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Abstract

Monodisperse long chain oligomers such as n-alkanes provide excellent model 
systems for fundamental studies of polymer crystallization and annealing. Previous 
studies revealed important results, including a preference for discrete crystal 
thicknesses corresponding to integer folded chain forms, minima in growth and 
nucleation rates as the system changes from one chain conformation to another, and 
clear unfolding transitions during melting.

The work presented here extends previous studies to oligomers of hydroxybutyrate 
(OHB), which serve as models for the polymer poly(3-R-hydroxybutyrate) (PHB). A 
range of exact length hydroxybutyrate oligomers have been synthesized and their 
crystallization behaviour and morphology studied using optical and electron 
microscopy, together with small and wide angle X-ray scattering, including dynamic 
measurements at the ESRF Grenoble.

The oligomers form crystals from dilute solution and from the melt, exhibiting similar 
overall morphologies and structure to PHB. Growth rate data for HB 24-mer and 32- 
mer spherulites grown from the melt and crystallization rate data from solution reveal 
discontinuities in the rate gradient which can be linked to changes in chain 
conformation. These features could arise from a ‘self-poisoning’ effect previously 
postulated for the growth minima in long n-alkanes. Crystals grown at the lower 
temperatures contain folded chains, which transform during heating through a process 
of partial melting/dissolution and re-crystallization to form extended chain crystals. 
These unfolding transitions were accompanied by changes in crystallinity and lattice 
parameter. Crystals grown at higher temperatures contain extended chains that do not 
rearrange further.

Preferred crystal thicknesses are those which result in relatively high proportions of 
chain ends in the surface. For the 24-mer, they correspond to the extended chain 
length (E), and to E/2, 2/3E, 3/4E and 5/6E. This wide range of thicknesses is in 
contrast to results from long n-alkanes, possibly due to hydrogen bonding between 
chain ends, which effectively links chains together into longer units.

The current work reveals a great deal about the way in which HB oligomer chains fold 
and how they re-arrange themselves from one folded form to another which, 
combined with previous results on PHB, will contribute towards a more complete 
view of the whole polymer crystallization process.
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Chapter 1 Introduction

1.1 Introduction

The main objective of this work is to gain a better understanding of the crystallization 

behaviour, in particular the chain folding, crystal growth and morphological changes 

at certain crystallization conditions, in hydroxybutyrate (HB) oligomers with up to 96 

repeat units both from melt and solution crystallization.

The HB oligomer, in short OHB, is the short chain analogue of the polymer -  poly(3- 

R-hydroxybutyrate), in short PHB. A good knowledge of PHB would be beneficial to 

the study of the crystallization behaviour of OHB. The following sections provide 

some background information on the production, history and physical properties of 

this polymer. An overview of the structure of the thesis and contents of each chapter 

is given at the end of chapter 1.

1.2 Introduction to PHB -  An Environmental Biological Degradable 

Plastic

Concerns over environmental protection and natural resources conservation make it 

necessary to reduce our reliance on oil based products and at the same time improve 

the safe disposal of domestic wastes, in particular, commodity plastics. Polyolefins 

and polyesters are the traditionally used plastics. They are oil based, very difficult to 

recycle, and take a very long time to degrade in the environment. However, naturally 

occurring materials have emerged as better alternatives that could be used to replace 

these oil based materials in many applications. One of the leading candidate materials 

is a group of polymers known as poly(hydroxyalkanoates), PHAs. The most 

commonly found member of the PHA family is poly(3-R-hydroxybutyrate), P(3-HB), 

and its co-polymers with 3-R-hydroxyvalerate P(3-HB/3-HV) [Holmes, 1985 and 

1987].

Poly(3-R-hydroxybutyrate), P(3-HB), is produced by a number of bacteria as an 

energy storage material [Doi, 1990]. It plays a similar role to mammalian fat. When
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the bacteria are starved of some essential nutrient, such as nitrogen, oxygen, 

phosphorous or sulphur, they accumulate carbon within their cells in discrete granules 

of P(3-HB), which can be broken down at a later stage [Holmes, 1987]. P(3-HB) was 

first described by Lemoigne in 1925 [Lemoigne, 1925], who later isolated and 

identified the material from Bacillus megaterium [Lemoigne, 1927]. Since then, P(3- 

HB) has been identified in a large number of different micro-organisms [Doi, 1990; 

Brandi et al., 1991]. Figure 1.1 shows the chemical structures of PHAs and P(3-HB). 

For simplification, the polymer P(3-HB) and oligomer 3-HB synthesized by the 

starting materials from direct degradation of P(3-HB) in this work are referred to as 

PHB and HB respectively in the whole thesis.

(a) (b)'

Figurel.l Chemical structure of (a) poly(hydroxyalkanoates), PHAs. ‘R’ group varies from 
methyl (Ci) to tridecyl (Ci3); (b) poly(3-R-hydroxybutyrate), P(3-HB).

PHB homopolymer is a semi-crystalline thermoplastic material, i.e. it is a resin that 

becomes highly viscous and mouldable at temperature close to or above the melting 

point. In general its properties are similar to those of polypropylene, as both polymers 

have similar melting points, degrees of crystallinity and glass transition temperatures. 

As PHB is produced by bacterial fermentation, its advantage is that, on disposal, it 

will degrade in the environment back to water and carbon dioxide without leaving 

toxic by-products [Barak et al., 1991; Gilmore, 1992; Krupp and Jewell, 1992]. A 

breakthrough in the potential commercialization of PHB was the development of a 

family of copolyesters by Imperial Chemical Industries (ICI) [Holmes et al., 1981 and 

1985]. These random copolymers, referred to as PHB/HV, were developed based on 

3-hydroxybutyric and 3-hydroxyvaleric acids. Their properties could be tailored to fit 

a wide range of material needs with improved mechanical properties over the PHB 

homopolymer. Systems already exist to produce the polymer in bulk quantities. 

Zeneca, the pharmaceutical off-shoot of ICI, manufactured PHB along with its



copolymer polyhydroxyvalerate (PHV), known as BIOPOL™ on a commercial scale 

for almost twenty years by bacterial fermentation [King, 1982; Lafferty, 1988]. In 

1996, Zeneca sold the BIOPOL™ business to the American company Monsanto, who 

carried out some work on producing PHB in plants through genetic engineering.

Besides the use as a biodegradable plastic for mass consumers, PHB is also discussed 

as a substitute for implants in reconstructive surgery or as a biologically degradable 

drug carrier that would slowly release medicines in the body at the exact certain point 

where they are required [Holland et al., 1987]. PHB could be used for bone-implants, 

and it has been shown that such an implant actually stimulates natural bone growth 

[Knowles et al., 1991]. Other possible medical applications of PHAs/PHB may be 

surgical swabs and sutures, wound dressing, as lubricant for surgeon’s gloves or as 

artificial vascular grafts and blood vessels acting as temporary scaffolds for new 

tissue growth.

Another interesting aspect of PHB is its ubiquitous nature: Hydryxobutyrate (HB) 

oligomers have been found in trace amounts in every cell that has been studied 

carefully enough to detect such quantities [Reusch et al., 1989 and 1992]. The precise 

function of HB within the living cell is still unclear, although many speculations have 

already been made. These include the suggestion that OHB could act as a channel for 

DNA or for ions in the lipid membranes of the cell [Reusch and Sadoff, 1988]. 

Reusch et al. even claim that PHB could be as important as proteins for living cells 

[Reusch, 1995 and 1996]. More details of the HB oligomers will be presented in 

chapter 3.

There are many extensive reviews on PHB in the open literatures, such as Holmes 

(1987), Doi (1990), Liggat (1996), Sykes (1996) and Sudesh (2000) etc.

1.3 Physical Properties of PHB

PHB is a semi-crystalline polymer with a glass transition temperature of ~0°C and an 

equilibrium melting temperature of ~195°C [Barham et al., 1984]. There is a wide 

variation in melting temperature with the molecular weight. Molecular weights (Mw)



below 200,000 give an equilibrium melting point of 180-185°C, which could rapidly 

rise to a value of ~195°C on increasing the molecular weight [Organ and Barham, 

1993]. The heat of fusion of PHB crystals is 146Jg_1 [Barham et a l, 1984]. The 

bacterial origins and solvent-based extraction procedures involved in the production 

of PHB result in a very pure polymer. Unlike conventional thermoplastics, there are 

no catalyst residues present. As a consequence of this purity, the level of 

heterogeneous nuclei present in PHB is very low. Due to its uncommon stereo- 

regularity, PHB can reach a relatively high level of crystallinity, even at high 

supercoolings, typically from 65% to 80%. The crystal lamellae are typically -5 nm 

thick, and can reach -10 nm thick even at low supercoolings. Thus, PHB is a very 

interesting material for studies of polymer crystallization. Table 1.1 lists some of the 

important physical properties of PHB.

Some Physical Properties of PHB

Melting temperature, Tm (°C) -180 [Ellaretfl/., 1968]

Glass transition temperature,Tg (°C) - 0 [Barham et a l, 1984]

Crystallinity (%) 60 -  90 [Holmes, 1982]

Density (g cm'3) 1.23-1.25 [Okamura et a l , 1967]

Water uptake (wt%) 0.2 [Barham and Keller, 1986]

Extension to break (%) 6 [Holmes, 1982]

Young’s modulus (GPa) 3 .5 -4 [Otun, 1985]

Tensile strength (MPa) -  40 [Otun, 1985]

Table 1.1 Some physical properties of PHB.

1.3.1 Crystallographic structure

The crystal structure of PHB was first studied in the late sixties and early seventies in 

last century [Okamura and Marchessault, 1967]. It was later refined by X-ray 

diffraction [Yokouchi et al., 1973; Bruckner et a l, 1988] and molecular modelling 

[Comibert and Marchessault, 1972]. On crystallization PHB adopts a compact 2\ left- 

handed helical conformation in the crystalline state [Comibert and Marchessault, 

1972]. Figure 1.2 shows the crystallographic stmcture of PHB. The unit cell of PHB
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is orthorhombic with dimensions of <3=0.576 nm, b=\32 nm, c=0.596 nm (fibre axis). 

The lattice contains two left-handed helical molecules in anti-parallel orientation, with 

the oxygen atoms of the carbonyl groups located nearly at the same level [Yokouchi 

et al., 1973].

■b

W

Figure 1.2 Unit cell of PHB, <3=0.576 nm, b=\32 nm, c=0.596 nm (fibre axis), after Comibert 
and Marchessault, 1972 and Yokouchi, 1973.

1.3.2 Crystal morphology and growth of PHB

1.3.2.1 Spherulitic crystals grown from the melt

PHB crystallizes from the melt commonly to form banded spherulites, the 

morphology, growth and nucleation of which have been extensively studied [Barham 

et al., 1984; Barham, 1984; Black et al., 1990; Organ et al., 1991; Akhtar, et al., 

1992]. The nucleation is generally homogeneous. In cells PHB does not appear to 

nucleate at all [de Koning et al., 1992], as there are very few impurities due to its 

natural origin. After it is extracted, it is still difficult to nucleate even when impurities 

are deliberately added [Organ and Barham, 1991]. Nucleation is also random and rare, 

which allows crystallization to be performed at very high supercoolings. Low level of 

nucleation also leads to exceptionally large spherulites, sometimes up to several 

millimetres, which makes it ideal for morphological study. Crystal growth rates have

- 5  -



been obtained over a range of more than 100°C, covering both sides of the growth rate 

curve [Barham et al., 1984; Otun, 1985; Hobbs, 1996; Hobbs et al, 2000]. Nucleation 

rates have also been obtained over a similar range of temperatures [Organ et al., 

1991]. More details of the growth rates and spherulite morphology of HB oligomers 

grown from the melt will be reported in chapter 4.

1.3.2.2 Single crystals grown from solution

On crystallization from dilute solution, like most other polymers, PHB can form 

micron-sized chain-folded lamellar single crystals. These crystals are generally lath 

shaped, as shown in Figure 1.3. PHB single crystals are relatively thin compared to 

those grown in other polymer systems, with a typical thickness between 4-6 nm 

(depending on annealing or crystallization temperatures) as measured from small 

angle X-ray diffraction and other methods [Barham et al., 1984; Sykes, 1996]. An 

electron diffraction pattern on a selected area within a PHB single crystal grown from 

dilute propylene carbonate solution is also given in Figure 1.3. This electron 

diffraction pattern corresponds to the a and b lattice dimensions of a PHB single 

crystal, suggesting the helix axis c, is perpendicular to the crystal surface [Barham et 

al., 1984]. This indexing is consistent with the orthorhombic unit cell already 

characterized by X-ray diffraction analysis, and also confirms that the ‘up’ and 

‘down’ anti-parallel chains are contiguous in the PHB unit cell [Birley, et al., 1995].

-040
0 2 0

'O

\
1̂ jm

Figure 1.3 Electron micrograph of PHB single crystals grown from propylene carbonate at 
69°C, together with the selected area diffraction pattern [from Otun, 1985].

- 6 -



The c axis value of the unit cell corresponds to the molecular length of helical PHB 

dimer in the unit cell, which is 0.596 nm. The chains fold parallel to the a axis of the 

schematic folded chain, given in Figure 1.4. This regular folding is called ‘adjacent 

re-entry’ after Keller 1957, and has been demonstrated by electron microscopy 

observation of fractured single crystals [Barham et a l, 1984]. On the basis of the 

orthorhombic unit cell, it is apparent that the fold must ‘zig-zag’ backwards and 

forwards, alternately, approximately +45° and -45° to the a axis. This is also in 

keeping with the P2i2i2i space group which requires two ‘anti-parallel’ chains per 

unit cell, and requires description of chain-folding in terms of an ‘average chain- 

folding’ plane parallel to the a axis. The schematic drawing is shown in Figure 1.5, 

and illustrates this morphological feature [Birley et al., 1995] which implies tight 

folding and allows for 80% or more crystallinity in the single crystals. This chain- 

folding was first suggested by Holmes [1987].

r\ r\
r\ r\ r\ rV 

■ ^  r\ ' r\ J 
r\' r\ r\ ryv-r\ r\ r\ t/

X

/7

Figure 1.4 Schematic drawing of PHB folded chain lamellar crystal. The a axis of the unit cell 
is parallel to the horizontal direction.

/r\

/

r\

7~

r\r\

T y

n

7" 17

b
A

 ► a

Figure 1.5 Schematic diagram showing the zig-zag conformation of the folds direction within 
PHB is along the [100] direction, while successive folds are in the [110] and [110] directions 
[from Birley, 1995].

M aKaa
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1.3.3 Mechanical properties

1.3.3.1 Ageing of PHB

In early studies on PHB [Barham et al, 1986], it was suggested that the polymer was 

brittle due to the presence of cracks in the spherulites. These cracks were formed on 

cooling from the crystallization temperature to room temperature, due to the strain 

induced by differential thermal expansion [Martinez-Salazar et a l, 1989]. Later 

studies by Hobbs [Hobbs et al., 1996] found that the freshly crystallized PHB is not 

so brittle. However over a period of 2-3 weeks, the impact strength halves [de 

Koning, 1992 and 1993] and the extension to break reduces. This is known as 

mechanical ageing. The effect of ageing can be reduced, and the mechanical 

properties almost restored to their original values by cold rolling the sample [Barham 

and Keller, 1986] or thermal treatment, but heat treatment can cause permanent 

structure change [de Koning and Lemstra, 1992b]. For more discussions on this see 

other references [e.g. de Koning, 1993].

1.3.3.2 Degradation of PHB

The PHB polymer chains can be hydrolyzed in water, without enzymes, at a very slow 

rate [Doi et a l, 1990]. Unlike enzymatic degradation, water uptake and subsequent 

chemical hydrolysis occur throughout the whole polymer matrix, giving a general 

decrease in molecular weight. The hydrolysis process can be very slow and it takes 

years for any significant change to take place. But it may become quicker in 

biological environments when PHB may be acting as an implant. Also the rate of 

hydrolysis can be increased if the polymer is in solution, or in alkaline environment, 

or at high temperatures [Riis, 1989].

PHB can be completely degraded into harmless and naturally occurring molecules in 

natural environments. A number of bacteria and fungi can digest PHB [Chowdhury, 

1963; Delafield et a l, 1965]. More interestingly, some micro-organisms, such as 

fungi, although incapable of accumulating PHB, can excrete enzymes that degrade 

PHB. The enzymes are extra-cellular depolymerises that degrade and solubilize the 

polymer in the vicinity of the cell. The degradation products are then absorbed



through the cell wall and metabolised [Merrick and Doudoroff, 1961; Anderson and 

Dawes, 1990].

The ester link in polyesters is reactive to alcohols and amines. The reaction with 

methylamine is selective to amorphous materials and has been used to reveal the 

morphology of bulk PHB/HV [Organ and Barham, 1989] and of single crystals 

[Welland et al., 1989]. More work on chemical degradation of PHB has been made 

previously by Sykes [Sykes, 1996].

Finally PHB is particularly prone to thermal degradation. It melts at ~180°C, but at 

temperatures ~170°C random chain scission reduces the molecular weight. From 

200°C upwards a chain ‘unzipping’ reaction has been suggested [Grassie et al., 1984 

a,b,c; Billingham et al., 1987; Doi et al., 1989 and 1990]. Therefore, the minimum 

possible melting temperature, and shortest time at high temperatures should be chosen 

when melting PHB. As for HB short chain oligomers, the melting temperature is 

about 20°C lower, the thermal degradation is less a problem, but it still occurs to some 

extent. Hence fresh samples should be used after heating for several times.

1.4 Scope of the Thesis

The aim of this project is to gain a more complete understanding of the crystallization 

and annealing behaviour for poly(3-R-hydroxybutyrate), by means of studying short 

chain monodisperse model materials of 3-hydroxybutyrate oligomers (3-HB) with 

well defined chain lengths produced using a special chemical synthesis strategy.

The work mainly focuses on HB oligomer crystallization studies. This chapter 

provides a brief introduction to the polymer, PHB. Chapter 2 gives some general 

information on polymer crystallization and two widely used theoretical models for 

polymer crystal growth. Chapter 3 summarizes the previous work done in other 

oligomer systems such as n-alkanes and PEO fractions, which is very relevant to this 

work. Also included in chapter 3 are the biological functions (other than energy 

storage) of PHB and HB oligomers found in living cells and the chemical synthesis 

strategy to produce the entirely monodisperse HB oligomers used all through this



study. All the experimental results found in this project, and associated with detailed 

discussions, are reported in chapters 4 to 8:

■ Chapter 4: a detailed study of the shperulitic morphologies, melt growth rates 

of HB oligomers with 24 and 32 repeat units.

■ Chapter 5: HB oligomer crystallization studies from solution, the single crystal 

morphologies of HB 24-mer and 32-mer compared to those of the polymer. 

Measurement of the crystallization rates with HB 32-mer and 24mer by in-situ 

synchrotron X-rays.

■ Chapter 6: comprehensive full sets data of crystal thicknesses with HB 

oligomers grown from both the melt and solution. Crystal chain conformation 

models are also proposed.

■ Chapter 7: the unfolding transition behaviours followed by real time SAXS 

and WAXS of melt grown HB oligomer samples.

■ Chapter 8: the growth and thickening of solution grown HB oligomer crystals 

observed in-situ using synchrotron radiation.

The overall conclusions and recommendations for future work are given in the final 

chapter, chapter 9.



Chapter 2 Polymer Crystallization

Understanding the principles of polymer physics will help in appreciating the 

experimental results and discussions presented in chapters 4-8 in this thesis. In this 

chapter some background to polymer physics and polymer crystallization is 

introduced first, followed by two frequently used theoretical models to interpret the 

crystal growth and chain folding behaviour. For a more thorough grounding in 

polymer physics, the reader is referred to a standard textbook, e.g. by Young and 

Lovell [Young and Lovell, 1991] or Gedde [Gedde, 1995].

2.1 Polymer Physics

2.1.1 What are polymers and oligomers?

Polymers consist of large molecules, i.e. macromolecules. A polymer is a substance 

composed of molecules characterized by the multiple repetition of one or more 

species of atoms or groups of atoms (constitutional repeating units) linked to each 

other in amounts sufficient to provide a set of properties that do not vary markedly 

with the addition of one or a few of the constitutional repeating units [Gedde, 1995].

The word polymer originates from the Greek words ‘poly’ meaning many and ‘mer’ 

meaning part. The constitutional repeating units, which are also simply called ‘repeat 

units’, are linked by covalent bonds. Compared to the polymer, a molecule with only 

a few repeat units is defined as an oligomer. ‘Oligo’ is also derived from the Greek, 

meaning few. The polymer molecules can by synthesized from monomers (single 

units). In the case of polypropylene the monomer is propylene (propene). Similarly in 

the case of poly(3-R-hydroxybutyrate), PHB, the monomer is 3-hydroxybutyric acid, 

the model material used throughout this project.

2.1.2 A brief history of polymer science

The first polymers used were all obtained from natural products, e.g., natural rubber 

from Hevea trees, starch and collagen in leather etc. Modification of native polymers

- 1 1 -



started in the mid-nineteenth century and the first wholly synthetic polymer Bakelite 

made from formaldehyde resins was made at the beginning of the twentieth century. 

The science of polymers commenced in the 1920s, and the past 70-80 years have seen 

rapid development of polymer technology. With the advancement of the 

understanding of the physical and chemical nature of the polymers, the commercial 

production techniques and the range of the synthetic polymers available increased 

dramatically.

2.2 Polymer Crystallization

It is widely accepted that polymers can crystallize as thin lamellae with chain folding 

when grown from dilute solution, as shown by Figure 1.3-1.5 (see chapter 1). For 

most polymers crystallized from the melt, a crystalline lamella is also the basic 

morphological unit serving as the basic building block of larger structures, e.g. 

spherulites, row-structures and trans-crystalline layers. It has been a mystery why 

polymer chains fold into thin crystals rather than grow thermodynamically more 

stable thicker ones. The answer lies in that a thin crystal can grow faster than a thick 

one. This is because the reduction in entropy involved in laying down a short segment 

of the chain is lower than it would be for a long extended chain. Chain folding is 

necessary to form a crystalline lamellar morphology, therefore it is considered to be 

kinetically driven. The schematic drawing in Figure 1.4 is a simplified case of chain 

folding. The exact nature of the fold surface is far more complicated and is still a 

subject under continuous research. More information in this area can be found in 

[Wunderlich, 1976; Keller, 1991; Armitstead and Goldbeck-Wood, 1992; Gedde, 

1995 etc].

2.2.1 Single crystals and chain folding

The crystalline nature of some polymers was first recognized in the early part of the 

twentieth century. X-ray diffraction studies of polymers revealed the existence of both 

small areas of regular crystal structure and a sizeable fraction of random amorphous 

material. A ‘fringed micelle’ model was then proposed, which consists of small 

crystalline regions with regularly aligned chains, surrounded by an amorphous matrix
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[Bunn, 1953]. This model was accepted for many years and was successful in 

explaining such properties as the variable densities and melting points of crystallized 

polymers. However with the availability of more chemically and sterically regular 

polymers which could be crystallized to a much higher extent than previously, some 

observed structural features could not be easily explained by the traditional fringed 

micelle model. For example, spherulite crystals were observed in bulk crystallized 

materials using polarising microscopy [Bunn and Alcock, 1945; Hay and Keller, 

1968], and single crystals were recognized from polyethylene crystals grown in dilute 

solution, with typically very high crystallinities of 80-90% [Till 1957; Keller 1957; 

Fischer, 1957]. The fringed micelle model struggled to explain the formation of such 

structures and there was clearly a need for an improved model to explain polymer 

crystallization.

When Keller [Keller, 1957] investigated thin platelet polyethylene crystals grown 

from dilute solution, the electron diffraction patterns indicated that the chain direction 

is perpendicular to the surface of the platelets. Figure 2.1 shows some typical 

polyethylene single crystals crystallized from dilute solution. Since the molecules 

were on average about 2,500 nm in length and the platelets were typically 10-20 nm 

thick, Keller concluded that the molecules must be folding back on themselves many 

times in order for them to be incorporated in the system. This phenomenon is known 

as chain folding and is illustrated schematically in Figure 1.4. It is worth pointing out 

that, although a planar lamella is depicted in this figure, not all crystals grow in this 

shape. Polyethylene single crystals, for example, can grow in the shape of hollow 

pyramids, bounded by four (110) faces. Truncating (100) faces may also appear at 

higher crystallization temperatures. When these crystals are dried down onto a 

substrate for microscopy, they collapse and often cause pleats or tears in the crystals. 

The pyramids may collapse to form rhombohedral platelets, while the crystals with 

truncating (100) faces may appear hexagonal after drying down [Keller and 

Goldbeck-Wood, 1996].



1̂ m

Figure 2.1 Electron micrograph of polyethylene single crystals crystallized from dilute 
solution (Courtesy of SJ Organ).

When the principles of chain folded crystallization were first introduced, it was 

assumed that all the folds were regular, like a hair-pin, so that the molecule always re

entered the crystalline lattice at the site adjacent to where it left. This is known as tight 

adjacent re-entrant folding. Later studies, however, suggested that this was an over 

simplification. In fact, these folds are often far from sharp. There may be many 

sections in the chain that are not a part of the crystalline phase, and there is a 

noticeable amorphous region in the whole system.

It has been controversial whether the chains are always adjacent re-entrant or whether 

they re-enter into the crystals more randomly, with chains crossing many other chain 

folds before re-entering the crystal (often referred to as the ‘switchboard’ model). 

Now it is widely accepted that polymer crystals will exhibit a mixture of both adjacent 

re-entrant and switchboard type folds. Sir Charles Frank gave a limit to the number of 

random re-entries [Frank, 1979]. He used density arguments to limit this to thirty 

percent, leaving at least seventy percent adjacent re-entries. Figure 2.2 illustrates such 

a mixture of different chain folding types in a crystal lamella.
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Figure 2.2 Schematic diagram showing a mixture of different types of chain-folding in a 
polymer crystal lamella. Most of the chains exhibit sharp hairpin folds, while some others do 
not. Fold marked with a represents a loose fold, label b indicates a chain end which is not 
totally folded into the crystal lamella structure, and c are non adjacent re-entrant folds 
(switchboard folds). Only the outermost chains have been drawn here for simplicity, all the 
folds in this lamella should be extrapolated back to the centre of the crystal.

Evidence for polymer chain folding crystallized from the melt was more difficult to 

obtain, but it was recognized that folding will be less regular and complete than that in 

solution grown crystals. Nevertheless small angle X-ray diffraction revealed the 

existence of a regular periodicity in melt crystallized polymers [Keller and O’Connor, 

1957], which reflects a lamellar thickness. As for single crystals, this periodicity 

increases with crystallization temperature and on annealing [Keller and O’Connor, 

1957 and 1958; Fischer and Schmidt, 1962]. This suggests that the underlying 

structure of solution grown crystals is the same as that of crystals grown from the 

melt, although neutron scattering studies [Sadler and Keller, 1977] indicated a more 

random re-entry at the fold surface in the case of melt crystallized material.

2.2.2 Crystal aggregates and spherulites

Perfect single crystals as described above will only be obtained in very dilute 

solutions. When more material is present (either in less dilute solutions or in melt 

crystallization grown processes) it is more than likely that larger aggregates will occur 

as individual chains are involved in more than one crystal at different sections along 

the chain. From solution crystallization under such conditions, multi-layered crystals 

or lamellae with spiral overgrowths, or twinned or dendritic structures might be 

observed.
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When polymers are crystallized from the melt, the lamellar crystals usually appear as 

certain forms of aggregate. The most common such aggregate is known as a 

spherulite. Spherulites occur when crystallization commences at a ‘point’ nucleus and 

continues radially in all directions at a rate which is constant at a given radius, 

resulting in a spherically symmetric crystal. Figure 2.3 shows optical micrographs of 

spherulites from PHB and HB oligomer with 24 repeat units (referred to as HB 24- 

mer). There are no fundamental differences between the PHB and HB 24-mer 

spherulite morphologies, as they both clearly show nice banding. The band spacing 

and size of the spherulites depend on the crystallization temperatures and time. More 

micrographs of HB oligomer spherulite morphologies crystallized from the melt will 

be presented and discussed in chapter 4, together with the growth behaviour from melt 

crystallization.

Figure 2.3 Optical micrographs showing (a) PHB spherulite grown at 80°C, scale bar 
represents 100 pm; and (b) HB 24-mer spherulites grown at 70°C. Both spherulites show clear 
banding.

Also, both spherulites in Figure 2.3 display the ‘Maltese Cross’: a characteristic 

pattern when observed between crossed polarizers in optical microscope. The Maltese 

Cross arises from the coincidence of the principal axis of the crystal indicatrix with 

the extinction direction of the polarizer of analyzer. The lamellae are arranged radially 

within the spherulite. The regular concentric bands arise from a regular twist in the 

radiating lamellae. Extinction occurs when the lamellae are observed down an optic 

axis. Figure 2.4 is a schematic illustration of the orientation of molecules and lamellae 

in a polymer spherulite. In most polymer systems the radial growth rate is a constant 

which is dependent on supercooling. Spherulites are not unique to synthetic polymers
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or long chain molecules, they can also occur in minerals, vitamins, ice and some other 

elements such as selenium [Ryschenkow et al., 1988].

Figure 2.4 Schematic illustration of a polymer spherulite with crystal orientation [Barham and 
Keller, 1977].

2.3 Theories of Polymer Crystallization

It is an intriguing phenomenon that polymers tend not to crystallize in the form with 

lowest free energy (which would be in the fully extended state), but rather form a 

folded structure as described in section 2.2 at a higher free energy. This section will, 

from a theoretical point of view, address the question briefly: why do chains fold?

2.3.1 Introduction

The crystallization of polymers consists of two consecutive stages: (1) nucleation -  

the creation of a nucleus around which the crystal can grow, and (2) subsequent 

growth -  the addition of material to the nucleus. The initial nucleation is not critical to 

the final shape and particularly the crystal thickness (or fold length). It is the crystal 

growth that is the more important stage. The temperature at which the growth occurs, 

as well as the availability of materials to be incorporated into the crystal lattice, has a 

marked effect on the morphology of the final crystal, and also the crystal thickness.
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There are two frequently used competing theories to explain the method of crystal 

growth:

■ Secondary nucleation theory suggests a model of a secondary nucleus 

forming on a crystallographically flat substrate of the crystallizing material. 

Since the time taken to form such a secondary nucleus is the important issue, 

the barrier to growth is essentially enthalpic.

■ However, growth on atomically rough surfaces is another way for the stems of 

folded material to be added. Since the barrier to be overcome in this case is 

entropic in nature, this model is frequently referred to as the rough surface 

entropic barrier model.

In the rest of this section, the main approaches to these two theories of polymer 

crystallization will be described, followed by a brief comparison between the two. For 

more detailed description and review of the theories, see [Armistead and Goldbeck- 

Wood, 1992] and [Keller and Goldbeck-Wood, 1996].

2.3.2 Secondary nucleation theory

The original application of secondary nucleation theory to polymers was by Lauritzen 

and Hoffman (1960), and then Frank and Tosi (1961). A secondary nucleation model 

was suggested by the existence of only low index crystallographic planes in all the 

single crystals, and by the dependency of crystal thickness on supercoolings.

The Gibbs free energy G, is used in the secondary nucleation model, its definition in 

terms of enthalpy, H, temperature T and entropy S, are given in equation 2.1.

AG = A H - TAS (2.1)

where T is the thermodynamic temperature. The system is in equilibrium when G has 

a minimum value ‘O’. The equilibrium melting temperature, at the point where the 

system is in equilibrium between melting and crystallization, is often denoted as Tm°. 

This is the temperature at which a crystal of infinite dimensions would melt, and is 

also known as the equilibrium melting point. The significance of the crystal being
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infinitely large is that the contribution to the free energy from the surface will be 

infinitesimally small. In any real crystal the influence of the surface free energy would 

tend to depress the melting temperature.

From equation 2.1, at the equilibrium melting temperature (where AG  is of minimum 

value 0), AS = AH/Tm°, which is then assumed not to be very temperature dependant. 

The temperature Tc, at which crystallization occurs, often appears in equations relative 

to the equilibrium melting temperature as Tm° -  Tc. This is referred to as AT  and also 

called supercooling.

2.3.2.1 Secondary nucleation models

The secondary nucleation model considers the growth of a layer of crystal on an 

infinite flat substrate of perfect crystal. It assumes that the lateral growth of crystal 

lamella of thickness I proceeds by deposition of layer upon layer of stems (straight 

chain segments) of length /, each layer being nucleated by the deposition of the first 

stem. Figure 2.5 gives a schematic drawing of chain deposition on the side surface of 

a polymer crystal.

Growth of layer

Growth of crystal

Figure 2.5 Schematic diagram showing the surface energies important for secondary 
nucleation theory: chain deposition on the side surface of a polymer crystal, a and ae are side 
and end (fold) surface free energies, b is the width of the chain (after Hoffman, 1976).

For the first stem there is a net energy gain of 2bol -  i//ablAF, where o is the lateral 

side surface free energy, AF is the bulk free energy of crystallization per unit volume, 

AF -  AHAT/Tm°, and \ff is the factor determining what fraction of the crystallization
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energy had been released at the peak of the barrier during the attachment of a stem 

[Hoffman et al., 1976]. As the next stem arrives, two new fold ends are created with 

an energy gain of 2aboe (oe is the end surface energy). Since there are no new sides are 

formed and a fraction of free energy of crystallization, y/ablAF, is released, the net 

energy barrier for the new stem is 2abae -  if/ablAF. According to this surface energy 

based theory, the barrier for deposition of the first stem is the highest of all due to the 

large surface area bl. Provided that the condition in equation 2.2 is satisfied, the 

overall free energy will decrease as more stems are added. Eventually, when the free 

energy is negative, a stable secondary nucleus is formed.

I > 2aeTm°/AHAT (2.2)

2at,Tm°/AHAT is the minimum thickness of crystals stable at a given crystallization 

temperature Tc.

It is important to note the dependence of the crystal thickness on the supercooling. 

The higher the supercooling, the thinner the crystal grows. For crystals grown at a 

certain supercooling (AT), then heated from room temperature to a lower AT  (i.e., a 

higher temperature, but lower than the melting point), they may begin to thicken. The 

condition in equation 2.2 is then no longer satisfied. This process, also known as 

lamellar thickening, will be discussed in detail in chapters 6 and 7, which describes 

the experiments carried out on the thickening behaviour of HB oligomers.

The melting temperature (Tm) of a crystal of thickness / is related to the fold surface 

free energy and its thickness and is given in equation 2.3, according to the Gibbs- 

Thompson relation. Tm is dependant on the lamellar thickness /. The relationship 

between annealing, melting and crystallization temperature is complex, and polymers 

do not melt at the same temperature at which they were crystallized.

Tm = Tm° ( l - 2 o e/lAH) (2.3)

The elementary steps in the secondary nucleation theory are the deposition of the first 

stem and the subsequent stems forward and backward respectively. The whole process



is treated as a series of consecutive reactions. By integrating the steady-state constant 

flux of segments, the average thickness for the crystal can be known, equation 2.4. 

The derivation process is not performed here, for more information see e.g. [Frank et 

al., 1961; Hoffman and Lauritzen, 1961 ].

</> = (2oe/AF) + SI (2.4)

where 2oe/AF is the thickness at which the crystal melting point is the same as the 
crystallization temperature, and SI is approximately kT/2ba (constant) for small AF.

The secondary nucleation theory is a simplification by treating the stem deposition as 

a single event. The most conspicuous consequence of this in the application to 

polymers is the erroneous prediction of Si increasing and diverging at large AT, this 

problem is called the 'Si catastrophe’ and is avoided by adjusting ^ in  such a way as 

to keep Si small at all practical supercoolings [Hoffman, 1976]. Some other criticisms 

and modification have been made, e.g. Frank and Tosi (1961), Point (1979) and 

recently Armistead and Goldbeck-Wood (1992), but the general form of the theory is 

still retained.

The initial model was developed to describe crystallization from dilute solution and 

was not expected to be applicable to crystallization from the melt. However, it was 

noted that the linear growth rate in melt crystallization varied in the way that might be 

expected for secondary nucleation. The theory was then extended to give linear 

growth rates and found to be in good agreement with experimental data [Lauritzen et 

al., 1973; Hoffman et al, 1975] for many different polymers.

2.3.2.2 Growth rates and the three regimes

To calculate the growth rates for a given crystal grown at the particular crystallization 

temperature, two important processes need to be considered: the rate g, at which a 

nucleus once formed, spreads across the surface, and the rate i, at which new nuclei 

are formed on the substrate. In the case where g » i, and only one nucleus is active 

on the surface at a time, this is called regime 7. The growth rate is dominated by the 

formation of new nuclei and is given by
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Gx = b iL (2.5)

where L is the length of the substrate. It should be made clear that L is not the length 

of the crystal face in most cases, and must be small compared to the resolution of the 

technique used to measure G, if G is to be constant with crystal size.

If there are several nuclei active on the substrate at the same time, the crystal growth 

rate is given by

Gn = (b ig ) 1/2 (2.6)

This is known as regime II crystallization. If the rate of formation of new nuclei is 

sufficiently high that there is little chance for a nucleus to spread before a new nucleus 

is formed next to it, the growth rate is given by

GJU = a ib (2.7)

and the crystallization is said to occur in regime III.

The calculation of growth rate then becomes the calculation of i and g, which has 

effectively already been done in the calculation o f /. The result is that

Gj =G /0/?exp

Gn — G770/?exp

4b erae
v AFkT y 
(  2baa  „ \

Gjji — G7770/?exp

AFkT , 

(  4 baa„
AFkT

(2.8)

Where /? is given by

o o kT
P = P o ~ rQXV h (2.9)

0
and AF = AHAT/Tm , here po is the transport term representing the rate at which 

molecules arrive at the surface, and h represents Planck’s constant.
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From equations (2.8) and (2.9), Hoffman (1983) gives the linear growth rate of 
polymer spherulties as:

G - G 0 exp u' ^
R (T -T J

xexp
v AHATkT j

(2.10)

Where Go is the constant of the absolute value of the growth rate, U is an activation 
energy for transport of molecules to the growth front, R is the gas constant, T is the 
crytallization temperature, Too is the temperature below which molecules become 
immobile, AT is the supercooling, k is Boltzmann’s constant, a is the side surface free 
energy, oe is the end free energy, and K  may have the value 2 or 4 depending on the 
growth mechanism. Hoffman proposes that there are three distinct regimes of growth 
of polymer crystals, depending on the relative rates of formation of new secondary 
nuclei on the growth front and the rate at which the nuclei once formed spread along 
the growth front. The three regimes may be distinguished by the value of the constant 
K in equation (2.10): in Regimes I  and III it takes the value 4, and in Regime II it 
takes the value 2. This theory introduces the third regime (Regime III) at high 
supercoolings.

A large amount of experimental evidence has been obtained in support of the 
existence of regime transitions in the growth of polymers, and a number of examples 
are also listed in Hoffman and Miller [1983 and 1989]. By plotting InG + U*/R(T-Too,) 
vs 1/TAT, relationships have been seen for a number of polymers with approximately 
a factor of two difference in slope at each transition, as predicted. In some instances 
only one regime transition is obtainable, possibly due to the constraint on sufficiently 
high supercoolings. In many cases the transitions observed are sharp, and further 
analysis gives physically reasonable values for the polymer surface energies.

Previous work by Barham et al. [Barham et al., 1984] provides strong evidence that 
there is a change in the growth mechanism of PHB spherulites at ~130°C. This 
corresponding to a transition from what is know as regime II growth to regime III as 
predicted by Hoffman. Regime I  occurs at low supercoolings and had not yet been 
observed in PHB, the rate of secondary nucleation is low compared with the rate of 
spreading of a nucleus across the growth front. As the supercooling increases, regime 
II comes into being, the nucleation rate increases and several nucleated patches spread 
simultaneously across the growth front. The number of such patches increases with 
the supercooling until eventually the separation between nuclei is of the order of the 
molecular width at which stage regime ///  growth begins.
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2.3.2.3 Further development

There have been many different approaches to develop the theory further, some of 

these may be found in: [Lauritzen and Hoffman, 1973; Point, 1978, 1979; Hoffman et 

al., 1979; Point and Kovacs, 1980; DiMarzio and Guttman, 1982; Hoffman, 1983; 

Cheng and Wunderlich, 1986a, b; and Hoffman and Miller, 1988 and 1989]. All these 

people have made some modifications to remove the assumptions in the basic model 

which are considered to be incorrect or too simplistic. In general these modifications 

affect the way in which the rates i and g are calculated. All the authors agree that the 

secondary nucleation model gives an excellent agreement with the available 

experimental results on crystal thickness and growth rates.

The strong support for secondary nucleation theory was in part due to the fact that the 

materials studied exhibited crystal habits with planar surfaces. However, the crystals 

of polyethylene grown from the melt have exhibited curved surfaces, and many single 

crystals grown from dilute solution at low supercoolings have curved or high index 

surfaces too [Organ, 1983]. When such crystals with curved surfaces were observed, 

there was clearly a need for a new model which could explain this different 

phenomenon.

2.3.3 The rough surface entropy barrier model

The rough surface growth model was devised by Sadler and Gilmer after the 

observation of curved crystals at low supercoolings [Sadler, 1983; Sadler and Gilmer,

1984]. The new model was based on the idea of rough surfaces and nucleation-free 

growth. A surface possesses a configurational entropy so that a perfectly flat surface 

is extremely unlikely. A crystal surface should be expected to contain defects such as 

missing atoms and absorbed atoms. In the case of small molecule crystals, there is a 

temperature above which the surface entropy becomes so important that the surface 

can be described as rough. This temperature is called the roughening transition 

temperature, T r. Also, at a temperature above T r, high equilibrium roughness removes 

the necessity of surface nucleation as there is no additional free energy associated 

with a step. It had been assumed that in the case of large molecule crystals, T r  would 

be very close to the melting point that this type of growth will not occur. Sadler
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[1987, a, b, c], however, showed that it was possible that the roughening transition 

temperature for polyethylene could lie in the range of temperatures used in 

crystallization studies, and this was in good agreement with the observed crystal 

morphologies [Sadler and Gilmer, 1984 and 1988].

Sadler’s model is also referred to as the ‘roughness pinning’ model [Sadler, 1987]. 

Roughness refers to equilibrium and kinetic surface roughness, resulting from 

splitting stems into segments and negating the need for nucleation. Pinning refers to 

the adopted rule that a buried segment can not move unless the stems that covers it is 

detached. Thus, a stem is immobilized or pinned down, even if covered by only 

temporary unstable attachments. The free energy barrier for crystal growth is thus 

entropic rather than enthalpic.

The model usually relies on computer simulations and predicts typical lamellar 

thickness and growth rate behaviour fairly well, giving very similar results to 

secondary nucleation theories although the different growth regimes are not required 

with the model. Furthermore, the model can be applied to more complex situations 

such as copolymer crystallization [Goldbeck-Wood, 1993], where the units represent 

the chemically different sections of the chain. More specific experimental growth 

rates and lamellar thickness data have been fitted more satisfactorily [Goldbeck- 

Wood, 1994].

2.3.4 Comparison between the two models

It is surprising to note that despite the conceptual differences in these two models, 

their predictions are comparable for most experimental observations on polymer 

crystallization. Fundamentally, they are both based on the statistical dynamics of the 

growth process. Also they allow only lateral growth and do not allow thickening 

during the initial stage of the growth. In principle, the entropic barrier model is only a 

generalization of the nucleation approach [Binsbergen, 1972]. The nucleation models 

treat the chain as a smooth, structureless object, or to consist of units which all have 

the same heat of fusion and surface energy. Both models predict a reciprocal 

relationship between the crystal thickness / and the supercooling AT. This is also in 

good agreement with experiments. The secondary nucleation model has been more
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frequently used up to now, maybe in part due to the relative simplicity of the model 

itself. Further comparison between the two models can be found in [Barham, 1993; 

Keller and Goldbeck-Wood, 1996],

2.3.5 Further development in polymer crystallization theories

Several significant developments in polymer crystallization theory studies have been 

made more recently, such as the two dimensional nucleation and sliding diffusion 

theory of Hikosaka [Hikosaka, 1990], the two stage crystallization model by Strobl 

[Heck and Strobl, 2000]. In addition, a number of computing simulation studies have 

been carried out and are making good progress.

Experimental results on monodisperse model polymers provided a much needed 

further test for the two theories. Particularly, the self-poisoning minima found in the 

short chain oligomer crystallization can be regarded as one of the key points. It would 

appear that a synthesis of Sadler’s model and the secondary nucleation theory could 

come close to explaining most experimental observations in polymers as well as in 

monodisperse oligomer model materials. The relevant key findings from pervious 

studies on crystallization behaviour with oligomer materials, in particular n-alkanes, 

are reviewed in next chapter, chapter 3. Experimental results and discussions from HB 

oligomer crystallization studies are reported in chapters 4-8, which serve as the 

original contribution to knowledge by this project.



Chapter 3 Oligomer Crystallization Studies

3.1 Introduction

In the past the polydisperse nature of all synthetic polymers made it complicated to 

study the crystallization of polymers. Recently a number of ultra-long chain and 

strictly monodisperse oligomers have been successfully synthesized. These oligomers 

have chain lengths that can bridge the gap between small molecules and polymers. 

Using these model materials, a range of aspects of polymer crystallization have been 

investigated so that the chain length dependent behaviour can be separated from that 

due to the ‘mixed’ nature of polydisperse systems. Previous research using oligomers 

as model systems to study polymer behaviour has already proved very valuable, and 

continues to offer great potential for clarifying some of the most fundamental 

questions about polymer behaviour.

The shorter chain component of a polydisperse polymer can be rejected during both 

crystallization and melting [Keith, 1963; Kawai, 1967; Sadler, 1971], which causes 

fractionation on crystallization and the smearing of the melting temperature on 

heating [Bassett, 1994]. Such tendency towards fractionation seemed to suggest that 

fractionation plays a dominant role in polymer crystal growth kinetics [Point, 1995] 

for the formation of complex crystal structures from the melt [Keith and Padden, 

1964; Balijepalli et al., 1996]. This makes it very difficult to model or theoretically 

explain the melting and crystallization behaviour of complex polymer systems. 

However, by using monodisperse samples it is possible to remove all the uncertainties 

present in even the sharpest fractions, and obtain an insight into the behaviour that is 

due purely to the long chain nature of the molecules and not a result of the inherently 

mixed nature of most polymer systems. There has in the last decade been a great deal 

of interest in the crystallization of long, precise length, oligomers of polyethylene (n- 

alkanes) and other short chain materials, such as low molecular weight PEO fractions 

and nylon oligomers, see e.g. [Ungar and Zeng, 2001]. These short chain oligomers of 

precisely defined chain length have provided excellent model materials for studying 

the complex processes involved in polymer crystal growth, thickening and melting, 

and could help to throw new light onto the old problems in polymer crystallization.
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This chapter will start with a review of relevant previous research results with some 

close to monodisperse, or monodisperse oligomer materials such as sharp fractions of 

low molecular weight poly(ethylene oxide), PEO, and uniform ultra-long n-alkanes. A 

summary of the microbial functions of HB oligomers found in living cells will be 

presented, followed by the details of chemical synthesis strategy of monodisperse 

OHB production.

3.2 Early Studies on Crystallization of Short Chain Oligomers

Polymers usually have a distribution of chain lengths, giving polymer science a 

statistical basis rather than the more exact science of small molecules. Previous work 

on low molecular mass poly(ethylene oxide) PEO fractions has shown some 

interesting behaviour including a pattern of change of growth rate as the crystal form 

changes [Arlie et al., 1965]. However, the oligomers used in those studies were not 

strictly of uniform length, but rather contained a small range of lengths. A set of 

extremely monodisperse short chain polyethylenes (with up to 390 carbon in the 

chain) was later developed by a strictly controlled step-by-step synthesis technique 

[Bidd and Whiting 1985; Lee and Wegner, 1985]. These n-alkanes with exactly the 

same length, i.e. monodisperse, can serve as a link between the sciences of small and 

long molecules. The study of alkanes has revealed a great deal about the behaviour of 

polyethylene crystallization. Similarly, the entirely monodisperse HB oligomers, 

which are the subject of this project, could also contribute to the whole field.

3.2.1 Short chain low molecular weight PEO fractions

Since PEO oligomers could be obtained with a narrow molecular weight distribution, 

their crystal morphologies and crystallization kinetics have been studied extensively. 

By measuring the small angle X-ray scattering (SAKS) spacings, /, given by materials 

with different chain lengths as crystallized at different temperatures, Skoulios and co

workers [Arlie et al., 1965; Gilg et al., 1967] found that I varied in discrete steps with 

crystallization temperature, Tc. The values of I corresponded to the average chain 

length and integer fractions of that length. For the highest Tc, I corresponded to the 

extended chain; with a decrease of Tc the values of I progressively decreased to Z/2,



1/3, etc, corresponding to once, twice, etc. folded chain forms. Such behaviour 

indicates that the chain ends are at the surface of the crystalline lamellae in preferred 

crystallization modes. This is in contrast to the situation in polydisperse polymers 

where I was found to be proportional to HAT, (AT = Tm0-Tc, is the supercooling) 

[Keller, e ta l, 1968].

Further work concentrated on the morphology and growth of narrow PEO fraction 

crystals has been summarized by Kovacs and co-workers [Kovacs and Gonthier, 1972 

and 1975; Buckley and Kovacs, 1984]. PEO fractions were crystallized from the melt 

over a wide range of supercooling AT. Single crystals were grown from the melt at 

low and moderate AT, and the crystal morphologies were observed to develop in a flat 

basal plane by optical microscopy. Thickening was observed from the centre of the 

first grown lamellae at some stage of growth. This thickening itself was accompanied 

by a multiple fraction of the chain length, i.e. if the crystal first grows as a once- 

folded form, then the thickened part will be extended form, and so on. The growth of 

the thickened portion could then be followed simultaneously with that of the original 

layer further out. The two growth rates are in general different, and the innermost 

thicker layer can catch up with the outer one [see Higgs and Ungar, 1994 for a 

review]. It can also take up different lateral habits and give a variety of crystal 

morphology effects. The crystal morphology differs dramatically as the crystal chain 

form changes [Kovacs et al, 1975; Cheng and Chen, 1991]. The lateral growth rate 

(G) can be determined as a function of temperature for each thickness. Surprisingly, 

while the rate increases with decreasing temperature, there are several breaks in the 

slopes. It was found that the T values associated with these discontinuities correspond 

to the stability limit of the next shortest fold length. Figure 3.1 shows the temperature 

dependence of the growth rate (G) as a function of crystallization temperature for six 

PEO fractions. The breaks in the slope are more noticeable in low molecular weight 

fractions but are absent in the polymer. The existence of such sharp increases in 

dG/d(UT) is qualitatively, and entirely predicted by the secondary nucleation theory 

[Zerbi et al., 1982].
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Figure 3.1 Growth rates (G) as a function of crystallization temperature of six PEO fractions. 
G//is the growth rate of {010} faces, and GR of the spherulites [Kovacs and Gonthier, 1972].

The later observation that melting temperatures varied in discrete steps further 

supported the quantization of lamellar thickness. It was suggested that integer folding 

in PEO fractions may be due to the specific nature of OH end groups and their 

hydrogen bonding tendency. The possibilities of hydrogen bonding between the HB 

oligomer chains are discussed in chapters 4-8.

3.2.2 Strictly uniform ultra-long n-alkanes

Short chain crystalline n-alkanes have been used as model chain molecules and 

studied for many years. Their crystal structure [Smith, 1953; Shearer et a l, 1956; 

Pieszek et a l, 1974], crystal growth and morphology [Dawson, 1952; Keller, 1957], 

melting temperature [Flory, 1963; Wunderlich, 1977], chain mobility [Yamanobe et 

al., 1985], conformational defects [Zerbi et al., 1981], self-diffusion [Ungar and 

Keller, 1979], and other properties were extrapolated to represent the crystalline phase 

of polyethylene. An early comprehensive review of the structural and thermodynamic 

data of n-alkanes was presented by Broadhurst [Broadhurst, 1962].

However none of these alkanes were long enough to fold. It was not until the 1980’s 

that strictly monodisperse ultra-long n-alkanes, with chain lengths up to 390 carbons, 

became available [Bidd and Whiting, 1985; Lee and Wegner, 1985; Brooke et al.,
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1996]. These materials, which are model substances for low molecular weight 

polymers, are sufficiently long to display some ‘polymeric’ properties such as chain 

folding. However, since they are strictly monodisperse, they are free from many of the 

complications inherent to polymers. Previous studies on these oligomers have already 

presented a wealth of information and new insights into polymer crystallization in 

general and polyethylene crystallization in particular [Ungar and Keller, 1986 and 

1987; Organ et al., 1990; Ungar and Organ, 1990]. Of special importance to this 

thesis are some observations relating to integer folding [Ungar et al., 1985], transient 

non-integer states [Ungar and Keller, 1987, Zeng and Ungar, 1998], crystallization 

and nucleation rate minima [Organ et al., 1996], morphologies changing and crystal 

thickening [Organ et al., 1990; Ungar et al., 2001] etc. It will be beneficial to compare 

these key findings with the results from the HB oligomer crystallization studies 

carried out in this project, and they are briefly described below.

3.2.3 Relevant key findings from alkanes and PEO fractions crystallization 

studies

3.2.3.1 Integer folded (IF) chain conformations

Crystallization experiments on long n-alkanes have been performed from both the 

melt and solution. A high regularity of lamellar stacking gave a clear SAXS 

diffraction pattern with many higher orders. This led to a more accurate measurement 

of lamellar spacing. Low frequency Raman spectroscopy using the longitudinal 

acoustic mode (LAM) also confirmed the length of straight chain segments at the 

same time. Studies of monodisperse alkane crystals grown from solution have shown 

that the chains did indeed fold, with the onset of folding being partly determined by 

the length of the chains and partly by the crystallization temperatures. The chains with 

less than 100 carbon atoms can form extended-chain crystals. Chains with more than 

about 100 or 150 carbon atoms form folded-chain crystals, with the precise value 

depending on the crystallization temperatures. The fold lengths in the final stages of 

crystallization were found to be integer fractions (IF) of the chain length. For instance, 

while alkane C102H206 could only be obtained in extended chain from, C150H302 can 

also be crystallized with once-folded form from solution or by quenching from the 

melt. The most folds (4 folds) were obtained at this stage in the longest alkane,
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C390H782, with increasing supercoolings [Ungar et al., 1985]. In the most regular 

crystals, the portion of the chain within the fold region is found to be no more than 2 -  

4 carbon atoms [Ungar et al., 1988]. Figure 3.2 shows the different integer folded 

forms obtained from n-alkanes.

Chain E F2 F3 F4 F5

psS t  1 n niiuiniu
C102 +
C150 +  +
C198
C246 +  +  +  +
C294 + ■ + . +  +
C390 ■ +  ■ +  +  +  +

Figure 3.2 Integer folded (IF) forms observed in long n-alkanes [Ungar, 1988].

These results on alkanes suggest that the preference for integer folding is inherent in 

monodisperse oligomer systems, and is not due to the specific nature of the end 

groups, such as the OH end group, or the hydrogen bonding in low molecular weight 

distribution PEO. Later studies with methoxy terminated PEO fractions also exhibited 

a preference for integer folding at the stable stages of crystal growth [Cheng and 

Chen, 1991]. This integer folding (with extended and once-folded chain forms) has 

also been confirmed by our studies with monodisperse HB oligomers up to 32 repeat 

units long.

3.2.3.2 Noninteger folded (MF) chain conformations

It was recognized by synchrotron SAXS that the folds in crystals of long n-alkanes 

were not always sharp (as shown in Figure 3.2) during crystallization from the melt 

[Ungar and Keller, 1986]. At temperatures below the extended chain growth region, 

the initial lamellar periodicity was a noninteger fraction (NIF) value of whole chain 

length, even after correcting for tilt [Ungar and Keller, 1986]. It corresponded to a 

fold length between the chain length and half that value, and was dependent on 

crystallization temperature and time. It was also observed that crystallization starts

- 3 2 -



with rather imperfect crystals, with significant disorder along the fold surface, where 

the fold length itself is not close to any integer fractional value. However the crystal 

can still perfect itself during its growth, i.e., these NIF lamellae can subsequently 

transform isothermally by thickening to extended-chain, or, at lower Tc, by thinning to 

once-folded chain lamellae with hairpin chain conformation.

Ungar et al (1998) reconstructed the electron density profile normal to the lamellae 

by using S AXS intensities of a number of diffraction orders to reveal the nature of the 

NIF form in alkanes [Ungar and Zeng, 1998]. The results showed that NIF is up to 

one third amorphous, with some chains integrally folded in two and others not folded 

at all, but traversing the crystalline layer only once. These latter chains are only half

crystalline, their ends forming the amorphous layer. A tilt of 35° within the chains was 

also proposed from the electron density profile together with the time-resolved Raman 

spectroscopy measurements [Zeng et al., 2000]. In contrast to the integer once folded 

chain form, NIF allows crystals to grow faster as not all chains need attach perfectly, 

giving their ends flush with the crystal surface. However, if the lamella is to grow, 

nearly half the chains have to be placed correctly and crystallize fully with a fold in 

the middle. Otherwise the overcrowding at the crystal amorphous interface would 

block the crystal growth. This explains the fact that lamellar crystals of flexible 

polymers must grow laterally with chain folding.

This NIF form and its transformation phenomenon were also found in PEO fractions 

[Song and Krimm, 1989; Cheng et al., 1991]. However it is still not clear if the NIF 

form in PEO has the same structure as that proposed for the alkanes at this stage. 

More information about NIF can be found in [Ungar and Zeng, 2001]. More 

surprisingly, certain non-integer folded forms, in particular those producing crystal 

thicknesses of 2/3, 3/4 and 5/6 of the extended chain length, also exist in the mature 

HB oligomer crystals from our results. This could be associated with hydrogen 

bonding between the chain ends. Detailed discussion and suggested folded chain 

conformations of HB oligomers will be presented in chapters 4-8.



3.2.3.3 Fold surface and end surface

As discussed in chapter 2, it has been a controversy for many years whether the 

polymer chain fold is tight adjacently re-entrant (as shown in Figure 1.4), or random 

re-entry with loose loops as suggested by the ‘switchboard’ model. Even in the more 

perfect single crystals grown from solution, there is still an amorphous layer of cilia 

and probably adsorbed chains cover the fold surface [Hoffman and Davis, 1978].

The integer folded (IF) single crystals of monodisperse long alkanes grown from 

solution have the advantage that they do not contain cilia and hence leave the fold 

surface uncovered. Electron microscopy of surface decorated alkane crystals revealed 

tight fold conformations at the surface [Ungar and Organ, 1987; Wittmann and Lotz,

1985]. However, at low temperatures, a switchboard type fold surface occurred more 

easily, particularly at the first stage of the crystal growth. A mixture of tight adjacent 

re-entrant and switchboard type folds is now more commonly accepted in polymer 

crystals, as illustrated in Figure 2.2. More information on the fold and end surface can 

be learned from studies of cyclic compound models, see [Ungar and Zeng, 2001].

3.2.3.4 Stepwise growth rate and crystallization rate minima

Studies on PEO fractions with low molecular weight distributions between 1,500 and 

1 2 ,0 0 0  have revealed the stepwise variations in growth rate as a function of 

crystallization temperature, Figure 3.1. The rate of change of crystal growth rate with 

supercooling dG/d(\3T) increases sharply at a series of specific crystallization 

temperatures, marked by arrows in Figure 3.1. These indicate the transitions between 

the growth of crystals with different chain-folded conformations. Secondary 

nucleation theory can predict this behaviour once modifications have been introduced 

to allow for quantization of lamellar thickness [Zerbi et al., 1982]. According to the 

secondary nucleation theory, polymer crystals grow by depositing layers of stems on 

the side surface of the lamella (see Figure 2.5). Each new layer can only spread easily 

once it has been secondarily nucleated. As described in section 2.3.2.1 in chapter 2, 

the main barrier to secondary nucleation is the side surface free energy 2 bol needed to 

create the two new side surfaces of a single stem nucleus (here b is the chain width 

and o the side surface free energy). For polymer crystals of fixed fold length /, a linear
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relationship is expected between G and UT over the limited temperature range 

available experimentally [Hoffman, 1985]. In fact, the InG vs UT data plotted in 

Figure 3.1 does not deviate much for a given chain-folded form if plotted on a linear 

scale [Sadler, 1985]. This linear G vs UT relationship is also consistent with the 

alternative ‘roughness pinning’ theory of Sadler [1983, 1985]. According to this 

theory, there is no appreciable difference between nucleation and growth of molecular 

layers on the growth face and as a result the growth surface is rough rather than 

smooth [Ungar and Zeng, 2001].

Work with exact length n-alkanes has also shown pronounced effects with exact 

quantization of the crystal thickness into integral fractions of the chain length. More 

surprisingly, the growth rate G was found to reach a maximum value before 

decreasing into a sharp minimum and rising again thereafter, as the supercooling 

increases. This phenomenon has been observed in crystallization both from melt 

[Ungar and Keller, 1987] and solution [Organ et al, 1989]. Also it applied to both 

crystal growth and primary nucleation [Organ et al, 1996]. Figure 3.3 shows the 

linear growth rate (G) of crystals of C246H494 as a function of crystallization 

temperature (Tc) crystallized both from the melt and solution. The growth rates both 

pass through a maximum and reach a sharp minimum at the transition temperature 

from extended to once-folded chain forms [Organ et a l, 1997].

GmbHi m
growth

(once-fo lded  chain )

&
£

(K xtendcd  chain )

&O 10

- 3 ....TCC)
82  84  86 88  90

Crystallization temperature (°C)

Figure 3.3 Crystallization rates of C246H494 (from melt and solution/toluene) as a function of 
crystallization temperature Tc [from Organ, 1997].
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The rate minimum at the transition between extended and once-folded forms has been 

observed in a number of alkanes from C162H326 to C294H590 [Boda et al., 1997; Sutton 

et al., 1996; Organ et al., 1997; Hobbs et al., 2001]. A crystallization rate minimum 

between once-folded and twice folded growth intervals has been measured from 

solution grown alkane C294H590 [Morgan et al., 1998]. A weak minimum between 

extended and once-folded growth has been reported in melt crystallization of methyl 

terminated PEO fractions [Cheng and Chen, 1991]. A less pronouced growth rate 

minimum has also been observed in melt-crystallization of n-alkanes mixtures with 

several different chain lengths, More details can be found in [Ungar and Zeng, 2001; 

de Silva, et al., 2002]. In more recent work growth rates have been measured from 

direct optical observations of growing crystals of C198H398 in 1-phenyldecane and of 

C162H326 and C198H398 in octacosane [Ungar and Putra, 2001 and 2003]. Minima in 

growth rate at the transition from extended to folded chain growth were found both as 

a function of temperature and of concentration [Ungar et al, 2000]. All these minima 

seem to show the same effect as the discontinuities observed in Figure 3.1. Indeed, 

crystallization rates obtained with HB oligomers of 24 and 32 repeat units both from 

melt and solution crystallization also show similar discontinuities (or kinks) in the rate 

gradient as a function of Tc, although the discontinuities in the latter cases are even 

weaker. Their growth rates and crystal morphologies will be discussed in detail in 

chapters 4 and 5.

The underlying causes of these growth rate minima have been the subject of some 

discussion. However various models generally agree that there is a competition 

between unstable growth (attachment) of the folded form and the growth of the stable 

extended (or less folded) form near the transition temperature, which is also termed as 

‘self-poisoning’ [Ungar and Keller, 1987]. This explanation recognizes the fact that 

chains wrongly attached to the crystal surface may hinder further growth in the more 

stable form. This was also emphasized by the roughness-pinning crystallization theory 

of Salder. The blocking or pinning may not be obvious in polymers, but it becomes 

very pronounced in monodisperse oligomers.

The growth rate minima cannot be explained by standard secondary nucleation theory, 

where whole stems are assumed to be deposited in one step, because there is no 

allowance for competing attachments to the growth front in different conformations



[Sadler and Gilmer, 1987]. However, the minimum in growth rate can be at least 

qualitatively well reproduced by making small adjustments to the model, see e.g. 

[Ungar and Zeng, 2001]. Computing simulations have also reproduced the kinetics of 

the self-poisoning minimum and have provided some additional insight into the 

crystal morphology studies [Sadler and Gilmer, 1987; Higgs and Ungar, 1994].

3.2.3.5 Morphology changes

The crystal morphology changes at the transition temperature, i.e. at the growth rate 

minimum, from one form to another. The melt-grown single crystals of PEO fractions 

become rounded near the extended and once-folded chain growth transition [Cheng 

and Chen, 1991]. Above and below the transition temperature, the crystals have 

facets, which also show slight curvature. However, at and just above the transition, 

where self-poisoning appears to be pronounced, the crystal shapes changed to be 

circular. This may suggest that for PEO, the self-poisoning effect is associated with 

circular crystal habits [Ungar, 1993]. By re-examining the original growth rate data 

for polyethylene oxide (PEO) of Kovacs’ work [Kovacs et al., 1975], an anomalous 

retardation near the extended to folded chain growth transition has also been observed 

[Ungar, 1993]. This retardation was suggested to be accompanied by a change in 

crystal habit [Sadler, 1983; Cheng and Chen, 1991].

Crystals of long alkanes show more changes on morphology over a wide range of 

crystallization temperatures both from the melt and solution, see [Organ et al., 1996; 

Ungar et al., 2000; Ungar and Putra, 2001]. In the melt grown crystals, the banding of 

n-alkane spherulites becomes more widely spaced and less regular as the 

crystallization temperature is increased. The overall shape of the n-alkane sperulites 

changes from perfectly circular forms at the lower crystallization temperatures to less 

regular shapes at the higher temperatures. In the case of solution grown single alkane 

crystals, for instance C198H398, the crystal habit changes with decreasing Tc from 

perfect rhombic lozenges with {1 1 0 } lateral facets through nearly hexagonal truncated 

lozenges, and leaf-shaped (or lenticular) crystals with curved {1 0 0 } faces, and finally 

to needle-like crystals bounded by straight {1 0 0 } faces just above the growth rate 

minimum. On lowering Tc, further chain-folded crystallization takes over and the 

habit reverts to that of truncated lozenges, at still lower Tc, the shape changes to
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lenticular and the cycle is repeated [Ungar and Zeng, 2001]. The Tc dependence of 

crystal habit within one such cycle is the exact reversal of that in solution crystallized 

polyethylene [Toda, 1991; Organ and Keller, 1985]. The temperature dependencies of 

Gioo and Guo are different, for all alkanes, the growth normal to {1 0 0 } faces is more 

retarded by self-poisoning than the growth normal to {110} faces. This applies both to 

solution [Ungar and Putra, 2001] and to the melt crystallization [de Silva et al., 2003].

3.2.3.6 Crystal lamellar thickening

The thin lamellar crystals of polymers are usually regarded as meta-stable, and have 

such shape due to kinetics rather than equilibrium thermodynamics. As higher 

temperatures are imposed, their mobility is usually increased, so the crystals often 

thicken. Two distinct situations exist in which this thickening effect occurs. The early 

studies on lamellar thickening were made on material which was already fully 

crystallized, both from the melt and dilute solution, before reheating to a high 

temperature and holding there [Keller and O’Connor, 1958; Fischer and Schmidt, 

1962; Koening and Tabb, 1974]. This situation is known as annealing. The second 

situation is known as isothermal thickening and is the process whereby the lamellar 

thickness increases during isothermal crystallization [Weeks, 1963; Hoffman and 

Weeks, 1965 and Chivers et al., 1982]. The thickening is normally continuous and 

linear with the logarithm of time [Fischer and Schmidt, 1962]. However, the earliest 

SAXS studies of PEO fractions have already shown that the lamellar thickness 

increases in a stepwise manner [Spegt, 1970]. Each step corresponded to one integer 

folded (IF) form. Thickening happens more readily when crystal lamellae are stacked 

on top of one another, as this reduces the need for chains to be transported to the 

thickening region. The quantized nature of lamellar thickening makes it easier to see 

the thickening process using different microscopy and calorimetric techniques, such 

as optical microscopy [Kovacs et ■ al., 1975], electron microscopy, differential 

scanning calorimetry (DSC) [Organ et al., 1990; Hobbs et al., 2000] and atomic force 

microscopy (AFM) [Winkel et al., 2000] etc. More information can be found in the 

review of [Ungar and Zeng, 2001].



Clearly, it is important to understand the generality of processes such as those 

described above so that any implications for polymer crystallization may be more 

properly assessed.

3.2.4 Other uniform oligomer systems

The informative results on the uniform n-alkanes encouraged the synthesis and 

subsequent crystallization studies of similar monodisperse oligomers of other 

chemical species. Apart from n-alkanes, pure monodisperse nylon 6  [Brooke et al.,

1997] and nylon 6 ,6  [Brooke et al., 1999] oligomers have also been successfully 

synthesized recently with sufficient length to form chain folded crystals. Once folded 

and twice folded crystals of nylon 6 and nylon 6 ,6  have been obtained from solution 

and studied by X-ray and electron microscopy [Cooper et a l, 1998; Atkins, et al., 

2000; Jones et al., 2000]. Several other monodisperse models, such as proteins with 

repeating sequences of amino acid [McGrath et a l, 1992; Krejchi et al., 1994]; 

poly(L-alanylaglycie), poly(AG), with alternating alanyl and glicyl units [Panitch et 

al., 1997]; strictly uniform oxyethylene/methylene block oligomers [Yeates and 

Booth, 1985] etc. have also been synthesized and proved to be useful for 

crystallization studies.

Another type of strictly uniform oligomer model material, oligomers of 

poly(hydroxybutyrate), OHB, have also been recently successfully synthesized 

[Seebach, et al., 1994]. While the original interest was biological as PHB is a bacterial 

polyester (which can also be used as a thermoplastic), the HB oligomers offer a brand 

new model material that proved very useful for the study of polymer crystallization 

[Barham et al., 1984]. Sections below summarize some of the microbial functions of 

HB in living cells other than its role as an energy storage medium (described in 

chapter 1). The specific chemical synthesis strategy, to produce this strictly uniform 

oligomer used through out this project, is reported at the end of this chapter.



3.3 Hydroxybutyrate (HB) Oligomers

3.3.1 Introduction

Hydroxybutyrate oligomers (OHB) are short chain analogues of the polymer poly(3- 

R-hydroxybutyrate), PHB, which are synthesized via a sequential coupling process 

developed by Seebach and co-workers at ETH, Zurich. Details of the chemical 

synthesis will be given below in the later section. HB oligomers have several 

advantages over other oligomer model materials used in pervious studies. It gives a 

monomer unit larger and more chemically complex than other oligomer systems, 

which allows us to explore the generality of the behaviour in the alkanes and other 

oligomer systems. The molecules are capable of folding many more times in the thin 

HB crystals than in other oligomers used before. They give chain-folded single 

crystals with considerably shorter fold length than alkanes, down to a minimum of ~4 

nm [Barham et al., 1984; Sykes, 1996]. The range of crystallization temperature for 

PHB, and hence HB oligomer, is much wider. It may be crystallized from the melt 

over a large range of supercoolings (A0°C<AT< 120°C), while in other oligomer 

systems using conventional methods supercoolings of no more than 25-40°C can be 

achieved due to the prohibitively fast crystallization rates as the temperature is 

reduced [Kovacs et al., 1975 and 1977; Ungar et al., 1990; Organ et al., 1996]. In 

contrast, PHB crystallizes much more slowly, hence making the full temperature 

range from the glassy state to the melt easily accessible. Therefore it offers a good 

opportunity to study crystallization over a wide range of temperatures using exact 

length HB oligomers as models for polymer crystallization. Furthermore, the chirality 

in PHB molecules has great potential to open up a whole new area of research. 

Finally, HB oligomers occur naturally in living cells and have been shown to facilitate 

ion transport across lipid membranes. Therefore the crystal structures formed by HB 

oligomers are of much wider interest.



3.3.2 Functions of HB oligomers in living cells

3.3.2.1 HB oligomer complex as a non-proteinogenic ion channel

Quantitatively, the most import role of poly(3-R-hydroxybutyrate), P(3-HB), is to 

store carbon-containing material in the cells of micro-organisms (up to 90% of cell 

dry weight) [Holmes, 1987] . Apart from its occurrence as a storage compound, PHB 

is also found, particularly at low molecular weight, in bacterial membranes and in the 

tissues of plants and animals [Reusch ££ al, 1989 and 1992].

Rather surprisingly, traces of PHB were detected by Resuch and Sadoff in different 

types of bacteria when these bacteria were genetically transformable [Resuch and 

Sadoff, 1988] ‘Genetically transformable’ indicates the ability of a cell to take up 

DNA from the external medium, or in short, a competent cell. Resuch et al. also 

observed a major change in the lipid composition of the membranes by measuring the 

fluorescence intensity of N-phenyl-l-naphthylamine in the membranes of competent 

cells, no such changes could be found in non-competent cells.

The PHB detected in these bacteria showed a molecular weight corresponding to ~ 150 

repeat units, and was predominantly accumulated in the inner cell membrane. 

Biological membranes are essentially lipid bilayers interspersed with proteins with 

thickness of ~5 nm [Stryer et al., 1990]. Lipid bilayers are practically impermeable to 

ions and most polar molecules. However, these must to be able to pass through the 

membranes since they play an important role in many physiological processes. 

Proteins dispersed through the lipid bilayer are thought to be responsible for the 

interactions between the inside of the cell and the environment.

The HB oligomer extracted from a competent bacterial cell has been found to be 

always accompanied by calcium polyphosphate (Ca*PPi), with a length between 130 

and 170 monomeric units [Reusch and Sadoff 1988]. This isolated complex has been 

shown to be very labile when removed from the natural environment. These findings 

led to the highly speculative postulation of a HB/Ca-PPi complex, which may be 

located in the inner cell membrane. Figure 3.4 shows a model for the structure of an 

ion channel of such a complex model proposed by Reusch and Sadoff.
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Figure 3.4 Structure of a HB/Ca-PPi complex suggested by Reusch and Sadoff (1988). Colour 
yellow represents the HB oligomers, red the polyphosphate and blue the Ca2+ ions. The left 
view is perpendicular to the channel axis, right viewing down the channel axis.

Since the complex components could only be detected in genetically competent 

bacteria, it was suggested that this complex could act as a nonproteinogenic 

transmembrane ion channel, which is responsible for Ca-PPi or even DNA uptake of 

the cell. However the mechanism of DNA uptake through the cell membranes of 

bacteria still remains unclear.

3.3.2.2 Alternative model for the HB oligomer ion channel

Seebach et al. proposed another model for the structure of a cellular ion channel, with 

the HB 2\ helix of M-helicity and a pitch of ca. 0.6 nm [Seebach, 1995]. Since the HB 

oligomer has repeatedly been found to form a helix of pitch of 0.6 nm, it is unlikely 

that a helix of pitch of 2 nm could also exist as a low energy structure. The fact that 

oligo- and poly(3-HB) form crystal lamellae of ~5 nm thickness, when crystallized at 

temperature below 40°C, is intriguing when one considers that the sum of the lengths 

of two lipidic side chains of a phospholipid is also ~5 nm. Therefore, a chain of ca. 

140 HB repeat units in a 0.6 nm pitch 2\ helical conformation folded as in the lamellar 

crystals could form 8 folds assuming tight folds of two HB repeat units [Barham et 

al., 1994]. Seebach et al. also showed that HB 32-mer could form ion channels in
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lipid bilayers. A possible structure of HB oligomer with lipid membrane proposed by 

Seebach et al. is given in Figure 3.5; Figure 3.6 is a schematic diagram indicating the 

OHB ion-transport mechanisms.

Figure 3.5 Possible structure of HB/Ca-PP; complex within lipid membrane, with 16 monomer 
units per stem (after Seebach, 1995).

(a)

(b )

Figure 3.6 Schematic representation of the postulated pore formation for HB 32-mer in a lipid 
bilayer. One single pore is composed of three HB 32-mer once folded molecules, (a) Top 
view with enlargement of one helical string; (b) side view (after Seebach, 1999).

The problems with this alternative proposal are (A) the resulting HB/Ca-PPi complex 

does not have the right charge distribution to suit a lipidic membrane bilayer
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environment and (B) only few carbonyl oxygens may be available on the inside of the 

tube to coordinate the Ca2+ ions/this can be improved by the incorporation of water 

molecules. More information about the HB oligomer microbial functions in the cell 

can be found in [Reusch and Sodoff, 1988; Seebach et al., 1995 and 1999] etc.

Although it is a fascinating topic to consider the biological functions of the HB 

oligomers involved in many living organisms (including human beings), it is outside 

the scope of this project. All the HB oligomer materials used in this work were 

synthesized in collaboration with Professor Seebach at ETH, Zurich. The whole 

synthesis strategy was produced and processed by Prof Seebach and his group at 

ETH, see a review by Seebach [Seebach et al., 1995]. The author has been 

enormously grateful to them for providing her with an opportunity to learn the 

chemical synthesis for the production of the monodisperse HB oligomers at ETH in 

Feb 2002. The HB oligomers mainly used in this project are with 16, 24 and 32 repeat 

units, all in unprotected form or with a benzyl group at one end (stated in the text). 

Details of the development of the synthesis processes to produce the HB oligomers 

with exactly defined chain length are described below in a chronological order.

3.3.3 Chemical synthesis of monodisperse HB oligomers

3.3.3.1 The early stage of HB oligomers synthesis

To obtain HB oligomers of a defined chain length, the initial attempts laid in the 

partial depolymerization of PHB. Various mixtures of oligomers were formed by 

hydrolysis, alcoholysis, or by ester pyrolysis at temperatures higher than 175°C, 

where the average molecular weight is determined by the length of the heating period 

[Seebach et al., 1994; Burger, 1993]. The molecular weights of these oligomers have 

been measured by !H-NMR spectroscopy end group determination, gel permeation 

chromatography (GPC, polystyrene standard) and by plasma desorption mass 

spectroscopy (PDI-MS). All the measurements confirmed that there is a molecular 

weight distribution in these HB oligomers [Burger et a l, 1993]. This proved that it 

was impossible to produce entirely monodisperse HB oligomers by the degradation of 

PHB due to the polydisperse characteristics of the polymer. Therefore a more precise 

method was needed.
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3.3.3.2 Synthesis o f nearly monodisperse HB oligomers

For the synthesis of HB oligomers with length up to 100-150 monomer units (repeat 

units), a possible method was the segment condensation strategy by selectively 

removing the two protecting end groups on an unsymmetrical oligomer. Initially, a 

benzyl ether protecting group was chosen for the OH terminus and a f-butyl ester for 

the COOH terminus. The unprotected portions were then coupled after activation of 

the acid with oxalyl chloride to double the molecule size. A dimer was chosen for the 

starting material in this procedure [Plattner et a l, 1993; Seebach et a l, 1994].

All the compounds were again characterized by *H-NMR, 13C-NMR, IR and mass 

spectroscopy. The last method revealed unexpected results that a single 3-HB unit has 

been lost, after applying three MS techniques. The MS spectra showed that this loss is 

not caused by fragmentation in the mass spectrometer, since the measured mass 

include the protecting groups on both ends of the chain. As none of the purification 

methods could be chose to separate n mers from (n-l)mers on a preparative scale, it 

was clear that the oligomers, prepared by the above method, would also consist of 

mixtures, although these oligomers are very close to entirely monodisperse with 

Mw/Mn < 1.0005 [Seebach, 1995].

Some of the HB oligomers produced using the above synthesis method were offered 

by Prof Seebach to our polymer research group 10 years ago. Although these 

oligomers were not strictly monodisperse, they were the only OHB samples available 

at that time. Some preliminary experimental work was performed by a former PhD 

student to examine their structure and crystallization growth [Sykes, 1996]. Some of 

the results will be included in this thesis for a complete view of HB oligomer 

crystallization studies.

3.3.3.3 Synthesis of entirely monodisperse HB oligomers

To synthesize entirely monodisperse HB oligomers, the protecting group and the 

coupling procedures have to be changed. It was found that the loss of a HB unit 

during the de-benzylation is particularly apparent when A,A-dimethylformamide 

(DMF) is used as solvent and elevated temperatures are employed [Seebach et a l,



1994 and 1995]. This loss can be avoided by choosing tiifluoroethanol (CF3CH2OH) 

instead of DFM as solvent. Trifluoroethanol and halogenated hydrocarbons (CH2CI2, 

CHCI3, CICH2CH2CI) are the only solvents in which the longer chain HB oligomers 

are soluble at room temperature. This limits the number of synthetic methods that 

could be used for their conversions. Finally, a benzylester protection group was 

chosen for the COOH terminus and a f-butyldiphenylsilylether (TBDPS ether) 

protection group for the OH terminus. This is the only (commercially available) silyl 

group stable in the presence of the HC1 produced during the conversion of the acid to 

the acid chloride in preparation for the coupling steps.

The direct degradation of the PHB to get the starting monomers for the whole 

synthesis is given in Figure 3.7(a). The steps to give the monomers for synthesis of 

the dimer are outlined in Figure 3.7(b). The dimer is the starting material for the 

synthesis of longer chain HB oligomers.

(a)

"■fo
O

OH

PHB
B-

CICH2CH2CI/CH3OH

H,SO,

1. CICH2CH2CI/CH3OH

P-ToIS 03H

2 . HoO

OMe

(b)

HF
OMe

O

OH

1) TBDPS-CI, DMAP, DMF 
 ; ;  ---

2) 1N KOH, MeOH

Ti(OBn)4 (10 mol%) 
 :---------

BnOH, CICH2CH2CI

TBDPSO

OBn

Figure 3.7 Synthesis of the starting materials for the new synthesis of monodisperse HB 
oligomers, (a) Direct degradation of the PHB for monomers; (b) steps to get the monomers for 
the starting material dimer.



Figure 3.8 gives a diagram showing the stages in the synthesis of entirely 

monodisperse HB oligomers, (a) is the segment coupling strategy algorithm, (b) is the 

de-protecting reaction formula which leads to an end product of HB oligomers 

without any protecting groups at both ends, also performed by the author at University 

of Bristol, and (c) presents the protecting end group symbols. Under pyridine 

catalysis, the acid chloride reacted with the corresponding alcohol at -78°C. At this 

temperature there was no loss of a single HB unit.

(a)

z. \
H2) Pd/C HF • Pyridine

CF3CH2OH, room temp CH2CI2) at 0 °C

TBDPS
:oh Ht

\  z M

(1) L, CH2CI2. (COCI)2, room temp 
{2) CH2CI2, M, -78 °C, then PyridineT

TBDPS^o
2n

OBn

OBn

(b)
H2, Pd/C

OBn CF3CH2OH 
room temp

(c) yS i— (TBDPS'— ) (X( Bn )

Figure 3.8 Diagram indicating the stages in the synthesis of entirely monodisperse HB 
oligomers, (a) Segment coupling synthesis strategy for entirely monodisperse HB oligomers;
(b) De-protecting reaction formula; (c) Protecting end-group symbols (Courtesy of Seebach).
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All the resulting compounds (containing 16, 32, 64 and 128 etc repeat units) were 

fully characterized by ^-NM R, 13C-NMR and mass spectroscopy as before. From the 

NMR spectrum, the ratio of areas of peaks can be calculated and compared to what 

would be expected from pure compound. From the mass spectroscopy, observation of 

a single peak corresponding to the molecular weight of pure compound confirms the 

purity. Thus, the LSI-MS/MALDI-MS and NMR examinations of the HB oligomers 

confirmed that the materials produced by this synthesis method are completely 

monodiperse [Seebach, 1996; Waser, 2000; Rueping et al., 2001; Albert et al., 2002].

Using this latest synthesis strategy an entirely monodisperse HB oligomer model 

material was successfully produced, which provides a great opportunity to study the 

crystallization behaviour of this polymer. The HB oligomers used in this work are 

mainly with 24 and 32 repeat units (referred to as 24-mer and 32-mer). They are the 

only chain lengths available among the materials in this project that could exhibit 

chain folding. The HB 24-mer was provided by Professor Seebach, following the 

segment coupling strategy described as above. The HB 32-mer with benzyl protecting 

end group was synthesized by the author at ETH under the supervision of Prof 

Seebach and members of his group at the beginning of this project. The completion of 

the fully unprotected HB 32-mer samples and the measurements to confirm their 

purity by !H-NMR and mass spectroscopy were also performed by the author in the 

Department of Chemistry at Bristol University, following the same method used by 

the ETH group.
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Chapter 4 Morphology and Growth from the Melt

4.1 Introduction

In practice a great deal has been learned from studies of n-alkanes, low molecular 

weight PEO fractions and other oligomer systems (see chapter 3). Although a wealth 

of information has been gathered from the previous studies on the short chain 

oligomer materials, the link from short exact length oligomers which form crystals 

with discrete thicknesses to long molecules which form crystals with a continuous 

spectrum of thicknesses still remains to be more established.

Using the sequential coupling strategy described in the last section of the previous 

chapter, 24-mer and 32-mer HB oligomers were successfully synthesized and they 

served as the sample materials mainly used in this project. All the experimental work 

and results analysis with these samples are reported in chapters 4-8, with each chapter 

focusing on specific areas of their crystallization behaviour. The studies from the HB 

oligomer growth both from the melt and solution show some fundamental differences 

in behaviour from other oligomers. It is hopeful that these differences could throw 

new light onto polymer crystallization studies.

This chapter reports the morphology and growth of HB 24-mer and 32-mer crystals 

crystallized from the melt. The chapter starts with a brief description of the sample 

preparation and experimental procedures. Then the spheruhtic morphologies of HB 

24-mer and 32-mer over a wide range of crystallization temperatures are shown. The 

band spacing and crystallization rates as a function of crystallization temperature are 

calculated and presented. Discussion and conclusions are given at the end of the 

chapter.



4.2 Experimental Method

4.2.1 Sample preparation

The HB 24-mer and 32-mer samples were synthesized using the segment coupling 

method developed by Professor Seebach and members of his group at ETH, Zurich. 

The HB 24-mer was kindly provided by Professor Seebach, and the 32-mer with 

benzyl protecting group was synthesized by the author at ETH Zurich. The detailed 

synthesis method to describe the coupling strategy is presented in section 3.3.3.3 in 

the previous chapter. The synthesis has been developed to produce an end product of 

100% purity and more details can be found in [Lengweiler et al., 1996; Fritz et al., 

1998; Seebach et al., 1999].

Preparation of fully unprotected 32-mer sample was completed also by the author in 

the Department of Chemistry at the University of Bristol following the method used 

by the ETH group and the purity was confirmed by NMR and mass spectroscopy 

analysis. This reaction was shown in Figure 3.8 (b). Most samples used in the 

experiments described here were in the ‘free’ form, i.e. all protecting end groups had 

been removed. In some cases a HB 32-mer with a benzyl protecting group was used 

due to the limited availability of the 32-mer free sample. The 32-mer with the 

protecting group is referred to as 32-mer(p) in the text. The chemical structures of HB 

24-mer, free and protected 32-mer are shown in Figure 4.1. The full structures for HB 

oligmers between 8 and 96 units will be given in chapter 6.

OBn

(a) (b) (c)

Figure 4.1 (a) 24-mer with no protecting end groups
(b) 32-mer with no protecting end groups
(c) 32-mer with benzyl protecting group, 32-mer(p)



4.2.2 Experimental procedure

The spherulitic morphologies of HB 24-mer and 32-mer crystals were observed 

directly in an optical microscope with crossed polarizers. Growth rates were then 

measured from observations of the growth of the chosen spherulites. Small samples of 

HB 24-mer, 32-mer and 32-mer(p) were prepared from the original as-received 

powders by melting them between two 6 mm diameter cover slips on a Linkam hot- 

stage. The typical conditions for melting were 0.5 minute held at ~170°C for HB 24- 

mer and ~180°C for 32-mer. The samples were then cooled at 80°C min'1 until they 

reached the required crystallization temperature, Tc. At this point a timer was started 

and digital photographs were taken at appropriate intervals as spherulites nucleated 

and grew at constant Tc, using a Pixelink digital camera attached to the top of the 

microscope.

The melting points of HB 24-mer and 32-mer powder samples were first measured 

using a Perkin-Elmer differential scanning calorimeter (DSC) 7. A small quantity 

(typically -0.3 mg) of the HB oligomer solid powder was placed in an aluminium 

DSC pan and heated to melt the samples completely at 10°C min'1, the melt 

temperatures for 24-mer and 32-mer are measured from the peak of the melting 

endotherms.

In order to extend the range of accessible crystallization temperatures it was often 

advantageous to use two hot stages:- melting the sample on the one and then rapidly 

transferring to a second, pre-set to the desired crystallization temperatures. A picture 

showing the two hot-stages used in this project is shown in Figure 4.2. This two hot- 

stage method could be used to avoid any complete crystallization during cooling at 

the higher supercoolings. Oligomer films (made between two cover slips) need to be 

transferred between the two hot-stages in the minimum possible time. Measurements 

were repeated using both one and two hot-stage methods where possible, and 

confirmed that the experimental set-up used here did not affect the results obtained.

It should be noted that the ‘spherulites’ grown from HB oligomer thin films referred 

to here are actually very thin two-dimensional ‘disculites’. For convenience, the word 

spherulite will continue to be used in the text.
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Figure 4.2 Photograph showing the two hot-stages used to grow HB oligomer spherulites 
from the melt in this project. Left hand side is a Linkam hotstage, right a thermal hotstage 
constructed for this project.

The growth rates were subsequently calculated from the increase in spherulite radius, 

r, with time t, during crystallization. A linear relationship will be seen until the 

spherulites start to impinge on each other. Each sample was used for several 

measurements, until degradation became apparent, which was indicated by a 

reduction in melting temperature. Since the HB oligomer spherulites have been 

observed to be all nucleated at around the same time, it suggests that the nucleation is 

primarily heterogeneous and hence it is not possible to measure the nucleation rates 

by counting the increase in number of spherulites growing over time.

4.3 Results

4.3.1 HB 24-mer spherulites grown from the melt

Figure 4.3 shows two sets of HB 24-mer spherulites growing at 63°C and 99°C with 

crystallization time indicated. The different morphologies will be discussed in a later 

section, where more spherulite morphologies over a wide range of crystallization 

temperatures will be presented.
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Figure 4.3 Examples of spherulites of HB 24-mer growing at (a) 63°C, (b) 99°C observed in 
optical microscope with crossed polarizers. The 25 pm scale bar applies to all figures. 
Crystallization times are as shown.



A typical set of data from which a growth rate was calculated is shown in Figure 4.4. 

Each set of points represents a different spherulite from the same sample, or, where 

very few spherulites were obtained, a different cross-section from the spherulite. In 

the few cases where the spherulites were not circular (as shown in Figure 4.3b) the 

longest dimension was always measured for consistency. The spherulite radius 

increased in a linear fashion as seen in Figure 4.4. A growth rate was then calculated 

from the gradient of each line and the average found. The values obtained from the 

individual spherulites within the same sample differ by less than 1%.
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Figure 4.4 Spherulite radius as a function of crystallization time for four HB 24-mer 
spherulites growing at Tc = 82°C.

It is obvious from Figure 4.4 that the spherulites have all nucleated at around the same 

time -  in this case close to tc = 0. This was often (though not exclusively) found to be 

the case, and suggests that the nucleation is primarily heterogeneous. At the lower 

crystallization temperatures (and particularly where only one hotstage was used) 

spherulites often started to grow before Tc was reached (i.e. before tc = 0). However, 

comparison of results from different spherulites and different samples confirms that 

this did not affect the subsequent rate of growth at Tc.

The growth rates of HB 24-mer spherulites as a function of crystallization temperature 

over the range of 40-120°C, is given in Figure 4.5. Each point is the average of



several measurements taken from different spherulites within the same sample, as 

described above. Where more than one point is plotted for a particular temperature 

these refer to independent measurements from different samples. The growth rate 

curve shown in Figure 4.5 has the distinctive form expected (but rarely fully 

accessible experimentally) from a crystallizable polymer. Similar curves have been 

obtained, for instance, from PHB and its co-polymers [Barham et al., 1984; Organ 

and Barham, 1991], but this is believed to be the most complete curve obtained to 

date from an oligomer system.
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Figure 4.5 Growth rate as a function of crystallization temperature for HB 24-mer crystallized 
from the melt.

At the high temperature end of the curve, the growth rate rises as the crystallization 

temperature falls, due to the increase in thermodynamic driving force with 

supercooling. As the temperature is reduced further the growth rate passes through a 

maximum and then falls. This is due to reduced mobility of the chains as the viscosity 

of the melt increases: the crystallization rate is restricted to the rate at which chains 

can diffuse to the growing surface, and this falls with temperature. Apart from the 

very obvious peak in growth rate at Tc = 75°C there are two regions of the curve, at 

around 85 and 100°C, where the data is particularly scattered. These will be reserved 

to consider later in the discussion section.
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Further examples of the HB 24-mer spherulite morphologies obtained over a wider 

range of temperatures are shown in Figure 4.6. These pictures have been chosen to 

illustrate spherulites of similar size to each other (the 25 pm marker shown in Figure 

4.6a applies to all the pictures), but note that the corresponding crystallization times 

vary considerably, reflecting variations in both growth and nucleation rates. No 

attempt has been made to quantify nucleation rates, since most nucleation appears to 

be heterogeneous, but a general trend towards higher nucleation rates (and shorter 

incubation times) was observed as Tc was reduced.



(e) Tc = 90°C, tc = lm6s (f) Tc = 98°C, tc = 6m 46s
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Figure 4.6 Examples of spherulite morphology obtained from HB 24-mer grown at different 
temperatures, Tc. Crystallization times (tc) have been chosen so that the spherulites are of 
similar size. The 25 pm marker applies to all the frames.



The general types of spherulite morphology observed, and the temperature ranges 

over which they occur, are indicated by the text with the arrows in Figure 4.5. At 

crystallization temperatures of 80°C and below the spherulites are particularly 

distinctive, showing very clear and often extremely regular banding. Examples are 

shown in Figure 4.6 (a)-(c). The band spacing did not vary significantly with 

temperature, falling in the range 4-8 pm for the vast majority of samples. This is 

remarkably similar to the essentially constant band spacing observed in PHB over a 

similar temperature range [Barham et al., 1984; Hobbs et al., 2000]. Figure 4.7 shows 

band spacing as a function of crystallization temperature for HB 24-mer samples and 

includes PHB data from reference of Hobbs et al. [2000] for comparison. The sharp 

rise in band spacing seen at around 100°C in PHB was not observed in HB 24-mer 

samples. Instead, the regular banding begins to break down as the crystallization 

temperature is raised from 80 to 85°C. Some spherulites grown in this temperature 

range displayed a distorted band structure, such as that shown in Figure 4.6 (d), while 

in others no banding was visible at all. Above 85°C no clear banding was ever 

observed in the spherulites, see Figure 4.6 (e)-(j).
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Figure 4.7 Band spacing in spherulites of 24-mer and PHB [PHB results from Hobbs, 2000].



At temperatures above 90°C the perfectly circular shapes began to look distorted and 

the outer edges less well defined. This is most apparent in Figure 4.6 (h) where the 

spherulites are distinctly asymmetrical. These entities are reminiscent of the structures 

described as hedrites, or axialites, sometimes observed in polymeric systems at high 

crystallization temperatures [Geil, 1960; Bassett et a l, 1963; Hoffman et a l, 1975] 

and believed to arise from large clumps of single crystals. A further, more subtle, 

change in morphology occurs at the highest temperatures (above ~110°C), where a 

coarse radial texture starts to appear. This is most clearly illustrated in Figure 4.6 (j). 

This coarse textured spherulite morphology was also observed in the 32-mer 

spherulites grown at high temperature given in next section. In fact, a clear 

morphological change from banded to coarse textured spherulites has been seen in 

PHB spherulites grown at the temperature range between 110 and 120°C, without any 

apparent discontinuity in the growth-rate gradient [Hobbs, 1996].

Significant differences in birefringence occurred in the non-banded spherulites. Figure 

4.6 (e) shows an example of a spherulite grown at 90°C which displays very little 

contrast -  indeed even the maltese cross is absent -  while the spherulite grown at 

98°C shown in Figure 4.6 (f) is much brighter. At crystallization temperatures up to 

ca. 80°C (where clear banding is seen) there is a general tendency for the magnitude 

of the birefringence to increase with increasing temperature. However, at higher 

crystallization temperatures the variations in birefringence showed no clear 

correlation with crystallization temperature, sample, or experimental method (use of 

one or two hot-stages). At the highest crystallization temperatures, where a change in 

crystal texture occurs, the birefringence was always low.

4.3.2 HB 32-mer spherulites grown from the melt

Experimental methods for growing and observing HB 32-mer spherulites are the same 

as those for the 24-mer. A few 32-mer crystals with no protecting ends were observed 

and captured for comparing with the 32-mer(p) samples, to look at any effect of a 

benzyl end group. A limited range of crystallization temperature between 100 and 

128°C was chosen to perform all the experimental work with HB 32-mer, due to the 

accessibility of supercoolings with only one hotstage when these measurements were



made. In the case of 24-mer measurements, an improved two-hotstage method was 

developed to give a much wider range of supercoolings.

Figure 4.8 shows examples of a set of HB 32-mer(p) spherulites growing at 108°C 

with time indicated. The HB 32-mer(p) spherulites generally show circular spherulitic 

shape. There is no clear banding observed in these spherulites in the range of 

crystallization temperature described here. This absence of banding was also observed 

in the HB 24-mer spherulites grown at temperatures above ~90°C, see Figure 4.6 (e)- 

(j). Previous studies with HB 32-mer and 16-mer showed nice banding in the 

spherulites at lower crystallization temperature, as shown in Figure 4.9. Note that the 

HB oligomer samples used in Figure 4.9 are slightly different from those used in this 

work. The previous materials were synthesized by Seebach et al using a former 

coupling strategy (see section 3.3.3.2 in chapter 3), leading to two protecting end 

groups, benzyl at one end and 2-isobutyl at the other. Two examples of spherulites 

grown from 32-mer free samples at 107°C and 110°C with time indicated are given in 

Figure 4.10.
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Figure 4.8 Examples of spherulites of HB 32-mer(p) grown at 108°C observed in the optical 
microscope with crossed polarizers. The 25 pm scale bar applies to all the figures. 
Crystallization times are as shown.
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Figure 4.9 Micrographs of spherulites of HB 32-mer and 16-mer fully protected samples 
grown at 30°C [from Sykes, 1996]. The 100 pm scale bar applies to both pictures.

♦ 00:02 :11

(a) Tc = 107°C (b) Tc = 110°C

Figure 4.10 spherulites of HB 32-mer(free) grown at (a) 107°C, (b) 110°C at time indicated.

The spherulite morphologies of 32-mer(free) crystals do not vary from the protected 

ones. Overall, they all have a circular spherulitic shape, without clear banding at 

crystallization temperature presented here. However, at the lower temperatures they 

do show clear banding, like those seen in Figure 4.9 (a) and PHB (see Figure 2.3a). 

This similar spherulitic shape from both free and protected 32-mer samples suggests 

that a benzyl protecting end group does not affect the crystal morphology. Hence, 

most of the later experiments chose the HB 32mer(p) instead of 32-mer free samples, 

due to the limited quantity of the solid powder available in the free form. More 

discussions on the effect of the benzyl end group on the behaviour of the 32-mer 

crystal growth during thickening and unfolding will be given in chapter 7.
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Figure 4.11 gives some examples of spherulite morphologies obtained from 32-mer(p) 

grown at a range of crystallization temperatures between 102 and 128°C. 

Crystallization times have been chosen to give similar sized spherulites. The 25 pm 

scale bar in Figure 4.11 (a) applies to all the pictures. Again, no attempt has been 

made to measure the nucleation rates, since most spherulites appear to start growing at 

the same time, as mentioned for the 24-mer.

(b) Tc = 110°C, tc = lm 25s

(c) Tc = 113°C, tc = lm 30s (d) Tc = 114°C, tc = 2m 17s

115°C, tc = 3m 15s 116°C, tc = 3m 51s
+ 0 0 :03:51
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(g) Tc = 119°C, tc = 9m 55s (h) Tc = 120°C, tc = 12m 45s

Figure 4.11 Examples of spherulite morphology obtained from HB 32-mer(p) grown at 
different temperatures. The 25 pm scale bar applies to all the frames.

All the 32-mer crystals show generally spherulitic growth as well. The spherulites 

grown at lower temperatures show circular shapes, a tendency to a less well-defined 

circular, or truncated lozenge shape, was seen at around 113°C to 119°C (Figure 

4.11d-g). This shape change was more pronounced in HB 24-mer spherulites growth 

at above ~90°C (see Figure 4.6e-h). At the highest temperature, coarse textured 

spherulites were also observed in 32-mer (Figure 4.11j).

The growth rates measured directly from spherulites of both HB 32-mer(free) and 32- 

mer(p) samples are shown in Figure 4.12. Once again, the growth rate data from 32- 

mer free samples (as shown by crosses) show little difference to that of the protected 

ones. This suggests that the benzyl end groups have no effect on crystal growth rates 

as well as morphology. Since only limited supercoolings were accessible due to the
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one hotstage method, the curve for 32-mer samples in Figure 4.12 only shows the 

right handed side of the full growth rate curve (see Figure 4.5) for 24-mer.
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Figure 4.12 Growth rates as a function of crystallization temperature for HB 32-mer samples 
crystallized from the melt.

In the case of 24-mer growth, distorted banding or non-clear banding appeared at 

above ~80°C as arrowed in Figure 4.5, while in the 32-mer sample, no clear banding 

was observed in the range of crystallization temperature used here, i.e., above 100°C. 

According to the DSC results, the melting point for 24-mer is ~145°C and for 32-mer 

is ~160°C. This ~15°C interval in the melting points is comparable to the difference of 

temperatures at which the spherulite banding started to disappear for the two samples. 

Further experiments to examine the crystal thickness dependence (mainly from 24- 

mer) on the crystallization temperature will be given in chapter 6.

More interestingly, like the two scattered regions found in 24-mer growth rate curve 

at around 85 and 100°C, a very similar result has been showed in the 32-mer growth 

curve, Figure 4.12. At temperatures about 113 and 119°C, two subtle but notable 

discontinuities (or kinks) could be seen in the growth-rate gradient, although they are 

less pronounced than those found in the 24-mer.
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4.4 Discussion

The results presented above provide complementary sets of data describing crystal 

growth rates and morphologies for HB 24-mer and 32-mer spherulites grown from the 

melt over a wide range of crystallization temperatures. To compare their behaviour to 

other oligomer system, in particular n-alkanes, some extended discussions are given 

as below.

4.4.1 Crystal growth rates

In previous work on n-alkanes and some of the PEO fractions, large changes in 

growth rate were seen near the temperatures at which the crystal growth changed 

between different integer folded (IF) chain forms. In many cases these changes were 

so pronounced that the growth rate passed through a minimum at, or close to, the 

transition temperature. At high temperatures only the thicker crystal form is stable, as 

the temperature is reduced it becomes possible for a thinner form to grow. The rate of 

growth of both forms increases with decreasing temperature, but they do not actually 

increase at the same rate so that at some temperature the thinner form can become the 

faster growing one. This on its own would lead to a graph of growth rate vs 

temperature with a number of branches, one for each thickness. In general, one would 

then expect the growth rate to follow the highest possible growth rate since the faster 

growing crystals would tend to dominate. Various explanations for the deviations 

from this behaviour with minima in growth rate at the transitions have been given, but 

essentially all are similar. If a thin crystal starts to form at the surface of a thicker one 

at a temperature where the thicker crystals still have a higher growth rate then growth 

is actually retarded, leading to a reduction in growth rate. The phenomenon is also 

referred to as self-poisoning, see section 3.2.3.4 in the previous chapter.

The data shown here do show some apparent discontinuities in growth-rate gradient of 

HB oligomers, particularly, for HB 24-mer at temperatures around 85 and 100°C. 

Similar but much weaker kinks were also found in the 32-mer at around 113 and 

119°C. But all these discontinuities are less pronounced than the minima found in the 

alkanes. However, the small angle X-ray data and the unfolding transitions seen



during heating suggest that there may well be changes in the crystal thicknesses of the 

growing crystals near these discontinuous temperature regions. This specific aspect 

will be discussed in detail in chapter 7. The full set of crystal thickness data, obtained 

with HB 24-mer and 32-mer samples grown both from the melt and solution will be 

presented and discussed in chapter 6, where the growth rate curves will be considered 

further.

4.4.2 Spherulitic morphologies

It could be noted that, as already established for n-alkanes, the purity and 

monodispersity of the HB oligomer material does not prevent the formation of 

spherulites. This provides further evidence that theories of spherulite formation based 

on the segregation of impurities are not applicable to this system and, given the 

similarity in behaviour to PHB, are also unlikely to be the primary cause of spherulite 

growth in the polymer. Comprehensive review of this topic can be found in [Bassett, 

2003].

The very distinctive band spacing of HB 24-mer spherulites obtained at crystallization 

temperatures of 80°C and below is remarkably similar to that observed in PHB, 

despite the fact that the crystals are somewhat thinner and the chains are substantially 

shorter. This implies that the band spacing is linked more to the nature of the chain 

than to its length. However, rather than the sudden increase in band spacing seen in 

PHB above 90°C, the banding in the HB 24-mer simply disappears, suggesting that a 

certain proportion of folds are necessary for banding to occur at all. Similar behaviour 

has been observed for n-alkanes, where banding has been reported in spherulites of 

C 2 9 4 H 5 9 0  quenched rapidly from the melt but not in those grown isothermally at higher 

temperature [Bassett et al., 1996].

Regular spherulitic growth continues up to temperatures of about 98°C in the case of 

the 24-mer, although at the higher temperatures the growth fronts become 

increasingly ragged in appearance. Figure 4.6 (e) shows one of several examples of 

spherulites with very low birefringence. This topic is not in the range of the research 

area here, but probably will lead to an interesting subject for future work. In brief it 

can be suggested that the low birefringence is due to a peculiar growth where the
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spherulites grow from a cooler side of the cell towards the centre so that the optic axis 

moves towards the perpendicular to the slides. The actual temperature gradient across 

the cell and the overall growth rate allow the angle made by the optic axis to the cell 

to vary continuously with growth temperature so that low birefringence spherulites 

will grow at different crystallization temperatures depending on the precise 

experimental conditions. Similar variations in birefringence have been studied in PHB 

previously [Hobbs et al., 2000].

The change in shape of spherulites, from circular to hedritic, at the higher 

crystallization temperatures follows that seen both in some polymer systems and in 

the n-alkanes [Bassett, 2003]. In general, a change to a hedritic morphology at higher 

crystallization temperatures has been attributed, phenomenologically, to reduced 

branching, possibly linked to a change in growth regime. It is also noted here that the 

most irregular spherulite shapes, particularly for the HB 24-mer, coincide with the 

temperatures where the discontinuities in the growth-rate gradient have been located. 

So it is also conceivable that different lamellae within the aggregate are growing with 

different thicknesses and hence at different rates.

The change in texture towards a coarser, more fibrillar nature at higher temperatures, 

seen both from 24-mer and 32-mer, can also be linked to the absence of branching. 

This has been clearly demonstrated by TEM studies of n-alkanes; indeed in that case 

spherulites do not form at all when crystals grow in the extended chain form [Bassett 

et al., 1996]. Figures 4.6 (j) and 4.11 (j) show crystals of 24-mer and 32-mer grown at 

120°C and 128°C respectively, which are believed to contain extended chains. While 

these crystals do have the general appearance of a spherulite, the much coarser texture 

and the clear linear radii produce a quite different texture to that observed at lower 

temperatures and suggest that branching is also greatly reduced, if not completely 

absent, here. More discussions on HB oligomer crystal morphologies associated with 

the crystal thicknesses and the chain conformation will be presented in detail in 

chapter 6.
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4.5 Conclusions

From complementary observations of HB 24-mer and 32-mer spherulites grown from 

the melt over a wide range of crystallization temperatures, the spherulitic crystal 

morphologies were well defined using optical microscopy. The spherulites grown at 

lower temperatures are banded and look remarkably similar to those grown from the 

polymer, PHB. The band spacings are also very similar to those observed in PHB. As 

the crystallization temperature increased the banding disappeared, the shape of the 

spherulites became less regular, and a coarser texture associated with reduced 

branching developed.

Spherulites of HB 32-mer with and without protecting end group were observed and 

compared. Little difference has been found between these two types of 32-mer either 

in crystal morphologies or growth rates. This suggests that a benzyl protecting end 

group has no effect on spherulite morphology and growth. Further measurements to 

check the effect of the benzyl group when heating the 32-mer samples will be 

presented and discussed in chapter 7.

Spherulite growth rates have been measured over a very wide range of crystallization 

temperature. In 24-mer, the growth rates pass through a maximum at 75°C, and show 

a very similar curve to that measured from PHB. However, the measurements were 

unusually scattered at around 85 and 100°C for 24-mer, giving two noticeable kinks 

during the spherulite growth. A much weaker tendency for discontinuities in growth- 

rate gradient has also been observed for 32-mer at around 113 and 119°C. The 

features seen here, although less pronounced, could correspond to the growth rate 

minima found in the alkanes, where they have been linked to a change between 

preferred crystal chain conformations. Crystal thickness data associated with 

unfolding transitions on heating followed in real time using X-rays will provide more 

evidence for these claims, and will be reported and discussed in detail in chapters 6 

and 7.
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Chapter 5 Morphology and Growth from Solution

5.1 Introduction

A full set of morphology and growth rate data of HB 24-mer and 32-mer spherulites 

grown from the melt over a wide range of crystallization temperatures has been 

reported in the previous chapter, chapter 4. These results are very similar to those 

found in the n-alkanes and PEO fractions grown from the melt. More experiments 

with crystals grown from solution would provide an extended insight for comparing 

the crystallization behaviour of HB oligomers to other oligomer systems.

This chapter presents PHB and HB oligomer single crystal morphologies grown from 

solution, mainly from propylene carbonate, at different temperatures. Crystallization 

rates over a wide range of supercooling were measured by real time wide angle X-ray 

scattering at the ESRF Grenoble. The data will be reported and discussed in detail 

below.

5.2 Early Work on Growing PHB Single Crystals

Polymer single crystals were first inferred from the electron diffraction of Gutta 

Percha [Storcks, 1939]. However, this discovery was ignored until single crystals of 

polyethylene were grown from dilute solution in 1957 [Till, 1957; Keller, 1957 and 

Fisher, 1957]. Subsequently, single crystals of many other polymers were grown, e.g. 

[Geil, 1963]. As previously mentioned in section 2.2.1 in chapter 2, the electron 

diffraction patterns of the polyethylene crystals grown from dilute solution have 

revealed that the polymer chains are lying perpendicularly to the platelet, and 

therefore chain folding occurred [Keller, 1957]. Figure 5.1 (a) shows a well defined 

single crystal of polyethylene together with its electron diffraction pattern, (b) shows 

typical multi-layered polyethylene single crystals grown from dilute solution obtained 

by the author at the very beginning of this project.



(a) (b)

Figure 5.1 Electron micrographs of (a) a well defined single crystal of polyethylene together 
with its electron diffraction patter (courtesy of SJ Organ); (b) typical multi-layered single 
crystals of polyethylene grown from xylene solution. The scale bars represent 1 pm.

PHB crystals were first grown from dilute solution in chloroform [Alper et al., 1963]. 

They were seen to be thin, flexible lath shape with a distinct lamellar morphology, 

crystal thicknesses being ~5 nm. Wide angle X-ray and electron diffraction showed 

the chain direction to be perpendicular to the lamellar surface (Figure 1.3 in chapter 

1). In 1957, Lundgren et al. observed that crystals grown from samples of PHB 

produced by different bacteria gave similar crystal morphologies. Marchessault et al. 

(1981) grew PHB crystals from dilute solution in a mixture of chloroform and 

ethanol, and the electron diffraction pattern from these crystals also confirmed the 

same a and b dimensions of the PHB unit cell found previously from X-ray diffraction 

[Comibert and Marchessault, 1972; Yokouchi et al., 1973]. The crystal structure of 

PHB is given in Figure 1.2 in chapter 1 at the beginning of this thesis. Later, more 

solvents to grow PHB crystals were tried and reported: propylene carbonate [Barham 

et al., 1984; Welland et al., 1989; Seebach et al., 1994]; poly(ethylene glycol) 

[Marchessault et al., 1988; Revol et al., 1989]; toluene [Revol et al., 1989]; octanol 

[Revol et al., 1989] and triacetin [Lauzier et al., 1992]. More information on PHB 

single crystals grown from a variety of solvents, molecular weights, concentrations 

and crystallization temperatures under similar conditions can be found in [Otun, 1985; 

Birley et al., 1995; Sykes, 1996 etc].
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Although PHB crystals could be grown from some solvent mixtures, such as 

chloroform/ethanol and dichloroethane/ethanol mixtures, it was considered preferable 

to use a single solvent as such a system can be better controlled. Propylene carbonate, 

being a poor solvent for PHB, was found to be the most suitable solvent. Crystals 

could be precipitated from dilute solution in propylene carbonate at temperatures up 

to ~90°C. For a full list of solvents to grow PHB single crystals, refer to [Otun, 1985 

and Sykes, 1996].

To obtain crystals of a roughly uniform size, and in single layer rather than multi

layers, a technique called ‘self-seeding’ was used [Blundell et al., 1966]. The process 

of self-seeding involves heating a crystal suspension to a seeding temperature, Ts, just 

above its visual clearing point. Minute particles, thought to consist of crystalline high 

molecular weight polymer which was stabilized by refolding, remain un-dissolved. 

The un-dissolved materials can act as nuclei for more crystals to grow on cooling the 

solution. The number of nuclei and hence the crystal size can be controlled by varying 

Ts over a small range [Organ, 1983; Otun, 1985; Sykes, 1996].

Once the crystals have grown, for most purposes, it is more convenient to suspend 

them in a volatile solvent rather than in the one in which they have been grown. The 

second solvent will be referred to as the ‘new’ solvent, while the first solvent will be 

called the ‘old’ solvent. The new solvent needs to be a non-solvent for PHB at room 

temperature, it also needs to be miscible with the old solvent. The whole procedure is 

usually referred to as ‘solvent exchanging’. First the suspension is filtered at the 

crystallization temperature in order to remove any un-crystallized polymer from the 

crystal suspension, new solvent is then added. If cold solvent is added before hot- 

filtering, the crystal edges will become ragged as the polymer remaining in the solvent 

quickly crystallizes at the lower temperature. Traditionally, acetone, ethanol or 

methylated spirits have been used as the new solvents.

5.3 Experimental

PHB single crystals grown from propylene carbonate and a few other solvents, 

following the same self-seeding strategy, were first repeated at the beginning of this
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project. Examples of electron micrographs will be presented later in this chapter for a 

review of PHB single crystal morphology. Only propylene carbonate was chosen as 

the solvent for all the HB oligomer solution crystallization experiments.

The same HB 24-mer and 32-mer (both free and protected) powders were used for 

solution grown experiments. The details of chemical synthesis and the sample 

preparation of the HB oligomer samples were described earlier in section 3.3.3.3 in 

chapter 3. Their full chemical formulae were given in Figure 4.1 in chapter 4.

5.3.1 Growing the single crystals

The PHB single crystals were grown from dilute solution following the same single 

crystal recipe described above, for more details see [Organ, 1983; Otun, 1985; Sykes, 

1996]. The procedures mainly consisted of several stages: finding the right solvents; 

making up the solution ready for crystal growing; ‘self-seeding’ the solution then 

cooling to the crystallization temperature and holding for an appropriate 

crystallization time to obtain a suspension of single crystals; exchanging the solvents 

if necessary and finally observing by transmission electron microscopy (TEM). 

Propylene carbonate, octanol and toluene solvents were used to grow PHB single 

crystals for preliminary experiments in this work. When propylene carbonate was 

used as the solvent, the solvent was exchanged with acetone at room temperature after 

hot filtering with propylene carbonate since propylene carbonate has a low volatility 

at room temperature. The sample grids for TEM observation were then made.

Single crystals of the HB oligmers were grown from dilute solution with a 

concentration of -0.1% (w/v) in propylene carbonate at the temperatures required. 

The self-seeding and hot solvent exchanging were not applicable to HB oligomer 

samples due to the limited availability of HB oligomer powders. In this case, the 

oligomer sample grids were left in the vacuum for a couple of days to evaporate off 

the solvent, propylene carbonate.



5.3.2 Transmission electron microscopy (TEM)

Crystals were prepared for Transmission Electron Microscopy (TEM) by placing a 

drop of the crystal suspension directly onto a carbon coated electron microscope grid, 

the solvent then being allowed to evaporate off in the vacuum. Some crystal grids 

were then shadowed by vacuum evaporation of a ~2 mm platinum/palladium alloy 

wire, at a distance over 6 cm and with an angle of approximately 30°, to enhance the 

contrast. This shadowing technique is especially necessary to observe the PHB/OHB 

crystals in the electron microscope, as they are relatively thin, with thickness only 

about 5 nm compared to 25 nm of polyethylene crystals. A Phillip 400 transmission 

electron microscope was used in this project with an operating voltage of 100 kV.

PHB and OHB crystals are susceptible to beam damage in the electron microscope. 

This takes the form of the disappearance of both the image and the diffraction pattern 

of the crystals. Under beam conditions such that the bright field image of the crystals 

is just visible, the diffraction pattern only lasts for about 3 seconds. Diffraction 

patterns were obtained from unshadowed crystals by reducing the brightness of the 

beam as much as possible so that the crystals were not visible in bright field. The 

specimen was then searched in diffraction mode until suitable crystals were found. 

The two dimensional shapes of the crystal will not be seriously altered by irradiation 

as the carbon film acts as an effective constraint to any dimensional changes [Grubb 

et a l , 1972]. Finally, a very short exposure time (~2 seconds) was chosen to minimize 

any beam damage while taking the photos and allow observation of electron 

diffraction patterns.

5.3.3 Atomic force microscopy (AFM)

AFM was first applied to polymers in 1988 [Albrecht et al., 1988] and has since 

found many applications in polymer science. It can visualize objects on an atomic 

scale under the right conditions. The main principle of the AFM is the fact that with a 

spring of an appropriately small spring constant and mass, the atomic forces would be 

able to displace it in a detectable way. Consequently, the AFM does not measure 

forces directly, it rather measures the deflection of a cantilever caused by a force 

exerted on it. The cantilever possesses a sharp tip near its free end used to sense the
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surface. A schematic view of the AFM operation is showing in Figure 5.2. The AFM 

can image polymer or oligomer specimens without the need for staining or etching.

Figure 5.2 Schematic drawing illustrates how the AFM works [from Molecular Imaging 
Website, 2003].

AFM works by bringing a cantilever tip in contact with the surface to be imaged. An 

ionic repulsive force from the surface applied to the tip bends the cantilever upwards. 

The amount of bending, measured by a laser spot reflected on to a split photo detector, 

can be used to calculate the force. There are a number of different possible ways of 

controlling the cantilever-sample interaction during imaging. The most commonly 

used of these are contact mode and tapping mode. In contact mode the tip is kept 

within the repulsive regime of the inter-molecular force curve. The main drawback of 

this is that large lateral forces are exerted on the sample as the tip is ‘dragged’ over its 

surface. This frequently causes extensive damage to soft samples and can make 

imaging virtually impossible. In tapping mode the cantilever is oscillated at its 

resonant frequency and positioned above the sample so it only interacts with the 

surface for a small fraction of its oscillation period. This significantly reduces the 

lateral forces exerted on the sample, and has been successfully utilized in imaging 

soft, biological samples [Wawkuschewski et al., 1995].
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-7 4  -



AFM was used here to observe the HB oligomer crystal morphologies to compare 

with the crystals observed under TEM. The crystal lamellar thicknesses were also 

measured with AFM to compare with the thickness data obtained by small angle X- 

ray scattering (SAXS). HB 24-mer and 32-mer powders were dissolved in propylene 

carbonate (with a concentration of -0.02% w/v) in 1.5 ml test tubes, and the solutions 

left to crystallize for several days at the chosen temperatures in an oil bath. A drop of 

the crystal suspension was then put onto a freshly cleaned cover-slip or mica, and put 

under vacuum to evaporate off the solvent. The samples were observed in a Digital 

Instruments ‘Veeco Dimension D3100’ AFM, operated in a ‘tapping mode’ using 

silicon cantilevers with a nominal spring constant of 50 Nm'1 and resonant frequency 

of -300 kHz at room temperature. Thicknesses measured with AFM are of an 

individual crystal, rather than the average over many crystals as measured by X-ray 

scattering. The AFM work presented here was kindly carried out by Dr JK Hobbs. 

The sample preparation was performed by the author, who was also present and 

helped to choose the crystals during the whole experimental work. AFM pictures of 

HB 32-mer single crystals and the thickness data will be presented and discussed in 

the results section.

5.3.4 X-ray scattering

Both wide and small angle X-ray scattering (WAXS & SAXS) were applied to HB 

oligomer samples grown from solution at the European Synchrotron Radiation 

Facilities (ESRF) Grenoble, France. The WAXS was used to follow crystal growth 

during crystallization from solution at desired temperatures and the results will be 

reported below. The SAXS was used to measure the crystal thicknesses, the 

experimental data and discussion will be given in the next chapter, chapter 6.

5.3.4.1 Wide angle X-ray scattering/diffraction fWAXS/WAXD)

The wide angle scattering measurements were carried out at the Materials Science 

beamline, ID 11, at the ESRF Grenoble. The X-ray wavelength was of 0.0496 nm, 

and the beam size was 300jimx 300pm. Each two dimensional diffraction pattern was 

collected for 3 seconds using a Bruker Smart CCD detector, which in its high 

resolution mode has a sensitive area of 16x16 mm2 consisting of 2000x2000 pixels
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each of size 78x78 pm2. The read-out time is necessarily slow and total dead time 

between exposures was 12 seconds. The sample detector distance was 0.2 m and was 

calibrated using a silicon standard. The resulting two dimensional patterns were 

corrected for spatial distortions prior to integration. After subtraction of the solvent 

(and glass tube) background, a pseudo-Voigt function was fitted to the one 

dimensional integrated data to produce values for the peak positions, full width at 

half-maximum (FWHM) and total intensity. No correction for thermal lag has been 

applied, although independent calibration available in a previous experiment suggests 

that this may be up to 2°C using the same experimental set-up [Terry et al., 2003].

A measured amount of HB oligomers (typically ~0.3 mg) were placed in 2 mm 

diameter Lindemann tubes and sufficient propylene carbonate was added to give a 

concentration of approximately 3% (w/v). The Lindemann tubes were then shortened 

and flame sealed to prevent any evaporation of solvent during the experiments. For 

exposure to the X-ray beam the samples were mounted in a modified silver block 

Linkam hotstage (see Figure 5.3), with the tubes at an angle of about 45°C to the 

horizontal. The samples were positioned such that the X-ray beam passed through the 

tubes a few millimetres from their end and adjusted so that the solvent scatter was at a 

maximum, i.e. through the thickest available section of the tube. A metal cover was 

used to hold the sample tubes against the silver block, this ensured good thermal 

contact and allowed accurate positioning of the Lindemann tubes after changing the 

samples. The temperature of the silver block was recorded using the internal platinum 

resistor and the temperature at the start of collecting a diffraction pattern was recorded 

alongside the pattern.
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Figure 5.3 Picture showing a modified silver block Linkam hotstage mounted within the 
detector set-up at ID 11 beamline at ESRF Grenoble [from ESRF official website].

Each sample was first heated to completely dissolve the HB oligomers, as evidenced 

by the disappearance of the diffraction pattern. The resultant solution was then cooled 

at 40°C per min until the desired crystallization temperature Tc was reached. The 

sample was then held isothermally at this Tc for certain time tc until the crystallization 

was thought to be completed. The range of temperatures used was based on previous 

DSC measurements which, although not sufficiently well defined to allow growth rate 

measurements to be made, gave a good idea of the temperature range over which 

crystals would grow within a reasonable time scale. Crystallization temperatures for 

HB 32-mer were in the range 10-55°C. Most samples were used for several sets of 

measurement but were discarded as soon as they showed any anomalies in either 

dissolution behaviour (cross-linking due to beam damage eventually leads to an 

increase in dissolution temperature) or in background intensity level (due to solvent 

escaping from the tubes).

X-ray diffraction patterns were collected every 12 seconds with an exposure time of 1 

second. The beam was turned off between exposures to minimize any radiation 

damage to the samples (bearing in mind the ease of degradation of PHB). The onset of 

crystallization could be clearly seen from the initial appearance of the diffraction 

pattern. Crystallization was allowed to proceed until a maximum intensity appeared to 

have been reached.

-  77 -



5.3.4.2 Small angle X-ray scattering (SAXS)

SAXS measurements with HB oligomer samples to obtain a full set of crystal 

thicknesses data over a wide range of crystallization temperatures were performed 

both at beamline ED2 ESRF and at Bristol University with a Bruker NanoSTAR X-ray 

system. Detailed results associated with the growth rate and crystal morphologies 

presented in chapter 4 will be given and discussed in chapter 6.

5.4 Results

5.4.1 Crystal morphologies grown from solution

5.4.1.1 PHB single crystals

PHB single crystals grown from dilute solution with different solvents were prepared 

during the first stage of this project following the same self-seeding strategy described 

above (see section 5.3.1). Examples of a set of electron micrographs of PHB single 

crystals grown from different solvents are given in Figure 5.4. Two types of 

molecular weight PHB powder were used here. One is PHB batch G04, with a 

polydispersity (Mw/Mn) of ~2, and a weight-average molecular weight (Mw) of 

159,000. Another PHB sample is G08, with polydispersity of ~4 and Mw of 25,500.
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(C) (d)

(e)

Figure 5.4 Electron micrographs for PHB single crystal grown from different solvents at 
certain crystallization temperatures, scale bars represent 1pm.

(a) PHB (G04) single crystals grown from octanol at 80°C
(b) PHB (G04) single crystals grown from octanol at 97°C
(c) PHB (G04) single crystals grown from propylene carbonate at 60 °C
(d) PHB (G04) single crystals grown from propylene carbonate at 82 °C
(e) and (f) Low molecular weight PHB (G08) single crystals grown from toluene 

at room temperature

Electron micrographs in Figure 5.4 show typical examples of the morphology of PHB 

crystals grown from dilute solution. In general, crystals grown from all solvents were 

elongated lath-like shape crystals similar to polypropylene single crystals [Sauer et
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al., 1965]. These crystals also showed some evidence of a flat surface at the growing 

tip. In all the preparations, there was considerable aggregation of crystals, which are 

visible in each picture as the dark colour centres. The appearance of the crystals varies 

a little depending on several factors, such as crystallization temperature, solvent and 

molecular weight. More detailed information has been reported in previous work on 

PHB [Otun, 1985; Sykes, 1995; Birley et al., 1995], and is not the main focus within 

this project.

5.4.1.2 HB oligomer single crystals

The HB oligomer single crystals grown from dilute solution had an appearance very 

similar to those grown under similar conditions from the whole polymer, PHB. 

Example electron micrographs taken from typical HB 24-mer and 32-mer crystals 

grown from solution, together with the electron diffraction pattern are shown in 

Figure 5.5. AFM images of 32-mer crystals grown from propylene carbonate solution 

at different temperatures with height scans are given in Figure 5.6 and 5.7.
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(C) (d)

Figure 5.5 Electron micrographs of HB oligomer crystals grown from 0.1% (w/v) solution in 
propylene carbonate: (a) and (b) HB 24-mer crystals quenched at 10°C; (c) HB 32-mer at 
room temperature; (d) Electron diffraction pattern of 32-mer single crystals with reflections 
indexed taken from the area in (c) as the arrow indicated. Note the clear spots in this 
diffraction pattern suggest that several crystals are overlapping in the selected area from 
which the diffraction pattern was taken. Scale bars represent 1 pm.

Again, the electron diffraction pattern from HB 32-mer crystals indicates that the 

chains are perpendicular to the crystal lamellar planes, as in PHB (see Figure 1.3 in 

chapter 1). All the diffraction spots can be indexed as being hkO reflections, albeit 

from several different crystals lying with their long axes pointing in different 

directions within the plane of the sample. It should be also noted that the diffraction 

pattern of the HB oligomers is almost identical to that of the PHB crystals so that the 

indexing is based on the known unit cell of the polymer.

The AFM images of HB 32-mer crystals grown in propylene carbonate show similar 

morphology to the electron micrographs. Two possibly overlapping layers can be seen 

at the growth front in the right bottom of Figure 5.6 (a), suggesting a single layer of 

lamellar thickness of -4.1 nm. At higher crystallization temperatures, the crystals 

have more smooth edges as shown in Figure 5.7, and are similar to those found in 

PHB single crystals see Figure 5.4 and [Sykes, 1996].
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(b)

Figure 5.6 AFM images of HB 32-mer crystals grown in -0.02% (w/v) propylene carbonate 
solution at room temperature, (a) Images of a crystal aggregate, scale bars represent 1 pm; (b) 
Image of the magnified area showing with a height scan of -8.21 nm (possibly with two 
layers of single crystals).

Figure 5.7 AFM images of HB 32-mer crystals grown in -0.03% (w/v) propylene carbonate 
solution at 50°C. The height scan gives a single crystal thickness of -4.21 nm. Scale bar 
represents 1 pm.
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5.4.2 Crystallization rates from solution

Crystallization rates have been measured in solution grown n-alkanes by following 

the development of dissolution endotherms over time in the DSC. Attempts to apply 

the DSC method for measuring crystallization rates on the HB oligomers grown from 

solution were unsuccessful. Dissolution endotherms were typically very broad, 

making both the peak position and the peak area difficult to measure precisely. An 

alternative method based on the use of synchrotron X-ray radiation has recently been 

reported for n-alkanes [Terry et al., 2003] in which the growth rate is determined from 

measurements of the area of the crystalline diffraction peaks over time as the crystals 

are grown in situ. This method, originally developed to allow measurements of 

growth rates too fast to be followed by DSC, was successfully applied to the HB 32- 

mer and 24-mer crystallized from solution and the results are reported here. The high 

intensity of the synchrotron radiation allows clear diffraction patterns to be obtained 

for crystal concentration as low as 0.1% (w/v) and the high resolution of the detector 

employed permits very small changes to the lattice parameters to be observed and 

measured.

5.4.2.1 HB 32-mer

A typical example of wide angle diffraction data obtained from a -3% (w/v) 

suspension of HB 32-mer crystals grown in propylene carbonate after subtraction of 

solvent background is shown in Figure 5.8. Some amorphous halo arising from the 

solvent is still visible, but the main crystal reflections stand out clearly. An additional 

background subtraction was carried out for each peak individually based on curve 

fitting to sections of the spectrum on either side of the peak: this enabled peak 

positions and areas to be calculated to a high degree of accuracy. Figure 5.9 shows a 

series of plots showing how the intensity of the (020) reflection increases over time 

during crystallization at different crystallization temperatures, Tc. Similar results were 

obtained using the (110) reflections. The time is measured from the onset of 

crystallization: in practice there was occasionally an incubation time before 

crystallization began but, in contrast to the rate, this varied depending on the thermal 

history of the sample and was not considered reliable. In particular, the incubation 

time was considerably longer the first time a sample was used which suggests that
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some sort of seeding mechanism was involved for subsequent crystallizations which 

affected the onset of crystallization but not the growth rate. A crystallization rate can 

be measured from the maximum gradient of the linear portion of the graph. The 

decrease in rate as the crystallization temperature increased is very apparent. The 

intensity reaches a plateau as the material in solution is exhausted, as can be seen at 

the lower crystallization temperatures in Figure 5.9. This maximum intensity (Tc = 

10°C) is taken to represent 100% crystallinity.

(020)

<2 800

C 400

0 2 4 6 8 10 12 14 16

26 (degree)

Figure 5.8 Typical wide angle diffraction data obtained from a 3% (w/v) suspension of 32- 
mer crystals in propylene carbonate during crystallization at 10°C after partial subtraction of 
solvent background. Two strongest diffraction peaks with main crystalline reflections (020) 
and (110) are indicated.
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Figure 5.9 Intensity of the (020) reflection as a function of time during crystallization of 32- 
mer at the temperature shown. Crystallization rate is measured from the maximum gradient of 
the initial linear portion of the graph.
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All the curves in Figure 5.9 were obtained from consecutive measurements on the 

same fixed sample. No more than five sets of measurements were made on a single 

sample to avoid possible discrepancies arising from radiation damage. Measurements 

were occasionally repeated to ensure consistency. Crystallization rates were measured 

over a range of temperatures using three different samples, by measuring the 

maximum slope of the linear portion of the intensity vs time at each temperature. 

Since the quantity of sample exposed to the beam is not known the results are in 

arbitrary units, which are consistent for a given sample but differ between samples. 

When combining the three sets of results it was necessary to normalize them and this 

posed some difficulties. Small differences in concentration or in the position of the 

sample in the beam could lead to substantial variations between samples in both the 

absolute intensity and the maximum intensity after background subtraction. Figure 

5.10 (a) shows the raw data from the three sets of crystallization rate of the (020) 

reflection measurements. Each set of measurements is internally self-consistent, but it 

is clear that some scaling is required in order to combine them in a meaningful way. It 

was decided to take a pragmatic approach and to scale samples 1 and 3 to sample 2 by 

assuming that where a measurement had been made at (or close to) the same 

temperature in two different samples, the rate should be the same. The scaling factors 

were calculated at 40°C for sample 1 and 37°C for sample 3 and applied to all the data 

in that series. The result is shown in Figure 5.10 (b). In the raw data from sample 1 

alone there appears to be a discontinuity in growth-rate gradient in the range 30^10oC 

and later results confirm that there is a transition from extended chain growth at 40°C 

to folded chain growth at 30°C (this will be presented in chapter 8). If the 

normalization is accepted then the discontinuity is revealed more clearly at around 

36-37°C: this tentative suggestion is backed up by other evidence, considered further 

in the discussion section in chapter 8.

All temperatures quoted here are those recorded from the hotstage and are internally 

self-consistent. However, in similar experiments on n-alkanes using the same 

equipment, a 2°C thermal-lag below those recorded temperatures was inferred using 

an independent calibration [Terry et al., 2003].
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Figure 5.10 Variation of crystallization rate of (020) reflection with temperature for HB 32- 
mer grown from ~3% (w/v) solution in propylene carbonate, (a) raw data; (b) after 
normalization as described in the text. The point at 10°C has been omitted from (b) so that the 
region of interest can be seen more clearly. The data in Figure 5.9 corresponds to sample 1.
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The high-resolution detector employed here allows very small changes in lattice 

spacing, d, with either temperature or time to be measured. Slightly different values of 

d were observed at different crystallization temperatures due to thermal expansion, 

which will be discussed later in chapter 8. There was no visible change in lattice 

spacing over time during isothermal crystallization, once crystallization was 

established.

The variation in intensity and hence crystallization rate of the (110) reflections with 

temperature are not presented here, but they showed identical trends in behaviour.

5.4.2.2 HB 24-mer

More limited experiments were carried out using HB 24-mer samples and there was 

insufficient data to compile a complete set of growth rate measurements. The growth 

rates measured were in a similar range to, but slightly higher than, those obtained 

from the 32-mer. Figure 5.11 shows typical wide angle diffraction data obtained from 

a 2.7% (w/v) suspension of HB 24-mer crystals in propylene carbonate after 

subtraction of solvent background. The two strongest crystal reflection peaks (020) 

and (110) are exactly the same as those in 32-mer (Figure 5.8).
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Figure 5.11 Typical wide angle diffraction data obtained from a 2.7% (w/v) suspension of HB 
24-mer crystals in propylene carbonate during crystallization at 35°C after partial subtraction 
of solvent background.
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Figure 5.12 gives a very limited range of crystallization rate data from the (020) 

reflection for HB 24-mer grown from 2.7 % (w/v) solution in propylene carbonate at a 

few temperatures. Only two samples were used in the experiment. Due to the 

insufficient data, Figure 5.12 shows no convincing evidence for a discontinuity in the 

growth-rate gradient or any rate minima, although there appears to be a possible 

feature at around 30-35°C. Further unfolding results on heating the 24-mer crystals 

suggest a change from folded to extended chain growth is between 35-40°C, the data 

will be present in chapter 8.
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Figure 5.12 Variation of crystallization rate of (020) reflection with temperature for HB 24- 
mer grown from 2.7 % (w/v) solution in propylene carbonate. The data was insufficient to 
compile a complete set of growth rate measurements.

5.5 Discussion

The X-ray diffraction patterns obtained from both HB 24-mer and 32-mer oligomers 

are comparable with those previously reported for the polymer PHB, from which an 

orthorhombic unit cell with lattice parameters of a=0.576 nm, Z?=1.32 nm and c=0.596 

nm (at room temperature) was deduced [Barham et al., 1984; Mitomo et al., 1987]. 

The chains are believed to fold in a zig-zag fashion along the (110) lattice direction 

(see Figure 1.5 in chapter 1). WAXS data from melt crystallized samples which will 

be reported in chapter 7 displays many more clear reflections, but the presence of the



solvent background in these solution samples restricted the analysis to consideration 

of the strongest reflections, corresponding to (020) and (110).

Crystals were grown over a range of 10-55°C for the 32-mer and 20-40°C for the 24- 

mer. Above these temperatures crystallization was prohibitively slow. Lower 

temperatures require higher cooling rates to ensure that no significant crystallization 

occurs during cooling. A comprehensive set of growth rate data was obtained for the 

32-mer, but the results for the 24-mer were more limited.

The tentative discontinuity in 32-mer growth-rate gradient seen at around 36-37°C in 

Figure 5.10 is somewhat similar to those found in the 24-mer and 32-mer growth rates 

from the melt crystallization at higher temperatures (Figure 4.5 and 4.12) presented in 

chapter 4. But it is much less pronounced than those obtained from long n-alkanes 

grown from solution [Organ et al., 1989 and 1997; Morgan et a l, 1998; Hobbs et al., 

2001], where they are associated with a transition from one stable crystal form to 

another. In separate experiments, thickness measurements have been made on crystals 

of HB 24-mer and 32-mer with a benzyl end group on one end of the chain, and the 

results indicate that the 32-mer grows with extended chains at high crystallization 

temperatures and with folded chains at lower temperatures. Different chain 

conformations are possible but for solution grown crystals the thickness is consistent 

with chains that are folded in half. In the AFM thickness measurements on crystals of 

32-mer grown at 65°C, the crystals were consistent with once-folded chains too. The 

solution concentration in that case was 0.018%. The full sets of thicknesses data on 

HB 24-mer and 32-mer crystals grown form both the melt and solution are given in 

the following chapter, chapter 6.

A further insight into the conformation of chains within the crystals grown at different 

temperatures is obtained when the crystals in suspension are heated. In general, partial 

dissolution and re-crystallization have been observed during heating in both HB 24- 

mer and 32-mer samples crystallized at the lower temperatures, which corresponds to 

chain extension in crystals which were initially folded. This unfolding transition is 

accompanied by a small increase in lattice spacing along the (110) direction. More 

comprehensive data from HB 24-mer and 32-mer on crystal thickening, lattice



parameter changes and chain unfolding behaviour during heating will be presented 

and discussed in detail in chapter 8.

5.6 Conclusions

Oligomers of hydroxybutyrate containing 24 or 32 monomer units can crystallize 

from solution in propylene carbonate over a wide range of temperature. Overall, the 

single crystals have an appearance very similar to those of PHB grown under similar 

conditions. Results to be presented in the following chapters suggest that the crystals 

grown at the higher temperature contain extended chains, while in those grown at 

lower temprerature the chains are folded. Electron diffraction indicates that the chains 

are closely perpendicular to the basal planes of the crystals. Wide angle X-ray 

diffraction suggests that all crystals, no matter what their thicknesses, have the same 

crystal structure.

The 32-mer crystallization rate from solution in propylene carbonate has been 

measured as a function of temperature by following the intensity increase of the (020) 

reflections in real time using WAXS. Limited growth rate data were obtained for the 

24-mer. A possible discontinuity in the rate gradient could be located at 36-37°C for 

the 32-mer, and an even weaker indication of a discontinuity for 24-mer at 30-35°C. 

These discontinuities in growth-rate gradient, if they exist, are similar to those found 

in the melt growth, but much less pronounced than similar effects seen in long n- 

alkanes. This tentative suggestion of discontinuities is supported by other much more 

compelling evidence based on whether or not the crystals thicken on heating, and will 

be considered further in chapter 8.



Chapter 6 Crystal Thickness and Chain 

Conformation

6.1 Introduction

Studies on crystallization of alkanes and other oligomer model materials, as described 

in chapter 3, have revealed that crystals have distinct thicknesses, which are integer 

fractions (IF) of the length of underlying molecules, with thinner crystals being grown 

at lower temperature. Also the growth rates of the crystals exhibit clear minima when 

the growth temperature is near the transition between different folded forms. In some 

studies of crystallization from the melt, non-integer folded forms have been found as 

transient states which may thicken (or thin) to form the more stable integer folded 

chain forms.

By studying the crystallization behaviour of HB oligomers, comprehensive results 

have been presented in the previous two chapters on crystal morphologies and growth 

rates both from the melt and solution. The crystal morphologies have been well 

defined, and discontinuities are observed in the HB 24-mer and 32-mer growth-rate 

gradients both from melt and solution crystallization, although they are less 

pronounced than the rate minima found in the alkanes. Using small angle X-ray 

scattering, the thicknesses of HB oligomer crystals were measured and correlated with 

the growth rate data, which leads to a corresponding chain conformation model.

This chapter reports data on HB oligomer crystal thicknesses both from the melt and 

solution crystallization. To examine the possible links between the crystal growth 

rates, morphologies and thicknesses, a different chain conformation model is 

suggested and discussed.

6.2 Experimental

HB 24-mer and 32-mer crystal thicknesses were measured by small angle X-ray 

scattering (SAXS). The samples were made from both the melt and solution at various
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crystallization temperatures. The sample preparation method was reported in the 

previous chapters. The thicknesses of all the HB oligomer as-received powder, 

together with some preliminary results obtained by a former PhD student with one 

shorter and one longer HB oligomer (8-mer and 96-mer) provided previously by Prof 

Seebach, are presented here for a complete view on HB oligomer crystallization 

studies.

6.2.1 Small angle X-ray scattering (SAXS)

If a crystalline sample is placed in an X-ray beam, then the X-rays will be scattered in 

accordance with Bragg’s Law, given by Equation 6.1

nX = 2d sinO (6.1)

Where n is the order of the diffraction peak, X is the wavelength of the X-rays, d is the 

periodicity in the sample and 20 is the scattering angle from the incident beam. X-ray 

diffraction is usually used to obtain information about unit cell dimensions in crystals, 

but can also detect periodicity on a larger scale if 20 is relatively small. A regular 

stack of crystal lamellae will have a periodicity corresponding to the crystal thickness 

and this will produce a peak in the small angle region (usually 20 < 6°) of the X-ray 

diffraction pattern. SAXS can therefore be used to measure crystal thicknesses.

6.2.1.1 Bruker NanoSTAR small angle X-rav machine

Two small angle X-ray systems were used to measure the crystal thicknesses in this 

study. At first, Bruker NanoSTAR small angle X-ray scattering equipment from the 

University of Bristol was chosen to measure the crystal thicknesses on the original as- 

received HB oligomer powders and some of the melt-grown HB oligomer crystals. 

The newly developed Bruker NanoSTAR machine is based on a combination of the 

latest X-ray optics technology, with cross-coupled Gobel Mirrors for parallel incident 

beam conditions (0.1 mm or 0.3 mm pinhole collimator), high precision mechanics 

(high-resolution pinhole chamber with sample changer and sample scanning device), a 

2-dimensional, zero background, high-resolution area detector (Bruker AXS Hi- 

STAR) and a powerful software package controlling the system (SAXS NT). In a
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reasonably short measuring time, the size, orientation and nano-structure of the 

oligomer samples can be easily determined. A photograph of the detector part from 

the Bruker NanoSTAR X-ray system is shown in Figure 6.1.

Figure 6.1 Photograph of the detector part from the Bruker NanoSTAR X-ray system.

Both the original HB oligomer powders and the melt-grown crystals made on two hot- 

stages (as described in section 4.2.2 in chapter 4), were scraped into 1.5 mm diameter 

Lindemann tubes and flame sealed. The samples were then exposed to the X-ray beam 

at room temperature. The running voltage in this case is 40 kV with an anode current 

of 35 mA, using CuKD radiation wavelength of 0.1541 nm. While the as-received 

powder samples were left overnight for a longer exposure time to get a high intensity 

diffraction spectrum, the re-crystallized HB oligomer samples only need several hours 

for exposure. The usual corrections for intensity, such as unwarping correction in the 

spatial dimension and the subtraction of the background noise etc, were applied before 

locating the peak positions from which the crystal long periods could be determined 

by Bragg’s Law.

If the sample contains an un-oriented set of lamellae (e.g. bulk crystallized material as 

grown from the melt) the small angle scattering pattern is circularly symmetric, which 

is the case in our experiments. If there is some orientation in the crystals (e.g. 

sedimented single crystal mats), there will be an orientation in the diffraction pattern.
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The sedimented crystal mats are usually made following a certain single crystal 

recipe, which involves self-seeding, growing single crystals from dilute solution and 

hot-filtering procedures [Organ, 1983; Otun, 1985 and Sykes, 1996]. Considering the 

limited quantity of the HB oligomer powders available for this project, it is not 

feasible to make sedimented single crystal mats from solution grown crystals in this 

work.

The SAXS pattern obtained from the Bruker NanoSTAR small angle X-ray system 

showed an exactly circularly symmetric pattern. Typical SAXS patterns for a melt 

grown HB 24-mer crystals and 16-mer(p) as-received powder are shown in Figure 

6.2. The peak intensity in Figure 6.2(b) is much higher than (a), also a clear second 

order peak can be seen in (b), suggesting that more well-defined crystals exist in HB 

16-mer(p) as-received powders than in 24-mer crystals crystallized at 70°C.

(a) (b)

Figure 6.2 SAXS pattern together with its integration intensity distribution as a function of the 
scattering angle 26 from (a) HB 24-mer sample grown from the melt at 70°C; (b) 16-mer(p) 
as-received powder sample.

6.2.1.2 The synchrotron X-ray radiation

The first use of synchrotron radiation in X-ray scattering [Rosenbaum et al., 1971] 

opened new possibilities in scientific investigation in polymer science [Eisner et al.,
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1985]. The intensity of the synchrotron radiation is extremely high compared to that 

available using a conventional source, which makes the measurement more efficient.

Some of the melt-grown OHB crystal thickness experiments were performed by 

SAXS using the high brilliance beamline ID2 at the European Synchrotron Radiation 

Facility (ESRF), Grenoble. Thin sample films were again grown isothermally between 

cover slips on two-hotstages from the melt, and then scraped off into 1.5 mm diameter 

Lindemann tubes. For exposure to the X-ray beam the sample tubes were mounted in 

a modified sliver block Linkam hotstage (for in-situ heating, cooling and isothermal 

crystallization). The samples were exposed at room temperature with only one or two 

exposures (of no more than 3 seconds each) to reduce the damage and degradation 

due to the high radiation intensity. The wavelength is 0.0995 nm and the detector 

distance in this case was 5 m. Data were collected using the Frelon CCD camera 

attached to an image intensifier. The resulting 2-D data were corrected for spatial 

distortions prior to integration.

Another advantage of the high brilliance ID2 beamline is that it can collect WAXS 

and SAXS data at the same time. The WAXS and SAXS detectors have been 

specially designed and set-up to give more scattering information on the same crystal 

sample. A photograph taken from ESRF ID2 beamline is given in Figure 6.3. Further 

details of the experimental set-up, the detector characteristics and the procedure used 

for data collection and analysis have been reported elsewhere, see [Terry et al., 2003; 

ESRF official website]. Raw pictures showing SAXS and WAXS pattern 

simultaneously taken at the ID2 beamline at ESRF are given in Figure 6.4. A few 

samples were heated and crystallized in-situ in the beam with up to 5 minutes total 

exposure to the X-rays. More data obtained at ID 11 beamline at ESRF using in-situ 

WAXS to reveal thickening and unfolding during heating will be presented and 

discussed in chapter 7.



Figure 6.3 Photograph of ID2 beamline detectors with WAXS and SAXS set-up at ESRF 
Grenoble [from ESRF official website].
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Figure 6.4 Raw pictures showing (a) SAXS and (b) WAXS pattern of a HB 32-mer(p) sample 
grown from the melt at 121°C. The two pictures are simultaneously taken using synchrotron 
radiation at the ID2 beamline at ESRF.
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6.2.2 Atomic force microscopy (AFM)

A few thickness measurements of HB 32-mer crystals grown from solution were also 

made by AFM, in collaboration with Dr JK Hobbs. The 32-mer samples were 

dissolved in propylene carbonate with a concentration of -0.2% (w/v) in 1.5 ml test 

tubes, and the solutions were then left in an oil bath at the chosen crystallization 

temperatures for several days. A drop of the crystal suspension was put onto a freshly 

cleaned cover-slip, put under vacuum to evaporate the solvent, and observed in a 

Veeco Dimension D3100 AFM. The AFM was operated in ‘tapping mode’ using 

silicon cantilevers with a nominal spring constant of 50 NnT1 and resonant frequency 

of -300 kHz at room temperature. More information on the AFM and its operation 

has been presented in the previous chapter, chapter 5. Thicknesses measured with the 

AFM are of an individual crystal rather than the average over many crystals as 

measured by X-ray scattering.

6.3 Results

6.3.1 Thicknesses from HB oligomer as-received powders

Preliminary studies on the thicknesses of some shorter and longer HB oligomers have 

been performed by Sykes in 1995. These data are complementary to the data obtained 

in this work and are included for a complete view in Table 6.1, along with the data for 

a PHB sample that was re-crystallized in a similar way to the oligomers. All the data 

in Table 6.1 were obtained using a conventional X-ray system at Bristol, and all the 

materials (except that for PHB) are as received, in the form of crystalline powders. 

The data indicate that the crystals are either grown from extended chains or, for the 

longer oligomers, from folded chains. The majority of 32-mer crystals contain once 

folded chains. The 96-mer with a crystal thickness of -4.83 nm (compared to an 

extended chain length of 28.6 nm) is folded several times and probably has 5 folds. 

The molecule length is based on two HB units of 0.596 nm, ignoring the length of all 

the protecting end groups.



Crystal thickness (nm)Suggested conformationMolecule 
length (nm)

OHB/PHB
Once

Folded
Extended

2.52 ± 0.02OH 2.38

8-mer (free)

•OH

4.80 ± 0.044.77*16-mer (free)

TBDPS POPOH

5.92 ±0.044.77
*16-mer (protected) OO

OH

7.30 ± 0.047.15*24-mer (free)

OH

4.93 ± 0.03

(m ajority )

9.81 ± 0.059.54*32-mer (free)

PP

OBn

4.99 ± 0.029.92 ± 0.059.54
:32-mer (protected) IF (m ajority)

OH
96

4.83 ± 0.0328.61
96-mer (free)

OH

5.58 ± 0.050.596 x n/2
*PHB

Table 6.1 Crystal thicknesses of ‘as-received’ HB oligomer materials. Samples marked with 
asterisks were measured in this work, the others are form Sykes [Sykes, 1996]. Molecule 
length is based on two HB units of 0.596 nm, ignoring the length of all the protecting end 
groups.
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In the as-received 24-mer samples only very low intensity and very broad diffraction 

peaks, at angles corresponding to fully extended chains, were observed. This suggests 

that in the HB 24-mer original as-received powders the crystals (if they exist at all) 

are almost entirely extended. In the case of HB 32-mer and 32-mer(p) original 

powders, diffraction peaks corresponding to both folded and extended chains were 

observed, but the proportions differed. The intensity of the peak at wider angles was 

much higher, suggesting that the HB 32-mer samples contained a mixture of very 

small proportion of extended chain crystals (and possibly an even smaller proportion 

of 2/3 length of the extended chain crystals, which are not shown in Table 6.1) and a 

majority of once folded chain crystals. Figure 6.5 shows the SAXS integration peaks 

for HB 24-mer and 32-mer as-received powders as a function of scattering angle 26, 

after the usual corrections and background subtraction are applied. The exposure time 

for 24-mer and 32-mer scattering was 12 hours, 3 hours in the case of 32-mer(p).
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Figure 6.5 SAXS integration peaks of (a) HB 24-mer, (b) 32-mer and (c) 32-mer(p) as- 
received powders as a function of scattering angle 20.

6.3.2 Thicknesses from HB 32-mer re-crystallized samples

SAXS thickness data were also measured on HB oligomer samples re-crystallized 

under better controlled conditions. The experimental procedures for preparing the 

melt and solution grown HB oligomer samples are given in previous chapters. SAXS 

data obtained from various melt and solution crystallized HB 24-mer and 32-mer 

samples are summarized in Table 6.2. All the spectra were recorded at room
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temperature, apart from the reheated samples of A, B and F, which were recorded in- 

situ with the synchrotron X-rays at the higher temperatures at the ESRF. The AFM 

thickness data of HB 32-mer crystal grown from propylene carbonate solution are 

given in Table 6.3. It should be noted that the quenched samples may well have 

crystallized over a range of temperature during cooling.

OHB sample Crystallization 
temperature (°C)

SAXS long period 
(nm)

A 32-mer (p) Room temp (quenched) 4.31 ±0.02
A 32-mer (p) Reheated to 150 10.21 ± 0.02
B 32-mer (p) 107 5.90 ± 0.02
B 32-mer (p) Reheated to 150 10.07 ± 0.02
C 32-mer (p) 112 6.04 ± 0.02
D 32-mer (p) 113 6.09 ± 0.02
E 32-mer (p) 121 6.10 ± 0.02
F 24-mer (free) Room temp (quenched) 3.86 ± 0.02
F 24-mer (free) Reheated to 140 7.65 ± 0.02
G 24-mer (free)* 90 5.32 / 3.71 ± 0.02
H 32-mer (fr) in 3.5% PC soln Room temp (quenched) 5.4 ± 0.1
J 32-mer (fr) in 3.2% PC soln 42 5.9 ± 0.1
K 24-mer (fr) in 3.2% PC soln 10 (quenched) 4.27 ± 0.02
L 24-mer (fr) in 2.9% PC soln 38 4.34 ±0.05

Table 6.2 Data of SAXS thicknesses (after correction) for re-crystallized HB 24-mer and 32- 
mer samples. For 24-mer sample G (marked with an asterisk), two populations of crystals 
exist simultaneously.

Sample Concentration 
in propylene carbonate (w/v)

Crystallization 
temp (°C)

AFM thickness 
(nm) ± 0.4

32-mer (fr) 0.021% in PC Room temp 
(quenched)

8.21/4.10*

32-mer (fr) 0.018% in PC 65 4.84
32-mer (p) 0.023% in PC 65 5.03
32-mer (fr) 0.028% in PC 50 4.21

Table 6.3 Data of AFM thicknesses for re-crystallized 32-mer samples. *Two overlapping 
layers can be seen in the bottom picture in Fig 5.6b, giving a single layer thickness ~4.10 nm.

Figure 6.6 shows some typical SAXS spectra for HB 32-mer samples from which the 

data in Table 6.2 were derived (samples A and B). Second or higher order peaks were 

only occasionally seen in the chain folded samples, but were more common for
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extended chain crystals. All the thicknesses obtained for HB 32-mer and a few initial 

measurements from HB 24-mer (from Tables 6.1-6.3) are gathered together in Figure 

6.7. More comprehensive thickness data subsequently obtained for 24-mer crystals 

grown from the melt over a wide range of crystallization temperatures will be 

presented and discussed in detail in a later section in this chapter.
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Scattering vector s  (nm'1)

Figure 6.6 Typical SAXS spectra for HB 32-mer(p) samples A and B. The spectra were 
recorded at (a) 31°C (b) after heating to 160°C. The data have had the Lorentz correction 
applied and the background scattering subtracted. The light curve is from sample A, 
crystallized at room temperature, and the bold curve is for sample B, crystallized at 107°C. 
The crystal thicknesses calculated from the peak positions are as shown.
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Figure 6.7 Chart summarizing the crystal thicknesses data of HB 32-mer and 24-mer
presented in Tables 6.1-6.3. The chain lengths are calculated based on two HB units of
0.596nm, ignoring the length of protecting end groups and any chain length involved in the 
fold for simplification.

Consider first the melt-crystallized samples of HB 32-mer(p), shown as solid triangles 

on the upper part of Fig 6.7. Here, only two distinct crystal thicknesses have been 

seen. The quenched sample (A) gives a value close to that for once-folded chain 

forms. At the higher crystallization temperatures, similar values have been measured 

in all the samples, which lie between the once-folded and extended chain lengths. 

Indeed, the value obtained here is very close to 2/3 of the extended chain length. One 

of the samples from which a thickness close to 2/3E was recorded is sample B, for 

which the SAXS spectra is shown in bold in Figure 6.6(a). Interestingly, the broad 

lower intensity peak visible in this trace is in fact a doublet, suggesting a mixed 

population of crystals. The shape and the position of this peak could be explained by a 

combination of a second order peak from the crystals of 2/3E, together with a first 

order peak from a small population of thinner crystals, possibly containing twice 

folded chains. Extended chain crystals were never obtained directly, but on heating 

the crystals a transformation occurred during which the initially folded chains became 

extended. This process will be described in more detail in the next chapter, chapter 7.

The values obtained from solution grown crystals are more scattered, and also subject 

to larger uncertainties. The experimental error associated with the AFM
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measurements is relatively large, and all the 32-mer crystals measured had thicknesses 

within the range expected from once-folded chains. The SAXS measurements were 

obtained from crystals in suspension, so although the intrinsic error in the 

measurements is smaller, the stacking between layers is likely to be very poor and the 

measured periodicity may not be a good reflection of the actual crystal thickness.

The crystal thickness values were calculated based on two HB units of 0.596 nm, 

ignoring the length of protecting end group and any chain length involved in the fold 

for simplification. These values are for chains that are arranged exactly perpendicular 

to the basal plane, any chain tilt would of course lead to smaller thicknesses. 

According to these calculations, many of the recorded crystal thicknesses are indeed 

close to that of a crystal containing chains folded to 2/3 of their full length.

The initial results from melt-crystallized 24-mer also yielded thickness values close to 

those of the once-folded chain, extended chain length (as-received power and after 

heating) and to a value in between, which is again close to 2/3 of the extended chain 

length as shown in Figure 6.7. Further thicknesses measurements from 24-mer melt 

grown crystals over a wide range of crystallization temperature were subsequently 

obtained to complement the growth rate curve presented in chapter 3. These thickness 

data confirmed a preference for the 2/3E thickness value. Even more surprisingly, 

more non-integer folded (NIF) forms have been found. The data are given below.

6.3.3 Thicknesses from HB 24-mer re-crystallized samples

The full set of crystal thicknesses measured from HB 24-mer melt grown crystals over 

the same range of the temperature as its growth rates (see Figure 4.5 in chapter 4) are 

shown in Figure 6.8. The different experimental methods are distinguished. A few 

data points from Table 6.2 and Figure 6.7 are included in Figure 6.8 for completeness. 

The ‘ESRF, crystallization in situ’ data were recorded at the crystallization 

temperature and a correction for thermal expansion has been applied using the data 

calculated from heating experiments followed by real time WAXS at ID 11 ESRF 

(details will be given in chapter 7). Where two such points are shown at the same 

temperature they refer to different crystallization times and this will be explained in 

the discussion section. All the other results were measured at room temperature with
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the exception of the ‘previous results’ point at 120°C, which refers to material that has 

thickened on heating and for which no reference is available. Some samples showed a 

very small secondary population of crystals of a distinctly different thickness: these 

crystals are likely to have grown on quenching, at a lower temperature than the initial 

crystallization.
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Figure 6.8 Crystal thicknesses of HB 24-mer samples as a function of crystallization 
temperature. See text for details.

6.4 Discussion

In common with other oligomer systems, it is possible to grow crystals from HB 

oligomers containing chains which are either extended or folded in half. However, 

crystals with intermediate thicknesses have also been produced. Most notably, a 

strong tendency for HB 32-mer crystals to form with a thickness equal to 2/3 of the 

extended chain length has been observed. Even more surprisingly, in the case of 24- 

mer crystals grown from the melt over a wide range of crystallization temperatures, 

more thicknesses equal to non-integer folded (NIF) chain length, such as 2/3, 3/4, 5/6 

of the extended chain length have been observed.
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The fact that these NIF crystal thicknesses occur begs the question why? The initial 

HB oligomer samples are all monodisperse, and there is no evidence for significant 

degradation either during these experiments or from DSC. Surprisingly, these 

materials appear to show even less preference for integer folding than non- 

monodisperse PEO fractions [Cheng et al., 1991]. To examine a possible explanation 

and explore possible links between the crystal growth rates, morphologies and 

thicknesses, a model based on different chain conformations has been proposed.

6.4.1 HB 32-mer

The first questions that arise from looking at the thickness results from HB 32-mer 

measurements are: Are the chains folding with non-integer fold lengths? Are the 

chains tilted relative to the basal planes of the crystals? Are there thick amorphous 

layers, or are these results due to the co-existence of different crystal forms? Could 

hydrogen bonding between chains influence behaviour? The discussion below will 

concentrate primarily on the common occurrence of crystals with thickness close to 

2/3 of the extended chain length, while acknowledging that these results do not 

conclusively exclude other intermediate values.

Firstly, look at the electron diffraction pattern shown in Figure 5.5 (d) in chapter 5, 

taken from the 32-mer single crystals grown under similar conditions to the 32-mer 

samples presented here. The electron diffraction pattern indicates that there is only 

little if any chain tilt, so the large tilt that would be necessary to account for the 

observation of crystals of thickness -2/3 of the chain length can be ruled out, at least 

in the case of the solution crystallized samples (samples H, J, K and L in Table 6.2). 

Also, as will be shown in detail in chapter 7, on heating crystals which are thinner 

than the fully extended length they thicken to that length. It seems improbable that 

this behaviour could arise simply from changes in chain tilt. If the crystals of 1/2 the 

extended chain length contained tilted extended chains they would be tilted at an 

angle of 60° to the basal plane -  which would be an extraordinary degree of tilt. Thus, 

it seems clear that these crystals containing once folded chains are approximately 

perpendicular to the basal plane. Now if these crystals thicken, in a steady fashion, up 

to the thickness corresponding to fully extended chains perpendicular to the basal 

plane, then it seems much more probable that they do so by ‘dragging’ chain ends
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through the crystals and keeping the chains approximately normal to the basal plane 

than that they should, on heating, both change the angle of tilt and unfold at the same 

time. Given the above, the argument that chain tilt alone can offer an explanation of 

the observation of 32-mer crystals with a thickness of 2/3 the extended chain length 

does not seem plausible.

A second explanation is that there is a low crystallinity providing crystals with a 

‘core’ thickness of approximately 1/2 the chain length and a thick amorphous zone. 

Such a model has been suggested to explain the appearance of transient non-integer 

(NIF) states in n-alkanes. The sketch in Figure 6.9 [taken from the work of Ungar et 

al., 2000] illustrates how this model could lead to the impression of a crystal with a 

thickness of 2/3 the chain length. In such a model half of every other chain is 

excluded from the crystal giving a thick amorphous layer so that an overall thickness 

approaching 2/3E could be achieved (provided the chains are normal to the basal 

plane of the crystals). The overall crystallinity of such samples would be around 75% 

of the crystallinity of crystals formed from extended or once folded chains.

NIF F2
Figure 6.9 Schematic drawing [from Ungar et al., 2000] of the non-integer (NIF) form in n- 
alkanes and the transformation to the once folded form. The NIF form must involve folded 
chains and chains that have a single traverse with a total cilium length of one half the chain 
length. The resulting repeat distance is then approximately 2/3 the extended chain length. 
Such crystals will have an amorphous content of approximately 25%.

Figure 6.10 shows wide angle diffraction patterns (after background subtraction) from 

samples of 32-mer(p) with thicknesses close to 1/2 and 2/3 the extended chain length, 

taken at room temperature. These do not show any significant difference in 

crystallinity: indeed a quick glance at the diffractograms suggests that, if anything, the
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sample with a thickness of 2/3 the chain length has a slightly higher crystallinity than 

the crystals grown from once folded chains. The SAXS patterns in Figure 6.6 also 

suggest a higher degree of order in the 2/3E crystals although the broad, and possibly 

double, second order peak seen in this sample hints at a more complex distribution.
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Figure 6.10 Wide angle diffractograms for two HB 32-mer(p) preparations, both recorded at 
31°C. An amorphous background from a completely melted sample has been subtracted. The 
purple line corresponds to sample A, which contains crystals with thickness 4.3 nm. The blue 
line corresponds to sample B, with crystals of thickness 5.9 nm.

NIF states have of course been seen in alkanes [see e.g. Ungaret al., 2000] and in 

sharp low molecular weight fractions of poly (ethylene oxide), PEO [e.g. Cheng et al., 

1991 and 1992]. But in the alkanes (and most of the PEO cases) the NIF states are 

transient: the crystals will change thickness to an integer folded form during 

crystallization. However, in PEO, there have been reports of NIF states that are more 

stable than the integer folded forms and it appears that these NIF states can have a 

high crystallinity as judged by the heat evolved as they crystallize [Cheng et al., 

1991]. Indeed Cheng et al have proposed a 2/3 folded structure with the ends 

incorporated in the lattice for these states.



Hence, based on the argument above, a possible arrangement of two chains within a 

crystal of 2/3 the thickness of the extended chain of 32-mer is sketched in Figure 6.11. 

The 2/3E fold model is based on two HB units of 0.596 nm, ignoring the length of 

protecting end group and any chain length involved in the fold. Also any chain tilt 

would lead to a smaller value of crystal thicknesses. Two of the chain ends lie within 

the crystal: in these HB oligomers these ends must be different due to the directional 

nature of the HB chain. In the case of the unprotected HB oligomers one end is a 

hydroxyl group and the other a carboxylic acid. It is therefore likely that hydrogen 

bonding will occur between the chain ends, effectively forming a dimer. Strong 

evidence for the formation of such dimers in a long alkanoic acid has been reported by 

Ungar and Zeng [Zeng and Ungar, 1999] who observed bilayer structures made up 

from extended chain doublets. If such doublets occur here then this proposed 2/3 

folded structure could in fact be regarded as the once folded form of the doublet. 

Other intermediate crystal thicknesses might be similarly explained as integer fraction 

thicknesses of longer entities (triplets, quads etc). It should be noted that no direct 

evidence has been seen for doublet structures in the HB oligomer experiments here. 

Unusual behaviour during the later stage of melting, which will be reported in chapter 

7, may indicate their presence and will be discussed later.

20

10

6

2/3 E

Figure 6.11 Sketch indicating how the chains could be arranged in a crystal of 2/3 the 
thickness of the extended chain length in 32-mer. The circles represent the OH groups (or 
protecting end groups) at the chain ends. The digits indicate the number of monomer repeat 
units, giving an approximately 2 monomers involved in the folds, and ignoring any chain tilt.

In the protected 32-mer(p) sample the carboxylic acid end is capped by a benzene 

ring. This is small enough to fit into the lattice of the shallow 2\ helix, and the 

similarity in behaviour between the capped and uncapped chains suggests that any
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association between chains is only slightly reduced by the presence of the end group. 

So it is at least plausible that the ends of the chains may be inside the crystals as is 

implied by the model for 2/3 integer folding in Figure 6.11.

Based on the HB 32-mer data, a plausible model has been proposed to explain these 

NIF crystals with 2/3E chain length. A more detailed study with HB 24-mer crystals 

grown over a wide range of crystallization temperatures, including a greater range of 

accurate measurements of crystal thickness gives more insight into the links between 

the chain conformation, crystal morphologies and growth rates. The discussion is 

given below.

6.4.2 HB 24-mer

6.4.2.1 Chain conformation

Two 24-mer melt grown samples (sample F and G, in Table 6.2) were first measured 

with SAXS at ESRF. Crystals of sample F, which were grown at room temperature, 

contain folded chains. When heated to around 140°C, they unfolded to produce 

extended chain crystals. The thicknesses of these crystals, before and after heating, 

have been included in Figure 6.8 (labelled by ‘previous results’) for completeness. In 

that case the folded chain form had a thickness close to half of the extended chain 

length (E/2), implying that the chains were folded exactly in half. Other thickness 

measurements for both 24-mer and 32-mer suggested that a crystal form with 

thickness close to 2/3 of the extended chain length (2/3E) was also common. This is in 

contrast to the results found in long n-alkanes, where stable crystal thicknesses have 

been found to correspond only to integer fractions of the extended chain length (E/2, 

E/3 etc). It is suggested that, in the HB oligomers, hydrogen bonding between chain 

ends can effectively link chains together into longer units, making a wider range of 

chain conformations possible.

Subsequently a wider range of thickness measurements were made on the 24-mer. 

These more comprehensive results are also shown in Figure 6.8. They demonstrate 

clearly that a wide range of thicknesses can be obtained between the values E/2 and E, 

although the relationship between crystal thickness and crystallization temperature is
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not straightforward. It is known that the samples are highly crystalline from wide- 

angle X-ray scattering results. Assuming a simple model in which the oligomer chains 

are linked together by hydrogen bonds to create pseudo-polymers, which crystallize 

via adjacent re-entry at the crystal surface, a series of discrete values of crystal 

thickness are possible corresponding approximately to the length of n repeat units 

where n lies between 12 and 24. The length of each repeat unit corresponds to half the 

c (c=0.596 nm) spacing in the unit cell, i.e. 0.3 nm, based on the same unit cell 

parameters in PHB [Barham et al, 1984].

At the lowest crystallization temperatures, a value of thickness close to E/2 has been 

obtained. A small proportion of crystals with this thickness were also detected in 

samples grown at much higher temperatures, consistent with some secondary 

crystallization on quenching to room temperature. Once folded crystals of 24-mer 

begin to melt at around 105°C, so it is extremely unlikely that these crystals could 

have grown at the crystallization temperature. At the highest temperature of 120°C, a 

thickness very close to the extended chain length has been measured, both from 

primary crystallization and from folded chain crystals that have been heated 

subsequent to growth. Between these extremes a range of values are obtained, but the 

points are clustered particularly around values corresponding approximately to chains 

with 16 and 18 repeat units (see Figure 6.8).

The small plateau at a thickness corresponding to 16 repeat units confirms the earlier 

suggestion from HB 32-mer that a crystal thickness of 2/3 E is a preferred value, 

although the preference is not strong. It can be argued that this thickness is 

energetically favoured because the arrangement of chains results in a relatively high 

proportion of chain ends on the crystal surface (and hence a lower surface energy). 

Now the model can be extended further by calculating the proportion of chain ends 

that would lie on the surface of a perfect crystal for each value of n between 12 and 

24: this is shown on the chart in Figure 6.12. Using this simple model, chain 

conformations with 12 and 24 repeat units can be seen as particularly favourable (as 

expected) followed by 16 (2/3 E), 18 (3/4 E) and 20 (5/6 E). The chain conformations 

corresponding to these values are sketched in Figure 6.13.

-  i l l  -



100
90-

80-

g 70- 
<2
w 60 
To 10
1  50-1o
cTO
.c 40 o
o
5s 30 

20 
10

I 1
12 13 14 15 16 17 18 19 20

Crystal thickness, monomer units
21 22 23 24

Figure 6.12 Chart showing the percentage of chain ends in the 24-mer crystal surface for 
different crystal thicknesses; see text for an explanation of the assumptions made.
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Figure 6.13 Schematic drawing showing the favourable chain conformations corresponding to 
extended (E), 5/6E, 3/4E, 2/3E and 1/2E chain forms, ignoring the chain length involved in 
the folds for simplification. The circles represent the OH groups (or protecting end groups) at 
the chain ends and the numbers indicate the monomer repeat units in each section.

The experimentally observed preference for crystals with thickness close to 16 and 18 

monomer units is thus consistent with the prediction from this simple model for the 

most energetically favourable thicknesses. The actual measured thicknesses are 

slightly less than the exact fractional values, as would be expected due to the length of
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chain involved in the fold. A preference for a thickness corresponding to 20 repeat 

units is less clear, although crystals grown at 106 and 110°C both yielded results quite 

close to this value, see Figure 6.8.

Two different X-ray systems were used to obtain the results, as shown in Figure 6.8. 

The nominal beam size for both X-ray systems is comparable at about 0.3 mm 

diameter, so that in these experiments several spherulites were generally sampled 

simultaneously. The two systems use different types of X-ray source, optics and 

detectors, which result in significantly better resolution in the ESRF system. If 

crystals are growing within the same sample with different, but similar, thicknesses 

this will be particularly difficult to resolve using the ‘Bristol’ set-up and the 

possibility of mixed crystal populations in these samples cannot be easily ruled out.

A second complication is that crystals can, and do, thicken during growth. The pairs 

of points recorded in-situ at ESRF at 85, 100 and 110°C were each obtained during a 

single crystallization run, the lower point coming from the initial growth and the 

upper point taken after crystallization was complete. This is an aspect that requires 

further investigation and will form the subject of a subsequent project. Apart from the 

points described above, crystallization times were relatively short; chosen to allow 

most of the sample to crystallize, while minimising the time available for annealing.

6.4.2.2 A reconsideration of crystal growth rates associated with the chain 

conformation

The growth rate vs crystallization temperature curve of HB 24-mer in Figure 4.5, 

given previously in chapter 4, reveals particularly scattered growth rate measurements 

at 85 and 100°C. For convenience, the growth rate curve is repeated here in Figure 

6.14. By comparison with the thicknesses data in Figure 6.8, it is interesting to note 

that 85°C corresponds to the point at which the crystal thickness changes from 16 to 

18 monomer units and 100°C marks the end of the temperature region where values 

close to 18 monomer units are favoured. At both these temperatures a number of 

slightly different crystal thicknesses were measured. Since each growth rate 

measurement corresponds to an individual spherulite, while the SAXS measurements 

are likely to encompass several different spherulites, it seems plausible that the result
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observed here is a competition between two similarly stable crystal forms. An 

individual spherulite might grow in either form, depending on the initial nucleation 

conditions, while the SAXS result would be skewed towards the thickness of the 

majority population.
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Figure 6.14 Growth rate as a function of crystallization temperature for HB 24-mer 
crystallized from the melt.

Crystals with different thicknesses have different melting points; the thicker the 

crystal the higher the melting point. Similarly, the supercooling at which a crystal 

grows will depend not only on the temperature, but also upon the actual crystal form 

(thickness) in which it grows (/©c HAT). This leads to an interesting phenomenon: at a 

higher crystallization temperature only a thick crystal can grow; as the temperature is 

reduced, so the supercooling for that crystal thickness increases and hence its 

crystallization rate also increases. Eventually the temperature falls below the melting 

point of a thinner crystal form, so it may start to grow. But the supercooling for that 

form is still low and it will only grow slowly; however, as the temperature falls 

further the growth rate increases and it can become the faster growing crystal, so it 

dominates.

As shown previously in chapter 4, there are some apparent discontinuities in the 

growth-rate gradient of 24-mer, particularly at temperatures around 100 and 85°C,
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although they are not as pronounced as the minimum found in the n-alkanes. The 

SAXS measured thickness data shown in Figure 6.8 suggest that there may well be 

changes in the thickness of the growing crystals near these temperatures; from 16 to 

18 repeat units at around 85°C and from 18 to 20 repeats near 100°C. Unfortunately, 

these thickness data are not directly measured from the crystals on which the growth 

rate measurements were made. However, an attempt can still be made to look in 

greater detail at the variation of growth rate with temperatures to see whether there are 

differences that may be attributed to changes in crystal thickness. It is conventional to 

plot InG against IITCAT and expect to see a linear graph (see section 2.3.2.2 in chapter 

2), rather than the highly curved graph obtained when G is plotted against Tc in 

polymer crystallization. In the case of 24-mer growth, it is known that different 

crystals are growing with different thicknesses and hence at different supercoolings, 

therefore a more general plot can be made.

It is important to recognize that it is dealed here with oligomers rather than polymers. 

In polymer systmem the equilibrium melting temperature, Tm° is usually taken as the 

melting point of an infinitely thick crystal made up from infinitely long molecules. In 

the case of oligomers this is, of course, not appropriate. The melting temperatures 

corresponding to different chain lengths are taken from the graph of Tm vs n shown in 

Figure 6.15, and the supercoolings are thus calculated by AT = Tm-T c. The melting 

points of different crystal forms of 24-mer and 32-mer of known thickness in Figure 

6.15 were derived from data obtained in heating experiments described in the 

following chapters, chapter 7 and 8.
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Figure 6.15 Variation in melting temperatures with crystal thicknesses, expressed in number 
of monomer units.

To construct the graph of InG against 1ITCAT from the growth rate data in Figure 6.14 

a small subset of temperatures for which (by comparison with Figure 6.8) the crystal 

thicknesses are reasonably credible was first selected. These were at 78°C, 90-95°C, 

106-110°C and 120°C. The corresponding thicknesses are 16, 18, 20 and 24 monomer 

repeat units respectively. These points are circled on Figure 6.16 (a), and were used to 

generate the best-fit line shown on the graph. Then an attempt has been made to plot 

the remaining points, taking the range of possible thicknesses into account. For 

example, for crystallization between 79 and 89°C, 16 or 18 repeat units should be 

considered, while between 97 and 105°C 18 or 20 repeat units are possible. These 

different possibilities are shown on Figure 6.16 (a) by the uncircled points 

corresponding to each value of n. In most cases it is clear that only one of the different 

possible thicknesses produces a data point near the expected line. In that case it is 

assumed that the crystals actually grew with that thickness: those points, together with 

the points used to generate the original line, are plotted in Figure 6.16 (b).
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Figure 6.16 (a) Plot of InG vs 1 IT(AT used to deduce the most likely thickness corresponding 
to each growth rate. The line was constructed from the circled points, where the crystal 
thicknesses are reasonably credible. For other points two possible values are shown.
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Figure 6.16 (b) Separate best fit lines calculated for each set of data from Figure 6.16 (a), each 
line corresponding to a different crystal thickness. On this graph only the points closest to the 
line from Figure 6.16 (a) are included.

Of course, this procedure is at best a crude approximation. The ‘equilibrium melting 

temperature’, Tm°, for each thickness comes from measurements of actual melting
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temperatures (Tm) and these values are subject to significant error. Furthermore, in 

practice it should not be expected that all the data lie on a single straight line but 

rather there should be a separate line for crystals of each thickness, due to differences 

in the surface free energies and other terms. In Figure 6.16 (b) a separate best fit line 

has been included for each of the three sets of data corresponding to thicknesses of 16, 

18 and 20 repeat units. This technique shows that the data are best interpreted as 

coming from crystals growing with different thicknesses and gives a most likely 

thickness to each growth rate measurement. Figure 6.17 shows all the replotted data in 

the form of G vs Tc, now using different symbols to show the assumed crystal 

thickness of each sample. The open symbols represent points which did not fit well to 

either value.
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Figure 6.17 Growth rate as a function of crystallization temperature for the 24-mer, showing 
the most likely crystal thickness (in monomer repeat units) as deduced from Figure 6.16.

The origin of the discontinuities at 85 and 100°C now become much clearer. In each 

case two superimposed curves can effectively be seen. At 100°C one curve (black 

triangles) corresponds to crystals with a thickness of 20 repeat units, and shows a 

sharp rise in G as AT increases; the other (black squares) correspond to crystals with a 

thickness of 18 repeat units. These crystals are at a lower effective supercooling and 

therefore grow more slowly. However, it is known that in alkanes the nucleation rate
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passes through a minimum with decreasing crystallization temperature which 

corresponds to a change of growth in one folded form to a thinner folded form; this is 

best explained as the thinner form having a higher nucleation rate then the thicker 

form [Organ et al., 1996]. Accordingly, it may be expected that in the case of HB 

oligomers grown at lower temperatures, nucleation of the thinner crystals is more 

likely to occur and they therefore should become the dominant form as the 

temperature is reduced further. The intermediate values are likely to arise from 

competition between these two competing crystal types, which may also be a factor in 

the particularly distorted crystal shapes that occur in this temperature range, see 

Figure 4.6 (g) and (h) in chapter 4. A similar situation is evident at 85°G, where 

curves corresponding to crystals with thickness 16 (black diamonds) and 18 (black 

squares) repeat units are superimposed.

Figure 6.16 (b) shows clearly that there is a decrease in ‘slope’ with decreasing crystal 

thickness. At first sight this may seem surprising. The ‘slope’, d, in this plot, in the 

terms of the simple models is given by

KbcrcrT0d = ----------£-*- (6.2)
kAH

where K  is a constant (usually 2 or 4 depending on the growth mechanism), & is the 

lattice parameter in the growth direction, <ris the crystal side surface free energy, ae is 

the crystal end surface free energy, AH the enthalpy of fusion, k is Boltzman’s 

constant and Tm° is taken from actual melting temperatures for different thicknesses, 

in this case, equals to Tm-Tc. Equation (6.2) is derived from Equations (2.8)-(2.10) in 

chapter 2. From Figure 6.12 one might expect a e to increase with decreasing crystal 

thickness, and AH to decrease with decreasing thickness. Furthermore, the viscosity of 

the melt will increase with decreasing temperature (decreasing thickness) so that an 

overall decrease in overall slope with decreasing thickness is at least reasonable.



6.5 Conclusions

Measurements on crystal thicknesses of HB 24-mer and 32-mer crystals grown both 

from the melt and solution over a range of crystallization temperatures have been 

performed using small angle X-ray scattering.

Overall, the HB oligomers form thin crystals with a range of thicknesses between 

extended and half of the extended chain length, although some thicknesses are 

possibly preferred over others. This is in contrast to the long n-alkanes, where a clear 

preference for thicknesses which are an integer fraction of the extended chain length 

has been observed. The difference in HB oligomer behaviour is likely to be due to the 

presence of hydrogen bonding between chain ends, which enables the oligomers to 

exhibit a more polymeric behaviour.

The results can be interpreted in terms of a model where crystal thicknesses which 

result in a relatively higher proportion of chain ends in the surface are slightly 

preferred over others. For the 24-mer, these correspond to E/2, 2/3E, 3/4E and 5/6E 

chain length. The suggested discontinuities previously observed in the gradient of the 

growth-rate vs crystallization temperature curve (at ~85 and 100°C) for the 24-mer 

can then be interpreted in terms of changes from one preferred chain conformation to 

another, i.e. from 2/3E to 3/4E and from 3/4E to 5/6E respectively. Whether such 

behaviour is a phenomenon limited to HB oligomers or is more general and can occur 

in other systems remains an open question still to be addressed.



Chapter 7 Unfolding Transitions during Heating of 

HB Oligomer Crystals Grown from the Melt

7.1 Introduction

Previous work on long n-alkanes crystallized from the melt has demonstrated that 

stable crystal forms have thicknesses equal to integer fractions (IF) of the extended 

chain length. Transient non-integer fraction (NIF) forms are often formed during 

initial crystallization but these rapidly transform into IF crystals (see section 3.2.3 in 

chapter 3). A structure has been proposed for the NIF crystal form which contains a 

mixture of folded and extended chains, with a thick amorphous region composed of 

long cilia from the extended chain portions [Ungar et al., 2000]. Folded chain crystals 

thicken when heated to higher temperature, successively passing through thicker IF 

conformations until they melt completely. Published examples include the once- 

folded to extended chain transition in C198H398 [de Silva et al, 2002] and transitions 

from four times folded to three, two, then once-folded chains in C390H782 [Ungar and 

Zeng, 2001]. A high resolution WAXS study of chain folded C198H398, C246H494 and 

C294H590 [Terry et al., 2003] has shown that each thickening event is preceded by an 

increase in disorder, as measured by the change in peak width, and that each 

thickening step is accompanied by a contraction of the crystal lattice.

A preference for certain more stable crystal thicknesses is also found for the HB 

oligomers but these are not always integer fraction forms. Presented in this chapter are 

the results from heating HB oligomer original as-received powders, melt-grown 

crystals of HB 24-mer and 32-mer with the chains folded in half, and crystals of 32- 

mer with a thickness corresponding to 2/3 of the extended chain length which are 

believed to correspond to a stable NIF form. There are both similarities and 

differences between the behaviour of these materials and the long n-alkanes: clear 

thickening transitions are seen, but the thickening can occur in discrete steps or 

gradual stages depending on the sample. Lattice distortions associated with chain 

unfolding produce an expansion in the fold direction when the chain extends. The 

effects of heating rate and of the benzyl protecting group on the thickening process 

are also investigated here.
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7.2 Experimental Procedure

High resolution real time wide angle X-ray scattering (WAXS) has been used to 

follow changes in crystallinity and lattice parameter which occurred on heating HB 

oligomer crystals grown from the melt. These effects can be correlated with changes 

in crystal thickness detected by small angle X-ray scattering (SAXS). The samples 

used in this study have 16, 24 or 32 repeat units (to be referred to as 16-mer, 24-mer 

and 32-mer respectively here) and most research effort was concentrated on the 32- 

mer, both with or without a benzyl protecting end group. The structures of the free 

and protected HB 32-mer powder samples are given in Figure 7.1.

O'

(a) (b)

Figure 7.1 Chemical structures of (a) HB 32-mer with no protecting end groups; (b) HB 32- 
mer with benzyl protecting end group.

For the initial WAXS measurements powders of 16-mer, 24-mer, 32-mer and 32- 

mer(p) were packed into 0.5mm diameter Lindemann tubes and mounted in a 

modified silver block Linkam hotstage placed in the X-ray beam. The samples 

consisted of as-received powders, which originally crystallized rapidly during solvent 

evaporation in the final stages of preparation. WAXS and SAXS measurements were 

made at the ESRF Grenoble, using beamlines ID11 andTD2 respectively.

The samples were heated at a rate of 2 or 4°C min'1 from a temperature well below the 

melting point and X-ray diffraction patterns were collected every 12 seconds with an 

exposure time of 1 second. The beam was turned off between exposures to minimize 

radiation damage to the sample. Samples can be used several times before any serious 

degradation could be detected, but all the results reported here correspond to the first 

melting run. Further details of the experimental set-up and the detector characteristics 

have been given in chapters 5 and 6. Temperatures quoted here are as recorded from

-  122  -



the hotstage and are internally self-consistent. No correction for thermal lag has been 

applied, although independent calibration available in a previous experiment suggests 

that this may be up to 2°C using the same experimental set-up.

7.3 Results and Discussion

A WAXS pattern obtained from the HB 32-mer at room temperature with the main 

reflections indexed is given in Figure 7.2. This is typical of those from all the HB 

oligomers and corresponds very well to the patterns obtained from the polymer PHB 

[Barham et al., 1984; Mitomo et al., 19&1]. Data analysis has been carried out using 

the two strongest reflections, arising from the crystallographic planes (020) and (110). 

After appropriate background subtraction the positions of the peaks were calculated 

together with the intensity (equal to the area of the peak) and the peak width, which is 

quoted as full width at half-maximum height (FWHM).

1300

1200 -
(020)

1100 -

1000 -

m 900 -
(110)

800

~  700 -

400 -
(101) (111)

300 - (130)

(021) (040)200 -

(011).
100 -

2 3 4 5 6 87 9 10 11 12 1513 14
20, degree

Figure 7.2 Wide angle X-ray diffraction pattern from HB 32-mer (original as-received 
powder) taken at room temperature, with the main crystalline reflections indexed.



7.3.1 Unfolding transitions in the HB 32-mer

Figure 7.3 shows typical results from a 32-mer with free ends heated at 4°C min'1. In 

Figure 7.3(a) the change in intensity as the sample is heated is shown alongside the 

variation in d-spacing, for the (020) reflection. Equivalent data for the (110) reflection 

is given in Figure 7.3(b). The variation in peak width with temperature was similar in 

both crystallographic directions and is shown for (020) in Figure 7.3(c), superimposed 

on the intensity data so that the behaviour at key temperatures can be compared.
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Figure 7.3 Wide angle X-ray results from HB 32-mer, heated at 4°G min'1.
(a) Variation in intensity and lattice spacing with temperature in the (020) direction.
(b) Variation in intensity and lattice spacing with temperature in the (110) direction.
(c) Variation in peak width with temperature for the (020) reflection. This is superimposed 
onto the intensity data so that the behaviour at the key temperatures of 136 and 143°C, shown 
by dotted lines, can be compared.

From previous SAXS measurements on the as-received powders, it is known that 

these crystals contain folded chains, the exact nature of the folded chain 

conformations that can occur has been discussed earlier in chapter 6. Crystal 

thicknesses have been measured in different samples corresponding to chains which 

are folded exactly in half (integer fraction, IF) or to non-integer fraction (NIF) folded 

forms, most often with thickness equal to approximately two thirds of the extended 

chain in HB 32-mer. For the purposes of the present discussion the chains are simply 

referred to as folded or extended. Crystal thickness data will be considered with the 

SAXS results in the later section.

The intensity data shown in Figure 7.3 shows a very pronounced transition during 

melting, similar to those observed previously in long n-alkanes [Terry et al., 2003] 

and in solution grown crystals of these oligomers, which will be reported in the next 

chapter, chapter 8. SAXS measurements have confirmed this to be associated with 

chain unfolding. The initial drop in intensity beginning at approximately 120°C
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represents melting of folded chains. Extended chain crystals then begin to form and 

the intensity starts to rise again at 136°C, reaching a peak at 143°C. Above this 

temperature the extended chain crystals melt. While the main peak was obtained 

consistently from sample to sample, the small subsidiary peak in the intensity curve 

between 152 and 156°C shown in Figure 7.3(a) was not reproducible and this data has 

been omitted from subsequent traces. Similar small but non-reproducible effects were 

occasionally seen in other samples, always towards the end of the melting process. 

These may be artefacts arising from slight movement of sample in the X-ray beam, or 

could represent some real but secondary structural feature. One possibility could be 

the formation of a double layer structure made up of dimers linked by hydrogen 

bonding. Such structures have been observed in a long chain alkanoic acid [Zeng and 

Ungar, 1999]. At present there are not sufficient data to pursue this possibility further.

Further insights into the re-crystallization are obtained from the peak width data 

shown in Figure 7.3(c), where lines have been drawn at 136 and 143°C to aid 

comparison between the two curves. The peak width begins to decrease even before 

the apparent onset of melting of folded chain crystals, and continues to fall up to 

130°C. This behaviour can be explained by the initial removal of less ordered folded 

chain crystal, so that the crystals remaining at 130°C, although smaller, are more 

perfect. Although the intensity is still falling from 130-136°C the peak width 

increases, and this is believed to be indicative of the onset of chain unfolding, causing 

disruption to the regular lattice packing. As extended chain crystals begin to form and 

the intensity rises, the peak width once again decreases, with 143°C representing the 

maximum extent of extended chain crystallization. Finally, as the newly formed 

extended chain crystals begin to melt the peak width first rises as the regular lattice 

becomes disrupted, and then starts to fall as the crystalline intensity decreases to zero. 

The changes in d-spacing on heating are discussed later.

7.3.2 Influence of heating rate

In Figure 7.4 the previous results are compared with a second sample of 32-mer 

heated at a slower rate of 2°C min'1. Figure 7.4(a) shows the change in intensity with 

temperature: the basic pattern of behaviour is the same and the transition temperatures 

are virtually unchanged. The slower heating rate allows more time for unfolding to



take place and a higher proportion of material is transformed into the extended chain 

form. This result emphasises the relatively slow rate of unfolding in this sample. By 

increasing the time spent in the critical temperature range of 135-143°C from 2 

minutes (at 4°C min"1) to 4 minutes (at 2°C min'1) the amount of re-crystallized 

material (as judged from the relative areas of the diffraction peaks) has risen from 

-28% to -65% of its initial value. Corresponding data for the (020) d-spacing and 

peak width at the slower heating rate are shown in Figure 7.4(b). The peak width data, 

which is plotted on an arbitrary y scale to facilitate temperature comparisons, shows a 

similar pattern to that seen at the higher heating rate.
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Figure 7.4 Effect of heating rate on the unfolding transition for HB 32-mer. (a) Change in 
intensity with temperature during heating at 2 and 4°C min'1; (b) Variation of (020) lattice 
spacing and peak width with temperature during heating at 2°C min'1, with intensity data 
included for comparison. The peak width is plotted on an arbitrary scale.



7.3.3 Changes in lattice spacing accompanying chain unfolding

The principal fold direction in PHB has been shown to be along the (110) direction 

[Barham et a l, 1984] and it is assumed to be the same in these HB oligomers. In this 

direction, where there is connectivity along the chain, a very clear change in lattice 

spacing is observed during chain unfolding and an example can be seen in Figure 

7.3(b). The lattice expands in a regular way during heating, as would be expected 

from thermal expansion. In addition, there is a discontinuous increase of 0.001 nm (or 

-0.2%) associated with chain unfolding, identical to that seen in solution grown 

crystals of HB oligomers, which will be given in chapter 8, but opposite in direction 

to that observed during unfolding in n-alkanes [Terry et al., 2003]. In this case, it 

appears that the folds serve to pull adjacent oligomer stems closer together along the 

(110) fold direction. Thermal lattice expansion is also seen in the (020) direction, and 

a somewhat irregular decrease in the rate of expansion accompanying partial 

dissolution and re-crystallization can be seen in Figure 7.3(a). A much clearer pattern 

of behaviour is apparent when the slower heating rate is employed, as seen in Figure 

7.4(b). As the folded chain crystals begin to melt the thermal expansion is reduced, 

but the original rate of expansion resumes once extended chain crystals start to form. 

Overall, there is a discontinuous decrease in (020) lattice parameter of approximately 

1.5xl0"4 nm, or 0.02%, in this direction, which is considerably smaller than the 

increase along the fold direction. If the crystal lattice were truly orthorhombic both 

before and after chain extension, these differing expansion factors would imply a 

large increase in (100) lattice spacing, which was not observed in the diffraction 

patterns. It therefore appears that the lattice is in fact slightly skewed in at least one of 

the crystal types observed here. It could suggested that the extended chain crystal 

lattice represents a ‘perfect’ HB lattice, which is evidently disrupted by the chain 

folds in a manner which pulls the chains closer together in the fold direction.

7.3.4 Effect of benzyl protecting end group

Figure 7.5(a) compares the (020) intensity data from a sample of 32-mer with no 

protecting end groups to that of 32-mer(p) which has a protecting benzyl group 

attached to one end of the chain. The heating rate was 4°C min'1 in both cases. The 

corresponding changes in d-spacing on heating are shown in Figure 7.5(b). The



samples give similar initial intensity, melting occurs over a very similar range of 

temperature, and the extent of the initial melting is virtually the same. Therefore the 

samples are believed to have a very similar initial composition.

(a)
120

100 -

'5coe
4 32-mer 
x 32-mer(p)20 -

20 40 60 80 100 120 160140
Temperature, °C

(b)

0.664 0.538

0.662 - - 0.536
n+4iiiininMiKu i i tHHWim in n tm

0.660 - - 0.534

e 0.658 - - 0.532 b e£
0.530 §,g. 0.656 -

§  0.654 - - 0.528 S

+ (020) d-spacing, 32-mer 
4 (020) d-spacing, 32-mer(p) 
x (110) d-spacing, 32-mer 
° (110) d-spacing, 32-mer(p)

0.652 - - 0.526

0.650 - - 0.524

0.648 0.522
20 40 60 80 100 120 140 160

Temperature, °C

Figure 7.5 Effect of benzyl end group on the unfolding transition, (a) Variation in (020) 
intensity with temperature for HB 32-mer samples, (b) The corresponding changes in d- 
spacing on heating. The 32-mer has no protecting end group, while the 32-mer(p) has a 
protecting benzyl group attached to one end of the chain. Heating rate is 4°C min"1.
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The temperature range over which chain unfolding and re-crystallization occurs is not 

affected by the presence of the benzyl end group, but the extent of re-crystallization is 

much greater in the sample with the protecting end. This rather surprising result 

implies that rather than impeding the unfolding process, the presence of the benzene 

ring facilitates unfolding. One possible explanation, that the presence of the benzene 

ring weakens the forces of attraction between neighbouring chains, does not seem to 

be borne out by the lattice-spacing measurements. Figure 7.5(b) shows that there is a 

small but consistent difference in the (020) spacing when the chains are folded, with 

the benzyl-terminated chains packing more closely than the unprotected chains. This 

difference is reduced when the chains extend. In the (110) direction the spacing is 

initially the same, but the lattice containing benzyl-terminated chains expands slightly 

less during heating. A more likely explanation for the increased rate of chain 

unfolding is that the capped oligomers have higher mobility due to reduced hydrogen 

bonding between the ends of chains, so that the potential for formation of dimers, 

trimers etc is reduced. A full explanation of these small but genuine differences 

requires a detailed analysis of the precise crystal structure, which is beyond the scope 

of this study. For the current purposes it suffices to note that unfolding transitions are 

clearly seen in samples of 32-mer, whether or not the benzyl protecting end group is 

present, and the transition temperatures are not affected by the end group. The benzyl 

protecting end group had no apparent effect on either crystal morphologies or growth.

The co-efficient of thermal expansion, calculated from the unprotected samples 

between 20 and 80°C, is 3.1 x 10"5 nm °C_1 in the (020) direction and 5.5x 10'5 nm °C’1 

in the (110) direction. Very similar data has also been obtained from PHB polymer 

and is given in other publication [Martinez-Salazar et al., 1989]. However, it should 

be noted that the a and b axes are assigned differently in that publication. No obvious 

jumps were observed during the heating of PHB, over a temperature range where the 

chains are unfolding, but did not approach the extended chain length.

7.3.5 A return to the crystal thicknesses in the HB 32-mer

Having established that the unfolding transitions occurred in both protected and 

unprotected samples, the 32-mer(p) was used for subsequent SAXS experiments since 

it showed clearer transitions and was available in larger quantity. In this section,
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studies of unfolding transitions followed by real time WAXS, and the associated 

changes in HB 32-mer crystal thickness and chain conformation, will be presented in 

detail.

Figure 7.6 shows crystal thickness data for two samples of 32-mer(p) as a function of 

temperature, collected during heating at 4°C min'1. The horizontal lines correspond to 

the extended chain length of 32-mer (E), and to half and two thirds of that value. 

These lengths are included for guidance only. They make no allowance for the length 

of the benzene ring (which adds approximately 0.5 nm to the total length of the chain, 

but which can take up different positions within the crystals), nor for the length of the 

fold itself, nor for thermal expansion of the lattice during heating.
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Figure 7.6 Crystal thickness measured from SAXS for 32-mer(p) as a function of temperature, 
collected during heating at 4°C min'1. The horizontal lines correspond to the extended chain 
length of 32-mer (£), and to half and two thirds of that value (1/2E and 2/3E). Sample A 
crystallized during rapid cooling to room temperature; sample B was crystallized isothermally 
at 107°C. WAXS data collected simultaneously is included for sample B for ease of 
comparison.

Sample A crystallized during rapid cooling to room temperature and has an initial 

thickness slightly less than E/2. Sample B was crystallized isothermally at 107°C and 

has an initial thickness close to 2/3E. The possible chain conformation in this sample 

is discussed earlier in section 6.4.1 in chapter 6. WAXS data collected simultaneously
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showed a clear transition in both samples, and the data for sample B is included in 

Figure 7.6 for comparison. This data provides convincing evidence that the transition 

in crystallinity observed using WAXS is indeed associated with chain unfolding to 

produce the change in crystal thickness revealed using SAXS.

The changes in crystal thickness which occur during heating for both samples confirm 

the proposed model of partial melting of folded chains, followed by re-crystallization 

in an extended chain form. There are, however, some subtle differences in behaviour 

between the two samples, which will now be examined in more detail. Figures 7.7 and 

7.8 show a series of Lorentz corrected SAXS spectra corresponding to representative 

temperatures selected from the range of data summarized in Figure 7.6. The vertical 

lines in Figures 7.7 and 7.8 indicate the value corresponding to the thickness of 

extended chains of 32-mer (E) at room temperature and to one half and two thirds of 

that value, with the same qualifications as before. Note that the crystals of sample B 

(which have thickness close to 2/3E in Figure 7.6) give much sharper SAXS peaks 

than those of A (close to 1/2E) and that the small second order peak just visible in 

Figure 7.8 is actually a doublet. Room temperature spectra from these samples are 

shown in Figure 6.5 in chapter 6 and the differences are discussed there.

In both samples, an initial rise in intensity with temperature has been seen as would be 

expected as the density difference between the crystalline and amorphous phase 

increases, see Figures 7.7(a) and 7.8(a). In the once-folded IF sample represented by 

Figure 7.7, there is a gradual shift in peak position during reorganization, towards 

higher crystal thicknesses, see Figure 7.7(b). This is accompanied by a decrease in 

intensity and a broadening of the peak, suggesting that a range of thicknesses may be 

present at any one time. Finally, the crystals stabilize at a thickness close to the 

extended chain value and the intensity rises once more, Figure 7.7(c). In the final trace 

at 167.1°C the crystals have almost completely melted.

The intensity variations are similar for the 2/3 folded NIF sample represented by 

Figure 7.8, but in this case there is a much sharper transition between folded and 

extended chain crystals. This contrasting behaviour suggests that unfolding is 

essentially a single stage process for this sample.
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7.3.6 Shorter chains: HB 24-mer and 16-mer behaviour

SAXS measurements from 16-mer powder give a crystal thickness of 4.80 nm, which 

compares well with the extended chain length of 4.77 nm, Table 6.1 in chapter 6. 

Figure 7.9 shows the WAXS intensity of the (110) reflection as a function of
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temperature during heating at 4°C min'1. No clear transition is apparent. The small 

discontinuity between 127 and 129°C may be due to movement of sample within the 

beam during melting, or could again indicate the presence of thicker crystals made up 

from dimers formed by chain association through hydrogen bonding between chain 

ends. The behaviour is consistent with extended chain crystals that do not re-organize 

during heating.

250

200  -

g  i5 o -

S  100 -

50 -

20 40 60 80 100 120 140 160

Temperature, °C

Figure 7.9 (110) WAXS intensity as a function of temperature for 16-mer, heated at 4°C min'1

Results from simultaneous SAXS and WAXS measurements from a sample of 24-mer 

are shown in Figure 7.10. This sample was crystallized from the melt by rapid cooling 

to room temperature (sample F in Table 6.2). The measurements were taken during 

subsequent heating at 4°C min"1. The initial crystal thickness changes from -3.9 nm at 

low temperature to -7.7 nm at high temperatures. By comparison with the extended 

chain length of 7.2 nm it is clear that once-folded chains initially existed, close to the 

IF value, which unfold on heating. The unfolding behaviour bears some similarity to 

that observed in the 32-mer but the transition is more rapid and occurs at a much 

earlier stage in the melting of the folded-chain crystals. Because extended chain 

crystals start to form before the majority of folded chain crystals have melted, the 

SAXS patterns collected during unfolding often show a double population of crystals. 

This is illustrated in Figure 7.11, which shows a selection of SAXS profiles collected 

at temperatures before (Figure 7.11a), during (Figure 7.11b) and after (Figure 7.11c)
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the unfolding transition. As before, the lengths of the extended chain (E) and of half 

that value are included for comparison. Unlike the 32-mer IF sample shown in Figure

7.6 and 7.7, no crystal thicknesses were detected in the intermediate range between 

E/2 and E.
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Figure 7.10 Simultaneous SAXS and WAXS measurements from a sample of 24-mer 
crystallized from the melt by rapid cooling to room temperature and subsequently heated at 
4°C min'1. The dashed lines correspond to the extended chain length (E) and 1/2 of that value.
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crystallized from the melt by rapid cooling to room temperature and subsequently heated at 
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Ungar and co-workers have published SAXS results showing the once-folded to 

extended chain transition in C198H398 [de Silva et al., 2002] and transitions from four 

times folded to three, two then once folded chains in C390H782 [Ungar and Zeng, 

2001]. In both cases the thickening proceeds via discontinuous jumps from one 

integral folded form to another, as seen here for the 24-mer. In the C198H398 example 

chain tilt is invoked to account for a gradual decrease in thickness with temperature in 

both the folded and extended chain forms, with the tilt reaching a maximum value of 

35° just below the melting point of the extended chain crystals. There is no evidence 

here for appreciable chain tilt in the HB samples. Polyethylene crystals can be grown 

with a wide range of lamellar thicknesses and, when heated, have been shown under 

certain conditions to rearrange initially via a discontinuous doubling in thickness. This 

is followed by a further gradual increase in thickness, the final extent of which 

depends on the heating rate (or annealing time) employed [Barham et a l, 1981; 

Martinez-Salazar £7 <2/., 1985].

The behaviour of the 32-mer is rather different to that of the 24-mer, since there are 

examples both of stable NIF states and of transitory crystals with thicknesses between 

the stable forms. The latter may be partly a consequence of the slow thickening rate, 

which enables intermediate forms to be detected. It also seems that the effects of chain 

association through hydrogen bonding between ends would lead to a more 

‘polymeric’ behaviour. However, the fact that the two different samples of 32-mer 

behave differently from each other is puzzling and suggests that the explanation is 

more complex.

7.4 Conclusions

High resolution wide angle X-ray scattering has been used to follow changes in 

crystallinity and lattice parameter which occur on heating hydroxybutyrate oligomers. 

These effects can be correlated with changes in crystal thickness detected by small 

angle X-ray scattering. Melt-grown crystals from HB oligomers with 24 and 32 repeat 

units that initially contain once folded chains transform during slow heating to 

produce extended chain crystals. This chain unfolding occurs via a process of partial 

melting and re-crystallization, and is accompanied by an expansion in the crystal
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lattice of approximately 0.2% in the (110) fold direction and a much smaller 

contraction in the (020) direction. The rate of transformation is slow and is affected by 

the length of chain and the nature of the end groups. For the samples examined here 

complete extension took approximately 3 minutes in the 24-mer, 4 minutes in the 

protected 32-mer, and was not achieved within 4 minutes in the free 32-mer. The 

presence of a benzyl protecting group on one end of the chain does not affect the 

transformation temperature but reduces the (020) and (110) lattice spacings very 

slightly, as well as increasing the rate of transformation.

The variation in crystal thickness during chain unfolding depended both on the length 

of the chain and on the initial crystal thickness (which in turn depended on the 

crystallization temperature). In the 32-mer(p) examples were seen of a gradual 

increase in thickness from IF folded chains to extended chains, and of a discontinuous 

jump in thickness from NIF folded chains to extended chains. In the 24-mer a dual 

population of IF folded and extended chains was observed during transformation. In 

all cases examined here the stable crystal forms displayed specific crystal thicknesses 

simply related to the extended chain length, but the intermediate stages of thickening 

vary between samples.



Chapter 8 Thickening and Unfolding on Heating of 

HB Oligomer Crystals Grown from Solution

8.1 Introduction

Studies of n-alkane single crystals grown from dilute solution in toluene have shown 

that stable crystal forms have thicknesses equal to exact integer fractions of the 

extended chain length, the same as those found from melt-grown crystals. Under some 

conditions crystals can thicken from one stable form to another at a constant 

crystallization temperature, and characteristic crystal morphologies have been 

observed during this process [Organ et al., 1990]. Rates of crystallization and 

thickening in solution have been measured using a method based on differential 

scanning calorimetry (DSC). These have revealed minima in crystallization rate where 

primary crystallization changes from one chain folded form to another. The growth 

rate dependence and associated changes in crystal morphology are explained using a 

simple theoretical model based on self-poisoning of a growing extended (or less 

folded) chain surface by almost-stable more times folded chain conformations.

A much wider range of preferred crystal thicknesses have been observed for the HB 

oligomers as presented in chapter 6. The growth rate data on HB oligomer crystals 

grown from the melt, in particular HB 24-mer, has revealed apparent discontinuities 

in growth-rate gradient at 85 and 100°C, but less pronounced than the minima found 

in the alkanes. These discontinuities associated with the thickness data and unfolding 

transitions followed by real time SAXS have confirmed the change between different 

crystal conformations at each point. A discontinuity has also been observed in 

solution-grown HB 32-mer growth-rate gradient at 36-37°C and limited data from 24- 

mer gives a weak indication of a discontinuity at 30-35°C. These discontinuities 

could correspond to the change from folded to extended chain forms.

This chapter concentrates on the crystal thickening and chain unfolding behaviour of 

HB 24-mer and 32-mer grown from dilute solution in propylene carbonate, followed 

in real time using synchrotron X-ray radiation. The growth rate data have been



successfully measured by in-situ synchrotron wide angle X-ray scattering (WAXS) 

and reported earlier in chapter 5. The changes to crystals of 24-mer and 32-mer that 

occur on heating in suspension will be described in detail here. These can be 

understood in terms of chain unfolding and provide further insight into whether the 

crystals grown at a particular temperature contained folded or extended chains. The 

high intensity of the synchrotron radiation allows clear diffraction patterns to be 

obtained for crystal concentrations as low as 0.1% (w/v) and the high resolution of the 

detector employed permits very small changes to the lattice parameters to be observed 

and measured.

8.2 Experimental Procedure

Samples were prepared from HB 24-mer and 32-mer. The 32-mer was also used for 

growth rate studies; both samples were used for heating experiments. The samples 

used in the experiments described in this chapter are all in the ‘free’ form.

A measured amount of oligomer (typically 0.3 mg) was placed in a 2mm diameter 

Lindemann tube and sufficient propylene carbonate was added to give a concentration 

of approximately 3% (w/v). The Lindemann tubes were then shortened and flame 

sealed to prevent evaporation of solvent during the experiment. For exposure to the X- 

ray beam the samples were mounted in a modified silver block Linkam hotstage. The 

wide-angle diffraction data were collected at the Materials Science beamline, ED 11 at 

the ESRF Grenoble. Further details of the experimental set-up, the detector 

characteristics and the procedures used for data collection and analysis have been 

reported in section 5.3.4.1 in chapter 5.

Each sample was first crystallized isothermally as described previously in chapter 5. 

After crystallization was complete, the samples were heated at 8°C min'1 until they 

had completely re-dissolved. Diffraction data were collected so that any changes 

occurring prior to dissolution could be examined. In one experiment the heating was 

stopped midway and the sample annealed for some time before resuming heating.
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8.3 Results

8.3.1 HB 32-mer

Further insight into the conformation of chains within the crystals grown at different 

temperatures is obtained when the crystals are heated. Figure 8.1 shows the variation 

in intensity of the (020) reflection as HB 32-mer crystals are heated, in suspension in 

propylene carbonate, to the point where they dissolve. Results are shown for five 

different crystallization temperatures that span the range of interest and correspond to 

the same range shown in Fig 5.9 in chapter 5. The curves have been staggered along 

the y axis for ease of comparison: the final intensity was zero in each case.
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Figure 8.1 Variation in intensity of the (020) reflection as crystals of HB 32-mer, grown at the 
crystallization temperatures shown, are heated in suspension at 8°C min'1 to the point where 
they dissolve. The curves have been staggered along the intensity axis for ease of comparison: 
the final intensity in each case is zero.
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The subtleties of the observed behaviour will be discussed later, but the main features 

can be summarised as follows:

■ The initial drop in intensity, corresponding to the onset of dissolution, 

increases with crystallization temperature.

■ The temperature at which the crystalline intensity falls to zero is similar for all 

samples and in the range 82-86°C.

■ A two stage dissolution process is evident for crystals grown at 10, 20 and 

30°C, i.e. at temperatures below the discontinuity (36-37°C) in crystallization- 

rate gradient seen in Figure 5.10 in chapter 5. This indicates partial dissolution 

and re-crystallization during heating.

■ A single dissolution process occurs for crystals grown at 40 and 50°C, i.e. at 

temperatures above the discontinuity in crystallization-rate gradient.

The variation in intensity of the (110) reflection with temperature is not shown, but it 

showed identical trends in behaviour.

Figure 8.2(a) shows the variation in (020) lattice spacing with temperature, for the 

same 5 samples as shown in Figure 8.1. The lattice spacing increases with 

temperature, as would be expected. If the maximum values are taken to represent an 

‘ideal’ behaviour then the expansion is linear (as shown by the dotted line on the 

graph) and yields a co-efficient of thermal expansion of 2.5 ± 0.3 xlO'5 nm °C'1. There 

is some deviation from this linear behaviour, particularly for the samples grown at the 

lower crystallization temperatures: the point at which the thermal expansion deviates 

from linear behaviour is comparable to the onset of dissolution seen in Figure 8.1.

The effect of heating on the (110) lattice parameter is illustrated in Figure 8.2(b). For 

the samples crystallized at 40 and 50°C there is a simple linear relationship between 

lattice spacing and temperature. The samples grown at lower temperatures begin to 

expand at a similar rate, giving an average co-efficient of thermal expansion (□) of 

5.3±0.3xl0‘5 nm °C'1 although the absolute values differ slightly according to the 

original crystallization temperature. These samples experience an increased rate of 

lattice expansion over the temperature range where it is seen that partial dissolution 

and re-crystallization is taking place. The additional shift in lattice spacing, over and
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above that expected from thermal expansion, introduced during this process can be up 

to 0.001 nm as indicated by Ud on Figure 8.2(b).
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Figure 8.2 (a) Increase in (020) lattice spacing with temperature for the 32-mer. (b) Increase 
in (110) lattice spacing with temperature for the 32-mer. The dotted lines show the data from 
which the co-efficient of thermal expansion calculations were made.

In Figure 8.3(a) the variations in lattice spacing during heating are plotted alongside 

the intensity curve for the sample crystallized at 10°C. The lattice spacings are plotted 

on the same scale, but have been displaced along the y axis for ease of comparison. It
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is clear that deviations from linear behaviour are linked to the partial dissolution/re

crystallization process, and that the (110) lattice spacing is affected much more than 

the (020). Changes in peak width also occur over this temperature range, as shown for 

the same sample in Figure 8.3(b). The peak width is a measure of the full width at half 

the maximum height (FWHM) and gives an indication of the degree of order in the 

corresponding crystallographic direction. An increase in FWHM occurs during the 

transition stage, which persists until dissolution sets in once more. Similar behaviour 

was observed for the crystals grown at 20 and 30°C.
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Figure 8.3 (a) Variation in peak intensity and lattice spacings with temperature, (b) Variation 
in peak intensity and peak widths with temperature. Both sets of data are from a sample of HB 
32-mer crystallized at 10°C. The data have been plotted using different (arbitrary) y axis 
scales to facilitate comparison. The temperature axis is the same in each case.
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8.3.2 HB 24-mer

More limited experiments were carried out using the 24-mer and growth rate 

measurements have been presented previously in Fig 5.12 in chapter 5. On heating the 

crystals in suspension in solvent, similar effects were observed as for the 32-mer. 

Figure 8.4 shows a set of intensity vs temperature curves for 24-mer crystals grown at 

four different temperatures, which have been staggered along the y axis for ease of 

comparison. Again there is evidence for partial dissolution and re-crystallization, 

more limited in extent than for the 32-mer, for the crystals grown at the lower Tcs. For 

Tc= 40°C a single dissolution process was observed. The temperature of the onset of 

dissolution does not vary greatly with initial crystallization temperature in the range 

29-40°C.
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Figure 8.4 Intensity of the (020) reflection as a function of temperature during crystallization 
of HB 24-mer at the temperatures shown. The curves have been staggered along the intensity 
axis for ease of comparison: the final intensity in each case is zero.
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Figure 8.5(a) superimposes the data for Tc = 29°C onto that for a second sample, 

which was crystallized at a very similar temperature but interrupted during heating 

and held at 60°C for approximately 15 minutes to investigate the effect of annealing. 

At this point more than 80% of the original intensity has been lost. 60°C is well above 

the temperature range where samples will crystallize from solution in a reasonable 

time scale. However, annealing in the presence of a small amount of crystalline 

material appears to have induced a self-seeding effect as the intensity rises within a 

relatively short time to a value higher than that in the original sample. The increase in 

intensity over time during the annealing period is shown in Figure 8.5(b).
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Figure 8.5 (a) Intensity of the (020) reflection as a function of temperature for two samples of 
24-mer. Sample A was crystallized at 29°C and heated at 8°C min'1 until it dissolved. Sample 
B was crystallized at 30°C and annealed for 15 minutes at 60°C during heating; (b) Change in 
intensity of the (020) reflection with time for sample B, during annealing at 60°C.
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The small upturn in intensity just before final dissolution in Figure 8.5a, seen also to a 

lesser extent in the traces for Tc = 20 and 35°G in Figure 8.4, is curious. Examination 

of the WAXS patterns in this range show no change in crystal structure. Similar 

effects were also occasionally seen in melt crystallized samples, see Figure 7.3(a), and 

may simply be the result of the movement of sample within the beam, or possibly an 

indication of double layer crystals formed from dimers. Such structures have been 

reported by Zeng and Ungar [Zeng and Ungar, 1999] using a long-chain 1-alkanoic 

acid in which hydrogen bonding can occur between chain ends.

The variations in both d spacing and peak width on heating followed similar patterns 

in the 24-mer to those described above for the 32-mer. The clearest effects were seen 

in the (110) lattice spacing and the (020) peak width and examples of each of these 

are shown in Figure 8.6 for the sample crystallized at 20°C. The corresponding 

intensity vs temperature is included for comparison. This data yields a shift in (110) 

spacing accompanying chain unfolding of approximately 0.001 nm, in line with that 

measured for the 32-mer, and is identical to that seen in melt grown HB crystals. The 

coefficients of thermal expansion in the (110) and (020) lattice directions were also 

within the range given for the 32-mer. The peak width increases and then decreases 

during partial dissolution and re-crystallization in a similar manner to that seen in 

Figure 8.3 for the 32-mer.
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Figure 8.6 Peak intensity, lattice spacing, and peak width for a sample of 24-mer crystallized 
at 20°C. The three sets of data have been plotted using different (arbitrary) y axis scales to 
facilitate comparison. The temperature axis is the same in each case. The lines show the data 
from which the co-efficient of thermal expansion calculations were made.

- 146 -



As before, it is believed that the partial dissolution and re-crystallization observed 

during heating in samples crystallized at the lower temperatures corresponds to chain 

extension in crystals which were initially folded. The small increase in lattice spacing 

along the (110) direction which results from this chain unfolding can be seen clearly 

by comparing the diffraction patterns taken at the same temperature from samples just 

before and just after annealing at 60°C. Intensity data for this sample is shown in 

Figure 8.5 and the diffraction patterns taken before and after annealing for 15 minutes 

are superimposed in Figure 8.7. The increase in intensity resulting from annealing is 

clearly apparent and the peak position of the (110) reflection has shifted from 0.525 to 

0.526 nm.
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Figure 8.7 X-ray diffraction patterns from the 24-mer (sample B) taken before and after 
annealing at 60°C.

8.4 Discussion

The growth rate data for crystals grown over a range of 10-55°C for the 32-mer and 

20-40°C for the 24-mer have been given in chapter 5. Above these temperatures 

crystallization was prohibitively slow, although it is apparent from the single annealed 

sample of 24-mer that there may be some scope for extending the range using a self- 

seeding procedure. Lower temperatures require higher cooling rates to ensure that no
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significant crystallization occurs during cooling. A comprehensive set of growth rates 

was obtained for the 32-mer, but the results for the 24-mer were more limited.

The tentative discontinuity in 32-mer growth-rate gradient suggested at around 36- 

37°C presented earlier in chapter 5 is much less pronounced than those obtained from 

long n-alkanes grown from solution, where they are associated with a transition from 

one stable crystal form to another. It is now clear from the dissolution behaviour seen 

in Figure 8.1, however, that crystals from sample 1 grown below the discontinuity are 

able to reorganize into a more stable form on heating while those grown above the 

discontinuity are not. Thickness measurements made on crystals of a 32-mer with a 

benzyl end group on one end of the chain, which have been reported in chapter 6, also 

indicate that the 32-mer grows from the melt with extended chains at high 

crystallization temperatures and with folded chains at lower temperatures. Different 

chain conformations are possible but for solution grown crystals the thickness is 

consistent with chains that are folded in half.

Crystals of 32-mer grown at 10, 20 and 30°C show clear transitions on heating that 

can be associated with chain unfolding. In other sample (sample 3 in Figure 5.10), 

much smaller discontinuities were observed in a similar temperature range for the 

crystals grown at 35 and 35.5°C, which suggest that chain unfolding either happened 

very quickly, or had already occurred to some extent before the crystals were heated. 

Isothermal thickening at the crystallization temperature is known to occur rapidly in 

solution grown crystals of n-alkanes close to the temperature where primary growth 

changes from folded to extended chains [Ungar and Organ, 1990]. No discontinuity 

was visible for crystals grown at 36°C or above, consistent with these crystals 

containing extended chains. It should be noted that the temperature of the transition 

from folded chain to extended chain growth will vary with solution concentration 

[Ungar et al., 2000; Terry et ah, 2003]. In earlier reported AFM thickness 

measurements on crystals of 32-mer grown at 65°C, the crystal thicknesses were 

consistent with once-folded chains. The solution concentration in that case was 

0.018% (w/v).

From examination of the dissolution behaviour of the 24-mer, transitions for 

crystallization temperatures up to 35°C, but not at 40°C, have been seen. This suggests
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a change from folded to extended chain growth between 35 and 40°C for the 24-mer. 

This is slightly higher than the position of the minimum tendency in growth rate 

suggested by Figure 5.12 in chapter 5, which is at 30-35°C. Further measurements 

would be necessary to look at the transition point more precisely.

Similar changes in intensity during heating (i.e. an initial decrease, followed by an 

increase, then by final melting) have been observed for melt crystallized samples of 

HB oligomers (presented in chapter 7) and long n-alkanes containing folded chains. In 

the case of the alkanes the unfolding was accompanied by a rapid contraction of the 

crystal lattice in both the (110) and (200) directions, which was attributed to the 

removal of lattice distortion introduced by the folds [Terry et al., 2003]. By contrast, 

in the HB oligomers, a discontinuous increase in (110) spacing of typically 0.001 nm 

(or approximately 0.2%) results from chain unfolding. This is in addition to a small 

and regular increase in lattice spacing during heating due to thermal expansion. It 

should be remembered that (110) is the fold direction in PHB, and this result suggests 

that in this case the folds are causing the lattice to skew slightly. The same behaviour 

was seen in the annealed sample, where the (110) lattice spacing increased by

0.00lnm at constant temperature as new, extended chain, crystals grew from folded 

chain seeds. The effect of unfolding in the (020) direction, where there is no physical 

link between the chains, is seen more clearly in melt crystallized samples and has 

been described in the previous chapter, chapter 7.

The increase in peak width accompanying thickening correlates well with the changes 

in lattice spacing. This is most probably due to the superposition of the thickened 

lattice and the un-thickened lattice and reaches a maximum in the region where both 

lattices would be expected to be present. An alternative explanation put forward for 

the alkanes [Terry et al., 2003] invoking the transitory introduction of defects into the 

lattice during the unfolding process could also contribute.

The initial onset of dissolution depends strongly on crystallization temperature and 

falls in the range 40-70°C for the 32-mer. In contrast to the behaviour of the alkanes 

[Organ and Keller, 1987], there do not appear to be discretely different values 

corresponding to folded and extended chain crystals and this is consistent with the 

possibility of a wider range of crystal thicknesses, as discussed in chapter 6. This

-1 4 9 -



more polymeric behaviour in the HB oligomers may arise from associations between 

chain ends caused by hydrogen bonding, which could reduce the tendency of the 

oligomer chains to act as independent units. However, the end point of dissolution is 

the same for all crystals regardless of their original conformation, and gives the 

dissolution temperature of extended chain crystals as approximately 85°C. For the 24- 

mer the onset of dissolution fell in the range 40-50°C and the end point was at 

approximately 100°C. The fact that this value is higher than that measured for the 32- 

mer is surprising and suggests that the degree of perfection achievable in the extended 

chain crystals during their limited lifetime is greater in the shorter chain oligomer. 

The high dissolution point in the 24-mer could also be further evidence for the 

formation of a double-layer structure, as mentioned previously. Experiments using 

differential scanning calorimetry (DSC) might be helpful in this respect and need 

further investigation in the future.

8.5 Conclusions

Synchrotron X-ray radiation has been used to observe the crystallization and study the 

chain unfolding behaviour during heating in HB 24-mer and 32-mer crystals grown 

from solution. The suggestions made concerning discontinuities in crystallization-rate 

gradient of the 32-mer and 24-mer are supported by the chain unfolding transitions on 

heating.

The folded chain crystal forms grow at lower crystallization temperatures, i.e. below 

36-37°C for 32-mer and below 35°C for 24-mer, and transform during heating to the 

more stable extended chain form. Crystals grown above the transition temperature 

contain extended chains that do not rearrange during heating. This transformation 

occurs via a process of partial dissolution and re-crystallization, which can be 

followed in-situ from measurements of X-ray crystallinity as the samples are heated at 

constant rate. Unfolding is accompanied by a thermal expansion of the lattice in the 

range of 5.3 ± 0.3x 10'5 nm °C'1, with an additional discontinuous increase of O.OOlnm 

in the fold direction (110) and by associated changes in peak width. Chain unfolding 

may also be achieved by annealing folded chain crystals at temperatures above the 

initial crystallization temperature.
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Chapter 9 Conclusions and Future Work

This thesis aims at investigating the crystallization behaviour in 3-hydroxybutyrate 

(HB) oligomers with exact length between 8 and 96 repeat units, which are short 

chain analogues of the polymer poly(3-R-hydroxybutyrate), PHB. These materials, 

synthesized via a sequential coupling process developed by Seebach and co-workers 

at ETH Zurich, are very useful to explore the generality of the crystallization 

behaviour observed previously in the n-alkanes, since they have the larger and more 

chemically complex monomer unit. The main objective of this work is to gain a more 

comprehensive understanding of HB oligomer crystal chain folding, crystal growth 

and thickening, and morphological changes at different crystallization conditions, 

both from the melt and solution. This final chapter will summarize the main findings 

presented in this thesis, and suggest general areas in which further work may be 

profitable.

9.1 Conclusions

The original contributions to knowledge by this study are summarized as follows:

9.1.1 Crystal morphology

Spherulitic crystals grown from the melt over a wide range of crystallization 

temperatures and observed using polarizing optical microscope were well defined. 

The spherulites grown at lower temperatures are nicely banded and look remarkably 

similar to those grown from the polymer, PHB. The band spacings are also very 

similar to those observed in PHB. As the crystallization temperature increased the 

banding disappeared, the shape of the spherulites became less regular, and a coarser 

texture associated with reduced branching developed at the highest temperatures.

Single crystals of HB 24-mer and 32-mer were grown from dilute solution in 

propylene carbonate, and observed in the transmission electron microscope (TEM) 

and atomic force microscope (AFM). Overall, the single crystals have an appearance
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very similar to those from PHB grown under similar conditions. Electron diffraction 

indicates that the chains are closely perpendicular to the basal plane of the crystals. 

Wide angle X-ray diffraction suggests that all crystals, no matter what their 

thicknesses are, have the same crystal structure. Crystals of HB 32-mer with free ends 

and with a protecting benzyl group at one end were observed and compared. Not 

much difference was found between the two types of 32-mer on crystal morphologies.

9.1.2 Crystallization rates

Crystal growth rates have been measured over a wide range of crystallization 

temperature for HB 24-mer and 32-mer grown both from the melt and solution. The 

complementary growth rate data for 24-mer and 32-mer spherulites grown from the 

melt were measured in real time using optical microscopy. A two-hotstage method 

gives a much wider supercooling range over which the growth rates were recorded for 

24-mer. In the 24-mer grown from the melt, the growth rates pass through a maximum 

at 75°C, and show a very similar curve to that measured from PHB. However, the 

measurements were unusually scattered at around 85 and 100°C, giving two 

discontinuities in the growth-rate gradient. Similar but less pronounced phenomena 

have also been observed at around 113 and 119°C for 32-mer grown from the melt.

Crystallization rates of HB 32-mer grown from solution in propylene carbonate have 

been measured in-situ as a function of crystallization temperature, following the 

intensity increase of the (020) reflection as a function of time using high resolution 

synchrotron wide angle X-rays diffraction at the ESRF Grenoble. More limited data 

were obtained for the 24-mer grown from solution. A tentative discontinuity in the 

crystallization-rate gradient was observed at 36-37°C for the 32-mer and possibly 

~30°C for the 24-mer. These discontinuities could possibly correspond to the growth 

rate minima found in the n-alkanes, although the effect is much less pronounced here. 

The discontinuities are suggested to be linked to a change between different chain 

conformations within crystals. The presence of a benzyl protecting group on one end 

of the 32-mer chain showed no effect on either crystal morphologies or growth.



9.1.3 Crystal thickness and chain conformation

Comprehensive measurements of crystal thickness from HB oligomer crystals grown 

both from the melt and solution have been performed using small angle X-ray 

scattering (SAXS). The HB oligomers can form thin crystals with a range of 

thicknesses between extended and half of the extended chain length, but with some 

preference for particular values. The preferred crystal thicknesses are those which 

result in a relatively higher proportion of chain ends in the surface, in particular, for 

the 24-mer those corresponding to E/2, 2/3E, 3/4E, 5/6E. The occurrence of such 

stable noninteger folded (NIF) chain forms is in contrast to the results from long n- 

alkanes where stable crystal thicknesses have been found to correspond only to 

integer fractions (IF) of the extended chain length (E, E/2, E/3 etc). It is suggested that 

in the HB oligomers, hydrogen bonding between chain ends could effectively link 

chains together into longer units, which enables the oligomers to exhibit a more 

polymeric behaviour and makes a wider range of chain conformations possible.

9.1.4 Thickening and unfolding transitions during heating

The crystals grown at the higher temperatures contain extended chains, while in those 

grown at lower temperatures, the chains are folded and can transform during heating 

to the more stable extended chain form. High resolution wide angle X-ray scattering 

(WAXS) has been used to follow the changes in crystallinity and lattice parameter 

which occur on heating the HB oligomers. These effects can be correlated with 

changes in crystal thickness detected by small angle X-ray scattering (SAXS).

Melt-grown crystals from HB 24-mer and 32-mer that initially contain once folded 

chains transform during slow heating to produce extended chain crystals. This chain 

unfolding occurs via a process of partial melting and re-crystallization and is 

accompanied by an expansion in the crystallographic lattice of approximately 0.2% in 

the (110) fold direction and a much smaller contraction in the (020) direction. The rate 

of transformation is slow and is affected by the length of the chain and the nature of 

the end groups. The presence of a benzyl protecting group on one end of the chain 

does not affect the transformation temperature but reduces the (020) and (110) lattice 

spacings very slightly, as well as increasing the rate of transformation. The variation
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in crystal thickness during chain unfolding depended both on the length of the chain 

and on the initial crystal thickness (which in turn depended on the crystallization 

temperature). In the 32-mer(p) examples were seen of a gradual increase in thickness 

from IF folded (1/2E) chains to extended chains, and of a discontinuous jump in 

thickness from NIF folded (2/3E) chains to extended chains. In the 24-mer a dual 

population of IF folded (1/2E) and extended (E) chains was observed during 

transformation. In all cases examined here the stable crystal forms displayed specific 

crystal thicknesses simply related to the extended chain length, but the intermediate 

stages of thickening vary between samples.

The chain unfolding during heating of HB 24-mer and 32-mer grown from dilute 

solution in propylene carbonate has been followed in situ using Synchrotron X-ray 

radiation. A similar partial dissolution and re-crystallization to form extended chain 

crystals has also been observed during heating for the crystals grown at lower 

crystallization temperatures. Unfolding is accompanied by an expansion of the lattice 

in the fold direction (110) and by associated changes in peak width, in the similar 

range with those found in melt-grown samples. Chain unfolding can also be achieved 

by annealing folded chain crystals at temperatures above the initial crystallization 

temperature.

9.1.5 Summary

The work on HB oligomer crystallization presented here has revealed a great deal 

about the fundamentals of their crystallization behaviour, especially about the way in 

which the chains fold and how they re-arrange themselves from one folded form to 

another. Combined with previous results from crystallization studies of PHB, it is 

hoped that the new findings from this study will contribute towards a more complete 

view of the whole polymer crystallization process.

9.2 Suggestions for Further Work

Based on the work already undertaken in this study, the areas that could benefit from 

further investigation are suggested as following.
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9.2.1 Longer chain HB oligomers

It has been suggested that the crystals of HB 24-mer and 32-mer studied in this 

project have a range of thicknesses between extended and half of the extended chain 

length. The most folded chain form is the once-folded form, and the possible NIF 

thicknesses are 2/3E, 3/4E and 5/6E. It is hoped that longer chain monodisperse HB 

oligomers with 48, or up to 128 repeat units, synthesized following the same segment 

strategy, could fold many more times under similar crystallization conditions. This 

would give a further insight into the whole range of crystal thicknesses, as well as the 

nature of the fold surface. The ability to form a possible greater diversity of 

thicknesses in HB oligomer system could promise the potential to provide a better 

bridge to polymer crystallization.

9.2.2 More studies on crystal morphologies

Spherulitic crystal morphologies of HB oligomers grown from the melt over a wide 

range of crystallization temperature, together with single crystals grown from dilute 

solution have been presented in this study. However, there are no significant 

morphology changes observed near the transition temperatures, like those rounded 

facet crystals found in n-alkanes and PEO fractions. Further observation on well 

defined longer chain HB oligomer crystals grown from both the melt and solution, 

associated with the thicknesses, could throw new light onto this issue.

Further interesting questions, e.g. the degree to which the oligomer crystals 

themselves are twisted and whether any such twist reflects the chirality of the 

molecules themselves, could be helpful to look at any link between chain folding and 

spherulite banding. This is an area which has recently received attention, following 

the observation that the molecular chirality of a polymer can have a deterministic 

influence over the chirality of the resultant morphology, in particular on the 

handedness of the lamellar twist. As PHB does not have a liquid crystalline phase, it 

is a good candidate molecule for further investigations on these phenomena with the 

added benefit in the oligomers of strict uniformity of molecular length.



9.2.3 Ageing studies

The stable NIF states observed in HB oligomers in this work, could help to bridge the 

gap between the behaviour of short chain oligomer and polymer further. A number of 

small but significant changes in the lattice parameters as the different folded forms 

grow and transform from one to another, could be associated with differences in the 

detailed fold structure and the strain that the folds place on the chain stem in the 

crystals themselves. These subtle changes, especially the changes in the stress placed 

on crystals, may be related to the ageing effect seen in the whole PHB polymer. 

Accordingly, further studies of the fold structures in oligomers, sharp fractions and 

whole polymer respectively could throw new light on the ageing process and finally 

on understanding the underlying causes of the loss of mechanical properties in PHB.

9.2.4 Application to surface modification

Once the crystallization conditions required to produce different types of crystals have 

been established, it will be possible to produce samples with very well defined chain 

composition. For example, a single crystal mat could be produced where virtually 

every chain has the same length, the same number of folds, the same orientation with 

respect to the surface, and where the position of functional groups relative to the 

surface is precisely known. Such samples could be used to carry out exploratory 

investigations using low pressure plasmas to induce changes at the sample surface and 

to assess the nature and extent of the changes. Such studies may provide information 

relevant to the effect of plasma treatment on all polyesters. OHB, hence, PHB, as a 

biocompatible polymer with much potential for specialized medical applications, is of 

special interest. Finally, a new line of investigation could lie in HB oligomers being 

used as model materials for studies of surface modification.

These are just a few of the possible directions in which future research could be 

considered, building on the results from this work.
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