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Abstract

The interaction of magnetic fields with astrophysical plasmas drives many impressive dis­

plays of particle acceleration and impulsive energy release. W ithin the following work we 

present a brief overview of magnetic reconnection and energy release mechanisms. We 

then explore these impulsive energy releases in the form of solar flares (Chapter 2 ), flaring 

in the X-ray and optical on other stellar types (Chapter 4), and finally we explore the 

nature of what could be the brightest microquasar known. The RHESSI spectroscopy 

of flares in the hard X-ray regime confirms the presence of a deviation from the power 

law nature of the non-thermal flare spectra. These “knees” allow us to test our current 

knowledge of particle interactions during a flare. The results of this show tha t the high 

resolution spectra do not produce an unphysical result in the underlying accelerated elec­

tron spectrum. This gives us greater confindence in our current theoretical understanding 

of energetic particle interaction. Our observations in both the X-ray (Section 4.1) and the 

optical (Section 4.2) reveal, as expected, tha t the flare stars observed were mid M-dwarf 

stars and cool red dwarfs. Finally we come to the case of 1RXS J 162848.1-415241, possibly 

the brightest microquasar known to date. As it turns out it is probably not a microquasar 

at all but more likely is another example of magnetic field interaction, a many spotted 

RS CVn System. Overall we see magnetically driven events producing some of the most 

violent energy outburst in the galaxy, and have taken a few steps forward towards a better 

understanding of the underlying nature of both the events themselves and the objects on 

which they play out.
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Chapter 1

Introduction

Magnetic fields are present at some level in most astronomical objects and on a variety of 

scales, from planetary magnetospheres to active galactic nuclei. The interaction of these 

magnetic fields with the surrounding environment can give rise to impressive displays of 

particle acceleration and impulsive energy release. The main drive of this thesis is to 

analyse the signatures of magnetic activity, in a number of stellar systems. We shall start 

with our closest stellar neighbour, the Sun, possibly the best laboratory for the study of 

magnetically driven events. We shall then proceed to other systems that display flare-like 

events, the flare stars and microquasars. Before we look at the events themselves, it is 

necessary to understand the current thinking on how magnetic fields interact with the 

surrounding plasma in the system to produce such impulsive and energetic displays.

1.1 Flare Mechanism

It is widely accepted that the energy released in a flaring event originates from a relaxation 

of a stressed magnetic field configuration. In order to go from this stressed configuration 

to a lower energy configuration magnetic reconnection must occur. Figure 1.1 illustrates
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this process based on the model first demonstrated by Petschek (1964). The first step is 

getting the magnetic field lines to diffuse through the plasma. Starting from Ohms law 

for an idealised plasma,

f  =  V x ( n 5  +  ?f 7 2B)  (1.1)
ot

where B_ is the magnetic field, v the velocity and rj is the magnetic diffusivity, the first 

term on the right of equation 1 .1  is representative of the advection of the field lines, moving 

with the plasma, and the second term represents the diffusion of the field lines through the 

plasma. The ratio of these two terms, advection/diffusion, gives us the magnetic Reynolds 

number Rmag expressed more simply as

Rmag «  —  (1.2)
V

v is a, velocity term and L  is a length scale. For an astrophysical plasma L  is large 

and 77 is small in the low resistivity plasma, and so the advection term dominates. This 

means then that the magnetic field lines are “frozen-in” to the plasma. The only way to 

get the field lines to diffuse and therefore reconnect is to decrease the length scale. This 

is achieved by having two sets of oppositely directed fields in close proximity thus Rmag 

decreases and the diffusion term becomes dominant.

As indicated in Figure 1.1(b) at the reconnection site a current sheet is formed tha t 

accelerates the particles in the plasma. These very high energy particles, hundreds of keV 

for electrons in a solar flare, are accelerated through the plasma and so give up their energy 

through Coulomb collisions or through bremsstrahlung radiation. The bremsstrahlung 

radiation arises from the perturbation of the fast moving particle by an oppositely charged 

particle in its vicinity, the resulting bremsstrahlung photon spectrum can be derived quite 

simply as follows.
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Figure 1.1: Idealised view of two-dimensional magnetic reconnection.

6»
6b

(a) Magnetic fields of opposite sense 

diffuse toward each other, or become 

twisted together.

(b) As they near each other, in accordance 

with Lenz’s law, a current sheet is formed 

parallel to the field lines, but directed per­

pendicular to them (into the page in the di­

agram), and the electrons in this region are 

accelerated. Current is into the paper.

(c) The magnetic fields come together and reconnect to the new geometry shown. 

The solid arrows show the direction of motion of the newly formed field lines as 

the tension in the magnetic field is released. This is an attempt to form a lower 

energy configuration.

1.1.1 N on-therm al B rem sstrahlung

If we have a non-thermal electron energy distribution, f(E), defined as:

f (E )  =  f 0E ~ a (1.3)
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and we know that the number of photons Ji(e) emitted per unit time, per unit energy, e, 

per unit volume, by one electron of energy E, is given by:

J 1(e )= a (E ,e )n V (E )  (1.4)

where <r(E, e) is the intersaction cross-section for electron of energy E, n is the number 

density of ions in the region, and V(E) is the velocity of the electron then we can obtain

the hard X-ray spectrum as follows. Take the interaction cross-section to be of Kramer‘s

form,

<r(E,e) = £ e (1.5)

for E  > e and 0 if E  < e and assume the kinetic energy of the electron is constant, i.e.

the energy lost to the photons is negligible, then

E  =  \ m eV 2 2

Therefore

V ( E ) =  ^  (1.6)

So for a single electron of energy E, substitute equations 1.5 and 1.6 into equation 1.4:

M e )  = n J ^  (1.7)
Ee V m e

For a distribution of electrons in the range E  to E  +  dE  multiply f(E)dE (equation 1.3) 

into equation 1.7, to give:

M W E  =  % - n < f ^ f ( E ) d E  (1.8)
Jj£ y T77/g

Integrating this equation between e and oo, we obtain the following equation for a >

[  Ji{e)dE  =  J(e) =  v 0n \ [ - ^ - f 0 , 1 x e~(a+^  (1.9)
J e  V  m e  ( a - 1 )

Therefore the non-thermal hard X-ray spectrum follows a power law.

J(e) = J0e-'’ (1.10)
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Where

n r  i
Jo =  &o'R'\ fo~, TT (1 * H )V  m e  ( a - ± )

7 =  (1-12)

This was for the simplified case using Kramer’s Cross section.

Not making this approximation, we solve for both thick and thin targets to get the 

following results:

7  =  a  +  1 (thin target) (1-13)

7  =  a  — 1 (thick target) (1-14)

The thin target means that the injected electrons are not thermalized, whilst the thick 

target means the injected electrons are completely thermalized, due to Coulomb collisions 

with the ambient electrons. For instance, the thin regime is appropriate for travelling in 

corona and transition region, and the thick regime is appropriate when injected electrons 

hit the chromo/photospheres.

1.1.2 Therm al B rem sstrahlung

For the thermal case we have a similar derivation but use a Maxwellian distribution of 

electron energies of the form:

f ( E )  =  — i-g- (electrons) (1-15)
Ae~kr

This gives the simplified result (Cranell et al. 1978), for the produced photon spectrum 

of:

p  j T

J{E)  = 1.3 x 103 2 iAT o.i (Photons) (L16)

showing that the thermal bremsstrahlung spectrum is dominated by the exponential term

and so is exponential in nature. We shall see this is clearly the case in Section 2.3.1
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1.2 Flaring on The Sun

Due to its proximity to us the Sun is the brightest X-ray source in the sky, and since it is 

so close it provides the ideal opportunity to study magnetically driven events in a stellar 

environment at unprecedented temporal and spatial resolution. Since the first solar flare 

was observed by Carrington (1859) in the optical most data on these events was obtained 

photographically using narrow wavelengths predominately of hydrogen lines, in particular 

H a and some helium lines. W ith the advent of space borne X-ray telescopes we began to 

form a fuller picture of these impulsive and highly energetic events.

Flares on the Sun are always associated with sunspots, regions of emerging magnetic 

flux, which themselves are the footprints of active region loops containing trapped coronal 

plasma, confined by the field loop structure. The trigger event for a flare is believed to 

be reconnection of the field lines above top of the loop structure. Until fairly recently 

evidence for this reconnection event had never been observed. Not until YOHKOH  did 

observational evidence emerge of a loop top source of hard X-rays. Masuda et al 1994 

presented YOHKOH  HXT observations of a clear hard X-ray loop-top source, associated 

with a soft X-ray extended loop and two hard X-ray footpoints at the base of the loop 

structure. The reconnection site is higher in the corona than the loop top source. From 

the reconnection site the accelerated particles ( in the case of electrons they can be ac­

celerated up to hundreds of keVs) impact in to the denser plasma at the top of the loop 

producing a hard X-ray bright point. These then stream down the loop in both directions 

before giving up the remainder of their energy as they slam into the denser plasma of the 

chromosphere, producing the hard X-ray footpoints seen.

The flaring event itself comes in three distinct phases as shown in Figure 1.2

• The Preflare stage (P.F. on Figure 1.2), in which we see a gradual increase in the
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Solar Flare on 6 March 1989

[p .F . / i m ^

----------------— — — -

G ra d  S oft X -rays 1.5-12 keV  =

i....... 
i........................ 

ii......................

l

--1------ 1---------------1-

H ard X -rays 114- 119Jk e V ^  |

- J -------1-------1-------1-------1-------1-------1-------1-------1-------1------- 1-------1-------1-------1------- 1------- 1-------1-------1-------1--------------- 1-------1------

13:50 14:00 14:10 14:20 14:30 14:40 14:50
Univeisal Time

Figure 1.2: Soft and hard X-ray, and gamma ray spectra of the 6 th  March 1989 flare. The 

Preflare (P.F.), Impulsive (Im.) and Gradual (Grad.) phases of the flare are indicated. 

Taken from http://hesperia.gsfc.nasa.gov/hessi/images/diagrams.gif

soft X-ray but little or no hard X-ray emission.

• The Impulsive Phase (Im. on Figure 1.2), where the hard X-ray emission rises im­

pulsively, often in short intense spikes lasting a few to tens of seconds, and the soft 

X-ray emission continues to rise but more rapidly.

• The Gradual phase (Grad, on Figure 1.2), the hard X-ray emission starts to decay 

exponentially on a time scale of minutes, the soft X-ray flux continues to rise to a 

peak and then exponentially decays but over a longer time, possibly several hours.

1.2.1 X-ray Spectrum  of a Flare

The X-ray spectrum of a flare is a very powerful tool for understanding the particle 

acceleration and transport properties during a flaring event. As seen in Section 1.1 the 

photon spectrum is an integral of the electron spectrum, multiplied by the cross-section for 

the bremsstrahlung collisions. Brown (1971) first recognised that there was an analytical

http://hesperia.gsfc.nasa.gov/hessi/images/diagrams.gif
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way to invert the spectrum, i.e. go from photon spectrum to electron spectrum. This 

means that starting from a given photon spectrum, we can recreate the injected electron 

spectrum and hence obtain details about the initial population of the injected electrons. 

Early hard X-ray spectra of flares indicated that the hard X-ray spectrum was dominated 

by a power-law drop off with some evidence for a break to a steeper power law above 

60-100keV (Kane and Anderson 1970) although some still believed the best interpretation 

was that of a purely thermal component to the spectra. Not until Lin and Schwartz (1987) 

did the true nature of the spectrum become apparent. They observed a flaring event on 

the 27th of June 1980 using a balloon based array of germanium detectors, and could 

clearly demonstrate that the spectrum above 30keV showed a double power law with a 

break energy around 25-40keV, see Figure 1.3

It was also noted by the authors that the break is a narrow feature. The narrowness 

of the feature is vital to our understanding of the nature of the electron population in the 

flare. Since the photon spectrum is an integral of the electron spectrum any feature in the 

electron spectrum is smoothed out in the associated photon spectrum. This means that 

a narrow feature in the spectrum indicates a dramatic feature in the underlying electron 

spectrum. In order to get a broken power law in the photon spectrum the electron energy 

distribution must also follow two power laws of different indices above and below the 

energy of the break. The structure around the break in the electron spectrum could be 

far more complicated than a sudden change in index, but any complexity is smoothed out 

in the photon spectrum, resulting in a sharp ‘knee’ at the break energy. Following from 

the results in section 1 .1 .1  the indices of the electron spectrum above and below the knee 

in, for example, the thin target regime would be softer (one less) than those observed in 

the photon spectrum, and harder in the thick target regime. The shape of the electron 

spectrum is a clue to the acceleration mechanism in the flare and also a test bed for our
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Figure 1.3: The hard X-ray spectra of the 27th June 1980 flare (Lin and Schwartz (1987)) 

showing the best fit power laws ( solid lines) and for comparison the best fit isothermal 

model (dotted) is shown in spectrum II. All six spectra were obtained during the impulsive 

phase of the flare.

hard X-ray production theory, in particular the form of the cross section used to derive 

the photon spectrum from the electron spectrum. The RHESSI spectra shown in Section
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2.3 demonstrate just how sharp a feature this ‘knee’ is.

1.3 Flare Stars

We have discussed the occurrence of flares on the Sun but our Sun is not unique. Many 

other stars display flaring events, characterised by an impulsive brightening across the 

electromagnetic spectrum and a gradual decay back to quiescence. The majority of so 

called flare stars are red dwarfs i.e. late K and M spectral types in the MK spectral 

classification (Giampapa 2005). In Chapter 4 we shall see that this seems to hold true 

for our observed flaring stars. The reason we mostly see flares on these older cooler stars 

is just that: they are cool stars, with typical effective temperatures of 3000K for M and 

4500K for K type, and so the transient brightening of a flare stands out in contrast to 

the darker underlying stellar photosphere. Other earlier spectral types have also been 

seen to flare (Schmitt 1994) and of course our Sun is a G2V and we know that it flares. 

Studies of flare stars have found that all exhibit emission, to some extent, in H a ,C all H 

and K lines indicative of chromospheric activity (Agrawal et al 1986). This leads to the 

conclusion that magnetic reconnection is responsible for the transient events seen on these 

stars. A good example of these flaring events in the X-ray is the one which Silverman et. 

al . (2001) serendipitously observed whilst carrying out a survey of the RS CVn system 

AR Lac. This observation, Figure 1.4, clearly shows the impulsive rise to peak and the 

exponential decay. This is a long duration event at 1-1.5 days but clearly illustrates the 

X-ray profile of a flare. A shorter duration event was also observed at 4.6 hours but the 

temporal resolution allowed only four points to be obtained.

In the optical, Figure 1.5, we see an almost identical profile produced by a different 

system AT Microscopii observed by Garcia-Alvarez et. al. (2002) and at ~4000 seconds 

is closer to our WAVS observations which we present in Section 4.2.
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Figure 1.4: RO SAT  PSPC observation of an M3 flare star by Silverman et. al. (2003)

1.4 Microquasars - Disk Flaring

Microquasars are X-ray binary systems containing a black hole or neutron star primary, 

an accretion disc and relativistic jets (Wu 2002). It is believed that the particles in the 

jets are accelerated to relativistic speeds and collimated by magnetic fields frozen into the 

disc. Haswell et al (1987) showed that the frozen-in field lines would be wound up by 

the differential rotation of the accretion disc resulting in magnetic field complexity and 

hence we can assume reconnection. A further link to magnetic activity in other systems 

is well illustrated by observations of X TEJ1118+480 where we see rapid variability in 

the accretion disk brightness coincident in both the optical and the X-rays (Hynes et al

i
P S P C  F i c j r e

*  «» Quiescent level.

• E xponential fit
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Figure 1.5: Large optical flare observed on AT Microscopii from Garcia-Alvarez et al 

(2002 )
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2003) Figure 1.6 illustrates this, also shown is the variability in the near-infrared (bottom 

panel). The rapid variability in the lightcurve is very reminiscent of the hard X-ray 

emission during the impulsive phase of a solar flare. Additionally Chaty et al (2003) tells 

us that the spectral energy distribution of this system is dominated by non-thermal power 

law emission again suggesting that the X-ray emission we see is from accelerated particles 

undergoing bremsstrahlung interactions.

1.5 Summary

We have shown that X-ray flaring occurs on a range of temporal and spatial scales and 

across a broad range of astrophysical environments. In the following chapters we shall 

present analysis of specific systems observed during thuis project.
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2003



Chapter 2

RHESSI And MEM Test

The following chapter will introduce the Reuvan Ramaty High Energy Solar Spectroscopic 

Imager, giving an outline of the driving science behind it, the spacecraft itself and how it 

‘sees’ the hard X-rays emitted during a flare. Then follows a series of tests of the imaging 

software, done before launch, to aid in the reconstruction of images. Finally we shall 

present four flares that showed the characteristic ‘knee’ outlined in Section 1.2.1 observed 

in the first six months after RHESSI’s launch.

2.1 RHESSI mission

RHESSI or the Reuven Ramaty High Energy Solar Spectroscopic Imager was launched 

after eighteen months of delays on the 5th February 2002. The mission consists of a single 

spin-stabilised spacecraft in a low Earth orbit pointing at or near to (within 0.2 degrees) 

Sun centre.

The RHESSI spacecraft is designed to image solar flares at very high energies, ranging 

from 3keV to 17MeV (Lin et. al. 2002). At these energies conventional grazing incidence 

optics are useless. To achieve an image we must use a different technique, collimator
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based, Fourier Transform imaging, Schnopper et. al. (1968).

RHESSI consists of nine Rotational Modulation Collimator’s (RMC). Each RMC is 

made up of two grids separated by 1.5 metres in front of a hyperpure germanium crystal 

detector as illustrated in Figure 2.1. The grids are made of X-ray absorbing materials. The 

eight coarsest are made from tungsten, with the finest grid being made of molybdenum. 

This means that incoming X-rays are blocked by the slats of the grid or transm itted 

through the slits. As the grids rotate with the spacecraft, the transmission of X-rays from 

a point source on the Sun is modulated from 0 to 50% for sources off the spin axis. Since 

all nine grid pairs are of different slit widths, this gives a rudimetary Fourier transform. 

From an observed modulation, an image of an extended source can be reconstructed. This 

method can achieve a spatial resolution of better than 2.3 arcseconds and a temporal 

resolution of approximately 2  seconds or better, thus making RHESSI a powerful tool for 

studying the structural evolution of solar flares.

RHESSI can also provide spectroscopic data. The germanium detectors were chosen for 

their high energy resolution. This feature provides us with very high spectral resolution. 

In an X-ray astronomy context AE, the photon energy resolution, is 1 to lOkeV FWHM 

over the full X-ray energy range. Due to this we can produce high signal to noise spectra 

at IkeV energy resolution up to approximately lOOkeV. Below lOkeV we are limited by 

the detector response function, but this can be accounted for during analysis at the lower 

energy end of the spectrum. This ability to achieve such high spectral resolution can reveal 

some very important features in solar flare spectra.
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Figure 2.1: Illustration of grid pairs taken from http://liesperia.gsfc.nasa.gov/hessi cour­

tesy of Dr Brian Dennis
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2.1.1 RHESSI Science Objectives

High resolution hard X-ray spectroscopy is essential to understanding of the energy release 

and transportation within solar flares. The hard X-ray spectrum can be directly inverted 

to obtain the underlying electron spectrum, Section 1.2.1. RHESSI is designed to provide 

high spectral, spatial and temporal resolution. This allows reconstruction of the photon 

spectrum to be obtained for separate spatial elements within a given flare and further for a 

given time range during the flaring event. This gives us the ability to monitor the evolution 

of the bremsstrahlung emitting electrons from the acceleration site to the footpoints of 

the flare loop structure. The spectral resolution of the detectors on RHESSI is such 

that the very steep thermal spectrum can be resolved and the transition from thermally 

to non-thermally dominated spectrum can be observed, critical to our understanding of 

fast electron energy content. The spectral range needs to cover, at the lowest end, the 

thermal/non-thermal boundary («20keV) and as high as possible to probe the full range of 

the acceleration mechanism. The dynamic range is such that small scale flares and the very 

large eruptions seen around solar maximum can both be observed without saturating the 

detectors. It isn’t just the acceleration of electrons that needs to be studied to understand 

the nature of a flare. During the event ions are accelerated to high energies as well, 

producing both broad and narrow features in the gamma ray spectrum of a flare. RHESSI 

was designed with this in mind and the energy range of the detectors allows high resolution 

spectroscopy to be performed on these gamma ray features for the first time. This will 

allow us, for the first time, to see how the location of the high energy ions compares to 

that of the accelerated electrons.

Although a solar oriented mission RHESSI has the potential to to act as a high reso­

lution monitor of the whole high energy X-ray/gamma ray sky. The lack of shielding in 

the rear of the space craft allows extra solar high energy events to be detected. The twice
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orbital occultion by the earth can provide positional information on such events. RHESSI 

has also been used to image the Crab nebula, possible once a year as it comes within 1.6 

degrees of the Sun, with unprecedented energy resolution.

2.1.2 RHESSI Im aging

In order to process the raw data into the final image a variety of techniques have been 

developed. Here we give a brief overview (Hurford et. al. (2002)).

• Back Projection: creates a ‘dirty’ map by combining the counts in a given time bin 

with the corresponding modulation pattern (2D map of collimator responses). This 

preferentially populates pixels in the map that corresponding to the real sources on 

the Sun’s disk, as in Figure 2.2a. Back projection is mainly used as a starting point 

for the other algorithms, and as a means to locate flares on the Sun’s disk.

• CLEAN: Adapted from use in radio astronomy, at the basic level this algorithm 

searches for maxima in the dirty map (from Back Projection), as in Figure 2.2b.

• Maximum Entropy Method: The premise of MEM is to maximise the smoothness, 

of an image, whilst fitting the data to within estimated uncertainties. This is very 

useful in RHESSI’s case as it only samples a fraction of Fourier space, the counts are 

the cosine fourier component of the image, see section 2.2.3 for definition of counts, 

and so smoothing the image ‘fills in’ these regions of missing data. MEM maximises 

the smoothness by maximising Q, given by

Q =  S B i j l n B i j  -  " S —  ~ g ' (2.1)

where Bij is the brightness of pixel i j , A is the initial entropy multiplier (the 

smoothing constraint), N  is the number of time bins, Cn is the observed counts in 

time bin n, en is the expected counts in time bin n, both for pixel i j ,  from the
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initial guess or the subsequent reconstructed image, and an is the error in Cn.

Both MEM_SATO and MEM.VIS work in this way, but whilst MEM_SATO (Figure 

2 .2 c) uses counts, MEMLVIS (Figure 2.2 d) uses visibilities (complex Fourier compo­

nent of the image (Conway 2000)) which for an image B  are defined as,

V(k)  =  f  B (r)e '--d r  (2.2)

where V (k ) is the visibilities, r is a position vector on the Sun, and k is a vector 

whose magnitude depends on the grid spacing and whose direction depends on the 

spacecraft orientation.

• Forward Fitting: We select the number and approximate shape of the source(s) and 

try to modify the distribution and spatial characteristics to reproduce the observed 

modulation in the data. All the sources selected are either spherical, elliptical or 

curved gaussians. The most commonly used form is the iterative ‘pixelized’ method 

where maps of superimposed gaussians are produced for each iteration until the best 

fitting image is found, as shown in Figure 2.2e

• PIXON: Another MEM algorithm, although less used as it is very CPU intensive, 

taking hours instead of minutes to get an image, takes the global smoothing idea 

of MEM but applies it locally. The PIXON algorithm is also multiresolutional and 

so areas of high data content are displayed at higher spatial resolution i.e. smaller 

pixels, than less data rich regions. PIXON is best used to generate a final image 

map, using information gained from the other algorithms, as shown in Figure 2.2f.
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Figure 2.2: Reconstructions of the 20th February 2002 11:06UT flare with the six imaging 

algorithms. Using a 12 - 25 keV energy band, over a time interval of 43.3 seconds (10 

rotations of RHESSI), with default detectors 4,5,6,7, and 8.
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2.2 Tests of maximum entropy reconstruction on simulated RHESSI 

data

2.2.1 Introduction

Maximum Entropy Methods (MEMs) provide a solid method of image reconstruction for 

limited data such as the RHESSI modulation profiles, where the data are limited in the 

sense that some of the information from the object is absent. This is due to the grids 

used to obtain the profile having less than 100% transmission of photons. The question 

remains as to how representative these reconstructions are of the original flare, as very 

different images can be obtained from the same modulation profile. To this end I have 

run numerous reconstructions of three test cases, for both MEM_SATO and MEM.VIS, 

to assess the effect the initial entropy multiplier has on reconstructions of sources with 

various brightness and compactness.

2.2.2 M ethod

The initial entropy multiplier lnorm or A in equation 2.1 governs the initial smoothness 

constraint. The lower the value of A the more smooth an image has to be. For small values, 

entropy is a strong constraint to the detriment of a good fit to the data. Conversely, for 

large lnorm values entropy is a weaker constraint and leads to a good fit to data. In the case 

of the MEM algorithms, a reduced x 2 statistic is used to measure the goodness of fit, but 

can lead to the breaking up of smooth, extended sources. Due to this we attem pted to find 

the best values for lnorm in both MEM-SATO and MEMJVIS for three different types of 

source at varying brightnesses, in order to reconstruct the most realistic image. The three 

test sources are a point source, a 1 0 " x 20" Gaussian and a 2 0 " x 40" Gaussian of the same 

total brightness. The simulations were generated through the hsiJmage object, defining
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three Gaussians, one with xysigm aset to default (0.001, 0.001), one of xysigma=[10.,20.], 

and one of xysigma=[20.,40.]. This produces three Gaussian sources where the brightness 

of the source falls off for the given la  value in each direction. To make the test equal 

for both algorithms CHIJLIMIT was set to MEM_SATO’s default of 1.03 for both and 

LAMBDA_MAX (the maximum number of iterations) was set to 150. This was necessary 

to prevent the software from being caught in an infinite loop. Thus the reconstruction 

ends if number of iterations reaches 150 or if a %2 of 1.03 is reached. MEM.SATO also 

stops if A x 2 between two reconstructed images is not large enough.

W ith these constraints we then ran image reconstructions of all three sources for the 

following combinations of lnorm and SIMJPHOTONS_PER_COLL (number of photons 

per collimator per second).

SIM_PHOTONSJPER_COLL =  7500, 37500, 75000, 375000.

MEM.SATO lnorm =  1 , 0.5, 0 .1 , 5e-2, le-2 .

MEM.VIS lnorm =  le-3, 5e-3, le-4, 5e-5, le-5.

NB. The default lnorm for MEM-SATO is 0.1 and for MEM.VIS le-5.

After each reconstruction the reconstructed image was saved along with the parameters 

b to t ,  final x 2 and number of iterations. The parameter b to t  is the total image brightness 

used in the reconstruction algorithm. Since the energy range is set to 6 keV to lOOkeV 

b to t  should be somewhat less than the value of SIMJPHOTONSJPER_COLL since b to t  

is per unit area and we only use some of the sub collimators.
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2.2.3 Results

Both algorithms could reconstruct the point source with little difficulty so we only present 

the reconstructed images of the extended sources for certain arbitrary input parameters.

Figures 2.3 (page 29) and 2.5 (page 33) show that changes to SATOJLNORM have 

little effect over our range and MEM.SATO. has difficulty in identifying tha t the source 

is a single large source rather than a collection of points. MEM.SATO performs better 

at higher counts and for the 20"x40" sources in Figure 2.3 and the 10//x20// source, in 

Figure 2.5 at 375000 SIMJPHOTONS-PER.COLL we see a definite single extended source 

with little spurious structure. For the 20" x 40" source at high counts we see the extended 

source as a cluster of point sources plus some faint tendril like structure. At low counts 

the central source is indistinguishable from the background of spurious point sources.

Figures 2.4 (page 30) and 2.6 (page 34)show that with a small lnorm MEM.VIS recon­

structs a diffuse source but shows much structure where there is none. For higher lnorm 

the image resembles a collection of point sources, this is true for both extended sources, al­

though the 10"x20" source shows less internal structure than the 20"x40" source. At high 

counts even at lnorm =le-4 we see a collection of point sources for both test simulations.

For MEM.SATO, at high counts the image is relatively less fragmented at the same 

lnorm than for lower counts. For MEM.VIS the opposite is seen as less internal structure 

is present for increasing counts for lnorm=le-5.

The fragmentation could be caused by the systematic errors that MEM.VIS incurs 

when it converts counts to visibilities, as they become more im portant at higher counts as 

shown below. The counts are defined as the cosine fourier component of the image given

by,

(2.3)

where k and r are as defined in equation 2.3 and </> is the phase introduced because the
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spin axis wanders over the Sun during a rotation, and so is time dependent. Converting 

from counts to visibilities involves correcting for 4> and constructing the imaginary parts 

of the visibilities. It is during this process that the systematic errors are introduced. The 

form of the errors is such that the variance of the visibilities can be expressed as 

crp2 +  a s2, where ap  represents the poisson noise and is proportional to counts and as  

represents the systematic errors introduced and is proportional to the square of the 

counts. So for low counts a s 2 is smaller than crp2 and so systematic errors are not 

important, at higher counts the a s2 term dominates and the systematic errors become 

important. Therefore at higher counts a x 2 of 1 is a fit to the systematic errors rather 

than a fit to the relevant data.

Another cause of spurious structure could be the fact that both MEM.SATO and MEM.VIS 

use the modulations from all detectors given as default (i.e. 4, 5, 6 , 7, and 8  of the 9 detec­

tors), where 1 is the finest and 9 is the coarsest detector, even if they contain no relevant 

modulation. This give spurious structure since for a large extended source the modulation 

of the fine grids would be negligible.

To test this hypothesis a further reconstruction run was performed using only detectors 

5, 6 , and 7, with a SATOJLNORM of 0.1, and le-2, VIS.LNORM of le-4, and le-5.
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Table 2.1: MEM.SATO output for 20'/ x40// Gaussian source

Source Photons/s 1 

coll. - 1

lnorm Final x 2 No. of Lambda 

iterations

b to t

20"x40" 7500 1 1.03 1 920

20"x40" 7500 0.5 1.03 2 922

20"x40" 7500 0 .1 1.03 1 0 922

20"x40" 7500 5e-2 1.03 2 0 922

20"x40" 7500 le -2 1.03 1 0 1 922

20"x40" 37500 1 0.998 2 4530

20"x40" 37500 0.5 0.9987 4 4530

20"x40" 37500 0 .1 1 .0 2 17 4540

20"x40" 37500 5e-2 1.03 32 4540

20//x40// 37500 le -2 1.04 144 4540

20"x40" 75000 1 1 .0 2 3 8980

20"x40" 75000 0.5 1 .0 2 6 8990

20"x40" 75000 0 .1 1.03 29 8990

20"x40" 75000 5e-2 1.03 59 8990

20//x40// 75000 le -2 1.14 144 9010

20"x40" 375000 1 1.42 2 44200

20"x40" 375000 0.5 1 .0 2 6 44100

20//x40// 375000 0 .1 1 .0 2 29 44200

20"x40" 375000 5e-2 1 .0 2 59 44200

20"x40" 375000 le -2 1.23 144 44300



2.2 Tests of maximum entropy reconstruction on simulated RHESSI data 28

Table 2.2: MEM.VIS output for 20'/x40" Gaussian source

Source Photons/s 1 

/coll.

lnorm Final %2 No. of Lambda 

iterations

b to t

20"x40" 7500 le-3 0.990 1 893

20"x40" 7500 5e-3 1 .0 2 4 893

20"x40" 7500 le-4 1.03 4 893

20"x40" 7500 5e-5 1 .0 1 7 893

20"x40" 7500 le-5 1.03 32 893

20"x40" 37500 le-3 1 .0 2 30 4580

20//x40" 37500 5e-3 1 .0 2 46 4580

20"x40" 37500 le-4 0.987 5 4580

20"x40" 37500 5e-4 1 .0 2 8 4580

20"x40" 37500 5e-5 1 .0 2 40 4580

20"x40" 75000 le-3 1 .0 1 117 9190

20//x40// 75000 5e-3 1.06 157 9190

20"x40" 75000 le-4 1 .0 2 49 9190

20"x40" 75000 5e-5 0.994 11 9190

20"x40" 75000 le-5 1.03 46 9190

20"x40// 375000 le-3 2.44 156 45100

20"x40" 375000 5e-3 1 .6 6 163 45100

20"x40" 375000 le-4 1.96 160 45100

20"x40" 375000 5e-5 2.19 164 45100

20"x40" 375000 le-5 0.929 56 45100
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(a) 0.1,7500 (b) le-2 ,7500

(c) 1,37500 (d) 0.5,37500 (e) 0.1,37500

(f) 5e-2,37500 (g) le-2,37500

(h) 0.1,75000 (i) le-2 ,75000

(j) 0.1,375000 (k) le-2,375000

Figure 2.3: Reconstructed images for a 20" by 40" Gaussian Source with MEM-SATO. Each image has 

its associated lnorm and SIM_PHOTONS_PER_COLL value printed below it. All figures in this section 

are 64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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(a) le-4,7500 (b) le-5 ,7500

(e) le-4 ,37500(d) 5e-3,37500(c) le-3,37500

(g) le-5,37500(f) 5e-5,37500

(h) le-4 ,75000 (i) le-5 ,75000

(j) le-4,375000 (k) le-5,375000

Figure 2.4: Reconstructed images for a 20" by 40" Gaussian Source w ith MEM.VIS. Each image has its 

associated lnorm and SIM .PHOTONSJPER.COLL value printed below it. All figures in this section are 

64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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Table 2.3: MEMLSATO output for 10//x20" Gaussian source

Source Photons/s 1 

/coll.

lnorm Final %2 No. of Lambda 

iterations

b to t

1 0 " x 2 0 // 7500 1 1.03 4 915

1 0 " x 2 0 " 7500 0.5 1.03 8 915

1 0 " x 2 0 " 7500 0 .1 1.03 39 915

1 0 " x 2 0 " 7500 5e-2 1.19 17 928

1 0 " x 2 0 " 7500 le -2 1 .1 0 144 922

1 0 " x 2 0 " 37500 1 1.03 3 4490

1 0 " x 2 0 " 37500 0.5 1.03 6 4500

1 0 //x 2 0 // 37500 0 .1 1.03 29 4500

1 0 " x 2 0 " 37500 5e-2 1.03 59 4500

1 0 " x 2 0 " 37500 le -2 1.15 144 4520

1 0 " x 2 0 " 75000 1 1 .0 1 3 9000

1 0 " x 2 0 " 75000 0.5 1 .0 1 6 9000

1 0 " x 2 0 " 75000 0 .1 1.03 26 9020

1 0 " x 2 0 " 75000 5e-2 1 .0 2 55 9020

1 0 " x 2 0 " 75000 le - 2 1.18 144 9050

1 0 " x 2 0 " 375000 1 1.78 2 43400

1 0 " x 2 0 " 375000 0.5 1 .2 0 6 44100

1 0 " x 2 0 " 375000 0 .1 1.03 43 44100

1 0 " x 2 0 // 375000 5e-2 1.03 8 6 44100

1 0 " x 2 0 " 375000 le -2 1.39 144 44300
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Table 2.4: MEM_VIS output for 10"x20" Gaussian source

Source Photons/s 1 

/coll.

lnorm Final x 2 No. of Lambda 

iterations

b to t

1 0 " x 2 0 " 7500 le-3 1 .0 2 1 903

1 0 " x 2 0 " 7500 5e-3 1 .0 0 2 903

1 0 " x 2 0 " 7500 le-4 1.03 4 903

1 0 " x 2 0 " 7500 5e-5 1.03 8 903

1 0 " x 2 0 " 7500 le-5 1.03 41 903

1 0 //x 2 0 " 37500 le-3 0.873 14 4630

1 0 " x 2 0 " 37500 5e-3 0.978 8 4630

1 0 " x 2 0 " 37500 le-4 0.939 4 4630

1 0 " x 2 0 " 37500 5e-5 1 .0 1 7 4630

1 0 " x 2 0 " 37500 le-5 1 .0 1 35 4630

1 0 " x 2 0 " 75000 le-3 1 .0 2 56 9320

1 0 " x 2 0 " 75000 5e-3 1 .0 2 38 9320

1 0 " x 2 0 " 75000 le-4 0.962 11 9320

1 0 " x 2 0 " 75000 5e-5 0.986 16 9320

1 0 " x 2 0 " 75000 le-5 1 .0 2 60 9320

1 0 " x 2 0 " 375000 le-3 2.13 158 45500

1 0 " x 2 0 " 375000 5e-4 2 .2 0 162 45500

1 0 " x 2 0 " 375000 le-4 2.85 156 45500

1 0 " x 2 0 " 375000 5e-5 2.17 155 45500

1 0 " x 2 0 " 375000 le-5 1.34 160 45500
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(d) 0.5,37500 (e) 0.1,37500(c.) 1,37500

(g) le-2,37500(f) 5e-2,37500

(h) 0.1,75000 (i) le-2 ,75000

* I

(j) 0.1,375000 (k) le-2,375000

Figure 2.5: Reconstructed images for a 10"by 20" Gaussian Source with MEM-SATO. Each image has 

its associated lnorm and SIM_PHOTONS_PER_COLL value printed below it. All figures in this section 

are 64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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(a) le-4 ,7500 (b) le-5,7500

(c) le-3,37500 (cl) 5e-3,37500 (e) le-4,37500

(f) 5e-5,37500 (g) le-5,37500

(h) le-4 ,75000 (i) le-5 ,75000

(j) le-4,375000 (k) le-5,375000

Figure 2.6: Reconstructed images for a 10" by 20" Gaussian Source with MEMJVIS. Each image has its 

associated lnorm and SIM JPHO TO N S-PER X ’OLL value printed below it. All figures in this section are 

64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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Results: Reconstructions with only detectors 5, 6, and 7.

We can see from Figure 2.7 (page 37)that although MEM.SATO still produces images 

with spurious structure at the lower counts there is no breaking up of the image into point 

sources and there is a definite large central source. At the higher counts we get a good 

representation of the 20" x 40" source. The same can be said for the 10" x 20" source in 

Figure 2.9 (page 41), although at the lower counts we do see less spurious structure than 

for the more diffuse larger source.

MEM.VIS (Figure 2 .8  (page 39)) also shows less internal structure than previously 

but still displays fragmentation at high counts, and for lnorm =le-5, SIMJPHOTONS- 

_PER_COLL =  375000 the image is even more fragmented than the default detectors run. 

A similar occurrence can be seen in Figure 2.10 (page 43) for the 10"x20" source. Note 

that the final run in Figure 2.10 was performed with a different realisation of the simulated 

model to the others, due to software problems, this is also why the final b to t  is relatively 

lower than the other SIMJPHOTONS_PER_COLL =  375000 run compared to the lower 

count runs.

2.2.4 Conclusions

Both MEM.VIS and MEM.SATO performed well on the point sources, with little change 

between lnorm’s. For low counts MEM.VIS performs much better than MEM.SATO 

for the 20" x 40" Gaussian source, but for the 10" x 20" Gaussian source it returns a 

more accurately reconstructed image for only the lowest counts and MEM.SATO produces 

more consistent reconstructions for increasing counts. We must bear in mind that, unlike 

MEM.VIS, MEM.SATO does not have any systematic errors, when used in simulation, 

and so at high counts where they would dominate we see no evidence of this and so see 

no image break up in Figure 2.3 at high counts.
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In terms of the increasing of the initial entropy multiplier lnorm we see very little 

effect on the MEM.SATO reconstructions over the range 1 to le-2 and it would appear 

that counts are the dominant factor. In MEM.VIS high counts cause image break up due 

to fitting of the systematic errors, but for low to medium counts (7500 to 75000) the effect 

of increasing the value of lnorm from it‘s default of le-5 is extremely noticeable and causes 

a great deal of fragmentation.

MEM.SATO is robust to the point of being insensitive to changes in lnorm, but this 

could be due to the entropy constraint being effectively turned off at lnorm > 0 .1  and so 

increasing lnorm is effectively useless. MEM.SATO also performed better for the smaller 

sources than the large diffuse source and this is worth bearing in mind for future work. It 

would be interesting to see if image fragmentation increased with increasing counts if the 

systematic errors were present in the simulation.

MEM.VIS is very sensitive to increases in lnorm, but at its default (le-5) performs 

well for counts < 375000 in this test, before systematic errors dominate. It outperforms 

MEM.SATO for the 20" x 40" source in both detector regimes apart from at higher counts.

In conclusion, MEM.SATO as it is now is very good for smaller sources at high counts, 

MEM.VIS is better at low lnorm and low counts, and for larger diffuse sources.
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(a) 0.1,7500 (b) le-2,7500

(c) 0.1,37500 (d) le-2,37500

(e) 0.1,75000 (f) le-2 ,75000

(g) 0.1,375000 (h) le-2,375000

Figure 2.7: MEM-SATO reconstructions for a 20" x40" Gaussian source using detectors 5, 6 and 7. Each 

image has its associated lnorm and SIM-PHOTONS_PER_COLL value printed below it. All figures in this 

section are 64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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Table 2.5: MEM_SATO output for 20//x40" Gaussian source using detectors 5, 6  and 7.

Source Photons/s 1 

/coll.

lnorm Final x 2 No. of Lambda 

iterations

b to t

20"x40" 7500 0 .1 1 .0 2 29 917

20"x40" 7500 le -2 1 .1 1 144 922

20//x40// 37500 0 .1 1.06 144 4520

20"x40" 37500 le -2 1.64 144 4570

20"x40" 75000 0 .1 1.03 39 8990

20"x40" 75000 le -2 1.56 144 9040

20"x40" 375000 0 .1 1 .0 2 59 44000

20"x40" 375000 le -2 2.24 144 44300
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(a) le-4 ,7500 (b) le-5,7500

(c.) le-4,37500 (d) le-5,37500

(e) le-4 ,75000 (f) le-5 ,75000

(g) le-4,375000 (h) le-5,375000

Figure 2.8: MEM.VIS reconstructions for a 20//x40" Gaussian source using detectors 5, 6 and 7. Each 

image has its associated lnorm and SIM .PHOTONS .PER.CO LL value printed below it. All figures in this 

section are 64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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Table 2.6: MEMJVTS output for 20,/x40" Gaussian source using detectors 5, 6  and 7.

Source Photons/s 1 

/coll.

lnorai Final x 2 No. of Lambda 

iterations

b to t

20"x40" 7500 le-4 1 .0 2 14 918

20"x40" 7500 le-5 1.03 8 6 918

20//x40// 37500 le-4 0.947 2 4640

20//x40// 37500 le-5 1 .0 2 24 4640

20"x40" 75000 le-4 0.992 103 9280

20"x40" 75000 le-5 1.03 39 9280

20"x40" 375000 le-4 2.25 154 46000

20"x40" 375000 le-5 1.80 159 46000
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(c) 0.1,37500

(e) 0.1,75000

(d) le-2,37500

(f) le-2 ,75000

(g) 0.1,375000 (h) le-2,375000

Figure 2.9: MEM-SATO reconstructions for a 10” x20” Gaussian source using detectors 5, 6 and 7. Each 

image has its associated lnorm and SIM_PHOTONSJPER_COLL value printed below it. All figures in this 

section are 64 x 64 pixel images with 4" x4” pixels, giving 256” by 256” images.
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Table 2.7: JVIEM_SATO-output for-10-x 20—Gaussian-source using detectors 5^6 and -77

Source Photons/^ 1 

/coll.

lnorm Final %2 No. of Lambda 

iterations

b to t

1 0 " x 2 0 " 375000 0 .1 1 .0 0 6 911

1 0 " x 2 0 " 375000 le -2 1 .0 2 51 911

1 0 " x 2 0 " 375000 0 .1 1.03 32 4570

1 0 " x 2 0 " 375000 le -2 1.06 144 4590

1 0 " x 2 0 " 375000 0 .1 1.05 47 8960

1 0 " x 2 0 " 375000 le -2 1.09 144 9030

1 0 " x 2 0 " 375000 0 .1 1.06 17 43800

1 0 " x 2 0 " 375000 le -2 1.06 144 43900

1.8: MEM_VIS output for 10"x20" Gaussian source using detectors 5, 6

Source Photons/s 1 

/coll.

lnorm Final x 2 No. of Lambda 

iterations

b to t

1 0 " x 2 0 " 7500 le-4 1 .0 1 16 938

1 0 //x 2 0 " 7500 le-5 1.03 89 938

1 0 " x 2 0 " 37500 le-4 0.942 5 4790

1 0 " x 2 0 '/ 37500 le-5 1 .0 2 39 4790

1 0 //x 2 0 " 75000 le-4 0.975 93 9570

1 0 " x 2 0 " 75000 le-5 1 .0 1 57 9570

1 0 " x 2 0 " 375000 le-4 3.58 157 46900

1 0 " x 2 0 " 375000 le-5 2.17 159 46900
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I

(a) le-4 ,7500 (b) le-5,7500

(c) le-4,37500 (cl) le-5,37500

(e) le-4,75000 (f) le-5 ,75000

(g) le-4,375000 (h) le-5,375000

Figure 2.10: MEMLVIS reconstructions for a 10" by 20" Gaussian source using detectors 5, 6 and  7. 

Each image has its associated lnorm and SIM_PHOTONS_PER_COLL value printed below it. All figures 

in this section are 64 x 64 pixel images with 4" x4" pixels, giving 256" by 256" images.
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2.3 RHESSI flare spectroscopy

The superb energy resolution (IkeV FWHM up to lOOkeV) allows highly detailed study 

of narrow spectral features of the flares observed with RHESSI. One such feature of great 

interest is a break in the non-thermal bremsstrahlung power law around 50keV observed in 

some flares: a so called hard X-ray ‘knee’. These features allow us to probe the underlying 

electron energy distribution in the flare as the electron spectrum is a direct inversion of the 

photon spectrum (Brown 1971). The sharp feature in the photon spectrum corresponds 

to a sharp feature in the electron spectrum and so RHESSI’s high energy resolution, AE 

=  IkeV in the observered range, can reveal just how wide these knee features are.

2.3.1 RHESSI O bservations

The photon spectra of four flares observed by RHESSI are presented to illustrate this 

‘knee’ phenomenon. Each exhibits a deviation from a single power law in the chosen 

energy range 10-100 keV, so chosen to allow maximum energy resolution of 1 keV FWHM 

to investigate the width of the region or ‘knee’ where this break occurs. To avoid any 

modulation of the spectra from the imaging grids the time interval for the spectrum over 

the flare peak was chosen to be 10 full rotations of the RHESSI spacecraft as given at the 

time of each observation. All spectra were obtained using the SSWIDL suite of software, 

used for RHESSI and other solar observatories. All spectra were background subtracted 

and processed using the SPEX package in the RHESSI suite. This included the fitting of 

the spectra. Each spectrum was fitted using a thermal bremsstrahlung fit for the lower 

energy portion below 20keV and a broken power-law fit to the remaining portion of the 

spectrum. The fitting parameters for all the flares are shown in Table 2.3.1, along with 

the date and time of the event and the flares GOES class. This classification is based on 

flares peak flux in the range 0.1-0.8nm, soft (< a few keV) X-rays, as shown in Table 2.9
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The letter is followed by a number which represents the actual peak flux, for example an

X? flare is a flare with flux peaking at 7 x 10 4Wm 2.

Table 2.9: GOES X-ray Flare Classification

Classification Peak Flux in the range O.lnm - 0.8nm (Wm 2)

B 1 0 - 7

C 1 (T 6

M 1(T 5

X 10T—
"4

The emission measure and plasma temperature are from the thermal bremsstrahlung 

component of the fit. The emission measure is the number of emitting electrons per cm-3 . 

These two parameters describe the distribution of photon energy. The higher the plasma 

temperature the higher the mean energy of the emitting electrons, this leads to an increase 

in the energy of the emitted spectrum, shifting the thermal bremsstrahlung emission to 

higher energies. An increase in the emission measure leads to an increase in the intensity 

of emitted photons at a given energy, the photon spectrum would be shifted up if the 

emission measure increased. The 7  parameters are the power law indices above (7 1 ) and 

below (7 2 ) the ‘knee’ and the difference between the two 7  coefficients. Also included is 

the energy at the break and its width and the energy at which the background photon 

flux is at half and a tenth of the flare photon flux.

Figures 2.11 to 2.14 show the fitted spectra for the four flares in Table 2.3.1
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2 0 / 0 2 / 2 0 0 2 2 0 / 0 2 / 2 0 0 2 17/03/2002 06/08/2002

Time Interval (UT) 0957:33 1105:56 1928:08 1256:24

0958:21 1106:35 1928:57 1257:40

GOES CLASS M4.3 C7.5 M4.0 C7.9

Emission Measure N/A 0.1159 0.57 0.031

1 0 49cm - 3

Plasma N/A 1.568 1.45 1.56

Temperature (keV)

Knee Photon flux 0.52 0.48 2.7 0.83

s- 1cm- 2keV- 1

71 7.4 3.5 3.5 3.6

Knee Energy (keV) 37 49 44 36

72 3.9 4.2 4.3 4.3

A7 -3.5 0.7 0 .8 0.7

Ae (keV) 3 4 1 .8 1 2

Flare=

Background/2 (keV) 57 79 > 1 0 0 6 6

Flare=

Background/10 (keV) 45 52 81 47

Table 2.10: Fitting Parameters and measurements for flares displaying knees.
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Figure 2.11: Photon spectrum of the 20th February 2002 0958UT M4.3 flare 

M4-3 Flare on 20th February 2002, 0958UT

This flare’s spectrum is unique in the sample: not only is there no thermal component 

above lOkeV but 71  is the steepest observed at 7.4. The other surprise with this flare is 

that the spectrum actually hardens above the knee energy. It has a negative A7 . This 

hardening could be due to under subtraction of the background since the initial steepness 

of the lower energy power law means that although it is the largest of the flares and has the 

highest in initial flux, the background becomes appreciably significant at higher energies 

(see table 2.3.1 the background flux is equal to half the flare flux at 57 keV) compared 

to the other flares. The background was found to have a 7  of around 4.2, harder than 

the 7 2  of 3.9 in the fit to the spectrum. Additionally the flaring event itself allowed very
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good intervals for background sampling both before and after the event itself, leaving 

us confident that a correct and accurate background subtraction had been performed. 

A further test was performed to verify that the knee was not an artifact of background 

subtraction. The background was multiplied by a constant factor and subtracted from 

the observed photon spectrum. The test revealed that if we kept the variation at higher 

energies to within the noise, the variation tha t looks like absorption features is actually 

an artifact in the background. The greater background subtraction could not remove the 

knee. Another possibility that was ruled out was that pulse pile up may have resulted in 

this upward knee. This is where two low energy photons arrive at the same time and are 

mistaken for a single photon with higher energy, this is not the case for this flare (Conway 

2 0 0 2 ), since when the pulse pile-up correction was applied to the data no discernable 

difference could be found for the fit parameters. The knee is a real property of the flare.

C l.5 Flare on 20th February 2002, 1106UT

The fitting parameters of this flare show that the emission is dominated by a thermal 

bremsstrahlung component (plasma temperature of approximately 20MK) softening to a 

powerlaw of 71  =3.5 at approximately 20keV before softening further above the knee at 

49keV to 4.2. This flare caused some problems with background subtraction since the 

RHESSI spacecraft brushed the South Atlantic Anomaly before the event. The SAA is 

a geocoronal anomaly that increases the flux at higher energies (above approximately 

30keV). This has to be accounted for in the background subtraction as it seemed to give 

a decreasing background at the peak of the flare. The pre-event interval for background 

subtraction was chosen to include this brush so tha t the interpolation between pre and 

post event intervals could correct for this. Tests of background subtraction similar to those 

used for the 0958 flare were performed and the subtraction was found to be accurate.
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Figure 2 .1 2 : Photon spectrum of the 2 0 th  February 2 0 0 2  1106UT C7.5 flare

M4.0 Flare on 17th March 2002, 1928UT

Similar in GOES class to the 20th February 0958 flare, this flare exhibits a higher hard 

X-ray flux since it has a harder /yi of 3.5, softening to 4.3 at a higher knee energy of 44 

keV. The flare is thermally dominated below 20keV with a plasma tem perature of 17MK. 

The flare spectrum has more similarities to the 20th February 1106 flare in terms of fit 

parameters even though it is a larger flare, suggesting tha t GOES class cannot be used to 

find flares with broken powerlaw spectra in the energy range covered in this study.
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Figure 2.13: Photon spectrum of the 17th March 2 0 0 2 , 1928UT M4.0 flare

C7.9 Flare on 6th August 2002, 1256UT

The final flare again is thermally dominated below approximately 20keV with a plasma 

temperature of 20MK, softening to a 71  of 3.6 below the knee at 36keV, softening again 

to 4.3 above the knee.

2.3.2 Discussion of flare properties

Aside from the first flare in this sample, all the other flares showed several common fea­

tures: each was thermally dominated below approximately 20keV with a fit corresponding 

to a plasma temperature of around 1.5 keV or 20MK. The knee energies all fell in a narrow 

range 30-50keV, the values of 71  and 7 2  are approximately 3.5 and 4 respectively in each
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Figure 2.14: Photon spectrum of the 6 th  August 2002, 1256UT C7.9 flare

case. All these similarities point to similar electron energy distributions existing in the 

injected electrons in each flaring event.

The electron spectrum

So far the chapter has concentrated on form of the photon spectrum. Since the photon 

spectrum is the integral of the electron spectrum, Section 1 .1 .1 , we can reconstruct the 

electron spectrum simply by differencing the photon spectrum to reveal the underlying 

nature of the source electron distribution. Figures 2.15, 2.16, 2.17, and 2.18 show tha t at 

higher energies the differenced electron spectrum is noise dominated masking any structure 

at around the ‘knee’ energy, although at lower energies the power law distribution is 

clear. In order to probe the detailed structure of the electron spectrum, we use a MEM 

algorithm to find the smoothest electron spectrum which can recreate the observed photon 

spectrum. Assuming Kramer’s cross-section (section 1 .1 .1 ) we can derive the equations
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for the electron distribution in the thin and thick target regimes, (Conway et. al. 2003)

assuming a generalised photon spectrum, h(e) of the form,

£ »-r(<)
h(e) = h , -  (2.4)

e*

where e is the photon energy, e* is the knee energy. 7 (e) is not the same as the spectral 

index j s in a log-log plot but is related to it as follows,

7 =  7s -  (2’5)de e*

For the thin and thick target regimes the energy electron distribution is given as,

(thin target) (2 .6 )=  h (E )j(E )
E

1 +  l n ( i V W
e = E

€ — E n

e*J d ine

where F (E ) is the electron flux spectrum (electrons cm- 2keV_1) over the whole emitting 

volume, and,

F0(E0) = H(e*)g(E0) (thick target) (2.7)

where

* * >  -  + ?  K  -  0  £ + ( - J ) '  ( £ ) '  -  K )  S

F0(E0) is the injected electron spectrum that gives rise to F (E ), K  — 27re4A where A is 

the coulomb logarithm, np is the average plasma density in volume V  and the electrons 

are injected over an area A.

Numerically solving equations 2 .6  and 2.7 to achieve the smoothest electron spectrum 

for the observed photon spectrum shows that even when smoothed the electron spectrum 

still has a more complex structure than just a simple broken power law, as suggested in 

section 1.1.1. The results of this analysis and the simple differencing approach are shown 

in Figures 2.15, 2.16, 2.17, and 2.18.
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Figure 2.15: Thin target (left) and thick target (right) electron spectra of the 20th February 2002, 

0958UT M3.4 flare. The points are the direct derivative of the photon spectrum, the solid line is the 

smoothest electron spectrum to recreate the observed photon spectrum.
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Figure 2.16: Thin target (left) and thick target (right) electron spectra of the 20th February 2002,1106UT 

C7.5 flare. The points are the direct derivative of the photon spectrum, the solid line is the smoothest 

electron spectrum to recreate the observed photon spectrum.
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Figure 2.17: Thin target (left) and thick target (right) electron spectra of the 17th March 2002, 1928UT 

M4.0 flare. The points are the direct derivative of the photon spectrum, the solid line is the sm oothest 

electron spectrum  to recreate the observed photon spectrum.
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Figure 2.18: Thin target (left) and thick target (right) electron spectra of the 6th August 2002, 1256UT 

C7.9 flare. The points are the direct derivative of the photon spectrum , the solid line is the sm oothest 

electron spectrum  to recreate the observed photon spectrum.
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As we can see the electron spectra does follow a broken power law. This is to be 

expected as its shape is dependent on our theoretical understanding of how the photon 

spectrum arises. It is also obvious, especially from Figures 2.15, 2.16, that the structure 

of the electron spectrum around the knee energy is more complex than in the photon 

spectrum, the curve shows an upward bump before the knee in the first case and a down­

ward bump before the knee in the second. Even with this more complex structure there 

is no evidence for unphysical behaviour in the electron spectrum for these flares, i.e. no 

negetivity.

Using this data set Massone et al. (Massone et al. 2003) looking at the inversion 

problem of flare spectrum to obtain the underlying electron spectra for each flare, and 

testing the inversion for different collisional cross-sections. They found tha t the ‘knees’ did 

not conflict with our theory for the transportation of electrons during the flaring event, 

i.e. the knees did not produce any unphysical results, negative values, in the inverted 

electron spectrum at the knee energies. One point to consider is that a knee feature can 

be produced even if the injected electron spectrum is a single power law. This is due to 

emission reflected from lower, denser layers of the atmosphere. The solar albedo can be as 

high as 40% of the hard X-ray emission depending on the source position and the 7  of the 

spectrum. Typically this can produce deviations from the powerlaw at around 30-60keV 

(Alexander and Brown 2002).

A further use for the observations of ‘knee’ spectra is as a test of the spectrometer 

itself, as pointed out in Section 2.3.1. Pulse pile up, although ruled out in this case, can 

cause deviation from a powerlaw. This means that if a knee is seen, particularly in larger, 

brighter flares we can begin to analyse the effect of pulse pile up in the spectrograph 

(Kontar et al 2003).
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2.4 Summary

We have seen just how potent a tool RHESSI is for studying solar flares, and the dangers 

to be aware of when interpreting the images the analysis software produces. The work 

presented in Section 2.3 shows that the mission is successful in increasing our detailed 

understanding of electron transport in flares and reveals the underlying nature of the 

initial electron population. From the results in Section 2.3.2 and those of Massone, we 

can be confident in our current understanding of cross-section as a stable platform from 

which to build our understanding.



Chapter 3

Optical Spectroscopy: Reduction of SAAO and WHT spectra

In the following Chapters, 4 and 5, we present optical spectroscopy of flare star candidates 

and a possible microquasar. In this chapter we will outline the general techniques used 

to reduce spectroscopic data and to present it in such a way as to be appropriate to the 

tasks performed on the data.

3.1 Calibration Frames

In addition to obtaining spectroscopy of a target object when at a telescope, calibration 

frames are required for the reduction of the data. The frames needed are as follows:

• Bias frames - zero exposure time exposures of the unilluminated CCD, necessary 

to account for the bias level across the chip which is introduced to prevent noise 

variations from causing a negative value in any pixel.

• Dome Flats - exposures of a white lamp uniformly illuminating a section of the 

telescope dome. Taken at the start or end of each night, these exposures are necessary 

to account for any pixel to pixel variation in the wavelength response over the CCD.
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• Sky Flats - exposures of the twilight sky. Taken each night just after sunset, these 

are” needed to remove any large scale illumination variation, from the slit, along 

the spatial axis (perpendicular to the dispersion axis) of the CCD from the image. 

The slit field-of-view for SAAO 1.9m was approximately 3' along the spatial axis, 

measured from images with two stellar spectra of known angular separation. This 

was not possible with the WHT spectra. Over the two sets of observations both 

the dome and the sky appear uniform, i.e. no large scale variation along the spatial 

axis in either. Therefore it is not necessary to use one to correct the other. Only 

the variation due to pixel-to-pixel changes and illumination of the CCD are present 

in the respective calibration frames. The sky flats were still used to correct for the 

illumination of the CCD.

• Darks - a combination of short and long exposures taken with no illumination of the 

CCD. These are needed to remove dark currents, ie. charge that accumulates on the 

CCD due to the trapping of thermal electrons.

• Arc spectra - exposures of CuAr lamp for wavelength calibration. These are taken 

at the start and finish of each set of exposures, or every 1 0  to 2 0  minutes which ever 

is shortest, and for each object change. This frequency of observation is necessary to 

account for any movement or flexure in the telescope assembly which could cause the 

dispersion coefficient to change throughout the night and so varying the wavelength 

calibration.

All reduction of SAAO and WHT spectroscopy was performed using standard IRAF 

routines. The WHT spectra were obtained in service mode unlike the SAAO spectra, but 

the same calibration frames were present in each case.
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3.2 Bias Subtraction

The first step in the reduction of CCD data, be it spectroscopic or photometric, is to 

establish two things, the region on the CCD that contains useful data, and the underlying 

noise or ‘bias’ of the CCD. The bias arises from the small voltage that is applied over 

the CCD, at all times, to prevent negative signal on readout. Upon close inspection, the 

overscan region at the edge of the CCD shows a sharp cut off between bias level and data, 

there was no evidence of charge leakage in the SAAO dome flats. Figure 3.1 shows a 

typical dome flat from the SAAO run; the trim  and overscan sections are displayed. The 

trim section, is chosen at the time of reduction to contain only meaningful data. The 

overscan region is user defined for the purpose of frame-by-frame bias subtraction from 

the science frames.

The same was not the case in the WHT spectra, Figure 3.2, where the cut-off was at 

pixel 8 8 , but the drop off in data below pixel 487 and above pixel 4615 was so close to the 

bias level that it was discarded.

The first run through i r a f ’s  C C D P R O C  was performed with the TRIMSEC and BI- 

ASSEC parameters turned on and set to [50:1773,40:114] and [1:22,1:133] respectively in 

the SAAO images. At this stage we have accounted for any exposure-to-exposure or tem­

poral variation in the mean bias level. Although the dome flat contains information below 

column 50, the data in the object spectrum drops off steeply below column 50 and so this 

was trimmed off in all images from the SAAO run.

For the WHT spectra the parameters TRIMSEC and BIASSEC were set to [487:3138,1:151] 

and [1:88,1:151], the full width (columns) of the CCD was used since there was no sudden 

drop off of data at the edges.

This produced a trimmed image that has the mean bias level from the overscan re­

gion subtracted. This first-order bias correction was done for all images, including other
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Figure 3.1: Top panel shows a slice along the dispersion axis for an example dome flat from 

SAAO, the lower two panels are close ups of either end of the flat showing trim  sections 

and the overscan region.

calibration frames. For the SITe CCD (SAAO) this level was found to be of the order 

250 counts/pixel. For the MARCONI CCD used on ISIS (WHT) the mean bias level was 

found to be 600 counts/pixel.

Any spatial variation in the bias level is next removed using the bias exposures (zero 

exposure time images, so only signal due to the small voltage is read out). All the bias 

frames from the run were combined and averaged to form a master zero flat, this correction 

was then applied to all images through CCDPROC.
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Figure 3.2: Top panel shows a slice along the dispersion axis for an example dome flat from 

WHT, the lower two panels are close ups of either end of the flat showing trim  sections 

and the overscan region.

3.3 F lat Field Correction

The images also need to be corrected for additional instrumental effects such as unequal 

illumination of the CCD by the optics and pixel-to-pixel variation in sensitivity. As can 

be seen in Figure 3.1 and especially in Figure 3.2 the response across the CCD is not 

constant. To correct for this, the images needed to be flat-fielded. There are two steps to 

this process.

3.3.1 Pixel-to-Pixel V ariation

Firstly the Dome Flats were combined to produce a high signal flat to correct for the pixel 

to pixel variation across the CCD. At this stage the dome flats from night 3 (19th/20th
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June) of the SAAO run were discarded as an additional illumination source had been 

present, changing the structure seen in all the other dome flats. It was noted that the 

structure in the trimmed Dome flat at the start and end is not present in the Twilight 

Flats or the target exposures, so this structure had to be removed before applying the 

master flat to the data. This was done by fitting the master flat with a third order cubic 

spline, along the dispersion axis, in the IRAF procedure RESPONSE which output an image 

that was the ratio of the fit to the flat. CCDPROC was then run again, but this time using 

the normalised flat.

3.3.2 Illum ination Correction

The final task in the image reduction was to check the flattened twilight flats for variations 

in the illumination of the chip. Taking cuts along the spatial axis (perpendicular to the 

dispersion axis), in the SAAO data there was a gradient of 3% from the bottom  of the 

chip to the top, due to non-uniform illumination of the CCD. In the case of the WHT 

data the gradient was 4% To correct for this, a master twilight flat was produced, using 

the same method as for the master Dome flat. The combined flat was then fitted with a 

function along the spatial axis, for several intervals along the dispersion axis, using the 

ILLUM routine. The final run through CCDPROC caused the inclusion of the illumination 

correction to the images.

3.4 Extraction of Spectra

After the images had been trimmed, flattened and illumination corrected, the spectrum 

itself must be extracted from the CCD image. This extraction was performed using the 

APALL routine, in IRAF. The APALL routine is an all in one spectral extraction routine, it 

locates the object spectra or spectrum, if more than one, on the image and smoothly traces
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its position across the image. Performs an optimal extraction (optional) of the spectra and 

indoing so also removes the sky background and cosmic ray hits on the object. More detail 

of this follows. Firstly the position of the aperture on the image needs to be established. 

This was done by taking a cross section in the spatial axis from an object exposure. The 

aperture position and background regions are shown in Figure 3.3 for the SAAO data, the 

WHT data has a very similar profile. The spectrum will not necessarily be parallel to the 

long axis of the CCD and so the aperture must be traced along the CCD, and fitted with a 

function for extraction, this is done interactively where the position of the apertures, along 

the image, found by APALL is fitted with a smooth polynomial. The spectrum was then 

extracted along this fit, at each point of the fit the total counts in the aperture window 

(±  approximately 5 pixels from center of aperture) have the sky/background subtracted 

( mean of -2 0 : - 6  and 6 :2 0  pixels from the centre of aperture window) and the extracted 

spectrum was then output to a file. The same was true for both the SAAO and WHT 

data sets, although the best fit to the aperture trace was a third order cubic spline for the 

SAAO data and a third order Legendre function for the WHT data. The extraction of the 

spectra was performed using inverse variance weighted fitting of the spatial profile, this is 

based on the algorithm outlined by Horne (1986). This weighting means tha t the edges 

of the spatial profile, where there is little signal, are given relatively little weight. Using 

this method, we can simultaneously remove cosmic ray hits and bad pixels from the object 

spectra and see an increase in the signal-to-noise ratio of the data since the extraction is 

performed such that the variance on the extracted spectra is minimised.

3.5 Wavelength Calibration

In spectroscopy it is necessary to know the wavelength corresponding to each feature in 

our spectrum. To calibrate the spectra to a wavelength scale, arc exposures were taken
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Figure 3.3: Sample cross section across the CCD, perpendicular to the dispersion axis, of 

a single object exposure from the SAAO run, mean of columns 857-886 for the purpose of 

aperture and background region identification.

of a CuAr lamp for SAAO and a combination CuAr+CuNe lamps for the WHT. For the 

arcs the spectral features were identified from reference spectra of the CuAr lamp and 

the CuAr+CuNe lamp, this then gave the wavelength range and the dispersion of the 

spectrum. The next step was to extract the arc spectra using the same aperture trace as 

the object spectra it is associated with, using a p a l l  and using the aperture obtained for 

the object spectra. Since each arc is associated with multiple object exposures, taken both 

before and after, this was repeated for each object exposure for both ‘before’ and ‘after’ 

arc exposures. Using the REIDENTIFY routine the features in the remaining arc spectra 

were matched to the features in the reference arc spectrum, then each arc spectrum has a 

starting wavelength and a dispersion coefficient (A per pixel). The extracted ‘before’ and



3.6 Normalisation of Object Spectra 65

‘after’ arcs were assigned to the object spectra and weighted on the basis of observation 

time. The routine DISPCOR was used to dispersion correct the object spectra to the 

wavelength scale.

3.6 Normalisation of Object Spectra

One useful method to employ in the data reduction is to normalise the spectra. This was 

simply achieved by fitting a function to the continuum of the source spectra and dividing 

by the fit to produce a spectrum normalised to one. In the case of 1RXS J 162848.1-415241 

observed in the SAAO run, a third order cubic spline fit was sufficient to fit the broad 

features of the continuum. This allows non-flux calibrated spectra to be compared directly. 

W ith the WHT data it was not necessary to normalise the spectra since flux calibration 

could be performed on all target spectra. Additionally the nature of the target objects, 

M-type stars, meant that the spectra were dominated by broad absorption features and 

fitting the continuum would have been non-trivial for very little return.

3.7 Flux Calibration

Flux calibrating the spectra requires observations of a well observed spectro-photometric 

standard star, normally of early spectral type or a white dwarf, due to the lack of ab­

sorption lines in their spectra. The observed standard is compared to a flux calibrated 

spectrum of itself, yielding a wavelength dependant sensitivity function for the CCD. This 

function is then applied to the target observations to provide flux data on the object. 

In the case of 1RXS J 162848.1-415241 the standard used was the GO star CD-44 12736. 

Since it was only observed on one night of the run the sensitivity function is not valid 

for the whole run as the wavelength response of the CCD changed over time, as well as 

1RXS J 162848.1-415241 moving off the slit giving red or blue excesses. This was not
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an issue as the normalised spectra, see section 3.6, were used exclusively in the analysis 

of 1RXS J 162848.1-415241. The WHT spectra on the other hand was successfully flux 

normalised using the standard 05  star HD217086.



Chapter 4

Identification of X-ray and Optical Flaring Events

In the following Sections 4.1 and 4.2 we shall look at the detection of flaring events in 

the X-ray and the optical. In Section 4.1 we shall present a study of a serendipitously 

observed flare during a survey of M31, and deduce the spectral type of the object and the 

luminosities of its flares. In Section 4.2 we find three objects observed during a V-band 

photometric survey looking for variability, and through follow up spectroscopy deduce the 

nature of two of the objects as typical M dwarf flare stars with thw third object being of 

earlier spectral type K.

4.1 Serendipitous X-ray Observations of a Flare Star with X M M

Whilst performing a survey (Barnard et al 2003) of the nearby Andromeda galaxy, M31, 

the ESA X-ray telescope XMM-Newton detected faint X-ray emission from a source at 

RA=00 42 36.5, <5=41 13 50 near the centre of Andromeda’s core. This object showed 

flaring in two of the four observations currently available. In earlier Chandra observations 

of the central region of M31 (Kong et. al. 2002.) this object was identified with a 

foreground star Ha94(238126) and was not associated with M31. It will now be referred
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to by its X-ray designation J004236.5+411350.

4.1.1 X M M  Results

Of the four observations of the core of M31 (Barnard et al 2003) given in Table 4.1, 

J004236.5+411350 was only detected in observation 2 (27 December 2000) and observation 

3 (29 June 2001). This is due to the source only being above the detection limit if it flares 

during the observation. Lightcurves were extracted for both these observations from all 

three EPIC instruments on board XMM; MOSl, MOS2, and PN CCD detectors. All 

three detectors lie at the base of individual grazing incidence X-ray telescopes. The MOS 

cameras are made up of 22 Metal Oxide Semi-conductor CCDs and are identical to each 

other. These lie behind the grating for the Reflection Grating Spectrometers, RGS, and 

as such receive only 44% of the incident X-rays each. The PN camera is made up of 

12 pn-CCD’s, its telescope has an uninterrupted beam. The extraction region for each 

detector in each observation was 20", which gives us 70% of the photons from the source, 

and due to the density of the sources in the field this is the largest region we can use. All 

backgrounds for the lightcurves were extracted from a 2 0 " region in an area of the same 

chip that was free from point sources (see Figure 4.1 where the source region is shown in 

green, and the background region is shown in cyan). Since, for photometric observations 

the information from each of the detectors can be summed, this was done to improve the 

signal-to-noise ratio of the data. The data were binned into 100s bins and the resulting 

summed lightcurves are shown in Figure 4.2.

In each of the lightcurves we see a fast rise to the peak with a longer decay time, typical 

of stellar flares (of the order hours) and reminiscent of solar flares (of the order seconds 

to minutes).
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Table 4.1: XM M  Observations of the Core of M31

Observation Date Duration

1 25 July 2000 34ks

2 27 December 2000 13ks

3 29 June 2001 56ks

4 6 January 2002 61ks

We obtained X-ray spectra for each of the flares for PN, and both MOS 1 and 2. 

The extraction regions are shown in green in Figure 4.1. In both observations a region 

of 40" (white region) was used to extract the background spectra to improve the signal 

to noise rates. The MOS spectra in each observation were combined to increase the 

number of counts. The spectra were analysed using the standard software package X,SPEC 

(http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/ also Dorman et. al 2001). In the PN 

detector we had 365 and 175 source counts in observation 2 and 3 respectively, and for 

the combined MOS detectors we had 325 and 138 counts. To fit the spectra the energy 

channels were grouped in the range 0.3 to 10 keV with variable bin sizes such tha t we had 

at least 1 0  counts per bin.

A thermal bremsstrahlung model would be most appropriate for the fitting model but 

in this low count regime it could not tell us more than a simple power law will. That 

being the case the binned spectra in the range 0.3 to lOkeV were fitted using a simple 

power law model with photoelectric absorption. This absorption is parametised by the 

hydrogen column density in the line of sight. The hydrogen itself is not responsible for the 

absorption of soft X-rays, the column density of hydrogen is directly related to the column 

density of the heavier elements. These heavy elements are abforbing the X-ray photons 

in their inner electron shells as outlined in Morrison et al (1983). W ithout accounting

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
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Figure 4.1: PN images for observation 2 (top panel) and observation 3 (bottom panel). The 

extraction regions are shown, green: source lightcurve and spectrum, cyan: background 

rate, and white: background spectrum.
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Figure 4.2: Total flare lightcurves from the sum of the outputs from MOS1, MOS2 and PN 

for observation 2 (top panel) and observation 3 (bottom panel) each binned to 100s. The 

flare dominates the whole of observation 2 and in observation 3 the flare is seen between 

35 and 41ks.

for the absorption the low energy photons from the source would be underestimated in 

the final fit, as line of sight absorption preferentially affects the lower energy end of the 

spectrum. The absorption was fixed at the value given in Predehl and Schmitt (1995), 

nH = 6.4x l020cm~2 in the direction of M31. This is an upper limit, as it is the total 

column density to M31, whilst our object is a foreground star, section 4.1.4 . It is used
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since we cannot obtain an accurate absorption measure from our X-ray data. The fitted 

source spectra are shown in Figures 4.3 and 4.4 and the fitted parameters are shown in 

Table 4.2 for both observation 2 and observation 3 with the 90% confidence limits for the 

parameters. Also in Table 4.2 are the calculated fluxes from the model parameters.
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Figure 4.3: Source spectra of the flares from observation 2, PN on top, combined MOS 

underneath. Note that for observation 2, the full 13ks interval was used.
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Figure 4.4: Source spectra of the flares, showing the fitted model (solid line), from obser­

vation 3, PN on top, combined MOS underneath. Note that for observation 3 only the 

range 35 to 41 ks after start of observation was used.

Plasma Temperature and Emission Measure

Although a simple power law was used to find the flux of J004236.5+411350, a thermal 

bremsstrahlung model was also fitted to the data to obtain estimates for the emission 

measure and the plasma temperature of the flares. The values obtained are shown in 

Table 4.3, the flux obtained from this model was in agreement with that of the simple 

power law fit, within its errors. Only the PN data was used as this provides the highest



4.1 Serendipitous X-ray Observations of a Flare Star with X M M 74

Table 4.2: Fitting parameters for the spectra shown in Figure 1.3 including 90% confidence 

errors. The normalization and photon index were left free to vary, whilst the value of nH 

was fixed, see text.

O b se rv a tio n  2 P N M OS

nH (1020) 6.4 ±  0.1 6.4 ±  0.1

Photon Index 3.0± 0.4 2.9 ±  0.8

Normalization 

Photon keV- 1  cm- 2  at IkeV

(2.2± 0.4) xlO - 5 (3.7± l . l ) x l 0 - 5

Flux (ergs- 1cm-2 ) (5.8 ± 1 .3 )x l0 ~ 14 (5 .6±2.3)xl0 “ 14

O b serv a tio n  3 P N M OS

nH (1020) 6.4 ±  0.1 6.4 ±  0.1

Photon Index 2.8 ±  0.40 2.5 ±  1.2

Normalization 

Photon keV- 1  cm - 2  at IkeV

(3.4± 0.6)xlO - 5 (3.4± 1.7) xlO ' 5

Flux (ergs- 1cm-2 ) (9.6 ±2.2) xlO - 1 4 (5.9 ±4 .1)xlO " 14

signal-to-noise spectra.
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Table 4.3: Estimates for the emission measure and plasma temperature of the flares on 

J004236.5+411350. From the PN detector only.

O b se rv a tio n  2 O b serv a tio n  3

Emission 

Measure (1051cm-3 )

27+ 3.5 86+3.1

Plasma 

Temperature (keV)

0.73+0.26 0.77+0.43

The fitting parameters were then plotted against existing data for comparison shown 

in Figure 4.5. The two observed flares appear to lie within the distribution of other stellar 

flares and the data suggest two distinct populations at lower temperatures. The solar 

flares have consistently smaller emission measures at a given temperature than tha t of 

stellar flares.

4.1.2 O ptical C ounterpart and Extinction

Kong et al (2002), identified J004236.5+411350 with the optical counterpart Ha94(238126) 

(Haiman et al. 1994) in the extension to Magnier et al. (1993), M31 new OB associations, 

catalogue. The photometric data for the source were obtained from this catalogue and are 

shown in Table 4.4.

The colour index B-V indicates an MK spectral type M, as would be expected since 

the majority of flare stars tend to be late type dwarf red stars of type K and M (Agrawal 

et. al 1986) although some early type stars exhibit flaring as well (Schmitt 1994).

To further constrain the spectral type we take into account the reddening due to inter­

stellar dust.
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Figure 4.5: Emission measure verses plasma tem perature for the two flares observed on

J004236.5+411350, Obs2 M31, Obs3 M31, also plotted are data on other flares both solar and stellar 

as shown in the key. 1. Feldman et al 1995, 2. Raassen et al 2003, 3. van der Besselaar 2003, 4. Robrade 

et al 2005.

Table 4.4: Optical data for J004236.5+411350 taken from Magnier et al. (1993)

Band Magnitude

B 21.395 ±0.243

V 19.89 ±0.113

R, 18.717 ±0.037

I 16.828 ±0.102
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4.1.3 Reddening

We used Wegner’s (Wegner 1994) value of R =3.1±0.1, where R  is the reddening, for the 

ratio of total to selective extinction defined by

R = w W )  w

where A y  is the total extinction, in the V band, to source and jE'(B-V) is the colour 

excess, of the source, defined as;

E ( B  -  V) =  (B -  V )obs -  (B -  V ) intrinsic (4.2)

We also used the relation for the interstellar reddening free parameter Q for BVRI 

magnitudes and Wegner’s reddening law as described in Maxwell (2001)

Q =  (B -  V) — 1.25 {R -  I)  (4.3)

Using the above, we calculate the observed values of colour excess for constant Q-value 

and Ay =  0 — 6 for spectral types K and M, and luminosity class V, using the intrinsic 

colour excess values for each spectral type taken from Johnson (1966). The results of 

this calculation are given in Figure 4.6. The earlier spectral types would lie together at 

the left of the plot over K0, and were not plotted for the sake of clarity.

The only colours consistent with those of our target imply that our source is a late

type MV star with low reddening. Only two points lie within our error ellipse and these 

correspond to a star of type M6 V and total extinction to the source, A y  =  0 and 0.25 

respectively.

4.1.4 D istance and Lum inosity

We now examine the distance to J004236.5+411350 and hence the luminosities of our 

flares, adopting our preferred spectral type of M6  and the absorption column density nH
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Figure 4.6: Colour-Colour diagram for K and M dwarfs showing the position of

J004236.5-411350 with lex error bars shown. Each locus corresponds to Ay =  

0, 0.25,0.5, 0.75,1,2,3, 4,5, 6 bottom left to top right.

given by Predelil and Schmitt (1995) that we used in our spectral fits. Using the empirical 

formula for the relation between nH and Ay given by the aforementioned paper,

n H {cm-2 ) =  (1.79 ±  0.03) x 1021AV (4.4)

we have a maximum absorption of Ay =  0.36 ±  0.006. This may be compared to
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McClure and Racine (1969) who obtained A y  =  0.34, in the direction of M31. They also 

go on to state that the absorbing layer extends 200±50pc in this direction. For our 

source to have Ay =  0.36 it would have to lie outside this distance and so we take

Ay =  0.25 ±0.11 as the upper limit on our absorption from Figure 4.6 and Predehl and

Schmitt’s value. From Carroll and Ostlie (1996), the absolute magnitude of an M6 V star 

is +13.5 and from Table 4.4 we have m y=19.89+0.113. Using the distance modulus,

m y — M y =  5/opiod — 5 +  A y  (4.5)

the distance to J004236.5+411350 is 170+ 50 pc, placing the source within our own 

galaxy. Hence, using

L  =  4trFD 2 (4.6)

where F=flux (ergscm~2s_1), the luminosities of our flares are as follows.

Observation 2 :

• PN: Lx =  (2.0 ±  1.2) x lO ^ergs" 1

• MOS: Lx =  (2.0 ±  1.2) x lO ^ergs" 1 

Observation 3:

• PN: Lx =  (3.0 ±  1.8) x lO ^ergs" 1

• MOS: Lx =  (2.0 ±  1.2) x lO ^ergs” 1

which lie within the range of luminosity for a flaring star. Tsikoudi et. al. (2000) Table 

2, gives X-ray flare luminosities ranging from 1027 to 1030ergs - 1  with duration of the 

order 103 seconds, for 31 flares on 14 late-type stars.
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4.1.5 M isclassification by R O S A T

Two deep PSPC surveys of M31 were performed with RO SAT  and reported by Supper 

et al. (1997) and Supper et. al. (2001). Each of these observations lasted 200ks, first in 

1991 and then follow up observations in 1992/3. We believe that the source designated 

as RO SAT  #181 in the first survey and #182 in the second survey is not a bulge source 

of M31 as classified by Supper et. al. but is J004236.5+411350. In the surveys, a bulge 

source is classified as a source tha t is in the bulge of M31 and is not associated with a

Table 4.5: Position and maximum count rate in RO SAT  “B” band (0.1-2.0 keV)

#181 #182 J004236.5+411350

R. A.(J2000) 00 42 35.3 00 42 36.7 .00 42 36.5

Declination (J2000) +41 13 50 +41 14 01 +41 13 50

Count Rate 0.1-2.0keV 

(cts ks-1 )

13.24 171.71 N/A

known foreground object in the Haimen et. al. (1994) catalogue. We know the position 

of J004236.5+411350 to 20" and it is the only X-ray source within this circle. The quoted 

positions of #181, #182 are shown in Table 4.5 and lie within this region (see Figure 4.7).

A further factor to consider is the maximum observed count rate for this source in the 

survey, also shown in Table 4.5. The difference in count rate is a factor of 10 between 

the two surveys which would suggest that during the second observation the star was 

observed when flaring. However, on analysis of the RO SAT  lightcurve no flaring could be 

seen, although the second series of observations did indeed have a higher mean brightness 

than those taken in 1991. The identity of the source cannot be definitely characterised,
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Figure 4.7: Observation 2 PN image showing J004236.5+411350 error circle in blue and 

the two R O S A T  positional errors in yellow (#181) and black (#182)

but from Figure 4.7 we can see that there are no other bright sources within 3cr of the 

R O S A T  positions and therefore we suggest R O S A T  #181/182 to be none other than 

J004236.5+411350.

4.1.6 New O bservations of J 004236.5+411350

A series of follow up X-ray observations were taken of the same region of M31 in July 

2004. J 004236.5+411350 was detected in two of the four observations, observation 1 and 

observation 3. Table 4.6 shows all observations obtained from the 2004 run, observation 

2 was coincidental with a large solar flare, rendering the observation useless.

Of the two detections, observation 1 and 3, the lightcurves show that only in one 

observation, observation 1, was a possible flare-like event detected, shown in Figure 4.8. 

The lightcurve for observation 3 shown only a barely above background constant brightness 

with no flare-like peaks over the whole observation.
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Table 4.6: New X M M  Observations of the Core of M31 July 2004

Observation Date Duration

1 16 July 2004 18ks

2 CONTAMINATED

3 19 July 2004 22ks

4 19 July 2004 27ks

0.15

0 .1 0

cn
wcDOo

0.05

0.00
0

Time (s )

Figure 4.8: Lightcurve of possible flaring event seen in Observation 1 of the 2004 data set, 

binned to 200s.

When compared to the two previous flaring events for this object, Figure 4.2, this event 

did not have as clearly defined a peak as the others and so I did not to pursue spectral 

analysis of this flare.
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4.1.7 Sum m ary of Findings

We started with a serendipitous observation of two flaring events on an object which 

was believed to be in the bulge of M31. From the XMM observations we were able to 

ascertain the flux of these two events. Archival photometric data was used to deduce 

the spectral type of this object and consequently its distance from us and hence the 

X-ray luminosity of the flares. The emission measure, plasma temperature and flaring 

luminosity are consistent with that of a flaring M-dwarf, as shown in sections 4.1.1 and 

4.1.4. Additionally an upper limit could be estimated for the quiescent luminosity of 

J004236.5+411350. Although not flaring in observation 4, the long integration time, 61ks, 

allowed us to measure the maximum X-ray flux from the region when the source was not 

flaring. This meant that we could constrain the upper limit for the flux of the source to 

F ^  (3.0 ±  1.0) x 10~14ergs- 1cm~ 2 and using our distance estimate and equation 4.6 the 

quiescent X-ray luminosity, in the 0.3-10 keV range, was Lx ^  1.3 ±  0.86 x 1029ergs_1. 

For an M6 V star this give Lx/Lboi ^  0.006 ±  0.004. Most M-dwarfs have quiescent 

Lx/Lboi^0.002 (James et. al. 2000), whereas our limit is closer to that of a late K-type 

dwarf. As pointed out, the value for J004236.5+411350 is an upper limit and as such 

does not disqualify this object as an M-dwarf, but also constrains the object to later than 

K-type.

A comparison of the M31 flare star X-ray flare luminosity to that of some of the largest 

flares ever observed on the Sun (XlO) shows that the two flares observed are approximately 

one hundred times more intense. In the GOES classification, section 2.3.1 they would be 

of the order X1000 class flares.

The luminosity of a flare, as we have seen, is dependent on the emission measure 

and the plasma temperature during the flare. Forbes et. al. (1989) showed tha t the 

radiative cooling function for a coronal plasma was inversely proportional to the plasma
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temperature i.e. if the temperature increases the rate of energy loss, in the form of soft X- 

rays, decreases. This would suggest that just increasing the temperature of a flaring plasma 

would not cause an increase in the flux. Forbes et. al. also showed that the radiative

produce a higher soft X-ray flux than less dense plasmas at the same temperature. The 

emission measure is related to the electron density by the following equation:

Looking at Figure 4.5 we see that the data suggests that the electron density in our and 

other flare stars is higher than in the Sun. We have higher emission measures for a given 

temperature, due to either a more dense plasma in the stellar case, or a larger flaring 

volume.

We consider these two possibilities in turn. If the higher emission measure in flare stars 

is due to a larger flaring volume then one possible way to achieve this on a M-dwarf of 

0.5R© would be to have large regions of the stellar surface flaring. Since stars later than 

approximately M5V (Giidel 2004) are thought to be fully convective, there is no shear 

zone between a radiative core and convective region. This mean that the magnetic field 

of these objects has to be produced by an a  or distributive dynamo (Giampapa et. al. 

1996). This means tha t the magnetic field is produced through turbulence in the stellar 

atmosphere (Durney et. al. 1993). Hence the magnetic field is distributed over the 

stellar surface and, as described by Pearce et. al. (1990), one flaring event can trigger 

further events in nearby, on the Sun within 30 degrees, regions of stressed magnetic 

fields. This phenomenon is called sympathetic flaring. This cascade event could also 

account for the longer durations of the events observed. The impulsive and decay phases

cooling function was proportional to the square of the electron density. So denser plasmas

(4.7)

so EM is the integral of the square of the electron density over the flaring volume.
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of the flares would be longer due to the flare at first propagating then decaying across 

the stellar surface.

Alternatively, if the flaring volume on flare stars is similar to that on the Sun (1 0 27cm3 

Saint-Hilaire et. al. 2005) but the electron density is higher. This would lead to a higher 

rate of cooling, and also a higher EM. To probe the electron density of the coronae, 

density sensitive coronal emission lines are used. The ratio of He-triplet like lines can 

directly measure the density. Ness et. al. (2003) used observations by XM M  and 

Chandra to measure the ratio of the forbidden (2 2 .1 0 A) and intercombination (21.80A) 

lines of OVII for 20 active stars. They found that for flare stars the electron density 

scaled with the EM, suggesting that on flare stars the limited available volume means 

that for increased EM there must be an increase in n e to account for the energetic flaring 

events observed. Typical values obtained where in the range

n e = 2  x 109 — 1 x 10n cm-3 . Observations of AT Mic with XM M  (Raassen et. al. 2003) 

using the same method, and the ratio of OVII lines gave values for quiescent and flaring 

n e equal to 2 x 1010cm - 3  and 4 x 1010cm~ 3 respectively. If, taking a median value, n e 

for the two flares on J004236.5+411350 was of the order 5 x 1010cm-3 , then using the 

approximation E M  = n^V  the emitting volumes of the two flares would be 

(1.1 ±  0.14) x 1031cm3 and (3.4 ±  1.2 x 1031)cm3 for observation 2 and 3 respectively, 

comparable to the values obtained for AT Mic.

Both possibilities are viable for J004236.5+411350 but considering the values EM, n e and 

volume I favour a combination of a high coronal density and a larger than solar, flaring 

volume, as the cause of these two X1000 flares.
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4.2 Flaring Behaviour In The WAVS Survey

In July 1999 an unbiased photometric survey was performed with the Canada-France- 

Hawaii Telescope on a 0.33 square degree field, to search for variable stars, the so called 

Wide Angle Variability Survey or WAVS as it will be referred to in this work (Lott et. al. 

2002 and Lott 2004). The survey yielded two nights of three minute time resolution V- 

band photometry of over 52,000 objects down to a limiting V magnitude of 23.5. Of these 

52,000 objects, three were noted by Lott to display flarelike events. Figure 4.9 shows the 

lightcurves of these three objects. None of the three objects appear to have been observed 

before as part of any other survey and no previous reference could be found to them in 

any of the catalogues available from CDS.
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Figure 4.9: The three WAVS lightcurves showing flaring behaviour.

In these three objects we see the rapid brightening and exponential decay indicative 

of a flaring event. Figure 4.9(a) and (b) show relatively impulsive events with duration 

1000-2000s with increase in V magnitude of approximately 0.85 and 0.25 respectively, 

whilst Figure 4.9(c) shows a much longer duration event of more than 20,000s with AV of 

the order 0.2. To identify the nature of these flaring objects follow up spectroscopy was 

performed in 2003 using the WHT, part of the Isaac Newton Group of Telescopes, in service 

mode. Henceforth the flaring event of WAVS323426 will be known as WAVS_FLARE_1, 

similarly the WAVS912537 event will be referred to as WAVS_FLARE_2 and the event on
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WAVS920239 as WAVS_FLARE_3

4.2.1 W H T /ISIS  Observations

On the night of the 3rd August 2003 the three flaring objects were observed using the 

ISIS spectrograph on the W HT  in service mode. Only the red arm of ISIS was used 

since the majority of flare stars are very red objects, late-type K and M stars (Pettersen 

et. al. 1989). Table 4.2.1 shows the exposure times and the WAVS V magnitude of 

the targets obtained on this run. The wavelength coverage was 4800A-9100A, chosen to 

provide coverage of the following strong features found in M dwarfs: TiO band 5847- 

6058A, TiO band 6080-6390A, C ai 6162A, CaH triplet 6346,6382,6389A, H a 6563A, TiO 

band 6651-6852A, TiO band 7053-7270A, VO band 7851-7973A, TiO band 8206-8569A, 

and TiO band 8859-8937A.

The observations were taken in service mode using the MARCONI CCD and the R158R 

grating. This combination gave a spectral resolution of 1 .6 A/pixel.

4.2.2 W H T /IS IS  Spectra

The data were reduced using standard techniques with IRAF as described in Chapter 3. 

The spectra were found to be noise dominated below approximately 5000A and so the 

range 5000A-9100A was used for all analysis. Since multiple spectra for each star were 

obtained, these were averaged together to reduce the noise. Each spectrum was flux 

calibrated against the standard HD217086 (05V) before averaging, to check for variation 

in the flux between each observation, of which there was none. For each of the three flux 

calibrated spectra the V magnitude of the star was calculated using the ir a f  package 

CALCPHOT in the SYNPHOT routine listing. CALCPHOT calculates the response over the 

Johnson V passband for a given flux calibrated spectrum. Table 4.2.2 gives the calculate 

V magnitude for each star along with the WAVS magnitude.
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Start Time UT Object RA DEC Exposure Time(s) V magnitude

01:40:03 WAVS912537 20 26 55.9 +27 41 19.0 1800 21.25

02:15:24 WAVS912537 20 26 55.9 +27 41 19.0 1800 21.25

02:55:18 WAVS323426 20 27 26.9 +27 52 04.1 1800 2 1 .6

03:38:58 WAVS323426 20 27 26.9 +27 52 04.1 1800 2 1 .6

04:08:27 WAVS920239 20 27 07.9 +27 32 58.6 600 19.9

04:18:40 WAVS920239 20 27 07.9 +27 32 58.6 600 19.9

04:28:54 WAVS920239 20 27 07.9 +27 32 58.6 600 19.9

04:43:13 WAVS920239 20 27 07.9 +27 32 58.6 600 19.9

05:40:39 HD217086 22 56 47.19 +62 43 37.6 7 Spectrophotometric 

Standard (7.7)

Table 4.7: Log of W HT/ISIS Observations 03/08/2003
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Star V calcphot VwAVS

WAVS_FLARE_1 20.8 21.6±0.02

WAVS_FLARE_2 21.1 21.09±0.02

WAVS_FLARE_3 19.6 19.9±0.01

Table 4.8: WAVS and calculated V magnitudes from WHT spectra for the three flare star 

targets.

The calculated magnitude of the three stars was lower i.e. brighter than tha t of the 

quoted WAVS magnitude, for WAVS_FLARE_1 and WAVS_FLARE_3. WAVS_FLARE_2 

on the other hand was in good agreement with the WAVS magnitude. This is odd as we 

would expect any difference to be the other way round due to slit losses. Therefore this 

inconsistency could result from systematic errors in the WAVS calibration. Observations of 

the photometric standard star were only taken on the first night of the WAVS observations 

and only one of our flares, WAVS_FLARE_2, was observed on this night. This has the 

smallest difference in magnitude between CALCPHOT and WAVS supporting the argument 

for an error in the WAVS calibration for the second night of observation.

Figures 4.10, 4.11, and 4.12 show the averaged flux calibrated spectra of the three stars 

observed at the WHT. On each plot the features listed in section 4.2.1 are labelled.

Figures 4.11 and 4.12 show that two of the objects (WAVS_FLARE_3 and WAVS_FLARE_1) 

display typical M-dwarf spectra, a red continuum dominated by molecular absorption 

bands. The third object (Figure 4.10) was found to be essentially featureless over the 

entire wavelength range covered.
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Figure 4.10: Flux calibrated spectrum of WAVS_FLARE_2 

4.2.3 M Dwarfs

In order to identify the spectral type of the two M-dwarf stars the averaged flux calibrated 

spectra were compared to the full range of M-star spectral types found in “A Stellar Spec-
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Figure 4.11: Flux calibrated spectrum of WAVS_FLARE_1
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Figure 4.12: Flux calibrated spectrum of WAVS_FLARE_3

tral Flux Library: 1150 - 25000A ” (Pickles 1998) and henceforth known as the Pickles 

data set. These spectral types were, MOIII, MOV, M1III, M1V, M2I, M2III, M2.5V, M2V, 

M3II, M3III, M3V, M4III, M4V, M5III, M5V, M6III, M6V, M7III, M8III, M9III and 

M10III. The flux of our targets is normalised to one at 5556A to match the normalisation 

of the Pickles data set. The target spectra and Pickles data were compared using residual 

X 2 fitting to get a first approximation to the spectral type of the WAVS objects. Since the 

Pickles data set is based on real data the best fit Pickles spectra and the target spectra do 

not match exactly, to improve upon this first approximation the spectrum of the Pickles 

template star was multiplied by a range of constant factors and the resulting template 

subtracted from the flux calibrated spectrum of our target star. The residuals were then 

tested against a line of constant value in a x‘2 fesL and the minimum y 2 taken to be the 

best fitting template. In the case of both WAVS_FLARE_3 and WAVS_FLARE_1 the best 

fitting template was that of an M4V dwarf multiplied by constants of 0.9 and 0.85 respec­

tively. This suggests the value of the flux at 5556A is not necessarily representative of the
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fiux over the whole wavelength range and hence some modification to the flux must be 

made to match the standard spectrum. Figure 4.13 and 4.14 show the flux calibrated spec­

tra of WAVS_FLARE_3 and WAVS_FLARE_1 with the scaled M4V spectrum overplotted 

in red.

W A V S _ F L A R E _ 1  a n d  C o m p a r i s o n  M 4 V
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Figure 4.13: Flux calibrated spectrum of WAVS_FLARE_1 with M4V overplotted (red)

As a further check the spectra were also dereddened for a range of E(B-V) values 0-0.9, 

and again tested against the Pickles data set. It was found that for WAVS_FLARE_1 and 

WAVS-FLARE-3, the unreddened spectra gave the best fit to the residuals and so the 

spectra presented in Figures 4.14 and 4.13 remain unreddened.

4.2.4 Unclassified F laring O bject

The third target observed exhibited a featureless continuum over the entire wavelength 

range of the observation, with the exception of the Telluric oxygen band 7600A-7700A 

(Figure 4.10). The flux calibrated spectrum was used in conjunction with CALCPHOT 

to calculate the V magnitude of the object for these observations, V=21.06 in this case.
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Figure 4.14: Flux spectrum of WAVS_FLARE_3 with M4V overplotted (red)

Figure 4.15 shows the normalised flux calibrated spectrum of WAVS_FLARE_2 with a 

comparison M4V spectrum overplotted. We see that the continuum of WAVS_FLARE_2 

is much bluer than that of an M-dwarf. WAVS_FLARE_2 also exhibits none of the char­

acteristic M-dwarf photospheric features, e.g. TiO and CaH molecular bands. This makes 

the object something of an enigma. Possible solutions are that this is an early spectral 

type star exhibiting flaring (c.f. Schmitt 1994), hence its effective tem perature is too high 

for molecular TiO to be present in the photosphere. Another more exciting prospect is 

that the flare like event seen in the WAVS survey may have been the optical counterpart 

to a Type I X-ray burst. These bursts occur in Low Mass X-ray Binaries (LMXB) where 

the matter accreted onto the neutron star undergoes thermonuclear fusion on the neutron 

star surface, and typically have a duration of 3-1000s (Lamb 2000). Optical counterparts 

to X-ray bursts have been observed in the past. For example Kong et. al 2000, observed a 

burst simultaneously in the X-ray (R X T E ) and in the optical (SAAO). The optical burst 

was found to follow the general shape and duration of the X-ray burst after an approxi­
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mately 3 second delay. This burst had a duration of the order 1 minute and its brightness 

increase by approximately 90% (count s_1) in the optical. This does not compare well 

with the observed brightening and duration of our object , which shows a 30% increase 

in optical brightness and a duration of the order 3000 seconds. A third and least exciting 

prospect is that the observation itself is incorrect and this is not the star we had intended 

to observe at all. The field is shown Figure 4.16.

A further test of the burst hypothesis is as follows. Assuming we have blackbody 

radiation from a neutron star at a typical temperature, 107K, for these systems, what 

optical flux would we expect in the range 5000A to 9000A and how far would the system 

have to be away from us to give the observed flux we have?

We know the total observed flux in the 5000A to 9000A range is 3 x l0 “ 14ergs- 1cm - 2  

from our flux calibrated spectrum. Using

0,7vhc^
l ^ < 4-8)

where A is the wavelength, h is Planck’s constant, c is the speed of light in a vacuum, 

and T is the temperature of the blackbody. Integrating between the limits 5000A and 

9000A we get a luminosity L=  1 .8  x 1 0 27erg s_ 1  and using equation 4.6 we get a distance 

of approximately 22pc. This puts it a lot closer than the majority of neutron stars, 

most are seen in the bulge of the galaxy at around 15kpc. Additionally if the blackbody 

spectrum itself is compared to the source spectrum, Figure 4.15, for the same total flux in 

the range 5000 - 9100A, it is clearly not an appropriate model for the emission seen. This 

is may be the final nail in the coffin for our burst hypothesis, as a combination of this 

distance calculation, examination of the blackbody curve, and the observations of optical 

counterparts to X-ray bursts already mentioned make it seem very unlikely indeed.
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Figure 4.15: Flux calibrated spectrum of WAVS_FLARE_2 with the M4V (Pickles) spec­

trum, overplotted (red), and a 107K blackbody curve for the same total flux (blue).

m

Figure 4.16: Finding Chart for WAVS_FLARE_2 North is vertically up and East is to the 

right. Target marked with green circle. The image is 49" x 76".
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Early Spectral Type Fitting

As mentioned above, it is possible that the object is of an earlier spectral type in which 

the broad absorption bands seen in M-dwarfs are not present. Using the extended Pickles 

data set spectral types F-M (Pickles 1998), the spectra of WAVS_FLARE_2 was tested 

using the same method as outlined above. On first inspection the best fit, minimum x 2 on 

the residuals, was that of K5III spectral type. If this was the case the object would have 

to be approximately 260kpc away, based on the V-band magnitude from our synthetic 

photometry. This would put it well outside our Galaxy. This was an unlikely result, so 

the spectra for WAVS_FLARE_2 was dereddened for the same range of E(B-V) as for 

the M-dwarfs, and simultaneously fitted to the extended Pickles data set. The resulting 

minimum x 2 fit suggests the object is spectral type K4V with a reddening coefficient of 

E(B-V)=0.25. Figure 4.17 shows the dereddened spectra of WAVS_FLARE_2 with the 

spectra of the Pickles K4V for comparision.
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Figure 4.17: Dereddened spectra of WAVS_FLARE_2 and the corresponding Pickles spec­

tra  for a K4V for comparision (red).

With spectral type K4V WAVS_FLARE_2 would be approximately 5kpc distant which 

is a far more resonable value, placing the object in our own Galaxy.

4.2.5 F laring in the WAVS survey: Conclusions

Of the three flaring sources seen in the 1999 WAVS survey, two are typical M-dwarf 

flare stars, displaying prominent molecular absorption bands and chromospheric emission 

(Ho). The third source is apparently something else. One possibility was tha t this event 

could have been the optical counterpart of a type I X-ray burst. The profile of this event 

is consistent with that of these events, but the duration of our event is longer and the 

increase in brightness is smaller than seen in other examples of the optical counterpart of 

a Type I X-ray burst. If this had been the case it would have been the first time a system 

of this nature has been discovered in the optical. The discussion in section 4.2.4 indicates
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this is a very unlikely candidate for a Type I X-ray burst.

Another more likely, possibility is a flare from a star of earlier spectral type star flaring. 

Fuhrmeister and Schmitt 2003 have identified 994 flares from 1207 variable objects within 

the ~30,000 sources in the RO SAT  All Sky Survey. Of these ~1200 variable objects, 

137 were of spectral type M and 163 of types 0  to G, so there is a strong case for an 

earlier spectral type flaring in the WAVS survey. Fitting of earlier spectral types to the 

dereddened spectra of WAVS_FLARE_2 did indeed reveal that the object is most likely a 

K4V and as such one would expect spectacular flaring events to occur on it. To further 

verify the nature of the object a second W HT  proposal to perform spectroscopy at bluer 

(3100-8300A) wavelengths was submitted, it has however not been carried out.



Chapter 5

1RXS J 162848.1-415241: The Brightest Known Microquasar?

In the following chapter we shall present observations for what could be the brightest 

known microquasar. Section 5.2 will present the spectroscopic observations of this object 

conducted at SAAO and the radial velocity calculations. In Section 5.3 we shall attem pt 

to use spectral synthesis to identify the evolutionary state of the object, and finally in 

Section 5.4 we will present the findings from photometric monitoring of the object with 

the ROTSE system and draw our conclusions about this object. We set out looking for a 

microquasar and found something altogether different.

5.1 1RXS J 162848.1-415241

1RXS J 162848.1-415241 was first reported by Tsarevsky et al (ATEL #80) as the most 

likely candidate out of 40 possible new microquasars. Each of these 40 objects were 

selected by comparing a sample of bright RO SAT  sources, taken from the R O SAT  All Sky 

Survey (limiting flux 2 x l 0 ~14ergcm- 2s- 1  in the 0.1-2 keV band) with hard X-ray spectra, 

resembling those of known X-ray binaries, to radio sources from the GB6 /PM N/NVSS 

surveys (covering the whole sky north of -87.5 dgrees declination, with limiting flux 18mJy,
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20-72mJy and 2.5mJy respectively) (Tsarevsky et. al. 2001). 1RXS J 162848.1-415241 was 

observed to have a flat radio spectrum, with an unresolved core, but with no conclusive 

identification of extended radio sources indicative of the presence of jets. The precise 

radio coordinates led to an optical identification with a relatively bright (V=13.4) source. 

Low resolution spectroscopy performed by the same group with the AAO 4m telescope 

showed the source to be a star of spectral type K5, with strong, variable H a emission. 

Observations with the ATCA revealed variability in the radio emission. The combined X- 

ray, optical and radio observations were thought to be suggestive of microquasar behaviour, 

but an isolated active K type star could not be ruled out. A call for further observations 

was broadcast using VSNET. The driving force behind our observations was to establish 

the binary nature of 1RXS J 162848.1-415241 through radial velocity measurements made 

from spectra obtained in South Africa.

5.2 Observations at SAAO

1RXS J 162848.1-415241, henceforth referred to as J1628, was observed with the 1.9m 

Radcliffe telescope at SAAO on the 17th to 24th of June 2003 using the Cassegrain Grating 

Spectrograph with grating 5 and the 266 x 1798 pixel SITe CCD. The spectra cover a 

wavelength range approximately 6100A - 6900A at a resolution of 1.2A per pixel. The 

observations of J1628 are listed in Table 5.1. A range of exposure times was used, 60 to 

600 seconds, to look for variablity in the spectral lines on a range of time scales.

The spectra obtained were reduced using standard packages in IRAF as outlined in 

Chapter 3. The continuum was normalised to one to ease the comparison with the observed 

template stars. This was achieved by fitting a function to the continuum and dividing by 

the fit, as described in Section 3.6. In the case of 1RXS J 162848.1-415241 a third order 

cubic spline fit was sufficient to fit the broad features of the continuum (Figure 5.1).
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Figure 5.1: Mean normalised spectrum of J1628 observed at SAAO. Prominent features 

are labelled in red.

Table 5.1: Observation Log for 1RXS J 162848.1-415241 from 
SAAO.

Date Time Exposure Number of
June 2003 UT Time(s) Exposures
17th 18th 1655 180 1

17:00 600 49
18th 19th 1753 600 10

19:44 300 12
20:54 180 42
00:38 300 8

19th 20th 1717 120 1
17:21 180 60
20:57 120 46
00:02 180 12
00:45 240 15

20th 21st 1844 240 10
19:30 180 44
23:01 240 25

21st 22nd 1926 300 22
23:36 120 1
00:01 600 5

21st 22nd 00:57 450 1
continued 01:06 600 1
22nd 23rd 1832 120 2

18:37 180 28
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Table 5.1: ...continued

Date Time Exp. time No. exp.
2 0 :2 1 1 2 0 75
00:50 180 1

00:53 1 2 0 4
23rd 24th 1724 180 18

18:31 1 2 0 30
2 0 :1 1 60 67
21:51 1 2 0 50
00:07 180 18

For the purpose of radial velocity measurements and identification of the spectral type 

of J1628 ten K-type stars from K1V to K7V and a K5III star were also observed during 

the same run, as shown in Table 5.2. The continuum of these spectra was also normalised 

to one, and the full range of spectral types observed are shown in Figure 5.2.

Table 5.2: Observation Log for K-type stars from SAAO.

Object Date Time Exposure Number of
(Spectral Type) June 2003 UT Time(s) Exposures
Y4924 (K7V) 18 02:57 30 3

19 01:44 5 2

19 01:46 30 6

2 0 02:07 30 1 0

Y5243 (K7V) 18 03:04 45 3
19 01:58 45 8

2 0 02:23 45 1 0

BS5568 (K4V) 2 2 23:03 5 1

2 2 23:04 1 0 9
HD144500 (K1V) 2 2 23:13 1 2 0 6

HD 144628 (K1/2V) 2 2 23:33 60 4
BS6171 (K2V) 23 01:09 1 0 1 0

HD167981 (K3V) 23 0 1 :2 2 30 1

23 01:23 60 5
HD156026 (K5V) 23 01:33 30 9
BS7541 (K5III) 24 0 1 :2 1 5 1

24 0 1 :2 2 1 0 16
HD203040 (K5V) 24 01:36 30 1

24 01:37 60 7
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Figure 5.2: Stack of mean, normalised spectra for the observed K-type template stars 

obtained at SAAO.

5.2.1 Radial Velocity Measurements

In order to identify the binary nature of J1628, its spectral features were compared to those 

of the K-type templates obtained on the run. This was done using the i r a f  package f x c o r
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which performs a Fourier cross-correlation on the features within a specified wavelength 

range (Tonry and Davis 1979). In the case of J1628 and the templates, the range 6350A 

to 6470A was chosen as it contains several strong absorption features, no telluric features 

and no emission features in J1628 or the templates. H a is in emission in J1628, but in all 

K-type spectra H a is in absorption.

The calculated radial velocities were plotted and a clear sinusoidal signature was 

present, in the case of correlation against each of the ten template stars observed. The 

radial velocity and the associated errors were then fitted with a sinusoid of the form,

v =  7  +  K 2 sin ((t -  to)/P)  (5.1)

where v is the radial velocity, K 2 is the velocity semi-amplitude and P  is the period of 

the system. This was done using the IDL routine CURVEFIT, Figure 5.3 shows the radial 

velocity data, from comparison with the template HD144628 (K1/2V), and the 

associated fit. This fitting gave values for the period of J1628 and the orbital velocity, 

K2 , to be 4.869 ±  0.007 days, and 33.8 ± 0 .1  kms- 1  respectively. The radial velocity 

curves for the other nine templates are in agreement with these values.

The fit values of the radial velocity curve were used to correct the spectra of J1628 and 

the other nine template stars to the radial velocity of HD 144628 for comparison of their 

spectral features.

5.2.2 Spectral Type Identification

The radial velocity corrected spectra of J1628 were averaged together for each of the 

seven nights of observation. The same process was applied to the template spectra for 

each template. Using these high signal to noise spectra each template was subtracted from 

the nightly averaged spectra of J1628 and the residuals examined for a transition from
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Figure 5.3: Radial velocity of .71628 relative to HD144628 (K1/2V) with fitted curve (red), 

P=4.869 ±  0.007 days, and K-i — 33.8 ±0 .1  kms-1

emission like features to absorption like and visa versa. Figure 5.4 shows the results for 

night one of the observations.

The transition seen in Figure 5.4 between K2V and K3V suggests that the spectral 

type of J 1628 lies within this range. It is worth noting that the residuals for BS7541, the 

K5III star, also appear to have relatively small features, and as such we cannot rule this 

out at this stage.

5.2.3 x 2 Testing

To test the goodness of fit of the templates, the residuals were compared to a line of con­

stant value in a variance weighted x 2 test. This should indicate which template star most 

closely matches the spectrum of .11628 and hence the spectral type of J1628. During the x 2 

test any emission features (Ha) in J1628 were masked out since in the template spectra all 

features are in absorption, and emission minus absorption results in a large deviation from
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Figure 5.4: First look at the residuals of J1628, from night one of the observations minus 

K-type templates. The two marked in red demonstrate the point at which the absorption 

like residuals become emission like, in the wavelength ranges 6115A to 6180A and 6420A 

to 6470A (regions between dashed lines).

the line of constant value and hence a large y 2 value, leading to false identification of the 

best fitting spectral type from the observations. This y 2 test identified the K3V spectra 

as a better fit than the K5III and K2V, but the minimum was found to be for HD 144500, 

K1V. The test in this form, is obviously not suitable to find the best underlying spectrum.

In order to minimise the residuals away from H a the template spectra were simul­

taneously multiplied by a constant and broadened by convolving with different FWHM 

Ganssians in an attem pt to simulate the underlying spectrum of J 1628. Again a y 2 test
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was used and the minimum y 2 fc>r each template, for a range of constants and FWHMs 

were compared. The result of this are shown in Figure 5.5. The test showed that this 

method could change the depth of the residual features but cannot remove them entirely. 

The result of the test showed that the best fit (minimum x 2)to the spectra of J1628 was 

that of HD 167981 our template K3V, shown in red on the diagram. As we shall see in 

the next section this can only be taken as an estimate of the spectral type but not of the 

luminosity class.
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Figure 5.5: Second look at the residuals, the templates have been simultaneously mod­

ified with a range of broadening and constant values. The residuals marked in red, for 

HD167981, show the template which gave the minimum y 2 in this test, tha t of a K3V.
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5.2.4 Giant and Dwarf Comparison

On closer inspection it was found that no giant or dwarf spectrum could be modified, as a 

whole, to match the spectrum of J 1628, since the relative line strengths in the templates 

were found not to be proportional to the relative line strengths in J 1628. The best example 

of this problem is found in the range 6420A to 6470A as shown in Figure 5.6, where three 

C al blends at 6439A 6449A and 6462A cannot be fitted by either dwarf or giant line 

profiles. It is possible to modify the dwarf or giant spectrum by multiplying by a constant 

to match the two outer blends or the central blend but not all three blends simultaneously, 

as demonstrated in Figure 5.7.
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Figure 5.6: J1628 in the range 6420A to 6470A (black) with a broadened spectrum of 

BS7541 (K5III) (orange) and a broadened spectrum of HD156026 (K5V) (blue) overplot­

ted.

Although a K5V star was selected, in the Figures all the dwarfs observed displayed 

the same relative strength for these three Cal blends. From this analysis it would appear
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Figure 5.7: J1628 (black) with BS7541 (orange) and HD156026 (blue) overplotted. The 

top panel shows the fit to the outer two C al blends, BS7541 multiplied by a factor of 

1.4, HD156026 by a factor of 0.8. The lower panel shows the fit to the central C al blend, 

BS7541 factor-0.2, HD156026 factor-0.95.

that the true luminosity class of J 1628 lies somewhere between that of a K-dwarf and a 

K-giant, therefore J1628 is probably a subgiant K3 star. The subset of spectral type is not 

obvious from the available data. Another method must be used to identify this parameter, 

as follows in the next section.
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5.3 Spectral Synthesis: Identifying 1RXS J 162848.1-415241

Since the spectral features of J1628, primarily the C al dominated blends at 6439A, 6449A 

and 6462A could not be reproduced using our existing template stars, we synthesised K- 

type spectra for a range of temperatures and surface gravities to first find evidence for an 

inversion in the Ca I blends as we move from K dwarfs to K giant type stars, and secondly 

to identify the underlying spectral type and luminosity class of J1628

5.3.1 ATLAS: Spectral Synthesis Package

The ATLAS package (Kurucz 1993) calculates the spectrum for a given model atmosphere, 

generated for the specified effective temperature, surface gravity and metallicity.

The first step to be performed in generating a spectrum for an unknown stellar type 

is to assemble a linelist for the wavelength range desired and then to edit the gf values 

for the lines to match the line structure of the known solar spectrum. The gf value 

for a given line is a dimensionless number which is directly related to the probability 

of transition between electron levels of an atom or ion. This gives a measure of the 

absorption or emission strength for a given line. In the case of the solar model atmosphere 

the parameters are T eff =5770K, surface gravity, log(g/cm s“ 2)=4.44, and metallicity 0.0 

dex since the metallicity scale is defined relative to solar.

The linelist for the range 6100A to 6900A was compiled using the gfCAT files from 

Kurucz and Petremann (1975). These listings are for theoretical gf values and as such 

the gf values stated are subject to change. We edited the linelist to remove all lines 

with ionisation potential greater than 5eV, since we are dealing with cool stars. This is 

an arbitrary value chosen to decrease computing time as any line with value close to or 

greater than 5eV is thrown out by the ATLAS routine for solar or earlier spectral types.

The theoretical gf values are replaced where possible with measured gf values from the
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NIST database (h ttp  : / /phys ics .nist-.gov), but unfortunately the measured values carry 

large errors in the region of particular interest, 6420A to 6470A. This range will be used 

throughout as it is the site of the three C al lines of interest.

With the initial linelist in place, a model solar atmosphere was generated using the 

grid of model atmospheres from Bell et. al. (1976), and was then used to calculate the 

synthetic solar spectrum. This synthesised spectrum is then broadened to match observed 

broadening ( in the case of the comparision solar spectrum this is ~5km /s) and is compared 

to that observed by Beckers et. al. (1976). Figure 5.8 shows the synthetic solar (red) and 

the observed solar (black) spectra in the wavelength range of interest (6420A to 6470A). 

We can clearly see that not all the lines in the solar spectrum are reproduced in the 

synthetic spectrum. This is due to a paucity of line data available in the linelists.
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Figure 5.8: Synthesised solar spectrum (red) with Beckers data (black)
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The equivalent widths of all lines common to both the observed and synthesised spec­

trum  are measured and the gf values in the linelist modified to recreate the solar equivalent 

widths as measured from the Beckers spectrum. This is necessary as the ATLAS code 

arbitrarily broadens the C al lines, since this cannot be corrected, the equivalent widths 

give a direct comparison of the line strengths.

5.3.2 Synthesising K-type Spectra

Now tha t a reasonable fit to the solar spectrum has been achieved, this linelist is used to 

calculate the spectra of a range of K-type stars. Table 5.3 shows the range of parameters 

used in this study. The lower end of ranges are the limits of the models available. The 

upper limits are taken as the model parameters of a K5V star.

Table 5.3: Parameter range for model atmospheres.

Teff (K) log (g cms 2) metallicity (dex)

3750 - 4557 0.0 - 4.65 -1.8 - 0.0

The resulting spectra are broadened to the measured line broadening of J1628 of 

~60km/s, this is the FWHM of the gaussian fit to the observed line profiles of J1628. 

A combination of the instrumental broadening of ~28km /s and the Doppler broadening 

usini of ~32km/s. W ithin this parameter space an inversion, by which we mean the cen­

tral C al blend becomes the deepest of the three C al blends, is observed for the lower end 

of the temperature and log g range and for all metallicities in the range. The maximum 

inversion is seen at the lowest end of the temperature and surface gravity ranges studied, 

T eff=3750, log g=0.0. Figure 5.9 shows the inversions for the full range of metallicities 

(-1.8 dex to 0.0 dex). Studying the unbroadened spectrum we found that the inversion
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was due to the presence of Co I  and Fe I  in the blends. At these low tem perature and log 

g values the Col dominated blend at approximately 6431A is far more prominent than at 

higher values of temperature and log g. The feature at 6449A is a blend of C al , Col and 

Fe I  and so is greatly enhanced in this low temperature and low log g regime.
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Figure 5.9: Synthetic spectra for T eff=3750, log g—0.0 and the full range of metallicities 

investigated ( in appropriate colour), broadened to match the observed Doppler broadening 

of J 1628, the range 6420A to 6470A

Unfortunately, looking at a plot of the synthetic spectra generated with this inversion 

compared to the spectrum of J1628, Figure 5.10, we find that the inversion in the synthetic 

data is never as extreme as that seen in the observed spectra. A further consideration is 

that at the limit of our grid of models we could not recreate the spectrum of a known 

K5III (BS7541) observed alongside J 1628, Figure 5.11, certainly not for the parameters of
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Figure 5.10: Observed J1628 spectrum (black) and synthetic spectrum for T eff=3750, log 

g=0.0 and a metallicity of 0.0 dex (magenta).

a standard K5III and also not within the low temperature and surface gravity regime.

5.3.3 Conclusions from Spectral Synthesis

The only conclusion to be drawn from this process is that as the spectral resolution of 

our observations is so low. and the extent of the blending of our spectral features is 

sufficiently high as to give no indication of the actual metal content of our object of study, 

no abundance analysis could be conducted and hence the metallicity of the object could 

only be guessed. The grid of parameters available could simulate the inversion of the C al 

blends but could not reproduce the spectrum of our target, or of a standard K5III star. 

We did find that the inversion is not a property of the C al in the blends but resulted 

from the dominance of the Col and Fel on the absorption in the blends at the lower end
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Figure 5.11: BS7541 K5III observed spectrum (black) compared with K5III synthetic 

spectrum (red) and also T eff=3750, log g—0.0 and a metallicity of 0.0 dex spectra (green).

of the parameter ranges. Since the gf values have such high uncertainties associated with 

them it could be possible to modify these values and so fit the spectrum of J1628 but 

this would then have no physical relevance as there would be no physical reference point, 

such as the solar spectrum of Beckers et. al. (1976). The spectral synthesis suggestions 

that our object may be more evolved than first thought. The lower surface gravity and 

temperature could indicate an AGB star of K spectral type, though this is not consistent 

with our measurements of rotation period and velocity. The range of parameters available 

for this study is a limiting factor. The spectral synthesis does not reveal the luminosity 

class of J 1628. In this case the best estimate would be a direct interpolation between our 

observed template spectra, Figure 5.6, which gives .11628 a luminosity class between dwarf 

and giant, a K3 subgiant.
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5.4 Photometric Observations of 1RXS J 162848.1-415241

Over the period 15th July 2003 to 7th September 2003 photometric observations were made 

of 1RXS J 162848.1-415241 using the -ROTS'!? Ilia  robotic telescope sited at Siding Springs 

Observatory in Australia. The RO TSE  telescope is a 0.45m robotic, fully automated 

reflecting telescope, with a field of view of 1.85° x 1.85°, which achieves better than 0.3" 

spatial resolution for most bright (14th magnitude) stars. For the 5 second observations 

used in this study, the limiting magnitude is 17th, but combined longer exposures can 

get down as low as 19th magnitude. All observations we used were unfiltered, but the 

infrastructure is in place to allow filtered observations at a later date (Smith et. al. 

2003). The purpose of the photometric observations was to characterise the photometric 

modulation, if any, of the star 1RXS J 162848.1-415241.

5.4.1 Filtering of ROTSE  data

Although observations were taken on most nights, many frames had to be discarded since 

the RO TSE  telescope is automated and took observations even when cloudy, Table 5.4 

shows the frames retained and used in the analysis.

Table 5.4: Observation Log of Good Frames from ROTSE.

Date Number of Exposure
Exposures Time(s)

2003 July 15 20 5
2003 July 16 15 5
2003 July 17 20 5
2003 July 19 1 5
2003 July 20 20 5
2003 July 21 5 5
2003 July 22 5 5
2003 July 25 1 5
2003 July 26 15 5
2003 July 27 20 5
2003 July 28 20 5
2003 July 29 15 5

2003 August 1 5 5
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Table 5.4: ...continued

Date No. exp. Exp. time
2003 August 2 5 5
2003 August 3 5 5
2003 August 4 5 5
2003 August 5 15 5

2003 August 17 5 5
2003 August 18 5 5
2003 August 19 5 5
2003 August 26 10 5
2003 August 27 15 5
2003 August 28 10 5
2003 August 29 5 5
2003 August 30 10 5
2003 August 31 10 5

2003 September 5 15 5
2003 September 6 10 5
2003 September 7 15 5

The data come pre-reduced thanks to the RO TSE  Data Analysis Pipeline (Smith et. 

al. 2003.), in that all frames have been flat-field and dark corrected.

5.4.2 Analysis of ROTSE  data set

To improve the signal to noise ratio of the data, the images were combined in sets of five, 

where they occurred. In IRAF the observation time of the combined images was taken to 

be that of the third image in each set of five. On two nights only one image was usable 

and so these images are included individually. Next, two non-variable comparison stars 

were chosen, with the criteria that they were near the target object on the CCD, to reduce 

spatial variations across the CCD, and that they were both present in all images. Figure 

5.12 shows the target and the two comparison stars.

Since the R 0  TSE  observations are unfiltered, magnitude calibration is impossible. The 

two comparison stars are used to obtain differential magnitudes of 1RXS J 162848.1-415241 

relative to each and these data are used to obtain the lightcurve of 1RXS J 162848.1-
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Figure 5.12: R O T S E  field with 1RXS J 162848.1-415241 and two comparison stars shown. 

The image is 25" by 30" and is orientated North upwards and East to the right.

415241.

5.4.3 Photom etric Periodicity of 1RXS J 162848.1-415241

The lightcurve of 1RXS J 162848.1-415241 shows a clear periodic variation. To derive the 

period the STARLINK software PER IO D  was used, using a reduced x 2 against frequency 

method, the resulting period was found to be 5.0T0.11 days derived from the minimum x 2 

peak in the periodogram. Figure 5.13 shows the reduced x 2 against frequency distribution 

and Figure 5.14 shows the fit to the data.

5.5 Conclusions

If this object was a microquasar we could expect to see ellipsoidal modulation in the 

lightcurve, that is two maxima and two minima over one orbital period. This arises from
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Frequency

Figure 5.13: Reduced x 2 against frequency distribution for R O T S E  photometry, the min­

imum x2 peak is shown in red.

the donor star filling its Roche lobe causing it to become elongated. As the elongated star 

travels around its orbit the elongated face with its larger cross-section causes a maximum,

Sine Fit to ROTSE d a t a  s e t
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Figure 5.14: Sinusoidal fit to R O T S E  data set.
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then as the truncated face moves through the observers line of sight we see a minimum, 

the elongated and truncated faces are seen twice (both sides of the star) per orbit and so 

we get two maxima and two minima. The photometric period, derived in section 5.4.3, of 

5.00±0.11 days is directly comparable to the derived orbital period of 4.869±0.007 days 

from radial velocity measurements, Section 5.2.1. The absence of ellipsoidal variation in 

the photometric lightcurve suggests this is not a microquasar or other semi-detached bi­

nary, but J1628 does appear to be tidally locked since its photometric and orbital periods 

are the same within the 2a errors. This leads to the question, what is causing the photo­

metric modulation? The best answer is that there is a star spot on the surface of J1628. 

These star spots are caused by emerging magnetic flux suppressing the convective heating 

of the photosphere in that region, cooling the region and making it appear darker than 

the surrounding surface. A large spot could be causing the periodic dip in brightness, we 

observe, as it moves across our line of sight. The consistent photometric period is also 

an indicator that the star is tidally locked, to get the periodic modulation seen in the 

lightcurve the dark spot must be in the same place on the star in each orbit meaning that 

the rotation period of the J1628 is the same as the orbital period.

Physical limits can be placed on the radius of J1628 simply by considering the rotational 

velocity and period of the star. For any rotating body,

V ro t  = v R 2 (5.2)

where vrot is the rotational velocity, u  is the angular velocity and R 2 is the radius of our 

object. The subscript R 2 is used to denote that our star is the secondary in the binary. 

This will become clear later. Additionally,

(5.3)
* r o t

where Prot is the period of rotation. Since we do not know at what inclination we are
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observing the system we do not know vrot exactly. W hat we do know is vrotsim  where i 

is the angle subtended between the axis of rotation and our line-of-sight. Hence 

vrotsim  ^  vrot Combining equations 5.2 and 5.3 with our inequality we arrive at:

R 2 > ^ j rotsini

For our observed values, usini =  32 ±  21kms_1 and Prot =  5.00 ±  0.11 days we obtain 

a lower limit of R 2 ^  3.2 ±  2.2R q .  We can calculate an upper limit to our stellar radius 

if we assume that J1628 is a subgiant K3 star. From Carroll and Ostlie (1996) and Lanza 

(2005) we have the mass of these objects lying in the range 1.1-1.3M®. Taking an estimate 

for the mass, M2 , for J1628 to be 1.2M© and using the assumption that the material on

the surface is just gravitationally bound, such that rotational and gravitational forces are

balanced, we can proceed as follows:

, ,2d /  GM2 ^cu R 2 ^  2 • (5*5)
K2

Rearranging and substituting equation 5.3 we arrive at,

2

i?2 < ( G M 2) H ^ ) \  (5.6)

and hence R 2 ^  13.0 ±  0.3R®. We now have constraints for the radius of J1628,

3.2 ±  2.2R q ^  R 2 ^  13.0 ±  0.3-R®. Using the empirical relationship for giants from van 

Belle et. al. (1999) we calculate that the radius of a K3III is 22.6i?©. The constraints on 

J1628 place it at a lower radius than this and so we can safely assume that J1628 is not 

a giant but a subgiant. Most K-type subgiants have radii in the range 3.0-4.OR® (Lanza 

2005) which is at the lower limit of our inequality but is well within the errors. This 

suggest sini is fairly close to 1.

W ith this information we can move on to looking at the system as a whole starting with 

a limit on the orbital separation of the binary. From Kepler’s third law,
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2 4w2a3
orb G(Mt + M2) (5.7)

where a is the orbital separation of the binary. We can substitute the mass ratio of the 

binary q =  ^  for our unknown mass M i; K \  and K 2 are the velocity semi

amplitudes of the orbital periods for the primary and J1628 respectively. Rearranging 

for a ,

a = | 1 +
P l bGM2

47T2
(5.8)

putting in the values that we already have, we get:

a = (13.2 ±  0.04) ( 1 +  -  ] R q

i
I V

(5.9)

since q must always be positive, the second term in brackets can never be less than one 

so a ^  (13.2 ±  0.04)jRq. We can constrain q if we assume that R 2 ^  R 2ri where R 2ri is 

the radius of J1628’s Roche lobe i.e. J1628 does not overfill its Roche lobe. For a Roche 

lobe filling star we can combine the equations from Wade et. al. (1988),

urotsini =  (Ki +  K2) —  
a

(5.10)

and Eggleton 1983,

R 2H =
0.49 q\

0.6^3 +  ln( 1 +  q 3 ) 

for an orbital separation of unity, to get,

0.49 q%

(5.11)

V r o t S i n i

K 2 < (1 +  q)
_0.6g3 +  ln{ 1 +  q 3 )

(5.12)

An IDL script was written to evaluate the right hand side of equation 5.12 and for 

usini =  33 ±  21kms_1 and K 2 =  33.4 ±  O.lkms-1 we find that the inequality is satisfied 

for q ^  1.5 ±  1.0. Using the limit of q^2.5 and equation 5.9 we arrive at an upper limit 

for a of 14.8Rq Given that q ^  2.5 and M 2 =  1.2Mq the mass of the primary object
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must be in the range M i ^  0.48M©. We can also use our minimum value for q in 

equation 5.11 to derive a lower limit on the size of the Roche lobe: i?2W ^  4.23 ±  0.01R©. 

Since no evidence is found for our object filling its Roche lobe we can state tha t the 

radius of J1628 is 3.2 ±  2.2R q  ^  R 2 ^  4.23 ±  O.OIR©, further refining the range of our 

radius and placing J1628 firmly in the subgiant class. Lanza (2005) gives a range of 

subgiant luminosities of 4-8L©. Taking the lower limit of this range and comparing to 

the data on spectral types in Carroll and Ostlie (1996), with the assumption tha t the 

primary has to be fainter than J1628 (since no evidence is seen for it in the data), the 

most likely candidate for the primary would be a dwarf of spectral type later than F0. 

Another possibility that cannot be ruled out is that the primary is a compact object 

either a white dwarf, neutron star, or black hole. Since the binary is detatched, and 

J1628 is not filling its Roche lobe no mass transfer takes place, so we would see no 

signature of an accretion disk.

Using the above parameters and arguments we can say the following J1628 is most likely 

a K3IV chromospherically active star in a detached binary system, with orbital separation 

(13.2 ±  0.04)Rq ^  a ^  14.8R© and a primary star more massive than an M1V but with 

spectral type later than F0/1V, or a stellar remnant. Since we have an K3 subgiant star 

with concurrent orbital and photometric periods and evidence of chromospheric activity 

with H a emission, the most likely candidate system is an RS CVn star. Hall 1979 defined 

the RS CVn class of systems as having,

• orbital periods 1-14 days,

• evidence of chromospheric activity, filled cores in C an  H and K lines, H a in emission,

• distortion of the lightcurve outside of eclipse by 0.1-0.3 magnitudes.

These systems were further characterised by Fekel (1986),
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• the more active star must be F, G, or K type, and evolved.

Our system fits very neatly into this classification, even the modulation of the lightcurve 

is of the order 0.1 magnitudes. If this is the case we can increase the number of known 

RS CVn stars from 173 (taken from a search of SIMBAD) to 174.



Chapter 6

Conclusions

In the preceding chapters we have presented four case studies each with one thing in 

common. In each case magnetic activity was responsible for the events that drew them to 

our attention, flaring events on the Sun (2) and flare stars (4.1 and 4.2) and the radio and 

X-ray behaviour of our RS CVn system and the starspots that revealed its true nature 

(5). The flaring events studied on the Sun allowed us to probe the acceleration of an 

initial population of electrons and test our current understanding of the interaction of 

these electrons with the surrounding medium. We found that the observations did not 

result in unphysical electron distributions and so our current theories on the nature of 

the interaction cross sections holds up to new observations and provides a solid basis to 

launch our further understanding of flare physics.

Serendipitous observations of flare like events on other stars, in both the X-ray and the 

optical, revealed primarily mid M-type dwarf stars as we would expect from our current 

understanding of which types of star produce these stellar flares.

A comparison of J004236.5+411350’s X-ray flare luminosity to that of some of the 

largest flares ever observed on the Sun shows that the two flares observed are approximately
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one hundred times more intense. This is not surprising since stellar flares consistently show 

larger EMs for a given plasma temperature than for solar flares, Figure 4.5. The discussion 

in Section 4.1.7, and references therein, shows that the EM is the dominant factor for 

increased flare luminosity. Since the EM is proportional to the electron density and the 

volume of the flaring plasma, measurements of the ratios of density sensitive coronal lines 

on other flare stars can be used to estimate the flaring volume on J004236.5+411350. The 

values obtained in the literature show that the electron density is higher in flare stars than 

in solar flares. Using this result we found that for the flares observed on J004236.5+411350 

the flaring volume was a factor of 104 larger than for flares on the Sun. This suggests that 

a large proportion of the stellar surface could be involved in these events, possibly whole 

star flaring, through a phenomenon known as sympathetic flaring where the triggering of 

one flare triggers others. This phenomenon could also help to explain the much longer 

timescales we observe in stellar flaring, as it takes place over a larger area than the very 

localised solar flares, and the impulsive phase of these flares is longer due to the flare 

propagating across the surface of the star. The decay phase of the event is also extended 

as the star returns to quiescence.

The optical flaring we have observed during the WAVS survey also occurs over longer 

timescales than for a typical solar flare. Two of the objects observed are typical of the flare 

star population. Both display the classical M-dwarf spectral features of prominent molecu­

lar absorption bands, and in one case definite H a in emission, indicative of chromospheric 

activity. The third object was something of an enigma, the lightcurve profile resembles 

that of a flare, and there was no evidence of broad absorption bands in the spectra, ruling 

out an M-dwarf. Two possibilities were put forward. It could be that we were observing 

the optical counterpart of a type I X-ray burst, the first identified through optical data, or 

that it was a star of earlier spectral type than M exhibiting flaring. The case put forward
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for this object being the optical component of a type I X-ray burst, was all but ruled out 

through a comparison to the literature on optical observations of these events and from 

the distance calculation performed in Section 4.2.4. Earlier types do show flaring, but it is 

far harder to observe due to the relative brightness of the underlying stellar photosphere. 

Fitting the observed spectrum with standard F-K type spectra revealed that the object 

was a K4V approximately 5kpc distant.

The final case study presented for consideration an object which could generate a great 

deal of excitement. If a microquasar it would be the brightest known to date and would 

allow us to probe further into the nature of these powerful objects. The observations pre­

sented showed no evidence for a Roche lobe filling star or for an accretion disk. In trying 

to identify the object, J1628, we found, a K3 star within a binary but no evidence in our 

observations for the nature of the second object. In trying to identify the exact nature of 

the K-star we found that it did not match any of our templates to the extent at which we 

could positively identify it, but it did allow us to propose an evolutionary state from the 

‘inversion’ of the triple C al blend of a K3 subgiant star. The identification of this inversion 

could lead to a new method for quickly classifying the evolutionary states of K-stars in 

future observations, and if time allowed would be worth pursuing. Only the lack of avail­

able data, at a high enough spectral resolution, prevents this from being fully investigated. 

Although the object was found not to be a microquasar, we could still identify the nature 

of the system from the data we had collected. All the data point to the system containing 

an evolved K3IV star with a modulated lightcurve. The explanation for the modulation 

is that some part of the surface is less bright than the rest, since there is no evidence 

for eclipsing, this could only be the result of spotting on the stars photosphere, caused 

by the emergence of magnetic flux on the surface of the star. The orbital period derived 

from the radial velocity of the star is in direct agreement, within 2cr, with the photometric
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period derived from the modulation in the lightcurve. Since we detect the starspot(s) at 

the same phase in the orbital cycle it is not unreasonable to consider this object to be 

tidally locked within the binary. Using this assumption we were able to constrain system 

parameters for the binary (see Section 5.5). We found that the K3IV secondary had a 

radius 3.2 ±2 .2R q  ^  R 2 ^  4.23±0.01R©, the orbital separation of the two components of 

the binary was (13.2 ± 0 .04)Rq ^  a <  14.8 R q ,  the mass ration of the system q ^  1.5 ±1.0. 

Using these parameters we found that the mass of the primary object M \ ^  0.48M©. 

Adding the constraint that the primary object had to be less luminous than a K3IV, lead 

to the conclusion tha t the primary object had to be either a main sequence dwarf star 

of spectral type F0/1V or later, or the object could be a compact object either a white 

dwarf, neutron star, or black hole. Since the binary is detached, and J1628 is not filling its 

Roche lobe no mass transfer takes place and so the primary would not be accreting. We 

set out looking for a system in which magnetic fields play a prominent role and although 

of a different class, RS CVn, we found one.

We have seen evidence for magnetically driven events across a range of astronomical sys­

tems. In each case they are the driving force behind tha t system’s classification and are 

usually the trigger for an event or feature on the object that first bring it to our attention, 

or allows us to identify the object’s nature. Magnetic fields drive some of the most en­

ergetic, recurring events in our Galaxy. W ithout the interplay between the astrophysical 

plasmas and the stellar magnetic field we would live in a far duller universe.
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