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1. Introduction

• Water is a critical resource 
needed to support future 
crewed space exploration.

• In situ experiments are 
required to analyse and 
harvest water on the Moon.

• ProSPA is an analytical module 
for in situ regolith analysis on-
board the Luna-27 mission [1].

• ProSPA will search for volatiles 
and also perform an ISRU 
demonstration.

• Reduction of lunar minerals is 
planned to be performed on 
the lunar surface using ProSPA

4. Lunar Meteorite
• NWA12592, a feldspathic fragmental lunar

regolith breccia [5].

• Manually crushed and sieved, with fines
<38 µm removed

• Some samples treated with EATG [6,7] to
remove secondary oxides from
weathering.

• Some reduction recorded (0.07±0.02 wt.%
O2), no significant difference with EATG.

• Melt material and relatively large grain
sizes could be limiting yields.

2. Method
• Water can be produced from hydrogen reduction of FeO-bearing 

minerals.

• ProSPA is not optimized for this technique and the reaction must 
take place in a static (non-flowing) system (Fig. 2).

• Ilmenite is used as an ‘ideal’ lunar mineral for initial testing [2,3].

5. Apollo Samples

3. Lunar Simulant
• NU-LHT-2M, a highland simulant with ~1.05

wt.% ilmenite [4]. Later sieved to remove
<38 µm fraction.

• Pressure drop suggests reduction has
occurred.

• Ilmenite grains show evidence of reduction
along with small amounts of pyroxene and
plagioclase.

• Yields of 0.29±0.04 wt.% O2, compared to
3.43±0.14 wt.% O2 for pure ilmenite.

1. Conclusions
•Lunar simulants and samples can reduce in 
a ProSPA-like system.

•Highland samples give lower yields, but still 
measurable.

•Could this be the 1st ever production of 
water on the lunar surface?

Fig 1 Luna-27 Lander. 

In this work, lunar simulants and
samples are reduced in a ProSPA
breadboard model [2.3]. The
results will help determine the
feasibility of ProSPA producing
water on the lunar surface.

Fig 2. How a static system can be used to reduce Fe-O bearing minerals such as ilmenite, and the corresponding pressure change indicating a reaction has taken place.

Fig. 3 Reduction pressures for a) NU-LHT-2M, and 
b) NU-LHT-2M doped with ilmenite (FeTiO3)  
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Fig. 4 BSE images of NU-LHT-2M grains before reduction. a) ilmenite, and 
b) plagioclase 

Fig. 5 BSE images of NU-LHT-2M grains after reduction. a) ilmenite, and
b)  plagioclase
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Fig. 6 Reduction pressures for a) EATG treated 
NWA12592, and b) un-treated NWA12592.
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Fig. 7 BSE images of grains of NWA12592 before reduction. Fig. 8 BSE images of grains of NWA12592 after reduction.

Fig. 9 Reduction pressures for 10084.

Fig. 10 BSE images of grains of 10084 before reduction. Fig. 11 BSE images of grains of 10084 after reduction.

• 10084 mare soil, <1 mm sieved fraction of
Apollo 11 bulk soil [8]. Later sieved to
remove <38 µm fraction. Relatively rich in
FeO (1-3 vol.% ilmenite) [9].

• Significant reaction observed, with yields
of 0.94±0.03 wt.% O2.

• Different mineralogies show reduction.

• 60500 highland soil, unsieved fraction of
Apollo 16 bulk sample. Later sieved to
remove <38 µm fraction. Relatively poor in
FeO (trace ilmenite) [10].

• Some reaction observed, with yields of
0.18±0.02 wt.% O2.

• Mostly pyroxene reducing.
Fig. 12 Reduction pressures for 60500.

Fig. 13 BSE images of grains of 60500 before reduction. Fig. 14 BSE images of grains of 60500 after reduction.
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Fig. 15 Comparative yields from samples reduced in this 
work w.r.t. PILOT/Roxygen hydrogen reduction reactors [11].


