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ABSTRACT

SSRIs are the mainstay in the trea tm ent of depression. However, 

approx im ate ly  30%  of depressed pa tien ts  do not respond to 

antidepressants and the causes of resistance to these drugs are largely 

unknown.

Thus, it is necessary to develop experimental models to investigate the 

neurobiological changes underlying the response to SSRIs.

The approach used in this project was the inter-strain comparison of mice, 

such as DBA/2 and C57BL/6, differing in serotonin (5-HT) synthesis, due 

to a spontaneous mutation of tryptophan hydroxylase-2, the rate-lim iting 

enzyme in brain 5-HT synthesis.

The genotype-dependent deficit of 5-HT was associated with no response 

to acute and chronic citalopram and paroxetine in the forced swimming 

test (FST), an experimental procedure to assess the antidepressant 

potential of drugs, and with lower basal and citalopram-induced rise of 

extracellular 5-HT.

The administration of the 5-HT precursor, tryptophan, or the blockade 5- 

HTia autoreceptors and 5-HT2c receptor-mediated inh ib itory feedback 

reinstated the antidepressant-like effect of citalopram.

These findings suggest that boosting 5-HT neurotransmission m ight be a 

useful strategy to restore the antidepressant effect in treatm ent-resistant 

depressed patients.

Further studies suggested tha t GABAergic inhibition is involved in the 

mechanism by which 5-HT2c receptor inactivation augments the effects of 

SSRIs whereas the ability of tryptophan to restore the antidepressant-like



effect of SSRIs may involve non-serotonergic mechanisms.

Finally, chronic citalopram induced opposite changes in brain-derived 

neurotrophic factor (BDNF), a neurotrophin linked to the long-term action 

of antidepressants, in the nucleus accumbens of DBA/2 and C57BL/6 

mice. This suggests a possible role of this protein in the lack of response 

to SSRIs.

Overall, these studies provide new insight into the role of 5-HT and BDNF 

in the response to antidepressant drugs and remark on the inter-strain 

comparison of mice w ith a spontaneous tryp tophan hydroxylase-2 

mutation as a useful tool for understanding the mechanism underlying the 

response to SSRIs and testing new potential therapeutic strategies.
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Chapter 1

GENERAL INTRODUCTION



Introduction

1.1 Major depressive disorder

Major depressive disorder (MDD) is one of the most disabling diseases in 

the world and is characterized by a pervasive low mood, loss of interest in 

usual activities and diminished ability to experience pleasure (Wong and 

Licinio, 2001; Wong and Licinio, 2004; Belmaker and Agam, 2008; 

Schechter et a l., 2005). I t  is both b io logically and genetica lly a 

heterogeneous disorder, with symptoms manifested at the psychological, 

behavioural and physiological level (Fava and Kendler, 2000; Kaplan and 

Sadock, 2000). Moreover MDD is associated with significant potential 

morbidity and mortality (Ebmeier et al., 2006; Kalia, 2005), contributing as 

it does to suicide, medical illness, disruption in interpersonal relationships, 

substance abuse, and lost work time (Belmaker and Agam, 2008; Nemeroff, 

2007; Licinio and Wong, 2005; Murray and Lopez, 1997).

The course varies widely: it can be a once-in-a-life tim e event or have 

multiple recurrences; it can appear either gradually or suddenly; and can 

either last for a few months or be a life-long disorder (Mueller and Leon, 

1996).

Depressive disorders come in d ifferent forms and the diagnosis can be 

arbitrary, based on the patient's self-reported experiences and observed 

behaviour. There are several criteria lists and diagnostic tools tha t are used 

to identify and evaluate depression (Fava and Kendler, 2000; Nemeroff, 

2007). The most widely used criteria for diagnosing depressive conditions 

are found in the American Psychiatric Association's D iagnostic and 

Statistical Manual of Mental Disorders, the current version being DSM-IV-TR
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Introduction

(American Psychiatric Association., 1994) and the  W orld Health 

Organization's International Statistical Classification of Diseases and Related 

Health Problems, currently the ICD-10 (World Health Organization, 1992; 

Ebmeier et al., 2006; see B ox 1 .1 ). The latter system is typically used in 

European countries, while the DSM criteria are used in the USA and many 

other non-European nations. Other evaluation scales commonly used 

include Hamilton Depression Rating Scale designed by psychiatrist Max 

Hamilton in 1960 (Hamilton, 1960) and the Montgomery-Asberg Depression 

Rating Scale (Montgomery and Asberg, 1979).

According to the DSM-IV-TR, major depressive disorder is characterized by 

one or more major depressive episodes without a history of manic, mixed, 

or hypomanic episodes. A major depressive episode is characterized by at 

least 2 weeks during which there is a new onset or clear worsening of either 

depressed mood or loss of interest or pleasure in nearly all activities. Four 

additional symptoms must also be present including changes in appetite, 

weight, sleep, and psychomotor activ ity ; decreased energy; feelings of 

worthlessness or gu ilt; d ifficu lty  th ink ing , concentrating, or making 

decisions; or recurrent thoughts of death or suicidal ideation, plans, or 

attempts. The episode must be accompanied by distress or impairment in 

social, occupational, or other important areas of functioning.
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Box 1.1 IC D -10  criteria for depression:

Introduction

Depressive episode
In typical mild, moderate, or severe depressive episodes, the patient suffers 
from lowering of mood, reduction of energy, and decrease in activ ity. 
Capacity for enjoyment, interest, and concentration is reduced, and marked 
tiredness after even minimum effort is common. Sleep is usually disturbed 
and appetite diminished. Self-esteem and self-confidence are almost always 
reduced and, even in the mild form, some ideas of guilt or worthlessness 
are often present. The lowered mood varies little  from day to day, is 
unresponsive to circumstances and may be accompanied by so-called 
"somatic" symptoms, such as loss of interest and pleasurable feelings, 
waking in the morning several hours before the usual tim e, depression 
worst in the morning, marked psychomotor retardation, agitation, loss of 
appetite, weight loss, and loss of libido. Depending upon the number and 
severity of the symptoms, a depressive episode may be specified as mild, 
moderate or severe.
M ild  depress ive  ep isode
Two or three of the above symptoms are usually present. The patient is 
usually distressed by these but will probably be able to continue with most 
activities.
M odera te  depress ive  ep isode
Four or more of the above symptoms are usually present and the patient is 
likely to have great difficulty in continuing with ordinary activities.
Severe depress ive  ep isode w ith o u t psych o tic  sym p tom s  
An episode of depression in which several of the above symptoms are 
marked and distressing, typ ica lly  loss of self-esteem  and ideas of 
worthlessness or guilt. Suicidal thoughts and acts are common and a 
number of "somatic" symptoms are usually present.
Severe depress ive  ep isode w ith  p sych o tic  sym p tom s  
An episode of depression but with the presence of hallucinations, delusions, 
psychomotor retardation, or stupor so severe that ordinary social activities 
are impossible; there may be danger to life from suicide, dehydration, or 
starvation. The hallucinations and delusions may or may not be mood- 
congruent____________________________________________________________

Modified from : www. w ho.in t/c lassifications/apps/icd/icd l Ooniine/
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1.1.1 Symptoms o f depression 

Not everyone who is depressed experiences every symptom (B ox 1.2). 

Some people experience a few symptoms, some many. Severity of 

symptoms varies with individuals and also varies over time (Shelton, 2007; 

Schechter et al., 2005; Belmaker and Agam, 2008; Kaplan and Sadock, 

2000).

Box 1.2 S ym ptom s o f  depression

•  Persistent sad, anxious, o r "em pty" mood

•  Feelings o f hopelessness, pessimism

•  Feelings o f guilt, worthlessness, helplessness

•  Loss o f in te rest o r pleasure in hobbies and activ ities  th a t were once 

enjoyed, including sex

•  Decreased energy, fatigue, being "slowed down"

•  D ifficu lty  concentrating, rem em bering, making decisions, im pairm ents  

in several cognitive domains, such as m em ory, learn ing, a tte n tio n a l 

s e t-s h iftin g , p sychom o to r speed, sus ta ined  a tte n tio n , p la nn in g , 

inh ib itory contro l and problem solving.

• Insomnia, early-m orning awakening, o r oversleeping

•  Appetite and/o r weight loss o r overeating and weight gain

•  Thoughts o f death or suicide; suicide a ttem pts

•  Restlessness, irritab ility

•  Persistent physical sym ptom s th a t do n o t respond to trea tm ent, such 

as headaches, digestive disorders, and chronic pain

Depression often co-exists w ith other illnesses tha t may precede the 

depressive episode, cause it and/or be a consequence of it. These other co

occurring illnesses need to be diagnosed and treated. They include anxiety 

disorders such as post-traum atic stress disorder, obsessive-compulsive
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disorder, panic disorder, social phobia and generalized anxiety disorder 

(Giimer et al., 2005). Alcohol and other substance abuse may also occur 

w ith depression. MDD also co-exists w ith other serious medical illnesses 

such as heart disease, stroke, cancer, diabetes and Parkinson's disease 

(Fava and Kendler, 2000).

1.1.2 Epidemiology

Major depressive disorder is one of the most common psychiatric disorders 

(Murray and Lopez, 1997) and has an incidence of about 4% and a lifetime 

prevalence estimates in the community range from 12 to 20% in Europe 

(Paykel et al., 2005). A sixth of people in the community will have m ajor 

depressive disorder during their lifetime.

I t  occurs twice as frequently in women as in men, can begin at any age, 

but has its average age of onset in the mid-20s (Ebmeier et al., 2006; 

Gilmer et al., 2005). Only between a quarter and half of patients will be in 

contact with the health services fo r the ir depression. In half the cases, the 

illness is incapacitating, leading to role impairment at work or at home. The 

risk of premature death is increased, in part because of a greater risk of 

suicide (Nestler et al., 2002; Ebmeier et al., 2006).

Fifty to 60% of individuals who have had a single m ajor depressive 

disorder episode can be expected to have a second episode. Relapses often 

occur 5-10 years after first presentation and residual disability is common.

Epidemiologic studies show that about 30-40% of the risk for depression is 

genetic (see section 1 .4 ). In addition, vulnerability to depression is only 

partly genetic, with nongenetic factors also being important.
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The nongenetic factors implicated in the etiology of depression are gender, 

stress and em otional traum a, adverse childhood experiences, v ira l 

infections (e.g., Borna virus), medical illnesses (including Cushing's disease, 

hypothyroid ism , m ultip le  sclerosis, Huntington's disease, Parkinson's 

disease, myocardial infarction, stroke, diabetes, cancer, and rheumatoid 

arthritis) and even stochastic processes during brain development (Kaplan 

and Sadock, 2000; Fava and Kendler 2000; Belmaker and Agam 2008). 

Also certain personality tra its have been consistently associated with MDD, 

w ith the best evidence available fo r the tra it term ed "neuro tic ism ". 

Neuroticism is a stable personality tra it tha t reflects the level of emotional 

stability versus the predisposition to develop emotional upset under stress 

(Fava and Kendler 2000).

The Sequenced Treatm ent Alternatives to Relieve Depression (STAR*D) 

tria l, the largest prospective, randomized trea tm ent study to  date of 

outpatients with MDD (Rush et al., 2003) found that chronic depression is 

associated with older age, ethnicity, unemployment, lack of private medical 

insurance, lower income and lower educational level (Gilmer et al., 2005).

The PREDICT study (2008) tha t took place in six European countries 

estimated the higher prevalence in the UK and Spain fo r all mental 

disorders, with men aged 30-50 and women aged 18-30 with the highest 

prevalence of MDD (King et al., 2008).

A recent WHO report (B ox 1 .3 ) ranked depression as the fourth medical 

condition w ith the greatest disease burden worldw ide, measured in 

Disability-Adjusted Life Years, which express years of life lost to premature 

death and years lived with a disability of specified severity and duration.
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The same report predicted that depression would be the second condition 

with the greatest disease burden worldwide by 2020.

Moreover it estimates tha t depression can lead to suicide, a tragic fa ta lity 

associated with the loss of about 850,000 lives worldwide every year.

Studies also show that MDD contributes to higher m ortality and morbidity 

in the context of other medical illnesses, such as myocardial infarction, and 

tha t successful treatm ent of the depressive episode improves medical and 

surgical outcomes (Zellweger et al., 2004; Keck, 2006).

Considering tha t about 21 million people in Europe suffer for depression 

(Sobocki et al., 2006), the economic cost for this disorder is high, but the 

cost in human suffering cannot be estimated. Depressive illnesses often 

interfere with normal functioning and cause pain and suffering not only to 

those who have a disorder, but also to those who care about them. Serious 

depression can destroy family life as well as the life of the ill person.
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Box 1 .3  WHO REPORT 2008

I t  establishes that:

• Depression is common, affecting about 121 m illion people worldwide.

• Depression is among the leading causes o f disability worldwide.

• Depression can be reliably diagnosed and treated in p rim ary care.

• Fewer than 25%  o f those affected have access to effective treatm ents.

Depression can be re liab ly  diagnosed in p rim a ry  care. A n tidep ressan t 

m edications and brief, s truc tu red  form s o f psychotherapy are effective  fo r  

60-80 % o f those affected and can be delivered in p rim a ry  care. However, 

few er than 25%  o f those a ffected  (in  some countries few er than 10% ) 

receive such trea tm ents. Barrie rs to e ffective  care include the lack o f  

resources, lack o f tra ined providers, and the social stigm a associated w ith  

m ental disorders including depression.

Prim ary care based qua lity  im provem ent program s fo r depression have  

been shown to improve the

• quality o f care,

• satisfaction with care

• health outcomes,

• functioning,

• economic productiv ity,

• and household wealth a t a reasonable cost

(  www. w ho.in t/m entaljnealth /m anagem ent/depression)
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1.2 Antidepressant treatments

Even if the pathophysiology of depression is still poorly understood and the 

disorder is often underdiagnosed and undertreated, many effective 

treatments are available.

Mild depression responds to different forms of psychotherapy. More severe 

forms of depression respond to a host of antidepressant medications, with a 

combination of medication and psychotherapy providing optimal treatment. 

Electroconvulsive therapy (ECT) is one of most effective treatm ents for 

depression, but is usually reserved for the more severely ill (Berton and 

Nestler, 2006).

All available antidepressants are based on serendipitous discoveries made 

in the 1950s and act via the monoamine neurotransmitters (Table 1 .1 ).

Several controlled tria ls have established the antidepressant efficacy of 

medications that modulate monoaminergic neurotransmission, prim arily the 

serotonin (5-HT) and noradrenaline (NA) systems. These medications 

typically act by inhibiting reuptake of NA and/or 5-HT from the synapse, 

inhibiting monoamine oxidase (MAO), the enzyme tha t degrades these 

neurotransm itters, or acting at receptors tha t modulate monoaminergic 

transmission. Monoamine neurotransmission modulators include the tricyclic 

and tetracyclic antidepressants (TCAs), monoamine oxidase inh ib ito rs  

(MAOIs), noradrenaline reuptake inh ib itors (NRIs), selective serotonin 

reuptake inhib itors (SSRIs), serotonin/noradrenaline reuptake inh ib itors 

(SNRIs) and various "a typ ica l" antidepressants w ith less well-described 

mechanisms of action (Fava and Kendler, 2000; White et a l., 2005;
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Schechter et al., 2005; Nemeroff, 2007; Holtzheimer and Nemeroff, 2006; 

Millan, 2006).

Drug treatm ents remain the mainstay of antidepressant therapy but 

clinical therapy also includes physical treatm ents as ECT and focal brain 

stimulation (see Table 1.1).

Table 1.1 C urren t a n tid e p re ssa n t tre a tm e n ts

ANTIDEPRESSANT DRUGS
E x a m p le

TCAs

Amitriptyline 
Amoxapine 

Clomipramine 
Doxepin 

Imipramine 
Trimipramine 
Desipramine 
Nortriptyline j 
Protriptyline

NRIs Reboxetine

MAOIs

Isocarboxazid
Phenelzine
Selegiline

Tranylcypromine

SSRIs

Citalopram
Escitalopram

Fluoxetine
Fluvoxamine
Paroxetine
Sertraline

SNRIs Duloxetine
Venlafaxine

Atypical

Bupropion
Buspirone

Mirtazapine
Nefazodone
Trazodone

ANTIDEPRESSANT TREATMENTS
ECT

Focal Brain Stimulation

VNS
TMS
MST
DBS

Tricyclic and tetracyclic antidepressants (TCAs); noradrenaline reuptake inhibitors 
(NRIs); monoamine oxidase inhibitors (MAOIs); selective serotonin reuptake 
inhibitors (SSRIs); serotonin/noradrenaline reuptake inhibitors (SNRIs); 
electroconvulsive therapy (ECT); vagus nerve stimulation (VNS); transcranial 
magnetic stimulation (TMS); magnetic seizure therapy (MST); deep brain 
stimulation (DBS).
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Despite the availability of effective treatm ent, we are still faced with the 

dilemma tha t MDD is widely under-recognized and undertreated, tim e to 

response may take several weeks and relapse is common. Furthermore side 

effects (B o x  1 .4 ) are still a serious problem even w ith the newer 

medications (Berton and Nestler, 2006; Carrasco and Sandner, 2005; 

Edwards and Anderson, 1999).

Recently there has been a controversy about the real efficacy of 

antidepressant medications. Over a thousand randomized tria ls have been 

conducted with antidepressant drugs and statistically significant benefits 

have been repeatedly demonstrated. However, two recent meta-analyses 

bring into question the ir usefulness. The firs t meta-analysis used data 

submitted to Food and Drug Administration (FDA) fo r the approval of 12 

antidepressants (Turner et al., 2008). While only half of these tria ls had 

significant effectiveness, published reports almost ubiquitously claimed 

significant results. Negative tria ls were left unpublished. A second meta

analysis using also FDA-submitted data examined the relationship between 

treatm ent effect and baseline severity of depression (Kirsch et al., 2008). 

Drug-placebo differences increased with increasing baseline severity and 

the difference became large enough to be clinically im portant only in few 

patients w ith severe m a jo r depression. These data suggest th a t 

antidepressants may be less effective than the ir wide marketing suggests. 

However Randomized Controlled Clinical Trials, usually lasting 6 weeks, may 

not adequately reflect the chronic course of the disease and overestimate 

the placebo effect. In fact, it is im portant to consider the effectiveness of 

antidepressant along time and the impact of depression if it is not treated 

(see Blier, 2008). This debate opens the question if antidepressants really
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work and the need of investigate on biological, pharmacokinetic and genetic 

factors implicated in the efficacy of the antidepressant treatment.

B ox 1.4 G enera l s ide  e ffec ts  o f  depress ion  m ed ica tion

• Dry mouth

• Urinary retention

• Blurred vision

• Constipation

• Sedation (can interfere w ith driving o r operating machinery)

• Sleep disruption

• Weight gain

• Headache

• Nausea

• Gastrointestinal disturbance/diarrhoea

• Abdominal pain

• Inab ility  to achieve an erection

• Inab ility  to achieve an orgasm (men and women)

• Loss o f libido

• Agitation

• Anxiety

One key factor in the lack of diagnostic tests for depression is the limited 

knowledge of the brain regions and neural circuits involved.

The broad range of symptoms of depression suggests tha t many brain 

regions might be involved (Berton and Nestler, 2006; Fava and Kendler, 

2000). This is supported by human brain imaging studies that have shown 

changes in blood flow or related measures in several brain areas, including 

regions of the prefrontal and cingulate cortex, hippocampus, s tria tum , 

amygdala and thalamus (Mayberg, 2003; Ressler and Mayberg, 2007).
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1.2.1 Resistance to antidepressant treatments

One of the still unsolved problems is tha t fewer than 50% of all patients 

with depression show full remission with optimized treatm ent (Fava and 

Kendler, 2000). Therefore, there is still a great need for more effective 

treatments for depression.

A lm ost half o f depressed patients continue to have some residual 

depressive symptoms despite adequate treatm ent and up to 20% may show 

minimal or no response to even the most aggressive interventions (Fava 

and Kendler, 2000).

However, because no one treatm ent is universally effective fo r everyone, 

many depressed patients do not experience a satisfactory clinical benefit 

from the treatm ent received. Some patients respond to one treatm ent, 

some to another, and some may require the combination of two or more 

treatments.

Treatment-resistant depression (TRD) typically refers to the occurrence of 

an inadequate response following adequate antidepressant therapy (Fava, 

2003). Adequate antidepressant therapy is typically considered to consist of 

one or more trials with antidepressant medications with established efficacy 

in major depressive disorder and at the effective doses (Quitkin, 1985) and 

duration (Quitkin et al., 1986). Thase and Rush (1997) firs t proposed a 

model of staging the various levels of resistance in TRD.

1) nonresponse (< 25% symptom reduction from baseline); 2) partial 

response (25% to 49% symptom reduction from baseline); and 3) response 

w ithout remission (50%  or greater symptom reduction from  baseline 

w ithout achieving remission). Using such classification, a meta-analysis of 

clinical trials found that, among antidepressant-treated depressed patients,
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partial response occurs in 12% to 15%, and nonresponse in about 30% 

(Fava and Davidson, 1996; Stimpson et al., 2002).

STAR*D study was aimed at defining which subsequent trea tm ent 

strategies, in what order or sequence, and in what combination(s) (F igure

1.1) are both acceptable to patients and provide the best clinical results 

with the least side effects (w w w .s ta r-d .o rg ; Rush et al., 2003). The results 

obtained suggest potential benefit for using more vigorous treatments in the 

earlier steps (Warden et al., 2007).

The STAR*D trial enrolled 4,041 outpatients and the firs t results reported 

tha t only about 30% of patients rem itted during citalopram treatm ent. 

Remission rate at the end of two treatments step (level 2, Figure 1.1) was 

approximately 50% and there were no differences in remission rate or time 

to remission among medication switching or augm entation strategies 

(Warden et al., 2007).

STAR' D Algorithim

LEVEL

LEVEL

LEVEL
2 a

INITIAL TREAT MEN I : o u lo p ra tr .

SWITCH TO. bupropion (m istained-rei ease i, cognitive therapy, sertraline, 
venlafaxtrse fextericled-retease)

OR AUGMENT WITH, buprop ion  iiustamed-refea&e). buspo one. cognitive the rapy

(Only for those receiving cognitive therapy in Level 2]
SWITCH TO b iip t. jp io n  (sustaiived-release ! or venla laxtne (e x te n d e d -release*

7 x
LEVEL

3.
SWITCH TO. mirtazepine or nortriptyline
or  AUGMENT WITH; lithium or triiodothyronine {only with bupropion 

[sustained-releasef, sertraline, venlafaxme {extended-releasej}

l7_______________________________  ____________ _____________  ___________ _ ... __________  ____ _ . . . . . . .  ... .......................... ..................

LEVEL switch  TO. tranylcypromine or mirtazeptne com tune cl with
4 veniafaxine (extended-release)

F igure  1.1 STAR*D

15

http://www.star-d.org


Introduction

In the management of TRD it was suggested to increase the dose of 

antidepressant, switching to a d iffe rent class of antidepressant drugs, 

adding psychotherapy or augmenting with lithium (Stimpson et al., 2002; 

McAllister-Williams, 2006) or more recently, w ith the p -adrenocepto r/5 - 

HTia-ib receptor antagonist, pindolol (Artigas et al., 1994; Artigas et al., 

1996; fo r review see Nelson, 2000). The lack of clear rationale behind most 

o f these strategies reflects the still scarce knowledge on the factors 

un derly in g  tre a tm e n t response. There fo re  researche in to  the  

neurobiological, neuroanatomical and genetic bases fo r depression could 

suggest prom ising new d irections fo r an tidep ressan t tre a tm e n t 

development.
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1.3 Dysregulation of the Hippocampus and H ypothalam ic-P itu itary- 

Adrenal Axis (HPA)

A prominent mechanism by which the brain reacts to acute and chronic 

stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis (F ig u re

1 .2 ). Neurons of the hypothalamus secrete corticotropin-releasing factor 

(CRF), which stimulates the synthesis and release of adrenocorticotropin 

(ACTH) from the anterior pituitary. ACTH then stimulates the synthesis and 

release of glucocorticoids (cortisol in humans, corticosterone in rodents) 

from the adrenal cortex that exerts profound effects on general metabolism 

and affects behaviour via direct actions on numerous brain regions (Wong 

and Licinio 2004; Pariante and Lightman, 2008).

The activ ity  of the HPA axis is controlled by several brain pathways, 

including the hippocampus and the amygdala. Glucocorticoids, regulating 

hippocampal and hypothalamic neurons, exert powerful feedback effects on 

the HPA axis. Levels of glucocorticoids under normal physiological condition 

enhance hippocampal inhibition of HPA activity and cognitive function of the 

hippocampus. However, sustained elevations of glucocorticoids, a fte r 

prolonged and severe stress, may damage hippocampal neurons, reducing 

dendritic branching and the highly specialized dendritic spines. Stress and 

the resulting hypercortisolemia also reduce the birth of new neurons in the 

adult hippocampal dentate gyrus (Nestler et al., 2002).

Hypercortisolemia and abnormal activation of the HPA axis have been 

observed in approximately half of individuals with depression, and these 

abnormalities are corrected by antidepressant treatments. Several patients 

exhibit increased cortisol production, as measured by increases in urinary
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free cortisol and decreased ability of the potent synthetic glucocorticoid, 

dexamethasone, to suppress plasma levels of cortisol, and ACTH (fo r review  

see Pariante and Lightman, 2008). Animal studies are consistent w ith 

human data. Maternal deprivation in rodents (see section 1 .5 ) induces 

abnormalities in HPA axis function, which resemble those seen in some 

depressed humans. These abnormalities can persist into adulthood and can 

be corrected by antidepressant treatments (Nestler et ai., 2002).

Hovewer, it is still unknown whether HPA axis abnormalities are a primary 

cause of depression or, instead, secondary to some other initiating cause. 

Nevertheless, there is growing evidence th a t glucocorticoid receptor 

antagonists may be useful in treating some cases of depression (Fava and 

Kendler, 2000; Nestler et al., 2002).
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PVN Hippocampus
Hippocampus — +

CRF Amygdala

Glucocorticoids 
Dexamethasone a q jh

Adrenal
cortex

F igure  1.2 R egu la tion  o f  th e  H y p o th a la m ic -P itu ita ry -A d re n a l A x is

CRF-containing neurons of the paraventricu lar nucleus (PVN) of the 
hypothalamus integrate information relevant to stress.
The figure shows excitatory afferents from the amygdala and inhib itory 
afferents from the hippocampus. CRF is released by these neurons into the 
hypophyseal portal system and acts on the corticotrophs of the anterior 
p itu ita ry  to release ACTH. ACTH reaches the adrenal cortex via the 
bloodstream, where it stimulates the release of glucocorticoids. At higher 
levels, g lucocortico ids also im pa ir, and may even damage, the 
hippocampus, which could initiate and maintain a hypercortisolemic state 
related to some cases of depression.
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1.4 Genetics of depression and antidepressant response

Several lines of evidence suggest tha t genetic factors partially influence 

overall risk of illness but also influence the sensitivity of individuals to the 

"depressogenic" effects of environmental adversity.

Because of the pattern of inheritance in MDD, but also because of 

heterogeneity of clinical samples, no genes of m ajor effect have been 

identified (Lesch, 2004). A multitude of genes with small effects are likely to 

be identified, which will be related to certain aspects of genetic vulnerability 

to depression and will work alongside or interact with environmental factors. 

Different points of vulnerability in the brain may predispose to depressive 

disorder (Shelton, 2007; Wurtman, 2005; Bolonna et al., 2004).

Investigation of gene-environment interactions in humans and nonhuman 

primates, as well as gene inactivation studies in mice, have fu rthe r 

advanced the identification of genes that are essential for the development 

and plasticity of brain systems related to depression (Lesch, 2004).

Studies between monozygotic and dizygotic twins suggest a heritability of 

about 37% (Sullivan et al., 2000). Some aspects of the normal personality, 

such as avoidance of harm, anxiousness, and pessimism, are also partly 

heritable. Kendler et al. (2005) showed tha t although depression is due in 

part to heritable depression-prone personality tra its, it is also the result of 

heritable factors tha t are independent of personality. Early-onset, severe, 

and recurrent depression may have a higher heritability than other forms of 

depression (Kovacs et al., 1997; Kendler et al., 1999).
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The efficacy o f antidepressant action was associated w ith several 

polymorphisms, located on coding genes of proteins thought to be involved 

in the different mechanisms of action of antidepressant treatments. Most of 

the published genetic association studies with antidepressant response 

(Belmaker and Agam, 2008; Levinson, 2006; Serretti et al., 2008; Serretti 

and Artio li, 2004; Serretti et al., 2005a; Lin and Chen, 2008; Li and He, 

2006; Tsai et al., 2003) have focused on polymorphisms in the loci 

encoding the serotonin transporter (5-HTT), receptors, biosynthetic and 

m etabolic enzymes, some dopam ine receptors, and noradrenaline 

transporter (NET) (summarized in Table 1.2).
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Table 1 .2  P h a rm a co g e n e tic  a sso c ia tio n  s tu d ie s  on a n tid e p re s s a n t  

response

G e n e P o ly m o rp h is m R e s u lts

5-HTTLPR 1 allele subjects were m ore like ly to responde to  
Fluvoxam ine and Fluoxetine

5-HTT 5-HTTLPR
s allele is associated w ith  less favourable and 
slower response to  Paroxetine in Caucasian 
population

5-HTTLPR s/s showed better response to  SSRIs in asiatic 
population

T P H -l
A779C A218C A/A and A/C genotypes are associated w ith 

slower response to  SSRIs

A779C A218C strong association w ith suicide

5-H T2A
T102C

A1438G

contrasting results in association w ith  various 
antidepressants

contrasting results in association w ith  various 
antidepressants

5-H T6 C267T lack o f association w ith  antidepressant response

G protein beta3 C825T T/T  is associated w ith  response to various 
antidepressant trea tm ents

DRD2 S311C lack o f a clear association

DRD4 Variable Number Tandem Repeats lack o f a clear association

MAO Variable Number Tandem Repeats
no association w ith  various antidepressant 
trea tm ents

5-H T1A C1019G C allele is associated w ith  a be tte r response to 
antidepressants

T182C T allele is associated w ith  a be tte r response

NET
G1287A G allele is associated w ith  a fas te r response
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The most frequently examined candidate gene codes fo r the serotonin 

transporter (5-HTT, see section 1.5.1).

Ramamoorthy et al. (1993) identified and cloned a single gene encoding 

the human 5-HTT. Heils et al. (1996) reported a polymorphism in the 

transcriptional control region of the 5HTT coding sequence. I t  consists of a 

44-bp insertion or deletion, resulting in a long (I) or short (s) variant of this 

gene. Lesch et al. (1996) called it 5-HTTLPR and found tha t the basal 

activity of the long variant in vitro was more than twice tha t of the short 

form of the 5HTT gene promoter. I t  causes reduced uptake of 5-HT into the 

presynaptic neurones (Lesch and Gutknecht, 2005).

More than twelve different human behavioural tra its and several medical 

disorders are associated with 5-HTT gene variation (Murphy and Lesch, 

2008). This contains a regulatory variation tha t has been associated with 

anxiety, susceptibility fo r depression, emotion and social cognition (Canli 

and Lesch, 2007). C linical stud ies show th a t ind iv idua ls  in an 

epidemiological sample with one or two copies of the short allele of the 5- 

HTT prom oter po lym orphism  showed more depressive sym ptom s, 

diagnosable depression, and tendency to commit suicide in relation to 

stressful life events than individuals homozygous for the long allele (Caspi 

et al., 2003).

In a large, prospective epidemiologic study, Caspi et al. (2003) have 

demonstrated a causal interaction between the polymorphic variant of the 

5HTT, early and late life adversity, and the occurrence of depression. They 

found tha t 5-HTTLPR genotype influenced stress reactiv ity  ra ther than 

directly causing depression.
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The occurrence of stressors conferred increased risk prim arily in persons 

carrying the s allele.

However there is no consensus in the literature (Kendler et al., 2005; 

Arango et al., 2003) on the association of the 5-HTTLPR genotype with 

mood disorders. Some authors reported that patients with two alleles of the 

l-variant generally have increased 5-HT uptake, 5-HTT binding sites and 

mRNA in brain and platelets (Hanna et al., 1998; Little et al., 1998; 

Greenberg et al., 1999) and show a better clinical response to SSRIs in 

studies of mainly white patients but not in Asian population (Serretti et al., 

2008; Kim et al., 2000; Kim et al., 2006). Other studies reported no 

association between 5-HTTLPR genotype and depression (Mann et al., 2000; 

Minov et al., 2001) and others found an association between the s-allele 

(Neumeister et al., 2002; Joiner et al., 2003) or the l-allele and depression 

(Moreno et a l., 2002). Therefore the functional link between th is 

polymorphism and altered 5-HT transmission remains unclear.

Pharmacogenomic studies of subjects in the STAR*D tria l have included 

analyses of the 5-HTT in relation to remission and response to citalopram. 

These findings do not replicate previous studies with smaller sample size; in 

fact, it failed to detect an association between any of the polymorphisms of 

5-HTT and the SSRI response (Kraft et al., 2007). Nevertheless, a recent 

report (Mrazek et al., 2008) found an association between m ultip le 

variations in the gene encoding for 5-HTT with remission after citalopram in 

white non-Hispanic subjects of the STAR*D study, in particular in patients of 

European origin. This suggests tha t ethnicity is an im portant factor to 

account for response to antidepressant drugs.
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Moreover, in association studies, 5-HTTPR was independently linked to 

efficacy fo r a range of treatm ents, other polymorphisms located on the 

tryptophan hydroxylase (TPH) gene, 5-HT2a receptor and G-protein beta 3 

(Arango et al., 2003; Chotai et al., 2003; Murphy and Lesch, 2008; Lesch 

and Gutknecht, 2005). Furthermore variants of the gene encoding for 5- 

HTia receptor combined to polymorphism of the 5-HTT could be associated 

to the response to SSRIs (Arias et al., 2005).

Other analysed polymorphisms belong to the synthetic and catabolic 

pathways of 5-HT.

Tryptophan hydroxylase 1 (TPH-1) is the ra te -lim iting  enzyme o f 

peripheral 5-HT synthesis. Many investigators have examined intronic 

variants of the TPH-1 gene, but after the discovery of a second isoform of 

TPH, named TPH-2, responsible fo r brain 5-HT synthesis (W aither et al., 

2003) and localized exclusively in the brain (Zill et al., 2004a), most 

attention has shifted to this enzyme.

The best-studied TPH-1 variants are two polymorphisms, on position 218 

(A218C) and 779 (A779C) of intron 7. These polymorphism were associated 

with suicidal behaviour and, in several studies, A allele was associated with 

a poorer response to SSRIs compared to C/C subjects (fo r review  see 

Serretti et al., 2005), even if STAR*D study failed to found an association 

(fo r review see Lin and Chen, 2008). Nevertheless, it is surprising tha t a 

polym orphism  located on TPH-1 could influence the antidepressant 

response. A possible explanation may be tha t TPH-1 partially contributes to 

5-HT synthesis in the human brain. In fact, TPH-1 mRNA is 25% of TPH-2 in 

the human raphe nuclei and similar or even predominant expression of TPH-
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1 is found in hypothalamus, amygdala, cortex, thalamus, hippocampus, and 

cerebellum (Zill et al., 2007).

Recently, pharm acogenetic stud ies showed th a t the  func tion a l 

polymorphism of TPH-2, is linked to increase risk of depression (Van Den 

Bogaert et al., 2006) and the lack of response to SSRIs (Zhang et al., 

2005). The authors identified a single nucleotide polymorphism (SNP), 

G1463A, in which the highly conserved Arg 441 is replaced w ith His 

(R441H) and resulted in about 80% loss of function in 5-HT production 

when mutant TPH-2 was expressed in PC12 cells. Identification of a loss-of- 

function mutation in TPH-2 suggested tha t defect in brain 5-HT synthesis 

may represent an im portant risk factor fo r MDD. Although independent 

researchers confirmed the existence of the polymorphism G1463A in the 

same sample analyzed in the study of Zhang et al. (2005), other studies 

have been unable to find it in different populations of depressed patients 

(B lake ly, 2005; Henningsson et a l., 2007) suggesting th a t th is  

polymorphism is not common in depressed populations. SNP association 

and haplotype studies have indicated tha t other polymorphisms in the 

prom oter and surrounding regions of TPH-2 (fo r example rs l3 8 6 4 9 4 ; 

A40237G; rs l l l7 8 9 9 7 ; A22879G) may be associated with MDD and suicide 

victims (Haghighi et al., 2008; Zill et al., 2004b; Ke et al., 2006; Van Den 

Bogaert et al., 2006). A recent study reported an association between 

polymorphisms in the TPH-2 gene (rs l0897346 and rs l487278) and the 

antidepressant drug response, in particular w ith SSRIs (Tzvetkov et ai., 

2008).
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A variable number tandem repeat (VNTR) in the regulatory region of the 

gene for monoamine oxidase A (MAO-A), the principal enzyme fo r the 

degradation of monoamines, has been shown to affect the transcriptional 

activity of the MAO-A gene promoter but no clear association with several 

antidepressant treatments was found (Serretti and Artio li, 2004; D'Souza 

and Craig, 2006; Lin and Chen, 2008).

Other possible candidate genes fo r pharmacogenetic studies were those 

coding for serotonin receptors. A polymorphism in the promoter region of 

the 5HTia gene was reported; it is a G to C substitution at position - 1019, 

and the homozygous G allele was more represented in depressed patients 

compared to controls (Serretti et al., 2005a). Moreover female patients 

carrying the C/C genotype showed a better response to SSRIs compared to 

G carriers (Lin and Chen, 2008).

Three polymorphisms on the gene encoding for 5-H T2a receptor were 

investigated: two in the promoter region (A-1438G and C-1420T) and a 

silent substitution in position 102 (T102C). Contrasting results were found 

in association studies between these polymorphisms and antidepressant 

response (fo r review see Serretti et al., 2005b; D'Souza and Craig, 2006). 

Recently the STAR*D study reported to detect a significant association 

between rs7997012 polymorphism in HTR2A gene and response to SSRIs 

(Lin and Chen, 2008).

A silent T267C polymorphism w ith in the 5-HT6 receptor gene was 

investigated by Wu et al. (2001) but results on association w ith
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antidepressant response were contradictory (Wu et al., 2001; Lee et al., 

2005).

Also polymorphisms in dopamine receptor genes were analyzed. However, 

studies testing the S311C and the VNTR polymorphisms respectively in D2 

and D4 receptors genes failed to show evidence of associations w ith 

antidepressant response (Serretti and Artioli, 2004; Serretti et al., 2005b).

Regarding the noradrenergic pathway, an association was demonstrated 

for the T allele of the T182C polymorphism in the gene encoding fo r the NA 

transporter (NET) with a better antidepressant response. In addition the G 

allele of the NET G1287A was associated with a faster therapeutic response 

(Yoshida et al., 2004).

Signal transduction pathways are also possibly involved in the response to 

treatm ent with antidepressants. The m ajority of the studies focused on the 

G|33 subunit (GNB3). T/T genotype of the C825T polym orphism  was 

associated with better response to antidepressant treatments. However no 

association was found between citalopram outcome and GNB3 gene in the 

STAR*D reports {fo r review see Lin and Chen, 2008).
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1.5 Animal models of depression

The understanding of MDD psychopathology relies on the availability of 

experimental models potentially mimicking the disease (El Yacoubi et al., 

2003).

I t  is generally thought that the development of better validated, and more 

appropriate, animal model is a task of m ajor importance fo r psychiatry. 

However, giving the wide range of symptoms, both somatic and cognitive, 

and the disease heterogeneity it is very d ifficu lt to develop and validate 

reliable models of depression. Moreover, two human symptoms, recurring 

thoughts of death or suicide, and excessive thoughts of guilt, are impossible 

to model in laboratory animals (Cryan et al., 2002).

McKinney and Bunney (1969) proposed tha t the minimum requirements 

for a valid animal model of depression are that:

1) it is "reasonably analogous" to the human disorder in its manifestations 

or symptoms;

2) there is a behavioural change that can be monitored objectively;

3) the behavioural changes observed should be reversed by the same 

treatments effective in humans;

4) it should be reproducible between investigators.

These principles provide a valuable guide to modelling depression or 

endophenotypes of this disorder in the animal (Dalvi and Lucki, 1999; Cryan 

et al., 2002).

However many criteria have to be considered to evaluate the validity of an 

animal model in particular the predictive, face and construct va lid ity  (fo r 

review see Wiliner and Mitchell, 2002; Willner, 1995).
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The predictive validity is defined as the extent to which the model correctly 

identifies antidepressant treatm ents and how the potency in the model 

correlates with clinical potency. This concept implies tha t manipulations 

known to influence the pathological state should have sim ilar effects in the 

model. In practice, the predictive validity of animal models of depression is 

determined largely by their response to antidepressant drugs.

Construct valid ity defines the theoretical rationale underlying the model. 

Theories of depression that could be used to evaluate the construct validity 

of animal models could relate to neurobiological mechanisms, aetiology or 

psychological mechanisms.

Face v a lid ity  fo r an anim al model of depression re fers to  a 

phenom enological s im ila rity  between the model and the d isorder 

representing how well the model resembles the human depressive state. I t  

takes account of the necessity, or not, to use chronic administration to have 

an antidepressant effect and the specificity of observed features.

These three sets of validation criteria provide a valid support to set up an 

animal model of depression and ensure th a t d iffe ren t models are 

comparable.

Various paradigms have been developed (Cryan and Slattery, 2007) and 

are used in detecting the antidepressant-like potential of novel compounds 

in preclinical settings (McArthur and Borsini, 2006). Basically, animal 

models of depression are mainly based on the concept tha t an unavoidable 

stress produces behavioural changes reminiscent of aspects of depression, 

which are typically reversible w ith antidepressant drugs. This has some
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analogies with the observation tha t episodes of major depressive disorder 

are frequently precipitated by exposure to stressors (Kessler, 1997).

Although not in itia lly  developed as an animal model of depression, the 

"learned helplessness" (LH) is based on the fact tha t following repeated 

uncontrollable shocks, rodents dem onstrate escape defic its th a t are 

reversible by antidepressant agents (Cryan et al., 2002; Maier and Watkins, 

2005). The exposure to  an inescapable e lectric shock induces an 

im pairm ent of escape behaviour and leads to debilitating consequences, 

including a "depressive-like" phenotype.

Many of the more recently developed models, however, are based not on 

stress exposure and symptom precipitation, but on long-term manipulations 

tha t are better considered as modelling a predisposition to depression, 

rather than a depressive response to a precipitating event.

The chronic mild stress paradigm (CMS, fo r review see W illner, 1997; 

Willner, 1995; Cryan and Holmes, 2005) was developed with the objective 

o f modelling anhedonia, a core symptom of depression tha t would be 

reversed by chronic antidepressant treatments. By chronic exposure to mild 

stressors such as restraint, wet bedding, constant lighting, food deprivation 

and novel housing, the uncontrollable stress induces a decrease in 

se n s itiv ity  to  reward and long-te rm  behavioura l, neurochem ica l, 

neuroimmune and neuroendocrine alterations that resemble those observed 

in depressed patients. The CMS model fu lfils  the crite ria  o f va lid ity  

previously described.

The experimental procedures sensitive to  antidepressant trea tm ents 

include also the forced swim test (FST) (also known as Porsolt's tes t; 

Porsolt et al., 1977a), which is probably the most w idely and most
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frequently used paradigm (Dalvi and Lucki, 1999; Cryan et al., 2002; Cryan 

and Holmes, 2005). The FST is based on the observation tha t rodents 

placed in an enclosed (inescapable) cylinder filled with water will in itia lly 

engage in vigorous escape-orientated movements, but then within minutes 

will exhib it increasing im m obility. Even if it does not fu lly  respond to 

construct and face va lid ity  c rite ria , the FST responds to effective 

antidepressant treatments, is easy to perform and, from an ethical point of 

view, it requires only one (for mice) or two (for rats) exposure to a stressor. 

A related task is the tail suspension test (TST, Steru et al., 1985; Cryan et 

al., 2005b), in which mice suspended by the tail also exh ib it passive 

imm obility after minutes of fu tile  struggling. Antidepressant drugs, given 

before e ither test, induce mice to actively engage in escape-directed 

behaviours, reducing the im m obility time. These tests are also frequently 

used as phenotypic screens for depression-related behaviours in m utant 

mice (Cryan and Mombereau, 2004).

Other animal models of depression are used, including social stress, in 

which animals are exposed to various types of stress (p rox im ity  to  

dom inant males, odors of natural predators) and show behavioral 

abnormalities; early life stress (animals are separated from the ir mothers at 

a young age and show some persisting behavioral and HPA axis 

abnormalities as adults, some of which can be reversed by antidepressant 

treatm ents); fear conditioning, in which animals show fear-like responses 

when exposed to  previously neutral cues or context th a t has been 

associated with an aversive stimulus; reward-based tests (animals show 

highly reproducible responses to drugs of abuse in classical conditioning and 

operant conditioning assays); bilateral o lfactory bulbectomy (OB) th a t
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reliably mimics many of the neurochemical and behavioural changes seen in 

human depression, and the delayed onset of therapeutic action with 

antidepressants (Cryan and Holmes, 2005; Nestler et al., 2002; Wong and 

Licinio, 2004; Cryan and Slattery, 2007).

Genetic research on animal models consists primarily o f inbred strain and 

selection studies. Different inbred strains of mice (Cryan et al., 2002; Cryan 

and Mombereau, 2004; Jacobsen et al., 2008) or rats (Lahmame et al., 

1997; Malkesman et al., 2006; El Yacoubi and Vaugeois, 2007) show 

remarkable differences in measures of depression-related and anxiety- 

related behaviour (Cryan and Holmes, 2005; Jacobson and Cryan, 2007; 

Cryan et al., 2005a; Cryan et al., 2002). In particular, mice strains are used 

to identify genetic loci tha t contribute to behavioural tra its , including 

fearfulness and em otionality. Comparisons between d ifferent strains (El 

Yacoubi and Vaugeois, 2007) include animals susceptible to learned 

helplessness (Cryan et al., 2002; Vollmayr and Henn, 2001), high and low 

FST responders (David et al., 2003; Jacobson and Cryan, 2007) and 

animals with high or low immobility time in the TST (Cryan et al., 2005b).

The Flinders Sensitive Line (FSL) rat is the result of selective breeding for 

sensitivity to the hypothermic effect of cholinergic agonists (fo r review see 

Overstreet et al., 1995; Overstreet et al., 2005). This line of rats exhibits 

behavioural features characteristic of depression, and responds to chronic, 

but not acute, antidepressant trea tm ents. They also show grea te r 

immobility in the FST compared to the control Flinders Resistant Line (FRL). 

This model, therefore, shows some features of depression, but there are
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also some oddities in contrast to those observed in depressed patients, for 

example there is a reduced HPA axis activity.

As shown in Table 1.3 , genetic models have been developed based on an 

underlying alteration in the function of a selective neurotransmitter system. 

So far, about 80 d iffe ren t m utant lines have been reported to have 

phenotypes interpreted as abnormal "depression-re lated" or "anx ie ty - 

related" behaviour (Cryan et al., 2002; Cryan and Holmes, 2005). Molecular 

techniques such as gene knockout partially support the monoamine theory 

of depression (see section 1.5).

Some examples of knockout mice, such as those with targeted deletion of 

the 5-HTia receptor and the NET, are expected to show antidepressant- 

related phenotypes given the large body of evidence im plicating these 

proteins in antidepressant action (Ramboz et al., 1998; Perona et al., 

2008).

Moreover, several findings in mice with a targeted inactivation of the 5- 

HTT gene emphasize the relevance of adaptive 5-HT uptake function and 5- 

HT homeostasis in the developing human brain as well as m olecular 

processes underlying anxiety and depressive- related tra its. (Lesch, 2004; 

Murphy and Lesch, 2008; Perona et al., 2008; Kim et al., 2005).

Both genetic and behavioural strategies could be used as complementary 

and together may yield further information about the disease (Gould and 

Gottesman, 2006).
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Table 1 .3  S om e g e n e t ic a lly  a lte re d  m ic e  w ith  d e p re s s iv e  o r  

an tid ep ress ive  pheno type

Gene R esults

5-HTT knockout Antidepressant-like effects in the FST and TST

5-H T1A receptor knockout mouse Antidepressant-like effects in the FST and TST

5-HT1B receptor knockout mouse
Increase sensivity to the effects of SSRIs in the TST

Blockade of antidepressant-like effects of various 
antidepressants in the FST

Dopamine-p-hydroxylase knockout Blockade of antidepressant-like effects of various 
antidepressants in the FST

a^-adrenoceptor knockout Depressive-like effects and blockade of the antidepressant-like 
effect of imipramine in the FST

a2C-adrenoceptor knockout Antidepressant-like effects in the FST

a2C-adrenoceptor overexpressing Depressive-like effects in the FST

NET knockout Antidepressant-like effects in the FST and TST

MAO-A knockout Antidepressant-like effects in the FST

MAO-B knockout Antidepressant-like effects in the FST

Mu opioid receptor knockout Antidepressant-like effects in the FST

Delta opioid knockout Depressive-like effects in the FST

G2a G-protein knockout Blockade of antidepressant-like effects of desipramine and 
reboxetine in the FST

Glucocorticoid receptor impaired transgenic Antidepressant-like effects in the FST

Glutamic acid decarboxylase knockout Antidepressant-like effects in the FST

Adenosin A2a receptor knockout Antidepressant-like effects in the FST and TST

DARPP-32 knockout Reduced sensivity to Fluoxetine in the FST

CREB mutant mouse Antidepressant-like effects in the FST and TST

Modified from  Cryan et al., 2002.
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The causes of insensitivity to antidepressant treatm ents remain poorly 

understood and no model of drug-resistant depression is available. Although 

non-responder strains to antidepressant drugs are identified in rodents 

behavioural tests (Jacobson and Cryan, 2007; Lucki et al., 2001; Yalcin et 

al., 2008), attempts to correlate the response to drugs to neurochemical 

mechanisms are scarce or gave inconsistent results.

The Wistar-Kyoto (WKY) rat strain has been proposed as an interesting 

model of resistance to antidepressant treatment.

WKY stra in, compared to many other strains of rats, demonstrated 

hormonal, behavioural and psychological alteration emulating those found in 

depressive patients and exhibited depressive-like behaviour in several 

behavioural paradigms. Several studies have cited significant differences 

between WKY rats and o ther stra ins in behavioural response to 

antidepressants. Although some authors reported that desipramine reduce 

immobility time in the FST (Tejani-Butt et al., 2003; Lopez-Rubalcava and 

Lucki, 2000) other studies have found a reduced responsiveness to most 

antidepressant drugs (Lahmame et al., 1997; Lahmame and Arm ario, 

1996). D ifferent sens itiv ity  o f WKY rats may be dependent by the 

antidepressant drug class used and this may provide inform ation on the 

substrate involved in the response.

The dem onstration o f strain differences, also combining genetic and 

behavioural strategies in the response to antidepressant drugs, could 

provide new models for the detection of genes tha t influence the clinical 

effects of antidepressants.
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Recently, it has been suggested tha t differences in 5-HT levels between 

some mouse strains may be driven by a functional polymorphism in the 

TPH-2 gene. The gene encoding mouse TPH-2 shows a SNP (C1473G), in the 

same region of those found in human TPH-2, tha t results in the substitution 

of Pro447 with Arg447, with a different allelic distribution in different strains of 

mice (Zhang et al., 2004). DBA/2J and BALB/C mice, homozygous fo r the 

allele 1473G, have a lower 5-HT synthesis rate than C57BL/6J and 129/Sv 

mice, homozygous for the allele 1473C (Zhang et al., 2004; Cervo et al., 

2005).

Recent studies in our department shown that citalopram dose-dependently 

reduces im m obility tim e in C57BL/6J and 129/Sv but had no effect on 

DBA/2J and BALB/C mice (Cervo et al., 2005).

The data supported the hypothesis tha t th is  TPH-2 polym orphism , 

influencing the serotonergic system, reduced sensitivity to citalopram in the 

FST.

37



Introduction

1.6 Relevance of serotonergic system in depression

The development of new treatm ents fo r depression depends on our 

understanding of the pathophysiology of the disease and of the mechanisms 

by which drugs relieve symptoms of depression.

Depressive illness was firs t recognized as a biochemical phenomenon in 

the mid sixties of the last century (Schildkraut, 1965; Kaplan and Sadock, 

2000). Since then, the monoamine theory of depression became widely 

accepted. I t  simply states tha t mental depression is due to deficiency of 

brain monoaminergic activ ity and restoring the normal function of 5-HT- 

and NA-associated s igna lling  pathw ay has been the  ta rg e t o f 

antidepressants.

The idea tha t monoamines are involved in the aetiology of depression 

came in itia lly  from three main lines of evidence. Firstly, drugs such as 

reserpine tha t cause depletion of brain monoamines can induce symptoms 

of depression; secondly, some depressed patients have reduced levels of 

monoaminergic m etabolites in cerebrospinal flu id (CSF); and fina lly , 

antidepressant drugs immediately attenuate the mechanisms by which 5-HT 

and NA are inactivated (fo r review see Blier, 2003).

The earliest clinical report of the relationship between brain monoamines 

and depression was published by Freis (1954). He reported on 5 

hypertensive patients who developed mental depression after trea tm ent 

with high doses of reserpine. Since then, the pharmacological discoveries 

tha t depletion o f brain catecholamines and serotonin by reserp ine-like 

drugs, increased availability of NA and/or 5-HT by MAOIs and tricyclic drugs
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have provided ample support of the earlier clinical observations (Blier and 

de Montigny, 1994; Blier, 2003).

5-HT and NA can be depleted experimentally in humans by oral treatments 

{fo r review see Ruhe et al., 2007). A drink containing all amino acids except 

tryptophan (Trp) stimulates the liver to synthesize proteins and rapidly 

depletes the plasma (and therefore the brain) of Trp (Delgado et al., 1990). 

Trp is rate-lim iting for serotonin synthesis in the brain (see section 1.5.1). 

Such oral Trp depletion does not induce depression in healthy subjects but 

will cause a relapse of depression in patients who have been successfully 

treated with a SSRI (Jans et al., 2007; Hood et al., 2005; Bell et al., 2005; 

Neumeister, 2003; Van der Does, 2001; Delgado et al., 1999; Delgado et 

a l., 1991). S im ila rly , {a lp h a }-m e th y l paratyrosine inh ib its  tyros ine  

hydroxylase, the rate-lim iting step in catecholamine synthesis. Treatm ent 

with {a lpha }-m ethy l paratyrosine does not induce depression in normal 

subjects but will induce a relapse in patients who have been treated 

successfully with a NRI (Ruhe et al., 2007; Delgado et al., 1993). These 

findings suggest tha t NA and 5-HT have critical roles in the mechanisms of 

these treatm ents of depression but tha t additional neurochemical factors 

are necessary to cause depression.

Although evidence exists fo r the participation of both 5-HT and NA 

neurotransmission in the aetiology of depression and the mechanism of 

action of the antidepressants, more recently, the focus has shifted to the 5- 

HT system. This is principally because of the great success of the SSRIs as 

antidepressants.
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In particu lar, 5-HT appears to play a m ajor role and is a m ajor 

pharmacological target fo r the action of antidepressant drugs (Graeff et al., 

1996; Jans et al., 2007; Blier and de Montigny, 1998; Blier and de 

Montigny, 1994). Its role is supported by the fact that SSRIs, which are the 

most widely prescribed antidepressant drugs today, enhanced extracellular 

level of 5-HT in animal models.

I t  is widely accepted tha t diminished serotonergic function is involved in 

the onset and course of depression (Jans et al., 2007). Serotonergic system 

has been implicated in the pathophysiology of affective disorders (Coppen 

and Wood, 1982), and drugs tha t increase serotonergic activ ity generally 

exert antidepressant effects on patients (B lier and de Montigny, 1994; 

Carrasco and Sandner, 2005). Loading depressed patients w ith the 5-HT 

precursor Trp or 5-hydroxytryptophan (5-HTP), with or w ithout standard 

antidepressant treatments, has been found to be beneficial in the treatm ent 

of depression (Shaw et al., 2002).

Despite an intense effort to correlate 5-HT deficiency with depression, the 

findings of most studies have been inconclusive.

Dysfunction at various levels of the 5-HT system may be present in at 

least some depressed patients (Jans et al., 2007). In particular, 5-HT 

and/or its metabolites are found to be reduced in urine and CSF of patients 

with affective illness, the 5-HT content in brains of suicide victims was found 

to be low as compared with controls. In addition, there was some evidence 

that there was decrease in the 5-HT metabolite, 5-hydroxyindole acetic acid 

(5-HIAA), in the suicide group (Owens and Nemeroff, 1994).

Post-mortem studies have shown both an increase in the density of 

serotonin 5-HT2 receptor binding sites, and a decreased num ber of
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serotonin 5-HTT binding sites in brain tissue of depressed patients and 

suicide victims (Owens and Nemeroff, 1994), as well as an increase in the 

serotonin 5-HT iA autoreceptors in the midbrain dorsal raphe of suicide 

victims with MDD (Stockmeier et al., 1998). Post-mortem studies show that 

the levels of p l l ,  a protein tha t enhances the efficiency of 5-HTi B receptor 

s ignalling, are decreased in the brains of patients w ith depression 

(Svenningsson et a l., 2006; Belmaker and Agam, 2008). Decreased 

serotonergic activity in MDD is fu rther supported by the results of recent 

imaging studies that have evidenced widespread reductions in serotonin 5- 

HTia autoreceptor and a reduction in the density of brain 5-HTT binding 

sites (Malison et al., 1998; Sargent et al., 2000).

Although 5-HT deficiency alone cannot explain the pathophysiology of 

mood disorders, the interaction of low 5-HT levels in the brain with other 

neurotransmitter systems in the CNS has been considered to be im portant 

in the aetiology of depression and other mood disorders (Kalia, 2005).

Several factors, such as genetic factors, gender, stress and drug use or 

manipulation such as 5-HT challenges or acute tryptophan depletion, may 

disrupt or modify the serotonergic system. This "serotonergic vulnerability" 

can predispose to  develop disorders related to 5-HT, indicating tha t the 

development of depression is associated with the presence of a pre-existent 

abnorm ality in the functioning of the 5-HT system (Jans et al., 2007; 

Gaspar et al., 2003).
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1.6.1 Serotonin system

5-HT-containing neuronal cell bodies are restricted to discrete clusters or 

groups of cells located along the midline of the brainstem (Adell et al., 

2002; Siegal et al., 1999; Azmitia and Segal, 1978; Michelsen et al., 2007). 

Their axons, however, innervate nearly every area of the CNS (F igu re  1.3).

Most 5-HT neurones are found in the raphe nuclei, on the midline of the 

rhomboencephalon, w ith a sm aller number in the re ticu lar form ation. 

Dahlstrom and Fuxe (1964) described nine groups of 5-HT-containing cell 

bodies designated B1 through B9 and corresponded for the most part with 

the raphe nuclei.

They c luste r as two main groups: the caudal d iv is ion (B 1-B 5 , 

corresponding to the raphe pallidus, magnus, obscurus and pontis), and the 

rostral division (B6-B9, corresponding to the dorsal and median raphe 

nuclei, respectively DR and MR; Lidov and Molliver, 1982; Wallace and 

Lauder, 1983).

The tota l number of serotonergic neurons is small — around 20,000 

neurons in the rat (Jacobs and Azmitia, 1992) — compared with the total 

number of neurons in the CNS — about 1010, but serotonergic neurons 

provide a relatively dense innervation to all the brain areas and the spinal 

cord, by way of an extensive and diffuse collateralization of their axons.

The largest group of serotonergic cells is B7, which is continuous with a 

smaller group of serotonergic cells, B6. Groups B6 and B7 are considered 

together as the DR, with B6 being its caudal extension. Another prominent 

serotonergic cells group is B8, which corresponds to the MR, also termed 

the nucleus central superior. Group B9 forms a lateral extension of the MR. 

Ascending serotonergic projections innervating the cerebral cortex and
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other regions of the forebrain arise primarily from the DR, MR and B9 cell 

group (Dahlstrom and Fuxe, 1964; Waselus et al., 2006; Tork, 1990; 

Jacobs and Azmitia, 1992).

The two main ascending serotonergic pathways from the midbrain raphe 

nuclei to the forebrain are the dorsal periventricular path and the ventral 

tegmental radiations. Both pathways converge in the caudal hypothalamus, 

where they join the medial forebrain bundle.

Ascending projections from the raphe nuclei to forebrain structures are 

organized in a topographical manner. The DR and MR nuclei give rise to 

d is tinct projections to forebrain regions. The MR projects heavily to 

hippocampus, septum and hypothalam us, whereas the  s tria tum  is 

innervated predominantly by the DR. They both send overlapping neuronal 

projections to the neocortex. Within the DR and MR, cells are organized in 

particular zones that send axons to specific areas of brain. For example, the 

fronta l cortex receives heavy innervation from  the rostral and lateral 

subregions of the DR. The other raphe nuclei, B1 to B4, are situated more 

caudally in the midpons to caudal medulla and contain a smaller number of 

serotonergic cells. These cell body groups give rise to serotonergic axons 

tha t project w ithin the brainstem and to the spinal cord. The spinal cord 

receives a strong serotonergic innervation.

Afferent connections to the raphe nuclei include those between the DR and 

MR, B9, B1 and B3 (Jacobs and Azmitia, 1992; Molliver, 1987; Tork, 1990). 

Such innervation may have considerable physiological and pharmacological 

importance as 5-HT released in the v ic in ity  of serotonergic cell bodies 

regulates the firing  of serotonergic neurons through the activation of 

somatodendritic autoreceptors (m ainly 5-HT iA). The raphe nuclei also
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receive input from other cell body groups in the brainstem, such as the 

substantia nigra and ventral tegmental area (VTA; dopamine), superior 

vestibu la r nucleus (acety lcho line), locus ceruleus (NA) and nucleus 

prepositus hypoglossi and nucleus of the solitary tract (adrenaline). Other 

afferents include neurons from the hypothalamus, thalamus and limbic 

forebrain structures.

In most of the raphe nuclei, the majority of neurons are not serotonergic. 

For example, the DR contains the largest number of serotonergic neurons; 

however, only 40 to 50% of the cell bodies in the DR are serotonergic.

Serotonergic axon term inals appear to exhibit morphological differences 

related to the raphe nucleus of origin (Molliver, 1987; Rattray et al., 1999). 

Serotonergic axons from the MR look relatively coarse with large spherical 

varicosities. By contrast, axons from the DR are very fine and typically have 

small, pleomorphic varicosities. DR axons appear to be more vulnerable to 

certain neurotoxic amphetamine derivatives, such as d-fenfluram ine, 3,4- 

m ethylenedioxym etham phetam ine (MDMA) or parachloroam phetam ine 

(PCA). MR axons appear to be more resistant to the neurotoxic effects of 

these drugs. Blockade of the 5-HTT prevents the neurotoxic effects of these 

amphetamine derivatives, indicating tha t activ ity  of th is transporte r is 

critical for the neurotoxic effects of these drugs.
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Figure 1 .3  Central serotonergic system

Although high amounts of 5-HT are present in the periphery, cerebral 5-HT 

has to be synthesised by the brain itself, as it cannot cross the blood brain 

barrier under normal conditions (Sharma et al., 1990). Plasma Trp, the 

precursor of 5-HT, is mainly derived from diet and it is actively transported 

into the brain. Competition exists for this active transport between several 

aminoacids like arom atic amino acids (tyrosine and phenyla lanine), 

branched chain amino acids (leucine, isoleucine and valine), and others 

(methionine and histidine). As a consequence, the amount of Trp available 

in the brain not only depends on the plasma concentration of Trp, but also 

on other amino acids (Daniel et al., 1976).

5-HT is synthesized from Trp, in a two-step process (Figure 1 .4 ) involving 

the hydroxylation of the essential amino acid Trp in position 5 of the 

aromatic ring to obtain 5-HTP. The enzyme responsible in the brain for this
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limiting step is TPH-2. The second step is the conversion of 5-HTP into 5-HT 

by the aromatic amino acid decarboxylase (AAAD).
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5-HT is stored in vesicles in the presynaptic neuron and released into the 

synaptic cleft upon neuronal membrane depolarization, thus affecting both 

presynaptic and postsynaptic neurons (Figure 1.5). Reuptake of 5-HT by 

sero ton in  tra n s p o rte r (5-HTT) is a key po in t in se ro tonerg ic  

neurotransmission because it is the main way by which released 5-HT is 

cleared from the synapses.

nerve terminal

©CNSforui

Figure 1 .5  5 -H T  neurotransmission, (www. cnsforum .com /im agebank)
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Cessation of the synaptic action of the neurotransmitters occurs also by 

means of the feedback control of release through the presynaptic 5-HTiA 

and 5-HTib regulatory autoreceptors and MAO-A that indirectly regulates 

vesicular content.

In the CNS, catabolism of serotonin mainly occurs by MAO-A to form 5- 

hydroxyindoleacetaldehyde. Oxidation of this interm ediate by aldehyde 

dehydrogenase forms 5-HIAA, which is the predominant m etabolite of 

serotonin in the brain (Figure 1 .6 ). In the pineal gland, 5-HT is converted 

into melatonin by two additional enzymatic steps.

Figure 1.6 Catabolism o f 5 -H T
Modified from  www. ncbi. nlm. n ih.gov/books/bv. fcgi?rid=bnchm. figgrp. 955
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Serotonergic pathways have both inhibitory and facilitatory functions in the 

brain.

Due to the rapid developments in the field o f molecular biology, the 

number of serotonin receptors tha t have been identified has expanded 

significantly in the last decades.

At least 14 d istinct mammalian 5-HT receptor subtypes have been 

identified (Stahl, 1998; Barnes and Sharp, 1999; Elhwuegi, 2004; Jans et 

al., 2007). Based on structural and functional properties, seven types of 

serotonin receptors have been classified until now (Table 1 .4 ). However, a 

more complex picture may emerge due to evidence tha t some receptor 

subtypes (5-HT2c/ 5-HT3, 5-HT4 and 5-HT7) can occur as multiple isoforms 

due to gene splicing, post-transcriptional RNA editing and polymorphic 

variants (Stam et al., 1997; Gerald et al., 1995; Canton et al., 1996; 

Werner et al., 1994).

Furthermore 5-HT receptors are categorized into four groups according to 

the ir second messenger coupling pathways: the 5-HTi receptors, which are 

coupled to Gi proteins (5 -H T i A, 5-H T i B-c and 5-H T i D-f); the 5-HT2 receptors, 

which are coupled to Gq proteins (5-HT2A-c); the 5-HT4, 5-HT6 and 5-HT7 

receptors, which are coupled to Gs proteins; and the 5-HT5 receptors (5- 

HT5A and 5-H T5b), which resemble the previous group but whose signal 

transduction cascade is not entirely clear. 5-HT3A and 5-HT3B are ionotropic 

receptors.
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Table 1.4  Overview o f 5 -H T  receptors

5-HT
receptor
subtypes

AGONISTS ANTAGONISTS SIGNALLING CNS LOCALIZATION and 
FUNCTIONS

5-H T1A [ 80H-DPAT, 
ipsapirone

methiothepin, 
pindolol, 

spiperone, 
WAY 100635

decreasing cellular 
levels of cAMP

Hippocampus, amygdala, septum, cortex, 
hypothalamus, raphe nuclei

Neuronal inhibition, behavioural effects (sleep, 
feeding, thermoregulation, aggression, anxiety)

5-H T1b
Sumatriptan,
Zolmitripan

metergoline, 
methiothepin, 
risperidone, 
GR 55562

decreasing cellular 
levels of cAMP

Striatum, nucleus accumbens, tuberculum 
olfactorium, cortex, hypothalamus, hippocampus, 

thalamus, dorsal raphe and cerebellum
Presynaptic inhibition, behavioural effects

5-H T1d
Sumatriptan,
Zolmitripan,

GR 127935, 
BRL 15572

decreasing cellular 
levels of cAMP

Substantia nigra, basal ganglia, superior colliculus, 
entorhinal cortex, dorsal raphe, cerebellum

Locomotion, anxiety

5-H T1e BRL 54443 decreasing cellular 
levels of cAMP

Cortex, claustrum, caudate putamen j
Unknown

5-H T1f
LY334370, 

(BRL 54443)
decreasing cellular 

levels of cAMP

Cerebral cortex, striatum, hippocampus, olfactory 
bulb

Migraine

5-H T2A DOI, DOB Ketanserin, 
MDL 100,907

increasing cellular levels 
o f inositol trisphosphate 
(IP3) and diacylglycerol 

(DAG)

Claustrum, cerebral cortex, olfactory tubercle, 
striatum, nucleus accumbens

Neuronal excitation, behavioural effects, learning, 
anxiety

5-H T2B CP809101
BW723C86

RSI 27445, 
SB204741, 
SB206553

increasing cellular levels 
o f inositol trisphosphate 
(IP3) and diacylglycerol 

(DAG)

Amygdala, septum, hypothalamus and cerebellum
Anxiety

5-H T2C
mCPP, 

RO60-0175, 
WAY 161503

SB206553,
RS102221,
SB242084

increasing cellular levels 
o f inositoi trisphosphate 
(IP3) and diacylglycerol 

(DAG)

Choroid plexus, globus pallidus, cerebral cortex, 
hypothalamus, septum, substantia nigra

Depression, anxiety

5 -H T3
2-methyl-5-HT, 

SR 57227A
Granisetron,
Ondansetron

ligand-gated Na-i- and 
K+ cation channel

Hippocampus, cortex, amygdala, nucleus accumbens
Neuronal excitation, anxiety, emesis, cognition

5-HT4
BIMU 8, 

RS 67506
GR113808,
SB204070

increasing cellular levels 
o f cAMP

Hippocampus, striatum, olfactory tubercle, 
substantia nigra

Neuronal excitation, learning, memory, anxiety.

5-H T5a 5-CT SB699551 1 inhibiting adenylate 
cyclase activity

Hippocampus, hypothalamus, cerebral cortex, ' 
thalamus, pons, striatum, raphe and medulla j

Locomotion, sleep

5-H T5B
inhibiting adenylate 

cyclase activity
No or low level in the brain

Unknown

5-H T6
Carboxamidotrypta

mine Ro 04-6790 increasing cellular levels 
o f cAMP

Olfactory tubercle, cerebral cortex , nucleus 
accumbens, striatum, hippocampus, cerebellum,

caudate nucleus ;
Anxiety, cognition, memory

5-H T 7
Carboxa m idotry pta 

mine SB258719 j increasing cellular levels 
o f CAM P ;

Cerebral cortex, septum, thalamus, hypothalamus, 
amygdala, superior colliculus, raphe nuclei and 

hippocampus
Circadian rhythms, sleep, depression
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The 5-HTi receptor fam ily is subdivided to at least five receptor subtypes 

(5 -H T ia, 5 -H T ib, 5 -H T id / 5 -H T i E and 5-H T i F). These receptors are linked to 

inh ib ition of adenylate cyclase (AC) activ ity  through Gi protein, thus 

inhibiting formation of the second messenger c-AMP, or to regulation of K+ 

or Ca2+ channels.

Activation of 5-HTiA receptors leads to the opening of an inwardly 

rectifying K+ conductance, which leads to hyperpolarization and neuronal 

inhibition (Aghajanian and Lakoski, 1984). Overall, the 5-HTiA receptor is 

regarded as an inhibitory receptor. I t  is located in the raphe nuclei, but is 

also highly abundant in term inal areas such as prefrontal cortex and 

hippocampus (Hensler et al., 1991). I t  is well known tha t somatodendritic 

5-HTiA autoreceptors in the DR causes inhibition of the firing rate of 5-HT 

neurons and therefore inhibit 5-HT release at the nerve terminals (Sprouse 

and Aghajanian, 1986). They also regulate 5-HT release from the forebrain 

projection areas {fo r review see Pineyro and Blier, 1999).

5-HT release from  serotonergic neurons is also under the control of 

terminal 5-HTi B and 5-HTi D autoreceptors (Starkey and Skingle, 1994; Adell 

et al., 2001). These receptors can modify 5-HT release with m inor or no 

effects on 5-HT neuron firing activ ity (Crespi et al., 1990; Adell et al., 

2001).

5-HTie receptors are located in cortex, claustrum and caudate putamen 

and little  is known about the ir physiological role (Barnes and Sharp, 1999), 

whereas 5-HTi F receptors have been found in cortex, hippocampus and DR 

and agonists m ight have a role in treatm ent migraine (Barnes and Sharp, 

1999).
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There are three subtypes of 5-HT2 receptors, the 5-H T2a/ 5-HT2B and 5- 

HT2C receptors. These receptors have in common tha t the ir signalling 

pathway activates phosphoinisitide metabolism, which mobilises Ca2+ and 

activates protein kinase C. Centrally, the 5-HT2A receptor is mainly found in 

cortex, claustrum and basal ganglia (Hoyer et al., 1994). In man, 5-HT2B 

receptors are mostly located peripherally, but presence of 5-HT2B receptors 

has been observed in amygdala, septum, hypothalamus and cerebellum. In 

contrast to 5-HT2B receptors, 5-HT2C receptors are mainly found in the 

central nervous system. High levels of 5-HT2C receptors have been observed 

in the choroid plexus, cerebral cortex, hippocampus, s tria tum , and 

substantia nigra of rats as well as humans (Barnes and Sharp, 1999; Hoyer 

et al., 1994; Di Giovanni et al., 2006).

Several lines of evidence indicate an im portant role of 5-HTi and 5-HT2 

subtypes in depression (Middlemiss et a l., 2002, see section 1.5  and 

Chapter 4).

The 5-HT3 receptor is the only ligand gated ion channel in the serotonin 

receptor fam ily. I t  enhances depolarisation by increasing perm eability to 

cations. The receptor is highly abundant in the gastric system, whereas in 

the CNS it is most abundant in the area postrema, nucleus tractus 

solitarius, substantia gelatinosa and nuclei of the lower brain stem.

Centrally acting 5-HT3 antagonists have behaved as anxio lytics and 

antiemetics (Hoyer et al., 1994).
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The 5-HT4/ 5-HTs, 5-HT6 and 5-HT7 subgroups have been identified by 

molecular cloning and characterized biochemically, but a clear role of these 

receptors in depression is not yet known.

5 -HT4 subtypes receptors are positively coupled to AC. I t  has been found 

centrally in the nigrostriatal and mesolimbic systems (Barnes and Sharp, 

1999) as well as peripherally.

The 5 -HT5 receptor is probably the least understood receptor of the 5-HT 

class. Whereas molecular biological research has provided evidence fo r 5- 

HT5a and 5-H T5b subtypes, the ir pharmacology is largely unknown. The 

presence of the 5-HT5A receptor has been observed in hippocampus, 

hypothalamus, cerebral cortex, thalam us, pons, s tria tum , raphe and 

medulla. No 5-HT5A receptors have been observed in peripheral tissue 

(Barnes and Sharp, 1999).

Conversely, 5-HT5B receptors have been observed in peripheral tissue like 

heart, kidney and lungs, though no or low levels of the receptors were 

found in brain tissue (Barnes and Sharp, 1999).

5-HT6 subtype receptors appear to be largely confined to the CNS, though 

some have been observed in peripheral structures like stomach and adrenal 

gland as well. High levels of 5-HT6 mRNA have been observed in the 

caudate nucleus, olfactory tubercle, nucleus accumbens and hippocampus. 

Their activation has been shown to enhance cAMP fo rm ation . 5-HT6 

knockout mice tended to show enhanced anxiety in behavioural paradigms 

(Barnes and Sharp, 1999) but the ir relevance in depression is not clear. 

Recent evidence shows that activation of 5-HT6 receptors initiates a cascade
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of intracellu lar events tha t may be involved in the antidepressant-like 

effects of SSRIs (Svenningsson et al., 2007).

The 5-HT7 receptor is the most recently described 5-HT receptor but it has 

already gained a lot of interest (Bonaventure et al., 2007, Guscott et al., 

2005). This receptor is highly abundant in the raphe nuclei, thalamus, 

hypothalamus and hippocampus (Barnes and Sharp, 1999). The observation 

tha t 5 -HT7 receptors were downregulated upon chronic trea tm ent w ith 

various antidepressants m ight indicate relevance of these receptors in 

depression (Mullins et al., 1999).
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1.6.2 Revised monoaminergic hypothesis

Emerging evidence indicates that the monoamine hypothesis of 5-HT and 

NA modulation fails to explain the whole mechanism of antidepressants and 

in particular the discrepancy between the acute effect of antidepressant 

drugs and the delay in the onset of their therapeutic action.

First, some drugs as cocaine and amphetamine, tha t can increase brain 

monoaminergic activity, are not effective as antidepressants (Belmaker and 

Agam, 2008). Second, not all depressed patients respond equally to  the 

same antidepressant trea tm ents. Third, and most im po rtan tly , the 

pharmacological and biochemical effects of the antidepressant drugs occur 

within minutes, they do not produce the ir effects for at least 14 days after 

initiation of treatment. This lag time suggests that antidepressants act via a 

delayed postsynaptic receptor-mediated event (Malberg and Blendy, 2005; 

Blier, 2003).

Monoamines produce their effect by inducing complex biochemical changes 

in postsynaptic neurons by interacting with signalling proteins (G proteins) 

inside the postsynaptic cell membrane.

The modified amine theory has suggested that the acute increase in the 

levels of the monoamines at the synapse may be only an early step in a 

cascade of events that ultim ately results in antidepressant activ ity  (B lier 

and de Montigny, 1998; Pineyro and Blier, 1999). This acute increase in the 

amount of the monoamine at the synapse has been found to induce 

desensitization of the 5-HTiA and a2-adrenoceptors, located on the soma 

and/or dentrites, respectively of serotonergic and noradrenergic neurones, 

or functioning as heteroreceptors controlling neurotransm itter release in
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several brain regions (fo r review see Blier, 2003). The desensitization of 

these receptors would result in higher central monoaminergic activity that 

coincides with the appearance of the therapeutic response (Stahl, 1998).

More recently, molecular events downstream of antidepressants action on 

the monoamines have been elucidated, generating new theories about the 

pathophysiology of depression and the action of antidepressant treatments. 

These hypotheses put forward tha t antidepressants activa te  second 

messenger systems and subsequently transcription factors such as cAMP 

response elem ent-binding protein (CREB), neurotrophic pathways and 

increase hippocampal neurogenesis (fo r review see Krishnan and Nestler, 

2008). Recent preclinical and clinical studies dem onstrate s tructura l 

alterations occurring in response to stress and in depressed patients tha t 

can be reversed by antidepressant treatm ents (fo r review see Duman, 

2002). Therefore neural plasticity and neurogenesis may play a significant 

role in the etiology and treatm ent of depression and the neurotrophic 

pathway, and in particular the brain derived neurotrophic factor (BDNF), 

seems to be involved.
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1.7 Neurotrophic hypothesis and BDNF

The neurotrophic hypothesis can be considered as complementary to the 

monoamines hypothesis of depression (Duman and Monteggia, 2006; 

Duman, 1998; Duman, 2002; Pittenger and Duman, 2008; Malberg and 

Blendy, 2005). I t  postulates tha t a loss of BDNF plays a m ajor role in the 

pathophysiology of depression, and its restoration may represent a critical 

mechanism underlying antidepressant efficacy. This theory comes from  

converging lines of data (Pittenger and Duman, 2008). First, antidepressant 

drugs require at least 2 weeks administration to see clinical efficacy (Nestler 

et al., 2002). This tim e lag may represent a necessity fo r long-term  

adaptations in the signalling pathways, such as neurotrophic pathways, 

before seeing a therapeutic effect. Secondly, it was hypothesized tha t 

depression can arise from the failure of the CNS to exhibit the appropriate 

synaptic plasticity in response to stress, which may be offset or reversed by 

neurotrophic support induced by antidepressant treatments (Duman et al.,

2001). Finally, it has been recently hypothesized that neurogenesis, or the 

birth and survival of new neurons, is involved in antidepressant action 

(Malberg and Blendy, 2005). BDNF is a neurotrophic peptide, critical fo r 

axonal growth, neuronal survival, and synaptic plasticity, and its levels are 

affected by stress and cortisol (Duman, 2004a; Duman, 1998; Smith et al., 

1995; Angelucci et al., 2005; Sapolsky, 1996).

The neurotrophic hypothesis of depression was originally based on findings 

in rodents that acute or chronic stress decreases expression of BDNF mRNA 

in the hippocampus and that several classes of antidepressants produce the
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opposite effect and prevent the actions of stress (Duman et al., 2001; 

Duman, 2004b).

Chronic antidepressant drugs and electroconvulsive therapy up-regulate 

BDNF and other neurotrophic and growth factors (Duman et al., 2000; Balu 

et al., 2008); BDNF protein acutely administered directly into the lateral 

ventricles or into the dentate gyrus has antidepressant-like effects in the 

FST and LH paradigm (Siuciak et al., 1996; Shirayama et al., 2002). The 

hippocampus seems to play a major role in the antidepressant-like effects 

of BDNF while infusion of this neurotrophin into the VTA produces pro- 

depressive effect (Eisch et al., 2003).

Post-mortem studies reported reduced BDNF levels in the hippocampus of 

patients with depression who had committed suicide (Karege et al., 2005; 

Dwivedi et al., 2003). Clinically, increased hippocampal BDNF levels have 

been observed in patients treated w ith antidepressants, along w ith 

decreased serum BDNF levels in untreated depressed subjects (Chen et al., 

2001; Groves, 2007).

One study showed tha t the hippocampus was smaller than normal in 

patients with depression who carried a polymorphism giving rise to a BDNF 

variant (V66M) allele (Frodl et al., 2007). Several studies suggest an 

association between polymorphisms in BDNF and depression and between 

the M allele and response to antidepressant treatm ents, but subsequent 

reports only partially confirmed these results (Lin and Chen, 2008; Duncan 

et al., 2008; Levinson, 2006).

Overall these studies suggest tha t BDNF is an im portant link between 

stress, neurogenesis and hippocampal atrophy in depression. However, a 

genetic association of the BDNF V66M polymorphism with depression has
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not been replicated in most studies, and BDNF may be related not only to 

depression but also to multiple psychiatric disorders (Angelucci et al., 2005; 

Balu et al., 2008). Furthermore both BDNF-knockout mice and Knock-in 

mice that homozygously express M-66 BDNF have behaviours unrelated to 

depression (Lyons et al., 1999; Chen et al., 2006; Krishnan et al., 2007).

Castren (2005) has proposed that antidepressant treatments may increase 

synaptic sprouting and allow the brain to use input from the environment 

more effectively to recover from depression. Moreover Adachi et al. (2008) 

recently suggest that the loss of hippocampal BDNF per se is not sufficient 

to mediate depression but it is involved in mediating the therapeutic effect 

of antidepressants. Further studies are needed to clarify the role of BDNF in 

the neuroplasticity and neurogenesis mechanisms tha t contribute to the 

pathophysiology of depression and the action of antidepressant drugs.
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AIM  of the thesis

Despite several decades of research, the changes tha t antidepressant 

drugs induce in the brain tha t underlie the ir therapeutic action remain 

unclear.

The fundamental goal of the work described in this thesis is to provide a 

better understanding of the role played by the neurochemical factors 

involved in a new animal model predictive of the antidepressant effect in 

resistant subjects, and in particular to evaluate the role of serotonergic 

mechanisms.

The preceding pages have set out the general background of this work.

Recent results obtained in our department (Cervo et al., 2005) suggested 

tha t the im pairm ent of 5-HT synthesis m ight be involved in the lack of 

response to SSRIs in mice carrying the mutant isoform of TPH-2 (F ig u re  

1.7).
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High brain 5-HT  
synthesis

C 57B L/6 1 29 /S v

Allele 1473C
I

responder to  CITALOPRAM 
in the  FST

j Low brain 5-HT
synthesis

BALB/c D B A /2

Allele 1473G I
non-responde r to  

CITALOPRAM in the  FST

F ig u re  1 .7  S tra in  d iffe re n c e s  in  s in g le  n u c le o tid e  p o ly m o rp h is m  o f  

TPH-2

Tryptophan-hydroxylase-2, the ra te-lim iting enzyme in the synthesis of 
brain serotonin, shows single nucleotide polymorphism (C1473G). Inbred 
mice carrying the 1473G allele (DBA/2 and BALB/c) show a reduced rate of 
serotonin synthesis compared to C57BL/6 and 129/Sv strains, homozygous 
for the C-allele. Using the forced swimming test (FST), it has been shown 
that the genotype-dependent impairment of serotonin synthesis determines 
the failure of DBA/2 and BALB/c mice to respond to citalopram (Cervo et al., 
2005).

The results acquired suggest that inter-strain comparisons of mice carrying 

allelic variants of TPH-2 may serve as a good model fo r a clearer 

understanding of the mechanisms underlying the response to SSRIs.

The experim enta l m ethods have concentrated on neurochem ical 

measurement of monoamine averflow using in vivo m icrodia lysis (see 

Chapter 2). The combination of th is methodological approach w ith a 

behavioural model, the FST, is well suited to delve into the role of 5-HT. In
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particular it provides information on alteration in brain neurotransmission 

and allows manipulating it, mainly acting on pre- and post-synaptic 5-HT 

mechanisms.

The work has four main parts:

1) In order to test the role of serotonergic mechanism involved in the lack 

o f response to SSRIs in the FST, I evaluated strain differences in 5-HT 

synthesis and synaptic availability of 5-HT under basal conditions and in 

response to acute administration of SSRIs.

2) In the second target of the project, I tested pharmacological strategies 

aimed at improving the effect of SSRIs in mice not responding to the SSRI 

alone, verifying whether intervention aimed at enhancing the effect on 

extracellular 5-HT restored the antidepressant-like effect in the FST.

3) To enquire into the role o f serotonergic mechanism, I examined the 

inhib itory control of GABA on 5-HT neurons in the dorsal raphe and the 

existence of a negative-feedback loop involving reciprocal connections 

between GABAergic interneurons and 5-HT neurones.

4) I t  is well known that antidepressant drugs produce the ir effects about 

two weeks after initiation of treatment. This lag time suggests tha t adaptive 

changes are required for the ir effects. Therefore the last goal of the project 

was to evaluate the role of BDNF, a neurotrophin that has been linked to the 

long-term action of antidepressant drugs and can be involved in regulating 

neural structure and plasticity in the brain.
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General methods

This chapter contains a description of the general methods and techniques 

used in th is thesis to  examine the role o f serotonergic mechanisms 

underlying the response to SSRIs.

The specific procedures and methods that are unique to, or deviate from, 

the general methods are described in the appropria te experim enta l 

chapters.

The methodological approach has concentrated prim arily on examining 

extracellular 5-HT in several regions of the mouse brain using the in vivo

m icrodialysis technique. In order to define the role o f 5-HT in the

an tidep ressan t response, changes in 5-HT release induced by

pharmacological manipulation have been associated to the effect of the

same treatment in the FST.

Although it is problematic to extrapolate the findings in animals to 

humans, as discussed in Chapter 1, the FST does respond to some 90% of 

clinically active antidepressant treatments.

All behavioural experiments were done in collaboration with Dr. L. Cervo 

and the Laboratory of Experimental Psychopharmacology. I contributed to 

the planning and execution of the experiments whereas the assessment of 

behaviour was done by Dr. L. Cervo and co-workers of the Laboratory of 

Experimental Psychopharmacology.
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2.1 Animals

Procedures involving animals and the ir care were conducted in conformity 

with the institutional guidelines tha t are in compliance with national (D. L. 

n. 116,G. U., suppl. 40, 18 Febbraio 1992, Circolare No. 8, G. U., 14 Luglio 

1994) and international laws and policies (EEC Council Directive 86/609, OJ 

L 358,1, Dec. 12, 1987; Guide for the Care and Use of Laboratory Animals, 

U.S. National Research Council, 1996).

The animals were picked up from the quarantine 3 days after the ir arrival 

and housed at constant room temperature (21±1°C) and relative humidity 

(60±5% ) under a regular light/dark schedule (light 07 h 00 min - 19 h 00 

m in). Food (Teklad global 18% protein rodent diet, Harlan, Ita ly ) and 

filtered tap water were freely available.

Male C57BL/6J, C57BL/6N, DBA/2J, DBA/2N and BALB/C mice (Charles 

River Laboratories; Calco, Ita ly ), 6-8 weeks old, were housed in perpex 

standard cages.

After the microdialysis probe implantation, the animals are housed singly.

Animals are not habituated to handling before the experiment.

Each animal was used only once.
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2.2 Intracerebral microdialysis

Since its introduction in the 1980's by Ungerstedt and co-workers, in vivo 

microdialysis has been an im portant research tool in neuropharmacology 

(Zetterstrom  et al., 1983; Benveniste, 1989). I t  is a well-established 

technique for in vivo monitoring of extracellular neurotransmitters in awake, 

freely moving animals. The basic principle is the positioning of probe made 

with a membrane tha t allows free diffusion of water and low molecular 

weight solutes between the brain interstitial space and a solution lacking the 

substance of in terest continuously flow ing into the probe lumen. The 

membrane acts as a mechanical barrier to turbulence in the fluid flow 

reducing the mechanical stimulation of the tissue. Furthermore it acts as a 

filte r against the large molecules and proteins present in the extracellular 

fluid.

As shown in F igu re  2 .1 , the key element in the microdialysis technique is 

the diaiysis probe. I t  is perfused with an isotonic and isoionic solution 

(artificial cerebrospinal fluid, aCSF, see composition in paragraph 2.2 .2 ) at a 

constant flow of 1-2 pL/min with a microinfusion pump.

Although simple in principle, microdialysis is an invasive technique because 

it a ttem pts to m onitor the release of neuro transm itte rs from  nerve 

term inals by inserting into the brain a probe several orders of magnitude 

larger than the biological structure under study (Di Chiara, 1990). The 

injury caused by the insertion of the probe is lim ited to a short period of 

tim e. A fte r 24 h animals exhibited only s light a lte ra tion in glucose 

metabolism and blood-brain barrier perm eability (Benveniste, 1989).
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Typically after an in itial period during which neurotransm itter levels are 

very high, they decrease and remain stable fo r several hours or days 

(Westerink, 1995). The development of reactive gliosis, occurring few days 

after probe implantation, lim its the use of microdialysis probe. Therefore, 

for longer experiments, it is better to use a guide cannula in which inserts 

the probe 24 h before the experiment.

An important aspect to consider is that after release neurotransmitters can 

be involved into processes of uptake and metabolism, which can lim it the 

amount of neurotransm itters recovered in the dialysate. Concentrations 

obtained by m icrod ia lysis sam pling both in v itro  and in vivo  are 

substantially lower than those in the sampled flu id, necessitating probe 

calibration to determine levels released. The ratio of the concentration in 

the samples collected from the probe to the concentration outside the probe 

is termed the "relative recovery" (Chaurasia, 1999; Chen et al., 2002). The 

concentration ratio depends on the flow rate through the probe, the area of 

the dialysis membrane, the temperature, the molecular weight of the solute 

and the tortuosity of the surrounding fluid (Benveniste, 1989; Chen et al.,

2002). The factor most affecting the probe recovery is the flow rate. When 

the flow is near to zero, the solutions outside and inside the membrane 

approach the equilibrium. For monoamines, the amount of neurotransm itter 

reaching the probes can be determined by the balance between the release 

of the neurotransm itter and the mechanisms of uptake. To evaluate the 

contribution of these factors, Lonnroth et al. (1987) developed a method to 

estimate recovery in vivo evaluating the extracellular concentration of the
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analyte at the steady state. This method is referred to as "zero-net-flux" 

and It Is discussed in detail in the Chapter 3.

Another question is whether the dialysate content of a neurotransmitter is 

directly related to neurotransmission. This can be evaluated examining the 

calcium dependency, omitting the calcium ions from the perfusion fluid, and 

the blockade of fast sodium-channels, infusing the sodium-channel blocker, 

tetrodotoxin (TTX). Several studies confirmed the neuronal origin of 5-HT 

measured in dialysate (Di Chiara, 1990; Bortolozzi and Artigas, 2003). More 

difficult to interpret is the origin of extracellular y-aminobutyric acid (GABA) 

and glutamate (GLU) recorded by microdialysis (discussed in Chapter 5).

micrpdiqly^gtg
sample

m jc rp in fyS jp n

pump surgery

| ~ 2 0  h

HPL C
Probe awake mouse

F igu re  2.1 S chem atic  d ra w in g  o f  th e  m a in  s te p s  in  a m ic ro d ia ly s is  

e x p e rim e n t
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A feature of the microdialysis technique is the possibility o f measuring 

neuro transm itte rs  release in free ly  moving behaving anim als and 

manipulating the extracellular fluid compartment changing the composition 

of the perfusing fluid or with drugs administration.

2.2.1 Preparation o f the dialysis probe

Concentric dialysis probes (F ig u re  2 .2 ) were prepared essentially as 

previously described (Robinson and Whishaw, 1988). A tungsten wire (200 

pm outer diameter; TW5-3, Clark Electromedical Instr., UK) was insered 

into a 10 mm long piece of hollow fiber dialysis tubing made of Cuprophan 

(216 pm outer diameter, 3000 Da cutoff; Sorin Biomedica, Ita ly). This is the 

appropriate membrane to measure 5-HT since delayed recovery of 5-HT in 

the dialysate has been observed with membrane such as AN-69 (Tao and 

Hjorth, 1992; Ceglia et al., 2004).

The tungsten wire was threaded into a 26 gauge stainless steel cannula 

and the fiber was stuck into the distal end of the stainless steel tubing with 

epoxy glue.

When the junction was dry (at least 2 hours), the dialysis membrane was 

trimmed to the desired length (plus 0.5 mm), the tip sealed (0.5 mm epoxy 

tip) and then left to dry overnight. The exposed membrane was 2 mm long 

fo r the medial prefronta l cortex (mPFC) and 1 mm fo r the  dorsal 

hippocampus (DH) and the dorsal raphe (DR). The tungsten tube was 

unthreaded and replaced with a fused silica capillary tube.

A polythene tubing (Portex Ltd., Hythe, UK) with an inside diam eter of 

0.40 mm (which serves as inlet), was pierced with a 30 gauge needle. The
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other end of the silica tube was threaded into this small hole and the tubing 

was connected to the cannula.

Then the silica tube was threaded in a polythene tubing (inside diameter 

0.28 mm), which serves as outlet. The junction between the inlet, the outlet 

tubing and the cannula was sealed with epoxy glue.

aCSF
Dialysate

Inlet tube
Outlet tube

—► Epoxy glue

> Stainless steel

> Silica tube

> Dialysis membrane

F igure  2 .2  M icrod ia lys is  p robe
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2.2.2 Surgery

Mice were anesthetized w ith 3 mL/kg Equithesin in trape ritonea lly  

(composition: 1.2 g sodium pentobarbital; 5.3 g chloral hydrate; 2.7 g 

MgS0 4 ; 49.5 mL propylene glycol; 12.5 mL ethanol and 58 mL distilled 

water; maintained at +4° C in a dark bottle for 3 weeks) and secured in a 

stereotaxic frame (model 900, David Kopf, CA) with the incisor bar set at 0 

mm.

The skin was shaved, disinfected with Bialcool (Teleflex Medical srl, Ita ly) 

and cut with a sterile scalpel to expose the skull. A hole (about 0.6 mm 

diameter) was drilled to allow the implantation of the probes into the brain 

parenchyma.

A dialysis probe, while being perfused with artificia l cerebrospinal fluid 

(aCSF, composition in mM: NaCI 145, CaCI2 1.26, KCI 3, MgCI2 1, Na2HP04 

1.4, pH 7.4 with 0.6 M NaH2P04) at 1 pL/min, was lowered slowly into the 

mPFC, the DH or DR at the stereotaxic coordinates from the bregma and 

dura surface taken from the stereotaxic atlas fo r mouse (Franklin and 

Paxinos, 1997). The microdialysis probe was secured to the skull w ith two 

stainless steel screws and dental cement (Paladur, New Galetti e Rossi, 

Milan, Ita ly).

The stereotaxic coordinates (in mm) were AP +2.1, L ±0.3 and V -2 .5  for 

the mPFC and AP -2.3, L ±1.5 and V -2 .0  for the DH from bregma and dura 

surface. For the DR they were AP -4.4 and L ±1.2 mm and V -4 .2  at a 20° 

angle to the dorsal-ventral plane (F igure  2 .3 ).
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mPFC:
AP +2.1 L ±0.3 V -2.5

DH:
AP -2.3 L ±1.5 V -2.0

\

DR:
AP -4.4 L ±1.2 V -4 .2 ; 20°

F ig u re  2 .3  S c h e m a tic  re p re s e n ta t io n  o f  th e  p o s it io n in g  o f  

m ic ro d ia lys is  p robse  in to  th e  mPFC, DH and  DR.

Stereotaxic coordinates in mm are given for each brain regions according to 
Franklin and Paxinos (1997).

2.2.3 Sample collection and pharmacological treatment 

Twenty hours after implantation, each animal was placed in a Perspex 

cage and the inlet cannula connected by polythene tubing (about 50-60 cm; 

Portex Ltd., Hythe, UK) to a 2.5 mL syringe (Icogamma plus, Novico spa, 

Ascoli Piceno, Ita ly ) with a 26 gauge needle, mounted on a CMA/100
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microinjection pump (CMA Microdialysis, Stockholm, Sweden) containing 

aCSF and perfused at a constant flow-rate of 1 pL/min. To allow the animal 

to move freely in the cage, inlet and outlet tubing were connected to a two- 

channel liquid swivel (Instech Laboratories, The Netherlands) mounted 

above the cage. After 1 hour washout, perfusate was collected every 20 min 

with a microsampler (Univentor, Zeitun, Malta). One pL antioxidant m ixture 

(acetic acid 0.1 M, Na2EDTA 0.27 mM, L-Cysteine 3.3 mM, ascorbic acid 

0.5mM, pH 3.2) was added to the cortical and hippocampal samples tha t 

were stored at -20°C until analysis of 5-HT. DR samples were splitted into 3 

a liquots: 10 pL (fo r 5-HT determ ination) were added w ith 1 pL of 

antioxidant m ixture and 2 aliquots of 5 pL each, respectively fo r the 

analysis of GABA and GLU (see Chapter 5).

A fte r fou r basal samples the animal received the pharm acological 

treatment.

2.2.4 5-HT assay

Automated injection of samples were performed using a refrigerated Midas 

autosampler (Spark-Holland, Emmen, The Netherland) set at 4°C.

5-HT in microdialysis samples (10 pL for the DR and 20 pL for the mPFC 

and DH) was assayed by HPLC with electrochemical detection as described 

elsewhere (Invernizzi et al., 1992). Briefly, 5-HT was separated by a 

reverse phase column (Supelcosil LC18-DB 3 pm, 150 x 4.6 m m ; 

Supelchem, Milan, Ita ly) and a mobile phase consisting of citric acid 9 mM, 

sodium acetate 48 mM, Na2EDTA 0.1 mM, 100 pL/L trie thylam ine and 40 

mL/L aceton itrile , pumped at 1 m L/m in. 5-HT was measured by a 

Coulochem II  electrochemical detector equipped with a 5011 analytical cell
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(ESA Inc., Chelmsford, MA) at the following potentials: E l +50 mV, E2 

+ 180 mV. 5-HT was read as the second electrode output signal. Detection 

lim it was 1.1 fmol 5-HT on column (signal-to-noise ratio 2).

2.2.5 Collection o f data and calculation

The peak of the neurotransm itter was recognized by the retention tim e 

compared with the retention tim e of the standard. The concentration of the 

neurotransmitter in the sample, not corrected fo r the in vitro  recovery, was 

expressed in fmol (5-HT) or pmol/20pL (for GABA and GLU, see detailed 

methods in Chapter 5) and was automatically calculated by a data system 

(Azur, Datalys, Saint Martin d'Heres, France). Briefly, at least three different 

standard were freshly prepared daily by dilution from stock solutions. Peak 

height of the compounds of interest, expressed in mV was plotted against 

the respective concentrations to obtain the calibration curve (Figure 2 .4 ). 

The amount of 5-HT, GABA and GLU in dialysate samples was automatically 

calculated by interpolating of the height of the corresponding peak into the 

calibration curve. Corrections for sample dilution were done as necessary.
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Figure 2 .4  a ) Chromatogram of 5-HT standard (1,3 and 10 fm ol/20 pL).

b ) Chromatogram of mPFC sample (basal; 20 pL) from  a 

C57BL/6N mouse.

c) example of calibration curve for 5-HT.
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2.2.6 Histology

At the end of each experiment, animals were killed by decapitation. The 

brain was removed, placed in 4% paraformaldehyde for 3 days at +4° C, 

then transferred in sucrose 20% in PBS (100 mL: 800 mg NaCI, 20 mg KCI, 

144 mg Na2HP04, 24 mg KH2P04/ buffered to pH 7.4) fo r one day and then 

frozen at -45° C in n-pentane.

Correct probe placement was verified by visual inspection of the probe 

track on Nissl-stained coronal sections (30 pm) of each animal. Examples of 

probe placement in mPFC, DH and DR are shown in F ig u re  2 .5 . Animals 

were included in the results only if no gross alterations of tissue surrounding 

the probe (as haemorrhage, necrosis or edema) were seen and the probes 

were correctly positioned in the target regions (±0.3 mm AP; ±0.2 mm L and 

±0.2 mm V of the given coordinates).

The Nissl's staining was performed as follows: in successive passages, the 

slides were dipped in ultra pure water for 1', in ethanol 70% for 5', in 95% 

for 5', in 100% for 5', in xylene for 5'. All the steps were repeated in the 

reverse order. Then, the slides were dipped in a 0.5% cresyl-violet solution 

(prepared in methanol 25%) for 2-3 ' and, in successive steps in water for 

ten washings, in ethanol 70% for ten washings, in 95% for 3', in a solution 

of 95% with 3% acetic acid for 1', in 100% for 3', in xylene for 5'. Finally, 

slides were covered with the micro cover glass.
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Figure 2 .5  Representative positioning of the probe in the mPFC (a),

DH (b ) and DR (c) of the mouse. Arrowheads indicate the tip of the probe. 

Scale bar = 0.5 mm
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2.3 Behavioural test

The forced swimming test (FST) was designed by Porsolt (1977a) as a 

primary screening method fo r antidepressants in rodents. The widespread 

use of this test is due to its low-cost, but it is also fast, simple to perform 

and reliable across laboratories. As discussed previously, even if the 

construct and face validity of the FST are minimal, it has a strong predictive 

validity.

In fact it has a great sensitivity with all the antidepressant classes and all 

the mechanisms of action of treatm ents could be determined, but clinical 

correlations should be considered very carefully.

For example, one major drawback of the FST is that acute drug treatments 

are effective in mice and do not correspond to the clinical tim e course of 

the ir action.

In spite of these lim ita tions the FST is a suitable te s t to  detect 

antidepressant potential of drugs and it is an important tool fo r looking into 

the mechanism of action of antidepressants and the ir relationship with the 

role played by 5-HT (Cryan et al., 2005a).

In 1977, Porsolt tested a large range of antidepressants and showed a 

reduction of im m obility of mice and rats with all of them. Other clinical 

therapies such as electroconvulsive shock or sleep deprivation were also 

effective (Porsolt et al., 1978; Porsolt et al., 1977b).

Porsolt et al. (1978) described the im m obility as a behavioural despair 

reflecting depressive mood and the FST was considered orig inally as a 

model of depression. Nevertheless this passive behaviour could also be
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considered as aversion to maintain e ffo rt in an inescapable situation 

perceiving it as a successful coping strategy (Lucki et al., 2001). The 

behavioural abnorm alities observed in the FST are s ituation-specific . 

Therefore, the FST cannot be considered as a depressive-like state model 

but can evaluate a pre-existing condition measured as immobility tim e that 

is reduced by a variety of antidepressant treatments.

In rats, if antidepressants are given between two exposures to FST, the 

animals will actively persist engaging in escape behaviour. For reason not 

yet clear, in mice one exposure is suffic ient to generate im m obility  

counteract by antidepressant treatments.

There have been many modifications of the FST both for rats and mice, 

but improvements of the test are often poorly validated (fo r review see 

Petit-Demouliere et al., 2005). Many parameters have been assessed in 

order to increase the sensitivity, specificity and reliability of detection of 

antidepressant activity. These procedural modifications include:

Depth of water, in fact, the tails should not touch the bottom  of the 

cylinder or the behaviour of the animals would be altered. I t  has been 

observed that increasing depth of water decreased the time spent immobile.

To adjust the depth of the water allows distinguishing specific behavioural 

components of active behaviour in rats: clim bing (upw ard-d irected 

m ovem ents), swimming (horizontal movements) and im m obility . The 

modified FST reveals tha t catecholaminergic agents decrease im m obility  

increasing the climbing behaviour whereas serotonergic drugs such as 

SSRIs decrease imm obility increasing swimming behaviour (Cryan et al., 

2005a; Cryan et al., 2002).
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Cylinder diameter, tha t provides a way to distinguish the antidepressant 

drugs from  psychostim ulants such as am phetam ine and caffe ine, 

anticholinergics, and antihistaminics, which gave a false positive response in 

10 cm diameter cylinders in mouse FST.

Also the water tem perature is im portant: a higher tem perature (35°C) 

resulted in shorter immobility time after 10 min of forced swimming (Arai et 

al., 2000).

O ther im po rta n t param eters th a t con tribu te  to  the  behavioura l 

performance of rodents are circadian rhythm , environm ent o f the 

laboratory, food restriction, gender, age, housing of anim als/isolation of 

animals, observer and strains.

Strain is one of the most im portant parameters to deal w ith (Lucki et al., 

2001). In fac t genetic factors may con tribu te  to the  behavioura l 

performance of mice in models of depression and drug sensitivity in the FST 

is genotype-dependent (David et al., 2003).

Im m obility observed in the swim test seems not to be related to behaviour 

in the tests used in anxiety models but it is important to add an additional 

test such as the actim eter test, to distinguish between psychostimulant 

doses in order to avoid false positive results. In fact psychostimulant drugs 

could reduce immobility w ithout having an antidepressant effect (Porsolt et 

al., 1977b; David et al., 2003).
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2.3.1 Forced swimming test (FST)

The forced swimming test employed was essentially sim ilar to tha t 

described elsewhere (Porsolt et al., 1977a; Cervo et al., 2005). Male 

C57BL/6J, C57BL/6N, DBA/2J, DBA/2N and BALB/C mice (Charles River 

Laboratories; Calco, Ita ly ; see section 2.1),  6-8 weeks old, were dropped 

individually into a clear Plexiglas cylinders (height: 25 cm, diameter: 10 cm) 

containing 15 cm water, maintained at 25 ± 1°C, and the ir behaviour was 

videotaped for 6 min (F ig u re  2 .6 ). After 2 min of habituation, the total 

period of im m obility (t imm) was timed by two observers unaware of the 

treatm ent that mice had received. A mouse was judged to be immobile 

when it floated in an upright position and made only small movements to 

keep its head above water (Porsolt et al., 1978).

All experiments were carried out within 9:00 and 13:00 a.m.

10 cm

15 cm

' a  '.:.v ■ ,  : • ' •

F igure  2 .6  The fo rce d  sw im m in g  te s t (modified from Cryan et al., 2002)
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2.3.2 Measurement o f locomotor activity in mice 

Separate groups of mice were used to assess whether treatments reducing 

imm obility in the FST affected locomotor activity. Mice receiving the same 

treatm ent of those in the FST, were placed individually in an open field 

arena made of grey plastic (40 x 40 cm) with the floor divided into 25 equal 

squares. Spontaneous locomotor activ ity was videotaped fo r 6 min and 

quantified later by counting the number of squares crossed in the last 4-min 

period, corresponding to the behavioural observation time in the FST.
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In the microdialysis experiments, the last of three consecutive stable 

samples was considered the basal value. 5-HT, GABA and GLU outputs were 

considered stable if three consecutive basal samples do not differ by more 

than 15%.

Differences in basal values between different groups of animals were 

analyzed by Student's t-tes t (for 2 groups) or by one-way-ANOVA for more 

than 2 groups.

The effect of various treatm ents was analyzed by ANOVA fo r repeated 

measures with treatm ents as between subjects factor and tim e as w ithin 

subjects factor. Post-hoc comparisons between pre- and post-in jection 

values and between treatm ents were made with Tukey-Kram er's test. 

Missing basal values because of occasional problems in sample collection or 

analysis were replaced by the mean of the samples immediately before and 

after or by the "last observation carried forward" method if the missing 

value is the last sample before drug injection. I f  two or more missing values 

occurred in the same mouse or missing values occurred a fte r drug 

treatment the subject was not considered in the results.

The effects of a pharmacological treatm ent alone or in combination with 

other drugs on im m obility tim e and locomotor activ ity were analyzed by 

two-way ANOVA followed by Tukey-Kramer's test.

Statistical analyses were done w ith the StatView 5.0 software (SAS 

Institute Inc., SAS Campus Drive, Cary, NC).
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Chapter 3

3.1 Introduction

Numerous studies have suggested associations between response to 

SSRIs, the mainstays in the treatm ent of depression, and genes modulating 

central serotonergic neurotransmission.

As discussed in Chapter 1, G1463A polymorphism of human brain 

tryp tophan  hydroxylase (TPH-2), the ra te -lim itin g  enzyme in the 

biosynthesis of 5-HT, is associated with less synthesis of 5-HT when the 

enzyme was expressed in PC-12 cells and with a poor response to SSRIs 

(Zhang et al., 2005).

The gene encoding mouse TPH-2 shows a single nucleotide polymorphism 

(C1473G) with a d ifferent allelic distribution in different strains of mice 

( Table 3 .1 ; Zhang et al., 2004; Cervo et al., 2005; Kulikov et al., 2005; 

Jacobsen et al., 2008). DBA/2 and BALB/c mice are homozygous fo r the 

1473G allele, linked to a lower 5-HT synthesis rate and no response to 

citalopram in the forced swimming test (FST; Cervo et al., 2005; Zhang et 

al., 2004).

In addition, citalopram produced a smaller reduction in accumulation of 5- 

HTP in DBA/2J and BALB/c than in C57BL/6J and 129/Sv mice, suggesting 

that it had less effect in mice with reduced rate of 5-HT synthesis (Cervo et 

al., 2005).
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Table 3.1 TPH-2 ge no type  a t  bp 1473 in  seve ra l s tra in s  o f  m ice

STRAIN 1473C 1473G
C57BL/6J and C57BL/6N +
129/Sv and 129/SvJ +
BALB/c, BALB/cJ and BALB/cAnNCriBR +
DBA/2J, DBA/2N and DBA/Ola +
NMRI +
AKR/J +
PT/Y +
YT/Y +
C3H/HeJ +
DD/He +
A/J +

p-Chlorophenylalanine (pCPA) is a selective inhibitor of 5-HT synthesis in 

the brain and periphery (Koe and Weissman, 1966). I t  binds and inactivates 

irreversibly tryptophan hydroxylase w ithout affecting the activ ity  of the 

closely related enzyme tyrosine hydroxylase.

The inhibition of 5-HT synthesis with pCPA supports to the role of 5-HT in 

the response to SSRIs, preventing the antidepressant-like effect of SSRIs in 

the mouse and rat FST and mouse TST (Page et al., 1999; Rodrigues et al., 

2002; Gavioli et al., 2004; Cervo et al., 2005). Furthermore, the inhibition 

of 5-HT synthesis with pCPA or the 5-HT precursor, tryptophan (Trp) 

depletion reversed the effect of SSRIs in drug-remitted depressed patients, 

as described in Chapter 1.

Moreover, pCPA and depletion of Trp (Grahame-Smith, 1964; Weber and 

Horita, 1965) reduced the ava ilability of extracellu lar 5-HT at central 

synapses (Oluyomi et al., 1994; Pozzi et al., 1999; Bel and Artigas, 1996) 

while Trp, leading to increased 5-HT synthesis, enhanced the release of the 

neurotransmitter (Carboni et al., 1989).
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Therefore it is like ly th a t genotype-dependent im pa irm ent of 5-HT 

synthesis influences the availability of extracellular 5-HT and the effect of 

drugs that act on extracellular 5-HT concentrations such as the SSRIs.

I t  is important to confirm the effect of citalopram in several brain regions 

and to assess if the failure of citalopram to reduce immobility time in DBA/2 

and BALB/c mice, attributable to genotype-dependent impairment of 5-HT 

synthesis (Cervo et al., 2005), can be extended to other SSRIs. Hence, we 

assessed the effects of citalopram and paroxetine, respectively the most 

selective and the most potent SSRIs (Hytte l, 1977; Pozzi et a l., 1999; 

Pollock, 2001; Rickels et al., 1992; Thomas et al., 1987) in the FST and on 

5-HT synthesis in the whole brain and in several brain areas (brainstem, 

striatum , hippocampus, frontal cortex and rest of the cortex) o f d ifferent 

strains of mice.

The characteristics of a mouse can vary depending on the particu lar 

substrain (Bryant et al., 2008), which is a strain of mouse tha t has diverged 

from its parent strain for 20 or more generations. The substrain may show 

residual heterozygosity left over from the tim e of separation or carry new 

mutations not found in the parent strain. Therefore, in order to assess the 

contribution of the different substrains background to the response to 

SSRIs, we compared different substrains of C57BL/6 (J and N) and DBA/2 (J 

and N) mice. "J" identifies mice substrains deriving from  The Jackson 

Laboratory while "N " defines those from the National Institu tes of Health 

{www.criver.com). Such comparison can help clarifying the relationship 

between the genotype-dependent im pairment of 5-HT synthesis and the 

response to SSRIs.
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Since there is evidence that non-serotonergic mechanisms may contribute 

to the antidepressant-like effects of SSRIs (Cryan et al., 2004), the 

involvement of noradrenaline and dopamine in the effect o f SSRIs was 

tested by evaluating the e ffect of c ita lopram  and paroxe tine  on 

catecholamine synthesis.

The role of 5-HT was fu rthe r assessed by evaluating the response to 

paroxetine in mice with lowered (using pCPA) or boosted (w ith Trp) 5-HT 

synthesis. 5-HTP and DOPA accum ulation, induced by decarboxylase 

inh ib ition , were used as an ind ica to r respective ly o f 5-HT and 

catecholamines synthesis after various pharmacological treatm ents. To 

exclude that differences in Trp availability may account for the reduced 5- 

HT synthesis in mice carrying the mutated isoform of TPH-2, we also 

measured the level of Trp in several brain regions of DBA/2J and C57BL/6J 

mice.

Next we investigated whether genotype-dependent im pairm ent of 5-HT 

synthesis influenced extracellular 5-HT and the ability of citalopram to raise 

extracellular levels of the neurotransm itter in the medial prefrontal cortex 

(mPFC) and dorsal hippocampus (DH), two brain regions representative of 

the serotonergic innervations arising respectively from  the dorsal and 

median raphe nuclei (Azmitia and Segal, 1978).

Extracellular levels of 5-HT are mainly determined by the balance between 

the amounts of neurotransmitter released and taken up at nerve term inals. 

Thus, changes in both mechanisms m ight contribute to differences in the 

ava ilab ility  o f extracellu lar 5-HT in d iffe ren t strains. To evaluate the
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contribution of these factors, we used the method of the "zero-net-flux" 

tha t allows assessing the real extracellular concentration and provides an 

indirect estimate of reuptake functionality. Additionally, we evaluated [3H]5- 

HT uptake in cortical and hippocampal synaptosomes of C57BL/6 and 

DBA/2J mice and the potency of citalopram in inhibiting [3H]5-HT uptake.
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3.2 Methods

Microdialysis and behavioural studies were conducted as described in 

Chapter 2.

3.2.1 5-HT and catecholamines synthesis

5-HT and catecholamines synthesis rate were assessed by measuring the 

levels of 5 -hydroxy tryptophan (5-HTP) and dihydroxyphenylalanine (DOPA), 

respectively the immediate precursor of 5-HT and catecholamines, after 

in h ib it io n  o f a ro m a tic  L -am ino ac id  deca rb oxy lase  w ith  m - 

hydroxybenzylhydrazine (NSD-1015; Carlsson and Lindqvist, 1978).

Thirty min after citalopram or paroxetine, mice were given 100 mg/kg 

NSD-1015 and killed by decapitation 30 min later.

Each brain was removed from the skull and laid on an ice-chilled dish; the 

cerebellum was removed and discarded. The brain was cut along the 

sagittal line. Half the brain was immediately frozen on dry ice. Brain areas 

including brainstem, striatum, hippocampus, cortex and frontal cortex were 

dissected out from  the other ha lf and frozen. Tissue sample were 

homogenized by sonication (output 2-3, 30-35 pulses w ith a Branson 

Sonifier, model 250; Branson Ultrasonic Corporation, Danbury, CT) in 10 

volumes of ice-cold 0.1 M HCI04. Homogenates were left at 4°C fo r 30 min 

to complete deproteinization, then centrifuged at 4800 x g fo r 10 min at 

4°C. The clear supernatant was injected into the HPLC equipped with a 150 

x 3.9 mm C18 reverse-phase column (Nova-pack, Waters, Ita ly ) and 

coupled to an electrochemical detector (Coulochem I I ,  ESA, USA) to
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determ ine tissue concentration of 5-HTP and DOPA, according to the 

procedure described elsewhere (Lasley et al., 1984).

3.2.2 Tryptophan assay

The tissue concentration of Trp was determined in a separate group of 

mice according to the procedure described elsewhere (Lasley et al., 1984). 

The brain areas dissection and the preparation of tissue samples were 

performed as described in section 3.2.1. The clear supernatant was injected 

into the HPLC equipped with a 150 x 3.9 mm C18 reverse-phase column 

(Nova-pack, Waters, Milan, Ita ly ) and coupled to the Coulochem I I  

electrochemical detector equipped with a 5011 analytical cell (ESA Inc., 

Chelmsford, MA) at the following potentials: E l +400 mV, E2 +520 mV. The 

mobile phase consisted of monochloroacetic acid 0.15 M, sodium octyl 

sulfate 1 mM, Na2EDTA 0.01 mM and 150 mL/L methanol, pH 3 with 10 M 

NaOH, pumped at 1 mL/min.

3.2.3 Zero-net-flux protocol

The zero-net-flux method of quantitative microdialysis (Lonnroth et al., 

1987) was used in the mPFC and DH of DBA/2J and C57BL/6J mice. Mice 

were perfused with aCSF at 1 pL/min and after 1-h equilibration, baseline 

samples were collected at 20-min intervals and analyzed by HPLC.

When dialysate 5-HT was stable, three concentrations of 5-HT, 0.5, 1.5 

and 5 nM (Cin), dissolved in aCSF were perfused through the microdialysis 

probe. These concentrations (Cin) of standard solution of 5-HT were chosen 

taking into account the in vitro  recovery of 5-HT across the cuprophan 

membrane, estimated as follows:
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The dialysis probes were dropped into a 5-HT solution (100  fm ol/20 pL) in 

aCSF. The probe was perfused with aCSF (1 pL/min), at room temperature. 

After 5 min washout, three consecutive 20-min samples were collected and 

the concentration of 5-HT in the dialysate is determ ined by HPLC as 

described in Chapter 2. The percentage recovery is calculated by comparing 

the mean concentrations of the neurotransm itter in the three samples of 

dialysate ( C d ia iy s a te ) with tha t in the solution in which the probe was 

immersed (Cout) according to the formula Cdiaiysate/COut*100 (Zetterstrom  et 

al., 1983). The in vitro  recovery of the neurotransm itter was expressed as 

Mean ± SEM of two different experiments.

In the zero-net-flux experiments, each concentration of 5-HT was perfused 

for 1 h through the probe (Cin). The firs t 20-min fraction was discarded and 

the mean 5-HT content in the second and third fractions corresponds to the 

Cout used to determine extracellular 5-HT and the extraction fraction (Ed). A 

linear regression plot was plotted with Cin on the x-axis and the difference 

between Cin and Cout on the y-axis. The point where the line crossed the x- 

axis was referred to as Cext, where there is no net diffusion of 5-HT across 

the microdialysis membrane. The Ed corresponds to the slope of the linear 

regression.

3.2.4 Preparation o f the synaptosomal fraction and [ 3H]5-HT uptake

Hippocampi and frontal cortices of 4 mice (dissected out from  C57BL/6J 

and DBA/2J mice as described in section 3 .2 .1 ) were homogenized in 40 

volumes of ice-cold 0.32 M sucrose, pH 7.4, in a glass homogenizer with a 

Teflon pestle. The homogenates were centrifuged at lOOOxg fo r 10 min at
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4°C and the supernatants centrifuged again at 12,000xg for 20 min at 4°C 

to yield the crude synaptosomal pellet (Gray and Whittaker, 1962).

The pellets were resuspended in a buffer containing: NaCI (1.16 M); 

NaHC03 (0.25 M); NaH2P04 (12 mM); KCI (0.59 M); MgS04 (1); CaCI2 (0.12 

M); MgS04 (0.12 M); glucose (1.11 M); pargyline (0.25 mM); Hepes (20 

mM); ascorbic acid (0.3 mM); pH 7.4. Samples of 500 pL were preincubated 

for 5 min at 30°C in a water bath. Uptake started by the addition of 100 pL 

of [3H]5-HT (NEN, 21.4 C i/m m ol). For saturation studies 4 d iffe rent 

concentrations of [3H]5-HT were used (12.5, 25, 50 and 100 nM) and non

specific uptake was determ ined in parallel in the presence of 0.3 pM 

citalopram.

For inhibition studies, 25 nM [3H]5-HT was added to the synaptosomal 

suspension containing 0, 3, 10, 30 or 300 nM of citalopram, in triplicate.

Uptake reactions were stopped after 5 min by adding 2 ml_ of ice-chilled 

buffer, followed by a rapid filtra tion  through cellulose mixed ester filters 

(0.65 pm pore size, Millipore, Ita ly ), which were washed with fu rthe r 2 mL 

of buffer. The radioactivity trapped on the filters was counted in 4 mL of 

Ultima Gold MV (PerkinElmer Life and Analytical Sciences, Waltham, MA) in 

a Wallac 1409 liquid scintillation counter (PerkinElmer Life and Analytical 

Sciences, Waltham, MA) with a counting efficiency of about 60% (Gobbi et 

al., 2002).

Protein concentrations were assessed using bovine serum album in as 

standard (Bradford, 1976) using the Bio-Rad protein assay reagent (Bio- 

Rad, Laboratories GmbH, Germany).

The saturation curves, i.e., in the presence of different concentrations of 

[3H]5-HT, were fitted  using the "one-site  binding, hyperbola" equation
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(GraphPad Prism 4.0a). This estimates the maximal uptake velocity (1/max) 

and Km (affinity of [3H]5-HT).

IC50 values were determined by fitting the concentration-response curves 

obtained in the presence of different concentrations of citalopram using the 

"one-site com petition" equation built into Graph-Pad Prism 4.0a. Three 

independent experiments were carried out.

These experiments were done in collaboration with Dr. Marco Gobbi, Unit 

o f Synaptic Transm ission, Laboratory o f B iochem istry and Protein 

Chemistry, Mario Negri Institute.

3.2.5 Drugs and drugs treatments 

C italopram hydrobrom ide (Tocris Cookson, B risto l, UK), paroxetine 

hydrochloride (GlaxoSmithKline, West Sussex, UK) and NSD-1015 (Sigma- 

A ldrich, Milan, Ita ly )  were dissolved in 0.9%  NaCI and in jected 

intraperitoneally (i.p .) at the doses indicated. Control mice were injected 

with saline. The doses of citalopram (1.25-20 mg/kg) and time of treatm ent 

were in the range of those affecting immobility time in the FST and brain 5- 

HT synthesis (Cervo et al. 2005). Several doses of paroxetine (1.25-10 

m g/kg), in the range of those selectively increasing extracellu lar 5-HT 

(David et al., 2003b), were used to evaluate the effect of the drug in the 

FST and open field activity.

pCPA ethyl ester (Sigma-Aldrich, Milan, Ita ly ) was dissolved in sterile 

water. To facilitate the dissolution of Trp (Fluka, Buchs, Switzerland), 1.5 

mL 1M NaOH were added to 16.95 mL of water. The pH of the solution was 

adjusted to 7.4 with 1.55 mL 1M HCI.
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The drug solutions were freshly prepared immediately before use and 

injected in a volume of 10 mL/kg, with the exception of Trp tha t was given 

in 20 mL/kg. Doses of drugs were referred to the respective salts, except 

for doses of pCPA that were calculated as free base.

In the behavioural studies citalopram  and paroxetine were injected 

intraperitoneally (i.p.) 30 min before the tests (Cervo et al., 2005).

To determine whether a treatm ent tha t boosts 5-HT synthesis (Cervo et 

al., 2005) reinstated the antidepressant-like effect of paroxetine in the FST, 

separate group of DBA/2 and BALB/c mice were given 300 mg/kg Trp or 

vehicle i.p. 30 min before 2.5 mg/kg paroxetine (inactive dose in the FST) 

or vehicle. Time of treatm ent and dose of tryptophan correspond to those 

prev ious ly  shown to  increase 5-HT synthesis and res to re  the  

antidepressant-like effect of citalopram (Cervo et al., 2005).

To demonstrate that a treatm ent tha t lowers 5-HT synthesis (Cervo et al., 

2005) reduces the antidepressant-like activity of the SSRI, separate groups 

of C57BL/6N mice were given 100 mg/kg pCPA or vehicle orally fo r three 

consecutive days. This dose reduced brain 5-HT synthesis to the level 

observed in DBA/2 mice (Cervo et al., 2005). Twenty-four hours after the 

last dose, mice were given 2.5 and 5 mg/kg paroxetine (active doses in the 

FST) or vehicle and 30 min later the ir immobility time was evaluated in the 

FST.

Finally, the effect o f tryptophan-induced re instatem ent o f paroxetine 

antidepressant-like activity was evaluated in DBA/2J mice in which 5-HT 

was completely depleted by 300 mg/kg pCPA (once daily fo r 3 days). This 

protocol allowed a marked reduction of brain 5-HT w ithout affecting the 

levels of brain catecholamines. Separate groups of DBA/2J mice treated
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with pCPA or vehicle as above, were given 300 mg/kg Trp or vehicle 30 min 

before receiving 2.5 mg/kg paroxetine or vehicle, given 30 min before 

testing.

To assess the effects of paroxetine and citalopram on 5-HT synthesis, 

separate group of mice were treated with the drug or vehicle (at the same 

doses used in the behavioural tests), 30 min later were given 100 mg/kg 

NSD-1015 and killed by decapitation after fu rthe r 30 min, according to 

Carlsson et al. (1978). Another group of mice was injected with 300 mg/kg 

Trp 30 min before paroxetine or vehicle.

3.2.6 Statistics

Data were analyzed as described in Chapter 2.

In particular, to determine whether basal im mobility tim e and locomotor 

activity differed between strains, data were analyzed by one-way ANOVA 

followed by Tukey-Kramer's or Dunnett's test. The effects of paroxetine on 

imm obility tim e in different strains of mice given 2.5 and 5 mg/kg of the 

drug were compared by two-way ANOVA with strain and paroxetine as main 

factors. The effect of paroxetine in each strain was compared with tha t of 

vehicle by one-way ANOVA.

Finally, two-way ANOVA was used to analyze the effects of paroxetine in 

combination with tryptophan or pCPA on immobility time.

Basal 5-HTP and DOPA levels in different strains of mice were expressed in 

ng/g tissue. Regional differences in basal 5-HTP and DOPA across strains 

were compared by one-way ANOVA followed by Tukey-Kramer's test. The 

effects of citalopram and paroxetine on 5-HTP and DOPA accumulation in 

d iffe ren t strains were analyzed by tw o-way ANOVA, w ith stra in and
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treatm ent as main factors. To account for difference in basal 5-HTP levels, 

data were expressed as percentage increase of 5-HTP levels in vehicle 

groups. Post-hoc comparisons between strains and treatm ents were done 

by Tukey-Kramer's test.

The effect of the combination of paroxetine and Trp or pCPA on 5-HTP and 

DOPA levels was analyzed by two-way ANOVA.

Extracellular levels of 5-HT, uncorrected for in vitro recovery of the probe, 

were expressed as fm ol/20 pL. Mean basal values of 5-HT in d iffe rent 

strains of mice were compared by one-way ANOVA followed by Tukey- 

Kramer's test or by Student's t-test. All time-course data were analyzed by 

ANOVA fo r repeated measures with treatm ents and strain as between- 

subject factors and time as within-subjects factor. Post-hoc comparisons of 

pre- and post-injection values and comparisons between treatm ents were 

done with Tukey-Kramer's test. Regional differences in basal Trp across 

strains were compared by Student's t-test. Kinetic parameters (Vmax and 

Km) were compared by Student's t-test. The IC50 was analyzed by ANOVA.
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3.3 Results

3.3.1 Effect o f paroxetine on immobility time

No significant differences were found between experim ents in basal 

imm obility tim e in the various strains regardless of the number of vehicle 

injections [C57BL/6N, F3/34= 0.3, p>0 .05 ; BALB/c, t i 7= 0.8, p>0 .05 ; 

DBA/2J, F2/24= 1.9, p>0.05; DBA/2N, F4,42= 2.0, p>0.05]. When data were 

pooled, mean basal immobility time (s) in different strains was: C57BL/6J, 

133 ±  19 (n= 9); C57BL/6N, 159 + 6 (n= 38); DBA/2J 153 ±  4 (n= 27);

DBA/2N 163 ±  4 (n= 47); BALB/c 155 ±  5 (n= 19). ANOVA showed no

significant differences across strains [F4435 = 2.1, p>0.05].

The effect of paroxetine in the FST differed markedly across strains 

(F ig u re  3 .1 ). Overall, two-way ANOVA indicated a significant effect of 

strain [F4,i36 = 19.2, p<0.01], paroxetine [F2fi 36= 16.0, p<0.01] and the ir 

interaction [F8fi 36= 4.5, p<0.01 ]. Paroxetine reduced im m obility  tim e in 

C57BL/6J mice [F3/34= 4.7, p<0.01] and C57BL/6N [F3,38= 13.3, p<0.01]. 

Post-hoc comparison showed a significant effect at 2.5 and 5 m g/kg 

whereas 1.25 mg/kg had no effect. Im m obility time in DBA/2J [F3/36= 0.8, 

p>0.05 ], DBA/2N [F3f36= 0.8, p>0.05] and BALB/c [F3/36= 0.3, p>0 .05 ] 

mice was not affected by any dose.

As shown in F igu re  3 .2  pCPA (100 mg/kg orally for 3 days) did not affect 

the immobility time in the FST, but it completely prevented the effect of 2.5 

mg/kg paroxetine in C57BL/6N mice [Fi,35= 19.2, p<0.01], while it has no 

effect on the reduction of im m obility tim e induced by 5 mg/kg paroxetine 

[Fi,35= 0.6, p>0.05].
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As shown in F ig u re  3 .3 , 2.5 mg/kg of paroxetine, which had no effect in 

DBA/2J, DBA/2N or BALB/c mice, significantly reduced im m obility tim e in 

mice pre-treated with 300 mg/kg Trp [DBA/2N, Fi,33= 4.2, p<0.05; DBA/23, 

F 1,24= 4.6, p<0.05; BALB/c, Fi#3i= 20.1, p<0.01], a dose that by itself did 

not affect immobility in the three strains.

F ig u re  3 .4  reports the effect of the combination of Trp and paroxetine in 

DBA/2N and DBA/2J mice pre-treated with pCPA (300 mg/kg orally fo r 3 

days) or vehicle. pCPA completely prevented the effect of the combination 

of Trp and paroxetine in either strain [DBA/2N, Fi,33= 11.2, p<0.01; DBA/2J 

Flf35= 22.1, p<0.01].

As shown in F ig u re  3 .5 , 300 mg/kg Trp did not enhance the effect of an 

inactive dose of citalopram in C57BL/6N mice (Fif34= 1.02, P>0.05).
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Figure 3.1  Strain differences in the effect of paroxetine in the FST. Mice 
received paroxetine i.p. 30 min before testing. Histograms are the mean ± 
SEM of 7-11 mice per group. *p<0.05 vs. vehicle, Dunnett's test.
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Figure 3 .2  Effect of pCPA on paroxetine-induced reduction of im m obility 
time in C57BL/6N mice. Mice were given vehicle or 100 mg/kg pCPA orally 
fo r three consecutive days. Twenty-four hours after the last dose they 
received 2.5 and 5.0 mg/kg paroxetine or vehicle 30 min before testing. 
Histograms are the mean ± SEM of 7-9 mice per group. *p<  0.05 vs. 
vehicle; #p<0.05 vs. paroxetine, §p<0.05 vs. pCPA (Tukey-Kramer's test).
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Figure 3 .3  Effect of tryptophan (TRP) co-administered with paroxetine on 
immobility time of DBA/2N, DBA/2J and BALB/c mice. Mice received vehicle 
or 300 mg/kg i.p. TRP 30 min before 2.5 mg/kg i.p. paroxetine or vehicle 
given 30 min before testing. Histograms are the mean ± SEM of 7-10 mice 
per group. *p<0.05 vs. vehicle (Tukey-Kramer's test).
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Figure 3 .4  Effect of pCPA on reduction of im m obility tim e by TRP co
administered with paroxetine in DBA/2N and DBA/2J mice. Mice were given 
vehicle or 300 mg/kg pCPA orally for three consecutive days. Twenty-four 
hours after the last dose they received vehicle or 300 mg/kg i.p. TRP 30 
min before 2.5 mg/kg i.p. paroxetine or vehicle given 30 min before testing. 
Histograms are the mean ± SEM of 7-10 mice per group. *p<0 .05  vs. 
vehicle; #p<0.01 vs. paroxetine (Tukey-Kramer's test).
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Figure 3 .5  Im m obility time in C57BL/6N mice given 1.25 mg/kg citalopram 
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intraperitoneally 1 h before citalopram. Mean+ SEM of 9-10 mice per group.
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3.3.2 Locomotor activity

The open fie ld tes t showed sign ificant differences in spontaneous 

locomotion, w ith BALB/c less active than C57BL/6 substrains and DBA/2J 

mice [F3/30= 15.8, p<0.0001] (Tab le  3 .2 ). As reported in Tab le  3 .2 a , 

C57BL/6J and C57BL/6N mice showed no change in locomotor activity after 

doses of paroxetine tha t reduced im m obility tim e in the FST [C57BL/6J, 

F 3,28=  0.5, p>0.05; C57BL/6N, F3,32= 2.6, p>0.05].

Table 3 .2 b  shows tha t tryptophan and paroxetine given singly had no 

effect but given together they reduced the locomotor activity of DBA/2J but 

not DBA/2N mice [DBA/2J: tryptophan, Fi,30= 2.7, p>0.05; paroxetine, 

Fi,30= 1.8, p>0.05; tryptophan x paroxetine interaction, Fif30= 5.0, p<0.05. 

DBA/2N: tryptophan, Fi,28= 0.002, p>0.05; paroxetine, Fi/28= 3.2, p>0.05; 

tryptophan x paroxetine interaction, Fif28= 0.0001, p>0.05]. In BALB/c mice 

tryptophan, paroxetine and the two together did not affect the open-field 

activ ity [tryptophan, Fi,28= 0.2, p>0.05; paroxetine, Fi,28= 1.6, p>0.05; 

tryptophan x paroxetine interaction, Fi,28= 0.1, p>0.05].
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Table 3 .2  O p en -fie ld  a c tiv ity  in CS7BL/6J, C S 7B L/6N , D B A /2N , 

DBA /2J and BALB/c mice.

Dose of paroxetine C 57B L/6J C 57B L /6N

(mg/kg) Number of squares crossed in a 4-min period

Vehicle 188 ±  10 (8) 169 ±  14 (9)

1.25 191 ±  9 (8) 138 ±  17 (9)

2.5 216 ±  29 (8) 137 ±  9 (9)
5.0 207 ±  21 (8) 181 ±  15 (9)

a ) Effects o f different doses of paroxetine or vehicle on open-field activity in 
C57BL/6J and C57BL/6N mice. Data are expressed as Mean ±  SEM. The 
number of mice is indicated in parentheses.

Treatment DBA/23 DBA/2N BALB/c

Number of squares crossed in a 4-min period

Vehicle + vehicle 153 ± 13 (9) 182 ± 10 (8) 80 ± 8# (8)
Vehicle + paroxetine 166 ± 18 (8) 163 ± 13 (8) 103 ± 25 (8)
Tryptophan + vehicle 162 ± 13 (9) 181 ± 3 (8) 91 ± 4 (8)

Tryptophan + paroxetine 110 ± 14* (8) 163 ± 12 (8) 104 ± 9 (8)

b ) Effects of tryptophan (300 m g/kg), paroxetine (2.5 m g/kg) and vehicle 
singly or together on open-field activ ity in DBA/2N, DBA/2J and BALB/c 
mice. *p<0.05 vs. vehicle + vehicle; #p<0.05 vs. vehicle-treated mice of all 
other strains (Tukey-Kramer's test).
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Chapter 3

3.3.3 Brain 5-HTP

Basal levels o f 5-HTP and DOPA

Table 3 .3a  shows brain and regional levels of 5-HTP in different strains of 

mice. Post-hoc comparisons indicated tha t brain and regional levels of 5- 

HTP in DBA/2J, DBA/2N and BALB/c mice were 20-40%  lower than in 

C57BL/6J and C57BL/6N mice (p<0.05, Tukey-Kramer's test).

Overall, ANOVA indicates a significant difference across strains in basal 5- 

HTP levels in the brain [F4,2o= 27.2, p<0.01], hippocampus [F4,2o= 18.1, 

p<0 .0001 ], stria tum  [F4f2o= 8.1, p = 0 .0005], brainstem  [F4,2o= 23.3, 

p<0.0001], cortex [F4/2o= 32.7, p<0.0001] and frontal cortex [F4#2o= 2.9, 

p<0 .05 ]. There were no significant differences between C57BL/6J and 

C57BL/6N or between DBA/2J and DBA/2N substrains in brain and regional 

5-HTP levels.

There were no differences between strains in DOPA levels in the whole 

brain or in any of the regions examined with the exception of the frontal 

cortex of BALB/c mice where DOPA was significantly higher (38% ) than in 

C57BL/6J mice (Table 3 .3 b ; [frontal cortex: F4#2o= 3, p=0.04]).
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Chapter 3

Effects o f paroxetine on 5-HTP levels 

Table  3 .4 a  shows the effect of paroxetine on brain 5-HTP levels in the 

various mouse strains in the whole brain and in different brain regions. 

Paroxetine had a significant effect on 5-HTP accumulation [F3f79= 107.4, 

p<0.01] but the effect differed across strains [strain, F3/77= 10.9, pcO.OOl]. 

As reported in Table  3 .4 b , the effect of paroxetine was significant in all 

areas, indicating tha t paroxetine effectively reduced 5-HTP in all brain 

regions examined. Reduction ranged between 8% and 50% depending on 

the brain region and the dose. No clear dose-dependent effects were 

observed in the range of doses examined.

Maximal reduction was found in the hippocampus whereas paroxetine 

tended to have less effect in the brainstem and in the striatum.

Post-hoc comparison indicated tha t paroxetine induced significantly less 

reduction of 5-HTP levels in the striatum, hippocampus, cortex and frontal 

cortex of DBA/2J compared to C57BL/6J mice and in DBA/2J mice compared 

to C57BL/6N mice (p<0.05, Tukey-Kramer's test). No differences were 

found in 5-HTP levels in C57BL/6J and C57BL/6N and in DBA/2J and 

DBA/2N substrains.
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Chapter 3

Effects o f citalopram on 5-HTP levels 

Table  3 .5 a  shows the effect of 5 and 20 mg/kg citalopram on 5-HTP 

levels in C57BL/6J and DBA/2J mice and the effect of 5 mg/kg citalopram in 

129/Sv and BALB/c mice in the whole brain and in different brain regions. F 

values (ANOVA) are shown in Table  3 .5 b . Citalopram had a significant 

effect on 5-HTP in all brain regions examined (percentage of reduction 

varied between 4% and 54% depending on the dose and brain region). 

Maximal reduction was found in hippocampus whereas citalopram tended to 

have less effect in the brainstem and striatum.

ANOVA revealed a significant difference between C57BL/6J and DBA/23 

mice in the whole brain and in hippocampus (Table 3 .5b).

The Tukey-Kramer test indicated tha t citalopram had significantly less 

effect in the hippocampus of DBA/2J compared to C57BL/6J mice. Neither 

citalopram (Tables 3 .6 ) nor paroxetine (Table 3 .7 ) had significant effects 

on brain and regional levels of DOPA (p> 0.05).
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Chapter 3

Effect o f tryptophan in combination with paroxetine or pCPA 

At 300 mg/kg, Trp increased 5-HTP levels by about threefold in the brain 

of DBA/2J mice (Table 3 .8 ). Paroxetine-induced reduction of 5-HTP in mice 

given Trp was not s ign ificantly d iffe ren t in any of the brain regions 

examined from 2.5 mg/kg of paroxetine alone (both 21% less than basal 

values in the brain; p>0.05, Student's t-test).

pCPA (300 mg/kg orally fo r three days) reduced brain 5-HTP levels by 

77% in mice pre-treated with vehicle and significantly attenuated the rise of 

5-HTP induced by 300 mg/kg Trp (Table 3 .9 ). Two-way ANOVA showed 

significant effects of pCPA [F ifi9= 65.8, p<0.0001 ], Trp [F i,i9= 158.0, 

p<0.0001] and their interaction [F i,i9= 4.5, p<0.05].
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Chapter 3

Table 3 .9  Effect o f tryptophan on brain 5-HTP levels in D B A /2J mice 

pre-treated  with pCPA

Pre-treatment Treatment 5-HTP (ng/g ± SEM)

Vehicle Vehicle 148 ± 1 1  (6)

Vehicle Tryptophan 429 ± 37* (5)

pCPA Vehicle 33 ± 4* (6)

pCPA Tryptophan 233 ± 16# (6)

The number o f mice per group is shown in parentheses.*p<0.05 vs. 
vehicle + vehicle; #p<0.05 vs. vehicle + tryptophan (Tukey-Kramer's test).
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Basal levels o f tryptophan in the brain and in several brain regions 

As reported in Table 3 .1 0 , there were no differences in basal level of 

tryptophan between C57BL/6J and DBA/2J mice in any of the brain regions 

examined (all p>0.05, Student's t-test).

Table 3 .1 0  Tissue levels o f tryptophan (p M ) in the brain, stria tum , 

hippocampus (H IP P ), cortex, fro n ta l cortex ( FCX)  and brainstem  

(BST) o f C57BL/6J and D B A /23 mice.

Strain BRAIN STRIATUM HIPP CORTEX FCX BST

C57BL/6J 11.2±0.6 16.0±1.1 16.1±0.8 11.3±0.4 14.2±0.8 14.1±1.5

DBA/2J 11.4±1.0 16.3±1.4 13.3±1.3 10.5±1.0 12.7±1.3 11.1±0.7

Data are Mean±SEM of 5 mice per group.
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3.3.4 Extracellular 5-HT 

Basal level o f 5-HT

Since basal extrace llu la r 5-HT levels in each stra in did not d iffe r 

significantly across experiments, the values for each strain were pooled. As 

shown in F ig u re  3 .6 a , mean basal extracellu lar 5-HT in the mPFC of 

DBA/2J, DBA/2N and BALB/c mice was significantly lower (about 40%) than 

in C57BL/6J and C57BL/6N mice [F4#94= 34, p<0.0001]. Basal extracellular 

5-HT in the DH of DBA/2J, DBA/2N and BALB/c mice was 20-30%  lower 

than in C57BL/6J and C57BL/6N mice [F4f89= 24.6, p<0.0001 ] {F igure  

3 .6 b ) .  No significant differences in basal extracellu lar 5-HT were found 

between C57BL/6N and C57BL/6J substrains and across DBA/2J, DBA/2N 

and BALB/c mice (all comparisons p>0.05; Tukey-Kramer's test).
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(a) 5_

C57BL/6J C57BL/6N DBA/2J DBA/2N BALB/c

(b) 5-1

C57BL/6J C57BL/6N DBA/2J DBA/2N BALB/c

F ig u re  3 .6  a )  Basal extracellular 5-HT in the mPFC of C57BL/6J (n=19), 
C57BL/6N (n=9), DBA/2J (n=42), DBA/2N (n=9) and BALB/c (n=20) mice. 
b )  Basal extracellu lar 5-HT in the DH of C57BL/6J (n=21 ), C57BL/6N 
( n = l l ) ,  DBA/2J (n=42), DBA/2N (n=10) and BALB/c (n=10).
*p<0.05 vs. C57BL/6J and C57BL/6N mice (Tukey-Kramer's test).
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Extracellular 5-HT in the medial prefronta l cortex and dorsal hippocampus 

o f C57BL/6J and DBA/2J mice using the zero-net-flux method 

The in vitro  relative recovery of 5-HT through 1 mm and 2 mm length of 

cuprophan membrane was 7.3±0.5%  and 19.4±0.1%  (Mean±SEM) 

respectively. Table 3 .11  shows the extracellular concentrations of 5-HT and 

the extraction fraction (Ed) calculated from the zero-net-flux plot of the 

changes in dialysate 5-HT (C in-Cout) as a function of 5-HT concentration 

infused through the probe (Cin) using a linear relationship between Cin and 

Qn-Cout with correlation coefficients (r2) exceeding 0.99 in the mPFC and DH 

of C57BL/6J and DBA/2J mice (F ig u re  3 .7 ). Consistent with the results of 

conventional m icrodialysis, extracellu lar 5-HT in the mPFC and DH of 

DBA/2J mice was significantly lower than in C57BL/6J mice (respectively 

51% and 28%). No differences between genotypes were observed in the 

cortical and hippocampal Ed.
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Table 3 .11  Mean ex trace llu lar concentration o f 5 -H T  (Cext), and in 

vivo extraction fraction ( Ed)

mPFC DH
Strain Cext (nM) Ed (%) Cext (nM) Ed (%)

C57BL/6J 0.41±0.06 61±6 0.29±0.02 64±4

DBA/2J 0.21±0.01* 53±4 0.21±0.02* 55±4

Mean±SEM. n=4. *p<0.05 vs. C57BL/6J mice (Student's t-test).
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Figure 3 .7  Linear regression plot of the mPFC (a and b ) and DH (c and d ) 
obtained with the zero net flux C57BL/6J and DBA/2J mice. The point where 
the line crosses the x-axis (see the enlargements b and d ) is referred to as 
Cext, which is the point where there is zero net diffusion across the 
membrane. The Ed is the slope of the linear regression and has been shown 
to provide an estim ate of changes in 5-HT uptake. The dia lysate 
concentration is represented by the y-intercept. Mean±SEM. n=4.
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[ SH ]5-HT uptake into hippocampal and frontocortica l synaptosomes and 

inhibitory potency o f citalopram  

The k ine tic  param eters o f [3H ]5-HT uptake were measured in 

synaptsomes. The Vmax and Km values (Table 3 .1 2 ) were very similar in 

synaptosomes obtained from brain regions of C57BL/6N and DBA/2N mice 

([fronta l cortex, FCX: t*= -0 .8, p=0.5 ]; [hippocampus, HIPP: t 4= -0.1, 

p= 0 .9 ]). The IC50 of citalopram for inhibition of [3H]5-HT uptake (F igure  

3 .8 ) was very similar in the two mice strains [F3/8= 0.3, p=0.8].
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Table 3 .12  S yn ap to so m a l [ 3H ]5 -H T  up take  in  the  f ro n ta l c o r te x  a n d  

h ippocam pus o f  C57BL/6J an d  DBA/2J m ice

FRONTAL CORTEX HIPPO CAM PUS

C57BL/6J DBA/2J C57BL/6J DBA/2J

Km (nM) 4 1 .7 ±9 .2 4 5 .7 ±6 .0 3 7 .1±6 .6 3 4 .5 ±6 .6

Vmax (pm ol/m in /m g  
proteins) 3 .7± 0 .2 3 .8± 0 .3 3 .6± 0 .5 4 .2 ± 0 .3

[3H]5-HT uptake was assessed with 4 concentration of [3H]5-HT raging from 
12.5 to 100 nM. Data are Means±SEM of 3 different experiments.

sc
w
o
m
u

0.5 -

C57BL/6J DBA/2J 

FRONTAL CORTEX

C57BI/6J DBA/2J

HIPPOCAMPUS

Figure 3 .8  Potency of citalopram as [3H]5-HT uptake inh ib ito r in the 
hippocampus and frontal cortex of C57BL/6J and DBA/2J mice.
Data are Means±SEM of 3 different experiments.
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Effect o f citalopram on extracellular 5-HT in the medial prefrontal cortex

As shown in F ig u re  3 .9a  saline had no effect on extracellular 5-HT in any 

stra in of mouse [F 6,6o= 0.7, p>0.05]. C italopram dose-dependently 

increased extracellular 5-HT in the mPFC. At 1.25 mg/kg it significantly 

increased extracellular 5-HT in the mPFC of C57BL/6J mice (157% of basal 

values) but had no effect in DBA/23 and BALB/c mice (F ig u re  3 .9 b ; [strain, 

F2, i2= 25.7, p<0.0001; time, F6,72= 4.4, pcO.OOl; time x strain, Fi2,72= 3.2, 

p < 0 .0 0 1 ]). As shown in F ig u re  3 .9c , 5 mg/kg citalopram significantly 

increased extracellular 5-HT in the mPFC of all strains [strain, F2,i4= 23.3, 

p<0.0001; time, F6,84= 16.7, p<0.0001; time x strain, Fi2,84= 2.9, p<0.01] 

but with a significant less effect in DBA/2J and BALB/c mice. In C57BL/6J 

mice 5-HT reached 13.9 fm ol/20 pL after 40 min (285%) while the peaks of 

extracellular 5-HT in DBA/2J and BALB/c mice were respectively 5.9 and 5.4 

fm ol/20 pL (209-248% of basal values). Extracellular 5-HT was maximally 

increased by 5 mg/kg citalopram. No further increase was observed in any 

strain at 20 mg/kg (F igu re  3.9& , [strain, F2,i3= 6, p<0.01; time, F6/78= 9.5, 

p<0.0001; time x strain, Fi2,78 = 2, p<0.05]).

The effect of 5 mg/kg citalopram on extracellu lar 5-HT in DBA/2 and 

C57BL/6 substrains (F ig u re  3 .9e  and 3 .9 f)  was not significantly d ifferent 

([DBA/2, Fi,n = 0.5, p>0.05]; [C57BL/6, FM o= 0.4, p>0.05]).
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F ig u re  3 .9  Effect of saline (a) and 1.25 mg/kg (b), 5 mg/kg (c) and 20 
mg/kg (d ) citalopram on extracellu lar 5-HT in the mPFC of C57BL/6J, 
DBA/2J and BALB/c mice. Arrows indicate the injection of citalopram. Mean 
± S.E.M. The number of mice for each group is indicated in parentheses. 
*p<0.05 (Tukey-Kramer's test). Solid symbols indicate p < 0.05 vs. basal 
values (Tukey-Kramer's test). Panels (e) and (f) show the effect of 5 mg/kg 
of citalopram on extracellular 5-HT in the mPFC of DBA/2N and C57BL/6N 
mice with the values for DBA/2J and C57BL/6J mice.
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Effect o f citalopram on extracellular 5-HT in the dorsal hippocampus 

As shown in F ig u re  3 .1 0a , saline had no effect on extracellular 5-HT in 

either strain of mouse [time, F6/6o= 1/ p>0.05]. At 1.25 mg/kg citalopram 

increased extracellular 5-HT in the DH of C57BL/6J mice (138%) but had no 

effect in DBA/2J mice (F ig u re  3.10b ', [strain, Fi,9= 21.4, pcO.OOl; time, 

F6,54= 6.7, p<0.0001; tim e x strain, F6/54 = 8.7, pcO.OOl]). Five mg/kg 

citalopram significantly raised extracellu lar 5-HT in both strains (F igure  

3 .1 0 c ;  [strain, Fi,8= 3.4, p>0.05; tim e, F6f48= 35.4, p<0.0001; tim e x 

strain, F6,48= 5.6, pcO.OOl]). However, it had significantly less effect in 

DBA/2J mice. Extracellular 5-HT reached 8.6 and 5.6 fm o l/20  pL in 

C57BL/6J (270% of basal values) and DBA/2J mice (232% of basal values). 

No further increase was observed with the dose of 20 mg/kg. Extracellular 

5-HT rose sign ificantly more in response to 20 m g/kg cita lopram  in 

C57BL/6J mice (F igu re  3 .1 0d ; [strain, Fi,9= 6.4, p<0.05; time, F6,54= 8.6, 

pcO.OOOl; time x strain, F6;54= 1.7, p>0.05]).
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Figure 3 .1 0  a Effect of saline (a) and 1.25 mg/kg (b ), 5 mg/kg (c) and 20 
mg/kg (d) citalopram on extracellular 5-HT in the dorsal hippocampus of 
C57BL/6J and DBA/2J mice. Arrows indicate the injection of citalopram. 
Mean ± S.E.M. The number of mice fo r each group is indicated in 
parentheses. *p<0 .05  (Tukey-Kram er's tes t). Solid symbols indicate 
p<0.05 vs. basal values (Tukey-Kramer's test).
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3.4 Discussion

The results obtained provide the firs t description of how the blockade of 5- 

HT reuptake affects both 5-HT synthesis and the in vivo release in mice 

differing in the activ ity of TPH-2, the rate-lim iting enzyme in brain 5-HT 

synthesis. The results confirmed that DBA/2N, DBA/2J and BALB/c inbred 

mice tha t share the same allele of TPH-2 (1473G), have lower brain 5-HT 

synthesis than mice homozygous for the 1473C allele (Zhang et al., 2004; 

Cervo et al., 2005). Moreover, we showed that citalopram and paroxetine 

reduced immobility tim e in C57BL/6 mice ("responders"), but had no effect 

in DBA/2 and BALB/c mice (Cervo et al., 2005; Guzzetti et al., 2008). 

Furthermore "non-responder" strains had lower basal and citalopram - 

induced rise of extracellular 5-HT in the medial prefrontal cortex (mPFC) 

and dorsal hippocampus (DH) than "responders" strains (Calcagno et al., 

2007).

Therefore it is likely that the lack of effect of SSRIs in the FST in mice with 

the mutated enzyme is due to impairment of 5-HT synthesis and release.

Both citalopram and paroxetine inhibited brain 5-HT synthesis in almost all 

brain regions of the strains examined but they had a significantly less effect 

in most brain regions of DBA/2J, DBA/2N and BALB/c mice. The fact tha t 

SSRIs had no effect on the levels of DOPA indicates the selectivity for 

serotonin of these drugs at the doses used and suggests that catecholamine 

synthesis is not involved in the response to SSRIs in the FST.
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Effect o f SSRIs in the FST in different strains o f mice 

Previous studies showed strain differences in the response to SSRIs in the

mouse FST tha t are only partia lly compatible with the above findings. 

Consistent w ith the present results, which define C57BL/6 mice as 

"responders" and DBA/2 and BALB/c mice as "non-responders", paroxetine 

and citalopram did not affect imm obility tim e in the FST in DBA/2J mice 

(David et al., 2003). However other studies have shown that BALB/c and 

DBA/2J mice are highly responsive to citalopram in the TST (Crowley et al., 

2005). Moreover, fluoxetine showed anti-im m obility effects in BALB/c and 

DBA/2J but had no effect in C57BL/6J mice (Lucki et al., 2001). In addition 

paroxetine did not reduce im m obility tim e in a substrain of the C57BL/6 

strain (C57BL/6Rj; David et al., 2003). Therefore there is no clear 

consensus between this study and similar ones.

The different substrain of C57BL/6 mice used between the various studies

may be a factor: the C57BL/6Rj mice may have a low sensitiv ity  to 

antidepressant drugs since im ipram ine too had no effect in th is strain 

(David et al., 2003) whilst it reduced immobility time in C57BL/6 mice (Bai 

et al., 2001). Also, the basal im m obility time in different strain of mice is 

influenced by the tank diameter. The present study used a 10 cm diameter 

tank, in comparison to a 21 cm diameter tank used by Lucki et al. (2001). 

Im m obility was strongly reduced in DBA/2J mice by increasing the diameter 

of the tank from 10 to 20 cm (Cervo et al., 2005). However, even if "false 

positives" in the rat FST are reduced by using a larger tank (Sunal et al., 

1994), th is factor did not influence the stra in-dependent response to 

paroxetine and citalopram. In fact, under the same experimental conditions,
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paroxetine and citalopram reduced the immobility time of C57BL/6 mice but 

had no effect in DBA/2 and BALB/c mice regardless of the size of the tank 

(Cervo et al., 2005).

Role o f 5-HT synthesis and TPH-2 

Comparing the strain-dependent effect of citalopram in the mouse TST no 

association was found between the C1473G polymorphism of TPH-2 and the 

response in the TST (Crowley et al., 2005). Also, no clear association was 

found between TPH-2 genotype and citalopram-induced suppression of 

food-intake in acutely food deprived mice (Crowley et al., 2005). Other 

studies have shown tha t the C1473G SNP of TPH-2 is associated to 

enhanced aggressive behaviour (Kulikov et al., 2005) but not with impulsive 

behaviour on a delayed reinforcement task in the mouse (Isles et al., 

2005).

As in the human studies, controversy also exists around the importance of 

the TPH-2 polymorphism in mice. I t  should also be considered tha t 

genotype-env ironm ent in te raction  m igh t de term ine d iffe rences in 

behavioural phenotype tha t makes problematic the comparison across 

laboratories. Overall, other important genetic or neurochemical interactions 

are also obviously at play in influencing the serotonergic system and how it 

responds to antidepressants in the behavioural tests.

As well as the TPH-2 polymorphism, the mouse strains used in the present 

study differ in several neurochemical parameters potentially involved in the 

antidepressant response. These include the content of brain NA (Kempf et 

al., 1974), the number of NA uptake sites in the locus ceruleus (Hwang et
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al., 1999), and the density of hippocampal glutamate, GABA, and 5-HT 

receptors (Zilles et al., 2000). Although we cannot exclude an effect of 

these differences, the results suggest tha t the failure of citalopram and 

paroxetine to reduce im m obility  in DBA/2 and BALB/c mice is mainly 

attributable to the genotype-dependent impairment of 5-HT synthesis and 

release.

In support of the importance of 5-HT in the response to SSRIs, dose of 

pCPA, inhibiting 5-HT synthesis in "responder" mice to the level observed in 

DBA/2 and BALB/c mice, completely prevented the effect of SSRIs in the 

FST (Cervo et al., 2005; Guzzetti et al., 2008). These findings are in 

accordance with previous studies tha t have demonstrated that depletion of 

5-HT in rodents prevented the effect of SSRIs in the mouse and rat FST and 

TST (Gavioli et al., 2004; Page et al., 1999; O'Leary et al., 2007) and 

support the role of 5-HT synthesis in the therapeutic effect of SSRIs.

Inhibition of 5-HT synthesis with doses of pCPA which depleted tissue 5-HT 

by about 90% reduced basal levels and com pletely prevented the 

citalopram- and fluoxetine-induced rises of extracellu lar 5-HT in the rat 

mPFC (Pozzi et al., 1999). S im ilarly, inhibition of 5-HT release by the 

sodium channel blocker tetrodotoxin or stimulation of 5-HTiA autoreceptors 

strongly attenuated the rise of extracellular 5-HT produced by SSRIs (Kalen 

et al., 1988; Gundlah et al., 1997; Rutter and Auerbach, 1993).

Furthermore a delivery of tryptophan to DBA/2 and BALB/c mice enhanced 

brain 5-HTP, restoring 5-HT synthesis, and reversed the resistance of these 

strains in the FST to citalopram (Cervo et al., 2005) and paroxetine 

(Guzzetti et al., 2008), w ithout enhancing the effect of an inactive dose of
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citalopram in C57BL/6N mice (Calcagno et al., 2007). Substrate availability 

does not contribute to strain differences in synthesis (Zhang et al., 2004; 

Cervo et al., 2005) or basal extracellular concentrations of 5-HT (Calcagno 

et al., 2007; Isles et al., 2005). Brain and regional Trp concentrations were 

sim ilar in C57BL/6J and DBA/2J mice and clearly below the Km of the wild- 

type and mutated TPH-2 isoforms (Sakowski et al., 2006). Consequently, 

under physiological conditions the enzyme's activ ity  is lim ited by the 

availability of the substrate and it is possible to raise 5-HT synthesis 

administering 300 mg/kg Trp (Cervo et al., 2005; Guzzetti et al., 2008). 

The same dose of Trp reinstated the anti-im m obility effect of paroxetine in 

DBA/2N, DBA/2J and BALB/c mice and this effect was completely abolished 

by pCPA, suggesting that 5-HT mechanisms play a major role in this effect.

Extracellular 5-HT is tigh tly  coupled to the activity of brain TPH. This is 

supported by studies showing tha t loading w ith Trp enhances 5-HT 

synthesis and extracellular concentrations, whereas depletion leads to a 

large reduction (Carboni et al., 1989; Sarna et al., 1991; Westerink and De 

Vries, 1991; Bel and Artigas, 1996).

The data supported the notion tha t this TPH-2 polymorphism influenced 

sensitivity to SSRIs in the FST and suggest tha t tryptophan augmentation 

could be a useful strategy to enhance SSRIs' effect in treatm ent-resistant 

patients, particularly in those w ith low 5-HT synthesis determ ined by 

functional polymorphisms of TPH-2. Even if some clinical studies indicated 

some benefit from therapy with tryptophan, unfortunately its use as a 

d ietary supplement was discontinued in 1989 due to an outbreak of
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eosinophilia-myalgia syndrome that was traced to a contaminated synthetic 

Trp.

In C57BL/6N mice pCPA pre-treatm ent abolished the anti-im m obility effect 

of 2.5 mg/kg but not 5 mg/kg paroxetine. This suggests a contribution of 

non-serotonergic mechanisms to the effect of the higher dose of paroxetine. 

Previous studies reported that higher doses also increased extracellular NA 

in the frontal cortex of Swiss mice (David et al., 2003b) and the genetic 

deletion of dopamine p-hydroxylase, the enzyme responsible fo r the NA 

synthesis, abolished the anti-im m obility  effect of 5-20 mg/kg paroxetine 

and other SSRIs in the tail suspension test but did not affect tha t of 

citalopram (Cryan et al., 2004).

pCPA did not change basal immobility time in C57BL/6N mice. This finding 

is consistent w ith previous studies reporting no effects of pCPA or the 

selective destruction of serotonergic neurons with the neurotoxin 5,7- 

dihydroxytryptamine in mice and rats (Borsini, 1995; Cervo and Samanin, 

1991; Gavioli et al., 2004; Page et al., 1999; Redrobe et al., 1998; 

Rodrigues et al., 2002). Moreover congenic mice carrying the m utant 

isoform of TPH-2 and TPH-2 knockout mice showed no or marginal changes 

in immobility time compared to control genotypes confirming tha t reduced 

synthesis did not affect basal im m obility tim e in the FST (Tenner et al., 

2008; Savelieva et al., 2008). Taken together, these findings suggest tha t 

the increase or reduction of 5-HT synthesis may be not sufficient by itself to 

affect immobility time in the FST.

Differences in the response to paroxetine or citalopram across strains 

cannot be attributed to pharmacokinetic factors since brain and plasma 

levels of the drug (Cervo et al., 2005; Guzzetti et al., 2008) in the same
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animals at the end of the behavioural studies were essentially similar in the 

five strains given SSRIs alone or combined with treatments affecting 5-HT 

synthesis.

The fact that doses of paroxetine, Trp, pCPA or the ir combinations did not 

affect locomotor activ ity makes it unlikely tha t m otor performance was 

involved in the antidepressant-like effects in the FST. The lower basal motor 

activity of BALB/c mice compared to other strains had no influence on basal 

immobility time and is unlikely to account for the lack of effect of paroxetine 

in the FST.

Role o f extracellular 5-HT

Neurochemical consequences due to variation in the C1473G allele of TPH- 

2 are not lim ited to an im pairm ent of 5-HT synthesis but also involve 

reduced release of 5-HT. Our results are consistent w ith previous 

m icrodialysis studies showing tha t basal extracellu lar 5-HT in several 

regions of mice carrying the 1473G allele of TPH-2 are lower than in mice 

with the "C" allele (Isles et al., 2005). In addition, the results showed that 

extracellular 5-HT was sim ilar in C57BL/6J and C57BL/6N mice and there 

were no differences in extracellu lar 5-HT across DBA/2J, DBA/2N and 

BALB/c strains. Furthermore, citalopram increases cortical and hippocampal 

extracellular 5-HT in DBA/2J, DBA/2N and BALB/c less than in C57BL/6 

substrains (Calcagno et al., 2007).

Extracellular levels of 5-HT are mainly determined by the balance between 

the amounts of neurotransmitter released and taken up at nerve term inals. 

Therefore, changes in both mechanisms m ight contribute to the lower 

availability of extracellular 5-HT in the brain of DBA/2J and BALB/c mice.
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Conventional m icrodialysis measures the concentration of 5-HT in the 

dialysate. Although dialysate 5-HT reflects the extracellular concentration, 

the actual extracellu lar concentration is more accurately determ ined by 

quantita tive microdialysis techniques such as the zero-net-flux method 

which also gives an estimate of the extraction fraction (Ed) or probe 

recovery in vivo (Lonnroth et al., 1987; Cosford et al., 1996).

The in vivo Ed is affected by changes in 5-HT uptake but not by changes of 

release or metabolism (Cosford et al., 1996). Using this method we found 

that DBA/2J mice had less cortical and hippocampal extracellular 5-HT than 

C57BL/6J mice, confirm ing the results obtained with the conventional 

m icrodialysis. As we found no differences in Ed between genotypes, 

differences in 5-HT reuptake are unlikely to account for strain differences in 

extracellu lar 5-HT. These results were confirmed evaluating [3H]5-HT 

uptake in cortical and hippocampal synaptosomes of C57BL/6J and DBA/2J 

mice and the data are in accordance with a previous report tha t found no 

sign ificantly difference between these strains (Jazrawi et a l., 1987). 

Although the uptake of [3H]5-HT in the raphe of BALB/c mice was higher 

than in C57BL/6 mice, no inform ation is available fo r the cortex or 

hippocampus (Daszuta et al., 1982). Moreover the potency of citalopram to 

inh ib it [3H]5-HT uptake in FCX and hippocampus was sim ilar between 

C57BL/6J and DBA/2J mice.

These findings suggest tha t reduced release of 5-HT, probably caused by 

impairment of 5-HT synthesis, mainly contributed to the low extracellu lar 

concentrations of 5-HT found in the mPFC and DH of DBA/2 and BALB/c 

mice.
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C57BL/6J mice given c ita lopram  had s ig n ifica n tly  h igher mPFC 

extracellu lar 5-HT than DBA/2J and BALB/c mice. Likewise, citalopram 

increased extracellu lar 5-HT more in the DH of C57BL/6J mice than in 

DBA/2J mice. These findings indicate tha t the drug's ability to boost the 

extracellular availability of the neurotransmitter is impaired in mice carrying 

the 1473G allele of TPH-2. The association between the effects o f 

citalopram on cortical extracellular 5-HT and C1473G SNP is strengthened 

by the fact tha t it had sim ilar effects in C57BL/6N and C57BL/6J mice, 

which share the same allelic isoform of TPH-2. Sim ilarly, there were no 

differences in its effect on extracellular 5-HT across DBA/2J, DBA/2N and 

BALB/c strains.

Strain differences in the response to citalopram were particularly evident 

with the low dose (1.25 mg/kg) which raised extracellular 5-HT in the mPFC 

and DH of C57BL/6J mice but had no such effect in DBA/2J and BALB/c 

mice. The lower sensitivity of DBA/2J and BALB/c mice to citalopram is 

unlikely to be due to less 5-HT reuptake inhibition since with higher doses - 

5 or 20 mg/kg - which maximally increased extracellular 5-HT in C57BL76J 

mice, extracellular 5-HT in the mPFC of DBA/2J and BALB/c still remained 

lower than in C57BL/6J mice.

The lim ited effect of citalopram on extracellu lar 5-HT in DBA/2J and 

BALB/c mice is quite likely attributable to the impaired TPH-2 activ ity and 

consequently 5-HT synthesis. However, we cannot exclude tha t besides 

TPH-2 allelic polymorphism, the background strain has influenced the 

response to SSRIs (Tenner et al., 2008). Studies in TPH-2 knockout mice or 

congenic lines of mice carrying the allelic variants of TPH-2 on a common 

genetic background are needed to clarify this point.
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In conclusion, these findings increase the likelihood tha t strain-dependent 

effects of paroxetine and citalopram (Calcagno et al., 2007; Cervo et al., 

2005; Guzzetti et al., 2008) are based on the ir ability to  enhance 5-HT 

transmission and not on some secondary effects of the drugs or genetic 

differences not related to serotonergic transmission.

In sum mary, comparing mouse stra ins differing in th e ir ab ility  to 

synthesize and release 5-HT, and using pharmacological interventions 

aimed a t enhancing or reducing 5-HT synthesis, we showed the 

fundamental role of 5-HT in SSRIs' effect in the FST. The results raised the 

question whereas an enhanced serotonergic tone corresponds to a restored 

antidepressant-like effect in the FST. Therefore comparisons o f mice 

carrying allelic variants of TPH-2 may serve as a good model fo r testing 

pharmacological strategies aimed at improving the effect of SSRIs.
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4.1 Introduction

DBA/2N, DBA/2J and BALB/c inbred mice carry a mutated allele of TPH-2 

(C1473G) and have lower brain 5-HT synthesis and release than mice 

homozygous for the 1473C allele such as C57BL/6N and C57BL/6J strains 

(Zhang et al., 2004; Calcagno et al., 2007). As shown in Chapter 3, 

citalopram and paroxetine reduced im m obility  tim e in C57BL/6 mice 

("responder"), but had no such effect in DBA/2 and BALB/c mice ("non

responders"). The 5-HT precursor tryptophan (Trp) restored the a n ti

im m obility effect of SSRIs in "non-responder" strains (Cervo et al., 2005; 

Guzzetti et al., 2008). In terestingly, these mice have lower citalopram- 

induced rise of extracellular 5-HT in the medial prefrontal cortex (mPFC) 

and dorsal hippocampus (DH) than "responders" mice (Calcagno et al., 

2007). This suggests tha t insufficient 5-HT at its sites of action m ight 

explain why SSRIs do not reduce im m obility tim e in DBA/2 and BALB/c 

mice.

Thus, we assessed whether intervention aimed at enhancing the effect of 

citalopram on extracellular 5-HT restored its ability to reduce im m obility 

time in the mouse FST.

Microdialysis studies showed tha t the inhibition of 5-HT synthesis with 

pCPA and depletion of the 5-HT precursor, Trp, reduced the availability of 

extracellu lar 5-HT at central synapses (Oluyomi et al., 1994; Bel and 

Artigas, 1996; Pozzi et al., 1999) while Trp, by stimulating 5-HT synthesis, 

enhanced the release of the neurotransmitter (Carboni et al., 1989).
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Therefore we investigated whether boosting 5-HT synthesis with Trp 

enhanced the effect of citalopram on extracellular 5-HT.

Although Trp is essential for 5-HT synthesis, as shown in F ig u re  4 .1 , of 

the dietary tryptophan tha t is not used in protein synthesis, 99% is 

metabolized along the kynurenine pathway ( fo r review see Stone and 

Darlington, 2002). An alternative pathway is involved in the conversion of 

Trp to 5-HT and subsequently to m elatonin. Both kynurenines and 

melatonin have been implicated in antidepressant actions; therefore it 

cannot be excluded tha t these m etabolites m ight con tribu te  to the 

antidepressant-like effect of Trp in the FST.

Melatonin is synthesized from Trp via 5-HT through two enzymatic steps 

( F ig u re  4 .1 ) invo lv ing  the  N -ace ty la tion  th rough sero ton in  N- 

acetyltransferase to obtain N-acetylserotonin, which is m ethylated by 

hydroxyindole-O-methyltransferase to form melatonin (Weissbach et al., 

1960; Axelrod and Weissbach, 1961). Exogenous melatonin, w ith few 

exceptions (Bourin et a l., 2004; Dubocovich et a l., 1990), reduces 

immobility time in the rat and mouse FST (Micale et al., 2006; Raghavendra 

et al., 2000; Wong and Ong, 2001) and mouse TST (Prakhie and Oxenkrug, 

1998). In addition, Trp markedly increased the levels of circulating (Esteban 

et al., 2004; Jaworek et al., 2004; Leja-Szpak et al., 2004) and brain 

(Crespi et al., 1994) melatonin in the rat. Thus, we also addressed the role 

of this hormone in tryptophan-induced rescue of the behavioural effect of 

paroxetine by combining inactive doses of paroxetine and melatonin and 

measuring melatonin levels in the brain of DBA/2N mice given Trp alone or
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in association with other treatments as an indicator of the conversion of Trp 

into melatonin.

The ability of SSRIs to raise extracellular 5-HT, and possibly the ir clinical 

effect, is lim ited by the simultaneous activation of the auto inh ib ito ry 

feedback controlling the activ ity of 5-HT neurons and the release of the 

neurotransm itter mainly through the activation of 5-HTiA auto- and post- 

synaptic receptors (Artigas et al., 2001; Artigas et al., 1996; Invernizzi et 

ai., 1992; Invernizzi et al., 1997). Blockade of 5-HTiA receptors, preventing 

activation of the inhibitory feedback, enhances the increase of extracellular 

5-HT caused by SSRIs in several brain regions (Artigas et al., 1996; 

Gartside et al., 1995; Hjorth, 1993; Hjorth and Auerbach, 1994; Invernizzi 

et al., 1992; Invernizzi et al., 1996; Invernizzi et al., 1997). Accordingly, 

the non-selective 5-HT iA/ i B and (3-adrenoceptor an tagon is t p indolo l 

accelerated the effect of SSRIs in depressed patients, although some 

studies did not confirm this finding (Artigas et al., 2001).

5-HT2c receptors are also involved in the feedback control of 5-HT neurons 

(Sharp et al., 2007). 5-HT2c receptor antagonists potentiate the effect of 

SSRIs on immobility time in the TST and enhance the effect of citalopram 

on extracellu lar 5-HT (Boothman et al., 2006a; Cremers et al., 2004). 

Desensitization of rat brain 5-HT2C receptors after long-term treatm ent with 

antidepressant drugs (Kennett et al., 1994) suggests tha t adaptive changes 

o f these receptors m igh t con tribu te  to the developm ent o f the  

antidepressant action.

Recently the editing of 5-HT2CR mRNA has been reported to participate in
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the pathogenesis of depressive disease. Post-mortem studies showed 

abnormal mRNA editing of the 5-HT2c receptor, favouring the expression of 

less constitutively active receptor isoforms in the brain of depressed suicide 

victims (Englander et al., 2005; Gurevich et al., 2002b), while chronic 

administration of SSRIs to mice induced opposite effect (Gurevich et al., 

2002a). Thus, the 5-HT2c receptor offers a promising target for enhancing 

the efficacy of SSRIs.

Therefore this study also examined whether WAY100635 and SB242084, 

respectively a selective 5-HTi A and 5-HT2C receptor antagonist, enhanced 

the effect of citalopram on cortical and hippocampal extracellu lar 5-HT in 

"non-responder" DBA/2N mice and rescued its effect in the FST.
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Figure 4.1 Pathways o f tryptophan metabolism
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4.2 Methods

Microdialysis studies and the behavioural experiments were carried out as 

described in Chapter 2. The brain areas dissection and the preparation of 

tissue samples were performed as described in section 3.2.1.

4.2.1 Melatonin assay 

Tissue levels of melatonin in the brain of DBA/2N mice were determined by 

HPLC coupled to a fluorometric detector essentially according to Drijfhout et 

al (1993). Separation was achieved through a reverse phase analytical 

column (Supelcosil LC18-DB 3 pm, 150 x 4.6 mm; Supelchem, Milan, Ita ly). 

The mobile phase consisted of 10 mM Na2HP04, 0.01 mM EDTA, 20% 

CH3CN, adjusted to pH 4 with 85% H3P04 and pumped at 1 mL/min with a 

LC-lOADvp pump (Shimadzu, Milan, Ita ly ). Melatonin was detected by a 

SP2020 plus, scanning fluorescence detector (Jasco, Tokyo, Japan) using an 

excitation wavelength of 280 nm and an emission wavelength o f 345 nm. 

The assay was calibrated daily with 10 fm ol/20 pL melatonin standard made 

up in HCI04 0.1 M. The detection lim it was 1 fmol melatonin on column 

(signal-to-noise ratio = 2).

The identity of the melatonin peak in samples was confirmed by comparing 

retention tim es and excitation/em ission spectra of samples and pure 

melatonin solution, spiking the sample with pure melatonin (F ig u re  4 .2 ) 

and changing the percentage of CH3CN (12-20% ) in the mobile phase. 

Moreover, we confirmed that N-acetyl-5-HT, 6-hydroxymelatonin, 5-HT, 5- 

HIAA, NA, DA, GABA, GLU, tyrosine and tryptophan do not interfere with 

the melatonin peak.
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Figure 4 .2  a)  Chromatogram of melatonin standard (10 fmol/20 |_il_).

b )  Chromatogram of sample (20 pL) from a brain of DBA/2N 

mouse.

c )  Chrom atogram  of same sample spiked w ith 10 fm ol 

melatonin standard.

d) Standard emission spectrum.

e) Sample emission spectrum.

f)  Standard excitation spectrum.

g) Sample excitation spectrum.

150



Chapter 4

4.2.2 Drug treatments

Citalopram hydrobrom ide (Tocris Cookson, B risto l, UK) paroxetine 

hydrochloride (GlaxoSmithKline, West Sussex, UK) and the 5HTiA receptor 

a n ta g o n is t, N - [2 - [4 - (2 -m e th o x y p h e n y l) - l-p ip e ra z in y l]e th y l] -N - (2 -  

py rid in y l)cyc lo h e xa n e ca rb o xe n id e  tr ih y d ro c h lo r id e ) (W AY100635; 

Pharmacia and Upjohn, Nerviano, Ita ly ) were dissolved in saline (NaCI

0.9%; 10 mL/kg) and injected respectively i.p. and subcutaneously (s.c.) at 

the doses indicated. The dose of citalopram used in the present study 

maximally increased extracellular 5-HT in the mPFC and DH of DBA/2N and 

C57BL/6 mice (Calcagno et al., 2007) and maximally reduced im m obility 

time in C57BL/6 mice (Cervo et al., 2005).

The 5-HT2c receptor antagonist, 6 -ch lo ro -5 -m e th y l-l-[[2 -[(2 -m e thy l-3 - 

pyridy l)oxy]-5-pyridy l]ca rbam oyl]-indo line  (SB242084; G laxoSmithKline, 

Harlow, UK), was dissolved in DMSO:4M tartaric acid:water (50 :1 :49) and 

injected s.c. Control mice received an injection of the vehicle (10 mL/kg).

Tryptophan, 300 mg/kg, was dissolved as described in Chapter 3.

Tryptophan, WAY100635 and SB242084 were injected 20 min before 

citalopram.

Doses of the 5-HT receptor antagonists were selected on the basis of 

blockade of the effects of selective agonists (Boothman et al., 2006b; 

O'Neill and Conway, 2001).

In behavioural experim ents, mice were given the 5-HT receptor 

antagonists 20 min before citalopram and were submitted to the FST or 

open field test 30 min after the last injection. Microdialysis and behavioural 

studies were done on separate groups of mice.
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Melatonin (Fluka, Milan, Ita ly) 50, 100 and 200 mg/kg was dissolved in 1 

mL dimethylsufoxide (DMSO) and diluted 1:10 with sterile water. Control 

mice received 10% DMSO in water. In the dose-response experim ent, 

melatonin was administered i.p. 30 min before testing. In the combination 

study, 100 mg/kg melatonin and 2.5 and 5.0 mg/kg paroxetine were given

i.p. 30 minutes before the test session.

4.2.3 Data analysis

Extracellular levels o f 5-HT, not corrected fo r in v itro  recovery o f the 

probe, were expressed as fm ol/20 pL. Basal values of 5-HT in d ifferent 

experiments and in different strains of mouse were compared by one-way 

analysis of variance (ANOVA) or Student's t-test. All time-course data were 

analyzed by ANOVA for repeated measures with treatm ents as between- 

subjects factor and tim e as w ithin-subjects factor. Post-hoc comparisons 

between pre- and post-in jection  values and com parisons between 

treatments were done with Tukey-Kramer's test.

The effects of citalopram alone or w ith WAY100635 or SB242084 on 

im m obility time and locomotor activity were analyzed by two-way ANOVA 

followed by Tu key-Kramer's test.

Finally, two-way ANOVA was used to analyze the effects of paroxetine in 

combination with melatonin on immobility time.
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4.3 Results

4.3.1 Basal level o f extracellular 5-HT

Mean (±SEM) basal extracellu lar 5-HT in the mPFC and DH of DBA/2N 

mice was 2.5±0.1 (n=44) and 2.5±0.1 (n=45) fmol/20 |jl_, respectively and 

fo r DBA/2J mice was 2.7±0.1 (n=20) and 2.4±0.1 (n = 19) fm o l/20 pL, 

respectively (not corrected fo r probe recovery). No significant differences 

were found across d iffe rent experiments (DBA/2N: mPFC, [F7#36= 2.3, 

p> 0 .0 5 ]; DH, [F7,37= 1.5, p> 0 .05 ] and DBA/2J: mPFC, [F3,i6= 0.25, 

p>0.05]; DH, [F3/i 5= 1.6, p>0.05 ]) and across substrains (mPFC, [ t62= 1/ 

p>0.05] and DH, [ t62= -1.1, p>0.05]).

Basal extrace llu la r 5-HT in the mPFC and DH of C57BL/6N mice 

(respectively 3.6±0.1 fm ol/20 pL, n = l l  and 3.6±0.2 fm ol/20 pL, n = l l )  

was significantly higher than in DBA/2N mice ([mPFC: t53= 6.4, p<0.0001] 

and [DH: t54= 28.8, p<0.0001]). This confirms previous finding and is in 

accordance with the results of ZNF (see Chapter 3).

4.3.2 Effect o f tryptophan on citalopram-induced rise o f 5-HT in the medial 

prefrontal cortex and dorsal hippocampus o f DBA/2J mice

As shown in F ig u re  4 .3a , 300 mg/kg Trp by itself significantly increased 

extracellular 5-HT in the mPFC (144%) but, given 20 min before citalopram, 

it had no effect on that drug's ability to raise extracellu lar 5-HT. ANOVA 

indicated a significant effect of tim e [F7fn 2 = 16.6, p<0.0001 ] but no 

significant interaction between Trp and citalopram [F i,i6 = 0.3, p>0.05 ] or 

between these factors and time [ F 7 ;u 2 = 1.3, p>0.05]. Trp by itself had no 

effect on extracellular 5-HT or on the citalopram-induced rise of extracellular
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5-HT in the DH (F ig u re  4 .3 b ; [interaction Trp and citalopram: Fi/i 5=0.004/ 

p>0.05; time F7fi 05=3.7/ p<0.01; interaction between treatments and time: 

F7,105= 0 .8, p>0.05]).
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F ig u re  4 .3  Effect of tryptophan on citalopram-induced rise of extracellular 
5-HT in medial prefrontal cortex (a) and dorsal hippocampus (b ) of DBA/2J 
mice. Mice received saline (SAL) or 300 mg/kg tryptophan (TRP) 20 min 
before saline or 5 mg/kg citalopram (CIT). Arrows indicate the injection. 
Mean ± S.E.M. The number of mice fo r each group is indicated in 
parentheses. *p<0 .05  (Tukey-Kram er's tes t). Solid symbols indicate 
p<0.05 vs. basal values (Tukey-Kramer's test).
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4.3.3 Effect o f melatonin on immobility time

Melatonin significantly reduced im m obility tim e in DBA/2N mice [F3/36= 

5.7, p<0.01]. Post-hoc comparison showed that the effect was significant at 

200 mg/kg while lower doses had no significant effects (F ig u re  4 .4 a ). 

Melatonin has a biphasic effect on im m obility tim e in C57BL/6N mice. I t  

reduced im m obility tim e at 100 mg/kg while a significant increase was 

observed at 200 mg/kg [F3/26= 17.1, p<0.0001]. Fifty mg/kg melatonin had 

no significant effects. F ig u re  4 .4 b  shows that the combination of 2.5 and 

5.0 m g/kg paroxetine w ith 100 m g/kg melatonin had no e ffect on 

imm obility tim e in DBA/2N mice. ANOVA showed no significant effects of 

melatonin [F i>42= 0.9, p>0.05], paroxetine [F2,42= 1.5, p>0.05] and the ir 

interaction [F2;42= 0.1, p>0.05]. Doses of melatonin reducing im m obility 

tim e in the FST significantly reduced spontaneous locomotion in both 

strains. The number of crosses ±SEM was: C57BL/6N, Vehicle 152±6, 

Melatonin 100 mg/kg 74±14; DBA/2N, Vehicle 137±16, Melatonin 200 

mg/kg 39±8 (both p<0.001, Student's t  test).

4.3.4 Brain levels o f melatonin

As shown in Table 4 .1 , 30 min after the administration of 100 and 200 

mg/kg melatonin to DBA/2N mice, the brain levels of the hormone were 

significantly increased while no significant changes were observed with 50 

mg/kg melatonin [F3/5i=  96.6, p<0.0001]. Tryptophan, paroxetine and the ir 

combination at doses reducing im m obility tim e in the FST did not affect 

brain melatonin content [Tryptophan, Fi;20= 0.3, p>0.05; paroxetine, Fi,20= 

0.007, p>0.05; tryptophan x paroxetine, Fi<20= 0.007, p>0.05].
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Figure 4 .4  Effect of melatonin alone (a)  and in combination with paroxetine 
(b) on immobility time in the FST. Melatonin (50-200 mg/kg) was given to 
C57BL/6N and DBA/2N mice 30 min before testing (a). A group of DBA/2N 
mice received 100 mg/kg melatonin alone or together with 2.5 and 5.0 
mg/kg paroxetine 30 min before testing (b). Histograms are the mean ± 
SEM of 7-10 mice per group.
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Table 4.1  Effect o f m elatonin (a ) , tryptophan and tryptophan plus  

paroxetine (b ) on melatonin levels in the brain o f D B A /2N  mice

melatonin (pg/g ± SEM)

a

Vehicle 273 ±37  (17)

Melatonin 50 mg/kg 409 ±54  (10)

Melatonin 100 mg/kg 731 ± 74* (18)

Melatonin 200 mg/kg 2485 ± 205* (10)

b

Vehicle + vehicle 410 ± 66 (6)

Tryptophan + vehicle 378 ± 83 (6)

Vehicle + paroxetine 410 ± 59 (6)

Tryptophan + paroxetine 366 ± 56 (6)

Mice were given 50, 100 and 200 mg/kg melatonin or vehicle (a) and 300 
mg/kg tryptophan or vehicle 30 min before 2.5 mg/kg paroxetine or vehicle 
(b). Mice were killed by decapitation 30 min after the last injection. The 
number of mice per group is shown in parentheses. *p<0.001 vs. vehicle 
(Dunnett's test).
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4.3.5 Blockade of 5-HT1A receptors enhanced the citalopram-induced rise of 

extracellular 5-HT in the mPFC 

As shown in Figure 4 .5a, 5 mg/kg citalopram increased extracellular 5-HT 

in the mPFC of DBA/2N mice, reaching 5.2±0.3 fmol/20 pL of 5-HT at 60 

min (210% of basal value). WAY100635 0.3 mg/kg potentiated the overall 

effect of citalopram on extracellular 5-HT, the levels peaking at 9.9±2.1  

fmol/20 pL. ANOVA indicated a significant interaction between WAY100635, 

citalopram and time [F7,n9 = 3.3, p=0.003] and a significant effect of 

citalopram [Fi#17= 42.0, p<0.0001], WAY100635 [FM7= 17.0, p=0.0007] 

and their interaction [Fi,i7= 12.0, p=0.003]. WAY100635 by itself had no 

effect on extracellular 5-HT.

The rise of extracellular 5-HT in DBA/2N mice after WAY100635 plus 

citalopram was similar to that observed in C57BL/6N mice given citalopram 

alone (10.0±0.4 fmol/20 pL 40 min after citalopram; [Fi,i0= 0.5, p=0.5).

Extracellular 5-HT in the DH reached its maximum increase 40 min after 

citalopram (5 .8±1 .8  fmol/20 pL; Figure 4 .5 b ). Blockade of 5-HTiA 

receptors had no significant effect by itself and did not boost the 

citalopram-induced rise of extracellular 5-HT. ANOVA indicated a significant 

effect of citalopram [Fi#i9= 11.4, p=0.003] but not of WAY100635 [Fi,i9=

1.5, p=0.24], WAY100635 x citalopram [F1;i9= 1.2, p=0.29] or the 

interaction between WAY100635, citalopram and time [F7,i 33= 0.5, p=0.8].
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Figure 4 .5  Effect of 0.3 mg/kg WAY100635 on citalopram-induced rise of 
extracellular 5-HT in the mPFC (a) and DH (b) of DBA/2N mice.
The first arrow indicates the injection of saline (SAL) or WAY100635 (WAY) 
and the second the injection of saline (SAL) or 5 mg/kg citalopram (CIT). 
The dashed line indicates the effect of 5 mg/kg citalopram in C57BL/6N 
mice (not included in the statistical analysis).
Mean basal levels of 5-HT in fmol/20 pL (±SEM) were: (a )  SAL+CIT, 
2.5±0.2 (n=5); WAY+SAL, 2.3±0.2 (n=5); WAY+CIT, 2.2±0.1 (n = 6); 
SAL+SAL, 2.3±0.2 (n=5); SAL+CIT C57BL/6N mice 3.6±0.2 (n=6) (b ) 
SAL+CIT, 2.3±0.2 (n=6); WAY+SAL, 2.7±0.1 (n=6); WAY+CIT, 2.9±0.3 
(n=6); SAL+SAL, 2.2±0.2 (n=5); VEH+CIT C57BL/6N mice 3.8±0.3 (n=6). 
Solid symbols indicate p<0.05 vs. basal values; *p<0.05 vs. SAL+SAL and 
#p<0.05 vs. SAL+CIT (Tukey-Kramer test), 
n.s. not significant
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4.3.6 Blockade of 5 -HT2C receptors enhances the citalopram-induced rise of 

extracellular 5-HT in the mPFC 

Blockade of 5-HT2c receptors with the selective antagonist SB242084 (1 

mg/kg) enhanced the overall effect of citalopram on extracellular 5-HT in the 

mPFC from 5.7±0.7 to 7.6±1.0 fmol/20 pL at peak (Figure 4 .6 a ). ANOVA 

indicated a significant effect of citalopram [Fifi9= 34.4, p<0.0001] and the 

interaction between SB242084 and citalopram [Fi,i9= 6.5, p=0.02]. The 

effect of SB242084 [Fi,i9= 0.9, p=0.35] and the interaction between 

SB242084, citalopram and time was not significant [F7,i33= 0.8, p=0.7].

The rise of extracellular 5-HT in DBA/2N mice after SB242084 plus 

citalopram was similar to that in C57BL/6N mice given citalopram alone 

(9.4±1.3 fmol/20 pL at peak; [Fii9= 2.7, p=0.1]).

Citalopram (5 mg/kg) raised extracellular 5-HT in the DH to 6 .9±0 .4  

fmol/20 pL at peak (Figure 4 .6 b ) and SB242084 did not significantly 

change this effect. ANOVA indicated a significant effect of citalopram [Fi,i8= 

42.2, p<0.0001] but not of SB242084 [Flfl8= 1-5, p = 0.2], SB242084 x 

citalopram [Fi,i8= 0.5, p=0.5] or the interaction between these factors and 

time [F7,i26= 0.9, p=0.5]. SB242084 by itself had no effect on extracellular 

5-HT in the mPFC and DH.

161



Chapter 4

(a) 
12

“mX
o  8
CM
5 s

2 6H

H
X

9in

-O- VEH+SAL 
-& •  VEH+crr 

SB+SAL 
-0* SB+CIT

-O- VEH+CIT (C57)

JT3L

OJ-t I  p —y —   1.....1".."-""I""".
-40 -20 0 20 40 00 80 100 120 140

Time (min)

=L
O
CMSsO

h-
Xiur>

<b) 
12-

lO-

fi-

6-

-O- VEH+SAL 
-£ r VEH+CIT 

SB+SAL 
■O- SB+CIT

O * VEH+CIT (C57)

n»s.

*T ~ rmnTmmn n mn rmT ^
-40 -20 0 20 40 60 80 100 120 140

Time (min)

Figure 4 .6  Effect of 1 mg/kg SB242084 on citalopram-induced rise of 
extracellular 5-HT in the mPFC (a) and DH (b ) of DBA/2N mice.
The first arrow indicates the injection of vehicle (VEH) or SB242084 (SB) 
and the second the injection of saline (SAL) or citalopram (CIT). The dashed 
line indicates the effect of 5 mg/kg citalopram in C57BL/6N mice (not 
included in the statistical analysis).
Mean basal levels of 5-HT in fmol/20 pL (±SEM) were: (a) VEH+CIT, 
2.5±0.2 (n=6); SB+SAL, 2.6±0.3 (n=6); SB+CIT, 3.0±0.2 (n=6); VEH+SAL, 
2.9+0.2 (n=5); VEH+CIT C57BL/6N mice 3.6±0.1 (n = 5) (b ) VEH+CIT, 
2.8±0.2 (n=5); SB+SAL, 2.3±0.2 (n=6); SB+CIT, 2.5±0.2 (n=6); VEH+SAL, 
2.7±0.2 (n=5); VEH+CIT C57BL/6N mice 3.3±0.3 (n=5).
Solid symbols indicate p<0.05 vs. basal values; *p<0.05 vs. VEH+SAL and 
#p<0.05 vs. VEH+CIT (Tukey-Kramer test), 
n.s. not significant
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4.3 .7  Effect of citalopram alone and in combination with WAY100635 and 

SB242084 on immobility time in the FST 

As shown in Figure 4 .7 , 5 mg/kg citalopram and 0.3 mg/kg WAY100635 

by themselves did not affect immobility time in DBA/2N mice, but together 

they significantly reduced it (WAY100635, [Fi,28= 9.1 , p = 0 .0054]; 

citalopram, [Fi,28= 8.2 , p = 0 .0078] and WAY100635 x citalopram  

interaction, [Fi,28= 4.3, p=0.048]; two-way ANOVA).

SB242084 (1 mg/kg) significantly reduced the immobility time in mice 

given 5 mg/kg citalopram (Figure 4 .8 ). ANOVA indicated a significant 

effect of SB242084 [Fi/28= 5.2, p=0.03], citalopram [Flf28= 17.2, p=0.0003] 

and their interaction [Fif28= 5.3, p=0.029]. SB242084 had no real effect by 

itself.
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Figure 4 .7  Effect of 0.3 mg/kg WAY100635 (WAY) on immobility time i 
the FST in DBA/2N mice given 5 mg/kg citalopram (CIT). Mean ± SEM of 
mice per group.
*p<0.05 vs. SAL+SAL, SAL+CIT and WAY+SAL (Tukey-Kramer test).
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Figure 4 .8  Effect of 1 mg/kg SB242084 (SB) on immobility time in the FST 
in DBA/2N mice given 5 mg/kg citalopram (CIT). Mean ± SEM of 8 mice per 
group.
*p<0.05 vs. VEH+SAL, VEH+CIT and SB+SAL (Tukey-Kramer test).
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4.3.8 Open field activity 

As reported in Table 4 .2 , citalopram and WAY100635 alone or in 

combination did not affect the open-field activity of DBA/2N mice. The 

vehicle used to dissolve SB242084 strongly suppressed locomotor activity 

(p<0.05 vs. Saline+saline; Student's t-test). Overall, locomotor activity in 

mice given SB242084 was lower than in those given vehicle [Fi/28= 6.6, 

p=0.02]. However, post-hoc comparisons showed no significant differences 

between SB242084+saline and vehicle+saline or SB242084+citalopram and 

vehicle+citalopram ( Table 4 .2 ). Citalopram had no effect by itself [Fi>28= 

0.26, p=0.6] or in combination with SB242084 [Fi,28= 1.4, p=0.2].
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Table 4 .2  O pen-field activ ity  o f D B A /2N  mice given citalopram  alone  

and in combination with W AY100635 or SB242084.

Treatment O P E N -F IE L D  A C T IV IT Y

Squares crossed/4 min

(a)
Saline+saline 210.4±22.5

Saline+citalopram 187.4±20.0

W A Y 100635+saline 165.5±11.0

WAY100635+citalopram 181.1±19.2

(b)
Vehicle+saline 63.5±14.7*

Vehicle+citalopram 92.9±27.7

SB242084+saline 39.8±5.6

SB242084+citalopram 28.0±13.3

Mice were given 0.3 mg/kg WAY100635 (a ), 1 mg/kg SB242084 (b ) or 
respective vehicles 20 min before receiving 5 mg/kg citalopram.
Mean±SEM; 8 animals/group. *p<0.05 vs. saline+saline (Student's t-test).
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4.4 Discussion

The present study addressed two strategies potentially useful to restore 

the antidepressant-like response of SSRIs: the augmentation with 

tryptophan (Chapter 3) and the blockade of the negative feedback loops 

involved in the control of serotonergic neurotransmission.

The administration of the 5-HT precursor, tryptophan, and the blockade of 

5-HT ia and 5-HT2c receptors restored the response to citalopram in mice 

"non-responder" to the SSRI alone.

The results suggest that both strategies may be useful to rescue the 

antidepressant-like effect of SSRIs and support the importance of enhancing 

5-HT transmission. The potential contribution of non-serotonergic 

mechanisms in the effects of tryptophan is also discussed.

Effects of tryptophan 

Tryptophan restored citalopram and paroxetine antidepressant effect on 

immobility time in the FST (Cervo et al., 2005; Guzzetti et al., 2008). This 

effect was abolished by inhibiting 5-HT synthesis with pCPA (Chapter 3 ), 

suggesting that 5-HT mechanisms play a major role. However, a tryptophan 

dose that stimulates 5-HT synthesis compensated the differences in basal 

extracellular 5-HT between C57BL/6J and DBA/2J mice, albeit transiently, 

but had no effect on the ability of citalopram to raise extracellular 5-HT in 

the mPFC and DH of DBA/2J mice. This suggests that the stimulation of 5- 

HT synthesis is not sufficient to compensate for the reduced effect of 

citalopram in DBA/2J mice. As shown in Chapter 3, brain and regional 

tryptophan concentrations were similar in C57BL/6J and DBA/2J mice. Thus,
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substrate availability does not contribute to strain differences in synthesis 

and basal extracellular concentrations of 5-HT.

A possible explanation for the apparent difference between extracellular 5- 

HT levels and the behavioural effects of tryptophan is that the stimulation of 

5-HT synthesis by tryptophan which enhances 5-HT release may in turn 

suppresses the firing activity of 5-HT neurons of the raphe through the 

activation of 5-HTiA autoreceptors (Liu et al., 2005). Thus, the suppression 

of 5-HT cell firing might mask the ability of tryptophan to enhance the effect 

of citalopram on extracellular 5-HT particularly in brain regions innervated 

by the dorsal raphe nucleus such as the mPFC in which the SSRI-induced 

rise of extracellular 5-HT is strongly limited by the activation of 5-HT iA 

autoreceptors (Invernizzi et al., 1992; Invernizzi et al., 1997; Romero and 

Artigas, 1997; Hervas et al., 2000; He et al., 2001; Bortolozzi et al., 2004).

In addition, it cannot be excluded that non-serotonergic mechanisms 

contribute to the effect of tryptophan. Tryptophan is a precursor, via 5-HT, 

of melatonin (Weissbach et al., 1960) and administration of tryptophan 

increases circulating melatonin in human and rat blood (Hajak et al., 1991; 

Esteban et al., 2004; Jaworek et al., 2004; Leja-Szpak et al., 2004) and in 

the rat brain (Crespi et al., 1994). We found that melatonin reduced 

immobility time in the FST in C57BL/6N and DBA/2N mice, respectively at 

100 and 200 mg/kg, a findings consistent with studies showing an 

antiimmobility effect of melatonin in the mouse FST and TST (Prakhie and 

Oxenkrug, 1998; Raghavendra et al., 2000; Wong and Ong, 2001).

Melatonin

A recent study (Jimenez-Jorge et al., 2007) confirmed the presence of
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melatonin in the rat brain, and showed that the hormone is synthesized in 

the brain. However, to the best of our knowledge, information on the levels 

of melatonin in the mouse brain is not available. Using an HPLC-fluorometric 

method similar to that used by these authors, we found measurable, albeit 

low, levels of endogenous melatonin in the brain of DBA/2N mice and 

showed that the administration of melatonin at doses reducing immobility 

time in the FST strongly increased brain levels of this hormone. On the 

contrary, tryptophan alone or in combination with paroxetine had no effect 

indicating that these treatments unlikely affect melatonin synthesis in the 

brain of DBA/2N mice.

The finding that melatonin plus paroxetine did not affect the immobility 

time in DBA/2N mice, argue against the involvement of endogenous 

melatonin. However we note that in line with previous findings (Wong and 

Ong, 2001), we found that melatonin markedly reduced locomotor activity 

in C57BL/6N and DBA/2N mice, except at the highest dose (200 mg/kg) 

where it increased immobility. We cannot exclude that sedation might have 

contributed to the increase of immobility time observed after the injection of 

200 mg/kg melatonin in C57BL/6N mice in the ability of tryptophan to 

rescue the anti-immobility effect of SSRIs

Kynurenines

Tryptophan is transformed into kynurenines by indoleamine 2 ,3 - 

dioxygenase (Schwarcz, 2004) and kynurenic acid, one of the endogenous 

metabolites of tryptophan, is a non-selective antagonist of excitatory amino 

acid receptors with high affinity for the glycineB co-agonist site of the NMDA
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receptor that exert antidepressant-like activity in the FST. Thus, blockade of 

NMDA receptors could contribute to the ability of tryptophan to restore the 

anti-immobility effect of paroxetine in "non responder" mice. Further studies 

with selective inhibitors of the key enzymes in the synthesis of kynurenines 

are needed to clarify whether kynurenines have any role in the mechanism 

by which tryptophan enhances the anti-immobility effect of SSRIs in DBA/2 

mice.

5HT receptors

WAY100635 and SB242084, blocking respectively 5 -H T ia and 5-HT2c 

receptors, enhanced the citalopram-induced rise of cortical extracellular 5- 

HT and restored the anti-immobility effect of citalopram in DBA/2N mice 

that do not respond to the SSRI alone (section 4.3). We used doses of 

WAY100635 and SB242084 similar to or lower than those antagonising the 

effects of 5-H T ia and 5-HT2c agonists in behavioural, biochemical and 

electrophysiological studies (Di Matteo et al., 2000; Kennett et al., 1997; 

Moser and Sanger, 1999; O'Neill and Conway, 2001; Pozzi et al., 2002; 

Trillat et al., 1998; Queree and Sharp, 2006). In addition, WAY100635 and 

SB242084 belong to different chemical classes and are among the most 

selective antagonists available for each respective receptor subtype (Forster 

et al., 1995; Kennett et al., 1997). This increases the likelihood that the 

behavioural and biochemical effects obtained combining citalopram with 

these two drugs reflects the selective involvement of 5-H T i A and 5-HT2C 

receptors.

The enhancement of the effect of citalopram on extracellular 5-HT by 5- 

HTiA and 5-HT2C receptor antagonists agrees with previous findings that
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pharmacological blockade and/or genetic deletion of these receptors 

suppressed the inhibitory feedback regulating the activity of 5-HT neurons 

and enhanced the effects of SSRIs on extracellular 5-HT in several regions 

of the rat and mouse brain (Cremers et al., 2004; Invernizzi et al., 1992; 

Invernizzi et al., 1997; Pineyro and Blier, 1999).

The observation that doses of WAY100635 and SB242084 enhancing the 

citalopram-induced rise of extracellular 5-HT in the mPFC but not in the DH 

reinstated the effect of citalopram in the FST supports the fundamental role 

of 5-HT in the anti-immobility effect of SSRIs and the preferential 

involvement of DR-mPFC 5-HT neurons in this effect.

First, DBA/2N mice have a lower brain synthesis rate and extracellular 

levels of 5-HT (Zhang et al., 2004; Cervo et al., 2005) and less effect of 

citalopram on extracellular 5-HT in the mPFC and DH than mice responding 

to citalopram in the FST (Zhang et al., 2004; Cervo et al., 2005; Calcagno 

et al., 2007; Jacobsen et al., 2008). Second, 5-HT synthesis inhibition with 

pCPA abolished the anti-immobility effect of citalopram and paroxetine in 

"responder" strains (Cervo et al., 2005; Guzzetti et al., 2008). Third, 

boosting 5-HT synthesis with the 5-HT precursor tryptophan restored the 

antidepressant-like effect of SSRIs in DBA/2N, DBA2J and BALB/c mice, 

which synthesize less 5-HT than C57BL/6J and C57BL/6N mice (Cervo et al., 

2005; Guzzetti et al., 2008). This latter finding was confirmed by a recent

study showing that the insensitivity of NMRI mice to SSRIs in the tail

suspension test was associated with a reduction of tissue and extracellular 

5-HT in the mPFC and was reversed by the 5-HT precursor 5-

hydroxytryptophan (Jacobsen et al., 2008). Thus, it is quite likely that the
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reduction of immobility time obtained by combining citalopram and 

WAY100635 or SB242084 is due to the fact that both these antagonists 

raise the effect of citalopram on extracellular 5-HT in the mPFC to the level 

reached in "responder" mice.

Differences in the behavioural response between mice given citalopram 

alone or with 5-HTiA or 5-HT2c receptor antagonists cannot be attributed to 

pharmacokinetic factors (Calcagno et al., 2009a). In fact, brain levels of 

citalopram at the end of the behavioural tests were essentially similar in 

mice given citalopram alone or with the 5-HT receptor antagonists. The fact 

that citalopram alone or combined with WAY100635 or SB242084 did not 

increase locomotor activity makes it unlikely that motor performance was 

involved in the effect of these treatments in the FST.

A clear reduction of open field activity was found in mice receiving the 

SB242084 vehicle. The fact that reduced locomotor activity was found in all 

groups receiving SB242084 vehicle, while immobility time was only reduced 

in mice given SB242084+citalopram makes it unlikely that the anti

immobility effect of this drug combination reflects changes in locomotor 

activity.

The blockade of 5-HTiA and 5-HT2c receptors with the antagonists had no 

effect by itself on extracellular 5-HT and immobility time, confirming that 

these receptors do not exert tonic control on the activity of serotonergic 

neurons (Adell et al., 2002; Boothman et al., 2006a; Cremers et al., 2004; 

Gartside et al., 1995; Invernizzi et al., 1997) and behaviour in the FST 

(Cremers et al., 2004; O'Neill and Conway, 2001; Tatarczynska et al., 

2004).
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One of the salient points of this study is that we use a mouse strain that 

does not respond to citalopram in the FST, to show that the response can 

be restored by enhancing the effect of citalopram on serotonergic 

transmission. Previous studies aimed at improving the antidepressant 

response were mostly done in rats or mice already responding to the 

antidepressant alone, and had given conflicting results. WAY100635 did not 

further reduce immobility time in the FST in mice and rats responding to 

SSRIs alone (Moser and Sanger, 1999; Guilloux et al., 2006). Genetic 

deletion or pharmacological blockade of 5-HT2c receptors, that clearly 

enhanced the effect of SSRIs on extracellular 5-HT, only marginally 

enhanced their anti-immobility effect in the mouse TST (Cremers et al., 

2004). In contrast, the present study clearly found that blockade of 5-HTiA 

or 5-HT2c receptors restores the antidepressant-like effect of citalopram in 

mice 'non-responder' to the drug alone.

Mechanisms underlying 5HT1A effects 

The observation that the 5-HTiA antagonist, WAY100635, had no effect on 

the citalopram-induced rise of extracellular 5-HT in the DH is in line with 

previous reports that 5-HTiA receptors exert strong inhibitory control over 

the activity of 5-HT neurons arising from the DR, such as the mPFC. In 

contrast, the DH, an area innervated by 5-HT neurons arising from the MR 

(Azmitia and Segal, 1978; Kosofsky and Molliver, 1987) contains far fewer 

5-HTiA receptors and 5-HT uptake sites than the DR (Adell et al., 2002; 

Hrdina et al., 1990; Lechin et al., 2006; Weissmann-IManopoulos et al., 

1985) and is less affected by the 5-HTiA receptor or not at all (Beck et al., 

2004; Sinton and Fallon, 1988; Lorens and Guldberg, 1974; Invernizzi et
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al., 1991). Thus, 5-HTiA receptor antagonists preferentially enhanced the 

effects of SSRIs on extracellular 5-HT in brain regions innervated by the DR 

(Casanovas and Artigas, 1996; Invernizzi et al., 1997).

Although the enhancement of extracellular 5-HT likely plays a major role in 

the ability of WAY100635 and SB242084 to reinstate the anti-immobility 

effect of citalopram, different mechanisms are likely involved in the action 

of these drugs. WAY100635 blocks 5-HTiA receptors that are expressed by 

5-HT neurons of the raphe (Miquel et al., 1992) and directly inhibit the 

activity of these cells by inducing membrane hyperpolarization through an 

action on potassium and calcium channels (Aghajanian and Lakoski, 1984; 

Penington and Fox, 1994). Post-synaptic 5-HTiA receptors located in the 

mPFC are also involved in the auto-regulation of 5-HT neurons through a 

long feedback loop (Ceci et al., 1994; Celada et al., 2001; Hajos et al., 

1999) and may contribute to the action of WAY100635.

Mechanisms underlying 5HT2c effects 

The fact that SB242084 enhanced the citalopram-induced rise of 

extracellular 5-HT in the mPFC but not DH suggests that 5-HT2c receptors 

preferentially regulate 5-HT neurons arising from the DR.

To our knowledge, the anatomical distribution and cellular localization of 5- 

HT2c receptors and the susceptibility of DR and MR 5-HT neurons to 5-HT2C 

receptor regulation in the mouse brain have not been studied. Therefore, 

the clear-cut difference in the effects of SB242084 on the citalopram- 

induced rise of 5-HT in the mPFC and DH remains to be investigated.
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5-HT2c receptors are essentially localized on non-serotonergic neurons. 

Immunocytochemical studies showed that 5-HT2c receptors are expressed in 

glutamic acid decarboxylase-positive, GABAergic neurons in the raphe and 

other brain regions (Pazos et al., 1985; Serrats et al., 2005). GABAergic 

neurons synapse upon 5-HT cells in the raphe (Wang et al., 1992) and 

control their activity (Gallager and Aghajanian, 1976). Moreover 5-HT 

applied to rat brain slices containing the DR caused a GABA- and 5-HT2C- 

mediated inhibition of 5-HT neurons (Liu et al., 2000) suggesting that 

SB242084 might enhance the effect of citalopram by acting on 5-HT2C 

receptors on GABAergic neurons intrinsic to the raphe that in turn inhibit 5- 

HT cells. Thus, 5-HT2C receptors of the DR are probably mainly involved in 

the mechanism by which SB242084 restored the anti-immobility effect of 

citalopram in DBA/2N mice. However, extra-raphe 5-HT2C receptors may 

also contribute (Cremers et al., 2007; Sharp et al., 2007). This issue is 

discussed in Chapter 5.

Altogether these findings suggest that strategies aimed at enhancing 5-HT 

transmission might be more effective in improving the antidepressant 

efficacy in subjects with hypofunctioning brain 5-HT transmission such as 

DBA/2N mice. The results also show that enhancing the effect of SSRIs on 

extracellular 5-HT confers sensitivity to citalopram in the FST to DBA/2N 

mice, which are otherwise insensitive to citalopram alone.

Augmentation of the response with 5-HT iA and/or 5-HT2C receptor 

antagonists may be useful to restore the antidepressant response to SSRIs, 

particularly in treatm ent-resis tant depression associated with 

hypofunctioning 5-HT neurotransmission.
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5.1 Introduction

The failure of SSRIs to reduce immobility time in DBA/2 mice is at least 

partly due to a reduced 5-HT synthesis likely involving more complex 

changes in 5-HT transmission leading to an insufficient availability of 5-HT 

at its sites of action.

Our findings (Chapter 4) confirm that 5-HT2c receptors are involved in the 

neurochemical and antidepressant-like effects of SSRIs. Given that 5-HT2c 

receptors are not located on 5-HT neurones (Clemett et al., 2000), an 

indirect control of 5-HT neurotransmission is probably implicated. Several 

evidences suggest the involvement of GABAergic mechanism.

Y-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the 

brain and GABA-mediated neurotransmission regulates many physiological 

and psychological processes (see review Brambilla et al., 2003). There are 

two major classes of GABA receptors: ionotropic GABA-A (and GABA-C 

receptors) and metabotropic GABA-B receptors. Although depression is seen 

largely as a dysfunction in monoamine neurotransmission and all 

antidepressant strategies focus largely on monoamines, clinical and 

preclinical evidences implicate dysfunction of the GABA system in 

depression (Krystal et al., 2002; Brambilla et al., 2003; Shiah and Yatham, 

1998). Lower GABA levels in cerebrospinal fluid and plasma have been 

found in depressed patients compared to controls. Recently, studies using 

proton magnetic resonance spectroscopy, found decreased GABA 

concentrations in the occipital cortex of depressed patients and subsequent 

studies demonstrated that these low levels of GABA were normalized after
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antidepressant treatments (Sanacora et al., 2002; Sanacora et al., 2003; 

Sanacora et al., 2004).

The decrease in GABA observed in depressed patients does not appear to 

be associated with changes in GABA uptake in the frontal cortex and 

cingulate gyrus, and neither GABA-B receptors nor glutamic acid 

decarboxylase (GAD; the biosynthetic enzyme for GABA) activity have been 

found to be altered whereas GABA-A receptor binding in frontal cortex was 

increased in depressed suicide victims (Brambilla et al., 2003; Schechter et 

al., 2005; Kalueff and Nutt, 2007). Additional evidence is provided by the 

findings of lower platelet GABA transaminase (a catabolic enzyme for GABA) 

and plasma GAD activity in depressed patients (Brambilla et al., 2003).

Collectively, these findings have raised interest in the role of GABA as a 

potential target for treating depression.

It  has been shown that chronic administration of several antidepressant 

drugs reduces the levels of GABA-A receptors in rat brains, in regions such 

as the cortex, hippocampus, and hypothalamus. Additionally, several 

studies reported increased GABA-B receptor binding sites in frontal cortex 

and hippocampus in rats, after chronic treatm ent with various 

antidepressants (Gray et al., 1987; Lloyd et al., 1985; Pratt and Bowery, 

1993; Sands et al., 2004).

More recently, there has been more emphasis on antagonism of GABA-B 

receptors as a potential therapeutic strategy for depression (Cryan and 

Kaupmann, 2005). In support of this, GABA-B(l) subunit knockout mice 

display antidepressant-like phenotype in the FST (Mombereau et al., 2004). 

Furthermore, chronic treatment with the GABA-B receptor antagonist 

CGP36742 has an antidepressant-like response in the learned helplessness
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model (Nakagawa et al., 1999). Moreover, other GABA-B antagonists, 

CGP56433A and CGP55845A, also showed antidepressant-like effects in the 

rat FST, decreasing immobility and increasing swimming, a profile 

comparable with SSRIs (Slattery et al., 2005; Cryan et al., 2002). Depletion 

of 5-HT prevents the effect of CGP56433A and CGP55845A in the FST, 

suggesting a role of 5-HT in their mechanism.

Neurochemical and electrophysiological studies indicate that 5-HT neurons 

are subject to GABAergic inhibitory regulation (Gallager and Aghajanian, 

1976; Wang and Aghajanian, 1977b; Gervasoni et al., 2000; Tao and 

Auerbach, 2003).

GABA neurones in the dorsal raphe (DR) synapse onto 5-HT neurones and 

exert an inhibitory effect (Wang et al., 1992; Liu et al., 2000; Varga et al., 

2001).

GABA-A agonists, such as muscimol, and the non-selective agonist, 

progabide, appear to reduce 5-HT synthesis in rat brains (Nishikawa and 

Scatton, 1983; Nishikawa and Scatton, 1985) probably through GABA-A 

receptors located in the raphe nuclei. Local infusion of the GABA-A receptor 

antagonist, bicuculline, increases 5-HT release in the DR, indicating that 

GABA afferents exert a tonic inhibitory influence on 5-HT neurones (Tao and 

Auerbach, 2003).

There are considerable data supporting a relationship between GABAergic 

and serotonergic systems in the CNS. However, this relationship is complex. 

Anatomical studies demonstrate reciprocal synaptic interactions between 5- 

HT and GABA neurones in the DR. The GABA-B receptor agonist, baclofen, 

given systemically, increases 5-HT release in the DR and in the striatum
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(Abelian et al., 2000). In addition, baclofen inhibited GABA release in raphe 

slice (Bagdy et al., 2000). Therefore GABA-B stimulation affected 5-HT 

neurones both directly via GABA-B receptors located on 5-HT neurones and 

indirectly through GABA-B autoreceptors. Moreover, it has been shown that 

also 5-HTia and 5-HTi B agonists decrease 5-HT and GABA release in rat 

raphe nuclei (Bagdy et al., 2000), suggesting a reciprocal control between 

GABAergic and serotonergic neurons.

The presence of 5-HT2c receptors on GABA neurones in the DR has been 

reported (Serrats et al., 2005). Activation of 5-HT2c receptors indirectly 

attenuates the activity of serotonergic neurones probably acting through 

GABAergic interneurones in the raphe nuclei (Singewald and Sharp, 2000; 

Boothman et al., 2003; Boothman and Sharp, 2005; Boothman et al., 

2006b; Liu et al., 2000) or through a long inhibitory feedback loop 

originating in projection areas (Cremers et al., 2007). Recent evidence 

suggests that 5-HT2A/c receptors activate GABAergic interneurons in rat 

hippocampus, PFC and DR (Shen and Andrade, 1998; Abi-Saab et al., 1999; 

Liu et al., 2000). In vivo electrophysiological findings showed that the 

phenethylamine derivatives, DOM and DOI, both non-selective 5-HT2 

receptor agonists, inhibit the firing of DR 5-HT neurones (Aghajanian et al., 

1970; Garratt et al., 1991). In particular, DOI-induced inhibition of 5-HT 

cell firing, was blocked by the 5-HT2A receptor antagonist M100907 but was 

also attenuated by the 5-HT2B/2c receptor antagonist SB206553 (Boothman 

et al., 2003). Moreover WAY161503, a selective 5-HT2C receptor agonist, 

caused inhibition of 5-HT cell firing which was reversed by the selective 5- 

HT2C receptor antagonist, SB242084 (Boothman et al., 2003; Boothman et 

al., 2006b). In addition, DOI and WAY161503 increase the expression of the
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immediate early gene c-fos in GAD positive DR neurones and DR GAD 

positive neurones expressed 5-HT2c receptor immunoreactivity (Boothman 

et al., 2006b; Boothman and Sharp, 2005).

Thus, a model of 5-HT feedback control has been proposed in which 5-HT2c 

receptors activate DR GABA neurones to inhib it 5-HT neuronal activ ity  

(Figure 5 .1 ).
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5-HT Transporter 

•  5-HT 
-jr Finng activity 
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Figure 5.1  Scheme of the putative role of 5-HT2c receptors
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Glutamatergic cells in the vicinity of the DR also have a stimulatory 

influence on serotonergic neurons (Jolas and Aghajanian, 1997). The 

activation of DR serotonergic neurons in response to phasic sensory stimuli 

is dependent on glutamate (GLU; Levine and Jacobs, 1992) and this might 

be mediated by glutamatergic afferents from the habenula and cerebral 

cortex (Celada et al., 2001; Kalen et al., 1989; Wang and Aghajanian, 

1977b).

A study by Martin-Ruiz (2001) has shown that modulation of glutamatergic 

neurotransmission by 5-HT2 receptors might be involved in control of 5-HT 

release. The non-selective 5-HT2 agonist, DOI, stimulated the impulse flow 

in pyramidal neurons projecting to the DR through 5-HT2A receptors (but not 

5-HT2C receptors), thus resulting in an increased serotonergic activity and 5- 

HT release in mPFC. This effect was blocked by the  

AMPA-Kainate/glutamate receptor antagonist, NBQX, and likely depends on 

the release of GLU and stimulation of AMPA-Kainate receptors. Moreover, 

glutamatergic afferents from PFC also act indirectly through GABAergic 

neurons to inhibit 5-HT release and this may play a role in long-feedback 

loop inhibition of serotonergic neurons (Hajos et al., 1998; Celada et al., 

2001; Varga et al., 2001).

Thus, the aim of this part of the study was to assess the role of GABA and 

GLU of the DR in controlling the effect of SSRIs on extracellular 5-HT in 

"responder" and "non-responder" mice. Therefore, I assessed if citalopram 

activates local GABAergic inputs to 5-HT cells in the DR evaluating the effect 

of this drug on extracellular GABA, GLU and 5-HT.
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The inhibitor of 5-HT synthesis, p-chlorophenylalanine (pCPA), was used to 

evaluate the role of endogenous 5-HT in the effects of citalopram. Finally, I 

assessed if 5-HT2c receptors control GABA and GLU release in the DR and 

their role in the effect of citalopram.

Since the measure of extracellular GABA and GLU with microdialysis does 

not always fulfil the classic criteria for exocytotic release (Timmerman and 

Westerink, 1997; van der Zeyden et al., 2008), preliminary studies were 

devoted to examine the effect of K+ and the sodium channel blocker 

tetrodotoxin (TTX) on extracellular GABA, GLU and 5-HT in the DR under 

current experimental conditions.
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5.2 Methods

Microdialysis procedures have been accomplished as described in Chapter 

2 .

5.2.1 GABA and GLU assay

GABA and GLU were measured after derivatization with o-phthalaldehyde 

(OPA; Sigma-Aldrich, Milan, Italy) based reagent according to Donzanti and 

Yamamoto (1988). Stock derivatizing reagent was prepared by dissolving 

27 mg OPA in 1 mL methanol, followed by 5 pL p-mercaptoethanol and 9 

mL 0.1 M sodium tetraborate buffer (pH 9.3) prepared by dissolving 0.62 g 

boric acid in about 80 mL ultrapure water (MilliQ, Millipore, USA). pH was 

adjusted to 9.3 with 2-3 mL 5 M NaOH and the final volume brought to 100 

mL with water. Stock reagent solution was maintained at room temperature 

in a darkened bottle for one week. Derivatizing reagent was prepared by 

diluting stock solution 1:4 with 0.1 M sodium tetraborate borate buffer, 24 h 

before use.

5 pL of derivatizing reagent were added to 5 pL sample to measure GLU or 

GABA, thoroughly mixed and immediately injected into the HPLC by a 

refrigerated Midas autosampler (Spark-Holland, Emmen, The Netherlands) 

set at 4°C.

GABA and GLU were separated through a 4.6 x 80 mm C18 reverse-phase 

column (HR-80, ESA, Chelmsford, MA). New Guard RP-18 guard column 

(3.2 x 15 mm; Perkin-Elmer, USA) was used to protect the analytical 

column. The mobile phase for GABA was as follows: 0.05 M Na2HP04, 35%
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methanol, pH 6.25 with 85% phosphoric acid, pumped at 1.2 mL/min with a 

LClO-ADvp HPLC pump (Shimadzu, Milan, Italy).

The mobile phase for GLU separation contained 0.05 M Na2HPC>4 , 28%  

methanol, pH 6.4 with 85% phosphoric acid at a flow rate of 1 mL/min with 

a LC20-AD HPLC pump (Shimadzu, Milan, Italy).

GABA and GLU were measured by a fluorescence detector (Jasco SP2020, 

Tokyo, Japan). Excitation and emission wavelengths were 335 and 450 nm 

for both aminoacids. Assays were calibrated daily by injecting 0.2, 0.4 and 

0.8 pmol/20 \iL GABA or 1, 5 and 10 pmol/5 \iL GLU, made up freshly in 

aCSF. Detection limits were 0.025 pmol/20 \iL for GABA and 0.1 pmol/5 \xl 

for GLU (signal-to-noise ratio = 2).

5.2.2 Drugs and reagents

Citalopram hydrobromide (Tocris Cookson, Bristol, UK) was dissolved in 

saline (10 mL/kg) and injected i.p. at 1.25, 5 and 20 mg/kg or dissolved in 

aCSF and perfused through the probe at the concentrations indicated. 

Control mice were injected with saline.

pCPA ethyl ester (Sigma-Aldrich, Milan, Italy) was prepared as described 

in section 3.2.5.

The 5-HT2c receptor antagonist, 6-chloro-5-m ethyl-l-[[2-[(2-m ethyl-3- 

pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB242084; GlaxoSmithKline, 

Harlow, UK), was dissolved in DMSO: 4M tartaric acid: water (50: 1: 49) 

and injected s.c. or through the probe 20' before citalopram. SB242084 (1 

mM), prepared as above, was further diluted in aCSF to the final 

concentration (0.1 pM) and perfused through the probe. Ro 60-0175, [(s)- 

2 -(c h lo ro -5 -flu o ro -in d o l-l-y l)-l-m e th y le th y la m in e  hydrochloride]
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(Hoffmann-La Roche, Basel, Switzerland), the 5-HT2c agonist, was dissolved 

in saline and injected i.p. at the doses indicated.

aCSF containing 60 mM KCI was prepared as follow: NaCI 87 mM; KCI 60 

mM; CaCI2 1.26 mM and MgCI2 1 mM were dissolved in ultra pure water and 

buffered at pH 7.4 with 2 mM sodium phosphate buffer. High K+ aCSF was 

perfused through the probe for 20 min to stimulated the exocytotic release 

of GABA, 5-HT and GLU, and after 1 h washout with "normal" aCSF, 1 pM 

tetrodotoxin (TTX), dissolved in sodium citrate buffer (pH 4.5), diluted to 1 

pM with aCSF and perfused through the probe for 1 h to verify the action- 

potential dependent release of the neurotransmitters.

All drugs or vehicles were injected after the collection of 4 baseline 

samples. Only animals with basal samples not differing by more than 20%  

were considered in the results.

5.2.3 Data analysis 

The chromatographic peaks of GABA, GLU and 5-HT were quantified based 

on the calibration curve calculated on three different standard 

concentrations by a chromatography software (Azur, Datalys, Saint Martin 

d'Heres, France). Figure 5 .2  shows representative chromatograms of GABA 

and GLU in standards and DR dialysate samples.

Basal values of the neurotransmitters, uncorrected for in vitro recovery of 

the probe, in different experiments and in different strains of mouse were 

expressed as pmol/20 pL (GABA and GLU) or fmol/20pL (5-HT) and 

compared by one-way ANOVA or Student's t-test. To facilitate comparisons, 

the effects of treatments on GABA, 5-HT and GLU were expressed as 

percentage of basal value.
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The effect of perfusion with KCI and TTX was analyzed using the paired 

Student's t-test comparing the effect of elevated KCI 20 min after its 

perfusion with basal value and the effect of TTX at 1 h with basal value.

All time-course data were analyzed by ANOVA for repeated measures with 

treatments as between subjects factor and time as within subjects factor. 

Post-hoc comparisons between pre- and post-injection values and 

comparisons between treatments were done with Tukey-Kramer's test.
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5.3 Results

5.3.1 Basal extracellu lar levels o f GABA, 5-HT and GLU in DBA/2N and 

C57BL/6N mice and effect o f pCPA 

Mean basal 5-HT, GABA and GLU concentrations in the DR of DBA/2N 

mice, obtained by pooling basal values of different experimental groups, 

were respectively: 6.7±0.2 fm o l/20 pL (n = 108); 0.29±0.01 pm ol/20 pL 

(n=99); 20.9±0.7 pmol/20 pL (n=106).

Mean basal 5-HT, GABA and GLU concentrations in the DR of C57BL/6N 

mice, obtained by pooling basal values of different experimental groups, 

were respectively 19.1±1.0 fm o l/20 pL (n=56 ); 0.85±0.04 pm ol/20 pL 

(n=55); 24.6±1.3 pmol/20 pL (n=64).

As shown in F igure  5 .3 , basal extracellular 5-HT, GABA and GLU in the DR 

of DBA/2N mice were significantly lower (respectively by about 65% ; 66% 

and 15%) than in C57BL/6N mice [5-HT: t 162= 16, p<0.0001; GABA: t i 52=

16.5, p<0.0001; GLU: t i 68= 2.8, p<0.01)].

pCPA (300 mg/kg orally for three days) drastically reduced extracellular 5- 

HT in DBA/2N mice (by about 83%; [ t i20= 8.7, p<0.0001]) w ithout affecting 

basal levels of GABA and GLU [respectively t i 08= 0.4, p>0.05; t n 6= 0.8, 

p>0.05].

Mean basal 5-HT concentration in the mPFC of DBA/2N mice, obtained by 

pooling basal values of different experimental groups, was 2.9±0.2 fm ol/20 

pL (n=19).
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F igu re  5 .3  Basal extracellular 5-HT (a), GABA (b) and GLU (c) in the DR of 
C57BL/6N and DBA/2N mice. Results are Mean±SEM. The last column of 
each panel indicates the effect of pCPA in DBA/2N mice.
Mean basal concentrations in the DR of C57BL/6N, DBA/2N mice and 
DBA/2N mice receiving pCPA were respectively: 5-HT, 19.1±1.0 fm ol/20 pL 
(n=56), 6.7±0.2 fm o l/20 pL (n = 108) and 1.1±0.3 fm o l/20  pL (n = 14); 
GABA, 0.85±0.04 pmol/20 pL (n = 55), 0.29±0.01 pmol/20 pL (n=99) and 
0.31±0.03 pmol/20 pL ( n = l l ) ;  GLU, 24.6±1.3 pmol/20 pL (n=64), 20.9±0.7 
pmol/20 pL (n=106) and 22.8±2.9 pmol/20 pL (n=12).
*p < 0 .05  vs. C57BL/6N mice and §p<0.05 vs. DBA/2N mice (Tukey- 
Kramer's test).

191



Chapter 5

5.3.2 Neuronal origin o f extracellu lar GABA, 5-HT and GLU in the dorsal 

raphe: effect o f elevated KCI and TTX

Mice were perfused through the probe with 60 mM KCI fo r 20 min to 

stim ulate exocytotic neurotransm itter release. A fter 1 h wash-out w ith 

normal aCSF, animals were perfused with 1 pM TTX for 1 hour to verify the 

neuronal origin of the basal extracellu lar neurotransm itters in the DR. 

F igu re  5 .4  shows the effect of 20-min perfusion with KCI and the effect of 

1 hour perfusion with TTX.

Elevated KCI increased extracellu lar 5-HT by about 15-fold [ t7= 5.7, 

p<0.001] in DBA/2N mice and 5-fold [ t6= 6.7, p<0.001] in C57BL/6N mice. 

Extracellular GABA reached 172% and 218% of basal level a fte r KCI 

respectively in DBA/2N [t4= 3.3, p<0.05] and in C57BL/6N mice [ t6= 2.4, 

p=0.055]. Twenty-min infusion with 60 mM KCI increased extracellular GLU 

by 2.1-fold [t7= 3.2, p=0.01] in DBA/2N mice and 2.4-fold [t7= 2.2, p=0.06] 

in C57BL/6N mice.

One pM TTX significantly reduced extracellu lar 5-HT in both stra ins 

respective ly by about 64 and 38% (DBA/2N: [t7= 9.7, p<0.0001 ]; 

C57BL/6N: [ t6= 3.7, p=0.01]). GABA concentrations were lowered by 1 pM 

TTX by about 60% in DBA/2N mice [t4= 8.2, p = 0.001] and 53% in 

C57BL/6N mice [t6= 4.5, p<0.01] whereas TTX had no significant effect on 

extracellular GLU in both strains (DBA/2N: [ t7= 0.07, p>0.05]; C57BL/6N: 

[t7= 1.1, p>0.05]).
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F ig u re  5 .4  Effect of 60 mM KCI (upper panel) and 1 pM TTX (lower panel) 
on extracellular 5-HT, GABA and GLU in the DR of DBA/2N and C57BL/6N 
mice.
The dashed lines indicate basal values.
Results are Mean±SEM and are expressed as percentage of basal values. 
Basal levels of 5-HT were 5.0±0.6 fm ol/20 pL (n=8) fo r DBA/2N mice and 
19.6±1.4 fm ol/20 pL (n=7) for C57BL/6N mice. Basal values of GABA and 
GLU in pmol/20 pL were respectively: 0.41±0.04 (n = 5) fo r DBA/2N mice 
and 0.78±0.05 (n=7) for C57BL/6N mice and 18.9±2.2 (n=8) fo r DBA/2N 
mice and 19.4±3.0 (n=8) for C57BL/6N mice.
*p< 0.05 vs. basal values (Paired Student's t-test).
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5.3.3 The stim ulation o f 5-HT2c receptors reduced extracellu lar 5-HT and 

raised extracellular GABA in the DR o f DBA/2N mice

As shown in F igure  5 .5a, the 5-HT2c receptor agonist, Ro 60-0175, at 300 

pg/kg i.p. significantly reduced extracellular 5-HT by about 35% (p<0.05, 

Tukey Kramer's test) whereas at lower dose (30 pg/kg, data not shown) 

had no effect.

On the contrary, 300 pg/kg Ro 60-0175 significantly raised extracellular 

GABA (p<0.05, Tukey Kramer's test). The maximum increase (220% ) was 

reached 100 min after the injection (F igure  5 .5b).

SB242084, 1 mg/kg s.c., had no significant effects by itself both on 5-HT 

and GABA levels (see F ig u re  5 .9a  and b ) but, given 20 min before Ro 60- 

0175, completely antagonized the effects of Ro 60-0175. ANOVA indicated a 

significant interaction between treatm ent and tim e respectively fo r 5-HT 

[F7#7o= 2.3, p=0.03] and GABA [F7,77= 2.2, p=0.04j.

F ig u re  5 .5 c  shows tha t both Ro 60-0175 and the combination of Ro 60- 

0175 and SB242084 had no effect extracellular GLU [treatm ent: F i,i2= 0.07, 

p=0.8; time: F7#84= 1.9, p=0.08; treatment x time: F7;84= 0.8, p=0.6].
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F ig u re  5 .5  Effect of Ro 60-0175 on extracellular 5-HT (a ), GABA (b ) and 
GLU (c) In the DR.
Arrows indicate the injection of SB242084 or vehicle (VEH) and the injection 
of Ro 60-0175.
Results are Mean±SEM and are expressed as percentage of basal levels. 
Basal levels of 5-HT were 7.4±0.6 fm ol/20 pL (n=7) fo r VEH+Ro 60-0175 
and 6.8±2 fm ol/20 pL (n=5) fo r SB242084+RO 60-0175. Basal levels of 
GABA and GLU in pmol/20 pL were respectively: 0.27±0.02 (n = 7) fo r 
VEH+Ro 60-0175 and 0.25±0.03 (n=6 ) fo r SB242084+RO 60-0175 and 
22.1±2.1 (n=7) for VEH+Ro 60-0175 and 21.3±1.9 (n=7) for SB242084+RO 
60-0175.
*p<0 .05  SB242084+RO 60-0175 vs. VEH+Ro 60-0175 (Tukey-Kram er's 
test).
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5.3.4 Effect o f citalopram on extracellular 5-HT, GABA and GLU in DBA/2N 

mice

As shown in F igu re  5 .6 , saline had no effect on extracellular 5-HT, GABA 

and GLU.

Citalopram at 1.25 mg/kg had no significantly effect on extracellular 5-HT 

in the DR of DBA/2N mice whereas at 5 and 20 m g/kg it significantly 

increased extracellular 5-HT (F ig u re  5 .6 a ). ANOVA indicated a significant 

effect of citalopram [F3/2o= 4.4, p<0.05], tim e [F6,i2o= 7.2, p<0.0001] and 

time x citalopram [Fi8/i 2o= 3.1, p=0.0001]. Extracellular 5-HT was maximally 

increased by 5 mg/kg citalopram, reaching 25 fm ol/20 pL (300% ), 40 min 

after citalopram. No further increase was observed with 20 mg/kg.

The infusion of citalopram through the probe sign ificantly increased 

extracellular 5-HT in the DR (F ig u re  5 .6 b ; [F9/63= 21.1, pcO.0001]). Post- 

hoc comparisons indicated a significant effect of 1 pM (510% of basal value) 

and 10 pM citalopram (760% of basal value).

As shown in F ig u re  5 .6 c , 5 and 20 m g/kg citalopram  sign ificantly  

increased extracellular GABA (390% of basal value, respectively 60 and 80 

min after citalopram) whereas 1.25 mg/kg had no effect [citalopram: F3/2o=

13.3, p<0.0001; tim e: F6fi 2o= 5.1, p=0.0001; tim e x citalopram: Fi8,i2o=

2.3, p=0.004].

The in tra-raphe infusion of 10 pM citalopram sign ificantly increased 

extracellular GABA [F9/45= 8.1, pcO.0001]. Lower concentrations (0.1 and 1 

pM) had no significant effect even if at 1 pM citalopram extracellular GABA 

reached about 300% of basal value.

196



Chapter 5

Both systemic and local citalopram had no effect on extracellular GLU at 

any doses and concentration used (Figure 5 .6 e \ [ F i8,io8= 1-2, p>0.05; 

Figure 5 .6 f\ F9/54 = 1.1, p>0.05]).
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F ig u re  5 .6a  and b  Effect of citalopram on extracellular 5-HT in the DR of 
DBA/2N mice.

Arrow indicates the injection of citalopram or saline. Horizontal bar indicates 
the citalopram infusion through the probe. Each concentration was infused 
for 1 h.
Results are Mean±SEM and are expressed as percentage of basal levels. 
Basal levels of 5-HT in fm ol/20 pL were: saline 8.7±0.7 (n=5 ); citalopram
1.25 mg/kg: 4.7+0.8 (n=5); citalopram 5 mg/kg: 8.0±0.8 (n=8); citalopram 
20 mg/kg: 5.4±0.6 (n=6) and local citalopram: 7.6±1.1 (n=8).
*p<0.05 citalopram 5 and 20 mg/kg vs. saline; #  p<0.05 vs basal levels 
(Tukey-Kramer's test).
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F ig u re  5 .6 c  and d  Effect of citalopram on extracellular GABA in the DR of 
DBA/2N mice.

Arrow indicates the injection of citalopram or saline. Horizontal bar indicates 
the citalopram infusion through the probe. Each concentration was infused 
for 1 h.
Basal levels of GABA in pm ol/20 pL were: saline 
citalopram 1.25 m g/kg: 0.34±0.05 (n=5); citalopram 5 
(n = 7 ); citalopram  20 m g/kg: 0.29±0.03 (n = 6 ) and 
0.30±0.07 (n=6).
*p<0 .05  citalopram 5 and 20 mg/kg vs. saline; #  p<0.05 vs basal levels 
(Tukey-Kramer's test).

0.40±0.15 (n = 6); 
m g/kg: 0.26±0.04 
local c ita lopram :
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F ig u re  5 .6 e  and f  Effect of citalopram on extracellular GLU in the DR of 
DBA/2N mice.

Arrow indicates the injection of citalopram or saline. Horizontal bar indicates 
the citalopram infusion through the probe. Each concentration was infused 
for 1 h.
Basal levels of GLU in pmol/20 pL were: saline 19.2±2.4 (n=5 ); citalopram
1.25 m g/kg: 24.4±2.7 (n = 5); citalopram 5 m g/kg: 27.0±3.4 (n = 6 ); 
citalopram 20 mg/kg: 26.7±3 (n=6) and local citalopram: 19.9±4.4 (n=7).
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5.3.5 Effect o f 5-HT depletion on citalopram-induced rise o f extracellular 5- 

HT and GABA in DBA/2N mice

As shown in F ig u re  5 .3 , 300 mg/kg pCPA reduced extracellular levels of 

5-HT in the DR of DBA/2N mice by about 83% without affecting basal level 

of GABA and GLU.

The pre-treatm ent with pCPA completely abolished the effect of 5 mg/kg 

citalopram on the raise of extracellu lar 5-HT (F ig u re  5 .7 a ) and GABA 

(F ig u re  5 .7 b ) (5-HT: citalopram, F2,i9= 4.3, p=0.03; tim e, F6,n4= 2.5, 

p=0.03; tim e x citalopram, Fi2,h4= 1.6, p>0.05; GABA: citalopram, F2/i 5=

11.6, p<0.001; tim e, F6/9o= 2.0, p>0.05; tim e x citalopram, Fi 2,90= 2.4, 

p<0.001). Post-hoc comparisons indicate no differences both in extracellular 

5-HT and GABA between animals treated with pCPA receiving saline or 

citalopram.

There were no significant differences in extracellular GLU between mice 

injected with citalopram, pre-treated or not w ith pCPA (F ig u re  5 .7 c :  

[cita lopram : F2fi 5=  2.9, p> 0 .05 ; tim e : F6,9o= 0.3, p > 0 .0 5 ; tim e  x 

citalopram: Fi2,90= 0.9, p>0.05]).
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F igu re  5 .7  Effect of pCPA on extracellular 5-HT (a), GABA (b ) and GLU (c) 
in the DR of DBA/2N mice treated with citalopram.
Arrows indicate the injection of citalopram or saline.
Results are Mean±SEM and are expressed as percentage of basal levels. 
Mice receiving citalopram alone are the same as in F ig u res  5 .6 a ,c  and e 
(dotted line).
Basal levels of 5-HT in fm ol/20 pL were: pCPA+saline 1.2±0.1 (n=7) and 
pCPA+citalopram 5 mg/kg 1.1±0.0 (n=7).
Basal levels of GABA in pmol/20 pL were: pCPA+saline 0.25±0.02 (n=5) 
and pCPA+citalopram 5 mg/kg 0.36±0.04 (n=6).
Basal levels of GLU in pmol/20 pL were: pCPA+saline 21.6±4.3 (n=6) and 
pCPA+citalopram 5 mg/kg 24.0±4.4 (n=6).
*p<  0.05 vs. pCPA (Tukey-Kramer's test).

202



Chapter 5

5.3.6 Effect o f citalopram on extracellular 5-HT, GABA and GLU in C57BL/6N 

mice

As shown in F igu re  5 .8 , saline had no effect on extracellular 5-HT, GABA 

and GLU in the DR.

Citalopram dose-dependently increased extracellu lar 5-HT. Citalopram

1.25 mg/kg rose extracellular 5-HT to about 240% of basal values but post- 

hoc comparison shows no significant effect (F ig u re  5 .8 a ). Five and 20 

mg/kg citalopram significantly increased extracellu lar 5-HT [c ita lopram : 

F3,22= 21.5, p<0.0001; tim e: F6,i32= 35.6, p<0.0001; tim e x citalopram: 

F 18,132= 14.2, p<0.0001] by about 500% and 1100% 60 min after the 

injection reaching about 126 and 150 fmol/20 pL respectively.

F igu re  5 .8 b  shows that 5 and 20 mg/kg citalopram significantly increased 

extracellular GABA, respectively by about 250%, 80 min after citalopram, 

and 290%, 40 min after citalopram [citalopram: F3,i9= 3.4, p=0.04; tim e: 

F6, i i4= 6.5, p<0.0001; time x citalopram: F18/i i 4= 1.7, p=0.05] but post- 

hoc comparison shows no significant difference between the two groups. At 

the lower dose (1.25 m g/kg) citalopram had no effect on extracellu lar 

GABA.

Citalopram had no effect on extracellular GLU at any dose (F ig u re  5 .8 c : 

[cita lopram : F3,26= 1.3, p>0 .05 ; tim e : F6,i56= 1.3, p > 0 .0 5 ; tim e  x 

citalopram: Fi8,i56= 1.1/ p>0.05]).
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F ig u re  5 .8  Effect of citalopram on extracellular 5-HT (a), GABA (b ) and 
GLU (c) in the DR of C57BL/6N mice.
Arrows indicate the injection of citalopram or saline.
Basal levels of 5-HT in fm ol/20 pL were: saline 18.3±2.7 (n=8); citalopram
1.25 m g/kg: 19.1±1.7 (n=6); citalopram 5 m g/kg: 26.7±4.8 (n=6) and 
citalopram 20 mg/kg: 14.7±1.5 (n=6).
Basal levels o f GABA in pm ol/20 pL were: saline 1.03±0.16 (n = 6 ); 
citalopram 1.25 mg/kg: 0.77±0.09 (n=6 ); citalopram 5 m g/kg: 0.82±0.12 
(n=5) and citalopram 20 mg/kg: 0.77±0.12 (n=6).
Basal levels of GLU in pmol/20 pL were: saline 21.7±2.0 (n=9); citalopram
1.25 m g/kg: 22.0±2.3 (n=6 ); citalopram 5 m g/kg: 26.6±4.3 (n = 9 ) and 
citalopram 20 mg/kg: 20.6±2.6 (n=6).
*p<0.05 citalopram 5 and 20 mg/kg vs. saline (Tukey-Kramer's test).
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5.3 .7 Blockade o f 5-HT2c receptors prevents the ab ility  o f citalopram to 

increase extracellu lar GABA and enhances the citalopram-induced rise o f 

extracellular 5-HT in DBA/2N mice.

Blockade of 5-HT2c receptors with the selective antagonist SB242084 (1 

m g/kg) enhanced the overall effect of citalopram on extracellular 5-HT in 

the DR of DBA/2N mice from 18.6±1.7 to 48.5±9.1 fm ol/20 pL at peak 

(F igure  5 .9a).

ANOVA indicated a significant effect of citalopram [F i#2i= 10.1, p<0.001], 

the interaction between tim e and citalopram  [F7,i47= 5.4, p<0.0001], 

between tim e and SB242084 [F7,i47= 2.1, p<0.05] and between tim e, 

citalopram and SB242084 [F7,i47 = 2.3, p<0.05]. The effect of SB242084 

[Fi,2i=  3.3, p=0.08] and the interaction between SB242084 and citalopram 

[Fi,2i=  3.8, p=0.06] were not significant.

SB242084 (1 m g/kg), injected 20 min before 5 m g/kg cita lopram , 

completely abolished the citalopram-induced rise of extracellu lar GABA 

(F igure  5 .9b).

ANOVA indicated a significant effect of citalopram [Fi/20= 9.8, p<0.005], 

SB242084 [Fi,2o= 12.2, p<0.005], the ir interaction [F i#2o= 17.9, p<0.001], 

tim e [F7#i4o= 3.2, p<0.005], and the interaction between tim e, SB242084 

and citalopram [F7fi4o= 3.8, p<0.005].

SB242084 by itself had no effect on extracellular 5-HT and GABA.

None of the treatm ents had any effect on extracellu lar GLU (data not 

shown).
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F ig u re  5 .9  Effect of 1 mg/kg SB242084 on citalopram-induced rise of 
extracellular 5-HT (a) and GABA (b ) in the DR of DBA/2N mice.
The firs t arrow indicates the injection of vehicle (VEH) or SB242084 (SB) 
and the second the injection of saline (SAL) or citalopram (CIT).
Results are Mean±SEM and are expressed as percentage of basal levels. 
Basal levels of 5-HT in fm ol/20 pL were: VEH+CIT, 6.0±0.6 (n=7); SB+SAL, 
5.4±0.6 (n=6); SB+CIT, 6.8±1.0 (n=7); VEH+SAL, 7.0±0.9 (n=5).
Basal levels of GABA in pmol/20 pL were: VEH+CIT, 0.21±0.02 (n = 7 ); 
SB+SAL, 0.20±0.03 (n=5); SB+CIT, 0.30±0.06 (n=8); VEH+SAL, 0.36±0.02 
(n=4).
*p<0 .05  VEH+CIT vs. VEH+SAL; §p<0.05 SB+CIT vs. VEH+CIT (Tukey- 
Kramer's test).
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5.3 .8 Blockade o f 5-HT2c receptors in the DR abolishes the e ffect o f 

citalopram on extracellu lar GABA and enhances the cita lopram -induced  

increase o f extracellular 5-HT in the DR and mPFC.

To examine whether 5-H T 2c receptors in the DR were responsible fo r the 

effect of SB242084 on citalopram-induced increase of extracellu lar 5 -H T , 

dual probe experiments were conducted. Two probes were implanted, one in 

the DR and the other in the mPFC at the coordinates indicated in section  

2 .2 .2 , and SB242084 was perfused through the probe in the DR, 20 min 

before systemic administration of citalopram.

The effects of perfusion of SB242084 (0.1 pM) in the DR on citalopram- 

induced increase of 5-HT in the DR and in the mPFC are shown respectively 

in F igures 5 .10a  and b.

Five mg/kg citalopram increased extracellular 5-HT in the DR by about 

340% of basal values. At 0.1 pM SB242084 significantly enhanced the 

citalopram-induced rise of extracellular 5-HT from 24.8±2.2 to 34.7±3.1 

fmol/20 pL at peak (F igure  5 .10a).

ANOVA indicated a significant effect of citalopram [F i>2o= 24, p<0.0001], 

tim e [F7fi4o= 8.3, p<0.0001], the interaction between tim e and citalopram 

[F7,i4o= 7.2, p<0.0001] and the interaction between tim e, SB242084 and 

citalopram [F7>i4o= 2.4, p=0.02]. The effect of SB242084 [F i,20=  3.7, p=0.07] 

and the interaction between SB242084 and citalopram [F7fi4o= 4.3, p=0.052] 

were not significant.

As shown in F ig u re  5 .10b , 5 mg/kg citalopram increased extracellular 5- 

HT in the mPFC of DBA/2N mice, reaching 6 .9±0.4  fm ol/20 pL at 60 min 

(225% of basal value). SB242084, infused into the DR, potentiated the 

overall effect of citalopram on extracellu lar 5-HT in the mPFC peaking at

207



Chapter 5

9.7±1.2 fmol/20 pL (530% of basal value), confirming previous results (see 

Chapter 4). ANOVA indicated a significant interaction between SB242084, 

citalopram and time [F7,io5= 3.5, p=0.002], a significant effect of citalopram 

[F i,i5 = 8.2, p=0.01], tim e [F7,io5 = 9.7, p<0.0001], the interaction between 

citalopram and SB242084 [F i,i5= 6.2, p=0.03], and the interaction between 

citalopram and tim e [F7,i05= 9.0, p<0.0001] and between SB242084 and 

time [F7/io5= 3.2, p=0.004].

SB242084 and vehicle by itself had no effect on extracellular 5-HT in the 

DR and in the mPFC.

SB242084 had no significant effects by itself on extracellular GABA in the 

DR but completely prevented the raise of GABA induced by citalopram 

(F igu re  5 .10c). ANOVA indicated a significant effect of citalopram [F ifi 8= 

10.1, p=0.005], SB242084 [F i,i8= 4.8, p=0.04], time [F7,126= 4.4, p=0.0002] 

and the interaction between tim e, SB242084 and citalopram [F7,i26= 2.8, 

p=0.009] but no significant interaction between SB242084 and citalopram 

[F i,i8= 3.6, p=0.07].

In addition, the interaction between tim e and citalopram was significant 

[F7/i 26= 4.6, p=0.0001] as well as between time and SB242084 [F7,i 26= 2.6,

p=0.02].
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F ig u re  5 .1 0  Effect of 0.1 |jM SB242084 on citalopram-induced rise of 
extracellular 5-HT in the DR (a) and mPFC (b ) and of extracellular GABA (c) 
of DBA/2N mice.

Horizontal bar indicates the duration of SB242084 (SB) or aCSF infusion through 
the probe. The arrow indicates the injection of saline (SAL) or citalopram (CIT). 
Results are Mean±SEM and are expressed as percentage of basal levels. Basal levels 
of 5-HT in fmol/20 pL in the DR were: aCSF+CIT, 7.5±0.8 (n=5); SB+SAL, 6.9±0.8 
(n=7); SB+CIT, 7.6±1.3 (n=7); aCSF+SAL, 7.7±1.1 (n=5).
Basal levels of 5-HT in fmol/20 pL in the mPFC were: aCSF+CIT, 3.1+0.1 (n=5); 
SB+SAL, 3.3±0.6 (n=4); SB+CIT, 2.4±0.5 (n=5); aCSF+SAL, 2.8±0.3 (n=5).
Basal levels of GABA in pmol/20 pL were: aCSF+CIT, 0.27±0.03 (n=5); SB+SAL, 
0.33±0.07 (n=5); SB+CIT, 0.26±0.05 (n=7); aCSF+SAL, 0.33±0.02 (n=5).
*p<0.05 aCSF+CIT vs. aCSF+SAL; §p<0.05 SB+CIT vs. aCSF+CIT (Tukey-Kramer 
test).
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5.3.9 Blockade o f 5-HT2c receptors has no effect on the ability o f citalopram  

to increase extrace llu la r GABA and on the cita lopram -induced rise o f  

extracellular 5-HT in C57BL/6N mice.

Blockade of 5-HT2c receptors with 1 mg/kg SB242084 had no significant 

effect by itself on extracellular 5-HT in the DR of C57BL/6N mice and did not 

boost the citalopram-induced rise of extracellu lar 5-HT (F ig u re  5 .11a ). 

ANOVA indicated a significant effect of citalopram [F i,i9= 93.6, p<0.0001] 

but not of SB242084 [F i,i9= 0.2, p=0.7], SB242084 x citalopram [F i,i9= 1.8, 

p=0 .2 ] or the interaction between SB242084, citalopram and tim e [F7,i33= 

1.7, p=0.1].

Citalopram (5 mg/kg) raised extracellular GABA in the DR by about 215% 

at peak and tended to enhance this effect but it was not significant (F ig u re  

5 .1 1 b ) .  ANOVA indicated a significant effect of citalopram [F i/2i=  25.9, 

p < 0 .0 0 0 1 ] but not of SB242084 [F i,2i= 0.5, p=0.5 ] and SB242084 x 

citalopram [F if2i=  1.0, p=0.3] whereas the interaction between these factors 

and time [F7,i47= 3.3, p=0.003] was significant.

SB242084 by itself had no effect on extracellular GABA.

None of the treatment affected extracellular GLU (data not shown).
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F ig u re  5 .11  Effect of 1 mg/kg SB242084 on citalopram-induced rise of 
extracellular 5-HT (a) and GABA (b ) in the DR of C57BL/6N mice.

The firs t arrow indicates the injection of vehicle (VEH) or SB242084 (SB) 
and the second the injection of saline (SAL) or citalopram (CIT).
Results are Mean±SEM and are expressed as percentage of basal levels. 
Basal levels o f 5-HT in fm o l/20  pL were: VEH+CIT, 24.1±3.6 (n = 7); 
SB+SAL, 13.5±3.0 (n= 4 ); SB+CIT, 18.4±1.6 (n = 7); VEH+SAL, 14.3±0.7 
(n=5).
Basal levels of GABA in pm ol/20 pL were: VEH+CIT, 0.87±0.08 (n = 9 ); 
SB+SAL, 1.01±0.22 (n=5); SB+CIT, 0.74±0.14 (n=6); VEH+SAL, 0.94±0.08 
(n=5).
*p<0.05 VEH+CIT vs. VEH+SAL (Tukey-Kramer's test).
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5.4 Discussion

Two main findings derive from this set of experiments. First, citalopram 

increases extracellular GABA in the dorsal raphe (DR) of DBA/2N mice and 

second this increase depends on the rise of extracellu lar 5-HT and the 

activation of 5-HT2c receptors located in the DR.

Basal extracellular 5-HT in the DR of DBA/2N was lower than in C57BL/6N 

mice. This is in line with the results obtained in the mPFC and the DH (see 

Chapter 3), further supporting a general impairment of 5-HT transmission in 

this strain.

GABA and glutamate are respectively the main inhib itory and excitatory 

neurotransmitters in the central nervous system. Both neurotransm itters 

play an im portant role in the physiology of the brain and are strongly 

implicated in depression.

We found a reduced extracellular GABA and, albeit slightly, GLU in DBA/2N 

mice compared to C57BL/6N mice.

Given the reciprocal m odula tion o f serotonerg ic, GABAergic and 

glutamatergic systems (Bagdy et al., 2000; Martin-Ruiz et al., 2001; Tao 

and Auerbach, 2002; Tao and Auerbach, 2003), it is unclear whether low 

basal 5-HT levels lead to  reduced GABAergic and g lu tam a te rg ic  

transmission. In fact, it should be noted tha t, in turn, also serotonergic 

neurons are d irectly under the control of GABAergic nerves and are 

indirectly controlled by glutamatergic projections.
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Neuronal origins o f 5-HT, GABA and GLU

Neuronal release in the CSF is expected to be sensitive to potassium (K+) 

depolarization, sodium channel blockage induced by tetrodotoxin (TTX), 

removal of calcium (Ca2+) and depletion of presynaptic vesicles by local 

administration of the selective neurotoxin. For the monoamines it was found 

that under a wide variety of experimental conditions, dialysate contents of 

these neurotransmitters arise predominately from exocytotic processes.

A prelim inary part of the study was aimed at evaluating the neuronal 

dependence of extracellu lar level of 5-HT, GABA and GLU measured by 

m icrodia lysis under our conditions. Two crite ria  were applied: K+ 

depolarization and Na+ channel blockade induced by TTX.

I t  is controversial whether the 5-HT output in the DR can be used as an 

index of neuronal activity. In the forebrain, dialysate 5-HT is representative 

of the impulse-dependent axonal release of 5-HT (Carboni and Di Chiara, 

1989). In the DR, 5-HT may arise from dendrites but also from the initial 

segments of the branching axons, since the DR contains a dense network of 

5-HT efferent fibers (Steinbusch, 1981). The spontaneous release of 5-HT in 

the raphe area was shown to be Ca2+ dependent (Hery et al., 1982) and 

was also enhanced a fte r K+ stim ulation, by the Na+-channel activator 

veratridine (Adell et al., 2002) and markedly reduced after TTX in vivo but 

not in vitro  (Hery et al., 1982; Celada et al., 2002). Matos et al. (1996) 

found tha t 5-HT release was TTX-independent when the probes were 

implanted in close apposition but outside the DR. However, when the 

microdialysis probes were implanted within the DR, this nucleus remained 

entirely functional and the release of 5-HT could be reliably measured.
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In the present study, the dependence of 5-HT release in the DR on TTX 

and high K+ has been further confirmed. In any case, a fraction of 5-HT 

release in the raphe nuclei is resistant to the action of TTX (present study ; 

Adell et al., 2005; Bosker et al., 1994; Matos et al., 1996) suggesting the 

existence of a limited pool of the transm itter in the raphe nuclei tha t is not 

released in an impulse-dependent manner (present study; Adell et al., 

2002).

The neuronal origin of GABA in m icrodialysis samples is debated as 

infusion of TTX or Ca2+-free solutions on GABA levels in dialysate produced 

inconsistent results. Moreover Rea et al. (2005) have suggested tha t the 

chromatographic separation of GABA may contribute to discrepancies in the 

literature. In this work the proper analytical conditions and a validated 

method were used (see F ig u re  5 .2 ). The reduction of extracellular GABA 

observed in DBA/2N and C57BL/6N mice after 1 h TTX is sim ilar to those 

previously reported in rats (Osborne et al., 1990; Drew and Ungerstedt, 

1991; Campbell et al., 1993; Rakovska et al., 1998; Herrera-Marschitz et 

al., 1996; de Groote and Linthorst, 2007; van der Zeyden et al., 2008). The 

data confirmed tha t GABA levels decreased very slowly, reaching only 

statistical significance after 30 min or more (van der Zeyden et al., 2008). 

Moreover high K+ induces an increase of extracellu lar GABA variable 

between different studies (de Groote and Linthorst, 2007; Rea et al., 2005).

Most authors agree tha t basal values of GLU in microdialysis samples do 

not respond to TTX infusion or omission o f Ca2+ (fo r review see van der 

Zeyden et al., 2008) and the presence of a non-exocytotic extracellular pool
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of GLU is well established (Herrera-Marschitz et al., 1996; Timmerman and 

Westerink, 1997). Several authors have suggested that this GLU pool might 

be derived from astroglial cells by non-vesicular release that is insensitive 

to TTX and to removal of calcium ions, glial release via the cystine-GLU 

exchanger tha t is sodium-dependent or via GAP-junction hemichannels in 

which Ca2+ can facilitate GLU release from adjacent glial cells (fo r review  

see van der Zeyden et al., 2008).

Infusion of excitatory agents as the K+-channel blocker, 4-aminopyridine, 

that prolongs the opening of the K+ channels, or high concentration of KC1 

induce an increase in GLU levels in dialysates, which was largely TTX 

dependent (Pena and Tapia, 2000; van der Zeyden et al., 2008). Therefore 

synaptic GLU release can be detected by microdialysis following stimulation 

GLU pathways.

On the contrary, few researchers have reported a decrease in extracellular 

GLU after pharmacological treatments (Baker et al., 2002; Xi et al., 2002; 

Xi et al., 2003).

In our experim ental condition, K+ depolarization induced a tw ofo ld 

increase in GABA and GLU. The small increase in GLU induced by K+ 

depolarization is, perhaps, due to the fact that the high concentration of KCI 

in the extracellular space activates the transport into the surrounding tissue 

(Schousboe et al., 1993; Herrera-Marschitz et al., 1996; van der Zeyden et 

al., 2008).

From these results, it is interpreted tha t a large proportion of basal 

dialysate concentrations of 5-HT and GABA in the DR of DBA/2N and
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C57BL/6N mice, but not those of GLU, originate from neuronal term inals 

and reflect neuronal activity.

Effect o f citalopram  

Animal and clinical studies suggested, although with conflicting findings, 

that a deficit in GABAergic activity m ight be involved in the pathophysiology 

o f mood disorders and in the mechanism of action of antidepressant 

treatments.

We found that citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised 

extracellular 5-HT in the DR of C57BL/6N mice and had significantly less 

effect in the DR of DBA/2N mice. This confirms the previous results obtained 

in the mPFC and the DH (Chapter 3).

As previously observed in rat and mouse, the increase of extracellular 5- 

HT induced by SSRIs in the DR is higher than in the forebrain (Chapter 3 ; 

Gardier et al., 1996; Tao et al., 2000; Invernizzi et al., 1992; Guiard et al., 

2004; Guilloux et al., 2006). Moreover, citalopram infusion through the 

probe (a t 1 and 10 pM) had larger effects than a fte r system ic 

administration, presumably due to a limited activation of autoreceptor (Tao 

et al., 2000; Pineyro and Blier, 1999).

C italopram , w ith a good m atching o f doses w ith the increase o f 

extracellular 5-HT, also raised extracellular GABA in the DR of C57BL/6N 

and DBA/2N mice.

The raise of GABAergic neurotransmission after SSRIs has been already 

described in clinical and animal studies. Treatment of depressed patients 

with SSRIs increases cortical GABA levels as measured by proton magnetic 

resonance spectroscopy (Sanacora et al., 2002). In healthy subjects, a
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single intravenous administration of citalopram (Bhagwagar et al., 2004) 

increased GABA levels in occipital cortex. This finding suggests tha t an 

acute increase in 5-HT neurotransmission can increase cortical GABA 

activity in humans as it does in animals (Taylor et al., 2003; Goren et al., 

2007).

Role o f endogenous 5-HT

Interestingly, inhibition of 5-HT synthesis with doses of pCPA, depleting 

extracellu lar 5-HT by about 80% in the DR, completely prevented the 

citalopram-induced rise of extracellular 5-HT and GABA in the DR of DBA/2N 

mice without affecting basal release of GABA.

This finding is supported by several studies. Serotonergic lesion does not 

change the spontaneous GABA release in the basolateral amygdala (Lehner 

et al., 2008). Moreover, depletion of 5-HT with pCPA does not reduce GABA 

content in raphe nuclei slice (Bagdy et al., 2000) and does not affect GABA 

levels in rat striatum, however after K+ extracellular GABA was higher in 5- 

HT-depleted rats (Di Cara et al., 2003).

Also in human studies it was suggested that lowering brain 5-HT function 

using tryptophan depletion does not dim inish occipital GABA levels in 

healthy subjects (Selvaraj et al., 2006).

The present study clearly shows a prom inent interaction between the 

serotonergic and the GABAergic system suggesting that in the presence of 

an SSRI, the extent of 5-HT release is governed by a GABA-mediated 

feedback control. However, this effect was not apparent under pre-SSRI 

administration conditions. In fact, basal levels of GABA are not affected by 

the depletion of 5-HT.
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Feedback regulation is an essential aspect of the physiology of central 5- 

HT neurones (A gha jan ian e t a l., 1978) and e a r lie r  in v ivo  

electrophysiological experim ents indicate tha t ascending serotonergic 

pathway causes inh ib ition o f 5-HT cells firing  in the DR (Wang and 

Aghajanian, 1977a).

However feedback contro l o f 5-HT cells is not lim ited  to  5-HTi 

autoreceptors but includes also 5-HT receptors located on postsynaptic 

targets. Evidence suggests tha t these postsynaptic feedback mechanisms 

involve multiple 5-HT receptor subtypes as the 5-HTiA, 5-HT2A, 5-HT2c and 

5-HT4 receptors and operate through neural pathways tha t input to 5-HT 

neurones (Sharp et al., 2007).

There is morphological and neurochemical evidence fo r the GABAergic- 

serotonergic interaction in the raphe nuclei (Harandi et al., 1987; Becquet 

et al., 1990; Tao et al., 1996).

As indicated by neurochem ical and e lectrophysio log ica l s tud ies, 

serotonergic neurones are subject to GABAergic inh ib ito ry  regulation 

(Gervasoni et al., 2000; Tao and Auerbach, 2003). In fact, local application 

of GABA agonists into raphe nuclei inhibits 5-HT cell firing (Gallager and 

Aghajanian, 1976). Furthermore, release of 5-HT in the DR activates local 

GABA release that in turns inhibits 5-HT release, indicating the existence of 

a reciprocal innervation between the two m ajor neuronal cell types in the 

DR. This effect is mediated through 5-HT released from dendrites and axon 

varicosities w ithin the raphe nuclei leading to activation of inh ib ito ry  

somatodendritic 5-HT autoreceptors and through GABA heteroreceptors
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(GABA-A and GABA-B) located on serotonergic neurons (Tao et al., 1996; 

Bagdy et al., 2000).

Role o f 5-HT2c receptors in DBA/2N mice 

The blockade of 5-HT2c receptors augmented the citalopram -induced 

increase of extracellu lar 5-HT in the mPFC (Chapter 4; Calcagno et al., 

2009a).

Several possible mechanisms could underlie the augmentation of SSRI- 

induced rise of extracellular 5-HT by 5-HT2c receptor inactivation.

Although an autoreceptor function has not been demonstrated fo r 5-HT2C 

receptors, it is notable tha t these receptors are expressed near the 

mesencephalic raphe serotonergic neurons (C lem ett et al., 2000) and 

recently, 5-HT2C receptor mRNA was found in GABA neurones in DR (Serrats 

et al., 2005).

This evidence of a role for 5-HT2C receptors in 5-HT neuron control accords 

with observations that the non selective 5-HT2 receptor agonists, DOM, DOB 

and DOI, inhibited 5-HT cell firing and the ir effect was attenuated by pre

treatm ent with the 5-HT2B/c receptor antagonist SB 206553 in vivo and in 

raphe slice preparation (Aghajanian et al., 1970; G arratt et al., 1991; 

Wright et al., 1990; Boothman et al., 2003; Liu et al., 2000). Consistently, 

a combination of electrophysiological and c-fos  im m unohistochem ica l 

studies show tha t 5-HT2 receptor agonists inh ib it 5-HT neurones and 

activate GABA neurones in the DR (Liu et al., 2000; Boothman et al., 2003; 

Boothman and Sharp, 2005; Boothman et al., 2006b; Singewald and Sharp, 

2000). In particular, adm inistration o f the GABA-A receptor antagonist 

picrotoxin restored the inhibition of 5-HT cell firing induced by the 5-HT2C
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agonist, WAY161503, suggesting that the activation of GABA neurones may 

be involved in the inh ib itory action of WAY161503 (Boothman et al., 

2006b).

Taking together the above findings, it is plausible that the selective 5-HT2c 

receptor agonist, Ro 60-0175 (Martin et al., 1998), inhibits extracellular 5- 

HT in the DR of DBA/2N mice by activating GABA release. Furthermore, the 

selective 5-HT2c antagonist, SB242084, completely reversed the reduction 

of extracellu lar 5-HT induced by Ro 60-0175, abolishing the increase of 

extracellular GABA.

The dose of Ro 60-0175 chosen was those reducing extracellular 5-HT in 

the DR. Ro 60-0175 at lower dose had not effect on extracellu lar 5-HT 

confirming the results obtained in the rat mPFC (Calcagno et al., 2009b). 

The dose of SB242084 used was that enhancing the effect of citalopram on 

extracellular 5-HT and restoring its effect in the FST {Chapter 4).

Interestingly, DR 5-HT neurones were inhibited by WAY161503 (Boothman 

et al., 2006b) and Ro 60-0175 {present study) as well as the selective 5- 

HTia agonist, 8-OH-DPAT. This finding shows tha t 5-HT neurones are 

sensitive to feedback control by both 5-HT2C and 5-HTiA receptors (Hajos et 

al., 1999). Therefore they are subjected to 5-HT feedback control at several 

levels.

Our data show tha t the blockade of 5-HT2C receptors enhances the 

citalopram-induced raise of extracellu lar 5-HT abolishing the increase of 

extracellular GABA in the DR of DBA/2N mice. In fact, the co-administration 

of SB242084 w ith citalopram prevents the inh ib ito ry  effect o f GABA
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neurotransm ission on 5-HT release, allow ing a fu rth e r increase of 

extracellular 5-HT. Arguably, a diminished GABAergic tone due to the 5- 

HT2c receptor blockade could reduce the amount o f 5-HT-m ediated 

excitation of raphe GABA neurons and may contribute to the increased 

effect of SSRIs.

The same effect was achieved also with local infusion of SB242084 in the 

DR suggesting a prom inent role of DR 5-HT2c receptors. I t  is very 

interesting tha t SB242084, perfused in the DR, potentiated the citalopram- 

induced raise of extracellular 5-HT in the DR and in the mPFC. This la tte r 

increase was sim ilar to those obtained with the combination of systemic 

SB242084 and citalopram on extracellular 5-HT in the mPFC, corresponding 

to a reinstated effect on im m obility  tim e in the FST in DBA/2N mice 

(Chapter 4).

However, 5-HT2C receptors are abundant in other brain regions and the 

present data do not exclude the additional possibility tha t 5-HT2C receptors 

also play a role in the modulation of DR afferents from more distant regions 

such as the lateral habenula, hippocampus or PFC (W right et al., 1995; 

Cremers et a l., 2007; Sharp et a l., 2007). A com bina tion  o f 

electrophysiological and neuroanatomical data suggests tha t the DR GLU 

projections, respectively from the mPFC and the lateral habenula (Varga et 

al., 2001; Hajos et al., 1998; Jankowski and Sesack, 2004), ta rget DR 

GABA neurones to inhib it 5-HT cell firing , as well as a direct inh ib itory 

habenula-raphe GABA projection (Ferraro et al., 1996; Varga et al., 2003).

Moreover, the 5-HT2C receptors are not only located as heteroceptors on 

GABA-ergic neurons but may also be located on g lu tam aterg ic and 

dopaminergic neurons (see rewews Di Giovanni et al., 2006; Alex and
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Pehek, 2007; Fink and Gothert, 2007). In addition they are also involved in 

the control of noradrenergic neurons through GABAergic interneurones. 

Theoretically, all these systems m ight be involved in the mechanism 

through which 5-HT2c antagonists augment the effects of SSRIs on 5-HT 

levels in the brain.

Despite the robust neurochemical effect on extracellu lar 5-HT when 

pharmacological and genetic inactivation of 5-HT2c receptors is combined 

with SSRIs (Chapter 4 ; Cremers et al., 2004; Boothman et al., 2006a), 5- 

HT2C receptor antagonism alone has no significant effects on extracellular 5- 

HT and GABA. This suggests tha t 5-HT2C feedback system does not appear 

to be "ton ica lly active" and tha t these receptors may contribute to a 

negative feedback mechanism recruited only under conditions of elevated 

serotonergic tone.

Role o f 5-HT2c receptors in C57BL/6N mice 

Interestingly, SB242084 had no effect on citalopram-induced increase of 

extracellu lar 5-HT and GABA in the DR of C57BL/6N mice. A possible 

explanation is tha t the 5-HT2C receptors have reduced constitu tive and 

agonist-stim ulated activ ity  in C57BL/6 mice (Englander et al., 2005) 

compared to BALB/c (Englander et al., 2005) and DBA/2J mice (Hackler et 

al., 2006), in which the majority of 5-HT2C mRNA is non-edited and encodes 

receptors with the highest constitutive activ ity  and the highest agonist 

a ffin ity  and potency. The 5-HT2C pre-mRNA editing is likely to  be an 

adaptive response to the low-baseline forebrain 5-HT levels in BALB/c and 

DBA/2J mice. In fact, acute stress (as the FST) and chronic treatm ent with
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the SSRI, fluoxetine, did not induce significant changes in 5-HT2c pre-mRNA 

editing in C57BL/6 mice. In contrast, exposure of BALB/c mice to acute 

stress and chronic treatm ent with fluoxetine elicit an increase in 5-HT2c pre- 

mRNA editing leading to receptors with reduced function (Englander et al., 

2005). These changes in 5-HT2C pre-mRNA editing resemble those detected 

previously in the PFC of depressed patients (Gurevich et al., 2002b). In 

addition, depletion of 5-HT increased the expression of 5-HT2C mRNA 

isoforms encoding receptors with higher sensitivity to 5-HT (Gurevich et al., 

2002a), confirming that editing is regulated by endogenous 5-HT.

Therefore the failure of SB242084 to enhance the citalopram-induced rise 

of extracellular 5-HT in the DR of C57BL/6N mice might be due to a reduced 

constitutive activity of 5-HT2C receptors.

Role o f Glutamate

Glutamatergic axon term inals make synaptic connection with GABAergic 

neurons in the raphe nuclei (Jankowski and Sesack, 2004) where GLU can 

indirectly inh ib it 5-HT release (Celada et al., 2001; Varga et al., 2001; 

Martin-Ruiz et al., 2001).

SSRIs, increasing extracellular 5-HT in forebrain regions, m ight activate 

both 5-HT2A and 5-HT2C receptors on glutamatergic neurons. The application 

o f SB242084 would block 5-HT2C receptor-m ediated regulation o f GLU 

release, leaving the response to be mediated by 5-HT2A receptors, which 

have been shown to be located on glutamatergic neurons and therefore 

increase extracellular GLU (Martfn-Ruiz et al., 2001). Furthermore, GABA 

interneurons in the raphe nuclei are the primary target for the cortico-raphe 

glutamatergic neurons and the ir stimulation by GLU leads to inhibition of

223



Chapter 5

serotonergic cells (Hajos et al., 1998). Therefore this pathway may play a 

role in long-loop feedback inhibition of serotonergic neurons.

However, the glutam atergic AMPA/kainate antagonist, DNQX, did not 

attenuate the augmentation observed w ith SB242084 on c ita lopram - 

induced raise of extracellular 5-HT (Cremers et al., 2007).

In addition, evaluation of the effects of citalopram w ith and w ithout 

SB242084 on GLU levels did not show any effects (present study).

In summary, citalopram raised extracellu lar GABA in the DR and, in 

DBA/2N mice, this increase depends on the rise of extracellular 5-HT and on 

the activation of 5-HT2c receptors.

Thus, current data support a model of 5-HT-feedback control in which 5- 

HT2c recep to rs  a c tiva te  DR GABA neurones to  in h ib it  5-HT 

neurotransmission.

Therefore the blockade of the 5-HT2C receptors and of the GABAergic 

activity in the DR might be a useful strategy to reinstate the antidepressant 

effects of SSRIs in treatment resistant depressed patients.
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6.1 Introduction

Although SSRIs produce a rapid blockade of the 5-HT transporte r 

increasing brain e x tra ce llu la r 5-HT in anim als acu te ly  fo llow ing  

administration (Fuller, 1994; Stahl, 1998), the onset of the ir therapeutic 

effect takes several weeks. This paradox has not been solved yet.

I t  was suggested that the sustained elevated 5-HT levels following chronic 

treatm ent with SSRIs induces adaptive changes, such as the gradual loss of 

responsiveness of 5-HT autoreceptors ( fo r review see Blier, 2003). The 

duration of chronic trea tm en t w ith antidepressants needed fo r the 

desensitisation of 5-HTiA autoreceptors was sim ilar to the latency for the 

onset of antidepressants in patients (2-4 weeks).

As discussed in sections 1.5.2, these findings had led to the modified 

amine theory, suggesting tha t the acute increase in the levels of the 

monoamines at the synapse may be only an early step in a potentially 

complex cascade of events that ultimately results in antidepressant activity 

(Pineyro and Blier, 1999; Nestler et al., 2002).

Recent studies have identified modifications of intracellu lar signalling 

proteins and ta rge t genes tha t could contribute to antidepressant-like 

ac tiv ity  o f SSRIs (e.g. increases in neurogenesis and brain derived 

neurotrophic factor, BDNF), and may explain, at least in part, the ir long 

delay of action (Malberg and Blendy, 2005; Blier, 2003).

As discussed in section 1.6, studies o f neurotrophic factors, particularly 

BDNF, have been of particular interest and have lead to the form ulation of 

the neurotrophic hypothesis of depression, which proposes tha t reduced
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brain BDNF levels predispose to depression, whereas increases in brain 

BDNF levels produce an antidepressant action (Duman, 2004b, Castren et 

al., 2007).

BDNF is one member of the neurotrophin fam ily of growth factors tha t is 

widely expressed throughout the mammalian brain (Thoenen, 1991). BDNF 

promotes the growth and development of immature neurons and enhances 

the survival, differentiation and maintenance of neurons in peripheral and 

central nervous development (Lindsay, 1994; Ventim iglia et al., 1995; 

Lindvall et al., 1994). I t  influences axonal growth and connectivity and 

participates in local responses to various types of neuronal insults or stress 

(N itta et al., 1999). On the contrary, decreased levels of BDNF may 

contribu te to the atrophy of certain limbic structures, including the 

hippocampus and prefrontal cortex tha t has been observed in depressed 

patients.

Recent evidence linked the action of the neurotrophin BDNF and its 

receptor, the tropomyosin-related kinase B (TrkB), a protein tyrosine kinase 

receptor, to the action of antidepressant drugs (Saarelainen et al., 2003; 

Kozisek et al., 2008). In fact, mice overexpressing the truncated TrkB 

receptor were resistant to the effects of antidepressants in the FST.

Several reports show that serum BDNF, which is possibly related to BDNF 

levels in the brain (Pan et al., 1998; Karege et al., 2002b), is significantly 

decreased in depressed patients (Karege et al., 2002; Shimizu et al., 2003). 

In addition, antidepressant treatments can reverse this effect (Aydemir et 

al., 2005; Gervasoni et al., 2005; Gonul et al., 2005; Huang et al., 2008).
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I t  was recently shown that BDNF plasma levels were increased significantly 

in depressed patients receiving ECT showing a significant improvement in 

depressive symptoms (Marano et al., 2007).

Moreover, postmortem analysis of the hippocampus demonstrates tha t the 

expression of BDNF is decreased in depressed suicide patients and 

increased in patients receiving antidepressant medication at the tim e of 

death (Chen et al., 2001; Dwivedi et al., 2003; Karege et al., 2005).

Preclinical studies showed d iffe rentia l a lterations of BDNF levels in 

candidate brain regions mediating depressive behaviour. Various classes of 

antidepressant drugs, including monoamine oxidase inh ib itors, SSRIs, 

noradrenaline reuptake inhib itors and tricyclic antidepressants, increase 

both mRNA and protein levels of BDNF in various areas of the rat brain to a 

d ifferent extent depending on the brain region (Russo-Neustadt et al., 

2001; Nibuya et al., 1995; Duman et al., 1997; Duman et al., 2000; 

Coppell et al., 2003; Dias et a l., 2003; De Foubert et a l., 2004). 

Im portantly, the ability of these drugs to increase BDNF is dependent on 

chronic administration, suggesting tha t the ir mood-enhancing effects may 

be functionally related to chronic changes in neurotrophic activity.

Moreover, chronic intracerebral BDNF infusion induces antidepressant-like 

activity in animal models of depression (Siuciak et al., 1997; Shirayama et 

al., 2002). Infusions of BDNF directly into the midbrain, the periaqueductal 

gray and raphe nuclei (Siuciak et al., 1997), lateral ventricles (Hoshaw et 

a l., 2005) or the hippocampus (Shirayama et al., 2002) decreases 

im m obility  tim e in the FST s im ilar to  antidepressants. Furtherm ore, 

expression of BDNF mRNA is decreased in the hippocampus of mice exposed
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to social defeat stress, an animal model of depression m imicking many 

symptoms of human depression, and this effect is reversed by chronic 

antidepressant administration (Tsankova et al., 2006).

Taken together, these findings support the possibility tha t increased 

expression of BDNF contributes to the neural adaptations tha t underlie the 

action of chronic antidepressant treatment.

However, reduced expression of BDNF in the nucleus accumbens (NAc) 

and ventral tegmental area (VTA) is also associated to antidepressant-like 

effects in rodents. The NAc-VTA pathway is an im portant circuit mediating 

aversive and rewarding responses to emotional stim uli, and, as a result, 

could mediate the anhedonia, anxiety and reduced m otivation , some 

important symptoms of human depression.

BDNF infused into VTA exerts a depressive-like response in the FST, 

whereas blockade of BDNF action in the NAc, through v ira l-m ediated 

overexpression of a dom inant negative m utant o f TrkB, causes an 

antidepressant-like effect in the same test (Eisch et a l., 2003) and 

decreased expression of BDNF, through a local deletion o f the gene 

encoding BDNF in the VTA neurons, produces an tidep ressan t-like  

behavioural effects in a social defeat stress paradigm (Berton et al., 2006). 

Therefore, increased expression of BDNF in the hippocampus has 

antidepressant activity (Shirayama et al., 2002), whereas increased BDNF 

expression in the VTA or NAc results in a prodepressive state (Eisch et al.,

2003).
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Interactions between BDNF and 5-HT fu rthe r suggest the role of th is 

neurotrophin in depression and antidepressant response (Mattson et al.,

2004). Intracerebral infusion of BDNF stimulates 5-HT turnover, synthesis 

and sprouting of 5-HT axons (Mamounas et al., 1995; Mamounas et al., 

2000; Siuciak et al., 1996; Siuciak et al., 1998). Heterozygous BDNF 

knockout mice develop 5-HT deficits with age (Lyons et al., 1999) and are 

unresponsive to antidepressants in the FST (Saarelainen et al., 2003).

Surprisingly, only few data are available on the effect of chronic SSRIs in 

the FST in mice, likely because a single dose of SSRIs is sufficient to elicit a 

reduction of im m obility tim e in this species (Chapter 2). Nevertheless, 

Dulawa et al. (2004) showed that chronic (24 days) but not subchronic (4 

days) treatm ent with a SSRI, fluoxetine, reduced the immobility tim e in the 

FST in BALB/c mice.

Furthermore, numerous studies on the relationship between BDNF and 

chronic SSRIs treatm ent have focused on assessing the modulation of BDNF 

at the level of transcription, but only few studies addressed the effects of 

SSRIs on BDNF protein levels.

Therefore, to gain information on the role of BDNF in the response to long

term  trea tm ent w ith SSRIs, the im m obility  tim e in the FST and the 

concentration of the protein in various brain regions were measured in 

C57BL/6J and DBA/2J mice, given citalopram for 14 days.

To establish if chronic citalopram schedule effectively induced adaptive 

changes in 5-HT transmission, as previously shown in rats (Invernizzi et al., 

1994), a preliminary study was aimed at assessing the sensitivity of 5-HTi A
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autoreceptors contro lling 5-HT release a fte r trea tm en t w ith chronic 

citalopram in mice. I t  is known tha t in rats given citalopram for 2 weeks, 

somatodendritic 5-HTiA autoreceptors, controlling 5-HT release in the mPFC, 

are desensitized (Invernizzi et al., 1994). No such data are available for 

mice.

Changes in the sens itiv ity  of 5-HT iA autoreceptors were assessed 

examining the effect of the 5-HTiA receptor agonist, 8-OH-DPAT, on 

extracellu lar 5-HT in the mPFC of DBA/2J and C57BL/6J mice, given 

citalopram for two weeks.
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6.2 Methods

Microdialysis and behavioural studies were carried out as described in 

Chapter 2. The brain areas dissection was performed as described in section 

3.2.1.

6.2.1 Extraction procedure fo r BDNF 

Brain areas were frozen, weighed and stored at -80 °C. BDNF was 

quantified with ELISA Immunoassay, according to Szapacs et al. (2004). 

Tissue samples were removed from  the freezer and homogenized by 

sonication (as described in section 3 .2 .1 ) in 200 volume of lysis buffer, 

prepared as follows: 100 mM PIPES (pH 7), 500 mM NaCI, 0.2% Triton X- 

100, 0.1% NaN3, 2% BSA, 2 mM EDTA-Na2-2H20 , 200 pM PMSF (frozen in 

isopropanol), 10 pM leupeptin (frozen in deionized water), 0.3 pM aprotinin 

(frozen in 0.01 M HEPES (pH 8) and 1 pM pepstatin (frozen in DMSO). Then, 

sample were diluted in lysis buffer and resonicated.

A prelim inary experiment was address at identifying the correct sample 

dilution. I found tha t frontal cortex (FCX) and hippocampus should be 

diluted 1:20 in lysis buffer, whereas 1:10 dilution was optimal fo r NAc and 

striatum . Using these dilutions, BDNF protein levels fall in the range of 

linearity of the standard curve and its recovery from tissue range from 40 to 

70%.

After diluting, samples were centrifuged at 16,000 x g for 30 min at 4°C. 

Finally, supernatants were removed and frozen at -80 °C until analysis.
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6.2.2 BDNF enzyme-linked immunoassay

The Promega BDNF Emax ImmunoAssay System was employed to 

measure the amount of BDNF in each sample (Promega Co., Madison, WI, 

USA).

Each well of a 96-well polystyrene plate was incubated overnight at 4°C 

w ith 100 pL anti-BDNF monoclonal antibody (mAb) diluted 1:1000 in 

carbonate coating buffer (25 mM sodium bicarbonate and 25 mM sodium 

carbonate, pH 9.7). Unadsorbed mAb was removed and plates were washed 

once with TBST washing buffer (20 mM Tris-HCI at pH 7.6, 150 mM NaCI 

and 0.05% v/v  Tween 20).

Just prior to blocking, tissue extracts were removed from the freezer and 

allowed to thaw at room temperature. Plates were blocked using 200 pL 

Promega IX  Block and Sample buffer (used to block non-specific binding) 

followed by incubation fo r 1 h at room tem perature. Plates were then 

washed once using TBST washing buffer.

One hundred pL of each sample or standard (50, 25, 12.5, 6.25, 3.13, 

1.56, 0 pg/100 pL) were added in duplicate to the plates. Plates were 

incubated for 2 h with shaking (400±100 rpm) at room temperature. Plates 

were then washed five times with TBST washing buffer.

Anti-human BDNF polyclonal antibody (pAb; 100 pL diluted 1:500 in IX  

Block and Sample) was added to each well and plates were incubated for 2 

h with shaking (400±100 rpm) at room temperature. Plates were washed 

again five times using TBST washing buffer.

Anti-IgY horseradish peroxidase conjugate (100 pL diluted 1:200 in IX  

Block and Sample) was then added to each well and plates were incubated
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fo r 1 h with shaking (400±100 rpm) at room tem perature. Plates were 

emptied again and washed using TBST washing buffer.

Finally, plates were developed using 100 pL Promega TMB One Solution 

and the reaction was stopped using 100 pL HCI 1 N. Absorbance was 

measured at 450 nm. BDNF was quantified based on the calibration curve 

{F igure  6.1).

To further validate the method, some samples were split and spiked with 

25 pg/100 pL BDNF to determine percent recovery of BDNF in the ELISA 

assay, calculated as the increase in optical density signal relative to the 

signal generated by 25 pg/100 pL of BDNF in lysis buffer alone.

Furthermore, omitting the pAb from samples and standards yielded optical 

density signals not different from blank (data not shown).
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6.2.3 Drug treatm ents  

Citalopram hydrobromide (Tocris Cookson, Bristol, UK) and the 5-HTiA 

receptor agonist, (±)-8-hydroxy-2-(d i-n-propylam ino) te tra lin  HBr (8-OH- 

DPAT; Research Biochemical International, MA, USA), were dissolved in 

saline (NaCI 0.9%; 10 mL/kg) and injected respectively i.p. and s.c. at the 

doses indicated.

Citalopram was given at 10 mg/kg for 2 weeks, twice a day (h 8:00; 

20:00). The 14th day, mice received citalopram only once at 8:00 a.m. 

Microdialysis, behavioural studies and BDNF assay were performed on 

separate groups of mice, 24 h after the last dose of chronic citalopram.

The schedule of the experiments is shown in F igure  6.2.

Microdialysis
day 1

10 mg/kg citalopram or saline 
h 8:00: h 20:00 

for 14 days

FST
dayl

10 mg/kg citalopram or saline 
h 8.00; h 20:00 

for 14 days

day 14
2 h

10 rr a kg citalopram stereotaxic surgery
of saline 

h 8:00

day 14 day 15

day 15

microdialysis
experiment

30 min

10 mg.'kg citalopram 
or saline 

h 8.00

5 mg/kg citalopram FST
or saline

BDNF assay
dayl

10 mg/kg citalopram or saline 
h 8:00 h 20:00 

for 14 days

dayl 4 day 15
30 min

10 mg/kg citalopram 
or saline 

h 8:00

5 mg/kg citalopram brain dissection 
or saline

F igure  6.2 E xp e rim e n ta l p ro toco ls
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6.2.4 Data analysis 

Extracellular levels of 5-HT, not corrected fo r in v itro  recovery of the 

probe, were expressed as fm ol/20 pL. Basal values of 5-HT in d ifferent 

experiments and in different strains of mouse were compared by one-way 

analysis of variance (ANOVA) or Student's t-test. All time-course data were 

analyzed by ANOVA for repeated measures with treatm ents as between- 

subjects factor and tim e as w ithin-subjects factor. Post-hoc comparisons 

between pre- and post-in jection  values and com parisons between 

treatments were done with Tukey-Kramer's test.

The effects of chronic citalopram in the FST and on BDNF levels were 

analyzed by two-way ANOVA followed by Tukey-Kramer's test.

Only for the NAc, the effect of citalopram on BDNF levels in DBA/2J and 

C57BL/6J mice was compared by three-way ANOVA with strain, chronic and 

acute citalopram as main factors.

BDNF protein levels, uncorrected fo r the percentage of recovery, were 

expressed as pg/mg tissue. Values of BDNF in d ifferent brain areas of 

DBA/2J and C57BL/6J mice, receiving chronic saline and the challenge of 

saline, were compared by Student's t-test.
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6.3 Results

6.3.1 Basal level of extracellular 5-HT

Mean (±SEM) basal extracellu lar 5-HT In the mPFC of DBA/2J and 

C57BL/6J mice was respectively 2 .3±0.1  (n = 19) and 3 .3±0 .2  (n = 17) 

fm o l/20  pL. No s ign ificant differences were found across d iffe ren t 

experim ents (DBA/2J: [F2,i6= 0.6 , p > 0 .0 5 ]; C57BL/6J: [F2,i4= 3.1, 

p> 0 .05 ]). Basal extracellu lar 5-HT in the mPFC of DBA/2J mice was 

significantly lower than in C57BL/6J mice ( [ t34= 5, p<0.0001]).

6.3.2 Sensitivity of 5-HT1A receptors controlling 5-HT release in the mPFC of 

DBA/23 and C57BL/6J mice after chronic citalopram

8-OH-DPAT, at 0.1 and 0.2 mg/kg, significantly reduced extracellular 5-HT 

in the mPFC of DBA/2J mice by about 35-40%, and in C57BL/6J mice by 

about 50% (F igu re  6.3 , DBA/2J: [F10,40 = 4.7, p<0.001]; C57BL/6J: [F i0f3o 

= 7.3, pcO.0001]).

8-OH-DPAT at 0.1 m g/kg, m axim ally reduced extracellu lar 5-HT. No 

further reduction was observed at 0.2 mg/kg in both strains. Lower dose of 

8-OH-DPAT (0.05 m g/kg) had no significant effect on extracellular 5-HT in 

both strains (data not shown).

In DBA/2J and C57BL/6J mice, chronically treated with citalopram, 0.1 

mg/kg 8-OH-DPAT had no significant effect on extracellular 5-HT (F ig u re  

6 .4 ) while it significantly reduced extracellular 5-HT by about 35 and 40% 

respectively in DBA/2J and C57BL/6J mice receiving saline for 2 weeks.

ANOVA showed a significant effect of treatm ent [F i,i2 = 16.6, p<0 .001], 

time [F6/72 = 5.2, p<0.001] and tim e x treatm ent interaction [F6,72 = 3.5,
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p<0.05] fo r DBA/2J mice and a significant effect of tim e [F6,6o = 6.6, 

p<0.0001] fo r C57BL/6J mice but not of treatm ent [F ifi 0 = 3.8, p>0.05] 

and time x treatment interaction [F6,6o = 1.1, p>0.05].
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F ig u re  6 .3  Effect o f 8-OH-DPAT on extracellu lar 5-HT in the mPFC of 
DBA/2J and C57BL/6J mice
Results are Mean±SEM and are expressed as percentage of basal values. 
Basal values of 5-HT were 2.6±0.3 fm ol/20 pL (n=5) fo r DBA/2J mice and 
3.2±0.8 fmol/20 pL (n=4) for C57BL/6J mice.
Arrows indicate the injection of 8-OH-DPAT (DPAT), respectively 0.1 and 0.2 
mg/kg.
#p<0.05 vs. basal values (Tukey-Kramer's test).
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DBA/2J
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F ig u re  6 .4  Effect of 8-OH-DPAT on extracellu lar 5-HT in the mPFC of 
DBA/2J and C57BL/6J mice treated with citalopram 10 mg/kg, twice a day 
for 14 days.
Results are Mean±SEM and are expressed as percentage of basal values.
Basal levels of 5-HT for DBA/2J mice were: saline, 2.4±0.2 fm o l/20  pL 
(n=7) and citalopram, 2.4±0.1 fmol/20 pL (n=7).
Basal levels of 5-HT for C57BL/6J mice were: saline, 3.8±0.3 fm o l/20  pL 
(n=6) and citalopram, 3.0±0.2 fmol/20 pL (n=6).
Arrow indicates the injection of 8-OH-DPAT (DPAT).
*p<  0.05 saline vs. citalopram (Tukey-Kramer's test).
#p<0.05 vs. basal values (Tukey-Kramer's test).
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6.3.3 Effect o f chronic citalopram on immobility time in the FST 

A challenge dose of citalopram (5 mg/kg) significantly reduced immobility 

time in C57BL/6J mice given chronic saline [Fi,25= 7.4, p<0.05] but had no 

effect in DBA/2J mice (F igure  6.5).

Chronic citalopram reduced immobility time in C57BL/6J mice [Fi ,25= 8.9, 

p= 0 .006 ], 24 h after the last dose of the chronic schedule and an acute 

challenge had no further effect.

No significant changes of immobility time were found in DBA/2J mice given 

citalopram for two weeks. Although an acute dose of citalopram tended to 

reduce immobility tim e in DBA/2J mice given the drug fo r two weeks, the 

effect was no significant [Fi /27= 3.4, p>0.05].
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F ig u re  6 .5  Effect of two weeks citalopram or saline on im m obility tim e in 
the FST in DBA/2J and C57BL/6J mice given 5 mg/kg citalopram or saline 
30 min before the test.
Mean ± SEM of 6-8 mice per group.
*p<0.05 vs. saline+saline (Tukey-Kramer test).
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6.3.4 Effect o f chronic citalopram on BDNF levels in several brain regions

Levels of BDNF protein in pg/mg tissue, in mice given chronic saline and a 

challenge of saline, were: FCX, DBA/2J 119±9 and C57BL/6J 144±11; 

hippocampus, DBA/2J 325±37 and C57BL/6J 272±21; NAc, DBA/2J 206±34 

and C57BL/6J 256±34; striatum, DBA/2J 134±14 and C57BL/6J 155±21.

There were no significant differences in the levels of BDNF between 

DBA/2J and C57BL/6J mice in any of the brain regions examined (FCX: t i4= 

1.7, p>0.05; hippocampus: t i 4= 1.3, p>0.05; NAc: t i4= 1.1, p>0.05; 

striatum: t i4= 0.8, p>0.05).

Spiking the tissue with a known amount of BDNF yielded 49, 69, 65 and 

40% recovery from cortical, hippocampal, accumbens and striatal samples.

F igu re  6 .6  shows the effect of chronic treatment with citalopram on BDNF 

protein levels in the FCX of DBA/2J and C57BL/6J mice.

ANOVA showed a significant effect of chronic citalopram in DBA/2J mice 

[Fi,27= 10.8, p=0.003] but not of acute citalopram [F i#27= 3.9, p>0.05] and 

the interaction between chronic and acute citalopram [Fi,27= 0.2, p>0.05].

None of the treatments had significant effects on BDNF levels in the FCX of 

C57BL/6J mice (chronic citalopram [Fif27= 1.6, p> 0 .05 ], cita lopram  5 

mg/kg [Fi/27= 0.5, p>0.05] and their interaction [Fi ,27= 2, p>0.05]).

As shown in F ig u re  6 .7  neither chronic citalopram nor a single dose of 

citalopram modified BDNF levels in the hippocampus of DBA/2J and 

C57BL/6J mice (DBA/2J: chronic citalopram [F if27= 0.5, p> 0 .05 ], acute 

citalopram [Fi/27= 1.3, p>0.05] and the ir interaction [Fi/27= 0.5, p>0 .05 ]; 

C57BL/6J: chronic citalopram [Fi/27= 0.7, p>0.05 ], citalopram 5 m g/kg 

[Fi,27= 2.7, p>0.05] and their interaction [Fif27= 0.2, p>0.05]).
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The effect of chronic treatm ent with citalopram on BDNF levels in the NAc 

of DBA/2J and C57BL/6J mice is shown in F igure  6.8.

Treatm ent w ith citalopram fo r 2 weeks induced a significant increase 

(about 60%) of BDNF levels in DBA/2J mice [Fi ,26= 8.1, p=0 .008 ]. A 

challenge dose of 5 mg/kg citalopram had no further effects on BDNF levels 

in the NAc of DBA/2J mice given chronic saline or citalopram  (acute 

citalopram [F if26= 0.3, p> 0 .0 5 ]; interaction between chronic and acute 

citalopram [Fi ,26= 0.02, p>0.05]).

Two-way ANOVA showed a significant interaction between chronic and 

acute citalopram in the NAc of C57BL/6J mice [F i ;26= 5.9, p=0.02 ]. This 

likely reflects the fact tha t an acute challenge with citalopram slightly 

decreases BDNF levels in mice given chronic saline, while having the 

opposite effect in those receiving the drug for two weeks. These opposite 

changes and the lowering of BDNF observed 24 h the last dose of the 

chronic schedule with citalopram, account fo r the lack of significant effects 

of acute [F if26= 0.04, p>0.05] and chronic citalopram [Fi /26= 0.2, p>0.05].

Overall, the effect of chronic treatm ent on BDNF levels in the NAc of 

DBA/2J and C57BL/6J mice was significantly d ifferent [stra in x chronic 

citalopram: Fi ,52= 3.9, p=0.05]. No such differences were found in other 

brain regions (FCX: [Fi ,54= 2.1, p>0 .05 ]; hippocampus: [F i /54= 0.0004, 

p>0.05]; striatum: [Fi /52= 0.005, p>0.05]).

Chronic citalopram, a single dose of citalopram or the ir combination had 

no effect on BDNF levels in the striatum  of DBA/2J and C57BL/6J mice 

(F ig u re  6 .9 ; DBA/2J: chronic citalopram [Fi,25= 0.2, p > 0 .0 5 ], acute 

citalopram [F i/25= 0.01, p>0.05] and the ir interaction [Fi,25= 1.7, p>0.05 ];
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C57BL/6J: chronic citalopram [F i#27= 0.2, p>0.05 ], citalopram 5 mg/kg 

[Fi,27= 0.8, p>0.05] and their interaction [F if27= 0.07, p>0.05]).
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Frontal Cortex
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F ig u re  6 .6  Effect of two weeks citalopram or saline on BDNF levels in the 
FCX of DBA/2J and C57BL/6J mice given an acute challenge dose of 
citalopram or saline 30 min before sacrifice.
Mean ± SEM of 7-8 mice per group.
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Hippocampus
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F ig u re  6 .7  Effect of chronic citalopram or saline on BDNF levels in the 
hippocampus of DBA/2J and C57BL/6J mice.
Mean ± SEM of 7-8 mice per group.
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Nucleus Accumbens
n  saline
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saline citalopram 10 mg/kg

F igu re  6 .8  Effect of two weeks citalopram or saline on BDNF levels in the 
Nucleus Accumbens of DBA/2J and C57BL/6J mice.
Mean ± SEM of 7-8 mice per group.
*p<0.05 vs. saline+saline (Tukey-Kramer test).
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Striatum
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F ig u re  6 .9  Effect of chronic citalopram or saline on BDNF levels in the 
striatum of DBA/2J and C57BL/6J mice.
Mean ± SEM of 7-8 mice per group.
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6.4 Discussion

This part of the study investigated the effects of chronic SSRI on 

im m obility tim e in the FST and on BDNF protein levels in DBA/2J and 

C57BL/6J mice, two strains differing in serotonergic neurotransmission and 

responsivity to SSRIs in the FST (Cervo et al., 2005; Chapter 3).

The major findings of this set of experiments are tha t chronic citalopram 

for two weeks had no effect on immobility time in DBA/2J mice, indicating 

tha t th is strain of mice remains "non responder" to SSRI even a fte r 

repeated treatment.

Chronic citalopram was associated with an increase of BDNF protein levels 

in the NAc of "non responder" DBA/2J mice while BDNF was not changed or 

slightly reduced in the same brain region of "responder" C57BL/6J mice.

These findings suggest a possible relationship between the response to 

chronic citalopram in the FST and modification of BDNF in the NAc.

Effect o f chronic citalopram in the FST

Chronic citalopram reduced im mobility tim e in C57BL/6J mice whereas it 

had no effect in DBA/2J mice, resembling the effect of acute citalopram.

This indicates that no tolerance developed to the ability of citalopram to 

reduce immobility time in "responder" mice while confirming the failure of 

citalopram to reduce the immobility time in DBA/2J mice. This suggests that 

the lack of effect of citalopram in DBA/2J mice was not simply due to the 

insufficient duration of the treatm ent, but likely reflects the fact tha t the 

neurobiological substrates responsible fo r the response in the FST are 

differently affected by citalopram in C57BL/6J and DBA/2J mice. However, it
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cannot be excluded that longer treatm ent with citalopram may result in an 

antidepressant-like effect in the FST. BALB/c mice that do not respond to 4- 

days repeated fluoxetine showed a reduction of im m obility tim e after 24- 

days of repeated treatm ent (Dulawa et al., 2004) confirming that different 

strains of mice have different sensitivity to the effects of antidepressants 

and possibly in the ab ility  to  develop the  adaptive changes in 

neurotransmission that ultimately lead to the antidepressant effect.

The lack of effect of citalopram in DBA/2J mice is unlikely due to the 

inability of developing adaptive changes in 5-HT neurotransmission. In fact, 

the present results clearly show tha t the inhib itory effect o f the 5-HTiA 

receptor agonist 8-OH-DPAT on 5-HT release in the mPFC was abolished 

after two weeks of repeated citalopram. This finding confirms previous 

studies, mainly in rats, showing tha t chronic SSRIs desensitize 5-HT iA 

autoreceptors (Blier, 2003; Artigas et al., 1996; Invernizzi et al., 1994; 

Hervas et a l., 2001) in the raphe and in tu rn  enhance 5-HT 

neurotransmission in terminal regions (Invernizzi et al., 1994; Artigas et al.,

1996) possibly leading to an improved therapeutic effect (Perez et al.,

1997). Thus, it is clear tha t the desensitization of 5-HT iA receptors 

controlling 5-HT release is not sufficient to e lic it an antidepressant-like 

effect of citalopram in DBA/2J mice. Therefore, other mechanisms should be 

involved in the lack of response to citalopram in this strain.

Interestingly, immobility time in C57BL/6J mice is still reduced 24 h after 

the last dose of the chronic schedule with citalopram. Because of the short 

half-life of the drug (1-2 h), 24 h after the last dose the levels of citalopram
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in the rat (Invernizzi et al., 1994) and mouse (Caccia e t al., unpublished 

results) brain, were below the lim it of quantification. This clearly indicates 

that, after chronic treatm ent, the presence of citalopram is not required to 

elicit the reduction of im m obility tim e and further suggests tha t adaptive 

changes developing during the course of the chronic treatm ent sustain this 

effect.

The present results suggest that changes in BDNF levels in the NAc might 

be involved because of selective increase in BDNF in the NAc of DBA/2J 

mice given chronic citalopram.

Effect o f chronic citalopram on BDNF

In the present study, chronic citalopram increased BDNF in the NAc of 

DBA/2J mice, "non responder" to citalopram in the FST, whereas had no 

effect in C57BL/6J "responder" mice.

There are several reports on increased BDNF being depressogenic 

(Krishnan and Nestler, 2008). Although BDNF might exert antidepressant

like effects at the level of hippocampus, its action m ight be opposite in 

other neural circuits (Berton and Nestler, 2006).

NAc BDNF levels and depressive-like behaviour are increased in the mouse 

following social defeat stress (Berton et al., 2006) and BDNF infusions into 

the VTA increase depressive-like behaviour in the rat FST (Eisch et al.,

2003). On the contrary, suppression of BDNF receptor TrkB expression 

within the VTA is associated to an antidepressive-like behaviour in the rat 

FST (Eisch et al., 2003).

I t  is noteworthy tha t withdrawal after chronic exposure to drugs of abuse,
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such as cocaine (Grimm et al., 2003; Filip et al., 2006; fo r review see 

Shirayama and Chaki, 2006), up-regulated BDNF mRNA and protein levels 

in the ra t NAc. Moreover th is  BDNF increase m ight corre late w ith 

depressive-like phenotype in the FST (Filip et al., 2006).

This fu rthe r suggest tha t enhanced BDNF signaling in the VTA-NAc 

pathway is "depressive", whereas blunted BDNF signaling in the VTA-NAc 

pathway is "antidepressive".

The results obtained in the NAc suggest a role for BDNF in the VTA-NAc 

pathway that is opposite of those proposed in the hippocampus and other 

brain regions. The data show that citalopram had no effect on BDNF levels 

in the hippocampus and frontal cortex in both strains.

I t  has been shown tha t chronic but not acute adm inistration of several 

d ifferent antidepressant drugs, not only SSRIs, including tranylcyprom ine, 

desipram ine and m ianserin, s ign ifican tly  increased BDNF mRNA in 

hippocampus. In contrast, chronic adm inistration of non-antidepressant 

psychotropic drugs, including morphine, cocaine or haloperidol, did not 

modify levels of BDNF mRNA in hippocampus and cortex (Nibuya et al., 

1995).

However, the effects of antidepressant drug treatm ent on BDNF gene 

expression are highly variable and may be influenced by several factors, 

including detection method, age of animal, strain, class of antidepressant 

drug, dose, dosing interval, route of administration, time after the last dose 

before sacrifice and length of treatment (Malberg and Blendy, 2005).
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Two studies found a 20-50% increase in BDNF mRNA in the hippocampus 

of rats respectively 3 h after the last dose of sertraline administered fo r 3 

weeks (Nibuya et al., 1995) and 18 h after the last dose of fluoxetine given 

fo r 10 days (Nibuya et al., 1996). Also Martinez-Turrillas et al. (2005) 

reported a BDNF mRNA levels increase in the CA1, CA3 and the dentate 

gyrus of the rat hippocampus following chronic paroxetine. Three weeks of 

fluoxetine up-regulated rat BDNF mRNA in the VTA, frontal cortex and NAc, 

whereas no changes were detected in the substantia nigra and striatum  

(Molteni et al., 2006).

However, other studies have demonstrated a 30% decrease and a 30% 

increase in BDNF mRNA expression in the dentate gyrus (but no effect in 

any other brain regions) respectively 4 h or 24 h after the last dose of 

fluoxetine administered for two weeks (Coppell et al., 2003). Furthermore, 

a recent study found no changes in BDNF mRNA in rats when fluoxetine was 

administered for 21 days and the animals were sacrificed 2 h after the last 

dose of drug (Dias et al., 2003). Other studies demonstrated no differences 

in the levels of BDNF mRNA in the frontal cortex or hippocampus of mice 

and rats administered 21 days of fluoxetine (Conti et al., 2002; Larsen et 

al., 2008)

Miro et al. (2002) found tha t 14 days of chronic fluoxetine trea tm ent 

downregulated BDNF expression in the rat hippocampus. I t  is also possible 

tha t the BDNF downregulation reported by Miro may be due to  an 

insufficient dosing period, as De Foubert (2004) reports an increase in the 

hippocampus and in the parietal cortex only following fluoxetine given fo r 

21 days.
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Thus, the proposed role of hippocampal BDNF in the antidepressant action 

has by no means received universal support (see Kozisek et al., 2008 fo r 

review).

Even if several studies reported an effect of chronic SSRIs treatm ents on 

BDNF mRNA levels, few studies have been conducted on BDNF protein 

levels.

The results obtained after two weeks treatm ent with citalopram in DBA/2J 

and C57BL/6J mice are in agreement with previous studies reporting no 

effect of chronic fluoxetine on BDNF protein levels in the hippocampus and 

frontal cortex (De Foubert et al., 2004; Altar et al., 2003). However, other 

studies found decreased BDNF protein in the fronta l cortex and the 

hippocampus after chronic escitalopram (Jacobsen et al., 2004) or a BDNF 

increase in fronta l cortex after chronic fluoxetine and no effect in the 

hippocampus (Balu et al., 2008).

Although 5-HT controls BDNF levels (Zetterstrom et al., 1999; Zhou et al., 

2008), the results did not find an association between the constitutive 

reduction of brain 5-HT neurotransmission of DBA/2J mice compared to 

C57BL/6J mice {Chapter 3) and basal BDNF protein levels.

Methodological considerations

The selective loss of BDNF in the dentate gyrus, but not in the CA1 region 

of the hippocampus, attenuated the action of antidepressants in the FST 

(Adachi et al., 2008). In the present study, the BDNF protein was measured 

in the whole hippocampus. Thus, we cannot exclude tha t changes in BDNF 

in discrete regions of the hippocampus, not picked up in our study but
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relevant for the antidepressant-like effects of BDNF, may have occurred.

A large proportion o f neuronal BDNF is secreted in the pro-form  

(proBDNF), which is subsequently converted to mature BDNF (mBDNF) by 

extracellu lar proteases (fo r review see Martinowich et al., 2007). Pro- 

neurotrophins were previously considered predominantly inactive. Using 

specific antibodies, it was shown tha t proBDNF is widely and abundantly 

expressed throughout the adult brain and bind preferentially the p75 low- 

a ffin ity  neurotrophin receptor (p75NTR) whereas mBDNF exerts its 

influences by signaling preferentially through Trk-B receptors (see review  

Martinowich et al., 2007; Yang et al., 2009).

In addition, proBDNF and mBDNF can elicit different and often opposing 

effects (Volosin et al., 2006) and, currently, the ELISA immunoassay is not 

able to distinguish between the two.

In summary, the data obtained show clear strains differences in the effect 

of chronic citalopram on im m obility tim e between C57BL/6J and DBA/2J 

mice. This confirms the difference observed after acute administration.

Even if it is important to confirm these findings with other SSRIs, changes 

in BDNF levels in the NAc might be related to the lack of antidepressant-like 

effect of citalopram in DBA/2J mice and possibly to the permanence of 

reduced im m obility  tim e in C57BL/6J mice even in the absence of 

measurable brain levels of the drug.
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Summary and conclusions

Two main observations made in recent years form the basis of this study: 

the identification of a second isoform of tryptophan hydroxylase (TPH), the 

enzyme responsible for the synthesis of serotonin (5-HT), named TPH-2, 

and exclusively located in the brain (Walther et al., 2003); and the discovery 

tha t a spontaneous mutation of TPH-2 (C1473G), occurring in DBA/2 and 

BALB/c mice, determines a reduced synthesis of brain 5-HT (Zhang et al.,

2004).

Based on these findings, we found that mice carrying the 1473G allele of 

TPH-2 did not respond to citalopram in the forced swimming test (FST), a 

w e ll-va lida ted procedure to  assess the antidepressant po ten tia l of 

compounds (Cervo et al., 2005). The discovery o f a rare functional 

polymorphism of TPH-2 in depressed patients associated to poor response to 

SSRIs fu rthe r boosted interest in the role of TPH-2 in antidepressant 

response (Zhang et al., 2005).

This prom pted us to  hypothesize  th a t im p a irm e n t o f 5-HT 

neurotransmission plays a m ajor role in the response to antidepressant 

drugs and may be a potential target for improving the antidepressant effect 

of SSRIs in subjects not responding to the drug alone.

Thus, the results presented in this dissertation show tha t DBA/2 and 

BALB/c mice do not respond to paroxetine in the FST (C hapter 3 ) , 

confirming the previous results obtained with citalopram. In addition, we 

showed that strain differences in the response to SSRIs was not lim ited to 

the acute administration of the drug, as currently assessed in FST studies in 

mice, but was maintained after repeated administration (Chapter 6).
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The present results provide convincing evidence tha t the extracellu lar 

concentrations of 5-HT are reduced in the mPFC, DH and DR of DBA/2 and 

BALB/c "non responder" mice, both under basal conditions and in response 

to  c ita lopram  ( C hapter 3 ). We also showed th a t the reduction of 

ex tra ce llu la r 5-HT probably re flected a reduced release of the 

neuro transm itte r as no changes of 5-HT reuptake in synaptosomes, 

obtained from the same brain regions, or the potency of citalopram to 

inhibit [3H]5-HT uptake were not changed.

Therefore, these results indicate that impaired synthesis and release of 5- 

HT in key brain regions of DBA/2 and BALB/c "non responder" mice as 

compared to the SSRI-sensitive C57BL/6 mice could be an underlying factor 

in the lack of response to SSRIs. In addition, they suggest tha t the 

enhancement of serotonergic neurotransmission could restore the response 

to SSRIs in subjects non-responder to the drugs alone.

Albeit strains of mice carrying the mutated isoform of TPH-2 could model 

"resistance" to SSRIs dependent on impaired 5-HT transmission, we cannot 

exclude that other genetic differences across strains may contribute to the 

lack of response to SSRIs in the FST. To further support our interpretation 

we showed tha t the 5-HT synthesis inhib itor, pCPA, prevented the an ti

immobility effect of SSRIs in "responder" mice whereas the 5-HT precursors 

tryptophan rescued the effect of SSRIs in "non responder" mice. Studies on 

the effects of SSRIs in genetically modified mice such as TPH-2 knockout 

mice (Savelieva et al., 2008; Gutknecht et al., 2008), knockin mice with 

functional mutations of TPH-2 (Beaulieu et al., 2008) or congenic mice
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carrying either the 1473C or 1473G allele of TPH-2 (Tenner et al., 2008) are 

needed to further support the validity of our proposal.

In the second part of the thesis (Chapter 4 and 5 ), pharmacological 

strategies aimed at improving the effect of SSRIs in mice "non responders" 

to citalopram alone were assessed, verifying whether intervention aimed at 

enhancing the effect on extracellular 5-HT restored the antidepressant-like 

effect in the FST.

The results (summarized in Tables 7 .1 ) show that enhancing the effect of 

SSRIs on extracellular 5-HT in the mPFC, but not in the DH, through the 

selective blockade of 5-HTiA and 5-HT2c receptors, restored the 

antidepressant-like response in the FST in "non responders" mice (Chapter 

4). The selective 5-HTiA and 5-HT2c receptors antagonists used (respectively 

WAY100635 and SB242084) belong to different chemical classes and act on 

different inhibitory feedback mechanisms (see Chapter 4 and 5 and Figure  

5 .1 ). This increases the likelihood that the behavioural response observed 

in the FST depends on the shared ab ility  of the two 5-HT receptor 

antagonists to raise extracellular 5-HT. The fact tha t both 5-HT receptor 

antagonists enhanced citalopram-induced rise of extracellular 5-HT in the 

mPFC but not in the DH suggests a preferentia l involvem ent o f 5-HT 

innervations arising from the DR in the antidepressant response.

260



Summary and conclusions

Table 7.1 E ffe c t o f  a u g m e n ta tio n  s tra te g ie s  on e x tra c e llu la r  5 -H T  

an d  im m o b ility  tim e  in  th e  FST in  D B A /2 m ice

EXTRACELLULAR 5-H T FST

mPFC DH DR IM M O B ILTY
TIM E

EFFECT OF 
CITALOPRAM 

ALONE
X  X X 0

EFFECT OF 
TRYPTOPHAN+ 

CITALOPRAM
-  = n.d. 4

EFFECT OF 
W A Y 100635 + 
CITALOPRAM

X X n.d. /

EFFECT OF 
S B 242084+  

CITALOPRAM
X X X X /

n.d. not determined; 0 no effect; = same effect as citalopram alone 

f  increase; f  f  augmentation

Inasmuch as the anti-im m obility effect in the FST in mice is predictive of 

antidepressant action in humans (see Chapter 2), these results suggest that 

pharmacological strategies aimed at increasing 5-HT neurotransmission may 

improve the response in depressed patients refractory to SSRIs. Clinical 

studies aimed at assessing the efficacy and safety of 5-HTiA and 5-HT2c 

receptor antagonists in combination with SSRIs are needed to confirm the 

validity of this hypothesis. Available studies show that p -adrenoceptor/5 - 

HTia/ib receptor antagonist, pindolol, accelerates the antidepressant 

response in depressed patients but did not improve the effectiveness of
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SSRIs in treatm ent-resistant depressed patients (Artigas et al., 2001). This 

suggests tha t the blockade of 5-HTiA receptors m ight not be sufficient to 

improve the effect of SSRIs in treatment-resistant depression. However, the 

occupation of brain 5-HTiA receptors a fte r pindolol adm in istra tion to 

depressed patients is very poor {fo r see review  Artigas et al., 2001). Thus, 

it remains to be proved if 5-HTiA receptor antagonists more potent and 

selective than pindolol, providing a better inhibition of 5-HTiA receptor- 

mediated inhibitory feedback, may improve the efficacy of SSRIs.

The fact tha t olanzapine and other atypical antipsychotics, sharing the 

ab ility  to block 5 -H T 2c receptors { fo r review  see Meltzer et al., 2003) 

potentiated the effect of fluoxetine and accelerated therapeutic efficacy in 

resistant depression (Shelton et al., 2001; Corya et al., 2003; fo r review  

see Millan, 2006) supports the importance of 5-H T 2c receptors blockade in 

antidepressant effect. However, there is a need of more selective drugs to 

evaluate the potential advantages of the blockade of 5-HT2C-mediated 

negative feedback in depressed patients.

An important aspect of our study was to assess the role of GABA of the DR 

in the effect of the 5-HT2C receptor antagonist SB242084 on extracellular 5- 

HT {Chapter 5).

We found tha t citalopram increased extracellu lar GABA in the DR of 

DBA/2N mice and this effect depends on the rise o f extracellu lar 5-HT 

(prevented by pCPA). The blockade of 5-HT2C receptors, abolishing the 

increase of extracellular GABA in the DR, suppressed the GABA-mediated 

inhib itory feedback and in turn enhances the citalopram-induced rise of 

extracellular 5-HT in the raphe and mPFC of DBA/2 mice. The same effect
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was achieved a fte r local infusion of SB242084 in the DR suggesting a 

prominent role of this nucleus in the mechanism by which 5 -H T 2c receptors 

enhances the effects of SSRIs on extracellular 5 -H T  and in the FST.

These results suggest that the blockade of 5-H T 2c receptors, particularly in 

the DR, might be a useful strategy to reinstate the antidepressant effects of 

SSRIs in treatm ent-resistant depression. In addition, blockade of 5 -H T 2C 

receptors m ight attenuate the acute anxiogenic effect of SSRIs at the onset 

of therapy (fo r review see Millan, 2006).

Besides, the results acquired in Chapter 5  suggest tha t the inhibition of 

GABA-mediated negative feedback controlling 5-HT release may be a 

potential target fo r improving the response to SSRIs. In support o f this 

possibility, selective antagonists at GABA-B receptors display antidepressant 

properties (see Chapter 5). However, the possibility of anxiogenic effects 

occurring at the onset of treatm ent with GABA-B antagonists, as suggested 

by the anxiogenic phenotype of mice lacking GABA-B1 or GABA-B2 

receptors and by pharmacological studies with GABA-B antagonists (fo r  

review see Millan, 2006) should be carefully considered. An alternative 

approach m ight be the GABA-B positive allosteric modulators (Frankowska 

et al., 2007).

A fu rth e r observation concerns the e ffect of the 5-HT precursor 

tryptophan. Even if it restored the response to citalopram in mice "non 

responder" to SSRIs alone (Cervo et al., 2005; Chapter 3), it had no effect 

on citalopram-induced rise of extracellular 5-HT. This raises the interesting 

possibility tha t non-serotonergic mechanisms may be involved in the
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mechanism by which tryptophan improves the antidepressant-like effect of 

SSRIs (Chapter 4).

Tryptophan is metabolized to melatonin and kynurenines. Melatonin, 

melatonin receptor agonists and certain kynurenines with NMDA receptor 

antagonist activity have antidepressant-like effects in rodents (Chapter 4). 

We rule out the contribution of melatoninergic mechanisms to tryptophan 

effects (Chapter 4), but we cannot exclude that kynurenines m ight play a 

role in tryptophan effect.

As previously discussed, the increase of 5-HT induced by SSRIs may be 

only an early step in a cascade of events tha t lead to the antidepressant 

response. I t  is likely tha t plastic changes occurring a fte r long-term  

treatm ent with SSRIs are ultimately responsible for the therapeutic effect. 

The brain-derived neurotrophic factor (BDNF) has been involved in 

neuroplasticity and in the long-term effects of antidepressant drugs. Thus, 

in the last part of the study (Chapter 6), we provide prelim inary evidence 

that chronic SSRIs determine opposite changes in BDNF protein levels in the 

nucleus accumbens of C57BL/6 and DBA/2 mice.

In conclusion, the present results provide functional evidence tha t the 

genotype-dependent regulation of 5-HT synthesis is an im portant factor in 

the antidepressant-like action of SSRIs and suggest tha t pharmacological 

strategies aimed at enhancing 5-HT transm ission have a potential fo r 

im proving the response in tre a tm e n t-res is ta n t patients. In te rs tra in  

comparisons are an im portant tool fo r a clearer understanding of the 

mechanisms underlying the response to SSRIs.
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