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Major depressive disorder is one of the most common and debilitating psychiatric
disorders. Some of the motivational symptoms of depression, such anergia (lack of
self-reported energy) and fatigue are relatively resistant to traditional treatments such as
serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated.
Epidemiological data suggest that caffeine consumption can have an impact on aspects
of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for
A1/A2A receptors, and has been demonstrated to modulate behavior in classical
animal models of depression. Moreover, selective adenosine receptor antagonists are
being assessed for their antidepressant effects in animal studies. This review focuses
on how caffeine and selective adenosine antagonists can improve different aspects
of depression in humans, as well as in animal models. The effects on motivational
symptoms of depression such as anergia, fatigue, and psychomotor slowing receive
particular attention. Thus, the ability of adenosine receptor antagonists to reverse
the anergia induced by dopamine antagonism or depletion is of special interest. In
conclusion, although further studies are needed, it appears that caffeine and selective
adenosine receptor antagonists could be therapeutic agents for the treatment of
motivational dysfunction in depression.

Keywords: adenosine receptors, dopamine, caffeine, antidepressants, anergia, fatigue, anxiety

MAJOR DEPRESSION DISORDER: SYMPTOMATOLOGY AND
CURRENT TREATMENT

Major depression disorder (MDD) is one of the most debilitating disorders in the world, and
the most commonly diagnosed according to the World Health Organization. The Diagnostic and
Statistical Manual in its last edition (DMS-5) defines this disorder as a set of symptoms including:
depressed mood, decreased interest or pleasure in almost all activities nearly every day, appetite
changes (changes in body weight), sleep disturbances, feelings of worthlessness or guilt, diminished
ability to concentrate or indecisiveness, psychomotor agitation or retardation and fatigue or loss of
energy (American Psychiatric Association, 2013).
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Although depression is typically defined as an affective
disorder, it also appears that some symptoms such as
psychomotor retardation, fatigue, and loss of energy are
related to deficits in motivation, specifically in activational
aspects of motivation. Motivated behavior is directed toward
or away from particular stimuli, but it also is characterized by a
high degree of activity, effort, vigor, and persistence (Salamone
and Correa, 2002, 2012). People with depression commonly
show profound activational impairments, such as lassitude,
listlessness, fatigue, and anergia (low self-reported energy) that
affect their motivation (Tylee et al., 1999; Stahl, 2002). In fact,
among depressed people, energy loss and fatigue are the second
most commonly reported symptoms, only behind depressed
mood itself (Tylee et al., 1999), and depressed patients with
anergia are more common than patients with anxiety related
symptoms (Tylee et al., 1999; Drysdale et al., 2017). Furthermore,
in depressed patients “lack of energy” was the factor that
correlated to problems with fatigability, inability to work, and
psychomotor retardation, loading most strongly onto a second
order general depression factor (Gullion and Rush, 1998). Many
people with MDD have fundamental deficits in reward seeking,
exertion of effort, and effort-related decision making that do
not simply depend upon any problems that they may have with
experiencing pleasure (Treadway et al., 2009). Lack of energy
is the symptom most highly correlated with a lack of social
function in depressed patients, and is correlated with various
work-related impairments such as days in bed, days of lost work,
and low work productivity (Swindle et al., 2001). In addition,
this cluster of symptoms can be highly resistant to treatment
(Stahl, 2002); they are the best predictors of lack of remission
after antidepressant drug treatment (Stahl, 2002; Gorwood et al.,
2014).

PHARMACOLOGICAL TREATMENTS
FOR THE ACTIVATIONAL SYMPTOMS IN
DEPRESSION

The severity of effort-related motivational symptoms in
depression is related to problems with social function,
employment absence, and treatment outcomes (Tylee et al.,
1999; Stahl, 2002). Patients with high scores in psychomotor
retardation also have longer duration of illness, an earlier
age of onset, and more depressive episodes (Calugi et al., 2011;
Gorwood et al., 2014). These symptoms are a predictor of delayed
response to treatment with either interpersonal psychotherapy or
selective serotonin (5-HT) reuptake inhibitor pharmacotherapy
(Frank et al., 2011), often remaining as residual symptoms even
in patients in remission (Stahl, 2002; Fava et al., 2014; Gorwood
et al., 2014).

Most of the present treatment strategies for MDD focus on
drugs that block the inactivation (i.e., inhibitors of enzymatic
breakdown or uptake) of the monoamine neurotransmitters
5-HT and norepinephrine (NE). The classical antidepressants
include monoamine oxidase inhibitors (MAOIs), which affect
one of the major catabolic enzymes for monoamines (Quitkin
et al., 1979), and drugs that inhibit uptake of one or more

monoamines (Feighner, 1999; Yıldız et al., 2002). Although 5-
HT and NE reuptake inhibitors have become the most frequently
prescribed medications for MDD, they fail to complete symptom
remission in 40–60% of all patients (Rush and Trivedi, 1995;
Fava et al., 2014), and it is widely accepted that at least
20% of all depressed patients do not respond adequately to
most antidepressant drugs (Crown et al., 2002). Many common
antidepressants, including 5-HT transport inhibitors such as
fluoxetine, are relatively ineffective at treating anergia and fatigue,
and in fact, can induce or exacerbate these symptoms (Padala
et al., 2012; Stenman and Lilja, 2013; Fava et al., 2014).

Interestingly, some clinical studies suggest that drugs that
inhibit dopamine (DA) transport, such as the catecholamine
uptake inhibitor bupropion, are relatively more effective than
5-HT uptake inhibitors for treating effort-related motivational
symptoms (Rampello et al., 1991; Stahl, 2002; Demyttenaere
et al., 2005; Pae et al., 2007). Furthermore, individual differences
in behavioral traits can differentiate between depressed patients
that are more responsive to bupropion (i.e., motivated,
achievement-oriented, active, exercise-oriented people) vs.
fluoxetine (people with mood problems, irritability, and
rumination) (Bell et al., 2013). Stimulant drugs that are not
considered to be antidepressants in the classical sense, such as
methylphenidate and modafinil, have been shown to increase
energy and motivation in depressed patients (Zisook et al., 2006).
Thus, clinical studies, together with preclinical investigations
(e.g., Salamone et al., 2006, 2007; Salamone and Correa, 2012;
Argyropoulos and Nutt, 2013; Heath et al., 2015), have led to the
suggestion that DA systems and related circuits are particularly
involved in effort-related motivational symptoms.

ADENOSINE RECEPTORS
CO-LOCALIZATION WITH DA
RECEPTORS

In addition, another possible therapeutic target for the anergia
component of depression is adenosine receptors. Adenosine is a
neuromodulator in the central nervous system (CNS) that plays
an important role in the regulation of synaptic transmission
and neuronal excitability (Cunha, 2001; Sebastião and Ribeiro,
2009). Several subtypes of adenosine receptors are expressed in
the brain, with A1 and A2A G-protein-coupled receptors being
the most abundant (Jacobson and Gao, 2006; Fredholm et al.,
2011). A2A receptors are expressed at high levels in the striatum
and olfactory bulbs and tubercle (Fredholm et al., 2011), but also
in areas such as amygdala, hippocampus or prefrontal cortex
(Cunha et al., 1994; Pandolfo et al., 2013; Simões et al., 2016).
Adenosine A1 receptors have a higher widespread distribution in
the brain, with a somewhat higher concentration in hippocampus
(Schwarzschild et al., 2006). All these regions are involved in the
regulation of complex processes such as cognition, motivation,
and emotion (Hauber and Sommer, 2009; Salamone and Correa,
2012) that seem to be altered in MDD.

The spatial distribution of adenosine receptors within
the brain (Fredholm et al., 2011) allows a wide range
of effects, including modulation of other neurotransmitter
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systems (Cunha, 2001). Thus, adenosine A2A receptors are
highly expressed postsynaptically in DA rich areas such as
neostriatum and accumbens (Acb) (Johansson and Fredholm,
1995; Johansson et al., 1997; DeMet and Chicz-DeMet, 2002;
Rebola et al., 2005). In fact, it has been demonstrated that
in these areas, there is a functional interaction between DA
D2 and adenosine A2A receptors (see Figure 1), which are
co-localized on enkephalin-containing medium spiny neurons
and converge onto the same signal transduction pathways in
an antagonistic way (Ferré et al., 1997, 2008; Fuxe et al., 2003;
Ferré, 2008; Beggiato et al., 2014). Similarly, A1 and D1 receptors
antagonistically interact on substance P-containing medium
spiny neurons (Ferré et al., 1997, 2008).

The behavioral significance of this interaction has frequently
been studied in the context of neostriatal motor functions and
pathologies (Ferré et al., 1997; Correa et al., 2004; Collins et al.,
2010). Thus, selective A2A receptor antagonists are being tested
in clinical trials for pathologies involving DAergic dysfunctions
such as Parkinson disease, and positive results indicate that they
can be used as adjuvant therapies (Hung and Schwarzschild,
2014). Caffeine actions on A1 and A2A adenosine receptors
(Ferré, 2008), has promoted its study as an alternative preventive
or therapeutic tool for parkinsonian symptoms (Prediger, 2010).
Moreover, within the last years, the motivational significance
of DA-adenosine receptor interactions has become apparent
with regard to processes such as behavioral activation, and
effort-related decision-making impaired in depression or other
pathologies (Salamone et al., 2006; Salamone and Correa,
2009).

In the present review, we focus on studies that assessed the
effect of adenosine antagonists on different aspects of depression

FIGURE 1 | Impact of caffeine on the functional interaction between
adenosine and DA receptors. A1R and A2AR, adenosine A1 and A2A

receptors; D1, DA type 1 receptor; D2, DA type 2 receptor (adapted from
Ferré, 2008).

in humans, as well as in animal models. Special emphasis will
be placed on motivational/psychomotor symptoms induced by
DA depletions and studies related to DA-adenosine interactions
in pathological symptoms related to effort-related decision-
making.

CAFFEINE CONSUMPTION AND
DEPRESSION

Caffeine is a naturally occurring methylxanthine that acts mainly
as a non-selective A1 and A2A adenosine receptor antagonist
(Fredholm et al., 1999). This methylxanthine is found in common
beverages including coffee, tea, soft drinks, and products
containing cocoa, as well as a variety of medications and dietary
sources (Barone and Roberts, 1996; Wikoff et al., 2017), ranking
as one of the most commonly consumed dietary ingredients
throughout the world (Heckman et al., 2010). Daily intake of
caffeine among consumers in United States is about 280 mg,
and higher intakes are estimated in some European countries
(Barone and Roberts, 1996). Caffeine is typically consumed in
order to increase alertness, arousal and energy (Malinauskas
et al., 2007). Its consumption has been related to changes in
cognitive performance and mood in normal population (Smith,
2013; Pasman et al., 2017). However, it enhances performance
more in fatigued than well-rested subjects (Lorist et al., 1994;
Childs and de Wit, 2008).

There are very few studies on the relation between caffeine
consumption and depression-related symptoms, and in many
cases, its use is related to self-medication patterns. Some
of these studies focus on the role of caffeine as a drug that
prevents depression, while others discuss caffeine as a possible
treatment for existing depression. Thus, secondary analyses
of large epidemiological databases with similar number of
men and women indicate that in non-clinical samples that
do not work, consumption of caffeine (around 150 mg/day
as average) was associated with a reduced risk of depression
(Smith, 2009). Also, in a longitudinal study in women free
from depressive symptoms at baseline, high levels of caffeine
consumption (>550 mg/day) was negatively correlated with
the appearance of depressive symptoms (Lucas et al., 2011).
In fact, the relative risk for depression was highest for those
women with lower caffeine consumption (<100 mg/day)
(Lucas et al., 2011). However, in women with multiple
sclerosis high doses of caffeine (>400 mg/day) increased
the prevalence of MDD (Patten et al., 2000). Moreover,
in non-clinical samples, although caffeine consumption at
moderate doses was related with decreases in suicide risk
(Kawachi et al., 1996; Tanskanen et al., 2000; Lucas et al.,
2014), excessive consumption (750 mg/day) was correlated
with a higher risk of suicide (Kawachi et al., 1996; Tanskanen,
1997; Lucas et al., 2014). Thus, from the present studies,
it seems that intermediate levels of caffeine consumption
(300–550 mg/day) produce beneficial effects in non-clinical
populations, but not in people with some neurological
pathologies. Higher doses will have negative effects, even in
non-clinical populations.
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Multiple reports have lent support to the idea that depressed
people could use caffeine as self-medication. It has been reported
that psychiatric patients show a relatively high degree of caffeine
consumption compared to the normal population (Greden et al.,
1978; Leibenluft et al., 1993; Rihs et al., 1996). This appears to
be particularly true in patients that have experienced depressive
symptoms (Leibenluft et al., 1993). Different profiles of patients
(i.e., with alcohol dependence, seasonal affective disorder, and
people with MDD) have been shown to have higher levels of
caffeine consumption after experiencing depressive symptoms (as
shown by the Hamilton Rating Scale for depression) (Hamilton,
1967; Leibenluft et al., 1993). Specially, among youth with
depression, there generally is higher caffeine consumption that
in the general population (Whalen et al., 2008). Moreover,
the degree of caffeine consumption seems to be a predictor
of improvement of somatic symptoms (fatigue among them),
and hostility in depressed patients medicated with fluoxetine
(Worthington et al., 1996), suggesting that caffeine could be an
effective co-treatment for some of the symptoms of depression.
However, it is important to note that, at high doses or in people
with susceptibility, caffeine is also known to increase anxiety and
insomnia (for a review Temple et al., 2017), two side effects that
can contribute to worsen MDD. At high doses, however, it has
been demonstrated that caffeine may not act as an adenosine
receptor antagonist, and other underlying mechanisms seem
responsible of its negative effects (for a recent review Fredholm
et al., 2017).

IMPACT OF CAFFEINE ON
ENERGY/FATIGABILITY AND
BEHAVIORAL ACTIVATION IN HUMANS

A wide range of studies demonstrate that caffeine can increase
alertness and subjective energy, and also reduce fatigue (Johnson
et al., 1990b, 1991; Yu et al., 1991; Smith et al., 1992,
1997; Lieberman, 2001), thus acting as an ergogenic substance.
Caffeine has been demonstrated to increase feelings of efficiency,
self-confidence, motivation to work (Fredholm et al., 1999), and
to improve psychomotor performance (Rees et al., 1999). The
behavioral effects of caffeine can be influenced by the baseline
arousal levels and also by the nature of the task requirements.
It has been argued that the most evident effects of caffeine
on fatigue would be expected in situations of low arousal or
high fatigue, or in tasks placing high demands on controlled
processing (Bachrach, 1966; Lieberman et al., 1987). In fact,
beneficial effects of caffeine have been observed in people in low
states of alertness, such as after benzodiazepines administration
(Johnson et al., 1990b), sleep loss (Childs and de Wit, 2008; Paech
et al., 2016), when the person has a cold (Smith et al., 1997), or
when the experiment is done in the early morning (Smith et al.,
1992). In addition, a broad range of studies have reported effects
of caffeine withdrawal on different markers of motivation using
descriptors such as fatigue, decreased energy or vigor, lethargy,
amotivation for work, etc. (for a review see Juliano and Griffiths,
2004). For example, in controlled studies, after 10 days of
high levels of caffeine consumption (1,250 mg/day), withdrawal

results in increased subjective ratings of headache, sleepiness,
laziness, and fatigue, as well as decreased alertness, activation
and vigor (Juliano et al., 2012). Abstinence from intermediate
doses in daily coffee and cola consumers (579 mg/day), increased
ratings of drowsy/sleepy, fatigue/tired, lazy/sluggy/slow-moving,
decreased ratings of active/energetic/excited and motivation to
work, and impaired performance on psychomotor tasks (Liguori
and Hughes, 1997). Even at low quantities (100 mg/day, in
a controlled study), caffeine withdrawal increased ratings of
lethargy, fatigue, tiredness, and sluggishness, and decreased
ratings of energy, motivation and urge to work (Griffiths et al.,
1990).

EFFECT OF CAFFEINE AND ADENOSINE
ANTAGONISTS ON CLASSIC ANIMAL
MODELS OF DEPRESSION

Preclinical studies have been trying to elucidate the effect of
caffeine and selective adenosine antagonists on classical animal
models of depression (El Yacoubi et al., 2001). Two of the
classic tests for the assessment of antidepressant properties of
different substances in rodents are the forced swim test (FST)
and the tail suspension test (TST). In the FST animals develop
an immobile posture in an inescapable cylinder filled with
water (Porsolt et al., 1977; Petit-Demouliere et al., 2005). The
TST is based on the observation that a mouse suspended by
the tail shows alternating periods of agitation and immobility
(Steru et al., 1985). Classical antidepressants reduce immobility
time in these paradigms, which have become the gold standard
to evaluate antidepressant effects of multiple drugs or to
show depressive symptoms induced by behavioral manipulations
(Armario and Nadal, 2013). In this regard, learned helplessness
has been considered as one of the causes for developing
depression in vulnerable individuals that suffer stressful life
events. This phenomenon is reproducible in animal models in
which the depressive-like state is induced either by chronic
uncontrollable and unpredictable stressors (CUS), typically
electrical foot-shock (Overmier and Seligman, 1967), but also
by chronic mild stress (CMS) induced by irregular exposure
to a combination of different types of stressors over a period
of weeks (Willner, 2005). In addition, animals that develop
learned helplessness show a disruption in escape performance
as well as decreases in weight gain, increased immobility in the
FST or TST, and reduced locomotion, all symptoms associated
to some degree with depression (Seligman, 1972). After the
administration of substances with antidepressant properties,
animals exposed to CUS or CMS display escape-directed
behaviors, reducing time of immobility (Porsolt et al., 1977; Steru
et al., 1985).

All these tests and manipulations have been used to study
the therapeutic properties of caffeine and selective adenosine
antagonists or genetic deletion of adenosine receptors in rodents.
In one of the seminal papers, Porsolt et al. (1977) demonstrated
that an acute dose of caffeine reduced immobility time in the
FST in Sprague-Dawley rats. In later studies, this effect has
been confirmed using other strains of rats and mice, after
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acute or repeated administration of a broad range of doses
(3.0–30.0 mg/kg) and using diverse animal tests (FST, TST)
(Kulkarni and Mehta, 1985; Kaster et al., 2004, 2015; Robles-
Molina et al., 2012; Kale and Addepalli, 2014; Minor and Hanff,
2015; Szopa et al., 2016). In accordance with the effects of caffeine,
adenosine A2A receptor antagonists have also been effective
in these tests. Thus, SCH58261 and istradefylline (KW6002)
reduced total immobility time in both the TST and the FST in
mice (El Yacoubi et al., 2001). SCH58261 also reduced immobility
time in a selectively bred ‘helpless’ mice strain in the TST (El
Yacoubi et al., 2001). Moreover, A2A receptor knockout (A2AKO)
mice showed reductions in immobility time compared to wild
type (WT) animals in both tests (El Yacoubi et al., 2001).

Using the learned helplessness model for inducing depressive
symptoms, it has been demonstrated that acute doses as well
as chronic administration of caffeine can reduce the impact
of CUS (Woodson et al., 1998; Hunter et al., 2003; Minor
et al., 2008; Pechlivanova et al., 2012; Kaster et al., 2015).
Thus, pharmacological or genetic blockade of A2A receptors not
only prevented but also reversed CUS-induced behavioral and
physiological signs of depression such as decreased weight gain,
increased corticosterone levels, escape behavior impairments
in a shuttle box, increased immobility time in the FST and
TST, increased anxiety, and decreased locomotion and spatial
reference memory (Kaster et al., 2015). However, caffeine
only reverted the deficits of reference memory but did not
reverse mood-related alterations (Machado et al., 2017) in
mice genetically selected to display ‘depressive’-like symptoms
(El Yacoubi et al., 2003). Consistent with these findings, mice
that received the selective A2A receptor antagonist istradefylline,
as well as the constitutive A2AKO mice, were protected from
the CUS-induced behavioral impairments in the FST, TST, and
memory tests (Kaster et al., 2004), suggesting a key role for A2A
receptors in acute and chronic stress-induced depressive effects.

Based on these results some researchers have focused on
adenosine receptor antagonists, including caffeine, as tools to
reverse behavioral impairments induced by pharmacological
manipulations of the adenosine system (Kulkarni and Mehta,
1985; Minor et al., 1994a, 2008; Woodson et al., 1998; Hunter
et al., 2003; Pechlivanova et al., 2012). Thus, high doses of acutely
administered adenosine (50.0–100.0 mg/kg, intraperitoneally IP)
(Kulkarni and Mehta, 1985), or its analoge 1-chloroadenosine
(2.0 mg/kg, IP) induce immobility in the FST in mice, and
caffeine as well as theophylline (8.0 mg/kg, IP), reversed this effect
(Kulkarni and Mehta, 1985). Theophylline, is a psychoactive
methylxanthine found in tea and other substances, and is also
a metabolite of caffeine that acts as a non-selective adenosine
antagonist for A1/A2A receptors as well (Gu et al., 1992).
Increases of adenosine in the central nervous system have been
also associated with escape deficits in the inescapable shock
paradigm (Kulkarni and Mehta, 1985; Minor et al., 1994b;
Woodson et al., 1998; Minor and Hanff, 2015). Thus, it has been
demonstrated that intraventricular (ICV) administration of NBTI
[S-(4-nitrobenzyl)-6-theoinosine], an equilibrative nucleoside
transporter (ENT) blocker that increases extracellular adenosine
levels blocking its reuptake (see Figure 2), impaired escape
latency in rats (Jacobson et al., 1992; Noji et al., 2004) at the

FIGURE 2 | Adenosine synthesis and metabolism. ADA, adenosine
deaminase; AK, adenosine kinase; A1R and A2AR, adenosine A1 and A2A

receptors; cNT, cytosolic endo-nucleotidase; ENT, equilibrative nucleoside
transporter; Ecto5′Ntase (CD73), 5′-ectonucleotidase; NTPDase, nucleoside
triphosphate dephosphorylase (adapted from Ruby et al., 2011).

same level that rats preexposed to 100 inescapable tail shocks,
and potentiates escape impairments produced by 50 inescapable
tail shocks (Minor et al., 2008). Moreover, ICV administration
of erytrho-9(2-hydroxy/3/nonyl adenine (ENHA), a selective
adenosine deaminase (ADA) inhibitor which blocks adenosine
metabolism, mimicked the effect of inescapable shock (Woodson
et al., 1998). This manipulation increases the concentration
of extracellular adenosine by blocking the major degradation
pathway. Low doses of caffeine reversed escape deficits induced
by EHNA (Woodson et al., 1998). The reversal effects of caffeine
appear to be specific to actions on adenosine receptors, and not
as a general stimulant psychomotor effect, since amphetamine
exacerbated the behavioral impairments induced by inescapable
shocks (Minor et al., 1994a). In addition, caffeine reversed the
escape deficit produced by a bilateral injection of glutamate into
the prefrontal cortex of rats (Hunter et al., 2003). This escape
deficit induced by glutamate in the prefrontal cortex has been
also associated with enhanced adenosine (Petty et al., 1985), since
increases in glutamate are counterbalanced by an increase in
adenosine production and release (Deckert and Gleiter, 1994;
Kerkhofs et al., 2018).

Caffeine has also been used to enhance the effect of
monoaminergic antidepressants (especially 5-HT/NE uptake
inhibitors) that are being used in clinical practice, and have
been demonstrated to reduce immobility in classical animal tests
of depression. Thus, caffeine at low doses that do not have an
effect on their own can potentiate the effects of desipramine,
imipramine, duloxetine, fluoxetine and paroxetine, in animals
tested on the FST (Robles-Molina et al., 2012; Kale and Addepalli,
2014; Szopa et al., 2016). In addition, a low dose of caffeine
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can also improve the effect of bupropion (a DA/NE uptake
inhibitor), potentiating extracellular levels of DA and NE (Kale
and Addepalli, 2014).

IMPACT OF ADENOSINE ANTAGONISTS
ON BEHAVIORAL ACTIVATION:
PRECLINICAL STUDIES

Tasks measuring behavioral activation and effort-based functions
have been suggested as potential animal models for the
motivational symptoms of depression (Salamone, 2007; Markou
et al., 2013; Salamone et al., 2016). Thus in the animal literature,
as in the human data, there are studies showing how caffeine
and selective adenosine antagonists affect the willingness to work
depending on the demands of the task. In operant tasks with
different work demands, caffeine and theophylline produced
rate-dependent effects on lever pressing to obtain palatable
food in rats (Randall et al., 2011). Moderate doses of caffeine
and theophylline (5.0–20.0 mg/kg) increased responding on
the low task with low response demands; a fixed interval
240 s (FI-240 s) schedule. However, higher doses (10–40 mg/kg)
decreased responding on a fixed ratio 20 (FR20), schedule that
typically generates high rates of responding (Randall et al.,
2011). A2A receptor antagonists increased lever pressing in the
low effort-demanding task (FI-240 s) but did not suppress
the high effort task (FR20) in the dose range tested. In
fact, there was a tendency for istradefylline to increase FR20
responding at a moderate dose. A1 antagonists failed to increase
lever-pressing rate, but decreased FR20 responding at higher
doses. These results suggest that the work potentiating effects of
methylxanthines are mediated by their actions on adenosine A2A
receptors, while their A1 receptor antagonistic action could be
mediating the suppressant effects.

Progressive ratio (PR) schedules, which require gradually
increasing work output, have been also employed to explore the
effect of caffeine on motivation to work for sucrose or food in
rats and monkeys (Buffalo et al., 1993; Brianna Sheppard et al.,
2012; Retzbach et al., 2014). Acutely and chronically moderate
doses of caffeine (5–25 mg/kg) elevated PR lever pressing for
sucrose (Brianna Sheppard et al., 2012; Retzbach et al., 2014).
Caffeine had no effect on inactive lever presses suggesting that
this increase was not due to an increase in general motor activity
(Retzbach et al., 2014). Recently, our laboratory has demonstrated
that caffeine has differential effects on PR performance depending
on baseline individual differences (SanMiguel et al., 2018).
Caffeine (5.0–10.0 mg/kg) increased responding for a solution
containing sucrose in low baseline responders, but decreased
lever pressing (10.0–20.0 mg/kg) in high responders (SanMiguel
et al., 2018). However, in rhesus monkeys intravenous (IV)
caffeine (10.0 mg/kg) decreased percent of task completed, and
breakpoint in a PR for palatable food (Buffalo et al., 1993),
possibly because this dose directly administered in the blood
stream resulted in higher levels in the brain.

Thus, from studies in rats and monkeys it seems that high
doses of caffeine have an impairing effect on performance in tasks
that evaluate willingness to work for a reinforcer if performance is

already high. Methylxanthines can help to increase work output
when the requirement of the task is low. However, selective A2A
receptor antagonists seem to be beneficial independently of the
baseline performance, as demonstrated also in goals directed
tasks (Li et al., 2016).

EFFORT BASED DECISION-MAKING
DEFICITS INDUCED BY INTERFERENCE
WITH DA FUNCTION: POTENTIAL
THERAPEUTIC ROLE OF ADENOSINE
ANTAGONISTS

Activational aspects of motivation (i.e., vigor, persistence, work
output) are highly adaptative because they enable organisms to
overcome obstacles or work-related response costs that separate
them from significant stimuli (Salamone and Correa, 2002, 2012;
van den Bos et al., 2006). An important feature of adaptive
behavior, in the face of work-related challenges, is effort-related
decision making. Regularly, organisms must make cost/benefit
analyses in which they weigh the value of a stimulus relative to
the cost of obtaining it (Salamone et al., 2007, 2016). People with
MDD show impairments in estimation, anticipation, and recall
of reinforcing stimuli (Pizzagalli, 2014), and also show a reduced
likelihood of selecting high effort activities in human tasks of
effort-related decision making (Treadway et al., 2012; Yang et al.,
2014).

Extensive animal data have demonstrated that Acb DA is a key
mediator of effort-based decision-making processes (for a review
see Salamone et al., 2016). Interference with DA transmission
biases behavior toward less valued rewards that involve less
effort and less activity. In these preclinical studies addressing
the effort-related decision-making process, animals are given
a choice between a more valued reinforcer that can only be
obtained by engaging in a more demanding (higher effort)
activity vs. a low effort/low value option. One such procedure is
a T-maze task that provides an effort-related challenge by having
a vertical barrier in the arm with the higher reward density (HD)
vs. an arm that contains a lower density of reward (LD) and has
no barrier (Salamone et al., 1994; Cousins and Salamone, 1996;
Cousins et al., 1996; Mott et al., 2009; Pardo et al., 2012). In
this procedure, rodents choose to climb the barrier to get more
reward in 90% of the trials, once they have been trained (Cousins
and Salamone, 1996; Pardo et al., 2012). In operant tasks animals
are given a choice between lever pressing for the more preferred
reward (in FR5 or PR schedules) vs. approaching and consuming
a less preferred reinforcer that is concurrently freely available in
the chamber (Salamone et al., 1991; Randall et al., 2012; Pardo
et al., 2015). When tested on the concurrent FR5/free reward
choice task, rats typically spend most time pressing the lever for
the preferred reward and less consuming freely available food
or fluids (Salamone et al., 1991; Pardo et al., 2015). In contrast,
rats tested on the PR/chow choice task show more individual
variability, and tend to disengage more readily from the PR lever
pressing component because of the increasing work requirement
(Randall et al., 2012, 2014). Research with these concurrent
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choice tasks has shown that interference with DA transmission
via DA depletions or DA receptor antagonism typically biases
rodents toward the low effort-low reward option (Salamone et al.,
1991; Salamone and Correa, 2009; Worden et al., 2009; Pardo
et al., 2012; Randall et al., 2012, 2014; Yohn et al., 2015).

Using these effort related choice procedures, it has been
demonstrated that the catecholamine depleting agent and
vesicular transport inhibitor (VMAT-2) tetrabenazine (TBZ),
reduces selection of high effort alternatives, but animals
compensate by increasing the amount of free less preferred
reinforcer consumed (Nunes et al., 2013; Randall et al., 2014;
Pardo et al., 2015; Yohn et al., 2015, 2017). TBZ depletes
monoamines, with its greatest impact being upon striatal DA
(Pettibone et al., 1984; Tanra et al., 1995; Nunes et al., 2013).
TBZ is used as a therapeutic drug to treat Huntington’s disease
patients, and it induces symptoms of depression in humans,
including fatigue (Frank, 2010; Guay, 2010; Rodrigues et al.,
2017). TBZ has also been used in the FST and TST rodent models
of depression (Kent et al., 1986; Wang et al., 2010). Although
the effort-related effects of TBZ are attenuated by the DA uptake
blocker bupropion (Nunes et al., 2013; Randall et al., 2014; Yohn
et al., 2015) which is been used as an antidepressant, other
classical drugs for the treatment of depression such as the 5-HT
uptake inhibitors fluoxetine and citalopram, and the NE uptake
inhibitor desipramine, failed to reverse the effects of TBZ, and
higher doses even led to further behavioral impairments (Yohn
et al., 2015, 2016b,c).

In addition to DA, adenosine also is involved in these
effort related decision-making processes (Farrar et al., 2007,
2010; Hauber and Sommer, 2009; Mott et al., 2009; Salamone
and Correa, 2009). Microinjections of adenosine A2A receptor
agonists into the Acb produced effects on instrumental behavior
and effort-related choice that resembled those produced by Acb
DA receptor antagonism or depletion (Font et al., 2008; Mingote
et al., 2008). In addition, considerable evidence indicates that DA
D2 and adenosine A2A receptors interact to regulate effort-related
functions (Salamone and Correa, 2009, 2012). Thus, adenosine
A2A receptor antagonists were able to reverse the shift in choice
toward a low effort alternative induced by administration of the
D2 antagonists haloperidol and eticlopride (Farrar et al., 2007,
2010; Mott et al., 2009; Salamone et al., 2009; Worden et al., 2009;
Pardo et al., 2012, 2013). Moreover, A2A KO mice were resistant
to the effects of haloperidol on performance of the T-maze barrier
task (Pardo et al., 2012). Recently, it has been demonstrated
that A2A KO mice are also resistant to the anergia inducing
effects of D2 antagonism in a paradigm in which animals can
choose between exercising on a much preferred running wheel
or sedentary consuming sweet food (Correa et al., 2016). In
contrast, adenosine A1 antagonists were ineffective at reversing
the effort-related effects of either the D1 receptor antagonist
ecopipam or the D2 receptor antagonist eticlopride (Salamone
and Correa, 2009; Nunes et al., 2010; Pardo et al., 2012).

The therapeutic effect of caffeine and theophylline on
effort-related choice behavior after the administration of D2
antagonists has also been reported in rats tested on the
concurrent FR5/chow feeding choice task. Caffeine partially
attenuated the effects of haloperidol, increasing the lever pressing

and decreasing the free chow intake in haloperidol-treated rats
(Salamone et al., 2009) and the same pattern of results were
observed in a more recent study in which caffeine reversed the
anergia-like effect induced by TBZ in an adapted version of the
T-maze task with RW (Correa et al., 2016) increasing the time
running (effortful option) and decreasing the time spent eating
free available sweet pellets (sedentary option) (López-Cruz et al.,
2018). This behavioral effect was supported by changes in an
intracellular marker of DA neurotransmission [phosphorylated
form of DARPP-32; pDARPP-32(Thr34)] in the striatum (López-
Cruz et al., 2018). Similarly, theophylline reversed the effects
induced by this D2 antagonist in mice tested in the T-maze
barrier task (Pardo et al., 2012). Furthermore, several papers have
reported that the adenosine A2A receptor antagonist MSX-3 can
reverse the effort-related effects of TBZ across multiple tasks
(Nunes et al., 2013; Randall et al., 2014; Yohn et al., 2015).
All these findings suggest that the reversal effects induced by
methylxanthines on anergia induced by DA D1 and D2 receptor
antagonism could be mediated mainly by A2A receptors.

Mental fatigue associated with high attentional demands
can also be overcome by the use of psychostimulants such as
amphetamine or caffeine (Silber et al., 2006; Peeling and Dawson,
2007). For instance, caffeine restores memory performance in
sleep-deprived or aged humans, a finding replicated in rodent
animal models (Cunha and Agostinho, 2010). In cost/benefit
decision-making tasks involving the evaluation of the costs
related to high attention-demands, rats can choose between
engaging in hard trials (difficult visuospatial discrimination)
leading to more reward versus easy trials leading to less
reward (Cocker et al., 2012). Under basal conditions, animals
chose high effort/high reward trials more than low-effort/low
reward trials. However, there are substantial baseline differences.
Amphetamine increases the selection of high effort/high reward
trials in animals that usually do not choose this option, but
it decreases the selection of the high cognitive demand trials
in animals that usually choose them. A high dose of caffeine
decreased choice of high effort/high reward trials in animals that
usually choose them as did amphetamine, but it did not increase
the selection in the ones that usually did not choose them (Cocker
et al., 2012).

A2A RECEPTOR ANTAGONISTS HAVE
THERAPEUTIC ACTIONS ON
CYTOKINE-INDUCED FATIGUE

Cytokines are signaling molecules for the immune system
mediating physiological responses to infection (Dantzer, 2001).
These molecules also mediate a set of behavioral signs that
include depressed activity and loss of interest or motivation (Kent
et al., 1992). Compared to the general population, depressed
patients have elevated levels of proinflammatory cytokines such
as tumor necrosis factor alpha (TN-alpha) interleukin-1β (IL-1β),
and IL-6 (Dowlati et al., 2010; Hiles et al., 2012). Fatigue, loss
of energy and psychomotor slowing are reported to occurred
in patients receiving treatment with IFN-α or with high levels
of IL-6 (Miller et al., 2009; Goldsmith et al., 2016b). Moreover,
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many inflammatory stimuli have been found to target reductions
in ventral striatal neural function, and decreased synthesis of
striatal DA, which is possibly related to symptoms of reduced
motivation and motor retardation (Felger and Treadway, 2017).
Studies with IL-6 indicate that this cytokine is responsive to stress,
and is implicated in the production of depression-like effects in
mice, including actions on traditional tests such as the FST, TST,
and social interaction tests (Sukoff Rizzo et al., 2012). In anergia
related studies, IL-6 and IL-1β reduced the tendency to work
for food when an alternative food source (concurrently available
chow) could be obtained through minimal effort (Nunes et al.,
2014; Yohn et al., 2016a).

Brain cytokine signaling involves adenosine signaling at
adenosine A2A receptors (Hanff et al., 2010). These receptors
regulate IL-1β and LPS linked to pathological behavioral and
physiological responses such as anxiety (Chiu et al., 2014) or
neuroinflammation (Brothers et al., 2010; Simões et al., 2012).
Adenosine A2A receptor signaling provides inhibitory feedback
on proinflammatory cytokine signaling in peripheral immune
cells (Sitkovsky and Ohta, 2005). Thus, the effects of IL-6
and IL-1β were attenuated through co-administration of the
adenosine A2A receptor antagonist MSX-3, as well as the major
stimulant methylphenidate, which blocks catecholamine uptake
(Nunes et al., 2014; Yohn et al., 2016c). Though previous work
has shown that MSX-3 had no effect of FR5/chow-feeding choice
performance when administered on its own (Farrar et al., 2007),
MSX-3 produced a very robust reversal of the behavioral effects
of IL-6 and IL-1β, restoring the baseline behavioral pattern of
responding (i.e., increasing lever pressing and decreasing chow
consumption) to a normal level (Nunes et al., 2014; Yohn
et al., 2016c). These results highlight the therapeutic potential
of adenosine A2A receptor antagonism for pathologies related to
neuroinflammation (Simões et al., 2012; Cunha, 2016).

ANERGIA AND FATIGUE INFLUENCE
DECISION-MAKING IN HUMANS WITH
DEPRESSION

Translational studies in humans have implemented tasks that
evaluate the decision-making process in normal as well as
psychiatric patients. The effort expenditure for rewards task
(EEfRT; Treadway et al., 2009), is based on the operant lever
pressing choice tasks described above (Salamone et al., 1991).
In the human version of this task, subjects choose on each
trial between a high cost/high reward option (HC/HR) and low
cost/low reward option (LC/LR) to obtain different monetary
rewards. The HC/HR trials required 100 button presses with the
non-dominant pinky finger within 21 s, and subjects were eligible
to win higher amounts that varied per trial between $1.24–4.30.
In contrast, the LC/LR option only required 30 button presses
with the dominant index finger during 7 s, and subjects could win
$1.00 for each successfully completed trial.

Patients with MDD were significantly less likely to make
HC/HR choices relative to controls, and this result was not
related with depression-related differences in psychomotor speed
(Treadway et al., 2012). The effect of caffeine on this task

in depressed patients has not been explored, but it was
assessed in normal subjects. Thus, in the normal population,
caffeine (200 mg), significantly increased the speed of responses
compared to placebo (Wardle et al., 2012). However, caffeine did
not have an effect on percentage of HC/HR choices (Wardle et al.,
2012). In fact, it decreased effortful choices in high cardiovascular
responders (subjects with high arterial pressure in response to
caffeine) (Wardle et al., 2012). These results contrast with studies
showing that, during exercise, caffeine decreases the perception
of effort in humans (Doherty and Smith, 2005), improving
performance particularly for endurance testing (Doherty and
Smith, 2004). Thus, caffeine may only improve performance in
highly demanding situations.

CONCLUSION AND FURTHER
DIRECTIONS

Although many available treatments for MDD provide relief for
individuals with depressed mood, no single therapeutic modality
provides a full and permanent recovery across all the symptoms
of MDD in the majority of patients (McClintock et al., 2011).
Clinicians have come to emphasize the importance of taking
into account effort-related motivational symptoms in depression
(Tylee et al., 1999; Stahl, 2002; Demyttenaere et al., 2005;
Salamone et al., 2016). Decreased psychomotor speed, referred
to clinically as psychomotor retardation, fatigue and anergia
are cardinal symptoms of MDD that have been associated with
poor antidepressant treatment response (Goldsmith et al., 2016a).
Even among patients in remission, anergia and psychomotor
retardation are pervasive symptoms (Gorwood et al., 2014). Thus,
novel pharmacological targets are being investigated in clinical
and preclinical studies.

There are promising results shown in epidemiological studies
as well as in animal models, about the impact of caffeine and
selective adenosine receptor antagonists on these symptoms. Is
worth noting that the epidemiological studies have revealed a
relation between caffeine consumption and decreased risk for
developing depression (Lucas et al., 2011), and some reports
demonstrate the use of caffeine as a self-medication among
depressed patients (Leibenluft et al., 1993). However, it seems
clear that more controlled studies are needed to explore the effect
of caffeine across a wide variety of depressive symptoms, and it
seems necessary to test more selective drugs for A2A receptors.

Systematic studies of the effects of methylxanthines on
animal models of depression and anergia have shown efficacy at
improving parameters related with initiation and maintenance
of behavior in order to escape an aversive situation, but also in
order to pursue valued reinforcers and achieve goals (Kulkarni
and Mehta, 1985; Woodson et al., 1998; Hunter et al., 2003; Minor
et al., 2008; Randall et al., 2011; Pechlivanova et al., 2012). As
with the human data, these therapeutic actions depend upon the
dose administered, since high doses of caffeine and theophylline
not only do not improve depressive symptoms, but can in fact
promote anxiety (Correa and Font, 2008; López-Cruz et al.,
2014). Moreover, it is important to take into consideration that
the use of high doses of caffeine and other methylxanthiness,
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specially, among the elder, could also have severe side effects such
as tachycardia, gastric discomfort, or insomnia (Frozi et al., 2018).
All these side effects could in fact worse the symptoms of MDD.
Both in humans and in animal studies, the therapeutic actions of
methylxanthines also seem to be dependent on the basal estate;
for instance they seem to be effective when subjects are in a state
or fatigue, tiredness or sleepiness (Johnson et al., 1990a; Smith
et al., 1992; Childs and de Wit, 2008), or when the DArgic system
is compromised. Such effects are less evident when humans and
rodents are under “normal” conditions.

Several A2A selective receptor antagonists have also shown to
reverse motivational impairments induced by DA antagonism or
depletion in animal models of anergia (Farrar et al., 2007; Mott
et al., 2009; Salamone et al., 2009; Pardo et al., 2012; Correa et al.,
2016). Furthermore, a recent report indicates that istradefylline
can improve fatigue-related symptoms in Parkinson’s disease
patients (Abe et al., 2016; Sako et al., 2017). Adenosine A2A
receptors might be involved in these processes through their
interaction with DA D2 receptors in the Acb, region highly
involved in the activational component of motivation (for a
review see Salamone and Correa, 2012).

Consistent with these findings, it has been demonstrated that
the rank order of clinical effectiveness in depressed patients
with psychomotor retardation, paralleled the specificity of
antidepressants as DA-mimetic agents (Rampello et al., 1991).
Antidepressants such as bupropion have demonstrated to have
therapeutical effects on motivational symptoms in humans (Pae
et al., 2007) and in animal models or anergia (Nunes et al.,
2013; Randall et al., 2014; Yohn et al., 2015). In animal studies,
caffeine was shown to improve the effects of antidepressants
such as bupropion, duloxetine, and desipramine (Robles-Molina
et al., 2012; Kale and Addepalli, 2014; Kale and Addepalli, 2015;
Szopa et al., 2016). These studies have led to the suggestion
that caffeine could be used as an enhancer of antidepressant
pharmacotherapy (for a review see Kale et al., 2010), a suggestion
that is consistent with the clinical trials for antiparkinsonian

effects showing that A2A receptor antagonists can be a good
adjuvant in the treatment of motor symptoms (Hung and
Schwarzschild, 2014).

However, determination of the predominant symptomatology
is key to therapeutic success. Recent neuroimage data from
patients with depression indicate that they can be clustered
based on four different connectivity profiles (‘biotypes’) that
are associated with differences in clinical symptoms (Drysdale
et al., 2017). Thus, reduced connectivity in anterior cingulate
and orbitofrontal areas supporting motivation was most severe
in biotypes 1 and 2, which were characterized partly by increased
anergia and fatigue (Drysdale et al., 2017). This type of objective
diagnostic can help to identify different type of patients that
could benefit from different type of antidepressant therapies. For
instance, in patients affected by anxious depression a selective
inhibitor of 5-HT reuptake appears to be more effective than
a selective inhibitor of DA reuptake (Rampello et al., 1995),
and caffeine in those type of depressed patients may worsen
the anxiety symptomatology. However, adenosine A2A receptor
antagonism may offer an alternative therapeutic strategy for
treating effort-related motivational dysfunctions in humans,
probably with lower abuse liability and fewer major stimulant
motor effects compared to DA uptake inhibitors.
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