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Journal of Physics, 21(10), article no. 103028.

For guidance on citations see FAQs.

c© 2019 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1088/1367-2630/ab41bb

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1088/1367-2630/ab41bb
http://oro.open.ac.uk/policies.html


            

PAPER • OPEN ACCESS

First passage and first hitting times of Lévy flights and Lévy walks
To cite this article: Vladimir V Palyulin et al 2019 New J. Phys. 21 103028

 

View the article online for updates and enhancements.

This content was downloaded from IP address 137.108.145.21 on 14/10/2019 at 09:41

https://doi.org/10.1088/1367-2630/ab41bb


New J. Phys. 21 (2019) 103028 https://doi.org/10.1088/1367-2630/ab41bb

PAPER

First passage and first hitting times of Lévy flights and Lévy walks

VladimirVPalyulin1 , George Blackburn2,3,Michael ALomholt4, NicholasWWatkins3,5,6,7,
RalfMetzler5 , Rainer Klages2,8,9 andAleksei VChechkin5,10

1 Centre for Computational andData-Intensive Science and Engineering, Skolkovo Institute of Science andTechnology, NobelyaUlitsa 3,
Moscow, 121205, Russia

2 Max Planck Institute for the Physics of Complex Systems,Nöthnitzer Straße 38, D-01187,Dresden, Germany
3 Centre for Fusion, Space andAstrophysics, University ofWarwick, Coventry, United Kingdom
4 MEMPHYS—Centre for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy,University of SouthernDenmark,

DK-5230,OdenseM,Denmark
5 Institute for Physics &Astronomy,University of Potsdam,D-14476 Potsdam-Golm,Germany
6 Centre for the Analysis of Time Series, London School of Economics and Political Sciences, London, UnitedKingdom
7 Faculty of Science, Technology, Engineering andMathematics, OpenUniversity,MiltonKeynes, UnitedKingdom
8 Institut für Theoretische Physik, TechnischeUniversität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
9 QueenMaryUniversity of London, School ofMathematical Sciences,Mile EndRoad, LondonE1 4NS,United Kingdom
10 Akhiezer Institute for Theoretical PhysicsNational Science Centre ‘Kharkov Institute of Physics andTechnology’, Kharkov 61108,

Ukraine

E-mail: chechkin@uni-potsdam.de

Keywords: Lévy flights, Lévywalks,first-passage time,first-hitting time

Abstract
For both Lévyflight and Lévywalk search processes we analyse the full distribution offirst-passage and
first-hitting (orfirst-arrival) times. These are, respectively, the timeswhen the particlemoves across a
point at some given distance from its initial position for the first time, orwhen it lands at a given point
for the first time. For Lévymotions with their propensity for long relocation events and thus the
possibility to jump across a given point in spacewithout actually hitting it (‘leapovers’), these two
definitions lead to significantly different results.We study thefirst-passage andfirst-hitting time
distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases
when the first absolutemoment of the jump length distribution isfinite or infinite. In particular we
examine the limits of short and long times. Our results willfind their application in themathematical
modelling of random search processes as well as computer algorithms.

1. Introduction

When a stochastic process x(t)first reaches a given threshold value inmany scenarios follow-up events are
triggered: shares are soldwhen their value crosses a pre-set target amount, or chemical reactions occurwhen two
reactive particles encounter each other in space. The time t at which this triggering eventfirst occurs, is either
called the first-hitting (first-arrival) or thefirst-passage time, as defined below [1–3].While the physical analysis
offirst-passage time problems has a long history, notably the seminal works by Smoluchowski [4] aswell as
Collins andKimball [5], even for the long-studied case of standard Brownianmotion [6] significant progress has
been achievedwithin the last decade [2, 7–9]. In particular, forfinite domains interesting results were unveiled
for themean and globalmeanfirst passage times and their geometry-control [7, 10]. The oftenminute particle
concentrations inside biological cells and the related concept of the few-encounter limit [11–13]motivated
studies to obtain the full probability density function (PDF) offirst-passage times in generic geometries,
demonstrating strong defocusing (large spread offirst-passage times) and an intricate interplay between
geometry- and reaction-control [13, 14].

For non-Brownian stochastic processes additional complications in the determination offirst-passage and
first-hitting times arise. Conceptually, such anomalous diffusion processes are distinguished according to the
value of the anomalous diffusion exponent ν in the long time limit of theirmean squared displacement (MSD)
x t x P x t x K t, d2 2òá ñ = n

n( ) ( ) , defined as ensemble average of x2 over the particle PDFP(x, t) [15–20]: the
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range 0< ν< 1 corresponds to subdiffusion (or dispersive transport), while 1< ν< 2 is referred to as
superdiffusion (or enhanced transport). Beyond the regime ν=2 of ballistic transport, we encounter
superballistic motion. Sometimes the range 3<ν<5 is called hyperdiffusion [21]. Examples for anomalous
diffusion processes include turbulent flows [22], charge carrier transport in amorphous semiconductors [23],
human travel [24], light waves in glassymaterial [25], biological cellmigration [26–29], or transport of
submicron tracer particles and fluorescently labelledmolecules inside biological cells and theirmembranes [18,
30–32]. Figure 1 shows a schematic representation of the various regimes.

In anomalousdiffusion thementioned complicationsmay arise due to long-ranged correlations, for instance, in
the increments ofMandelbrot’s fractional Brownianmotion [33], whose strongly non-Markovian character
precludes the applicationof standard analyticmethods todetermine thefirst-passage dynamics [34–36].Non-
standardfirst-passage andfirst-hittingproperties also arise forLévyflight (LF) andLévywalk (LW)processes, that are
in the focusof this study. LWsandLFs are among themost prominentmodels for thedescriptionof superdiffusive
processes [15–17, 20, 37–39]. Bothmodels represent special cases of continuous time randomwalks [3, 40], inwhich
relocation lengths are drawn froma long-tailedLévy stable distributionwithdiverging variance. Thedifference
between them is that LFs areMarkovianprocesses inwhich jumpsoccur at typical time intervals. Therefore, the
resultingLFprocess is characterised by adivergingMSD x t2á ñ( ) [3, 15, 40, 41]. LWs, in contrast, include a
spatiotemporal coupling between jump lengths andwaiting times, penalising long jumpswith longwaiting times,
effectively introducing afinite velocity [42]. Jump lengths andwaiting timesmaybe coupled linearly, such that the
resultingLWmoves in a givendirectionwith a constant speeduntil velocity reversal after a givenwaiting time, the
velocitymodel [43], or the space-time couplingmayhave apower-law type [40]. The velocitymay also be considered
to change fromone step to another [44, 45]. Interestingly, for certainparameters evenLévywalkshave an infinite
variance, namely,when there is a distributionof velocities associatedwithdifferent path lengths [45]. LFs andLWsare
non-ergodic in the sense that long time and ensemble averages of physical observables are different [19, 20, 45–49].
The linear response behaviour and time-averagedEinstein relationof LWshavebeen studied, aswell [50, 51].We
note that LFs andLWshave also been formulated inheterogeneous environments [52, 53].

While for Brownianmotion the events offirst-passage and first-hitting (orfirst-arrival) are identical because
space is being explored continuously [54], the possibility of long, non-local jumps lead to ‘leapovers’ [55, 56],
single jumps inwhich a given point is overshot by some leapover length, as illustrated infigure 2: for random
walk processes with diverging variance of the jump length PDF, the event offirst-passage becomes
fundamentally different from that offirst-hitting, and it is intuitively clear thatfirst-hitting a target is harder
(less likely) than thefirst-passage.

LFs and LWshave been studied for considerable time, however, the systematic comparison of some of their
first passage properties started only recently [57].We here systematically investigate the first-passage and first-
hitting properties of LFs and LWs in one dimension by drawing generic conclusions on their differences and
similarities. This is an important first step in the assessment of these two fundamental random search processes.
Further applications of non-local, Lévy-type search are found in computer algorithms such as simulated
annealing [58]. In higher dimensions the comparison ismore complicated due to various possible definitions of
LWs and LFs [59, 60]. In particular, so far studies of LFs and LWsmostly focused on the long-time features.
However, in all search processes the short-time properties do contribute to the efficiency of the search [61], and

Figure 1.Anomalous diffusion regimes as characterised by the power-law scalingwith time of themean squared displacement (MSD).
For normal diffusion theMSDgrows linearly with time.However, other types of ‘anomalous diffusion’ are widely observed, for which
theMSDgrows as x t t2á ñ n( ) , where the anomalous diffusion exponent ν differs fromunity. ‘Subdiffusion’ is slower than normal
diffusion, corresponding to ν<1. Faster diffusion splits into the regimes of ‘superdiffusion’with 1<ν<2, ‘ballisticmotion’with
ν=2, and ‘superballistic’with ν>2.
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in the light of the aforementioned scenarios of the few-encounter limit become evenmore relevant.We
therefore pay considerable attention to the characteristics of the short-time first-passage and first-hitting
properties of LFs and LWs.

Our paper is organised as follows. In section 2we briefly review the rôle of LFs and LWs in random search
processes, followed by setting the first-passage andfirst-hitting scenarios in section 3. Section 4 reports thefirst-
passage properties of LFs and LWs, thefirst-hitting properties of both processes are then investigated in
section 5. A summary and discussion is provided in section 6, and details of themathematical derivations are
deferred to the appendices.

2. The role of Lévyflights andwalks in random target search

The termLFwas coined by BenoîtMandelbrot in honour of his advisor, the Frenchmathematician Paul Lévy, at
École Polytechnique in Paris. In his famed treatise on the fractality of nature [62],Mandelbrot studied random
walk processes with scale-free jump length distributions, leading to fractal trajectories of clusters of localmotion
interspersedwith long relocations, on all scales.

Asmentioned above LFs areMarkovian and possess a divergingMSD. In that sense they are inmost cases
‘unphysical’, as they appear to possess an infinite speed.While spatiotemporally coupled LWsprovide a ‘non-
pathological’ descriptionwith finite speed, LFs do have their justification in the following senses: first, when the
process involves long-tailed jump lengths in some ‘chemical’ co-ordinate but local jumps in the physical,
embedding space, the argument about a divergingMSDdoes not hold. An example is the random search of
proteins on aDNA chain that is represented as a fast-folding chain in three dimensions [63]. Second, whenwe
solely speak about the spatial trajectory described by the searcher yet are oblivious of the corresponding time
trace, it is legitimate to speak of LFs. Third, the observedmotionmay be considered scale-free onlywithin a
limited range of relocation lengths, beyondwhich cutoffsmay exist [64–66]. Fourth, we note that only very
rarely have experimental foraging studies really tested for LWs [20, 67]. Fifth, in some physical systems the
measured data indicate a divergence of the kinetic energy [68]. Finally, LWs represent amuch harder
mathematical problem than LFswhile the LF assumptionmay already provide valuable insight into the system.
For these reasonswe study LFs and LWs in parallel, andwe point out their commonalities and differences.

Interest in both LF and LWmodels in physics arose in the context of simple one-dimensional deterministic
maps that generate superdiffusivemotion encounteredwithin the context of phase diffusion in Josephson
junctions [69, 70]. It was then shown that diffusion in thesemaps could be understood in terms of LWs [43,
69–71]. Furthermotivation to investigate LFs and LWswas sparked by a remark ofMichael Shlesinger and
JosephKlafter, that scale-freemotionmay present amore efficientmeans for exploring space in one and two
dimensions as compared to Brownianmotion [72]. The argument goes thatwhile Brownian dynamics features
repeated returns to already explored regions causing oversampling [3, 63], scale-free LFs and LWs, in contrast,
avoid these returns and, hence, yield amore efficient search strategy11.

Figure 2. Illustration of the difference between an event of first-passage (top), when thewalker crosses a target at x=0 in a single
jump event and overshoots it by the leapover length [56], and an event offirst-hitting (first-arrival, bottom) at the target. The initial
position of thewalker is x=x0.

11
Note thatmany search processes indeed run off in effectively two dimensions (land-bound animals, birds orfishwhose lateralmotion has

amuchwider span that the verticalmotion) or even one dimension (proteins searching aDNA, animals foraging in the border region
between forests and grassland).
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The high efficiency of Lévy search became famouswhen experimental data of the relocation distances of
soaring albatross birdswere reported to display long, power-law tails [73].While this result was discussed
controversially in the literature [74, 75], it prompted the proliferation of the Lévy flight foraging hypothesis.
Roughly speaking, this hypothesis predicts that search processes with Lévy stable relocation length distributions
provide an optimal search strategy byminimising the random search times under certain conditions,
particularly for a low density of targets [67, 76, 77]. Although latermany of the experimental studies testing the
Lévyflight foraging hypothesis were found to contain experimental ormethodological errors [20, 67, 78, 79],
there exists ample evidence thatmany animals in fact do exhibit scale-freemovements over a few orders of
magnitude [77], or have at least a search component that is scale-free [75]. From a theoretical point of view,
however, it was shown that even in the case of single-mode search LFsmay not always optimise a suitably defined
search efficiency [80, 81]. For example, if a target is located in the close vicinity of a starting point or the target lies
‘windward’ (in the direction of an external bias) from the searcher’s starting position, Brownianmotionmay
outperform the search by LFs. Furthermore, depending on the precise biological and ecological conditions,
oftenmore complex search patterns, for instance,multimodal or intermittent search strategies, are superior to
LFs and LWs [42, 61, 78, 82–86]. Generally,most of the intermittent andmultimodal search strategies can be
described as a combination of a local explorationmode and a scale-free (long relocation)mode [78, 87], where
the frequent, long, relocations are described by Lévymotions [61, 82].

Interestingly, there exists a direct connection between the biological strategy of random search for targets
and themathematical problemoffirst-passage and first-hitting. In foraging theory one distinguishes between
cruise and saltatory foragers.While in cruise search the forager looks out for targets during themovements, the
forager is blind for its targets whenmoving for saltatory search, for which the searcher needs to land exactly on
(or very close to) the target to actually detect it [80, 88]. A cruise forager searching for a single target, however, is
modelledmathematically as afirst-passage problemwhile saltatory search for a single target corresponds to a
first-hitting problem. Solving thesemathematical problems thus sheds light, at least inmore simple, abstract
settings, on specific aspects of biological foraging.

As a general rulefirst-hittingproblems appear inmost target searchproblemswhilefirst-passage relates to the
crossingof thresholds.The latter problemhas been studied formanydecades in the context ofMarkovianprocesses
(see, for instance [89]) andmuch initialwork related to theGaussian case.Classic applications offirst-passage include
vibration [90], sea states, and earthquakes [91]. Thefirst-passage problemalso appears in calculating the time to
activation in cases likeGerstein’s andMandelbrot’smodel of neurons [92], and resonant activation [93]. Further
motivation comes fromapplications of the area swept out byBrownianmotionup to itsfirst passage,where results
canbeheuristicallymotivated fromfirst-passage theory scaling results [94]. Recent interest has included transitions
from thebull-to-the-bearmarket infinance, extremevalue statistics of temperature records [95], or thediffusionof
atoms in aone-dimensional periodic potential [96] aswell as problemsof escaping an enemy territory.The existence
of heavy-tailed log-pricefluctuations infinance,modelled usingα-stable processes in [97]has indeedbeen a strong
initialmotivation for theLFfirst passage problem.

3. Setup of the system: determiningfirst-passage andfirst-hitting times

Theproblemoffirst-passage consists in thedeterminationof boundary crossing dynamics of a searcher. In the
general casefirst-passage properties canbe studied for anykindof domains [1, 2, 10, 13, 14]. In this paperwe consider
the classical 1D setting.Weare interested in the eventwhen a searcher crosses the origin for thefirst time after initially
being released at position x0>0 (figure 2, upper part). ForLFs thefirst-passage time corresponds to themoment in
timewhen the searcherfirst hits a coordinate on thenegative semi-axis. For LWs thefirst-passage time is defined as
the timeneeded for a particle to reach theorigin, that is, only the fractionof the last relocation event (from the arrival
point of the previous relocation to crossing the origin) is included in the computation.

Afirst-hitting event occurs when the end point of a jump arrives exactly at the origin. In physics literature the
first-hitting is often also called the first arrival [80, 98]. Herewewill use the termhitting throughout the text to
avoid possible ambiguities. Similar to the first-passage the event offirst-hittingmay be defined for a domain of
any shape.Herewe concentrate on point-like targets. Thus, in the case of LFs the first-hitting corresponds to an
exact landing at the target coordinate. For LWs in our 1D scenario an event offirst-hitting occurs when the last
relocation ends at the target, that is, in the LWcase this corresponds to a searcherwho cannot identify the target
while crossing it during the relocation event.

Our results are either derived from the fractional Fokker–Planck equation [15, 41, 52] or are obtained from
simulations of the discrete Langevin equation

x x K t n 1n n1
1d x- = a

a
a+ ( ) ( ) ( )
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for the searcher’s position xn, where ξα(n) is a set of randomvariables sampled from a symmetric Lévy stable
distributionwith the characteristic function kexp - a( ∣ ∣ ). The time step is chosen as δt=0.001 for LFs in all
cases but thosewhich required higher time resolution. In that case δt=0.0001was used (figure 10).While we
keep the generalised diffusion coefficientKα of dimension cm sa in our analytical results, we set it to unity in the
numerical analyses. The noise nxa ( )was computed following themethod described in [100]. For LFs the time
dependence is then simply obtained by adding the time step δt to a counter at each jump. The set of landing
points for LFs exactly corresponds to the set of end-of-relocation points for LWs and, hence, the same simulation
procedure was used for both processes. For LWs, in turn, the parameter δt is not related to the time resolution
any longer, but rather describes thewidth of the jump length distribution.We thus use K t 0.001d =a for the
first passage of LWs and K t 0.0005d =a for thefirst hitting problem. In order to compute the time-dependent
characteristics for LWs the durations of relocationswere calculated from a given relocation length via the speed
v0 of thewalk that we take as a constant value. In our simulation of LWs the direction at the beginning of each
relocation event is changedwith likelihood 1

2
(that is, the searcher continues in the same directionwith

probability 1

2
), as the jump lengths are taken from the symmetric distribution of the ξα entries.

In all cases considered in this paper a searcher eventually crosses the boundary orfinds the target with unit
probability. Hence, the first-passage andfirst-hitting properties can be characterised by the properly normalised
PDFs.Wewill denote them as tPFÃ ( ) and tPWÃ ( ) for thefirst-passage of LFs and LWs, respectively, and tHFÃ ( )
and tHWÃ ( ) for thefirst-hitting of LFs and LWs.

4. First-passage properties of Lévyflights and Lévywalks

In this sectionwe focus on thefirst-passage dynamics of LFs and LWs. First we analyse the case of LFs. In the
following subsection for LWswe compare the results with the LF case.

4.1. First-passage for Lévyflights
Thefirst-passage of LFs, due to theirMarkovian character and the symmetric jump length distribution is
necessarily characterised by the Sparre Andersen-scaling [1, 98] in the long time limit. The analytical expression
for this limiting behaviour reads [56]12

t
x

K
t

2
, 2PF

0
2

3 2

a p a
Ã ~

G

a

a

-( )
( )

( )

in terms of the initial position x0 and the stable indexα of the jump length PDF.Here and in the following, the
symbol∼ denotes asymptotic equality,;means asymptotically equal up to a prefactor (scaling equality), and
≈means approximately equal. Figure 3 illustrates that the simulations results (coloured squares) are in perfect
agreementwith the Sparre Andersen-scaling (2) shown by the black lines forα values that are smaller and larger
than unity. Note the shift by constant factors between the different results.

Considering the corresponding short time behaviour infigure 4 one immediately realises that only for the
case of Brownianmotion (α=2) the PDF increases smoothly with time from the value zero at t=0. For LFs
withα<2 the first-hitting PDF exhibits a non-zero value at t=0. For smallα values (see the curve forα=0.5
infigure 4) the PDFdecreasesmonotonically with time, while for largerα values an initial increase is observed,
leading to amaximumbeyondwhich the PDF crosses over to the long time Sparre Andersen-scaling. LFswith
smallerα values have a higher propensity for long jumps, while forα→2 the behaviour converges to the
knownLévy–Smirnov law for Brownianmotion. The abrupt increase of tÃ( ) at t=0 thus stems fromLFs that
directly overshoot the origin with theirfirst jump away from their initial position x0. The associated probability
pjump can be estimated from the survival probability of the searcher (for the full derivation see appendix A),

p
K

x

sin 2
. 3jump

0

pa a
p

»
Ga

a
( ) ( ) ( )

For theα values considered infigure 4we obtain the concrete values

p
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wherewe used x0=5 andKα=1. These values are in perfect agreement with the simulations data infigure 4.

12
Note that we here consider the long time limit atfixed initial position. For a discussion of the limiting behaviour in amore general setting,

where x0may diverge, we refer the reader to [99].
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Analytically one can also obtain the derivative of the PDF tPFÃ ( ) for LFs in the short time limit (appendix A).
It turns out that themonotonic decrease for smallα values changes to the initial increase of the PDF at the value
α=2/3, see figure 4.We note that in [101] the ‘limited space displacement’ of the trajectory corresponding to
theCauchy-Lorentz distribution for relatively lownoise intensities at short timeswas discovered and analysed.

4.2. First-passage for Lévywalks
As laid out before, LWs spatiotemporally couple each relocation distance xwith a time cost t=x/v0.
Nevertheless, starting froma Lévy stable jump length distribution, the points of visitation of an LWare identical
with those of an LFwith the same entries for the sequence of jumps—only the time counter for reaching the
points of visitation differs for both processes. Hence,many properties of LWs can be understood from a
subordination approach [102]: In some sense, to be specified below, an LWprocess can be considered as an LF
with transformed durations of individual jumps. The PDF for the relocation times for LWs follows from the
jump length PDFof LFs, as we show in appendix B. From the point of view of subordination one has to

Figure 3.PDFs offirst-passage times for LFs illustrating the universal Sparre Anderson-scaling (2) valid in the long time limit. Results
for four different stable indicesα are shown, as indicated in the graph. Simulations data (coloured squares)were obtained from
N=107 runs with initial position of the searchers x0=2 and the generalised diffusion coefficientKα=1. Black lines are obtained
from equation (2). Note that for the better visual comparison of the PDFs to the exact asymptotic scaling, their values are divided by a
factor of 10 forα=1, of 100 forα=1.5, and of 1000 forα=2. The inset shows the behaviour of the prefactor of the long-time
dependence;t−3/2, Q x K 20

2a a p a= Ga
a( ) [ ( )] from equation (2), for different x0 andwithKα=1. Largerα values lead to

more pronounced differences in the values ofQ(α).

Figure 4. Short time behaviour of thefirst-passage time PDF for LFs, demonstrating that the change of the slope at t=0 occurs for
α=2/3 (forwhichwe observe a horizontal tangent). Here pjump is the probability that the boundary is immediately crossedwith the
first jump.Number of runs:N=107, initial position: x0=5. K 1.=a
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discriminate the two casesα>1 andα�1.Namely, forα>1 the average duration of a jump is finite, and
thus in the limit of a large number of jumps the time characteristics of LWs and LFswill only differ by a prefactor
but should have the same scaling in time. From this scaling argumentwe expect the Sparre Andersen-scaling

t t , 1 5PW
3 2 aÃ >-( ) ( )/

to hold for the PDF tPWÃ ( ) of the first-passage of LWs, as long as 1<α�2. Indeed, the simulations results
presented infigure 5 for 4 different values ofαnicely corroborate the Sparre Andersen - 3

2
scaling (5).

The problemof escape of LFs and LWs forα>1was studied in [57]. The latter paper also proposes a
formula for the effective diffusion coefficient for LWs expressed through the LW speed v0, the scaling factorσ0 or
the Lévy stable jump length PDF, and the stable indexα (equation (55) in [57]).We derive this formula exactly in
appendices B andC.Having an expression for the effective diffusion coefficient K LW

a of LWs it seems pertinent
to apply expression (2) to the LWdynamics. However, the numerical values obtained in this vein do not coincide
with the simulation results. The values from the analytical results underestimate the simulations data in the limit
of long t. This discrepancy is caused by the differences in the short-time behaviour between LFs and LWs.Namely,
until the front of an LWreaches the boundary, the PDF offirst-passage has a strictly zero value, due to the finite
propagation front of LWs [20].Modelling LWs by a rescaled LF process obviously neglects this important short-
time feature.Hence amodel LF process will exceed the real LWPDF at short times and, for reasons of
normalisation, underestimate the PDF tPWÃ ( ) at long times.

For LWswithα�1 the observed long-time scaling deviates from the Sparre Andersen-scaling, as evidenced
by the simulations data shown infigure 6. Thefitted scaling exponents are consistent with the long time scaling

t t , 1 6PW
2 1 aÃ a- -( ) ( )

considered in [103]which can also be rationalised in subordination terms. Indeed, the survival probability of an
LF in the case of afirst-passage scenario is inversely proportional to the square root of the number n offlights,
that is, n nLF

1 2S -( ) . Forα<1 the number of jumps scales like n ta , such that t tLF
2S ~ a-( ) . This

scaling is equivalent to that obtained from the subdiffusive fractional diffusion equation [104]. Since thefirst-
passage time PDF is the negative of the first derivative of the survival probability, we get t tPW

2 1Ã a- -( ) . A
strict derivation of this exponent for LWs can be found in [105], where the general result for sPWÃ ( ) is shown to
be a function of the step length distribution in Laplace space. This general expression produces both the Sparre
Andersen-scaling forα>1 and the exponent−1−α/2 forα<1.

The short-time limit of the first-passage time PDFs of LWs shown infigures 7 and 8 is noticeably different
from the behaviour of LFs (comparefigure 4). Namely, for LWs the spatial spreading is limited by a frontwhich
travels with the constant speed v0, while for the LF case the PDF tPFÃ ( ) has non-zero values at any non-zero time.
Before the front of an LW reaches the origin the PDF offirst-passage times is identically zero. At exactly
t=x0/v0 we observe a jump in the value of the first-passage PDF. This jump corresponds to all thosewalkers
which did not change the direction even once since the process started. Then, similarly to LFs, the function
decaysmonotonically for smallα or has an intermediatemaximum.

Wenotice that in the limitα=2 ofGaussian relocations the resultingmotion performedwith a constant
speed is similar to themodel of immortal creepers [106]. For this type ofmotion the first-passage behaviourwas

Figure 5. Long time scaling behaviour of thefirst-passage PDF tPWÃ ( ) of LWs for differentα>1. All curves nicely follow the
predicted Sparre Andersen-scaling (5). Number of runs:N=107, with initial position x0=2. Speed of the LW: v0=1.Note that for
the better visual comparison of the PDFs their values are divided by factors of 10 forα=1.5, of 100 forα=1.75 and of 1000 for
α=2.
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studied.However, in themodel considered in [106] the creepers change directionwith awaiting time PDF
t e t

creepery w= w-( ) , whereω is the characteristic turning frequency. In our case one has to compute the
distribution of relocation times from theGaussian characteristic function of the process. Forα=2 in our case
(compare appendix B),

v v

v

1
exp

4
,

2
. 70

0

0
2 2

0
2

0

0

y t
p s

t
s

t
s
p

= - á ñ =
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Hence the equation (56) for the survival probability derived in [106] is not directly applicable in our case.
Generally, the jump of tPWÃ ( ) occurs at the verymomentwhen the propagation front, the fraction of

particles havingmoved the distance vtwithout direction changes, passes through the boundary. This front
corresponds to a delta peakwith decreasing amplitude,movingwith thewave variable x v t0∣ ∣ (appendixD).
Formally, that is, the value of the PDF at the timewhen this peak reaches the boundary is infinite,

t x vPW 0 0 0Ã =  ¥( ) , as the survival probability changes as a step function13. In the simulations the PDF
values are obtained from collecting crossing events infinite binswhose size represents the time resolution.
Hence, thefinite numerical values at t0 are an artefact of the binning, and afinermeshwill produce larger values

Figure 6. Long time scaling of thefirst-passage PDF tPWÃ ( ) of LWs for differentα�1. The fitted scaling exponents are in nice
agreement with the prediction of equation (6). The results are obtained fromN=10 7 runswith initial position x0=2, and relocation
speed v0=1.Note that for the better visual comparison of the PDFs their values are divided by a factor of 10 forα=0.5, of 100 for
α=0.75 and of 1000 forα=1.

Figure 7. Short-time behaviour of thefirst-passage PDF of LWs for differentα�1. The results are averaged overN=107 runs with
initial positionwas x0=2 and LWspeed v0=1.

13
The prefactor of the δ-function can be computed analytically as shown in appendixD.
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of tPWÃ ( ) (at t=2 for the simulations parameters used forfigure 8).We verified that this is indeed the case, as
demonstrated by table 1.

The difference in behaviour of the first-passage PDF between the casesα�1 andα>1 as shown in
figures 7 and 8 can be explained by the difference in the shape of the LWpropagators (compare figureH1). In
fact, forα>1 the position PDF of LWshas a front (smaller spikes infigureH1) producing the jump in thefirst-
passage PDF, then themain, bell-shaped part of the PDF arrives, and thefirst-passage PDF grows gradually. For
α<1, in contrast, the fronts are the onlymaxima in the position PDF, and thus the PDF offirst-passage has a
non-zero value and then decaysmonotonically.

5. First-hitting properties of Lévyflights and Lévywalks

In order to observe first-hitting events in a one-dimensional setting, we necessarily need to require that thefirst
absolutemoment xá ñ∣ ∣ of the jump length PDF exists, corresponding to the requirementα>1 [61, 81]. For the
opposite case of 0<α<1 the associated first-hitting time PDF vanished identically to zero.We do not
consider the latter case here. For LWs an event offirst-hitting in our setting occurs when the end point of a
relocationwith speed v0 hits the target.

5.1. First-hitting properties of Lévyflightswithα>1
The probability offirst-hitting (see figure 2) clearly depends on the exact target size [107]. Herewewill
concentrate on the case of point-like targets. Detailed studies of thefirst-hitting properties of LFswere presented
in [80, 81, 98]. Analytical derivations are based on the fractional Fokker–Planck equation [15, 52]with a sink
term,

f x t

t
K

f x t

x
t x

, ,
, 8HF d

¶
¶

=
¶
¶

- Ãa

a

a

( ) ( )
∣ ∣

( ) ( ) ( )

where the fractional derivative is defined in terms of its Fourier transform, kx f x t x xexp i , dò ¶ ¶ =a a
-¥

¥
( )[ ( ) ∣ ∣ ]

k f k t,- a∣ ∣ ( ), where f (k, t) is the Fourier transformof f (x, t). Equation (8) can be easilymodified to include an

Figure 8. Short-time behaviour of thefirst-passage PDF of LWs for differentα>1. The results are averaged overN=107 runs, the
initial positionwas x0=2, and the LWspeed is v0=1. The bin size was chosen as 0.1.

Table 1.Values of the LW first
passage tPWÃ ( ) at t=2 for two
differentα values and different bin
sizes.

Bin size α=0.5 α=1.5

10−1 0.998 0.0049

10−2 3.232 0.0011

10−3 10.52 0.0075

10−4 35.16 0.718
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external drift [81], to the case ofmultiple point-like targets [82], or to include an additional Brownian or Lévy
componentwith different stable index a¢ [61, 82].We consider here a perfectly absorbing sink. The case of a
finite absorption strength can be found in [108]. Equation (8) can be solved in Laplace space for the initial
condition f x x x, 0 0d= -( ) ( ) [98], yielding

s
k

k

d

d
. 9

s K k

s K k

HF

e

1

kxi 0

ò

ò
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+

-¥
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a
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a
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( ) ( )∣ ∣
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From inverse Laplace transformof this expressionwe obtain a new result for the first-hitting time PDF in time
(see appendix E),

t
K

t k kx E K k t
sin

d cos , 10HF

1
1 1

0
0 1,1ò

a p a
p

Ã = -a
a

a
a a

a-
¥

( ) ( ) ( ) ( ) ( )

where E K k t1,1 -a a
a( ) is a two-parameterMittag-Leffler function, which can be defined by its series expansions

[109]

Figure 9. First-hitting time PDF for LFswith differentα illustrating the long time scaling law (12), here represented by the black lines
with slopes predicted by the analytical expression. The coloured symbols depict the simulations results. Note that for better visual
comparison the PDFs are divided by a factor of 10 forα=1.5, of 100 forα=1.75, and of 1000 forα=2.We choseKα=1.

Figure 10. Short-time asymptotic for the first-hitting time PDF of LFs. The black lines are computed from the full expression (10), the
blue lines show the power-law (13)with the exact prefactor as given by the first term in expansion (F.2), equation (F.4). The red lines
shows the sumof the first three terms of the expansion, combining equations (F.4), (F.5), and (F.6). Parameters:Kα=1 and x0=1.
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around zero and infinity, respectively. From the latter expansionwe immediately recover thewell-established
power law asymptotic for the first-hitting time PDFof LFs [98],

t t 12HF
1 2Ã a-( ) ( )

at long times (compare equation (E.7) and its derivation in appendix E).We here also derive the short time
scaling law

t t 13HF
1Ã a( ) ( )

in appendix F. The full expression (10) can be evaluated numerically to plot the analytical solution of (8).
To determine the first-hitting time PDF from simulations of a searcher jumping according to a Lévy stable

jump length distribution, we need to endow the target with afinite size d. This size needs to be large enough to
guarantee sufficientlymany events for proper statistics, however, it should be small enough to vouchsafe the
point-like character of the target and thuswarrant consistencywith equation (8). This correct size also depends
on the time resolution and the time cutoff of the simulation run but not on the number of runs (see appendix G).
As a criterion for the choice of the target size we checked agreementwith both the expected long-time power law
(12) and the short-time power law (13).We found that for the integration time step δt=0.001 and the time
limit 103 for every run the proper target sizes are d=0.06 forα=2 (Brownianmotion), d=0.035 for

Figure 11. Long-time behaviour of the first-hitting time PDF of LWs. The exponents derived from the simulations coincide with those
for LFs calculated above, within the errormargin. The target sizes were the same as for the LFs. Parameters: x0=1 and v0=1.

Figure 12. Short-time behaviour offirst-hitting time PDF of LWs. Parameters: x0=1 and v0=1. Left: linear scale. Right: logarithmic
scale.
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α=1.75, d=0.014 forα=1.5, and d=0.003 forα=1.25. In particular we note here that this question of
thefinite target size is not limited to Lévy stablemotion, but is also an issue for regular Brownianmotion.

Figure 9 shows the long-time behaviour of the first-hitting time PDF for LFs. The PDFs obtained from
simulations (coloured symbols) arewellfitted by the theoretical result (E.7). Infigure 10we illustrate the
corresponding short-time behaviour for the first-hitting time PDF. The black curves show the exact analytical
solution computed from equation (10). Orange triangles are the simulation results. The correspondence
between the analytical expression and the simulations is excellent. The blue curves correspond to the first term in
the expansion (F.2)proportional to t1/α, which apparently works better for smallerα. Forα=2 all coefficients
in expansion (F.2) become equal to zero, that is, it does notwork for the Brownian case. Generally, the terms of
the expansion depend on time as t k 1 a+ with k being the degree of the expansion.Oncemore terms of the
expansion are added the quality of the approximation improves substantially (red curves infigure 10).

5.2. First-hitting probability for Lévywalkswithα>1
Infigure 11we show the numerical data for this case in the limit of long times. The numerically determined
scaling exponents nicely coincide with those obtained analytically and numerically for LFs (comparefigure 9).
The reason for this similarity is the same as for the case offirst-passage: in the long time limit forα>1 both
processes have the same scaling behaviour due to the existence of afinite scale of the jumps in the processes. The
only difference is that the prefactors in both casesmay differ, corresponding to a renormalisation of themean
step time.

Naturally, the short-time properties of thefirst-hitting behaviour depicted infigure 12 for LWs differ from
the corresponding shape for LFs, in analogy to our observations for the first-passage case. Namely, nofirst-
hitting event can occur before the LW front reaches the target. Then a jump in the value occurs at t=x0/v0.
Similar to our discussion of thefirst-passage time PDFwe attempted to insert an effective diffusion coefficient
K LW
a in the known long-time expressions for LFs, equation (E.7). Given that this did not succeed for the first-

passage scenario, it is not surprising that an effective description in terms of LFs cannot approximate the LW
behaviour.

6. Conclusions

LFs and LWs are broadly usedmodels for efficient random search processes. In this paper we systematically
analysed and compared the first-passage andfirst-hitting properties for two differentmodels of Lévymotion,
namely, LFs and LWs.We demonstrated that forα>1 the results of these twomodels are qualitatively identical
at long times due to thefinite average length of a relocation. The situation drastically changes forα<1when the
scaling of the PDFs heavily depends on the exactmodel (see the summary in table 2). This difference does not
come as a surprise in view of the strong difference of the propagators of the twomodels, particularly, thefinite
propagation front of LWs.Nevertheless, having quantitative data for the associated first-passage and first-hitting
time PDFs is valuable for any concrete analysis of searchmodels based on LFs and LWs.

While our findings are consistent with the results for the escape from an interval established in [57], we
observed that the exact short-time behaviour of LFs and LWs influences thewholefirst-passage and first-hitting
time PDFs, and particularly alters the amplitude factor of the long-time scaling behaviour of LWswith an
effective diffusion coefficient. In this short-time limit the PDF of the first-passage time of LFs jumps instantly to
afinite value, which is not typical for thefirst-hitting of LFs. In the case of LWs the short time behaviour is
defined by the passage of the propagation front through the boundary or the target. Strictly speaking the front
passes instantly through any coordinate. Hence, the value of the PDF should be formally infinite at that instant.
Obviously, this feature is smoothened in simulations and real observations due tofinite binning, but it reveals

Table 2.Comparison of the long-time asymptotes of thefirst-passage and
first-hitting PDFs for LFs and LWs.

First-passage First-hitting

Brownianmotion t t expx

K t

x

K tPBM HBM
4 4

0

2
3

0
2

2
Ã = Ã = -

p ( )( ) ( )

Brownian creepers t tPBC
3 2Ã -( ) t tHBC

3 2Ã -( )
Lévyflights (1<α<2) t tPF

3 2Ã -( ) t tHF
1 2Ã a-( )

Lévyflights (α�1) t tPF
3 2Ã -( ) t 0HFÃ =( )

Lévywalks (1<α�2) t tPW
3 2Ã -( ) t tHW

1 2Ã a-( )
Lévywalks (α�1) t tPW

1 2Ã a-( ) t 0HWÃ =( )
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itself through a strong dependence of the value of the PDF at this instant on the time resolution of the
simulations. In essencewe showed that it is important to know the entirefirst-passage orfirst-hitting PDF in
order to reach fully quantitative conclusions.

It will be interesting to extend the results reported herein to higher dimensions and/ormultiple target
scenarios. Higher-dimensional LFs and LWs can be defined in different ways [59, 60], and it is not a priori clear
whether the difference in definitionsmodifies the behaviour for the first-passage and first-hitting time PDFs. In
the case ofmultiple targets, for instance, disks distributed randomly in a plane, the associated first-passage and
first-hitting time PDFs to locate these disks wouldmove this problem closer to biological reality. Onemight
think of, as an example, a bee searching forflowers, a situation amenable to experiments [110].Measuring the
first-passage andfirst-hitting time PDFsmay help to put the LF foraging hypothesis onmore rigorous theoretical
grounds, which is a long-standing open problem.

Another interesting direction to study is the combination of Lévy-type processes with resetting, as studied,
for instance, formeanfirst passage and arrival times in [111].Moreover, it will be interesting to explore inmore
detail the impact of a bias on thefirst-passage and first-hitting time PDFs similar to the analyses in [80, 81].
Biologically this would relate to the problemof chemotaxis when cellsmigrate according to a chemical
concentration gradient tofind inflammation sites [112]. Similarly, extensions of the present results in general
external potential fields [113] should be studied, including phenomena such as barrier crossing, stochastic
resonant activation, and noise-enhanced stability phenomena [114]. Further applications to pursue include
population dynamics and biophysicalmodels [115], as well as themodelling of the dynamics in Josephson
junctions [116], tomention but a few stray examples.Wemoreover note that it should be analysed how
distributed transport parameters (such asKα)maymodify the results forfirst-passage andfirst-hitting, similar to
what happens for Brownian processes [117]. Finally, it will be interesting to studymore complex,many-body
scenarios such as hunting inflocks [118].
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AppendixA. Short-time behaviour of thefirst-passage of Lévyflights

Thefinite value pjump of the jump in the short-time behaviour of LFs (figure 4) can be estimated by computing
the survival probability at short times by using the asymptotic expression for large x. For the purpose of this
derivationwe assume that the starting position is at x=0while the boundary is at x=x0, which is physically
identical to our original setting. The survival probability at short times reads

t f t x x, d , A.1
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where the symmetric Lévy stable PDF in the limit x  ¥∣ ∣ is [37, 56]
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In order to estimate the slope at t=0wewill computewhether the values of the PDF increase or decrease at
short times. Aswe established above the probability to cross a boundary within an infinitesimal timeΔt1 reads
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The probability to be in the vicinity of some x�x0 afterΔt1 is f t x x, d1Da ( ) . Concurrently the probability to

cross the boundary in timeΔt2 after the original time intervalΔt1 if a walker landed at x is f t x x, d
x x 2

0
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Hence the probability to cross the boundarywithin t t t,1 2 1D D + D( ) becomes
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The latter integral can be computed analytically as follows,
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In order to get an analytical result for the last integral wewill split it into two parts from-¥ to 0 and from0 to 1.
Thefirst part without the prefactor is
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whereB(x, y) stands for the beta function and the last equality follows from formula 2.2.12.5 in [119] and is valid
for 0<α<1. The second part produces
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where F z1 , 1 , 2 ;2 1 a a a+ - -( ) is the hypergeometric function obtained through the integral definition
which is valid in this case forα<1. This hypergeometric function can be transformed according to 15.3.6 from
[120] as follows
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For z→1 the hypergeometric functions in the last expressionwill converge to 1. Assembling all of the pieces we
obtain the following formula,
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The last expression clearly shows thatwith decreasingα atα=2/3 the probability to cross the boundary within
an interval of time (Δt1, 2Δt1) gets lower than p1 due to the change in sign of the second term in (A.14). Thus,

tPFÃ ( ) decreases forα<2/3 at short t and at first grows forα>2/3.

Appendix B.Derivation of the average time of jump, the jumpduration distribution and
its long-time expansion for Lévywalks, 1<α�2

In order to estimate the effective diffusion coefficient of LWs one has to know the distribution of durations of the
jumps, the average jumpduration aswell as its long-time behaviour. The characteristic function of a symmetric
Lévy stable process is

k kexp . B.10f s= - a a( ) ( ∣ ∣ ) ( )

The distribution of the jump lengths can be expressed in terms of FoxH-functions as [15, 121]
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Hence,ψ(τ) yields in the form
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One can easily check that the latter function is properly normalised, d 1
0ò y t t =
¥

( ) . The average jump

duration can be computed forα>1 (otherwise it diverges) as
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using the properties of theH-function [121]. Our result exactly coincides with equation (54) in [57], where it was
derived as an approximate formula.We showhere that it is actually an exact expression (the factor v0missing in
the corresponding equation of [57] is just amisprint there). From the distributionwe obtain the exact form in
Laplace space and expand it at small s corresponding to long times. The Laplace transformof equation (B.2)
reads [121]
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The expansion of the latterH-function for s 0 has a ratio of nominally infinite values due to the presence of
zeros among the coefficients. In order to solve this problemwe introduce the infinitesimal parameter ε and treat
theH-function as a limit of anotherH-functionwith non-zero coefficients ε, namely,
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The expansion of the latterH-function reads ([119, 121]),
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where z s v2 0 0s= a a a a( ). Using the knownbehaviour of theGamma function for small arguments,Γ(ε)∼1/ε,
we obtain the following expansion,
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This form can be shown to be equivalent to the corresponding expression in [57].
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AppendixC.Derivation of the effective long-time diffusion coefficient of
LWs, 1<α�2

Let us start from equation (29) in [20],
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where sỸ( ) is the Laplace transformof the survival probability and can be expressed throughψ(s) as
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The last expansion assumes the condition s k v 10 ∣ ∣ . After neglecting higher powers in s one gets
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where tá ñ is given by equation (B.4). The last result is exactly the intuitive definition of the diffusivity from a
continuous time randomwalk perspective. The second line in equation (C.6) corrects the formula (55) in [57].

AppendixD. Estimation of the jump in thefirst-passage timePDFof LWs

The jump in thefirst-passage time PDFof LWs corresponds to the probability stored in the ballisticallymoving
front peak of the position PDF [20]. The density of particles in these peaks reads (equation (32) in [20])
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From the equations abovewe can compute the survival probability as a function of time. In Laplace space
s s s1 yY = -˜ ( ) [ ( )] . From expression (B.5),
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Its inverse Laplace transform reads [121],
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The survival probability as a function of t is then
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This is an exact analytical result. The value of thisH-function can be found from an expansion in t [119],
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The last two equations allow one to compute the value ofGfront. Unless the argument of theH-function is too big
the series (D.5) converges quite fast.

Appendix E.Derivation of the long-time limit of thefirst-hitting timePDFof
LFs, 1<α�2

We start from equation (9). The integral in the numerator can be computed analytically and reads
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where÷stands as a notation for the Laplace transformpair and Eα,β(t) is the two-parameterMittag-Leffler
function.Hence, we get equation (10),
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This equation clearly shows that forα=1 the PDF offirst-hitting the target is exactly zero, 0HFÃ = (the
prefactor is equal to zero in this case). Nowwe consider the long-time limit t  ¥. Rewriting the previous
equation as
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Consider separately thefirst and the second contribution. Thefirst integral is zero,
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wherewe used formula (1.99) in [122]. In the second integral theMittag-Leffler function can be substituted by its
large argument limit, E K k t K k t1 1 11,1 a-  - G -a a
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a( ) [ ( )], because at small values of k the expression
kx1 cos 0-( ( )) disappears. Then,
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which exactly coincides with result (A.9) in [61] and is equivalent to the corresponding expression in [98].

Appendix F.Derivation of the short-time limit of thefirst-hitting timePDFof LFs

Herewe compute the power-law of thefirst-hitting time PDFof LFs in the limit of short times. It is again
convenient to start from equation (10).We change the variable as y k K t 1= a

a( ) . Hence,
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Introducing the notation x K t0
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where In(t) is the nth termof the expansion of tHFÃ ( ) in a power series.With the help of equation (2.25) for
improper integrals in [123],
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AppendixG. The target size selection in the simulations

Our theoretical framework for LFs includes the notion of a point-like target. However, in the simulations the
target size should be non-zero if the target is to be successfully located. Thus the target should not be too small
such that it can actually be hit successfully. At the same time it should not be too large, otherwise this would
result in the scenario of the first-passage, and thus the scaling exponent would converge to the universal Sparre-
Andersen result. One has to choose the target size correctly. From the theory the asymptotic behaviour at long
times is known to be t tHF

1 2Ã a-( ) [98]. InfigureG1we showhow the exponent at long times depends on the
target size for the time resolution δt=0.001. For very small targets the exponent is closer to−1 (data 1 infigure
G1) and the Sparre-Andersen limit can be obtainedwhen large targets are considered (data set 4 infigureG1
corresponds to the case inwhich the starting point was distance 1 away from the boundary of the target with
d=10).We also checked that this automatically leads to the proper power lawwith scaling exponent 1/α at
short times. Vice versa one could use the short-time power law to get the bestfit target size with the correct long-
termfirst-hitting PDF statistics. Note that in order to get the exponents infigureG1we averaged the data in the
time interval [50, 1000]. For any fixed d and δt the exponent decreases slightly when the frame of averaging is
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moved towards longer t. Nomatter how small the target is chosen, the proper point-like target long-time scaling
will be observed at some time scale. However, any simulation has afinite duration.Hence, it is reasonable to
choose a target size which leads to the theoretical scalingwithin the time cutoff limit of the run. The set of best
choices for otherα used is listed in themain text.

Since the overshoots also depend on the time discretisation one has to adjust it as well. InfigureG2we show
how the long time characteristics changewith δtwhile keeping the target size d=0.014 forα=1.5. The change
of δt leads to deviations from the proper long-time behaviour of thefirst-hitting PDF. Importantly, the number
of runs does not affect the exponent obtained by averaging over afixed interval of time.However, the accuracy of
defining of the exponents increases with the number of runs.

AppendixH. Shape of the Lévywalk propagator

The shape of the LWpropagator discussed in section 4.2 is shown infigureH1.

FigureG1.Dependence of the long-time exponent of the PDF offirst-hitting on the target size for LFs. Note that for better visual
comparison of the PDFs their values were divided by a factor of 10 for d=0.014, of 100 for d=1, and of 1000 for d = ¥. In the first
three cases the target was centred at x=0. For d=10 the target is centred at x=−5. Parameters:α=1.5,Kα=1, x0=1, and
δt=0.001. The number of runs is 2×106.

FigureG2.Dependence of the long-time exponent of the PDF offirst-hitting on the time resolution in the simulations of LFswhen the
target size isfixed (the best choice for the δt=0.001was selected). Note that for better visual comparison of the PDFs their values were
divided by a factor of 10 for δt=0.005 and of 100 for δt=0.01. Parameters:α=1.5,Kα=1, x0=1, and d=0.014.

20

New J. Phys. 21 (2019) 103028 VVPalyulin et al



ORCID iDs

Vladimir VPalyulin https://orcid.org/0000-0002-3047-6937
RalfMetzler https://orcid.org/0000-0002-6013-7020
Rainer Klages https://orcid.org/0000-0003-3811-3070

References

[1] Redner S 2001AGuide to First Passage Processes (Cambridge: CambridgeUniversity Press)
[2] Metzler R,OshaninG andRedner S (ed) 2014 First Passage Problems: Recent Advances (Singapore:World Scientific)
[3] Hughes BD1995RandomWalks and RandomEnvironments, Vol 1: RandomWalks (Oxford:OxfordUniversity Press)
[4] SmoluchowskiMV1917Z. Phys. Chem. 92 129
[5] Collins F C andKimball G E 1949 J. Colloid Sci. 4 425
[6] BundeA et al (ed) 2018Diffusive Spreading inNature, Technology and Society (Berlin: Springer)
[7] BénichouOandVoituriez R 2014Phys. Rep. 539 225
[8] Bressloff PC andNewby JM2013Rev.Mod. Phys. 85 135
[9] HolcmannDand Schuss Z 2014 SIAMRev. 56 213
[10] BénichouO,Chevalier C, Klafter J,Meyer B andVoituriez R 2010Nat. Chem. 2 472
[11] KolesovG,Wunderlich Z, LaikovaON,GelfandMS andMirny LA2007Proc. Natl Acad. Sci. USA 104 13948
[12] PulkkinenO andMetzler R 2013Phys. Rev. Lett. 110 198101
[13] Godec A andMetzler R 2016Phys. Rev.X 6 041037
[14] GrebenkovD,Metzler R andOshaninG2018Commun. Chem. 1 96
[15] Metzler R andKlafter J 2000Phys. Rep. 339 1
[16] Metzler R andKlafter J 2004 J. Phys. A:Math. Gen. 37R161
[17] Klages R, RadonsG and Sokolov IM (ed) 2008Anomalous Transport: Foundations andApplications (NewYork:Wiley)
[18] Höfling F and Franosch T 2013Rep. Prog. Phys. 76 046602
[19] Metzler R, Jeon J-H, Cherstvy AG andBarkai E 2014Phys. Chem. Chem. Phys. 16 24128
[20] Zaburdaev V,Denisov S andKlafter J 2015Rev.Mod. Phys. 87 483
[21] Siegle P, Goychuk I andHänggi P 2010Phys. Rev. Lett. 105 100602
[22] Richardson L F 1926Proc. R. Soc.A 110 709
[23] ScherH andMontroll EW1975Phys. Rev.B 12 2455
[24] BrockmannD,Hufnagel L andGeisel T 2006Nature 439 462–5
[25] Barthelemy P, Bertolotti J andWiersmaD S 2008Nature 453 495
[26] Dieterich P, Klages R, Preuss R and SchwabA 2008Proc. Natl Acad. Sci. USA 105 459
[27] Harris TH et al 2012Nature 486 545
[28] Ariel G, Rabani A, Benisty S, Partridge JD,Harshey RMandBe’er A 2015Nat. Commun. 6 8396
[29] Ariel G, Be’er A andReynolds A 2017Phys. Rev. Lett. 118 228102
[30] Barkai E, Garini Y andMetzler R 2012Phys. Tod. 65 29

KrapfD andMetzler R 2019Phys. Today 72 48
[31] NørregaardK,Metzler R, Ritter CM, Berg-SørensenK andOddershede LB 2017Chem. Rev. 117 4342
[32] Metzler R, Jeon JH andCherstvy AG 2016Biochim. Biophys. Acta 1858 2451
[33] Mandelbrot B B and vanNess JW1968 SIAMRev. 10 422
[34] MolchanGM1999Commun.Math. Phys. 205 97
[35] Jeon J-H, Chechkin AV andMetzler R 2011Europhys. Lett. 94 20008
[36] Sokolov IM2003Phys. Rev. Lett. 90 080601

FigureH1. LWPDF forα=0.5 andα=1.5 at t=0.5, for v=1. Forα=0.5 the PDF isU-shapedwhile forα=1.5 the PDF is
bell-shaped. In both cases the horizon of the PDF is at x 0.5=∣ ∣ , note the spikes at x 0.5=∣ ∣ forα=1.5.

21

New J. Phys. 21 (2019) 103028 VVPalyulin et al

https://orcid.org/0000-0002-3047-6937
https://orcid.org/0000-0002-3047-6937
https://orcid.org/0000-0002-3047-6937
https://orcid.org/0000-0002-3047-6937
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0003-3811-3070
https://orcid.org/0000-0003-3811-3070
https://orcid.org/0000-0003-3811-3070
https://orcid.org/0000-0003-3811-3070
https://doi.org/10.1016/0095-8522(49)90023-9
https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1137/120898395
https://doi.org/10.1038/nchem.622
https://doi.org/10.1073/pnas.0700672104
https://doi.org/10.1103/PhysRevLett.110.198101
https://doi.org/10.1103/PhysRevX.6.041037
https://doi.org/10.1038/s42004-018-0096-x
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/PhysRevLett.105.100602
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature06948
https://doi.org/10.1073/pnas.0707603105
https://doi.org/10.1038/nature11098
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1103/PhysRevLett.118.228102
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.4294
https://doi.org/10.1021/acs.chemrev.6b00638
https://doi.org/10.1016/j.bbamem.2016.01.022
https://doi.org/10.1137/1010093
https://doi.org/10.1007/s002200050669
https://doi.org/10.1209/0295-5075/94/20008
https://doi.org/10.1103/PhysRevLett.90.080601


[37] Chechkin A,Metzler R, Klafter J andGonchar V Introduction to the theory of Lévy flights, in [17]
[38] Metzler R, Chechkin AV andKlafter J 2009 Lévy statistics and anomalous transport: Lévy flights and subdiffusion Encyclopedia of

Complexity and Systems Science edRMayers (NewYork: Springer)
[39] DubkovAA, Spagnolo B andUchaikinVV2008 Intern. J. Bifurcation Chaos 18 2649

DubkovAA and Spagnolo B 2005 Fluct. Noise Lett. 5 L267
[40] Klafter J, BlumenA and ShlesingerMF 1987Phys. Rev.A 35 3081
[41] FogedbyHC1994Phys. Rev.E 50 1657
[42] ShlesingerMF, Klafter J andWongYM1982 J. Stat. Phys. 27 499
[43] ZumofenG andKlafter J 1993Phys. Rev.E 47 851
[44] Denisov S, ZaburdaevV andHänggi P 2012Phys. Rev.E 85 031148
[45] Albers T andRadonsG2018Phys. Rev. Lett. 120 104501
[46] FroembergD andBarkai E 2013Phys. Rev.E 87 030104(R)
[47] FroembergD andBarkai E 2013Euro Phys. J.B 86 331
[48] Godec A andMetzler R 2013Phys. Rev. Lett. 110 020603
[49] Akimoto T 2012Phys. Rev. Lett. 108 164101
[50] FroembergD andBarkai E 2013Phys. Rev.E 88 024101
[51] Godec A andMetzler R 2013Phys. Rev.E 88 012116
[52] Metzler R, Barkai E andKlafter J 1999Europhys. Lett. 46 431
[53] Kaminska A and Srokowski T 2017Phys. Rev.E 96 032105

Srokowski T 2017Phys. Rev.E 95 032133
[54] Gardiner C 2009 StochasticMethods, AHandbook for theNatural and Social Sciences (Berlin: Springer)
[55] Koren T, Chechkin AV andKlafter J 2007PhysicaA 379 10
[56] Koren T, LomholtMA,Chechkin AV, Klafter J andMetzler R 2007Phys. Rev. Lett. 99 160602
[57] Dybiec B,Gudowska-Nowak E, Barkai E andDubkovAA 2017Phys. Rev.E 95 052102
[58] Pavlyukevich I 2007 J. Comput. Phys. 226 1830

Pavlyukevich I 2008 Stochast. Process. Applic. 118 1071
[59] TeuerleM,Żebrowski P andMagdziarzM2012 J. Phys. A:Math. Theor. 45 385002
[60] Zaburdaev V, Fouxon I, Denisov S andBarkai E 2016Phys. Rev. Lett. 117 270601
[61] PalyulinVV, ChechkinAV, Klages R andMetzler R 2016 J. Phys. A:Math. Theor. 49 394002
[62] Mandelbrot B B 1982The Fractal Geometry of Nature (NewYork: Freeman)
[63] LomholtMA, AmbjörnssonT andMetzler R 2005Phys. Rev. Lett. 85 260603

Compare also Sokolov IM,Mai J and BlumenA 1999Phys. Rev. Lett. 79 857
[64] MantegnaRN and StanleyHE 1994Phys. Rev. Lett. 73 2946
[65] Koponen I 1995Phys. Rev.E 52 1197
[66] Chechkin AV,Gonchar VY, Klafter J andMetzler R 2005Phys. Rev.E 72 010101(R)
[67] Klages R 2016 Search for food of birds,fish and insectsDiffusive Spreading inNature, Technology and Society ed ABunde et al (Berlin:

Springer)
[68] KatoriH, Schlipf S andWaltherH 1997Phys. Rev. Lett. 79 2221
[69] Geisel T andThomae S 1984Phys. Rev. Lett. 52 1936
[70] Geisel T,Nierwetberg J andZacherl A 1985Phys. Rev. Lett. 54 616
[71] ShlesingerMF andKlafter J 1985Phys. Rev. Lett. 54 2551
[72] ShlesingerMF andKlafter J 1986OnGrowth and Form edHE Stanley (Dordrecht: Kluwer)pp 279–83
[73] ViswanathanGM,AfanasyevV, Buldyrev SV,Murphy E J, Prince PA and StanleyHE 1996Nature 381 413
[74] Edwards AM et al 2007Nature 449 1044
[75] HumphriesNE,WeimerskirchH,QueirozN, Southall E J and SimsDW2012Proc. Natl Acad. Sci. USA 109 7169
[76] ViswanathanGM, Buldyrev SV,Havlin S, da LuzMGE, Raposo EP and StanleyHE 1999Nature 401 911
[77] ViswanathanGM, da LuzMGE,Raposo EP and StanleyHE 2011The Physics of Foraging (Cambridge: CambridgeUniversity Press)
[78] BénichouO, LoverdoC,MoreauMandVoituriez R 2011Rev.Mod. Phys. 83 81
[79] PykeGH2015Meth. Ecol. Evol. 6 16
[80] PalyulinVV, ChechkinAV andMetzler R 2014Proc. Natl Acad. Sci. USA 111 2931
[81] PalyulinVV, ChechkinAV andMetzler R 2014 J. Stat.Mech.P11031
[82] PalyulinVV,MantsevichVN,Klages R,Metzler R andChechkin AV2017Eur. Phys. J.B 90 170
[83] BénichouO, LoverdoC,MoreauMandVoituriez R 2006Phys. Rev.E 74 020102(R)
[84] OshaninG, Lindenberg K,WioH S andBurlatsky S 2009 J. Phys. A:Math. Theor. 42 434008
[85] LomholtMA, KorenT,Metzler R andKlafter J 2008Proc. Natl Acad. Sci. U.S.A. 105 11055
[86] Kuśmierz Ł andGudowska-Nowak E 2015Phys. Rev.E 92 052127
[87] Benhamou S 2007Ecology 88 1962–9
[88] James A, Pitchford JWandPlankM J 2009Bull.Math. Biol. 72 896
[89] Siegert A J F 1951Phys. Rev. 81 4
[90] He J 2009Appl.Math.Mech.—English Ed. 30 255–62
[91] ShinozukaMandWuW-F 1988On thefirst passage problem and its application to earthquake engineering Proc. 9thWorld Conf. on

Earthquake Engineering vol VIII (Tokyo-Kyoto, Japan, 2–9August) pp 767–72
[92] GersteinG L andMandelbrot BB 1964Biophys. J. 4 41
[93] Dybiec B andGudowska-Nowak E 2009 J. Stat.Mech.P05004
[94] KearneyM J andMajumdar SN 2005 J. Phys. A:Math. Gen. 38 4097
[95] Eichner J F, Kantelhardt JW, Bunde A andHavlin S 2006Phys. Rev.E 73 016130
[96] Kindermann F,HohmannM, Lausch T,MayerD, Schmidt F andWidera A 2017Phys. Rev.E 96 012130
[97] Mandelbrot B 1963 J. Business 36 394
[98] Chechkin AV,Metzler R,Gonchar VY,Klafter J andTanatarov LV 2003 J. Phys. A:Math. Gen. 36 L537
[99] Majumdar SN,Mounaix P and SchehrG 2017 J. Phys. A:Math. Theor. 50 465002
[100] Chambers JM,MallowsC L and Stuck BW1976 J. Am. Stat. Assoc. 71 340
[101] AugelloG, Valenti D and Spagnolo B 2010Euro. Phys. J.B 78 225
[102] LeeM-LT andWhitmoreGA1993 J. Appl. Prob. 30 302

22

New J. Phys. 21 (2019) 103028 VVPalyulin et al

https://doi.org/10.1142/S0218127408021877
https://doi.org/10.1142/S0219477505002641
https://doi.org/10.1103/PhysRevA.35.3081
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1007/BF01011089
https://doi.org/10.1103/PhysRevE.47.851
https://doi.org/10.1103/PhysRevE.85.031148
https://doi.org/10.1103/PhysRevLett.120.104501
https://doi.org/10.1103/PhysRevE.87.030104
https://doi.org/10.1140/epjb/e2013-40436-1
https://doi.org/10.1103/PhysRevLett.110.020603
https://doi.org/10.1103/PhysRevLett.108.164101
https://doi.org/10.1103/PhysRevE.88.024101
https://doi.org/10.1103/PhysRevE.88.012116
https://doi.org/10.1209/epl/i1999-00279-7
https://doi.org/10.1103/PhysRevE.96.032105
https://doi.org/10.1103/PhysRevE.95.032133
https://doi.org/10.1016/j.physa.2006.12.039
https://doi.org/10.1103/PhysRevLett.99.160602
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1016/j.jcp.2007.06.008
https://doi.org/10.1016/j.spa.2007.07.012
https://doi.org/10.1088/1751-8113/45/38/385002
https://doi.org/10.1103/PhysRevLett.117.270601
https://doi.org/10.1088/1751-8113/49/39/394002
https://doi.org/10.1103/PhysRevLett.95.260603
https://doi.org/10.1103/PhysRevLett.79.857
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1103/PhysRevE.52.1197
https://doi.org/10.1103/PhysRevE.72.010101
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevLett.54.616
https://doi.org/10.1103/PhysRevLett.54.2551
https://doi.org/10.1007/978-94-009-5165-5_29
https://doi.org/10.1007/978-94-009-5165-5_29
https://doi.org/10.1007/978-94-009-5165-5_29
https://doi.org/10.1038/381413a0
https://doi.org/10.1038/nature06199
https://doi.org/10.1073/pnas.1121201109
https://doi.org/10.1038/44831
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1111/2041-210X.12298
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1088/1742-5468/2014/11/P11031
https://doi.org/10.1140/epjb/e2017-80372-4
https://doi.org/10.1103/PhysRevE.74.020102
https://doi.org/10.1088/1751-8113/42/43/434008
https://doi.org/10.1073/pnas.0803117105
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1890/06-1769.1
https://doi.org/10.1890/06-1769.1
https://doi.org/10.1890/06-1769.1
https://doi.org/10.1007/s11538-009-9473-z
https://doi.org/10.1103/PhysRev.81.617
https://doi.org/10.1007/s10483-009-0213-y
https://doi.org/10.1007/s10483-009-0213-y
https://doi.org/10.1007/s10483-009-0213-y
https://doi.org/10.1016/S0006-3495(64)86768-0
https://doi.org/10.1088/1742-5468/2009/05/P05004
https://doi.org/10.1088/0305-4470/38/19/004
https://doi.org/10.1103/PhysRevE.73.016130
https://doi.org/10.1103/PhysRevE.96.012130
https://doi.org/10.1086/294632
https://doi.org/10.1088/0305-4470/36/41/L01
https://doi.org/10.1088/1751-8121/aa8d28
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1140/epjb/e2010-10106-1
https://doi.org/10.2307/3214840


[103] KorabelN andBarkai E 2011 J. Stat.Mech.P05022
[104] Metzler R andKlafter J 2000PhysicaA 278 107
[105] Artuso R, CristadoroG, EspostiMD andKnightG 2014Phys. Rev.E 89 052111
[106] CamposD, AbadE,Méndez V, Yuste S B and Lindenberg K 2015Phys. Rev.E 91 052115
[107] Dybiec B,Gudowska-Nowak E andChechkin A 2016 J. Phys. A:Math. Theor. 49 504001
[108] JanakiramanD2017Phys. Rev.E 95 012154
[109] Erdélyi A (ed) 1981Higher Transcendental Functions, vol III, BatemanManuscript Project (Malabar, FL: Krieger)
[110] Lenz F, Ings TC, Chittka L, Chechkin AV andKlages R 2012Phys. Rev. Lett. 108 098103
[111] Kusmierz L,Majumdar SN, Sabhapandit S and Schehr G 2014Phys. Rev. Lett. 113 220602

Kusmierz L andGudowska-Nowak E 2015Phys. Rev.E 92 052127
[112] Dieterich P et al 2018Asymmetric anomalous diffusion in neutrophil chemotaxis (submitted)
[113] Chechkin AV,Gonchar VY, Klafter J,Metzler R andTanatarov LV 2002Chem. Phys. 284 233

Chechkin AV, Klafter J, Gonchar VY,Metzler R andTanatarov LV 2003Phys. Rev.E 67 010102(R)
Chechkin AV,Gonchar VY, Klafter J,Metzler R andTanatarov LV 2004 J. Stat. Phys. 115 1505
DubkovAA and Spagnolo B 2013Euro. Phys. J. Spec. Top. 216 31
DubkovA and Spagnolo B 2007Acta Phys. Polon.B 38 1745
Kharcheva AA,DubkovAA,Dybiec B, Spagnolo B andValenti D 2016 J. Stat.Mech. 054039
Dybiec B, Capala K, ChechkinA andMetzler R 2019 J. Phys. A:Math. Theor. 52 015001

[114] Chechkin AV,Gonchar VY, Klafter J andMetzler R 2005Europhys. Lett. 72 348
Chechkin AV, SliusarenkoOY,Metzler R andKlafter J 2007Phys. Rev.E 75 041101
DubkovAA, LaCognata A and Spagnolo B 2009 J. Stat.Mech.P01002

[115] DubkovAA and Spagnolo B 2008Euro. Phys. J.B 65 361
Lisowski B, Valenti D, Spagnolo B, BierM andGudowska-Nowak E 2015Phys. Rev.E 91 042713
LaCognata A, Valenti D,DubkovAA and Spagnolo B 2010Phys. Rev.E 82 011121

[116] Spagnolo B, Valenti D,Guarcello C, Carollo A, PersanoAdornoD, Spezia S, PizzolatoN and Paola BDi 2015Chaos Solitons Fractals 81
412
Guarcello C, Valenti D, Carollo A and Spagnolo B 2016 J. Stat.Mech. 054012
Spagnolo B,Guarcello C,Magazzu L, Carollo A, PersanoAdornoD andValenti D 2017Entropy 19 20
Guarcello C, Valenti D, Spagnolo B, PierroV and Filatrella G 2017Nanotechnology 28 134001
Guarcello C, Valenti D, Spagnolo B, PierroV and Filatrella G 2019Phys. Rev. Appl. 11 044078

[117] Sposini V, ChechkinAV andMetzler R 2019 J. Phys. A:Math. Theor. 52 04LT01
Lanoiselée Y,MoutalN andGrebenkovDS 2018Nat. Commun. 9 4398
Chechkin AV, Seno F,Metzler R and Sokolov IM2017Phys. Rev.X 7 021002

[118] OshaninG,VasilyevO, Krapivsky P L andKlafter J 2009Proc. Natl Acad. Sci. USA 106 13696
SchwarzlM,Godec A,OshaninG andMetzler R 2016 J. Phys. A:Math. Theor. 49 225601

[119] Prudnikov AP, Brychkov YA andMarichevO I 1990 Integrals and Series (NewYork: Gordon andBreach Science)
[120] AbramowitzM and Stegun I 1972Handbook ofMathematical Functions with Formulas, Graphs, andMathematical Tables (NewYork:

Dover)
[121] Mathai AM, Saxena RK andHauboldH J 2010TheH-Function Theory andApplications (NewYork: Springer)
[122] Podlubny I 1998 Fractional Differential Equations (NewYork: Academic)
[123] MalakhovAN1968 Fluctuations in Self-Oscillating Systems [in Russian] (Moscow:Nauka)

23

New J. Phys. 21 (2019) 103028 VVPalyulin et al

https://doi.org/10.1088/1742-5468/2011/05/P05022
https://doi.org/10.1016/S0378-4371(99)00503-8
https://doi.org/10.1103/PhysRevE.89.052111
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1088/1751-8113/49/50/504001
https://doi.org/10.1103/PhysRevE.95.012154
https://doi.org/10.1103/PhysRevLett.108.098103
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1016/S0301-0104(02)00551-7
https://doi.org/10.1103/PhysRevE.67.010102
https://doi.org/10.1023/B:JOSS.0000028067.63365.04
https://doi.org/10.1140/epjst/e2013-01726-2
https://doi.org/10.1088/1742-5468/2016/05/054039
https://doi.org/10.1088/1742-5468/2016/05/054039
https://doi.org/10.1088/1751-8121/aaefc2
https://doi.org/10.1209/epl/i2005-10265-1
https://doi.org/10.1103/PhysRevE.75.041101
https://doi.org/10.1088/1742-5468/2009/01/P01002
https://doi.org/10.1140/epjb/e2008-00337-0
https://doi.org/10.1103/PhysRevE.91.042713
https://doi.org/10.1103/PhysRevE.82.011121
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.1088/1742-5468/2016/05/054012
https://doi.org/10.3390/e19010020
https://doi.org/10.1088/1361-6528/aa5e75
https://doi.org/10.1103/PhysRevApplied.11.044078
https://doi.org/10.1088/1751-8121/aaf6ff
https://doi.org/10.1038/s41467-018-06610-6
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1073/pnas.0904354106
https://doi.org/10.1088/1751-8113/49/22/225601

	1. Introduction
	2. The role of Lévy flights and walks in random target search
	3. Setup of the system: determining first-passage and first-hitting times
	4. First-passage properties of Lévy flights and Lévy walks
	4.1. First-passage for Lévy flights
	4.2. First-passage for Lévy walks

	5. First-hitting properties of Lévy flights and Lévy walks
	5.1. First-hitting properties of Lévy flights with α ˃ 1
	5.2. First-hitting probability for Lévy walks with α ˃ 1

	6. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	Appendix H.
	References

