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Commands through Structured Learning

Andrea Vanzoa,∗, Danilo Croceb, Emanuele Bastianellic,, Roberto Basilib,
Daniele Nardia
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Abstract

The presence of robots in everyday life is increasing day by day at a growing
pace. Industrial and working environments, health-care assistance in public
or domestic areas can benefit from robots’ services to accomplish manifold
tasks that are difficult and annoying for humans. In such scenarios, Natural
Language interactions, enabling collaboration and robot control, are meant
to be situated, in the sense that both the user and the robot access and
make reference to the environment. Contextual knowledge may thus play a
key role in solving inherent ambiguities of grounded language as, for example,
the prepositional phrase attachment.

In this work, we present a linguistic pipeline for semantic processing of
robotic commands, that combines discriminative structured learning, dis-
tributional semantics and contextual evidence extracted from the working
environment. The final goal is to make the interpretation process of lin-
guistic exchanges depending on physical, cognitive and language-dependent
aspects. We present, formalize and discuss an adaptive Spoken Language
Understanding chain for robotic commands, that explicitly depends on the
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operational context during both the learning and processing stages. The re-
sulting framework allows to model heterogeneous information concerning the
environment (e.g., positional information about the objects and their prop-
erties) and to inject it in the learning process. Empirical results demonstrate
a significant contribution of such additional dimensions, achieving up to a
25% of relative error reduction with respect to a pipeline that only exploits
linguistic evidence.

Keywords: Spoken Language Understanding, Automatic Interpretation of
Robotic Commands, Grounded Language Learning, Human-Robot
Interaction

1. Introduction1

In the last decade, Human-Robot Interaction (HRI) is getting more and2

more attention within the AI and Robotics community. In fact, several dif-3

ferent motivations are pushing forward the breakthroughs in the field. First,4

HRI embraces an incredibly wide range of research interests and topics. A do-5

mestic robot is expected of being able to: (i) navigate and self-localize within6

the environment, (ii) recognize people and objects (Vision capabilities), (iii)7

manipulate physical items (Grasping) and (iv) properly interact with human8

beings (Human-Robot Interaction). All these different challenges involve9

several capabilities (and so paradigms) that need to coherently interplay in10

order to design and build proper interactive robots. Second, domestic robots11

are going to be part of our everyday life in the very next future. Several12

robotic platforms have been already marketed and, at different level of speci-13

ficity, they are able to support a variety of activities. The iRobot Roomba is14

probably the best among possible examples, due to its commercial success15

and the amount of innovation it contributed with. It is a vacuum cleaner16

capable of building a map of the environment, in order to autonomously plan17

and execute the cleaning of our homes.18

However, though such a way of interacting with the robotic platform19

might be considered direct and accessible, human language is still one of the20

most natural ways of communication for its expressiveness and flexibility:21

the ability of a robot to correctly interpret users’ commands is essential22

for proper HRI. For example, a spoken language interface would make the23

Roomba accessible to even more users.24

An effective communication in natural language between humans and
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robots is still challenging for the different cognitive abilities involved during
the interaction. In fact, behind the simple command

“take the mug next to the keyboard” (1)

a number of implicit assumptions should be met in order to enable the robot25

to successfully execute the command. First, the user refers to entities that26

must exists into the environment, such as the mug and the keyboard. More-27

over, the robot needs a structured representation of the objects, as well as28

the ability to detect them. Finally, mechanisms to map lexical references to29

the objects must be available, in order to drive the interpretation process30

and the execution of a command.31

We argue that the interpretation of a command must produce a logic form
through the integrated use of sentence semantics, accounting for linguistic
and contextual constraints. In fact, without any contextual information, the
command 1 is ambiguous with respect to both syntax and semantics due to
the Prepositional Phrase (PP) attachment ambiguity ([1, 2]). In the running
example 1, the PP “next to the keyboard” can be attached either to the Noun
Phrase (NP) or the Verb Phrase (VP), thus generating the following different
syntactic structures

[VP take [NP the mug [PP next to the keyboard]]] (2)

[VP take [NP the mug] [PP next to the keyboard]] (3)

that evoke different meanings as well. In fact, due to the high ambiguity32

of the “take” word, i.e., it can be noun or verb with different meanings [3],33

whenever the syntactic structure of the running command is 2, “next to the34

keyboard” refers to “the mug”. Hence, the semantics of the command evokes35

a Taking action, in which the robot has to take the mug that is placed36

next to the keyboard. Conversely, if the syntactic structure is 3, “next to37

the keyboard‘” is attached to the verb phrase, indicating that the mug is38

located elsewhere far from the keyboard. In this case, the interpretation of39

the command refers to a Bringing action, in which robot has to bring the40

mug next to the keyboard, that is the goal of the action.41

In fact, the structured representation of the environment is a discrimi-42

nating factor for resolving syntactic/semantic ambiguities of language, such43

as the attachment of the PP “next to the mug”, as well as for providing the44
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required knowledge in support of language grounding in a situated scenario.45

While such ambiguities can be resolved through interactions, we believe that,46

when useful resources are available, a knowledgeable system should exploit47

them in order to minimise the user annoyance.48

In conclusion, we foster an approach for the interpretation of robotic49

spoken commands that is consistent with (i) the world (with all the enti-50

ties therein), (ii) the robotic platform (with all its inner representations and51

capabilities), and (iii) the linguistic information derived from the user’s ut-52

terance.53

1.1. Contributions and article outline54

The main contribution of this article consists of a framework for the55

automatic understanding of robotic commands, aimed at producing inter-56

pretations that coherently mediate among the world, the robotic platform57

and the pure linguistic level triggered by a sentence. In fact, we support the58

idea that the interpretation of a robotic command is not just an outcome of59

a linguistic inference, but it is the result of a joint reasoning process involv-60

ing both linguistic evidence and knowledge regarding the contextual physical61

scenario. This work builds upon [4], that shows how the interpretation pro-62

cess of a command can be made sensitive to the spatial position of perceived63

entities within the environment. Here we make a step forward by proving64

that the interpretation framework can be extended to richer feature spaces,65

that allow for expressing domain properties of the involved entities, along66

with spatial ones. To this end, this paper provides a robust formalization67

of the Semantic Map, that collects all the semantic properties to be injected68

in the language understanding process. Moreover, we prove the approach69

to be language independent, with a more complete experimental session run70

over a corpus in two different languages (i.e., English and Italian). Hence,71

the proposed approach allows to (i) learn the interpretation function by re-72

lying on a corpus of annotated commands, (ii) inject grounded information73

directly within the learning algorithm, thus integrating linguistic and con-74

textual knowledge, and (iii) extend the features space as more specific and75

rich information is made available. Experimental evaluations show that the76

injection of these dimensions in the interpretation process is beneficial for77

the correct interpretation of the real user intent, when perceptual knowledge78

is paired with information coming from the operational domain.79

We organize the manuscript in 7 sections. In the next section, the prob-80

lem of natural language interpretation grounded in a robotic operating en-81
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vironment is discussed in the view of previous research and achievements in82

literature. Section 3 provides a description of the knowledge resources, refer-83

ring to both the linguistic assumptions and context modeling, while Section 484

describes the grounding process we designed, which allows to link linguistic85

symbols to entities into the environment. In Section 5 a formal description of86

the proposed system is provided, together with the adopted machine learning87

techniques to feature modeling; results obtained through several experimen-88

tal evaluations are reported in Section 6. Finally, in Section 7 we draw some89

conclusions.90

2. Related Work91

The approach we propose makes use of grounded features extracted from92

a Semantic Map [5] modeling the entities in the environment, as well as93

semantic and spatial properties. Such features allow to drive the interpre-94

tation process of the actions expressed by vocal commands. The realization95

of robots that are able to intelligently interact with users within human-96

populated environments requires techniques for linking language to actions97

and entities into the real-world. Recently the research on this topic received98

an incredible interest (see, for example, the workshops on Language Ground-99

ing in Interactive Robotics [6, 7]).100

Grounding language often requires the combination of the linguistic di-101

mension and perception. For example, in [8], the authors make a joint use102

of linguistic and perceptual information. Their approach leverages active103

perception, so that linguistic symbols are directly grounded to elements ac-104

tively perceived. Again, in [9], a Natural Language Understanding system105

called Lucia is presented, based on Embodied Construction Grammar (ECG)106

within the Soar architecture. Grounding is performed using knowledge from107

the grammar itself, from the linguistic context, from the agent’s perception,108

and from an ontology of long-term knowledge about object categories and109

properties and actions the agent can perform. However, in these works per-110

ceptual knowledge never modifies syntactic structures that can be generated111

by the parser when they are incorrect. Conversely, our system is able to deal112

with ambiguities at predicate level, allowing for selecting the interpretation113

that is mostly coherent with the operational environment.114

Similarly to our framework, the approaches in [10, 11] aim at ground-115

ing language to perception through structured robot world knowledge. In116

particular, in [11] the authors deal with the problem of using unknown out-117
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of-vocabulary words to refer to objects within the environment; the meaning118

of such words is then acquired through dialog. Differently, we make use of119

a mechanism based on Distributional Model of Lexical Semantics [12, 13]120

together with phonetic similarity functions to achieve robustness (as in [14]),121

while extracting grounded features through the lexical references contained122

in the Semantic Map. Thanks to this mechanism, no further interactions123

are required, and the acquisition of synonymic expressions is automatically124

derived by reading large-scale document collections.125

The problem of grounding semantic roles of a caption to specific areas126

of the corresponding video is addressed in [15]. Grounding is performed on127

both explicit and implicit roles. Semantic Role Labeling (SRL) follows a se-128

quential tagging approach, implemented through Conditional Random Field129

(CRF). The problem is further stressed in [16], where Gao and colleagues130

studied a specific sub-category of the action verbs, namely the result verbs,131

that are meant to cause a change of state in the patient referred by the verb132

itself. In their framework, given a video and a caption, the aim is to ground133

different semantic roles of the verb to objects in the video, relying on the134

physical causality of verbs (i.e., physical changes that a verb may arouse135

within the environment) as features in a CRF model. Similarly, in [17] the136

problem of reasoning about an image and a verb is studied. In particular,137

the authors aimed at picking the correct sense of the verb that describes the138

action depicted into the image. In [18], the authors aim at resolving linguis-139

tic ambiguities of a sentence paired with a video by leveraging sequential140

labeling. The video paired with the sentence refers to one of the possible141

interpretations of the sentence itself. Even though they make large use of142

perceptual information to solve an SRL problem, their system requires an143

active perception of the environment through RGB cameras. Hence, the144

robot must have the capabilities for observing the environment at the time145

the command is uttered. Again, in [19] the authors face the problem of146

teaching a robot manipulator how to execute natural language commands by147

demonstration, using video/caption pairs as valuable source of information.148

Our system relies on a synthetic representation of the environment, acquired149

through active interaction [20]. It allows the robot to make inferences on the150

world it is working into, though it is not actively and directly observing the151

surrounding environment. However, since the perception is injected in the152

interpretation process as features for the learning machine, the framework153

we propose can be scaled to active perception, whenever vision information154

can be extracted and encoded into features in real-time.155
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A different perspective has been addressed in [21], where the problem of156

PP attachment ambiguity of images’ caption is resolved by leveraging the157

corresponding image. In particular, the authors propose a joint resolution of158

both semantic segmentation of the image and prepositional phrase attach-159

ment. In [22] the authors exploit an RGB-D image and its caption to im-160

prove 3D semantic segmentation and co-reference resolution in the sentences.161

However, while the above works leverage visual context for the semantic seg-162

mentation of images or syntax disambiguation of captions, we use a synthetic163

representation of the context to resolve semantic ambiguities of the human164

language, with respect to a situated interactive scenario. Our approach is165

thus able to cope with the correct semantics of a command that has been166

uttered in a specific context.167

It is worth noting that approaches making joint use of language and168

perception have been proposed to model the language grounding problem169

also when the focus is on grounded attributes, as in [23, 24, 25]. Although170

the underlying idea of these works is similar to ours, our aim is to produce an171

interpretation at the predicate level, that can in turn be grounded in a robotic172

plan corresponding to the action expressed in an utterance. Therefore, the173

findings of such works can be considered as complementary to our proposal,174

as while they focus just on grounding linguistic symbols into entities and175

attributes, we leverage such a process for linking the whole interpretation to176

the current world.177

To summarize, our work makes the following contributions with respect178

to the presented literature.179

• The perceptual information we leverage is extracted from a synthetic180

representation of the environment. This allows the robot to include181

information about entities that are not present in the same environment182

the robot is operating into.183

• The discriminative nature of the proposed learning process allows to184

scale the feature space, and to include other dimensions without re-185

structuring the overall system. Moreover, such property is useful to186

evaluate the contributions provided by individual features.187

• In our framework, perceptual knowledge is made essential to solve am-188

biguities at predicate level, thus affecting the syntactic interpretation189

of sentences according to dynamic properties of the operational envi-190

ronment.191
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Figure 1: Layered representation of the knowledge involved in the interpretation of robotic
commands

• The system is robust towards lexical variation and out-of-vocabulary192

words and no interaction is required to solve possible lexical ambigui-193

ties. This is achieved through Distributional Model of Lexical Seman-194

tics, used both as features for the tagging process and as principal195

component for grounding linguistic symbols to entities of the environ-196

ment.197

• Since the grounding function is a pre-processing completely de-coupled198

step of the interpretation process, the mechanism is scalable to include199

further information that is not currently taken into account.200

3. Knowledge, Language and Learning for Robotic Grounded Com-201

mand Interpretation202

While traditional language understanding systems mostly rely on linguis-203

tic information contained in texts (i.e., derived only from transcribed words),204

their application in HRI depends on a variety of other factors, including the205

perception of the environment. We categorize these factors into a layered rep-206

resentation as shown in Figure 1. First, we consider the Language Level as207

the governor of linguistic inferences: it includes observations (e.g., sequences208
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of transcribed words), as well as the linguistic assumptions of the speaker; the209

language level is modeled through frame-like predicates. Similarly, evidence210

involved by the robot’s perception of the world must be taken into account.211

The physical level, i.e., the Real World, is embodied into the Physical Per-212

ception Level : we assume that the robot has a synthetic image of its world,213

where existence and possibly other properties of entities are represented.214

Such representation is built by mapping the direct input of robot sensors215

into geometrical representations, e.g., Metric Map. These provide a struc-216

ture suitable for connecting to the Knowledge Level. Here symbols, encoded217

into the Perception Level, are used to refer to real-world entities and their218

properties inside the Domain Level. The latter comprises active concepts the219

robot sees, realized in a specific environment, plus general knowledge it has220

about the domain. All this information plays a crucial role during linguistic221

interactions. The integration of metric information with notions from the222

knowledge level provides an augmented representation of the environment,223

called Semantic Map [5]. In this map, the existence of real-world objects can224

be associated to lexical information, in the form of entity names given by a225

knowledge engineer or uttered by a user, as in Human-Augmented Mapping226

(HAM) [26, 20]. It is worth noting that the robot itself is a special entity227

described at this knowledge level: it does know its constituent parts as well228

as its capabilities that are the actions it is able to perform. To this end, we229

introduce an additional level (namely Platform Level), whose information is230

instantiated in a knowledge base called Platform Model (PM). The main aim231

of such a knowledge base is to enumerate all the actions the robot is able232

to execute. While SLU for HRI has been mostly carried out over evidence233

specific to the linguistic level, e.g., in [27, 28, 29, 30], this process should deal234

with all the aforementioned layers in a harmonized and coherent way. In fact,235

all linguistic primitives, including predicates and semantic arguments, corre-236

spond to perceptual counterparts, such as plans, robot’s actions, or entities237

involved in the underlying events.238

In the following, we introduce the building blocks of our perceptually in-239

formed framework, defining the adopted interpretation formalism and shap-240

ing the perceptual information in a structured representation, i.e., the Se-241

mantic Map.242

3.1. Frame-based Interpretation243

A command interpretation system for a robotic platform must produce244

interpretations of user utterances. As in [31], the understanding process is245
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based on the Frame Semantics theory [32], which allows usto give a linguistic246

and cognitive basis to the interpretations. In particular, we consider the247

formalization promoted in the FrameNet [33] project, where actions expressed248

in user utterances are modeled as semantic frames. Each frame represents a249

micro-theory about a real-world situation, e.g., the actions of Bringing or250

Motion. Such micro-theories encode all the relevant information needed for251

their correct interpretation, represented in FrameNet via the so-called frame252

elements, whose role is to specify the participating entities in a frame, e.g.,253

the Theme frame element refers to the object that is taken in a Bringing254

action.255

Let us consider the running example 1 “take the mug next to the keyboard”256

provided in Section 1. Depending on which syntactic structure is triggered257

by the contextual environment, this sentence can be intended as a command,258

whose effect is to instruct a robot that, in order to achieve the task, has to259

either260

1. move towards a mug, and261

2. pick it up,262

or263

1. move towards a mug,264

2. pick it up,265

3. navigate to the keyboard, and266

4. release the mug next to the keyboard.267

To this end, a language understanding cascade should produce its FrameNet-
annotated version, that can be

[take]Taking [the mug next to the keyboard]Theme (4)

or
[take]Bringing [the mug]Theme [next to the keyboard]Goal (5)

depending on the configuration of the environment.268

In the following, we introduce the notation used for defining an interpre-
tation in terms of semantic frames and that will be useful to support the
formal description of the proposed framework. In this respect, given a sen-
tence s as a sequence of words wi, i.e., s = (w1, ..., w|s|), an interpretation
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I(s) in terms of semantic frames determines a conjunction of predicates as
follows:

I(s) =
n∧

i=1

pi (6)

where n is the number of predicates evoked by the sentence. Each predicate
pi is in turn represented by the pair

pi = 〈f i, Argi〉 (7)

where:269

• f i ∈ F is the frame of the ith predicate evoked by the sentence, where270

F is the set of possible frames as defined in the Platform Model, e.g.,271

Taking, Bringing, . . . , and272

• Argi is the set of arguments of the corresponding predicate pi, e.g.,273

[the mug next to the keyboard]Theme of the interpretation 4, while [the mug]Theme274

and [next to the keyboard]Goal for the interpretation 5.275

Every argij ∈ Argi is identified by a triple 〈aij, rij, hi
j〉 describing:276

• the argument span aij defined as subsequences of s: aij = (wm, . . . , wn)277

with 1 ≤ m < n ≤ |s|, e.g., “the mug next to the keyboard” for 4 or278

“the mug” and “next to the keyboard” for 5;279

• the role label rij ∈ Ri (or frame element) associated to the current span280

aij and drawn from the vocabulary of frame elements Ri defined by281

FrameNet for the current frame f i, e.g., the semantic roles Theme or282

Theme and Goal associated to the interpretations 4 and 5, respec-283

tively;284

• the semantic head hi
j ∈ aij, as the meaning carrier word wk = h of the285

frame argument, with m ≤ k ≤ n, e.g., “mug” for the single argu-286

ment of interpretation 4 or “mug” and “keyboard” for the arguments287

of interpretation 5.288

Together with the arguments, Argi contains also the lexical unit Lu that289

anchors the predicate pi to the text and is represented here through the same290
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structure of arguments, e.g., the verb take. The two different interpretations291

of the running example 1 will be represented through the following structures292

I(s) = 〈Taking , {
〈(take),Lu, take〉,
〈(the,mug, next, to, the, keyboard),Theme,mug〉}〉

or293

I(s) = 〈Bringing , {
〈(take),Lu, take〉,
〈(the,mug),Theme,mug〉,
〈(next, to, the, keyboard),Goal, keyboard〉}〉

depending on the configuration of the environment.294

In conclusion, semantic frames can thus provide a cognitively sound bridge295

between the actions expressed in the language and the execution of such296

actions in the robot world, in terms of plans and behaviors.297

3.2. Semantic Map298

In this section we describe how to properly represent the environmental
knowledge required for the interpretation process and provided by the robot.
In line with [34] and according to the layered representation provided at the
beginning of Section 3, we structure the Semantic Map (Figure 1) as the
triple:

SM = 〈R,M,P〉 (8)

such as:299

• R is the global reference frame in which all the elements of the Semantic300

Map are expressed;301

• M is a set of geometrical elements obtained as raw sensor data ex-302

pressed in the reference frame R and describing spatial information in303

a mathematical form;304

• P is the class hierarchy, a set of domain-dependent facts/predicates305

providing a semantically sound abstraction of the elements in M.306
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Figure 2: Sketch of the knowledge contained into a Semantic Map

P is modeled as a (Monotonic) Inheritance Network. It is worth empha-
sizing that we do not require that the knowledge acquired through perception
is fully consistent with the taxonomy of classes, as the Semantic Map is only
used to support the linguistic processes addressed in this article. Hence, we
decompose P into two layers:

P = 〈PDK,PPK〉 (9)

where:307

• PDK is the Domain Knowledge, a conceptual knowledge base repre-308

senting a hierarchy of classes, including their properties and relations,309

a priori asserted to be representative of any environment; it might be310

considered an intentional description of the robot’s operation domain;311

• PPK is the Perception Knowledge, collecting entities and properties312

specific of the targeted environment and representing the extensional313

knowledge, acquired by the robot.314

The resulting structure of P is shown in Figure 2, highlighting both the315

Domain Knowledge PDK and the Perception Knowledge PPK.316
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The Semantic Map generation can follow different approaches: by rely-317

ing on hand-crafted ontologies and using traditional AI reasoning techniques318

[35, 36], by exploiting the purely automatic interpretation of perceptual out-319

comes [37, 38, 39], or by relying on interactions in a human-robot collabora-320

tion setting [40, 41]. However, the creation of the Semantic Map is out of the321

scope of this paper and we assume it as an available resource of the robotic322

system providing gold information. In fact, it is worth noting that the Se-323

mantic Map is an essential component of any real robot. Active perception324

mechanisms such as Computer Vision systems based on Deep Learning still325

lack in providing robust understanding of the surrounding world to support326

reasoning and planning mechanisms.327

Domain Knowledge. The Domain Knowledge provides the terminology of328

the Semantic Map. It allows to define and structure the knowledge shared329

by different environments in the same domain. Such a resource can be either330

automatically generated consulting existing resources (e.g. WordNet [42] or331

ConceptNet [43]), extracted from unstructured documents (e.g. from texts332

present on the Web [44]), or manually created by a knowledge engineer.333

In particular, the Domain Knowledge proposed here (Figure 2, upper334

part) is built upon the WordNet taxonomy and aims at modeling the hierar-335

chy of classes related to a domestic environment, and the domain-dependent336

semantic attributes.1337

To model the Domain Knowledge PDK, we use is-a to define the hierarchy338

of classes, e.g., is-a(Cup, Container), and three specific properties: Contain-339

ability, Naming and Position. Contain-ability defines that all the elements340

of a given class might potentially contain something. Naming provides a set341

of words used to refer to a class. Conversely, Position is a property that is342

instantiated only whenever there exists an entity of the targeted class. In343

fact, it determines the position of the entity within the grid map of the envi-344

ronment. The following predicates are included into the Domain Knowledge:345

• is-contain-able(C, t) denotes that the Contain-ability property holds346

for all the objects of the class C, e.g., is-contain-able(Cup, t);347

• naming(C, N) defining N as the naming set, i.e., words that can be used348

to refer to the class C, e.g., naming(Table, {table, desk}).349

1We assume the attributes to be part of the Domain Knowledge, as active perception
of those features is out of the scope of the article.
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For the Contain-able property, the Closed World Assumption is applied, so350

that whenever the property is not defined for a class, it is assumed to be351

false, e.g., is-contain-able(Keyboard, f).352

It is worth noting that, for each class C, its naming can be defined by353

different modalities: it can be acquired through dialogic interaction, by rely-354

ing on the user’s preferred naming convention, extracted automatically from355

lexical resources or defined a priori by a knowledge engineer. In our setting,356

alternative naming has been provided by the combined analysis of Distri-357

butional Models and Lexical Databases (e.g., WordNet), and validated by a358

knowledge engineer.359

Perception Knowledge. The Perception Knowledge PPK (Figure 2, lower360

part) is the ABox of the Semantic Map. It represents the actual config-361

uration of the current world. Hence, it is composed of elements that are362

actually present into the environment and perceived by the robot through363

its sensors.364

PPK is defined through instance-of(e, C), meaning that entity e is an365

entity of class C and inherits all the properties associated to C. Moreover,366

whenever a new entity is included into the Semantic Map, its corresponding367

Position must be instantiated. To this end, position(e, x, y) represents the368

value of the Position property for a given entity e within the grid map, in369

terms of (x, y) coordinates. Moreover, on top of the Semantic Map, the func-370

tion d(e1, e2) allows to return the Euclidean distance among the entities e1371

and e2. This value is essential to determine whether two entities are far or372

near into the environment and possibly change the assumptions made during373

the interpretation of sentences making reference to these entities. For ex-374

ample, given two entities entity-of(p1, Cup) and entity-of(k1, Keyboard)375

whose positions are position(p1, 2.0, 5.0) and position(k1, 4.0, 1.0) respec-376

tively, their Euclidean distance will be d(p1, k1) = 4.47.377

4. Grounding: a Side Effect of Linguistic Interpretation and Per-378

ception379

When interacting with a robot, users make references to the environment.
In order for the robot to execute the requested command s, the corresponding
interpretation I(s) must be grounded: semantic frames provided by I(s) are
supposed to trigger grounded command instances that can be executed by
the robot. Two steps are required for grounding an instantiated frame in
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I(s). First, the frame f i corresponding to predicate pi = 〈f i, Argi〉 ∈ I(s)
must be mapped into a behavior. Then, all the frame arguments argij ∈ Argi

must be explicitly associated to their corresponding actors in the plan. In
fact, role labels rij are paired just with the argument spans aij and semantic
heads hi

j corresponding to frame elements. However, aij and hi
j play the role

of anchors for the grounding onto the map: each lexical item can be used to
retrieve a corresponding entity in the environment. In this respect, let EPPK

be the set of entities populating PPK, collected as:

EPPK = {e | instance-of(e, ·)} (10)

Then, for each entity e, its corresponding naming can be gathered from the
Domain Knowledge as follows:

N (e) = {we | instance-of(e, C) ∧ naming(C, N) ∧ we ∈ N} (11)

that is: given the entity e and type c, N (e) includes all the words in the380

naming set N associated to c that is defined into the Domain Knowledge381

PDK.382

The proposed linguistic grounding function Γ : argij × PPK → Gargij
is

carried out by estimating to what extent the argument argij matches the
naming provided for the entities in PPK. Hence, Γ(argij,PPK) produces a set
of entities Gargij

maximizing the lexical distance between argij and we ∈ N (e),

ordered depending on the real-valued lexical distance. Such lexical distance
g : hi

j × we → R is indeed estimated as the cosine similarity between word
embeddings vectors of the semantic head hi

j (associated to argij) and the
words we [14]. Hence, the set of grounded entities Gargij

can be defined as:

Γ(argij,PPK) → Gargij
= {e ∈ EPPK | ∃we ∈ N (e) ∧ g(h, we) > τ} (12)

where τ is an empirically estimated threshold obeying to application-specific383

criteria.384

The lexical semantic vectors are acquired through corpus analysis, as in385

Distributional Lexical Semantic paradigms. They allow to control references386

to elements modeling synonymy or co-hyponymy, when arguments spans,387

such as cup, are used to refer to entities with different names, e.g., a mug.388

However, depending on how the function g is modeled, it is possible to inject389

non-linguistic features that might be meaningful for the grounding itself. In390

fact, at the moment only semantic head hi
j and naming we are taken into391
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account; hence, g neglects the contribution that, for example, adjectival mod-392

ifiers may carry, e.g., the color of an entity can be helpful in disambiguating393

the grounded entity, whenever two entities of the same class are present394

into the environment and they have different colors. The maximization of395

the similarity g between semantic head and entity naming corresponds to396

the minimization of the distance between the corresponding lexical semantic397

vectors and it can be extensively applied to grounding. Hence, g measures398

the confidence associated with individual groundings over the relevant lexical399

vectors.400

It is worth noting that the grounding mechanism is here used to support401

the disambiguation of ambiguous commands, and it does not constitute the402

main contribution of the paper. Moreover, being such a process completely403

decoupled from the semantic parsing, different approaches for g (and there-404

fore of Γ) can be designed by relying on just linguistic evidence [14] or visual405

features [45]. However, the proposed mechanism is extensively used in this406

article to locate candidate grounded entities in the Semantic Map and to407

code them into perceptual features in the understanding process, described408

below.409

5. Perceptually Informed Interpretation: the Language Understand-410

ing Cascade411

The interpretation framework we propose is based on a cascade of statis-412

tical classification processes, modeled as sequence labeling tasks (Figure 3).413

The classification is applied to the entire sentence and is modeled as the414

Markovian formulation of a structured SVM (i.e., SVM hmm proposed in [46]).415

In general, this learning algorithm combines a local discriminative model,416

which estimates the individual observation probabilities of a sequence, with417

a global generative approach to retrieve the most likely sequence, i.e., tags418

that better explain the whole sequence.419

In other words, given an input sequence x = (�x1 . . . �xl) ∈ X , where x is a420

sentence and �xi ∈ R
n is a feature vector representing a word, the model pre-421

dicts a tag sequence y = (y1 . . . yl) ∈ Y+ after learning a linear discriminant422

function. Note that labels yi are specifically designed for the interpretation423

I(s). In fact, this process is obtained through the cascade of the Frame De-424

tection and Argument Labeling steps, where the latter is further decomposed425

in the Argument Identification and Argument Classification sub-steps. Each426

of these is mapped into a different SVM hmm sequence labeling task.427
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Argument Identification

“take the mug next to the keyboard”

Frame Detection

Argument Classification

Platform Model ( )
Perceptual Knowledge ( )

Perceptual Knowledge ( )

Class Hierarchy ( )
Domain Knowledge ( )
Perceptual Knowledge ( )

Distributional Semantics ( )

Figure 3: Processing cascade modeling the interpretation task

In the following, we first introduce the ML approach and then address its428

application to each step of the cascade.429

5.1. The Learning Machinery430

The aim of a Markovian formulation of SVM is to make the classification
of a word xi dependent on the label assigned to the previous elements in a
history of length k, i.e., xi−k, . . . , xi−1. Given this history, a sequence of k
step-specific labels can be retrieved, in the form yi−k, . . . , yi−1. In order to
make the classification of xi dependent also from the history, we augment the
feature vector of xi introducing a vector of transitions ψtr(yi−k, . . . , yi−1) ∈
R

l: ψtr is a boolean vector where the dimensions corresponding to the k labels
preceding the target element xi are set to 1. A projection function φ(xi) is
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defined to consider both the observations, i.e., ψobs and the transitions ψtr in
a history of size k by concatenating the two representation as follows:

xk
i = φ(xi; yi−k, . . . , yi−1) = ψobs(xi) || ψtr(yi−k, . . . , yi−1) (13)

with xk
i ∈ R

n+l and ψobs(xi) does not interfere with the original feature space.431

Notice that the vector concatenation is here denoted by the symbol ||, and432

that linear kernel functions are applied to different types of features, ranging433

from linguistic to world-specific features.434

The feature space operated by ψobs is defined by linear combinations of
kernels to integrate independent properties. In fact, through the application
of linear kernels, the space defined by the linear combination is equivalent to
the space obtained by juxtaposing the vectors on which each kernel operates.
More formally, assuming that K is a linear kernel, e.g., the inner product,
and being xi, xj two instances, each composed by two vector representations
a and b (i.e., xia , xib , xja , xjb), then the resulting Kernel K(xi, xj) will be
the combination of the contributions given by Kernels working on the two
representations (i.e., Ka(xia , xja) and Kb(xib , xjb), respectively), that can be
approximated through the concatenation of vectors xia ||xib and xja ||xjb :

K(xi, xj) = Ka(xia , xja) +Kb(xib , xjb) = 〈xia ||xib , xja ||xjb〉 (14)

Conversely, ψobs(xi) = xia ||xib .
2

435

At training time, we use the SVM learning algorithm LibLinear, pro-436

posed in [47] and implemented in KeLP [48] in a One-Vs-All schema over437

the feature space derived by φ, so that for each yj a linear classifier fj(x
k
i ) =438

wjφ(xi; yi−k, . . . , yi−1) + bj is learned. The φ function is computed for each439

element xi by exploiting the gold label sequences. At classification time, all440

possible sequences y ∈ Y+ should be considered in order to determine the441

best labeling ŷ = F (x, k), where k is the size of the history used to enrich442

xi, that is:443

ŷ = F (x, k) = argmax
y∈Y+

{
∑

i=1...m

fj(x
k
i )}

= argmax
y∈Y+

{
∑

i=1...m

wjφ(xi; yi−k, . . . , yi−1) + bj}
444

2Before concatenating, each vector composing the observation of an instance, i.e.,
ψobs(xi), is normalized to have unitary norm, so that each representation equally con-
tributes to the overall kernel estimation.
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Figure 4: Viterbi decoding trellis of the Argument Identification step (Section 5.3), for
the running command “take the mug next to the keyboard”, when the interpretation 5 is
evoked. The label set refers to the IOB2 scheme, so that yi ∈ {B, I,O}. Feature vectors
xi are obtained through the φ function. The best labeling y = (O,B, I,B, I, I, I) ∈
Y+ is determined as the sequence maximizing the cumulative probability of individual
predictions.

In order to reduce the computational cost, a Viterbi-like decoding al-445

gorithm (Figure 4) is adopted3 to derive the sequence, and thus build the446

augmented feature vectors through the φ function.447

In the following, the different steps of the processing cascade are addressed448

individually.449

5.2. Frame Detection450

Our processing cascade starts with the Frame Detection (FD) step,451

whose aim is to find all the frames evoked by the sentence s. It corresponds452

to the process of filling the elements pi in I(s), and can be represented as453

a function fFD(s, PM,PPK), where s is the sentence, PM is the Platform454

Model and PPKis the Perception Knowledge. Assuming s =“take the mug455

3When applying fj(x
k
i ) the classification scores are normalized through a softmax func-

tion and probability scores are derived.
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next to the keyboard”, then456

fFD(s, PM,PPK) = p1 = 〈Taking, {
〈〈take〉,Lu, take〉,
. . .}〉

for interpretation 4, while457

fFD(s, PM,PPK) = p1 = 〈Bringing, {
〈〈take〉,Lu, take〉,
. . .}〉

for interpretation 5.458

As already explained, the labeling process depends on linguistic informa-459

tion, as well as on the information derived from the Platform Model (i.e.,460

actions the robot is able to execute) and perceptual features extracted from461

the PPK. In our Markovian framework states reflect frame labels, and the462

decoding proceeds by detecting lexical units wk to which the proper frame463

f i is assigned. This association is represented as a pair 〈wk, f
i〉, e.g., take-464

Taking, take-Bringing. A special null label “ ” is used to express the status465

of all other words, e.g., the- or mug- .466

In the FD phase, each word is represented as a feature vector systemat-467

ically defined to be a composition between linguistic, robot-dependent and468

environmental observations, as hereafter detailed.469

5.2.1. Linguistic features470

Linguistic features here include lexical features (such as the surface or471

lemma of the current word and its left and right lexical contexts) and syntac-472

tic features (e.g., the POS-tag of the current word or the contextual POS-tag473

n-grams).474

5.2.2. Robot-dependent features475

Information about the robot coming from the PM are used to represent476

executable actions: these are mapped into frames through their correspond-477

ing Lus. The PM thus defines a set of pairing between Lus and frames,478

according to which boolean features are used to suggest possibly activated479

frames for each word in a sentence. In particular, if wk is a verb, and F k ⊆ F480

is the subset of frames that can be evoked by a word wk (according to what481

stated in the PM ), then, for every frame f i ∈ F k, the corresponding i-th482

feature of the wk is set to true.483
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5.2.3. Perceptual features484

In addition, features derived from the perceptual knowledge are used485

in the FD step as they are extracted from the PPK. These “perception-486

based” features combine the information derived by the lexical grounding487

function with the syntactic dependency tree associated with s. In particu-488

lar, let vh be a verb. Let n(vh) be the set of nouns governed by the verb489

vh, n(vh) = {wk | POS(vh) == vb ∧ POS(wk) == nn ∧ wk is rooted in vh490

in the dependency (sub)tree}. Let t(vh) be the set of tokens governed by491

the verb vh, t(vh) = {tk | POS(vh) == vb ∧ tk is rooted in vh in the depen-492

dency (sub)tree}. Then the following perceptual features are extracted and493

associated to each token of the sentence.494

Grounded entities. The number |n(vh)| of nouns governed by vh is added as a495

feature to the representation of all the tokens tk ∈ t(vh). Even though this is496

not a piece of perceptual evidence, its contribution must be considered when497

paired with another feature, whose aim is to explicit the number of entities498

that have been grounded by the tokens wk ∈ n(vh). This feature is again499

added to the representation of all the tokens tk ∈ t(vh). Formally, its value is500

defined as the cardinality of the grounded sets union | ⋃
∀wk∈argij∧wk∈n(vh)

Gargij
|.501

Spatial features. This is probably the key contributing feature among the502

perceptual ones. In fact, it tries to capture the spatial configuration of the503

involved entities populating the environment, by allowing an active control of504

the predicate prediction, whenever the distance between objects is the only505

discriminating factor. Operationally, ∀wk ∈ argij ∧ wk ∈ n(vh), their corre-506

sponding grounding sets Gargij
are extracted. Then, from each Gargij

, the most507

promising candidate entities (i.e., the one maximizing g) are considered and508

the average Euclidean spatial distance between them is computed, by relying509

on the predicate distance(e1, e2, d). The resulting feature is a discretized510

version of the averaged distance (i.e., near/far). Such a discrete value is511

obtained by comparing the Euclidean distance d against an empirically eval-512

uated threshold ε.513

5.3. Argument Identification514

For each identified predicate pi ∈ I(s), the Argument Identification515

(AI) step predicts all its arguments argij, by detecting the corresponding ar-516

gument span aij and semantic head hi
j. This process starts filling the missing517
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elements of each j-th argument argij ∈ Argi. More formally, for a given sen-518

tence s, the ith identified predicate pi, the AI process can be summarized as519

the function fAI(s, p
i,PPK) updating the structure of I(s) as follows:520

fAI(s, p
i,PPK) = p1 = 〈Taking, {

〈〈take〉,Lu, take〉,
〈〈the,mug, next, to, the, keyboard〉, ,mug〉}〉

for interpretation 4, or521

fAI(s, p
i,PPK) = p1 = 〈Bringing , {

〈(take),Lu, take〉,
〈(the,mug), ,mug〉,
〈(next, to, the, keyboard), , keyboard〉}〉

for interpretation 5.522

In the proposed Markovian framework, states now reflect argument bound-
aries between individual argij ∈ Argi. Following the IOB2 notation, the Begin
(B), Internal (I) or Outer (O) tags are assigned to each token. For example,
the result of the AI over the sentence “take the mug next to the keyboard”
would be

O-take B-the I-mug I-next I-to I-the I-keyboard (Interpr. 4)

or

O-take B-the I-mug B-next I-to I-the I-keyboard (Interpr. 5)

5.3.1. Linguistic features523

In this step, the same morpho-syntactic features adopted for the FD are524

used together with the frame f i detected in the previous step. For each token,525

its lemma, right and left contexts are considered as purely lexical features.526

Conversely, the syntactic features used are POS-tag of the current token and527

left and right contextual POS-tags n-grams (see Section 5.2.1).528

5.3.2. Perceptual features529

Similarly to the FD step, the following dedicated features derived from530

the perceptual knowledge are introduced.531
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Grounded entities. For each noun wk ∈ argij such that Gargij
�= ∅, a boolean532

feature is set to true. It is worth reminding that Gargij
contains candidate533

entities referred by argij. Moreover, for each preposition prepk, given their534

syntactic dependent wdep
k ∈ argij, a boolean feature is set to true if and535

only if Gargij
�= ∅. Again, for each preposition prepk, the number of nouns536

wk ∈ argij on the left and on the right of prepk, whose Gargij
�= ∅, are also537

used as features in its corresponding feature vector.538

Spatial features. For each preposition prepk, we also retrieve its syntactic539

governor in the tree wgov
f ∈ argij and measure the average Euclidean distance540

in PPK between entities in Gdep ∪ Ggov. As well as for the FD feature, if this541

score is under a given threshold ε, the spatial feature is set to near, replacing542

the default value of far.543

5.4. Argument Classification544

In the Argument Classification (AC) step, for each the frame pi =545

〈f i, Argi〉 ∈ I(s), all the argij ∈ Argi are labeled according to their semantic546

role rij ∈ argij, e.g., Theme to the argument the mug next to the keyboard,547

or Theme and Goal to arguments the mug and next to the keyboard, re-548

spectively. In fact, in this step states correspond to role labels. The main549

novelty of this work with respect to [4] is that classification here exploits both550

linguistic features and semantic information about the application domain551

extracted from the PDK. This is possible thanks to the proposed framework,552

which allows to inject new features that might possibly contribute to the553

task achievement. Consequently, AC predictions will reflect also information554

extracted from the Domain Knowledge.555

Given a predicate pi = 〈f i, Argi〉, the class hierarchy P , and the Distri-556

butional Lexical Semantics (DLS), the AC function can thus be written as557

fAC(s, p
i,P ,DLS ) and produces the following complete structure558

fAC(s, p
i,P,DLS ) = p1 = 〈Taking, {

〈〈take〉,Lu, take〉,
〈〈the,mug, next, to, the, keyboard〉,Theme,mug〉}〉

for interpretation 4, or559

fAC(s, p
i,P,DLS ) = p1 = 〈Bringing , {

〈(take),Lu, take〉,
〈(the,mug),Theme,mug〉,
〈(next, to, the, keyboard),Goal, keyboard〉}〉
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for interpretation 5.560

5.4.1. Linguistic features561

Again, the same morpho-syntactic features adopted in both FD and AI562

are obtained from s, together with the frame pi and the IOB2 tags coming563

from the previous stages. For each token, its lemma, right and left contexts564

are considered as purely lexical features. The POS-tag of the current token565

and left and right contextual POS-tag n-grams are used as the syntactic566

features (see Section 5.2.1).567

In addition, Distributional Lexical Semantics (DLS) is applied to gen-568

eralize the argument semantic head hi
j of each argument argij: the distribu-569

tional (vector) representation for hi
j is thus introduced to extend the feature570

vector corresponding to each wk ∈ aij, where aij is a member of the triple571

〈aij, rij, hi
j〉 = argij ∈ Argi, representing the argument span.572

5.4.2. Domain-dependent features573

Semantic features have been extracted from PDK to link the interpreta-574

tion I(s) to the Domain Knowledge. However, grounded entities must be575

provided in order to extract such attributes from the Domain knowledge.576

Consequently, there is an implicit dependence of the AC on the PPK. In577

particular, the following features have been designed to further generalize578

the model proposed in [4].579

Entity-type attribute. The Entity-type attribute helps in generalizing the se-580

mantic head of an argument through the class the corresponding grounded581

entity belongs to. Again, for each pi and for each argij ∈ Argi, the semantic582

head hi
j is grounded into a set of possible candidate entities through Gargij

.583

The most promising candidate e, i.e., maxe g(h
i
j, we), is extracted and its584

class C, obtained through the predicate is-a(e, C), is applied to the semantic585

head feature vector.586

Contain-ability attribute. The Contain-ability attribute is a domain-dependent587

semantic attribute, meaning that all the elements of C can contain something.588

To this end, for each pi and for each argij ∈ Argi, the semantic head hi
j is589

grounded into a set of possible candidate entities through Gargij
. The most590

promising candidate e, i.e., maxe g(h
i
j, we), is then extracted and a boolean591

feature is applied to the semantic head feature vector, reflecting the value of592

is-contain-able(C, t), where C is the class the entity e belongs to.593
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Feature FD AI AC
Linguistic features � � �

Platform Model (PM) � � �

Domain Knowledge (PDK) � � �

Perception Knowledge (PPK) � � �

Distributional Lexical Semantics (DLS) � � �

Table 1: Feature modeling of the three steps (i.e., FD, AI and AC)

A reader-friendly sum up is provided in Table 1 where, for each step of594

the processing cascade, features and resources used are shown. In particular,595

while AI uses only Linguistic features and Perception Knowledge PPK, in FD596

even the Platform Model PM is exploited. Conversely, due to the nature of597

the task the AC step mostly relies on Domain Knowledge PDK and Distri-598

butional Lexical Semantics DLS, in order to provide effective generalization599

capability while choosing the correct semantic role.600

6. Experimental Evaluation601

The scalability of the proposed framework towards the systematic in-602

troduction of perceptual information has been evaluated in the semantic603

interpretation of utterances in a house Service Robotics scenario. The eval-604

uation is carried out using the Human-Robot Interaction Corpus (HuRIC),605

presented in Appendix A.606

The DLS vectors used in the grounding mechanism g(·, ·) have been ac-607

quired through a Skip-gram model [13], through the word2vec tool. By608

applying the settings min-count=50, window=5, iter=10 and negative=10609

onto the UkWaC corpus [49], we derived 250 dimensional word vectors for610

more than 110, 000 words. The SVM hmm algorithm has been implemented611

within the KeLP framework [48].612

Measures have been carried out on four tasks, according to a 10-fold613

evaluation schema. The first three correspond to evaluating the individ-614

ual interpretation steps, namely the FD, AI and AC, (Sections 6.1, 6.2 and615

6.3). In these tests, we assume gold annotations as input information for616

the task, even if they depend on a previous processing step. The last test617

(Section 6.4) concerns the analysis of the end-to-end interpretation chain.618

It thus corresponds to the ability of interpreting a fully grounded and exe-619

cutable command and reflects the behavior of the system in a real scenario.620
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While Perception Knowledge PPK is involved in both the FD and AI621

tasks, AC relies just on the Domain Knowledge PDKand the Distributional622

Model DLS. Hence, in order to emphasize the contribution of such informa-623

tion, we considered two settings.624

The first relies just on linguistic features and information from the Se-625

mantic Map is neglected. We call this setting Pure Linguistic (pLing), as the626

interpretation is driven just by lexical/syntactic observation of the sentence.627

It refers to a configuration in which only the features corresponding to the628

first two rows of Table 1 are considered.629

The second is a Grounded (Ground) setting. It is built upon the features630

designed around the Semantic Map, that has been encoded into a set of631

predicates P , and the Distributional Model DLS, represented by Word Em-632

beddings. In order to enable for the extraction of meaningful properties from633

P , grounding is based on the set G of entities populating the environment634

and is built using the grounding function Γ(argij,PPK). PPK features are635

injected into the FD and AI steps, while PDK features together with Word636

Embeddings are used into the AC process. Hence, this setting applies all the637

features defined in Table 1.638

Results obtained in every run are reported in terms of Precision, Recall639

and F-Measure (F1) as micro-statistics across the 10 folds. The contribu-640

tion of Semantic Map information is emphasized in terms of Relative Error641

Reduction (RER) over F-measure with respect to the pLing setting, relying642

just on linguistic information.643

6.1. Frame Detection644

In this experiment, we aim at evaluating the performance of the system645

in recognizing the actions evoked by the command. This step represents the646

entry point of the interpretation cascade: minimizing the error at this stage647

is essential to avoid error propagation throughout the whole pipeline.648

FD
Precision Recall F1 RER

En
pLing 94.52%± 0.04 94.32%± 0.08 94.41%± 0.05 -
Ground 95.59%± 0.02 96.31%± 0.05 95.94%± 0.03 27.42%

It
pLing 94.84%± 0.22 95.58%± 0.19 95.19%± 0.19 -
Ground 95.14%± 0.17 95.54%± 0.15 95.32%± 0.14 2.52%

Table 2: FD results: evaluating the whole span
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Table 2 reports the results obtained for the two settings pLing andGround,649

over the two datasets (i.e., English and Italian). In this case, we count a pre-650

diction as correct only whenever all the tokens belonging to the lexical unit651

Lu have been correctly classified.652

First, it is worth emphasizing that the F1 is always higher than 94%.653

This means that the system will be (almost) always able to detect the correct654

action expressed by the command. In fact, linguistic features seem to already655

model the problem with a good coverage of the phenomena.656

However, when perceptual features (extracted from the Perception Knowl-657

edge PPK) are injected, the F1 increases up to 95.94%, with a Relative Error658

Reduction of 27.42%. The contribution of such evidence is mainly due to659

one of the most frequent errors, concerning the ambiguity of the “take” verb.660

In fact, as explained in Section 1, due to the PP attachment ambiguity, the661

interpretation of such verb may differ (i.e., either Bringing or Taking)662

depending on the spatial configuration of the environment. As the pLing663

setting does not rely on any kind of perceptual knowledge, the system is not664

able to correctly discriminate among them. Hence, the resulting interpreta-665

tion is more likely to be wrong, as it does not reflect the semantics carried666

by the environment.667

On the other hand, the Italian dataset does not seem to benefit from668

these features. In fact, the RER in such a configuration is 2.52% (i.e., from669

95.19% to 95.32%). This is probably due to the absence of the above linguistic670

phenomena in the Italian dataset.671

6.2. Argument Identification672

In this section, we evaluate the ability of the AI classifier in identifying673

the argument spans of the commands’ predicates. According to the results674

reported in Table 3, this task seems to be the most challenging one. In fact,

AI
Precision Recall F1 RER

En
pLing 89.62%± 0.11 91.61%± 0.03 90.59%± 0.05 -
Ground 90.04%± 0.16 91.33%± 0.10 90.67%± 0.12 0.86%

It
pLing 82.89%± 0.84 85.51%± 0.58 84.14%± 0.68 -
Ground 83.41%± 0.84 86.30%± 0.56 84.77%± 0.66 4.02%

Table 3: AI results: evaluating the whole span

675
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the F1 settles just under the 91% on the English dataset, with the pLing and676

Ground settings scoring 90.59% and 90.67% respectively. Moreover, in this677

case the Perception Knowledge does not seem to substantially contribute to678

the correct classification of the argument boundaries.679

On the other hand, in the Italian setting the F1 does not exceed 85%680

(84.14% and 84.77% for the pLing and Ground settings). However, the per-681

ceptual information contributes to a slightly larger gain with respect to the682

one obtained on English. This is probably due to the presence of commands683

where the spatial configuration of the environment is essential to correctly684

chunk the argument spans. For example, for a command like “porta il li-685

bro sul tavolo in cucina” (“bring the book on the table in the kitchen”), the686

fragment il libro sul tavolo (the book on the table) may correspond to one687

single argument in which sul tavolo (on the table) is a spatial modifier of il688

libro (the book). In this case, in cucina (in the kitchen) composes another689

semantic argument. This interpretation is spatially correct whenever, within690

the corresponding Semantic Map, the book is on the table and the latter is691

outside the kitchen. Conversely, if the book is not on the table which is, in692

turn, into the kitchen, then sul tavolo in cucina (on the table in the kitchen)693

will constitute an entire argument span.694

6.3. Argument Classification695

For the scope of the article this experiment is the most interesting one, as696

here we inject the novel information extracted from the Domain Knowledge697

PDK, regarding the Contain-ability property and the class of the grounded698

entity.699

AC
Precision Recall F1 RER

En
pLing 94.46%± 0.05 94.46%± 0.05 94.46%± 0.05 -
Ground 95.49%± 0.05 95.49%± 0.05 95.49%± 0.05 18.65%

It
pLing 91.52%± 0.23 91.52%± 0.23 91.52%± 0.23 -
Ground 92.21%± 0.11 92.21%± 0.11 92.21%± 0.11 8.14%

Table 4: AC results: evaluating the whole span

As reported in Table 4, the system is able to recognize the involved entities700

with high accuracy, with a F1 higher than 91.50% in both the English and701

Italian datasets. This result is surprising when analyzing the complexity of702
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the task. In fact, the classifier is able to cope with a high level of uncertainty,703

as the amount of possible semantic roles is sizable, i.e., 34 for the English704

dataset, 27 for the Italian one.705

Besides obtaining high accuracy in all the configurations, a twofold contri-706

bution is achieved when distributional information about words and domain-707

specific evidence is adopted. On the one hand, the DLS injects beneficial708

lexical generalization into training data: frame elements of arguments whose709

semantic heads are close in the vector space are seemingly tagged. For ex-710

ample, given the training sentence “take the book”, if the book is the Theme711

of a Taking frame, similar arguments for the same frame will receive the712

same role label as volume in “grab the volume”. Moreover, we provide further713

lexical generalization by including the class name of the grounded entity in714

the feature space, so that lexical references like tv, tv set, television set, and715

television refer to the same class Television.716

On the other hand, information related to domain-dependent attributes717

of a given class might be helpful to solve specific errors of the AC process.718

For example, when including the Contain-ability property as a feature, we719

are implicitly suggesting to the learning function that an object can con-720

tain something. Consequently, this information allows to better discriminate721

whether an object must be labeled as “Containing object” rather than “Con-722

tainer portal”.723

6.4. End-to-End Processing Cascade724

In this section, we conclude our experimental evaluation by reporting the725

results obtained through the end-to-end processing cascade. In this case, each726

step is fed with the labels coming from the previous one: it thus represents727

a real scenario configuration, when the system is operating on a robot.728

Precision Recall F1 RER
AC

En
pLing 86.12%± 0.16 81.41%± 0.29 83.67%± 0.22 -
Ground 89.25%± 0.11 86.39%± 0.22 87.77%± 0.14 25.10%

It
pLing 77.10%± 0.81 76.08%± 0.80 76.47%± 0.72 -
Ground 78.33%± 0.85 77.23%± 0.53 77.67%± 0.60 5.09%

Table 5: Evaluating the end-to-end chain against the whole span

In this configuration, we chose to report only the results of the AC step729

(Table 5), as its output represents the end of the pipeline. Moreover, we730
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are implicitly estimating the error propagation, as each step is fed the in-731

formation output from the previous one. These results give thus an idea of732

the performance of the whole system. Note that the DLS and the domain-733

dependent features (Ground setting) boost the performance for both lan-734

guages. More specifically, the Ground configuration consistently outperforms735

the pLing one for English, suggesting the benefits given by the promoted fea-736

ture space. This behavior is less evident over the Italian dataset, even tough737

results confirm the general trend.738

Precision Recall F1 RER
AC

En
pLing 91.04%± 0.07 91.54%± 0.07 91.28%± 0.06 -
Ground 92.90%± 0.04 93.34%± 0.04 93.11%± 0.02 20.89%

It
pLing 83.07%± 0.41 87.30%± 0.30 85.07%± 0.31 -
Ground 84.15%± 0.33 88.83%± 0.27 86.35%± 0.24 8.58%

Table 6: Evaluating the end-to-end chain against the semantic head

In order to provide an even more realistic evaluation of the system, we
measured the performance of the system by considering only the prediction
over the semantic heads (Table 6). This evaluation wants to reproduce the
usage of the framework, where just the semantic head is adopted to instan-
tiate and execute a plan. For example, given the command “take the mug
next to the keyboard”, together with one of its interpretations

[take]Taking [the mug next to the keyboard]Theme,

only two information are required in order for the robot to execute the re-739

quested action, namely the type of the action Taking and the object to be740

taken, mug, which is pointed by the semantic head of the Theme argument.741

The results reported in Table 6 are extremely encouraging for the applica-742

tion of the proposed framework in realistic scenarios. In fact, over the English743

dataset the F1 is always higher than 91% in the recognition of the correct744

label of the semantic head, along with semantic predicates and boundaries745

used to express intended actions. Moreover, the recognition of the full com-746

mand benefits from Semantic Map features, with a F1 score increasing to747

93.11%. In addition, the low variance suggests a good stability of the system748

against random selection of the training/tuning/testing sets.749

Though with lower results, such a trend is confirmed over the Italian750

dataset. In fact, the difference between the two dataset is due to two reasons:751
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Precision Recall F1 RER
AC

En

pLing 91.04%± 0.07 91.54%± 0.07 91.28%± 0.06 -
spFeat 92.63%± 0.05 93.07%± 0.05 92.83%± 0.03 17.75%
Contain 92.72%± 0.03 93.17%± 0.05 92.93%± 0.02 18.83%
Entity 92.81%± 0.03 93.26%± 0.05 93.02%± 0.02 19.87%
Ground 92.90%± 0.04 93.34%± 0.04 93.11%± 0.02 20.89%

It

pLing 83.07%± 0.41 87.30%± 0.30 85.07%± 0.31 -
spFeat 83.21%± 0.44 87.83%± 0.36 85.39%± 0.34 2.10%
Contain 83.42%± 0.42 88.05%± 0.35 85.60%± 0.32 3.54%
Entity 83.90%± 0.33 88.58%± 0.30 86.10%± 0.25 6.91%
Ground 84.15%± 0.33 88.83%± 0.27 86.35%± 0.24 8.58%

Table 7: Ablation study of the end-to-end chain against the semantic head

first, the different linguistic phenomena and ambiguities present in the two752

languages do not allow to directly compare the two empirical evaluations;753

second, the small number of examples used to train/test the models biases754

the final results, being the Italian dataset composed of only 241 commands.755

However, the system seems to be deployable on a real robot, with the best756

configuration obtaining an F1 of 86.36%.757

6.5. Ablation study758

In order to assess the contribution of the different properties extracted759

from the Semantic Map, we performed an ablation study of the end-to-end760

cascade. The performance are measured by considering only the prediction761

over the semantic head. We tested different configurations of the learning762

function by incrementally adding the proposed features, finally reaching the763

complete Ground model. The spFeat setting refers to a learning function,764

where spatial features and the Distributional Model DLS are used along765

with the standard linguistic features; this configuration is then extended766

with either the Contain-ability property (Contain) or the Entity type of the767

grounded entities (Entity), as discussed in Section 5. Finally, the Ground768

setting that integrates all features has been tested.769

Results are shown in Table 7. Over the English dataset we observed that
the injection of spatial features reduces the relative error by 17.75% (92.83%
F1). This set of features allows to solve most of the PP attachment ambigui-
ties, like the ones mentioned before. Further improvements are obtained with
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the Contain configuration (18.83% RER - 92.93% F1). This feature has been
proven to be useful in the Closure frame prediction. In fact, sentences like
“close the jar” and “close the door” generate two different interpretations in
terms of frame elements:

[close]Closure [the jar]Containing object

and
[close]Closure [the door]Container portal

Marking the semantic head with the Contain-ability property of the grounded770

object allows to drive the final interpretation towards the correct one. When771

the Entity type of the grounded object is injected as a feature, we get an error772

reduction of 19.87% (93.02% F1). In this feature space, entities are clustered773

in categories, explicitly providing further generalization in the learning func-774

tion.775

Conversely, over the Italian dataset we see that spatial properties do776

not improve consistently the performance, reducing the F1 error of 2.10%777

(85.39%). This result is probably biased by the language itself, with a small778

amount of PP attachment ambiguities in the dataset. Instead, a larger contri-779

bution is provided by the two domain-dependent features. For example, the780

Contain setting gets an error reduction of 5.47% (85.89% F1), by handling781

the same ambiguities found in the English dataset. As in the experiment over782

the English section, the Entity type provides a further improvement (6.34%783

RER - 86.02% F1), due to the generalization of the semantic head. Again,784

such a discrepancy in the results is mainly due to the different linguistic785

phenomena therein.786

However, in both datasets the best performance are obtained when the787

full set of features is used, thus providing evidence on (i) the contribution of788

the different properties, and (ii) the compositionality of the feature spaces.789

7. Conclusion790

In this work, we presented a comprehensive framework for the definition791

of robust natural language interfaces for Human-Robot Interaction, specifi-792

cally designed for the automatic interpretation of spoken commands towards793

robots in domestic environments. The proposed solution allows to inject794

domain-dependent and environment-specific evidence into the interpretation795
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process. It relies on Frame Semantics and supports a structured learning ap-796

proach to language processing, able to produce meaningful commands from797

individual sentence transcriptions. A hybrid discriminative-generative learn-798

ing method is proposed to map the interpretation process into a cascade of799

sentence annotation tasks.800

Starting from [4], we defined a systematic approach to enriching the ex-801

ample representation with additional feature spaces not directly addressable802

by the linguistic level. Our aim is to leverage the knowledge derived from803

a semantically-enriched implementation of a robot map (i.e., its Semantic804

Map), by expressing information about the existence and position of entities805

surrounding the robot, along with their semantic properties. Observations806

extracted from the Semantic Map to support the interpretation are then ex-807

pressed through a feature modeling process. Thanks to the discriminative808

nature of the adopted learning mechanism, such features have been injected809

directly in the algorithm. As a result, command interpretation is made de-810

pendent on the robot’s perception of the environment.811

The proposed machine learning processes have been trained by using an812

extended version of HuRIC, the Human Robot Interaction Corpus. The cor-813

pus, originally composed of examples in English, now contains also a subset814

of examples in Italian. Moreover, each example has been paired with the815

corresponding Semantic Map, linking the command to the environment in816

which it has been uttered and enabling the extraction of valuable contextual817

features. This novel corpus promotes the development of the proposed in-818

terpreting cascade in more languages, but, most importantly, it will support819

the research in grounded natural language interfaces for robots.820

The empirical results obtained over both languages are promising, espe-821

cially when the system is evaluated in a real scenario (end-to-end cascade822

evaluated against the semantic head); a closer analysis brings about sev-823

eral observations. First, the results confirm the effectiveness of the proposed824

processing chain, even when only linguistic information is exploited Second,825

they prove the effect of contextual features extracted from the Semantic826

Map, which contributed, with different extent, to the improvement of each827

sub-task. Finally, the results promote the application of the same approach828

in different languages. In fact, the systematic extraction of both linguistic829

and contextual features makes the system extendable to other languages.830

Clearly, there is room to further develop and improve the proposed frame-831

work, starting from an extension of HuRIC with additional sentences and832

semantic features, in order to consider a wider range of robotic actions and833
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properties. Specifically, future research will focus on the extension of the pro-834

posed methodology [4], e.g., by considering spatial relations between entities835

in the environment or their physical characteristics, such as their color, in836

the grounding function. In conclusion, we believe that the proposed solution837

will support further and more challenging research topics in the context of838

HRI, such as interactive question answering or dialogue with robots.839
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Appendix A. HuRIC: a Corpus of Robotic Commands1013

The proposed computational paradigms are based on machine learning1014

techniques and strictly depend on the availability of training data. Hence, in1015

order to properly train and test our framework, we developed a collection of1016

datasets that together form the Human-Robot Interaction Corpus (HuRIC)4,1017

formerly presented in [50].1018

4Available at http://sag.art.uniroma2.it/huric. The download page also contains a de-
tailed description of the release format.
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HuRIC is based on Frame Semantics and captures cognitive information1019

about situations and events expressed in sentences. The most interesting1020

feature is that HuRIC is not system or robot dependent both with respect to1021

the surface of sentences and with respect to the adopted formalism for both1022

representing and extracting the interpretation of the command. In fact, it1023

contains information strictly related to Natural Language Semantics and it1024

thus results decoupled from the specific system.1025

English Italian
Number of examples 656 241
Number of frames 18 14
Number of predicates 762 272
Number of roles 34 28
Predicates per sentence 1.16 1.13
Sentences per frame 36.44 17.21
Roles per sentence 2.02 1.90
Entities per sentence 6.59 6.97

Table A.8: HuRIC: some statistics

The corpus exploits different situations representing possible commands1026

given to a robot in a house environment. HuRIC is composed of different1027

subsets, characterized by different order of complexity, designed to differ-1028

ently stress a labeling architecture. Each dataset includes a set of audio files1029

representing robot commands, paired with the correct transcription. Each1030

sentence is then annotated with: lemmas, POS tags, dependency trees and1031

Frame Semantics. Semantic frames and frame elements are used to represent1032

the meaning of commands, as, in our view, they reflect the actions a robot1033

can accomplish in a home environment. In this way, HuRIC can potentially1034

be used to train all the modules of the processing chain presented in Section1035

5.1036

HuRIC provides commands in two different languages: English and Ital-1037

ian. While the English subset contains 656 sentences, 241 commands are1038

available in Italian. Almost all Italian sentences are translations of the orig-1039

inal commands in English and the corpus keeps also the alignment between1040

those sentences. We believe these alignments will support further researches1041

in further areas, such as in the context of Machine Translation. The number1042

of annotated sentences, number of frames and further statistics are reported1043

in Table A.8. Detailed statistics about the number of sentences for each frame1044
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Frame Ex Frame Ex Frame Ex
Motion 143 Bringing 153 Cotheme 39
Goal 129 Theme 153 Cotheme 39
Theme 23 Goal 95 Manner 9
Direction 9 Beneficiary 56 Goal 8
Path 9 Agent 39 Theme 4
Manner 4 Source 18 Speed 1
Area 2 Manner 1 Path 1
Distance 1 Area 1 Area 1
Source 1
Locating 90 Inspecting 29 Taking 80
Phenomenon 89 Ground 28 Theme 80
Ground 34 Desired state 9 Source 16
Cognizer 10 Inspector 5 Agent 8
Purpose 5 Unwanted entity 2 Purpose 2
Manner 2
Change direction 11 Arriving 12 Giving 10
Direction 11 Goal 11 Recipient 10
Angle 3 Path 5 Theme 10
Theme 1 Manner 1 Donor 4
Speed 1 Theme 1 Reason 1
Placing 52 Closure 19 Change operational state 49
Theme 52 Containing object 11 Device 49
Goal 51 Container portal 8 Operational state 43
Agent 7 Agent 7 Agent 17
Area 1 Degree 2
Being located 38 Attaching 11 Releasing 9
Theme 38 Goal 11 Theme 9
Location 34 Item 6 Goal 5
Place 1 Items 1
Perception active 6 Being in category 11 Manipulation 5
Phenomenon 6 Item 11 Entity 5
Manner 1 Category 11

Table A.9: Distribution of frames and frame elements in the English dataset
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Frame Ex Frame Ex Frame Ex
Motion 51 Locating 27 Inspecting 4
Goal 28 Phenomenon 27 Ground 2
Direction 20 Ground 6 Unwanted entity 2
Distance 13 Manner 2 Desired state 2
Speed 8 Purpose 1 Instrument 1
Theme 3
Path 2
Manner 1
Source 1
Bringing 59 Cotheme 13 Placing 18
Theme 60 Cotheme 13 Theme 18
Beneficiary 31 Manner 6 Goal 17
Goal 26 Goal 5 Area 1
Source 8
Closure 10 Giving 7 Change direction 21
Container portal 6 Theme 7 Direction 21
Containing object 5 Recipient 6 Angle 9
Degree 1 Donor 1 Speed 9
Taking 22 Being located 14 Being in category 4
Theme 22 Location 14 Item 4
Source 8 Theme 12 Category 4
Releasing 8 Change operational state 14
Theme 8 Device 14
Place 3

Table A.10: Distribution of frames and frame elements in the Italian dataset

and frame elements are reported in Tables A.9 and A.10 for the English and1045

Italian subsets, respectively.1046

The current release of HuRIC is made available through a novel XML-1047

based format, whose extension is hrc. For each command we are able to1048

store: (i) the whole sentence, (ii) the list of the tokens composing it, along1049

with the corresponding lemma and POS tag, (iii) the dependency relations1050

among tokens, (iv) the semantics, expressed in terms of Frames and Frame1051

elements, and (v) the configuration of the environment, in terms of entities1052

populating the Semantic Map (SM). In fact, since in the initial HuRIC ver-1053

sion linguistic information were provided without an explicit representation1054

of the environment, we extended the corpus by pairing each utterance with1055

a possible reference environment. Hence, each command is paired with a1056

automatically generated SM, reflecting the disposition of entities matching1057

the interpretation, so that perceptual features can be consistently derived1058

for each command. Extended examples are of the form 〈s, SM〉. The map1059

generation process has been designed to reflect real application conditions.1060

First, we built a reference Knowledge Base (KB) acting as domain model1061

and containing classes that describe the entities of a generic home environ-1062
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ment. Then, for each sentence s, the corresponding SM is populated with1063

the set of referred entities, plus a control set of 20 randomly-generated ad-1064

ditional objects, all taken from the KB. The naming function LR has been1065

defined simulating the lexical references introduced by a process of Human-1066

Augmented Mapping. The set of possible lexical alternatives (from which1067

such LR draws) has been designed to simulate free lexicalization of entities1068

in the SM. For every class name in the KB, a range of possible polysemic1069

variations has been defined, by automatically exploiting lexical resources,1070

such as WordNet [42], or by corpus-analysis. The final set has been then1071

validated by human annotators.1072
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