Open Research Online

The Open University's repository of research publications and other research outputs

Water production from lunar samples and simulants

Conference or Workshop Item

How to cite:

Sargeant, Hannah; Abernethy, Feargus; Anand, Mahesh; Barber, Simeon; Sheridan, Simon; Wright, Ian and Morse, Andrew Water production from lunar samples and simulants. In: Space Resources Workshop, 10-11 Oct 2019, Luxembourg City, Luxembourg.

For guidance on citations see FAQs.

 \bigcirc [not recorded]

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

Bail Water Production from Lunar Samples and Simulants H. M. Sargeant¹, F. Abernethy¹, M. Anand^{1, 2}, S. J. Barber¹, S. Sheridan¹, I. P. Wright¹ and A. Morse¹. ¹School of Physical

Sciences, The Open University, Walton Hall, Milton Keynes, ²The Natural History Museum, London, UK. Email: hannah.sargeant@open.ac.uk

1. Introduction

- Water is a critical resource needed to support future crewed space exploration.
- In situ experiments are lacksquarerequired to analyse and harvest water on the Moon.
- ProSPA is an analytical module lacksquarefor in situ regolith analysis on-

4. Lunar Meteorite

- NWA12592, a feldspathic fragmental lunar^{a.} regolith breccia [5].
- Manually crushed and sieved, with fines <38 µm removed
- Some samples treated with EATG [6,7] to oxides secondary from remove weathering.
- Some reduction recorded (0.07±0.02 wt.% O_2), no significant difference with EATG.

board the Luna-27 mission [1].

- ProSPA will search for volatiles and also perform an ISRU demonstration.
- **Reduction of lunar minerals** is planned to be performed on the lunar surface using ProSPA

In this work, lunar simulants and samples are reduced in a ProSPA breadboard model [2.3]. The results will help determine the feasibility of ProSPA producing water on the lunar surface.

Fig 1 Luna-27 Lander.

Melt material and relatively large grain sizes could be limiting yields.

100 150 200 Reaction time (mins)

Fig. 6 Reduction pressures for a) EATG treated NWA12592, and b) un-treated NWA12592.

Fig. 8 BSE images of grains of NWA12592 after reduction

2. Method

- Water can be produced from hydrogen reduction of **FeO-bearing** minerals.
- ProSPA is **not optimized** for this technique and the reaction must take place in a static (non-flowing) system (Fig. 2).
- **Ilmenite** is used as an 'ideal' lunar mineral for initial testing [2,3].

5. Apollo Samples

- 10084 mare soil, <1 mm sieved fraction of Apollo 11 bulk soil [8]. Later sieved to remove <38 µm fraction. Relatively rich in FeO (1-3 vol.% ilmenite) [9].
- Significant reaction observed, with yields of 0.94±0.03 wt.% O₂.

3. Lunar Simulant

- NU-LHT-2M, a highland simulant with ~1.05 lacksquarewt.% ilmenite [4]. Later sieved to remove <38 µm fraction.
- drop suggests reduction has Pressure occurred

Different mineralogies show reduction.

Fig. 11 BSE images of grains of 10084 after reduction

- 60500 highland soil, unsieved fraction of Apollo 16 bulk sample. Later sieved to remove <38 µm fraction. Relatively poor in FeO (trace ilmenite) [10].
- Some reaction observed, with yields of ² 0.18 ± 0.02 wt.% O₂.
- Mostly pyroxene reducing.

- Ilmenite grains show evidence of reduction $\frac{1}{2}$ -50 along with small amounts of pyroxene and plagioclase.
- Yields of 0.29 ± 0.04 wt.% O_2 , compared to • 3.43 ± 0.14 wt.% O₂ for pure ilmenite.

Fig. 4 BSE images of NU-LHT-2M grains before reduction. a) ilmenite, and b) plagioclase

Fig. 5 BSE images of NU-LHT-2M grains after reduction. a) ilmenite, and b) plagioclase

Fig. 13 BSE images of grains of 60500 before reduction

1. Conclusions

•Lunar simulants and samples can reduce in a ProSPA-like system.

•Highland samples give lower yields, but still measurable.

•Could this be the 1st ever production of water on the lunar surface?

Fig. 15 Comparative yields from samples reduced in this work w.r.t. PILOT/Roxygen hydrogen reduction reactors [11].

Acknowledgements: The funding by STFC of a studentship for H. S. is acknowledged. PROSPECT is a programme of and funded by the European Space Agency (ESA).

References: [1] Barber et al. (2018) LPSC XLIX, #2172. [2] Sargeant et al. (2019) PSS, 104759 (in press). [3] Sargeant et al. (2019) The Met. Bull. #108 in Meteoritics & Planet. Sci. (In Prep). [6] Cornish & Doyle (1984) Palaeontology, 27(2) 421-424. [7] Greenwood et al. (2012) Geoch. et Cosmo. Acta, 94 146-163. [8] Meyer (2009) Lunar Sample Compendium, 10084. [9] Kong et al. (2013) Icarus, 226 891-897. [10] Meyer (2010) Lunar Sample Compendium, 60500 and 65510. [11] Sanders & Larson (2012) J. Aero. Eng., 26 5-17.