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Propagation of an airborne acoustic pulse from a point source above an array of regularly spaced

rigid cylinders on a rigid plane has been investigated using a two-dimensional multiple scattering

theory. Time domain simulations show a main arrival and a separate delayed “tail.” Fourier analysis

of the tail shows that, for a sufficiently sparse array of cylinders, it is composed of a series of spec-

tral peaks resulting from constructive interference consistent with Bragg diffraction theory and

amplitudes depending on the spacing and size of the cylinders. For increasingly compact distribu-

tions of cylinders, the lowest frequency peak is dominated by a quarter wavelength “organ pipe” or

“gap” resonance in the space between the cylinders. Simulated pressure maps show that there is a

transition region in the acoustic field with an extent that depends on the spacing and size of the cyl-

inders. Beyond this region, individual gap resonances combine to create a field that declines expo-

nentially with height, consistent with the behaviour of a surface wave. Data from measurements of

acoustic pulses above copper cylinders on rigid fibreboard under anechoic conditions demonstrate

some of the predicted characteristics. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5126856

[OU] Pages: 2137–2144

I. INTRODUCTION

It is generally accepted that if an acoustic airborne

source is located near a plane surface, an acoustic surface

wave may be generated depending upon the nature of that

surface. That is, instead of acoustic energy being reflected

from or transmitted into the surface, some energy remains

just above and propagates along that surface. This is the

acoustic analogue of the Rayleigh wave—the surface wave

that propagates independently along the surface of solids

produced by, for example, localised impact, piezo-electric

transduction, and earthquakes. A surface with an impedance

in which the imaginary part sufficiently exceeds the real part

is an example of this type of surface. Another is a rough sur-

face composed of a periodic or aperiodic structuring on a

plane where the mean spatial period of the structuring is

smaller than the wavelength (this surface can be considered

to be a form of meta-surface).1 Whatever the type of surface,

a surface wave generated by an airborne source near that sur-

face is characterised by specific properties; it undergoes

cylindrical spreading with increasing range along the plane,

exponential decay with increasing height above the plane,

and a reduced phase velocity v< c where c is the velocity of

sound in air. The objective of this study is to investigate the

generation of airborne surface waves during propagation

from a point source over an array of regularly spaced rigid

cylinders on a rigid plane.

The theoretical basis for the generation of acoustic sur-

face waves above an impedance plane has been investigated

by many workers including Thomasson2 who showed that

if a surface has an impedance with an imaginary part much

larger than the real part, an acoustic surface wave can be

generated when the incident wave is at or near grazing inci-

dence. Later, Raspet and Baird3 demonstrated that such a

surface wave is an independently propagating wave. Also,

it was shown by Tolstoy4,5 and Twersky6 that acoustic sur-

face waves can also be generated by rough surfaces. The

existence of acoustic surface waves has been demonstrated

experimentally over arrays of thin aluminium strips

mounted on a rigid sheet of plywood,7 lattices of square

cavities constructed from overhead lighting panels mounted

on a wooden board,8 rectangular strips on a hard surface9

and a comb-like structure.10,11 Allard, Lauriks, and

Kelders12–14 investigated ultrasonic surface wave genera-

tion over triangular-grooves, rectangular grooves, a doubly

periodic grating, and honeycomb surfaces. Daigle et al.15

showed that a separate wave can be produced over a surface

constructed from commercial overhead lighting panels, but

the measurements did not show as much separation as pre-

dicted. Most of these experimental studies provide evidence

for the existence of surface waves over rough surfaces but

do not propose mechanisms that lead to their generation.

Previous studies have investigated the propagation ofa)Electronic mail: dberry@uevora.pt
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acoustic waves above randomly and regularly structured

surfaces using numerical techniques such as boundary ele-

ment methods16 and boss theories.17 Other studies have used

a multiple scattering theory (MST) approach,18,19 which pro-

vided good agreement between the model predictions and

measurements for semi-cylindrical elements (although agree-

ment for other shapes, such as triangular and rectangular ele-

ments, were less satisfactory).

To explore the characteristics of the surface wave gener-

ated by a rough surface and the possible mechanisms that

lead to its generation, a model surface was necessary which

had rough surface characteristics that could be easily modi-

fied, and which could be modelled simply and efficiently.

Another requirement was that it could be constructed and

tested in an acoustics laboratory. A surface composed of an

acoustically rigid plane surface with acoustically rigid cylin-

ders horizontally placed on it and oriented perpendicularly

to the direction of propagation satisfied these requirements.

The simulations for propagation above such a surface pre-

sented in this study are based on the MST formulation of

Krynkin et al.,19 an outline of which is presented. If such a

surface does in fact generate a surface wave then, for an air-

borne pulse emitted near to the surface, it will manifest itself

as a separate delayed “tail” after the (direct and plane-

surface reflected) main arrival. Isolating this tail in the time

domain and subsequently analysing it in the frequency

domain could reveal possible mechanisms that lead to its

generation. Two possible mechanisms are proposed and pre-

sented in this study. The first is Bragg diffraction which

occurs when two diffracted plane waves interfere destruc-

tively or constructively depending on the difference in their

path lengths. The second is a resonance effect generated in

the gaps between the cylinders of the array, similar to “organ

pipe” resonance. Simulations that investigate these two com-

peting mechanisms are presented with a particular focus on

the influence of the geometry (cylinder centre-to-centre

spacing, cylinder diameters, etc.). This study also presents a

comparison of these simulations with measurements above a

model surface of evenly spaced copper cylinders on an

acoustically hard fibreboard under controlled conditions in

an anechoic chamber.

In Sec. II we describe the multiple scattering theory for

the spatial dependence of the acoustic pressure waveforms

produced for different source–receiver geometries and dif-

ferent configurations and sizes of acoustically rigid cylinders

on a rigid plane. Using this theory, we explore, in Sec. III,

how such a rough surface affects the propagation of acoustic

pulses—and in this case, the propagation of delta pulses of

infinitely short length corresponding to a flat, infinitely wide,

frequency spectrum. Section IV describes the experimental

procedures and laboratory arrangements used in this study

and presents comparisons of measured pulses over arrays of

copper tubes on a rigid fibreboard board with simulations.

Finally, Sec. V draws conclusions and completes this study.

II. THE MULTIPLE SCATTERING MODEL

The characteristics of sound propagating over cylinders

on a rigid plane has been explored here using a treatment

similar to that of Krynkin et al.19 who determined the acous-

tic insertion loss due to two dimensional periodic arrays of

circular cylinders parallel to a nearby surface. Bashir et al.16

have shown that this semi-analytical theory enables good

agreement with measurements over arrays of semi-cylinders

on a rigid plane.

Consider a cylindrical wave from a point source located

in air characterised by sound speed c¼ 343 m/s and density

1.2 kg/m3 incident on an array of N identical rigid cylinders,

each of radius a, placed on a flat rigid plane and arranged

perpendicularly to the direction of propagation —see Fig. 1.

The polar coordinates at the receiver in the Cartesian refer-

ence frame ðOx;OyÞ are represented by ðr; hÞ, and the polar

coordinates at the receiver in the reference frame ðOjx;OjyÞ
centred at the jth cylinder centre, Ojðxj; yjÞ, are represented

by ðrj; hjÞ.
The total field, P, at the receiver is the sum of a direct

field contribution, a contribution from the plane boundary

and a contribution from the cylindrical scatterers and must

satisfy the Helmholtz equation in polar coordinates:

r2Pþ k2
0P ¼ 0; (1)

where

r2 ¼ 1

r

@

@r
r
@

@r

� �
þ 1

r2

@2

@h2

is the Laplacian and k0 is the wave-number exterior to the

cylinders. Equation (1) is solved in conjunction with radia-

tion conditions,

@P

@r
� ik0P ¼ o r�1=2ð Þ; as r !1; (2)

and with the Neumann condition imposed on the rigid plane

and on the cylinders, i.e.,

@P

@n
¼ 0: (3)

FIG. 1. (Color online) Geometry used for theoretical development.
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Assuming a direct field represented by a Hankel function

H
ð1Þ
0 ðk0qÞ, where q is the source–receiver distance (see Fig. 1),

a plane boundary reflected wave H
ð1Þ
0 ðk0q0Þ represented by the

wave from an image source, where q0 is the image source–

receiver distance, and a scattered field decomposed into a

sum of the contributions from the N cylinders and N cylin-

der images, the following expression can be developed for

the total field above the array of cylinders:

P¼H
ð1Þ
0 k0qð ÞþH

ð1Þ
0 k0q

0ð Þþ
XN

j¼1

X1
n¼�1

Aj
nZj

nHð1Þn k0rjð Þeinhj

þ
XN

j¼1

X1
n¼�1

Aj
nZj

nH 1ð Þ
n k0r0j

� �
e�inh0j ; (4)

where Hð1Þn ð Þ are Hankel functions of the first kind and order

n and Aj
n, n 2 Z, j ¼ 1…N are unknown amplitudes. For

acoustically rigid cylinders, the term Zj
n is defined as

Zj
n ¼

J0n k0að Þ
H0n k0að Þ ; (5)

where J0nð Þ is the derivative of the Bessel function of order n
and H0nð Þ is the derivative of the Hankel function of the first

kind of order n with respect to polar coordinate r. This leads

to the infinite system of equations for unknown coefficients

A (for details see Krynkin et al.19),

As
m þ

X1
n¼�1

XN

j ¼ 1
j 6¼ s

Aj
nZj

nHð1Þn�m k0Rjsð Þei n�mð Þajs

8><
>:

þ
XN

j¼1

Aj
nZj

nH
ð1Þ
nþm k0Rjsð Þei nþmð Þa0js

9=
;

¼ �H 1ð Þ
m k0qð Þe�imrq � H 1ð Þ

m k0q
0ð Þe�imrq0 ; (6)

with m 2 Z and s ¼ 1;…;N. In Eq. (6) the summation is

taken over both real and image cylinders to take account of

interaction between real and image objects. These interac-

tions account for scattering of ground reflected waves and

reflection from the ground of scattered waves. The source

terms on the right-hand side are the source and its image

below the rigid plane. To determine the coefficients Aj
n, the

infinite summation is truncated to �M to M, where the value

of M is set to 6 (for further details see Ref. 14). The proce-

dure for determining the total pressure field P at a certain

point above the cylinder array using this multiple scattering

approach requires solving the system of Eq. (6) and deter-

mining the pressure by summation using Eq. (4) together

with direct and boundary-reflected terms.

Using this treatment, the propagation of a short acoustic

pulse over a cylinder array configuration can be predicted

theoretically and the measurements, to be discussed later,

can be compared directly with predictions. To determine the

signal pFinalðtÞ at a certain point above the cylinder array,

given a signal pRef ðtÞ at the source, discrete Fourier trans-

form (DFT) was used to determine PRef ðf Þ from pRef ðtÞ and

the final signal was determined from

PFinal fð Þ ¼ P fð ÞPRef ðf Þ: (7)

An inverse DFT was subsequently used to obtain the final

signal pFinalðtÞ from PFinalðf Þ. The reference signal was sam-

pled at 13.25 ls and a rectangular window of 4096 sample

points was used for the analysis, which provided a suffi-

ciently extensive time interval to encompass the main pulse

signal and the pulse “tail.” The spectral resolution of the

DFT is 0.054 Hz, considered sufficient to represent the pulse

spectrum accurately.

Finally, it is useful to know how the total pressure at a

certain point above the cylinder array varies compared to the

pressure above a rigid plane, given by

PRP ¼ H
ð1Þ
0 k0qð Þ þ H

ð1Þ
0 k0q

0ð Þ (8)

and we determine the relative sound pressure level (SPL)

with reference to the rigid plane using

SPL ¼ 20 log10

PFinalðf Þ
PRPðf Þ

����
����: (9)

III. IMPULSE RESPONSE FOR THE CYLINDER ARRAY

To determine the influence of the cylinder array on the

propagation of an acoustic pulse from a cylindrical source,

especially to understand the spectral content of signal at a

certain point above the array, the simulations presented in

this section were carried out using the Dirac delta function,

PRef tð Þ ¼ 1; t ¼ 0

0; otherwise:

�
(10)

The advantage of using such a reference pulse in simulations

is that its frequency spectrum is flat and infinitely wide. This

means that pressure field determined using Eq. (7) will be

independent of the frequency content of the input pulse and

any variations in the spectral content of the signal above the

array will be the direct result of the array.

Figure 2 shows the results of simulations for propaga-

tion over a cylinder array configuration where the cylinders

are positioned regularly and symmetrically about the point

of specular reflection at a cylinder centre-to-centre spacing

of 5 cm, corresponding to 20 cylinders between source and

receiver. The source–receiver separation is 1 m and both the

source and receiver heights are 5 cm. Figure 2(a) shows a

main pulse arrival at 2.9 ms (corresponding to a sound speed

of 343 m/s) followed by a “tail” which persists for an addi-

tional 5 to 10 ms. The spectrum of this tail [Fig. 2(b)] is

dominated by a peak at 2.7 kHz. The three other peaks at

5.8, 9.6, and 13.6 kHz have much lower magnitudes. The fre-

quencies of these four peaks correspond approximately with

the frequencies of the four minima in the sound pressure

level spectrum shown in Fig. 2(c).

This example demonstrates how the spectra of the pulse

tails are predicted to depend upon the cylinder configuration.

Consider now the effects of symmetrically altering cylinder

centre-to-centre spacing and cylinder size.

J. Acoust. Soc. Am. 146 (4), October 2019 Berry et al. 2139



Figure 3(a) presents hidden line plots of pulse tail spec-

tra as a function of cylinder centre-to-centre spacing for a

fixed cylinder diameter (1.5 cm). When the spacing is small,

the pulse tail spectrum is dominated by a peak at �3 kHz. As

the spacing increases, the frequency of this peak decreases to

�1500 Hz. The frequencies of the other lower-magnitude

peaks also decrease smoothly with increasing separation.

According to Bashir et al.9 certain maxima observed in

sound pressure level spectra over periodically spaced rough-

ness elements are influenced by the spacing of the roughness

elements. This influence was attributed to Bragg diffraction

which occurs when two diffracted plane waves interfere

destructively or constructively depending on the difference

in their path lengths. The frequencies at which these interfer-

ences occur are the Bragg frequencies,

fbr ¼
c0n

2R sin c
; n ¼ 1; 2; 3; …; (11)

where c0 is the speed of sound in air, R is the cylinder

centre-to-centre spacing, and c is the angle of incidence.

This assumes the scattering elements to be of infinitesimal

size and, therefore, that the Bragg frequency is independent

of the size of the scattering elements.

Figure 3(b) presents a comparison of the frequencies

of the first four maxima taken from Fig. 3(a) with predicted

first- to fourth-order Bragg frequencies corresponding

to n¼ 1, 2, 3, and 4 as a function of cylinder spacing, cal-

culated using Eq. (10). Figure 3(b) shows that there is rea-

sonable agreement of the frequencies of the first peak

(circles) with the Bragg diffraction equation (dashed line)

for large cylinder spacings but this agreement breaks down

when the spacing is small, i.e., when the cylinders are

close together. However, Fig. 3(b) shows that the agree-

ment with predictions according to Bragg diffraction

improves with the diffraction order (even for small cylin-

der spacings).

Another mechanism must be responsible for the differ-

ence between the first maximum and the first order Bragg

diffraction maximum. Whatever the effect is, it is certainly

stronger than that caused by diffraction. Perhaps the clue lies

in the cylinder configurations. At large cylinder separations

(>cylinder diameter), the cylinders are acting as individual

diffraction elements and with the appropriate geometry,

Bragg diffraction occurs. However, at much smaller cylinder

spacings—approaching a value of a cylinder diameter—the

centre-to-centre-cylinder gap width and height are similar.

In this case, the cylinders can no longer be considered

infinitesimal scattering elements and the gaps between the

cylinders will play an important role in the sound propagat-

ing over the cylinder array. When the cylinders are close

together the gaps between adjacent cylinders (although

resembling a concave lens) have rigid sides, a rigid base and

FIG. 2. (a) Example pulse, (b) its tail spectrum and (c) sound pressure level

spectrum relative to a rigid surface calculated for propagation over cylinder

array (cylinder diameter 1.5 cm) for an input delta pulse; source–receiver

separation ¼ 1.0 m, source and receiver heights ¼ 5 cm; cylinder centre-to-

centre spacing ¼ 5 cm (20 cylinders).

FIG. 3. (a) Spectra of pulse tails calculated over a cylinder array (cylinder diameter 1.5 cm) for cylinder centre-to-centre spacings ranging from 2 to 10 cm for

an input delta pulse. The source–receiver separation ¼ 1.0 m, source and receiver heights ¼ 5 cm. (b) Variation of the frequency of the first (circles), second

(squares), third (diamonds), and fourth (triangles) maxima of the plots in (a) compared with the equivalent Bragg frequencies calculated using Eq. (11) (dashed

lines) and the gap resonance frequencies calculated using Eq. (12b) (solid line) (with C¼ 7 cm).
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are open at the top. So, there may be resonances similar to

so-called “organ pipe” resonances occurring.

For a cylindrical organ pipe of length L, diameter d, and

closed at one end, quarter wavelength resonances are given

by20

fOP ¼
c0n

4 Lþ Cð Þ ; n ¼ 1; 3; 5; …; (12a)

where C is an end correction which can take a value between

(0.31d) to ðpd=4Þ. If the length of the organ pipe is taken to

be L ¼ 2a, and its effective diameter is taken to be d ¼ R,

where R is the cylinder centre-to-centre spacing, then the

frequency of the first “gap” resonance is

fG ¼
c0

4 2aþ Cð Þ : (12b)

Table I shows the variation of this first gap resonance for dif-

ferent values of the end correction, C, for the smallest value of

cylinder centre-to-centre spacing considered here (d¼ 2 cm).

Using an end correction of 7 mm, a value that falls between

the limits proposed by Pierce,20 Fig. 3(b) shows the variation

of the gap frequency as a function of cylinder centre-to-centre

spacing and demonstrates that Eq. (12b) predicts the frequen-

cies of the first tail maxima from the multiple scattering

theory.

Clearly, depending on the cylinder diameters and the

cylinder-to-cylinder spacing, there are simultaneous contri-

butions from Bragg diffraction and the gap resonance for

propagation over regularly spaced cylinder arrays. Further

confirmation of the latter effect can be made if we look at

hidden line plots of predicted tail spectra as a function of

cylinder diameter for a fixed cylinder centre-to-centre spac-

ing [see Fig. 4(a)].

For small diameter cylinders (�1–3 mm) and up to a

frequency of 20 kHz, the tail spectra include two maxima at

8.6 kHz and 17.1 kHz which approximately coincide with

the predicted frequencies for the first and second order

Bragg diffraction frequencies calculated using Eq. (10).

However, the second peak diminishes with increasing cylin-

der diameter up to �10 mm and its frequency also reduces to

�14 kHz, but subsequently returns to its original value with

a further increase in cylinder diameter; this is also accompa-

nied by an increase in magnitude. This is not the case for the

first maximum. With increasing cylinder diameter, its mag-

nitude increases and shifts to lower frequencies—to a value

of 3.9 kHz for cylinder diameters of 1.5 cm. Figure 4(b)

shows the variation of the frequency of these maxima as a

function of cylinder diameter. These frequencies are pre-

dicted using Eq. (12b), with a value of the end correction

C¼ 0.007 m as used in Fig. 3(b). As expected, for small

cylinder diameters, the organ pipe resonance no longer dom-

inates, and the frequency of the maxima are predicted using

Bragg diffraction.

Figures 3 and 4 have shown that the maxima in the tail

spectra can be explained using either Bragg diffraction or

gap resonance. This indicates that the generation of these

maxima are a result of the regularity of the arrangement of

the cylinders between source and receiver. If this regularity

were removed, i.e., if the cylinders were arranged irregularly

between source and receiver, then the conditions for Bragg

TABLE I. Frequency of first gap resonance, fOP for different values of end

correction, C ranging from 0.31d to p/4 d calculated using Eq. (12b). The

effective diameter of the organ pipe, d, is taken to be the cylinder-to-cylin-

der spacing, 0.02 m; the effective length of the organ pipe is taken to be 2a,

0.015 m.

C (m) fG (kHz)

0.0062 (¼ 0.31� 0.02) 4.04

0.0070 (¼ 0.35� 0.02) 3.90

0.0080 (¼ 0.40� 0.02) 3.73

0.0100 (¼ 0.50� 0.02) 3.43

0.0120 (¼ 0.60� 0.02) 3.18

0.0140 (¼ 0.70� 0.02) 2.96

0.0157 (¼ p/4� 0.02) 2.79

FIG. 4. Spectra of pulse tails calculated over a cylinder array with cylinder centre-to-centre spacing of 2 cm for cylinder diameters ranging from 1.0 to

15.0 mm for an input delta pulse. The source–receiver separation ¼ 1.0 m, source and receiver heights 5 cm. Also indicated are the first and second order

Bragg diffraction frequencies. (b) Variation of the frequency of the first maximum of the plots in (a) compared with the gap resonance frequencies calculated

using Eq. (12b) (solid line). Also indicated is the first order Bragg diffraction frequency.
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diffraction would be removed and the gap resonance fre-

quency would be different for each inter-cylinder space of

the array. However, for a fixed number of cylinders, the aver-
age cylinder centre-to-centre spacing for irregularly posi-

tioned cylinders would be the same as that for regularly

positioned cylinders, and consequently, there would be some

(significantly reduced) Bragg interference and gap resonance,

depending on the spread of the cylinder centre-to-centre spac-

ings. This is what Fig. 5 indeed demonstrates. It compares

the propagation of pulses over regularly (gray line) and irreg-

ularly (black line) positioned cylinders. The first maximum,

attributed to gap resonance, while significantly reduced, is

not completely eliminated while the second and higher order

Bragg diffraction maxima are significantly reduced, if not

present.

Finally, Fig. 6 shows the variation of the magnitude of

this first pulse peak generated by a cylinder array composed

of 1.5 cm diameter cylinders with cylinder centre-to-centre

spacing of 5 cm as a function of height. The figure shows

that for receiver heights greater than 7.5 cm, the decrease in

the first maximum magnitude is approximately exponential.

For heights lower than this value, an interaction between

neighbouring individual organ pipe resonances has not yet

been achieved—as is further supported in Fig. 7. Eventually,

the gap resonances merge to form an exponentially decreas-

ing field with height, suggestive of a surface wave.

Figure 7 shows a map of the total pressure magnitude up

to 10 cm above an array of twenty 1.5 cm cylinders with cen-

tre-to-centre spacing of 5 cm for five discrete frequencies:

(a) 1500 Hz, (b) 2000 Hz, (c) 2500, and (d) 2782 Hz. The last

frequency corresponds to the frequency of first maximum in

the tail spectrum for this configuration and approximately

the first minimum in the sound pressure level spectrum.

For the lowest frequency [Fig. 7(a)], the pressure magni-

tude demonstrates wavefront-spreading being strong close to

the source and falling off towards the end of the array. As

the frequency of the first tail spectrum maximum is

approached, the organ pipe resonance effect starts to be

excited and an increase in the pressure magnitude between

the cylinders is noticeable. At 2500 Hz [Fig. 7(c)] and, in

particular, at 2782 Hz [Fig. 7(d)], the inter-cylinder gap

resonance is well-established, and the pressure field, while

seeming to show a “standing-wave” envelope, could be con-

sidered to be confined to a region just above the cylinders.

Figure 7(e) demonstrates that, when the number of cylinders

is doubled thereby halving the cylinder centre-to-centre

spacing, there is increasing interaction between the adjacent

cylinder gap resonances.

On the basis of Figs. 6 and 7, for the geometry and

cylinder configuration considered here the merging of neigh-

bouring individual gap resonances to form a surface wave

occurs some five times the cylinder diameter above the surface.

IV. MEASUREMENTS AND COMPARISON WITH
THEORY

For measurements we used a surface constructed from a

1.2� 2.4 m and 18 mm thick medium density fibreboard

(MDF) on which were placed 0.75 m long copper cylinders

(1.5 cm diameter) positioned regularly and symmetrically

about the point of specular reflection at cylinder centre-to-

centre spacings of 5 cm (corresponding to 20 cylinders

between source and receiver). Also, the board was suffi-

ciently plane and the cylinders sufficiently straight to avoid

any acoustic leakage between cylinder and surface. All the

measurements were performed in the Open University’s

anechoic chamber of dimensions 3 m� 3 m� 3 m. The sour-

ce–receiver geometry together with the cylinder array con-

figurations were chosen to make direct comparisons with the

simulations in Fig. 2.

To observe some of the main features of the pulse simu-

lations presented in Sec. III, we selected a Ricker pulse,

FIG. 5. Example pulse calculated for propagation of an input delta pulse

over a cylinder array (1.5 cm cylinder diameter) where the cylinder centre-

to-centre spacing is irregular (black line). The source–receiver separation

¼ 1.0 m, source and receiver heights hs ¼ hr ¼ 5 cm. 20 cylinders are posi-

tioned at [3.6, 9.8, 12.7, 15.8, 27.9, 39.3, 42.2, 48.6, 54.7, 63.3, 65.6, 67.9,

70.7, 75.8, 79.3, 81.5, 85.0, 90.6, 93.4, 95.8] cm from the source. (a) Pulse

and tail; (b) spectrum of the pulse tail; (c) sound pressure level spectrum rel-

ative to a rigid surface. This geometry and number of cylinders is the same

as for Fig. 2(a) which are reproduced in this figure as the gray line for

comparison.

FIG. 6. Variation of the magnitude of the first maximum of the pulse tail as

a function of receiver height calculated over a cylinder array with cylinder

centre-to-centre spacing of 5 cm for cylinder diameter 1.5 cm for an input

delta pulse. The source–receiver separation ¼ 1.0 m, source height ¼ 5 cm.

The receiver height ranges from 2.5 to 12.5 cm. The solid line is an expo-

nential fit for the last 5 points.
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which has a broad frequency bandwidth, with a centre fre-

quency of 1500 Hz for the experiments presented here. The

centre frequency was selected to be sufficiently different

from the frequency of the first maximum of the pulse tail for

the cylinder arrays and source–receiver configurations used

in the experiments. The sound source was a Tannoy driver

fitted with a 2.25 m long copper tube of 3 cm internal diame-

ter so that the end of the pipe acted as a point source at a fre-

quency range of 400–10 kHz. A Bruel and Kjaer VR type

4311 1/2 in.-diameter condenser microphone fitted with a

preamplifier was used as a receiver which has a usable sensi-

tivity from DC to 20 kHz. Both source and receiver could be

positioned with an accuracy of �1 mm both in the vertical

and horizontal directions.

A data acquisition system based on maximum length

sequence (MLS) was used for signal generation and signal

processing. The signal was sampled at 75 kHz and a rectan-

gular window of 4096 samples containing one pulse was

used for the analysis. A reference signal was obtained by

measuring the same pulse over the MDF board for a source

height of 5 cm, a receiver height of 2.5 cm and a source–re-

ceiver separation, R, of 1 m. This geometry was selected as

the first destructive interference frequency (the ground

effect) was well above the frequency of interest. Thus, in the

frequency range discussed here the reference sound pressure

field is, in effect, double the free field. Subsequent measure-

ments were made by placing the cylinders above the board

perpendicular to source–receiver line and measuring the

same sound source pulse and divided by the reference field.

Analysis was carried out on the raw time-domain signal,

in particular on the component trailing the main pulse (the

pulse tail). Figure 8 shows the measured (gray line) and its

equivalent calculated pulse (black line), along with the pulse

tail spectra and sound pressure level spectra. Given the

much-reduced bandwidth and the time dependence of the

input Ricker pulse, the pulse received at the microphone,

together with its tail spectrum and the sound pressure level

spectrum will be different from the predictions presented in

Fig. 2. The pulses in Sec. III were calculated using a delta

pulse with an infinite bandwidth for an idealised perfectly

rigid surface with an array of cylinders of infinite length

under perfect anechoic conditions. Furthermore, the finite

FIG. 7. (Color online) (a)–(d) Pressure

maps above cylinder array with cylin-

der centre-to-centre spacing of 5 cm

(20 cylinders), cylinder diameter

1.5 cm for an input delta pulse. The

source–receiver separation ¼ 1.0 m,

the source height y¼ 5 cm (x¼ 0 cm)

for the following frequencies: (a)

1500 Hz, (b) 2000 Hz, (c) 2500 Hz, and

(d) 2782 Hz; (e) same source–receiver

configuration, cylinder centre-to-centre

spacing 2.5 cm (40 cylinders) for fre-

quency 3169 Hz.

FIG. 8. (a) Example pulse, (b) its tail spectrum and (c) sound pressure level

spectrum relative to a rigid surface calculated (black line) and measured

(gray line) for propagation over a cylinder array configuration for an input

Ricker pulse; source–receiver separation ¼ 1.0 m, source and receiver

heights ¼ 5 cm for cylinder centre-to-centre spacing of 5 cm (20 cylinders).
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size of the cylinders and board on which they were placed

caused undesired reflections which influenced the pulse tail

and sound pressure level spectra. For this reason, the spectra

presented in Figs. 8(b) and 8(c) have been restricted to

1500 Hz to 5 kHz. Nevertheless, in both sets of data there is

reasonable agreement between the data and predictions, con-

firming the presence of gap resonance in the pulse tail.

In their study of the propagation of pulses over lattices,

Daigle et al.15 found that, at source–receiver separations

greater than 1.5 m, there is a clear time lag between the main

arrival and the tail of �10–15 ms. In the present study of the

propagation of pulses over cylinders on a rigid surface, albeit

a rather different type of rough surface, it has not been possi-

ble to demonstrate a separation of the pulse tail from the

main arrival, using the multiple scattering theory even for a

source–receiver separation of 2 m. This implies that the sur-

face wave created by the cylinders on a hard plane has a

speed rather close to the speed of sound in air.

V. CONCLUSIONS

Using predictions of a multiple scattering theory for

propagation from a cylindrical source close to an array of

cylinders on a rigid plane, it has been shown that pulses

received also close to the surface are composed of a main

arrival and a tail. A spectral analysis of the tail demonstrates

that it is composed of regularly spaced frequency maxima

that correspond to plane-wave Bragg diffraction. However,

at small cylinder centre-to-centre spacings, these maxima

are weak in comparison to a strong low frequency maximum

related to the quarter wavelength organ pipe resonance or

gap resonance in the gap between the cylinders. This reso-

nance is enhanced with increasing cylinder diameter.

Furthermore, pressure maps show that the individual reso-

nances between neighbouring cylinders interact just above

the cylinder array. With increasing heights, the merged result

falls off exponentially, as is expected of a surface wave.

Finally, measurements under anechoic conditions of

pulses propagating over arrays of copper tubes on a rigid

fibreboard show reasonable agreement with the calculated

pulses confirming the gap resonance and Bragg diffraction

features present in the pulse tail.
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