open triangles.

ings can be found in Refs. [14, 29, 40].

Specific heat versus doping.– We now turn to the be-
havior of the specific heat. First we calculate the thermo-
dynamic potential A = Ekin + Epot − µn [41], and then
we perform a numerical derivative to extract the spe-
cific heat C = (∂A/∂T )µ = T (∂S/∂T )µ, which is a good
approximation for C = T (∂S/∂T )δ when the thermal ex-
pansion coefficient (∂V/∂T )µ can be neglected, which is
usually the case at low temperature because of the third
law of thermodynamics.

Figure 2(a) shows C/T as a function of doping δ for
several temperatures. Deep in the Mott insulating state
at zero doping and low temperature the C/T is zero. At
finite doping, C/T exhibits a peak as a function of δ. This
is compatible with the experimental rise of C/T [4, 42]
vs doping, followed by a drop at δ∗ [4].

Upon lowering T towards the pseudogap endpoint
(T ∗, δ∗), the position of the maximum as a function of
doping moves to higher doping, the peak sharpens and
its magnitude increases. The position of the specific heat
maxima are shown in Fig. 1(a) with red squares. At
the endpoint C/T diverges. Noise associated to numeri-
cal derivative prevents us from approaching the endpoint
to capture the divergence. Nevertheless, thermodynamic
anomalies, such as those in C/T , occur in any thermody-
namic variable [38]. Figure 2(b) shows for instance the
charge compressibility κT = 1/n2dn/dµ as a function of
doping δ for several temperatures. The divergence of κT

at the endpoint is clearly visible. Charge compressibil-
ity is a q = 0 quantity. Various pseudogap signatures
at q = 0 are observed e.g. with scanning tunneling mi-
croscopy [43] and neutrons [44]. Fig. 1(a) shows that
the locus of specific heat maxima follows the position of
charge compressibility maxima (TW (δ)).

Two comments are in order. First, we are working
with a minimal theoretical model, so we look for quali-
tative and not quantitative agreement with experiments.
Larger values of U push the doping at which the spe-
cific heat diverges, or more generally where the pseudop-
gap phase ends, δ∗, at higher doping, as demonstrated in
Refs. 17 and 31. Larger values of U also push the critical
endpoint to much lower temperatures. Second, the peak
in C/T is not due to the renormalized van Hove singu-
larity [15, 37], which occurs at larger doping and is es-
sentially temperature independent [17], in sharp contrast
with the marked temperature dependence of T ∗(δ). Cal-
culations with different values of frustration confirm the
distinction between pseudogap endpoint and van Hove
singularity [15]. Experimentally, the peak in the elec-
tronic specific heat is not due to the van Hove singular-
ity [4, 45].

Discussion.– Our results provide a coherent micro-
scopic theoretical model to understand what may occur
in hole-doped cuprates. First, the peak in C/T as a func-
tion of doping is a signature of a critical endpoint, which
can be confused with a quantum critical point since it
occurs at low temperature for large U . However, the
crossover arising from the endpoint has three distinct sig-
natures that can be experimentally tested: (a) The peak
in C/T becomes broader with raising temperature. This
is compatible with experiments [4]. (b) At temperatures
below the endpoint, there is a first-order transition where
the peak in C/T disappears. The Clausius-Clapeyron re-
lation implies that entropy of the pseudogap is smaller
than the entropy of the metal at larger doping. (c) At
the critical endpoint, critical scaling is expected. This
may provide an alternate explanation for the − lnT be-
havior when the temperature of the critical endpoint is
small enough [46] (in mean-field we have the exponent
α = 0).

Second, the interpretation of a diverging C/T as a sig-
nature of a quantum critical point is complicated by the
fact that no symmetry broken state ends at δ∗, where the
pseudogap ends. As pointed out in Ref. [4], no diverg-
ing antiferromagnetic correlation length and no diverg-
ing spin density wave correlation length occur near δ∗.
In our calculations, the diverging C/T marks the end-
point separating phases with the same symmetries, as
in the liquid-gas transition. Pseudogap and metal have
different electronic densities at the first-order transition.
At the endpoint the diverging correlation length is as-
sociated with density fluctuations [30]. Correspondingly,
enhancement of specific heat is associated with large en-
ergy fluctuations.
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FIG. 3. (a) Temperature versus interaction strength normal-
state phase diagram of the two-dimensional Hubbard model
at half filling (δ = 0) within plaquette CDMFT [50]. The
first-order transition between a metal and a Mott insulator
is bounded by the spinodal lines Uc1 and Uc2, and ends at
the Mott endpoint (UMIT, TMIT). The Widom line TW is es-
timated from the inflection point in the double occupancy
D(U)T (from Ref. [50]). (b) C/T = (∂A/∂T )/T versus U
for different temperatures. We perform numerical deriva-
tives by finite differences between two temperatures. C/T
at T = 1/8, 1/10, 1/12 is evaluated by taking finite difference
between T = 1/8 and T = 1/10, between T = 1/10 and
T = 1/12, and between T = 1/12 and T = 1/14, respectively.
Maximum of C/T as a function of U at each temperature is
shown in (a) with red squares. On the right vertical axis we
convert into physical units by using t = 350meV.

Third, the interpretation of a quantum critical point is
at odds with the experimental finding of an abrupt end
of the pseudogap temperature at δ∗ with a sizeable finite
T ∗ [47, 48]. In our theoretical model, this abrupt end
of the pseudogap temperature occurs because both the
pseudogap and its associated crossovers end at a finite-
temperature first-order transition. Our Ref. [29] already
suggested that T ∗ should not be extrapolated to T = 0.
Ref. [49] suggests that the abrupt fall comes from the
constraint that δ∗ is less or equal to the doping where
there is a van Hove singularity.

Fourth, our calculations suggest a possible explanation
for the proliferation of long-range or quasi long-range or-
dered phases detected near δ∗ [1]. Large charge and en-
ergy fluctuations along the Widom line may develop into
charge density ordered phases [1, 43]. Superconductivity
in our calculations straddles the critical endpoint [31],
similarly to experiments.

Specific heat versus interaction strength.– Enhance-
ment of C/T at an endpoint has implications beyond the
physics of cuprates. Specific heat maxima occur along
the pseudogap to metal transition in the U − δ diagram
of Fig. 1(b). This pseudogap to metal transition is con-
nected to the metal to Mott insulator transition at zero
doping. The latter is relevant for the physics of organic

superconductors [46, 51] and for some transition-metal
oxides [52], and can be simulated with ultracold atoms
in optical lattices [53–57]. Figure 3(a) shows the T − U
phase diagram of the two-dimensional Hubbard model
with plaquette CDMFT at half-filling. This phase dia-
gram is known [50, 58]: there is a first-order transition
terminating at the critical endpoint (UMIT, TMIT) out of
which emerges a Widom line (here defined as the loci of
inflection in the double occupancy versus U [50]). Con-
trary to the previous case, at half-filling the first-order
transition separates a metal from a Mott insulator.

Figure 3(b) shows C/T as a function of U for several
temperatures. Again, C/T shows a peak that narrows
and whose intensity increases when approaching the tem-
perature of the endpoint TMIT from above. Below the
Mott endpoint, C/T is discontinuous and the Clausius-
Clapeyron relation implies that the entropy of the insu-
lator is smaller than that of the metal. Our results are
consistent with the rapid decrease of C/T (U) in layered
organic conductors for U > UMIT [59]. They are also
compatible with the increase of C/T (U) in a 2D 3He
fluid monolayer for U < UMIT [60].

Conclusions.– In summary, using a two-dimensional
Hubbard model, we unveiled a mechanism in which one
can rationalise the thermodynamic anomalies in hole-
doped cuprate superconductors and organic supercon-
ductors. They may not reflect the presence of a quan-
tum critical point. They are instead caused by a critical
endpoint at very low temperature that arises from Mott
physics plus short-range singlet correlations.
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[25] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni,
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Schröter, J. A. Krieger, T. Schmitt, V. N. Strocov,
S. Pyon, T. Takayama, H. Takagi, O. J. Lipscombe,
S. M. Hayden, M. Ishikado, H. Eisaki, T. Neupert,
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