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Abstract

Hourly traffic flows through complicated motorway junctions form time 

series with a hierarchical element. Multiregression Dynamic Models provide a 

Bayesian framework for forecasting the time series while incorporating this 

hierarchical structure. Calculation of forecasts is computationally inexpensive and 

the model is designed in order to have readily interpretable parameters wherever 

possible. Expert intervention is straightforward in this system for periods of unusual 

activity, whether they were anticipated or not. Fundamental change to the road layout 

and behaviour can also be incorporated into the model without untenable 

complication. In this thesis work is centred on applying the methodology to one 

particular junction, including finding techniques to aid in using the methodology in 

this application. The theory of Multiregression Dynamic Models is furthered in order 

to do this- specifically through modelling certain parameter constraints imposed by 

the nature of the problem and the production of prior covariances for quantities 

modelled. The model was found to perform competitively in comparison to common 

other approaches, and the hierarchical structure offered significant advantages when 

expert intervention was applied.



Chapter 1 -  Introduction

Chapter 1 -  Introduction

This chapter introduces the problem the thesis focuses on. The problem is 

outlined and existing approaches to similar problems discussed.

1.1 The problem

The accurate forecasting of road traffic can provide many benefits to those 

that are responsible for the maintenance and design of road networks, which can in 

turn provide benefits to those that use them. Good models can be used to respond to 

events, for example by identifying that an accident has occurred or by re-routing 

traffic to avoid congestion. They can also be used to forecast the consequences of 

future planned events such as roads being closed or built.

There are many aspects of a road network that can be modelled, including: 

traffic flow, traffic speed, journey time, route choice and state models of different 

traffic conditions. A forecaster will choose a model that is most suited for the 

purpose at hand. Models of such a network should therefore attempt to address one 

particular aspect or related group of aspects about the network.

In this thesis the aim is to provide forecasts for traffic flow counts through 

counting points situated at various places in the network. The model presented can 

easily incorporate information from outside the network (such as experts’ estimation 

of the effects of future events) and still produce parameters that are readily 

understandable and have ‘real-world’ meaning. Such models can be used for real­

time monitoring of the traffic network, to analyse current traffic patterns and to 

inform future decisions regarding the network.

1



Chapter 1 -  Introduction

The key goals are competitive performance of the model, ease of 

interpretation of the quantities in the model and the ability to incorporate exogenous 

information. There are secondary goals that are also desirable- a methodology that 

does not rely on extensive calculations so that it can be used in a real-time system 

and one that can produce information that may aid in the incorporation of exogenous 

data.

1.2 The data

Kent County Council installed traffic counting systems around the 

M25/A2/A282 motorway junction in Dartford. These systems count the number of 

vehicles that pass them each hour. Each counting system is identified by a number, 

and together they form a multivariate time series. The geographical layout of these 

counting points is illustrated in the figure 1.2.1.

The counting systems are distributed in such a way that traffic will flow into 

the network, through a number of counting points, then out of the network. These 

counting points can be categorised as one of three types. The first type consists of 

locations where all the vehicles passing them are entering the network for the first 

time (such as nodes 160 and 167). The second type consists of points where all the 

traffic passing them has passed a previous counting point in the network (such as 

nodes 161 and 168). The third type, predictably, consists of nodes where the traffic 

flowing past is a mixture of both types (there are no such nodes in this network). A 

model that incorporates the relationships between points will need to model each 

type of counting point in a slightly different way. Determining the category of each 

counting point is covered in section 2.2.

2
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A28 166

A29 165
/A \
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168 Junction
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J unction

Figure 1.2.1 -M 2 5 , A2, A282 junction layout.
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As the counts are hourly this will have a smoothing effect on short­

term events- so minor events may not be observed in the collected data. Further, the 

time taken to traverse the network is short- during normal conditions it will only take 

a handful of minutes- compared to the counting interval of an hour. This means that 

forecasting flow for a node based only on data from previous time periods for nodes 

in the network may be insufficient to achieve a satisfactory result.

The multivariate nature of the network should be addressed in order to 

provide the best forecast performance. The relationships between the counting points 

may also be of interest, particularly when an unusual event occurs at one point that 

may be observed in downstream points. For example, a crash between counting 

points would likely result in decreased flow upstream and downstream of the 

incident, with possibly an above average flow once the accident has been cleared and 

the carriageway begins to clear.

1.3 Thesis plan

The structure of this thesis is as follows. The next chapter introduces the data 

set and performs some preliminary analysis before time series techniques are applied.

Chapter 2 summarises existing approaches to traffic forecasting with 

emphasis on traffic flow. Chapter 3 performs some preliminary analysis on the data 

available. Chapters 4 and 5 introduce the basics of the model adopted for this thesis. 

Chapter 4 describes the Dynamic Linear Model used for time series forecasting. 

Chapter 5 describes the Multiregression Dynamic Model and how it can be used to 

decompose a multivariate problem into conditionally independent univariate 

problems. Chapter 6 presents a mixture of standard results for the MDM and new

4
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techniques and analysis developed in this thesis for use with the DLM and MDM 

models.

In chapter 7 the MDM model is implemented for this application. The chapter 

also demonstrates the use of expert intervention in the model and compares model 

performance with and without such intervention. Chapter 8 introduces a modified 

MDM model and compares its performance to those in the previous chapter.

Chapters 9 and 10 apply different models to the same data set for comparison 

purposes. Chapter 9 applies independent DLM models to the problem and chapter 10 

applies independent ARIMA models to the problem.

Finally, chapter 11 discusses the performance of the models applied in 

previous chapters and evaluates the MDM methodology as applied in this case. It 

also discusses possible areas for future research around MDMs in this type of 

application and in general.

5
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Chapter 2 -  Previous Approaches

Work looking at traffic forecasting falls into two main streams- mechanistic 

models that appear in transportation literature and models designed from a statistical 

basis. The former are concerned primarily with modelling traffic as a whole system 

in an explanatory manner. The latter typically concentrate on one aspect. However, 

there are relatively few approaches that use Bayesian techniques.

2.1 Previous non-Bayesian approaches

There have been many previous approaches to modelling traffic data (van 

Arem, Kirby et al. 1997).

However, in most cases the problem addressed is subtly different than here. 

For example, some work has centred on origin-destination matrices for vehicles 

passing through a traffic network (Camus, Cantarella et al. 1997) or the travel time 

through such a network (van Arem, van der Vlist et al. 1997). There is also work 

examining traffic state (for example, Wang and Papageorgiou 2005). These 

approaches do not address the problem at hand. However, there are relationships 

between traffic flow and the quantities considered in such work.

The most often used class of models are those based on Lighthill and 

Whitman (1955). The kinematic wave motion they describe gives a functional 

relationship between the flow q, the concentration k and the position x. The equation 

of continuity is of the first order:
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which implies that the quantity in a (small) length changes at a rate equal to the 

difference between the inflow and the outflow. In the traffic application, this relates 

the flow, the vehicle density on the road and the road location. The relationship 

between flow and concentration for a fixed point x can be plotted as a flow- 

concentration curve. It is this curve that characterises the traffic flow at that point. 

The slope of the curve c is called the wave velocity.

point this means that velocity decreases with concentration, as observed in traffic 

networks.

This traffic conditions are modelled as a series of waves, defined by this flow- 

concentration curve. Under stationary conditions, this would be all that was required. 

Where the flow-concentration curve varies with the position x, the waves are no 

longer straight lines. However, the wave carrying a given flow q still has a 

predictable path. Under non-stationary conditions, discontinuities in this wave pattern 

occur, and will disperse either upstream or downstream according to the relative 

values of c and the mean velocity. The dispersion is akin to that observed with 

dynamic shock waves in gases, and as such discontinuities are referred to as shock 

waves.

Road junctions would be modelled as changes to the flow-concentration 

curve for a single road, and exceptional events as discontinuities. However, while the 

onset of an unusual event will produce a shock wave, it will also affect the flow- 

concentration curve of the road section.

dq
d k x constant

under the assumption that q=q(k,x)  . I f  this c is less than the mean velocity at a

7
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In the application of this methodology to road traffic, q and k only have 

meaning as means, and as such can be measured directly. The flow-concentration 

curve has a maximum before congestion slows the vehicles sufficiently to reduce 

overall flow. The derivation of the curve is a based on observational data when the 

road is in a number of different traffic conditions.

This method only forecasts traffic flow in so much as it estimates the link 

between traffic flow, traffic density and the spatial positions of counting points. This 

explanatory approach, on its own, is of little use where the road conditions may 

fluctuate based on prevailing conditions. It does, however, reflect different road 

characteristics at different observation points.

This method requires extensive data collection at the counting points of 

interest before the model can be applied. The construction of the flow-concentration 

curves involves a certain amount of interpolation and would be opaque to someone 

not familiar with the methodology. Although expert opinion could be incorporated 

when unusual events occur, this would generally have to be on the level of the flow- 

concentration curves. Deriving the curves is complicated, but need only be done once 

for each counting point to apply for all possible time periods. Adverse conditions 

such as ice or rain would require different curves or some procedure for adjusting the 

existing curves. Finding all of this for even a modest road network could quickly 

become impractical. This methodology is essentially descriptive rather than 

predictive, concentrating on properties of the road segment such as maximum flow.

This model was also described in Richards (1956)- this method is generally 

known as the LWR model.
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Yi et al (2003) apply a higher order extension to this technique, but such 

approaches have disadvantages (Daganzo, 1995, Heidemann 1999), but there are 

other models that use the LWR model as their basis. Some trace the effect of events 

upstream (see, for example, Zhang (1998), Hoogendoom and Bovy (2000), 

Hoogendoorn and Bovy (2001) or Jiang, Wu and Zhu (2002)). These models look at 

the microscopic level and model how drivers behave with respect to the vehicles in 

front of them. There have been numerous other refinements to this approach, 

including Zhang (2001) and Zhang (2003). While studying the behaviour of traffic 

flow under incident conditions or under minor events in normal traffic conditions is 

informative, it might not necessarily translate directly into better forecasts for traffic 

flow in this situation where the time periods are relatively large. Models of this type 

typically deal with traffic merges by proposing some distribution scheme based on 

traffic demand (from upstream links) and supply (road characteristics), as seen in Jin 

and Zhang (2003). There are also criticisms specific to some deterministic car- 

following models in Nelson (1995). Many of these continuum models also require 

data or estimates beyond simple vehicle counts and the estimation can be difficult, as 

seen in Hurdle and Son (2000).

Supply and demand models and assignment models attempt to work out 

where the traffic will flow based on supply of road space and demand (which is from 

flow further upstream in network models). Akamatsu (1996) and Watling (1996) are 

two examples. In these models, there are multiple competing routes that drivers can 

select from in order to reach their destination.

9
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Carey and Subrahmanian (2000) consider traffic flow on a congested stretch 

of road as a form of queue with a first-in-first-out property. This leads to a linear 

property in the model. Conservation of flow states that:

t T

j &n(k)  T =  1 j e o u t ( k ) T - t

Where xJtT denotes the flow that enters link j at time t and leaves it at time

t , and Ekt denotes the exogenous demand (or in-flow) for node k at time t. The

first-in-first out assumption places constraints on which xJtT are non-zero, and 

linear programming techniques can be used to solve the piecewise linear functions 

that Carey and Subrahmanian assume for the functions.

Neural net approaches have estimated traffic flow in addition to other 

quantities (Dougherty and Cobbett (1997) and Zhang et al (1997)). While this 

combined approach could be applied to this network, a neural net approach is a 

‘black box’ system. Incorporating exogenous information is not practical unless the 

net can be trained to respond the correct way to such occasional data. As unusual 

events in this sort of situation are likely to be unique (in extent if not in form), it is 

unlikely that a neural net approach could adequately model this effectively. 

Additionally, a neural net is non-parametric and should the traffic network be 

substantively changed the net will need to be reformulated and trained again. 

However, neural networks offer the advantage that relationships between different 

aspects of the data (such as spatial relationships, transit time and current traffic 

conditions) are part of the neural net by default whereas statistical models must 

include them explicitly (Kirby, Watson et al. 1997).

10
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There has been one approach (van der Zijpp and de Romph 1997) that 

provides an origin-destination approach coupled with a dynamic component that can 

report unusual events in the data. The origin-destination methodology was used as an 

interim component in order to forecast flow, traffic density and travel time. This 

dynamic approach has several advantages over the ‘black box’ approach in terms of 

interpretability, and has the advantage that the inner workings of the model have a 

real-world meaning outside the context of the model. The paper also attempts to cope 

with an unusual event by intervention in the model to account for it. However, the 

incorporation of this outside information is not a main feature of the model, and as 

such is an ad hoc response to the event. The solution of the model also involves an 

iterative algorithm which may not be suitable for a real-time system.

ARIMA methodology (Box and Jenkins 1976) has also been used extensively 

in traffic forecasting, for example in El dor (1977), Gafarian et al (1977), Ahmed and 

Cook (1979) and Nihan and Holmesland (1980). However, there has been criticism 

of this approach (Okutani and Stephanedes 1984) suggesting that a simple moving 

average is just as effective. An ARIMA model consisting of a simple moving average 

with an additional seasonal component is used later in this thesis for comparison 

purposes.

Hjorth (2002) used a bootstrap technique on a road network with traffic 

lights. This stochastic method also considers route choice and travel time, rather than 

solely traffic flows. The presence of stop-go traffic at predetermined points also 

changes the behaviour of the network from a (usually) free-flowing motorway 

network.

11
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Other macroscopic models have also been applied traffic forecasting- see (for 

example) Hilliges and Weidlich (1995) for an application to a traffic network and 

Sanwal et al (1996) for one to a freeway segment. Papageorgiou (1998) contends that 

there the descriptive accuracy of any macroscopic model in this application may 

never be as good as that of macroscopic models in other areas. However, Helbing et 

al show that some macroscopic models agree with microscopic models on traffic 

properties derived from them.

Characteristics of merging traffic in a motorway junction have been explored 

in Bunker and Troutbeck (2003)- where the proportion of delay between the main 

flow and the merging flow is estimated. However, this may be more useful for 

forecasting when traffic queues will occur or estimating journey times than for long 

time period flow forecasting.

The time gaps between vehicles in congested traffic flow (Banks 2003) can 

vary considerably between sites and indeed lanes, and do not seem to be correlated 

with common macroscopic factors such as vehicle speed. This implies that there are 

features of traffic flow at junctions that cannot adequately be found from such 

macroscopic factors. An attempt to forecast behaviour at such places might need to 

exhibit learning about these features.

Even where traffic flow is the primary concern, there is a dearth of Bayesian 

methods considered when comparing different methodologies. Smith and Demetsky 

(1997) consider ARIMA methodology, neural nets, non-parametric methods and 

historical average techniques but no Bayesian time-series.

There has also been work examining the behaviour of traffic networks solely 

under incident or congested conditions, for example Hounsell and Ishtiaq (1997),

12
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Cassidy and Maunch (2001) and Maunch and Cassidy (2002), which may inform any 

technique that is intended to operate under such conditions.

There are several aspects of structural models that might be of interest when 

considering this problem, even if they have not yet been applied specifically to this 

class of problem. For example, correlation in measurement errors between response 

and regressors has been considered in Schaalje and Butts (1993) and Reilman, Gunst 

and Lakshminarayanan (1985). Such a correlation may occur if flow in one area is 

regressed on flow in another. A multivariate structural normal model (as described in 

Fraser and Haq (1969) can be considered for such a network, without recourse to 

Bayesian methods.

2.2 The Bayesian approaches

Bayesian methods have been used to tackle this type of problem before. One 

method (Whittaker, Garside et al. 1997) used a state-space-based approach to 

forecast vehicle speed and flows. The model incorporates a term for exogenous 

factors which could be used to incorporate information regarding unusual events. The 

transition observation equations used were: 

x t+1= A tx t+But+qt 

y,=Cx,+r,

where the u represent the exogenous factors. The decomposition of a complex 

network problem into a simpler series of problems is a key aspect both of this 

approach and that adopted in this thesis.

Bayesian methods were used by Yang and Davis (2002) to find classified 

mean traffic flow incorporating an AR(1) component- although in this case the
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Bayesian component was to incorporate uncertainty in the classification of vehicles 

into the mean estimates.

Dynamic Linear Models or DLMs (West and Harrison 1999) fill many of the 

criteria required for this model. The Bayesian approach encapsulates the dynamic 

nature of the modelled system by updating current beliefs about the system as new 

data arrive. They are time series models which can be structured such that the 

parameters are readily interpretable and through the Bayesian methodology they can 

incorporate exogenous information when supplied in an appropriate form. This 

incorporation of outside data, known as ‘intervention’, can be achieved simply and 

without additional complication to the model. Formal methods for identifying 

periods of unusual activity also exist- which would aid the forecaster in a real-time 

system.

The DLM has been used to forecast traffic flows on a stretch of freeway 

(Tebaldi, West et al. 2002). A simple series of counting points, rather than a 

complicated network similar to that in this application, is modelled through a 

hierarchy of DLM models. Each counting point is regressed on the nearest upstream 

counting point at lags determined through analysis. However, the flow of traffic 

joining and leaving the freeway is modelled using a smoothed trend. For link i on day 

j at minute t, they used the equation:

where stj(t) was the smoothed entry and exit flow and b was a vector of (known) 

upstream flows. This can also be expressed in the usual notation for DLMs: 

ytirx'ijflu+Zijt
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The distributions for these quantities were assumed conjugate where appropriate, 

which gives:

Posterior distributions are calculated using Markov Chain Monte Carlo 

techniques which ran in under a minute. However, in larger networks the simulation 

may take markedly longer.

Many of these approaches (Bayesian or otherwise) are of limited use in this 

context as they use smaller time intervals for data collection. This has two qualitative 

effects on the model. Firstly, smaller time intervals give rise to noisier data as brief 

unusual activity is not smoothed away and patterns can be harder to discern as a 

result. Secondly, in sequenced regression models the lag between counting points 

may be non-zero, so forecasts can be made without reference to upstream nodes 

within the same time period. Where a vehicle can pass from one node to another 

within the same time period, as in the application considered in this thesis, the model 

must be able to regress on upstream nodes at lag 0.

Traffic flow shares several characteristics with fluid flow through pipes- one 

Bayesian technique for the latter was examined in Rougier and Goldstein (2001). 

However, in this case the Bayesian element was in the estimation of parameters that 

described the interaction between the pipeline and the fluid rather than forecasting 

future flow.

Z~l~Wishart^Z~l\(piRl' f l ,
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Multivariate DLMs may, at first glance, seem appropriate. Unfortunately, 

DLMs require certain variances in the system to be known, which will not be the case 

in general. Estimation of these quantities can be done easily in univariate models but 

is a non-trivial task in the multivariate case- which makes direct use of the DLM 

impractical.

Multiregression Dynamic Models or MDMs (Queen and Smith 1993) are a 

particular type of Bayesian multivariate dynamic model which can decompose a 

multivariate time series into a hierarchy of univariate time series, eliminating this 

problem. An MDM model can use a sequence of separate conditional regression 

DLMs to model its multivariate series. DLMs have the additional benefit that they 

can cope with missing data (which may be a feature of this sort of data) easily. An 

MDM approach was applied to this data before (Whitlock 1999). In this thesis, the 

application of the MDM to this problem is developed further.
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Chapter 3 -  Analysis of the Data

This chapter examines the raw data this thesis is using, preparatory to 

applying a suitable model to it. The relationships between the counting points and the 

time series collected at them will be examined and the form of the individual time 

series will be analysed.

3.1 Visual inspection

Consider the data for a few weeks at one of the counting points in figure 

3.1.1. There are two obvious features of these data. Firstly, there is a pattern over the 

week, with the weekends showing less traffic than weekdays. Secondly, there is also 

a daily pattern, with morning and afternoon peaks. However, this pattern is not 

consistent over the entire week. In particular weekends seem to behave differently to 

weekdays. Similar patterns are observed at other counting points. This suggests that 

any model should have a seasonal pattern for days, with possibly different seasonal 

patterns for different days. Previous analysis of the data (Whitlock 1999) used 

principle components analysis to establish whether the daily patterns observed can be 

categorised. From that work three main categories emerge: Saturdays,

Sundays/public holidays and weekdays. Most Mondays fall into the third category, 

although some behaved differently and were found to be public holidays. Fridays fall 

in the third category although they appear to have a slightly different daily pattern. 

These differences are all noted in the referenced analysis.

Although incorporating these different daily patterns into the model is not 

difficult, for clarity and simplicity this thesis uses only data on Tuesdays to
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VehdecxxrtsforY167

o -
0 100 300 500

Figure 3.1.1 -  Three weeks’ data for counting point 167
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Thursdays, to ensure all data fall within the third of those categories and thus exhibit 

a common daily pattern. This would not be adequate for a real-world implementation 

of the model but allows the model to be evaluated without the additional 

complication incurred by modelling the different day patterns. The multivariate 

aspect of the model is of most interest for this thesis, and so will be considered more 

thoroughly. The complication incurred by incorporating several daily patterns is not 

in the formulation of the model but in the easy analysis of the results.

3.2 Relationships between the sites

The geographical layout of the sites determines how traffic flows through the 

network. The distances between the counting points are such that a vehicle will 

normally travel all the way through the network in one time period. It is necessary to 

establish which counting points lead to others, and at which locations drivers make 

choices as to which route to follow. As motorway junctions include roundabouts, it is 

useful to make the simplifying assumption that drivers will follow the most direct 

route through the network and not, for example, drive around in circles or turn 

around and head back the way they came. Although some vehicles may behave this 

way, it is unlikely that such behaviour is common.

The first step is to plot what route is followed by vehicles through the 

network on the basis of where they enter the network and where they intend to leave 

the network. This can be determined from the geographical map (figure 1.1.1). For 

example, vehicles travelling south on the A282 that wish to leave the network via the 

southbound carriageway of the M25 pass three counting points- 167, 170a and 173a. 

Such a chain can be found for all entry and exit point pairs. There are routes through 

the network that do not pass any counting point- vehicles crossing, but not joining,
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the M25 at junction lb either westbound or eastbound are not counted. Similarly, 

traffic crossing the M25 at junction 2 is also not counted. These vehicles are not an 

observable part of the traffic flow and do not enter the model. All other routes are 

shown in table 3.2.1.

Entry Exit Route
A282 southbound M25 southbound ->167->170a-M73a->

Junction lb ^167->168->
A2 eastbound ->167->170b->171->
A2 westbound ->167->170b“>161->

Junction lb A282 northbound -M 65“M 66-^
M25 southbound -M69->173b->
A2 eastbound -M69->171->
A2 westbound ->169-M61->

A2 westbound A282 northbound ->172->164b-M66->
M25 southbound ^172^173b-*
Junction lb -> 172^163^

A2 eastbound A282 northbound 162~^ 164b 166-^
M25 southbound ->162->173b->
Junction lb -M62-M63->

M25 northbound A282 northbound “̂ 164a“M 66“̂
Junction lb -^160-M 63-^
A2 eastbound ^1 6 0 -» 1 7 1 ^
A2 westbound -> 160^161^

Table 3.2.1 -  Origin-destination flows for the network

From table 3.2.1 it is possible to assemble a flow diagram showing how vehicles pass 

through the counting points in the network. This is shown in figure 3.2.1 where the 

counting points are represented by ovals and the flows between them by arrows.

From the flow diagram it is possible to see all flows that lead to a particular counting 

point and all flows that lead away from it. All of the routes in table 3.2.1 can be 

traced through the diagram. Note that flows into and out of the network itself are 

listed in both the table and the diagram- it is important to track these quantities.
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167

170b168 170a 169 160 162 172

173a 171 173b161 163

165 164b164a

166

Figure 3.2.1 -  Flow diagram showing how vehicles pass through the counting

points in the network
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An effective model will use these relationships to improve its forecast quality 

or exploit their relationships in some other way- such as by recognising that unusual 

patterns in one node are likely to be reflected in nodes it flows to and nodes that flow 

to it.

3.3 Missing data

Unfortunately there are missing data in this data set. Specifically, some 

counting points have no data collected for them. Without any data, it is difficult to 

attempt to incorporate these counting points in the model. They could be estimated 

using Markov Chain Monte Carlo techniques and have been in previous work 

(Whitlock and Queen 2000). However, this would not be practical in a real-time 

implementation. It is far simpler to remove such counting points from the flow 

diagram and use the reduced diagram as the basis for the model. There are no other 

missing data in this data set. Were there points where some of the data were missing, 

it might be possible to impute missing values another, such as using Bayesian 

networks (Di Zio, Scanu et al. 2004), or by using the DLM model's natural response 

to missing data.

3.4 Flow diagram incorporating missing data

The counting points for which no data are available are: 160, 166, 173 a and 

173b. Removing these sites affects the flow diagram. For example, the route ->167-> 

170a->173a-> becomes ->167->170a-> when the missing site 173a is removed. 

Removing all the sites with missing data produces a new flow diagram, shown in 

figure 3.4.1.
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167

170b168 170a 169 162 172

171 161 164b163

Figure 3.4.1 -  Flow diagram for the network with missing and trivial sites

removed
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Notice that when these sites are removed from the flow diagram two other 

sites, 164a and 165, become disconnected from the rest of the network. They form no 

part of the hierarchical structure of the flow of traffic and are thus divorced from any 

multivariate structure. As this thesis aims to examine and model the multivariate 

nature of a traffic network they shall be dropped from the model. Additionally, the 

network is now subdivided into two separate subnetworks with no counting points in 

common.

The flow diagram is of great importance when building a model that 

incorporates the relationships between the counting points. The flow diagram will be 

revisited in chapter 6 when such a model is constructed.
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Chapter 4 -  Dynamic Linear Models

The model developed for the traffic network is based on Dynamic Linear 

Models (DLMs). This chapter introduces them and reproduces properties of them 

that will be used later.

4.1 Dynamic Linear Models

Dynamic Linear Models are a class of models commonly used as a Bayesian 

means of forecasting time series (West and Harrison 1999). A DLM is characterised 

by four matrices, indexed by time:

DLM{F,G,V,W],

This characterisation is used to construct two equations that define how the DLM 

process evolves:

Observation Equation: Y = F Tt 6t+vt vf~ A [0 ;F f] -4.1.1

System Equation: 6 = G t0t_l+wt -4.1.2

The two series of variables vt and wt are independent of all other aspects of the 

model, including each other and their own historical values. The (possibly 

multivariate) time series Yt represents the quantity to be modelled, and the (again

possibly multivariate) time series 6t represents underlying quantities that the 

observations are influenced by. The G-matrix characterises how these underlying 

quantities evolve over time, while the F-matrix transforms these parameters into the 

observed quantities. The V- and W-matrices determine the random ‘noise’ associated 

with each equation. Noise in the observation equation is transient, whereas noise in 

the system equation affects the current level of the underlying parameter set.
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By drawing inferences on the underlying parameters the forecaster can then 

forecast the observed quantities using the structure of the DLM. The system equation

has a Markov property, so that only the current estimate of 9t is required in order 

to forecast the series. The DLM model proceeds as follows:

Let the posterior distribution for the parameter 0,_ x be given by the 

equation:

Ct_x\ -4.1.3

where Dm denotes ‘all information up to time t-l \  Note that often the conditioning 

on Dm is omitted from equations when dealing with the DLM; in general this 

condition is assumed unless specified otherwise. The structure of the model means 

that all this information can be encapsulated in this single distribution.

It is simple to derive the prior distribution for 9t at time t-1 from the

posterior for Qt_x :

(0f|Dr_1)~iV’[a/>\ftr] where

ar E{e\Dt_,)=E[Gflt_x+M^=E[Gfi,.x)+Q=G,E[e^)
a = G ,m „

R =  Var (Q\Dt_-^=Var (Gt 0,_!+ wf)
R = Var(Gt9t_l) + Var(wt]j+2cov(Gt9t_1,wt) -4.1.5
R =  GtVar[ 0,_J GTt + Wt+0 = Gt Ct_ f i Tt + Wt

It is equally simple to derive the prior distribution of Yt at time t-1 (called the 

one-step ahead forecast distribution) from the prior for 9t :

(y ,|D ,-i)~ ]V [/,;a ] where

/ - £ ( y i|D,_1)=£(F ,r 0,+ v()= £ (F [0 ;)+ O = ^ £ (0 ,)= JF,r fl, -4.1.6
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a = F ar ( y , |A - . ) = M ^ , + v , )
Q,=Var[FTt 0l'j+Var(vl)+2cov(Ff0,,  v,)=FjVar^9,'jF,+V,+ 0 - 4.1.7

Q,=Fr,R,F ,+V,

The above notation is standard in DLMs and will be used throughout this thesis.

Proof of the updating equations which calculate the posterior for 0t after 

observing Ytis not given here, but the result is reproduced below:

Y ^ N ^ m t ;C^ where 

m=E[Ot\Dt_l , Y t]=at+Atet -4.1.8

C,=For(0,|Z)(_1, r ()=i?(- ^ , e , 4  -4.1.9

and

e , = Y , - f ,  A = R ,F ,Q ;1

Usually {Dt_] Yt j is equivalent to Dt but in some circumstances Dt may 

contain additional information. One important example is when expert opinion is 

incorporated into the model.

There are two other quantities of interest with regard to a DLM which 

appeared in equations 4.1.8 and 4.1.9. The first is the one-step ahead forecast error et 

which indicates how well the model is performing. The second is known as the 

‘adaptive vector’ At. The adaptive vector is of particular interest as not only is it used

to find the posterior distribution of 9t given Yt, but it can be seen from equation

4.1.8 that it determines how quickly each element of 0t will adapt to the observed 

value Yt. The larger the value of At, the more mt depends on et.
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This gives the most general form of the DLM. In practice, there are several 

simplifications that can commonly be made that make the DLM even easier to 

implement, and several adjustments that are necessary for the DLM to be practical.

4.2 The univariate DLM

In a univariate DLM, the observation Yt is a single value. This means that/, 

Qt and Vt will also be single values and that Ft will be a vector with a length equal to

the number of parameters in 6t . The vector Ft and the matrix Gt are specified as 

part of the model and will often be constant over time. For the model to be workable 

it is essential that the series of posterior variances Ct for 61 should converge. Ct is

the variance of the estimate of 9t and if it does not converge then the estimate is 

of little use. For constant F and G this has been proved for multivariate models that 

are ‘observable’ (Harrison 1997). A DLM model is observable if the observability 

matrix T given by

T=

F t

f tg

F t Gn~x

4.2.1

is of full rank. Observability is a sufficient but not necessary condition for the 

convergence of Ct. The observability criterion depends only on the matrices chosen 

for F and G. This means that the forecaster can make a model observable, and thus 

convergent, by design.

4.3 Unknown system noise variance

The basic DLM requires the system noise variance, Wt, to be specified. There 

may not be a natural value to pick based on the problem, so an alternative method
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can be used. By choosing to specify Wt in terms of Cm (the posterior variance for 

), the forecaster makes an assumption concerning the system noise variance. 

This is done using a discount factor 5 , and defining Wt as follows:

Jri=G,C1_1G f ^  0< 5 < 1  -4.3.1
o

This now means that the prior variance for 0t is given by:

R = G , C ^ G Tl +G lCt, lGT, ~ = G tCt_lGT, 5 - 1 -4.3.2
o

This new derivation of Rt can be used throughout the rest of the prior equations and 

the updating equations. That particular form of Wt is chosen so Rt has the convenient 

form above. It is simple to implement and is meaningful in context as how the

posterior variance for Qt_x is ‘discounted’ to form the prior variance for 0t . A 

value of 5 =1 is equivalent to setting Wt=0, producing a static model for 6t . 

High values of 5 imply that there is little increase in the uncertainty and give low 

values of Wt. Low values of 5 imply the opposite. Unlike specifying Wt 

explicitly, discounting is always relative to the current estimate of 0t . Typical 

values for 5 range from 0.8 to 1. A value smaller than this generally means the 

resulting forecast variances are too large for the model to be useful.

4.4 Unknown observation noise variance

Like Wt, the observation noise variance Vt needs to be specified as part of the 

DLM model but often this is not easily done. The DLM can be adapted to include 

‘variance learning’. It is assumed that V is constant but not known, and V is

estimated through a parameter <£_1= V that is updated in parallel with 0t . The
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distribution of <f> is Gamma, an appropriate Bayesian conjugate modelled through 

parameters St (the current point estimate of V) and nt (a measure of the current 

precision of this point estimate). The updating equations for the variance learning 

portion of the model are as follows, following the same notation as previously:

Variance distribution:

Updating equations:

M a - . K

n = n t_l+\

Updated variance equation: (qf>|Dt_x, T,)~ F
nt ntSt
2 ’  2

-4.4.1

4.4.2

4.4.3

- 4.4.4

The distributions for the observation equation are Normal when conditioned 

on ( p 1, but the marginal distributions are Student-T distributions so with the same 

notation as before the prior distributions become:

Prior distribution: [Qt\Dt_ ^ ~ T n -4.4.5

Forecast distribution: [Y\Dt_ ^ ~ T nt J / , ;  Qt] - 4.4.6

The updating equation for Ct is changed as follows:

Cl= - ^ - [ R l- A lQ X )  -4.4.7

As the model progresses nt becomes large and the T distributions become 

increasingly similar to Normal distributions. However, as in the discounted system 

variance case, other aspects of the DLM are unaffected.
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It is important to note that with Student-T distributions the matrices Ct and Rt 

are not variance matrices; rather they are the scale matrices for the T distributions. 

However, variances can be produced from these quantities, given nt. This method of 

variance estimation works only with univariate models. Although methods exist for 

variance estimation in multivariate DLMs (West and Harrison 1999), they have 

restrictions on when they can be applied that makes them inappropriate for this traffic 

modelling problem. In particular they assume Ft, Gt and Wt are the same across all 

series which will not be the case in this application.

The DLM that will used in this model incorporates variance learning, 

discounting for Wt and constant G. Using the above work the DLM is as follows:

4.5 Final DLM

Observation equation: Y,=Fle,+v, V. AT[0;F] -4.5.1

System Equation:

Information: -4.5.3

-4.5.4

Discount assumption: t 1 - 5W = G C t XG - — -  

* *_1 §
0<5<  1 -4.5.5

Forecasts: -4.5.6

-4.5.7

where:

Updating equations

a{=Gmt_x R = G C , _ y G TSrl 

Qt= F^ RIF , + S I_1

-4.5.8
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-4.5.9

m = a t+ A tet -4.5.10

where:

Ct= ^ [ R r AtQ,AT,) 

e , = Y - f ,  A,=RtF,Q-'

-4.5.11

The remainder of this chapter looks at two further aspects of DLMs that are 

important in this application- the introduction of seasonality and the incorporation of 

outside information.

4.6 Seasonality in DLMs

Where a time series exhibits apparent seasonality, a DLM can be specified 

such that this seasonality is encapsulated in the choice of F and G. This can be done 

independently of any variance discounting or estimation. There are three main 

methods of introducing seasonality into a DLM.

4.6.1 S e a so n a l fa c to rs

In the seasonal factors model, each time period within the seasonality has a 

single element of 9t associated with it. Only one of these elements is used at a 

time, and they are cycled through time using the G matrix. These models are the most 

basic way of incorporating seasonality in the DLM model. F and G are of the 

following forms:

F= 0

0 1 0 - 0  
: o 1 \  :

G= : \  0

0
0 0 1
1 0 ..........  0
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The dimensionality of the matrices is determined by the periodicity of the 

seasonality- in the case of hourly data F is 24x1 and G is 24x24.

4.6.2 S e a so n a l e ffec ts

The seasonal effects model is similar to that of the seasonal factors model, 

except that it assumes there is an underlying level, and the seasonality is modelled as 

deviations from that level. Note that the seasonal effects must sum to zero and 

additional constraints must be placed on the initial Ct matrix in order for this model 

to converge.

M
1
0

1 0 . . . . . . . . .  0
0 0 1 0 . . .  o

G= 0 1
0

l°l
0 0 1

01 1 0 . . . . . .  0
1

The dimensionality of the matrices is one greater than the periodicity of the 

seasonality- in the case of hourly data F is 25x1 and G is 25x25. The matrices are the 

same as for seasonal factors but with an extra initial row for F, and an extra initial 

row and initial column for the G matrix. This model is best used when the seasonality 

is believed to be a series of deviations from some underlying level, such as electricity 

use over a year. Seasonal effects provide estimates of both the underlying level and 

the deviations. Where it is believed there is no underlying level, or the level is of no 

particular interest, then the seasonal factor approach is generally preferred.

4.6.3 F ourier m odels

Seasonality can be expressed in terms of a Fourier decomposition. When the 

period of seasonality is odd, F and G have the form:
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Ie 2 J 2(l,w) 0
1

0

F= e 2 G= 0 J 2{l,2w) ■ 0

\Eh 0
i

0 • J 2(\,hw)i

where for m=l,...,h:

e 2= cos\mw) sin\mw
-sinlmw) coslmw

When the period of the seasonality is even, F and G have the form:

N J 2(l,w) 0 0 0
e 2 0 J 2{l,2w) 0 0

F= 1 G= ; : ;

e 2 0 0 •• J 2( l ,h w -w ) 0

I 1! 01 0 0 -1 1

In both cases the value of h is dictated by the periodicity of the seasonality. A Fourier 

seasonal model of this sort is essentially a reparameterisation of a seasonal factors 

model. However, by eliminating harmonics that are deemed to have an insignificant 

impact on the model a smooth seasonal pattern can be achieved with fewer 

parameters when a Fourier model is used. However, the parameters will need to be 

transformed back again if the forecaster desires to examine them.

4.7 Expert intervention

In a time series model such as the DLM, a forecaster may receive information 

from outside the model that they wish to incorporate into their forecasts. The 

Bayesian basis makes this straight-forward in the DLM. The information can be 

included in the model in many ways which are given below. The forecaster may 

choose to intervene purely on the basis of prior information- incorporating 

information exogenous to the model. The forecaster may also intervene retroactively-
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choosing to apply a method of intervention just after the time point has been 

observed. The set of information that provokes the intervention is denoted by It. If 

there is some parameter associated with the intervention it can be denoted by it.

There are many ways that expert opinion can be included in the DLM, each 

well-suited to a particular situation. The forecaster must judge which is most 

appropriate for the circumstance.

In some circumstances unusual behaviour may follow a predictable pattern or 

have a consistent magnitude, in this case there can be formal methods for including 

such infrequent jumps as part of the model, after the change points in Makov (1983). 

However, these techniques would not be appropriate unless there was a reliable 

pattern in the jumps.

4.7.1 D isregard ing  d a ta

If the expert believes that a particular observation is the result of factors not 

relevant to the modelling of the system, such as equipment error or a one-of-a-kind 

event, and they also believe that the data are not informative about future events, the 

time point can be treated as missing data. In this case:

It = {Yt is to be treated as missing data)

When missing data are encountered in a DLM, the prior estimates for 0t 

become the posterior estimates without further change. The updating equations 4.5.8 

to 4.5.11 become:

n t=nt-1

S r S ,_,

mt=at
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Ct=Rt

4.7.2 T ran s ien t c h a n g e  in level

The expert may believe that the observed value will be affected by some 

factor outside the model, but only for one time period. The expert can quantify by 

how much the observed value is expected to be changed:

It={ Yt is affected by a transient parameter it}

i r [ f ,  :0:)

The observation equation is changed for time t only to give:

Y - F ^ e . + i ^ v ,  - 4.7.2.1

This leads to the forecasts:

{Y\Dt. v l ^ T „ \ f t;Q]

f  t=F T, a t+ f*  -4 .75 .2

Q = F t, RtF  :+Q*+2cov[f ] 0„i,) - 4.1.2.3

Note that consideration must be given to the covariance between it and F Tt 0t , even 

if simply to assume it is zero. This intervention only affects a single time period as 

the 0 parameter is unchanged by the intervention and the observation equation reverts 

to its original form in subsequent time periods,

4.7.3 P e rm an en t c h a n g e  in level

If the expert believes that there will be a change in the underlying level at a 

certain time point, the system equation can be changed to reflect this change in level. 

This is done by inserting a parameter in the system equation in the same way as 

transient change was modelled by inserting a parameter into the observation 

equation. In this case:
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It={Yt is subject to a permanent change in level it}

- 4.7.3.1

The system equation is changed for time t only to give:

6t—G 0 -\-w - 4.7.3.2

This leads to the prior distribution for 0t:

- 4.7.3.3

R = G m i_l GT+R*+2 covl^G9t_l , i J - 4.7.3.4

As before, the system equation returns to its original form in subsequent time 

periods. Although the intervention only occurs in a single time point, the effects are 

long lasting as the level change has become part of the estimate of 0t from that time 

forward.

4.7.4 A rbitrary  in tervention

The forecaster is at liberty to change any aspect of the model. The estimate of 

the observation noise variance, the discount factor 5 , the estimate of 4> or 

even the structural matrices F and G can be changed in response to outside 

information. The above methods merely describe useful ways of intervening that do 

not require major revision of the model and seamlessly integrate the intervention 

with the regular functioning of the model. Care must be taken when intervening that 

the intervention does not destroy useful information already contained in the model.

4.7.5 Form al m onito ring

The question of whether to intervene does not depend solely on exogenous 

factors. If observed values lead the forecaster to believe that some unusual event has
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happened and the model is no longer adequately forecasting the system, they can 

choose to intervene to try to improve matters. This may provoke investigation of 

information outside the model to determine how to intervene, or intervention may be 

taken solely on the basis of the data. This monitoring of the data may be performed 

ad hoc by the forecaster, or a formal method may be employed to signal when the 

model is performing poorly. Formal monitoring methods similar to those used in 

quality control have been developed for DLMs. However, no formal methods have 

yet been developed for use with the models used in this thesis and thus formal 

monitoring is not considered here.
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Chapter 5 -  Multiregression Dynamic Models

A Multiregression Dynamic Model (Queen and Smith 1993) is a form of 

dynamic model that uses conditional independence and a causal driving mechanism 

within a system to decompose a multivariate time series into a network of univariate 

time series. Each univariate time series is conditional on some set of parent series. 

These univariate models can be updated independently and conditional forecasts for 

each univariate series can be found independently. Before the MDM can be 

introduced in detail, the Directed Acyclic Graph and conditional independence need 

to be introduced.

5.1 Directed acyclic graphs and conditional independence

A graph G(Y,E) is composed of a set of nodes Y and a set of edges E. A

directed edge from Yi to Yj is denoted by ( f ) , . Graphs such as these are

called directed graphs as the edges have a direction. If a directed graph is such that 

there are no ‘loops’ in the directed edges then it is a directed acyclic graph. Formally, 

a directed graph G is a directed acyclic graph (DAG) if there exists an ordering on Y  

such that:

Figure 5.1.1 shows two diagrams, the first is a valid DAG, the second is not a 

valid DAG for two reasons- it has a loop (containing Yi, Y2 and Y4) and it has an 

undirected edge (between Yi and Y3).

An influence diagram is composed of a series of conditional independence 

statements and a particular graphical representation of those statements. For a set of

39



Chapter 5 -  Multiregression Dynamic Models

Valid
DAG

Not a Valid 
DAG

Figure 5.1.1 -  Two example graphs, the first a valid DAG and the second not.
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random variables {Yi ... Yn } the series of conditional independence statements is as 

follows:

\ denotes set differencing 

where pa(Yt] is called the ‘parent set’ of Yi (Cowell, Dawid et al. 1999). Each 

element of this set is called a parent of Yi. This statement says that Y; is independent 

of all preceding variables except its parents, given the parent set. When defined 

across all Yi it can be thought of as a function. These statements assert that Yn is 

independent of all non-parent Yi preceding it given those parent variables. This 

implies an ordering across the set of random variables. If a graph is constructed with

edges from all the elements of Pa(Y^ to Yn then it can be seen that this forms a 

DAG. For example, if the parent sets of some set of nodes are as described here:

r.II^i -  rw}\/»(r,)|/w(r,) i=2>

T I denotes ‘is independent o f 

-5.1.1

/ w(y3)={yI}

then the following conditional independence structure is produced:

r 2- I I r ,
r 3 I I r 2ir,

r<IIr,|r2.r,
YslI i \ .r 2,73|r4
^ I l r i . r j . i v r j r j

1  denotes ‘not’

This will generate the DAG shown in figure 5.1.1.
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A certain degree of flexibility in the ordering of the nodes is generally 

present. The DAG and the conditional independence statements both specify the 

same structure, and together are considered to be the graph of an influence diagram. 

The benefits of formulating a DAG to describe these relationships are give in Pearl 

(1996).

5.2 Multiregression Dynamic Models

AnMDM models a multivariate time series 7 ,= { t?(i) Y t(l) ... Tf(«)j .

Suppose that the ordering of the elements of this time series is such that the 

relationships between them can be represented heuristically by an influence diagram 

of the form shown in equation 4.1.1, i.e.:

7,(i)U{r,( i)  ... r , ( i - i ) } \ /w (r t(i))|/w(r,(i)) -5.2.1

This influence diagram (and thus p# (T((z-)) ) remains the same for all t. It can 

be interpreted as the statement that the value of Yt(i) is independent of the values of 

all non-parent nodes at time t preceding it in the DAG given the values of its parents.

Suppose further that there is similar conditional independence through time, 

and that this structure can be represented heuristically as follows:

r ,(;)II{^(i) ... - 5-2-2

where Y k(r)=JTj (r) ... Yk(r)j . The multivariate network can then be modelled as

a series of univariate models using this conditional independence structure. Each 

node at time t has as its parent set any ‘parent nodes’ up to time t and its own history. 

Once the parent set is known, information about the other, non-parent nodes is of no 

additional use when forecasting Yt(i). This forms the basis for the MDM.

42



Chapter 5 -  Multiregression Dynamic Models

The MDM is a Bayesian forecasting system and, as such, the historical 

information Yt_1(i) can be encapsulated through the prior distribution of the set of

parameters 0f(/) . Thus the conditional independence statements of equation 5.2.2 

become:

7 ,(;)U {^ '(1) 7,(/-l))\pfl(yi(»)),r-1(/)|p0(y,(<)).»,(/) -5-2.3

It is important to note that the MDM uses influence diagrams to represent 

conditional independence structure analogous to causality between the series. 

Variables that are hypothesised to be causally linked should be connected by a 

directed edge following the direction of causation (Wermuth and Lauritzen 1990).

The direction of the edges in an MDM is important as it suggests a natural direction 

for the percolation of unusual events. If the MDM is to be used effectively when 

intervention is employed, this causative relationship.must be accurately portrayed. 

DAGs can represent the same conditional independence structure but with very 

different ordering. This is why the conditional independence statements (as thus, the 

ordering) are considered an important part of the conditional independence 

relationship.

For example, consider the two DAGs presented in figure 5.2.1. In both DAGs,

A \ J C \ B  . However, the causal relationships in the two DAGs are very different. 

The first implies a causal link from B to C, the second implies a causal link from B to 

A. One or the other, or both, may be true. The decision as to which DAG is the most 

appropriate should be made heuristically based on whichever best matches the 

inherent causality in the application in question. In the case of single direction traffic 

flow, as here, one direction would be more likely than the other.
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Figure 5.2.1 -  Two superficially similar DAGs with different causative structure.
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The MDM uses these influence diagrams to model each time series Yt(i) by a 

univariate model that regresses on its parents. It uses a system equation and an 

observation equation, as in the DLM, but they need not be linear. The observation 

equation in its most general form is:

where:

• The function^ ) can be any known function.

• vt(i) need not be Normal

• Ft(i) is a function of pa(Yt(i)), but may also include exogenous variables.

When the function^ ) is linear, this becomes the observation equation from a 

regression DLM. In this case, we have a linear MDM.

For each node, a system equation for an MDM can be specified as for any 

DLM with the following constraints.

• Across the whole model, all the vt(i) and wt(i) need to be independent of each 

other and other parts of the model through time.

• The 0t (i) also need to be assumed independent of each other initially so that 

Co is block diagonal.

•  G  and Wo must also be block diagonal.

The structure of the system equation means that the parameters

6t (i) ... 6t(n) , if set independent of each other a priori, remain independent 

after the data are observed. Setting C0 to be an appropriate block diagonal ensures 

independence a priori and thus independence for all time. This means that each 

variable Yt(i) can be modelled by an independent univariate model conditional on its

- 5.2.4

45



Chapter 5 -  Multiregression Dynamic Models

parent set. Parameters for each univariate model can be updated separately, in 

sequence. The DAG structure defined across the time series has therefore been used 

to decompose the multivariate model into a series of separate conditional univariate 

models. Each of these models is a Bayesian dynamic model so the techniques 

available to them are directly applicable to the decomposed univariate models.

The observation equation for an element of a linear MDM is:

and the notation refers to theyth element of a vector or ordered set. Yt(i) is 

regressed on its parents from the DAG inside the same time period. This is similar to 

regressing Yt(i) on other observed values in previous time periods. However, 

regressing on values in the same time period requires more work to find marginal 

forecast distributions because the parents are not yet observed when the forecasts are 

made.

Seasonality can be incorporated into the model by constructing a Ft(i) in the 

same way as for a seasonal DLM defined in section 4.6- except that the elements of 

pa(Yt(i))[j] take the place of unit values. In the seasonal factors case this is:

-5.2.5

where, for example:
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Pa{Yt\hn i] 
0

0

pa[Yt{i)\2] 

0

0

pa(Yt(ij){j] 
0

0

A significant difference between a regression DLM and a non-regression DLM

is that the parameter vector 6t (/) is not a vector of absolute values itself but is 

scaled by the values of the regressors, in this case the parents of i. Discounting for Wt 

and variance learning for V can be used just as in the general DLM.

Some observed variables at the beginning of the network will have no parents. 

These can be labelled ‘root nodes’, as in figure 5.2.2. In the case of these root nodes 

any means of modelling a time series can be used. In fact there need not be a 

consistent approach throughout the network for root nodes, although it will generally 

be sensible to adopt one. If an MDM network uses a consistent method of modelling 

root nodes this could be indicated by calling it ‘backed’ by that modelling approach.

An MDM node may itself incorporate data exogenous to the MDM model 

(Queen and Smith 1993). The F vector for such a node would be:
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Root nodes

 j

Figure 5.2.2 -  An example DAG showing which nodes are root

nodes.
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where the xj represent exogenous variables. A constant term can be encapsulated by 

the ‘1’. The parameter vector would include subvectors of parameters for regressing 

on parent nodes, regressing on the exogenous variables and the constant regressor.

An application may require an MDM node with this property- in the application here 

a node where traffic flows from one or more parents and from outside the network is 

an example. Because of this, ‘backing’ an MDM with DLMs is useful in that it would 

provide a consistent approach to flows into the network between root nodes and the 

kind of node described above.

5.3 Updating and forecasting in an MDM

The updating equations for the DLM are used unchanged in the linear MDM. 

The conditional forecast distributions for a linear MDM are Gaussian. However, 

these are conditioned on the parents for each node, which will not be observed when 

the node itself is being forecast. The marginal forecasts for the parents, unconditional 

on their own parents, are needed to obtain the marginal forecast for a node. Thus the 

marginal and joint forecast distributions for the MDM are highly non-Gaussian and 

generally intractable. This means acquiring marginal forecasts is more difficult than 

in DLMs. Fortunately, the updating equations are performed at the conditional level, 

meaning there is no additional difficulty in updating the model parameters. Although 

the forecast distributions are non-Gaussian, expected values, variances and
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covariances of marginal and joint forecasts can still be obtained, as will be shown in 

chapter 6.

To illustrate how this result holds, consider the DAG in figure 5.3.1. It is a 

DAG for a three-dimensional series with its parameters included. It is possible to 

verify that the parameter sets can be updated independently by constructing a 

moralised DAG. To construct a moralised DAG, all the parents for each node are 

joined with an undirected edge, and direction removed from the remaining edges. In a 

moralised DAG, two nodes are conditionally independent if all paths between them 

pass through the conditioning set. The moralisation of the DAG in figure 5.3.1 is 

shown figure 5.3.2.

Using the moralised DAG it is possible to verify that the parameters can be 

updated independently conditional on the observed values of the parent for that node. 

By tracing paths between nodes it can be seen that:

^UjLJ (̂s)» @{c)M

®\a ) ’ ^

O’,A)* »c

This means that if the three parameters 0 ^  , 0[B ] and 0(Cj are 

independent a priori, they remain so after observing A, B and C.

Although the flow of traffic suggests a natural direction of causation in this 

application, in some circumstances the direction of causation may not be 

unequivocal. In these conditions chain graph models (Lauritzen and Richardson 

2002) are an appropriate representation of the causal structure but without
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Figure 5 .3 .1- Example DAG for an MDM network

Figure 5.3.2 -  Example moralised DAG for an MDM network
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modification can't be used as the basis for an MDM as the non-directed link does not 

indicate which variable should be regressed on which. In circumstances where the 

application does not suggest a natural direction of causation, exploratory techniques 

exist to determine which model is most appropriate (for example Consonni and 

Leucari 2001).

5A  Intervention in the MDM

A linear MDM is a series of regression DLMs, and hence all techniques for 

intervention in a DLM can be employed in a linear MDM. The parameters are 

regression parameters as opposed to absolute levels but mechanically there is no 

change needed. Additionally, the conditional independence structure means that the 

MDM model is an expert system, and techniques appropriate to expert systems can 

be considered here (Spiegelhalter, Dawid et al. 1993). A real-time forecasting system 

for this application will require intervention to be performed relatively quickly, 

incorporating a variety of sources of information. Should these sources need to be 

combined to provide a suitable composite before intervention is applied to the MDM, 

the method in Faria and Smith (1997) is appropriate. The standard techniques of 

intervention for the DLM can incorporate such information or pooled opinion 

satisfactorily.

5.4.1 In tervention  by tie rs

The hierarchical structure does introduce some additional effects on 

intervention that offer significant advantages over a multivariate DLM of the same 

network. When intervention is performed at a node in an MDM network, then this 

intervention affects the forecast for that node. The forecast of that node is then used 

as the basis for the forecasts for its children. The intervention percolates through the
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entire network down from where it was performed for no additional effort. This is in 

stark contrast to a multivariate DLM where intervention must be performed across all 

affected quantities. As intervention generally requires non-trivial decisions 

concerning manner and extent, the gain is marked. Figure 5.4.1.1 shows an example 

DAG for a series and illustrates where this gain is made.

Assume that the modeller determines (through whatever means) that 

intervention is required at node A. If the causal structure in the DAG is valid, then 

the nodes descended from A (B, C and E) share this period of unusual activity and 

will likely require intervention also. However, when intervention is performed on 

node A, the forecast including the intervention is used as the basis of the forecast for 

B, and similarly for nodes B and C then C and E. This means that a single 

intervention at node A may be sufficient to correct unusual activity in all four nodes. 

However, there may be unusual activity at the same time in nodes B, C and E that is 

not related to that at node A- so it is necessary to check whether intervention is 

needed after the intervention at A has been performed. However, there is no need to 

check nodes lower in the network before checking node A. In a collection of 

univariate models or a multivariate model, the assessment of whether intervention is 

necessary needs to be performed simultaneously across nodes. In this example, 

unusual activity at node A would require intervention at nodes A, B, C and E, a 

fourfold increase in the number of interventions (and hence the number of decisions 

concerning extent of intervention) that have to be made.

The approach deals with each layer completely before moving on to the next- 

and hence will be called here ‘intervention by tiers’. In intervention by tiers the 

modeller begins by examining the behaviour of the nodes at the very highest level of
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In a series of independent
Intervention

DLMs intervention must be
performed here

performed at all four to achieveAlso affects
 i —

the same resultthese nodes

Figure 5.4.1.1 -  Example DAG showing how intervention filters through tiers in

the model
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the network, which will consist only of root nodes that are at the very ‘top’ of 

the model. Once the modeller is satisfied that intervention is not necessary or has 

applied intervention then the next level down through the hierarchy is examined. This 

level will consist of any children of nodes in the first level and any root nodes that 

will be required before the following level can be examined. This continues until all 

nodes have been examined in this way and intervention applied where necessary. In 

figure 5.4.1.1, the first phase involves performing intervention at A, if any. The 

second phase examines B after intervention at A and sees if any intervention needs to 

be performed for it. The third phase examines C and D, in the light of any previous 

intervention, and the final phase would see if intervention was still needed for E or F 

after all previous intervention.

Every node in the network is examined to see if intervention is required (as 

would be expected) but the number of interventions that have to made may be lower 

by virtue of the MDM network structure. Even in the worst case intervention by tiers 

only requires as much work as intervening simultaneously in a multivariate DLM 

model.

An important ramification of intervention by tiers is that the network 

hierarchy should reflect any causal drive through the system, as discussed in section 

5.2. Should this not be the case, intervention at one node will percolate to a node that 

is unaffected by the event itself, requiring further intervention to correct the 

erroneous change.

Selecting a DAG for an MDM that accurately reflects the causative links 

between nodes will avoid problems such as erroneous intervention. The causation is
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what enables intervention by tiers to work and should be preserved if the MDM is to 

be effective.

In some circumstances, an event in the network may cause counter-causal 

effects. For example, a road accident will not only affect nodes further down the 

network but will also cause traffic queues that may impinge on nodes further up the 

network. However, despite the counter-causal nature of the event it can be dealt with 

as though the cause of the event was where the end of the queue was. The forecaster 

can intervene at the furthest upstream point of the queue, and if necessary intervene 

at the point of the accident to reflect possibly different behaviour at the two locations. 

The nodes downstream of the accident site inherit the intervention as normal, and the 

nodes between the end of the queue and the accident site inherit the intervention of 

the queue end. Where a node has more than one parent, the upstream extension of the 

event will require different intervention at each point, and possibly intervention when 

they join. Even in the worst case, however, it will only involve as much intervention 

as a model that doesn’t exploit the causative structure. The forecaster may have 

historical information that suggests a pattern in such cases, which may reduce the 

work required to intervene. If intervening proactively, the forecaster will have to 

assess where the queue is likely to extend to and whether additional intervention is 

required at the accident site in addition to the end of the queue. When intervening 

retroactively, both of these can be established from the forecast errors in the data.

In the data used here, there is no contextual information as to what causes any 

period of unusual activity and thus whether any of the events are counter-causal.

To illustrate how this works in practice, consider the plots of forecast errors 

for a number of nodes in this data set shown in figure 5.4.1.2
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OMBff MMgg

Tb Tb

Figure 5.4.1.2 -  Forecast error plot showing how intervention filters through

the MDM
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Those on the left show the pattern of forecast errors without intervention. The two 

lower nodes are downstream of the top node, and the unusual activity in this period is 

common to all three. The forecaster, however, only considers the top node and 

decides to intervene. The plots on the right are after intervention has been performed 

at the top node only. The plot for the top node after intervention shows the gain made 

there. Having done so, the forecaster then considers the error plot for the second node 

after the intervention in the first (middle right plot) and decides that intervention is 

not required at this point. Finally, they consider the final forecast error plot and again 

decide that no further intervention is necessary for this event. More details on the 

interventions performed here are given in chapter 7.
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Chapter 6 -  Old and New Results in DLMs and MDMs

This chapter presents results and ideas for DLMs and MDMs beyond the 

introduction to them in previous chapters. Some of the results are standard and others 

are presented here for the first time. They are commingled because some of them are 

heavily interrelated. There are three main areas of these results. The first is the 

concept of a ‘deterministic twin’ - building on deterministic nodes used in MDMs 

previously. The second deals with forecasts in an MDM network including a 

deterministic twin. The third section concerns a new technique of intervention in 

DLMs and linear MDMs.

6.1 Deterministic twins

This section considers a particular kind of deterministic node in an MDM 

network. The need for it arose through applying the linear MDM to the traffic 

network considered here but its use is far more general.

If the value of a parent node must be equal to the sum of its children (because 

of the nature of the application, say) then this places a restriction on the model 

parameters. It implies that the value of a child node is deterministic given those of 

the other children and the parent. In the case where a node has only two children, it is 

only necessary to model one child as an MDM node. The other can be simply 

calculated and forecast from its ‘twin’ and its parent. This deterministic node, while 

part of the MDM network, is neither a regular MDM node nor a root node. It is a 

deterministic node which here will be called a deterministic twin. The forecasts for 

the parent and the child can be used to generate forecasts for this deterministic twin. 

The twin itself can be indicated in a DAG with the usual notation of a square box for
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deterministic nodes. To illustrate, consider figure 6.1.1 where A must equal the sum 

of B and C. In this case, the parameters 0(b) and 0(C) must sum to 1. However, if nodes 

B and C were modelled separately with parameters 0(b) and 0(c), then there would be 

no restriction on their sum being 1. Attempting to model both separately with this 

restriction would result in a DAG where the parameters were not independent, 

breaking the requirement of the MDM. By setting one of them to be a deterministic 

twin, the restriction is in place in a way that does not break the assumptions of the 

MDM. The revised DAG with a deterministic twin is shown in figure 6.1.2.

These deterministic twins are of interest because a network may have 

deterministic twin nodes with children. Obtaining forecasts for deterministic twins 

permits modelling their children. It is also of note that the choice of which child is 

modelled directly and which is left as a deterministic twin is not forced by the model. 

Even where the deterministic twin is not observed it is forecast as a consequence of 

forecasting its parent and sibling.

In the case where a parent node has more than two children that sum to it, the 

conditional independence of the parameters is not preserved even if a deterministic 

twin is used. Whichever children are modelled directly do not have their parameters 

modelled independently. In this case, it is necessary to break the parent/child 

structure into a number of levels, each of which has a parent with only two children. 

Consider the candidate DAG in figure 6.1.3 where A is the sum of B, C and D. The 

parameters 0(b) and 0(q will not be independent, because their sum is constrained. 

Instead, the structure must be broken into a series of tiers as shown in figure 6.1.4.

As in the two-child case, the choice of which child is modelled directly and 

where it is modelled is not forced by the model. The nodes created for this approach
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Figure 6 .1 .1- Incorrect DAG for an MDM network with constrained children.

(A)

Figure 6.1.2 -  DAG for an MDM network with a deterministic twin C

Figure 6.1.3 -  Example of a parent with three children summing to it- but without

correct independent updating.
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need to be observed for the approach to work, but it is always possible to select 

quantities that will be observed as long as the children themselves are observed.

Nodes with a greater number of children simply require more tiers of the 

order of 0(log n). Whenever such a restriction exists, a parent node may only ever 

have two children, one of which must be a deterministic twin.

Where a restriction exists that is not equality, then similarly the parent/child 

structure should be broken down. For example, in a flow network two children must 

not sum to greater than their parent. In this case, the difference between the sum of 

the children and the parent is not directly observed and may be of no interest to the 

forecaster but is still calculated from the other nodes and forms part of the MDM 

structure.

Note that this approach deals with restrictions on the observed quantities, not 

those imposed directly on the parameters. Additionally, this approach is not of great 

utility where there are multiple parents, as it is not clear what the quantity for the 

deterministic twin should be. This decomposition is similar to the competitive market 

models of Queen (1997), however in this case the decomposition must be strictly 

binary. It is also superficially similar to the assignment problem considered in 

Cargnoni et al. (1997) where the approach to categorical data used conditioning on 

the known and total constant.
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(A)

(B+C)

(C)B+C

Figure 6.1.4 -  Example DAG showing how three siblings are broken into tiers
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6.2 One-step ahead forecasts

Using standard DLM methods it is possible to find one-step ahead forecasts 

for an MDM node conditional on its parent nodes. However, it is more useful to be 

able to calculate the marginal forecasts. Derivation of these marginal forecasts is 

straightforward (Queen and Smith 1993). The results are derived below in the 

notation established in chapter 4.

For node i, denote the marginal forecasts by f  t( i f=E^Yt(i)\Dt_-  ̂ and

Root nodes are not MDM nodes and thus / f(z')*=/,(z) and Qt(i)*=Qt(i) for 

each such node i.

For two random variables X and Y there is the general result:

E[X]=E[E(X\Y)}

Define F t(i)*T to be f  t[pci[i 0 • • •  0 • • •

In other words, Ft (z )* is of the same form as Ft(i), but with the marginal forecast

means for node i’s parents in place of the observed values- F t(z)*=£[Ft(z)|Dt_1] 

Then:

- 6 . 2.1

Now consider Qt(i)*. For any two random variables:
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Var\X\=E

* Q M = e

Var(X\Y)]+Var[E[X\Y)\

Q,\i)\+Var[ft[i]\

For the first half of the right hand side:

E[Q,[i)\=E

E [ Q t [i)\= E

As Rt[i) is a covariance matrix it is positive definite and can be decomposed as 

follows:

R, ( i )=B, ( i )Bt ( i f

where Bt[i) is non-singular. This gives:

E[Q, { i ) ]=E

Using the identity for two vectors a and b: 

aTb=trace(abT) 

and setting aT=Ft(i)TBt(i) and b=Bt(i)TFt(i) this becomes:

E

= tmce\ E

trace {B^i} F,(i)F,(i) B,(i) +S_,(f)

B,{i) F,(/)F,(i) £,(/) + 5_ ,(i

Further, using the identity for a vector x that:

Var

=*E

x]= £ [x x r ]-£ [x ]£ [x ]r 

x x T ]=U ar[x]+£[x]£[xf

this becomes:

<wCe(Far[B,(ifF<(/)]+£[i>,(i)V,(/)]JE[B1(i)rF,(i)f)+51. I(/)

= t e e(5 ,(/)V a4F,(i)]54i)+B,(i)r £ [F ,(i)]£ [F ,(i)fJB ,(i))+ ^ .1(!) 

= trace(B,(i)TVar[Ft(i)\B,[i)+Bl{i)TF l(i)tF l{ifTB,{i))+S,_{\
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The matrix Var^Ft[ifj is easy to construct from the marginal variances of the parent

nodes and the marginal covariances between them. The former are the Qt(i)* for the 

parents and the latter is considered in the next section.

For the second half of the equation for Qt(i)*:

requires the marginal covariances between the parent nodes. One-step ahead forecasts 

for deterministic twin nodes can be found from the marginal forecast moments of 

their associated nodes. This requires finding the covariance between a node and its 

parent. Finding the covariance between two nodes in an MDM network is covered in 

the next section.

The same forecast quantities can be found for a deterministic twin as follows: 

Let Yt(j) be the deterministic twin of Yt(i), with parent Yt(p).

t { j) \=Var\Ft{ t f  a , ^

Var[ f  ((!')]= a 1(0r (*)]«,(*)

and the variance of Ft(i) has already been described above. 

Finally, the marginal variance is:

Q ,( i f - t race  B ^ f l ^ a r ^  t( i ))+F,(if  F t( i f T)iBt(i} + a ,( i f  F(V-(F,(i))a,(/)+,?,_,(;)

-6.2.2

Notice that where a node has more than one parent, finding Var^Ft(i)]

Qt( j f  = Var[Y , ( j ) \=Var \Y  , ( p ) - Y  ,\i)\

-6.2.3

-6.2.4

Again, a covariance is needed in order to calculate the forecast variance.
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6.3 One-step ahead covariance matrix

From the above, it can be seen that in MDM networks where nodes have 

more than one parent, or where the forecasts for deterministic nodes are of interest, it 

is necessary to calculate the covariance between nodes. It is possible to calculate the 

covariances iteratively. There is a general form (Queen and Smith 1993) that finds 

the covariances between all the nodes. However, in some circumstances the 

covariances of individual components of a node with other parts of the model may be 

useful in themselves. Even if covariances are only of concern in calculation of the 

one-step ahead variances, it is necessary to find them. The iterative method provided 

in Queen and Smith can be simplified to the point where it becomes a single line 

equation for each node as follows:

For an MDM node Yt(i) with parents begin by partitioning Ft(i)

and 0,(f) as follows:

functionally identical to having a constant parent. This means that each component of 

decomposition 5.3.1 refers uniquely to one parent of (or flow in to) the node. Define:

-6.3.1

and further defining the analogous quantities for the prior mean of 0,(i , j n) :

In the case of a node that also has an inflow from outside the model, recall that this is

The observation equation can now be rewritten as:
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^ ( ') = r i ( ' ' / i ) +}r.('-/2 )+ "-+ lr.( '-A )+ v<(') -6.3.2

To find the variance between this node Yt(i) and any other node A, apply the fact:

cov(A, 7 , ( /))= X _ , C0V(A ■7 • J")) ' 6 3 3

Equations 5.3.2 and 5.3.3 are in accordance with the superposition principle for

DLMs (West and Harrison 1999). So, to find the covariance between Yt(i) and any 

other node in the network, it is only necessary to find all the covariances between the

k components Yt[i, and this other node. This also simplifies the finding of 

covariances in general as it is only necessary to consider nodes with single parents. 

To illustrate, consider the example DAG given in figure 6.3.1. In this DAG

let r,(7)=(r,(5) F,(6))0t(7)+vt(7 ).

Also let fl.(7) = ( j K ) .
W 7>6 )/

Then T,(7,5)=7,(5)0,(7,5) and Yt[7,6)=Yt[6)6t(l,6) , so the covariance between 

Yt(l) and Yt(7), for example, can be written as:

COv ( 7 , ( 7 ) , 7 , ( l ) ) = COv ( 7 ((7,5)>r (( l ) ) + COv ( 7 ((7 ,6) ,7 , ( l ) )  - 6 .3 .4

Now it is possible to calculate the covariances between any nodes using this 

decomposition technique. Firstly, ensure that the ordering of the nodes obeys the 

following:

\ / i , j < n  i<j=> j£pa{i)

If this is not the case, it is simple to relabel the nodes so that it is true. There is 

always such an ordering as it is a requirement in order for a DAG to be drawn to
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Yt(7)

Figure 6.3.1 -  Example DAG for use in covariance examples
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express the conditional independence statements in chapter 5. The general iterative 

equation given in Queen and Smith (1993) is:

cov(Yt[l),Y,(r)) ' 7 ( l ) Yt[r) '
1

E E

00v(r,(2),y,(r)) =E Y,(2)Y,(r) — E 7,(2); E Y <{r)

cov{Yt(r-\),Y,(r))^ Y l(r- l )Y,{r) i £ [7 ,( i-- l )]£ [7 <H ,

1
E 7,(i): E 7 ,w :

i

E Y,( 2) •ir[yt(r)|yr(i) -  r t( r - i) ] —
E >,(2) E > , m :

1
E[Yt{r- 1

-6.3.5

but this can be simplified as shown in the following theorem and corollaries. 

Theorem 6.3.1:

In a linear MDM, let cov(7;(z),7,(y)) be known for some i and j. Let Yt(j) be 

the sole parent of Yt(r). Then:

c o v  ( :Y, ( i) • Y , ( ' • ) ) = ' c o v  ( :Y, (->1 > F t  H)'a t M

Ft(r) will be in terms of Yt(j), and as cov{Y ,[i),Y is known cov{Y t i i ) , y , (V)) can

be found.

Proof:

To find <%>v(7,(/),7f(r)), consider row i of equation 6.3.5:
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cov[Yt(i\ ,Yt(r)=E Y \ i \ E

Now,

and

so:

£[y ,(r)|F ,(l) ... Yt[ r - \ ) ]=Ft{r)Tat[r

COv(7,(i),7 ,(r

=E 

=E 

=E

=cov(Yt(i),Ft(r )Maf(r)

as required.

7,(i)-F((rfa,(r)^ -£ [y ,( i) ]£ £ [7 ,W |7 ,(l) ... y , ( '- I ) ] '

Y,(i)-F,(r)Ta,(r)^ -E[Y,(i)}E

F,(r)r ]a,(F

Corollary 6.3.2:

Continuing from Theorem 6.3.1, so that cov(Yt(i), (7 )) is known and YtQ  

is the sole parent of Yt(r), assume the MDM structure is aseasonal or uses seasonal 

factors. Then:

cov(Y,(i),Yt[r))=cov(Y ,(*'), 7 ,(;))a,(r)[,| 

where, as usual, at(r)[i] denotes the first element of the vector at(r). Thus, all that is

needed to find cov^Yt[i), F ?(r)) is the covariance between Yt(i) and Yt(j) (which is

known) and the prior point estimate of the parameter set 0 t(r).

Proof:
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F t(r) is defined in terms of Yt( j ) , as Yt(j) is the sole parent of Yt(r). Where 

seasonal factors are used or the model is aseasonal the first element of Ft(r) is simply 

Yt(j). Any other elements of Ft(r) (in the seasonal factors case) are constant 0, hence 

the covariance between them and Yt(i) is also 0. Theorem 6.3.1 then simplifies to the 

above.

□

Corollary 6.3.3:

Continuing from Corollary 6.3.2, consider the special case where i = j, so that 

Yt(i) is the sole parent of Yt(r):

cov(Yt{i),Y,(r))=Qt(ifa,  (r)[,|

which is a very simple means of calculating the covariance between a parent Yt(i) 

and a child Yt(r).

Proof:

cov(y ,(i),rt(/,))=cov(7,(i),}r,(j))a 1(r)|1] by Corollary 6.3.2.

= F«r[yf(i)]af(r)[,| since i=j

=e.(/r«,R,i
as required.

□

Corollary 6.3.4

Let Yt(r) be a deterministic twin of Yt(s), with Yt(j) as their single parent, 

covfy ((r), y , (r})= cov(l'J(i), Y ,(j f j -cov[Y  ,(i),7,(s))
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This means that the covariance between deterministic twins and any other node can 

be found from the covariances between their parent and sibling and the node 

required.

Proof:

cov{Y t[i),Y t[rfl=cov{Yt[i), 7 f(y )-7 f(s)) from the definition of a 

deterministic twin

=cov(y,(;),y,(;))-cov(y,(ij,y,(s)) 

as required.

□

Corollary 6.3.5

Consider the special case of Corollary 6.3.4 where i=j (the covariance 

between a deterministic twin and its parent). Then:

cov(7,(i),71(A-))=gI(;)*-cov(7t( / ) , r i(i))

Proof:

Follows from applying i=j to Corollary 6.3.4.

□

Corollary 6.3.6

Consider the special case of Corollary 6.3.4 where i=s (the covariance 

between a deterministic twin and its sibling). Then:

cov(y,(;),y,(r))=cov(y,(4F,(;1)-gi(*r
Proof:
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Follows directly from Corollary 6.3.4 given i=s.

□

Corollary 6.3.7

Consider Corollary 6.3.4, where Yt(r) is the deterministic twin of Yt(s) with 

Yt(j) as their sole parent. If the MDM node uses seasonal factors or is aseasonal, 

then:

cov ( r , (i), r  t (r))=cov (y ( (i), r ,  (y))(i — j  )[, j)

which is analogous to Corollary 6.3.2.

Proof:

—cov (7, (z), 7 ,(5 )) from Corollary 6.3.4. 

=cov(7r(z),7r(y))-cov(7f(z),7f(7))a/ (̂ )[1] from Corollary 6.3.2.

=cov(7t(z),7t(y ))(l-a f( j y  

as required.

□

Corollary 6.3.8

Given a node with k parents

Yt(r)=Yt( r j \ ) + Y t( r , j 2)+-"+Yt( r , j k)+vt(r)

decomposed as in equation 6.3.2, and assuming that cov(Yt(i), Y t[jJ) is known for 

all n, then:
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cov(7 ,(/),7 ,(/'))= 2cov(y ,(/),F ,(r,y„))a((r,y„)
n- 1

Further more, if Yt(r) is aseasonal or uses seasonal factors: 

cov(7,(;),r,(r))=X cov(Y ,(/), Y ^ j ^ a ^ r J ^
n=1

Proof:

Use equation 6.3.3 to show that: 

cov(y,(/),y ,(/•))=£ cov(y,(i), Y,{r, y„))
n- 1

Applying Theorem 6.3.1 to each member of the summation gives: 

c ov ( Y , ( i ) j l(r))='Zcov(Y,(i) ,F,(r, jn))a,(r,j„)
n=1

as required. The second result stems from applying Corollary 6.3.2 to the first result. 

So the covariance cov{Y t(i), (r)) can be found simply from the covariances of the

parents of Yt(r)- cov^Yt[i),Yt[ j ^  for n = l , . . . , k -  as long as they are known.

□

These corollaries allow the calculation of covariances between all nodes in 

the network given any covariances between entry points very simply. It is thus 

possible to populate a covariance matrix for all Yt(i) in this manner, assuming that all 

covariances between entry points (root nodes and the entry components of MDM 

nodes with an in-flow) are known.
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6.3.1 E xam ple

To illustrate, an example is given of the equations in practice. Consider once

again the DAG shown in figure 6.3.1. If it is known that cov{Yt(l), 7,(2))=0 then it 

is possible to calculate the covariance matrix. For simplicity of illustration assume no 

seasonality and a number of parameters equal to the number of parents for each 

MDM node. The observation equations for the network are presented below:

y , ( iK ( i ) + v ,( i )
y t(2)=e,(2)+v,(2) 

f , (3)=(f ,(i ) y, (2))f0t!3,1!)+v.(3
0,13,2

y,(4)=y,(3)e,(4)+V((4) 
f,(5)=y,(4)fl,(5)+v,(5) 
y , ( 6 K ( 4 ) - y ,( 5 )

y,(7)=(r,(5)  r , (6 )) f0< M + v , ( 7 )
0,(7,6 )

To illustrate how to calculate a covariance, consider cov(7,(7), Y t ( l)). Recall 

equation 6.3.4:

C0v(y,(7))r i(l))=c0v(F,(7,6),y,(l))+C0v ( f ((7,5); F I(l))

For the first part of the right hand side:

cov(7,(7,6),7,(l))=cov(7,(6), 7,(l))o,(7,6) from Corollary 6 .3 .8 .

cov = cov(7,(4), 7 ,(l))—cov(7,(5),7,(l)) from Corollary 6.3.4.

C0 V(F,(5),F,(1)) —cov(7,(4), 7 ,( l) ja ,(5) from Corollary 6.3.2.

therefore:

CW(F,(7,6),F,(l))=c0v(F,(4),F ,(l))(l-fl,(5))a,(7,6)
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For the second part of the right hand side:

covjy,(7,5), y,(l))=C0v(7,(5),7 ,(l))a ,(7,5) from Corollary 6.3.8.

therefore:

cov(r, (7,5), F, (1 ))=cov( F,(4), r ,(1 ))a,(5)«, (7,5)

So:

cov[Yt{l ) ,Yt[\))

= «>v(r,(4)ir ((l))(l-a,(5))fl,(7>6)+«W(Fl(4),ri(l))a,(5)a,(7,5)

= cov(rt(4), r,(l)){(l—<3,(5))at(7,6)+«t(5)at(7,5)j

Now:

cov[Yt(4), y f(l))=c0v(y,(3), Y t(\)^at(4) from Corollary 6 .3 .2 .

COv(7 ,(3),7((l))=CW(7((3 ,l),7 ,(l))+ cOV(7,(3;2),7,(l))

from Corollary 6.3.8. 

C0v(yf(3,l) ,yf( l) )=2f(l)*«f(3,l) from Corollaries 6.3.3 and 6.3.8.

and:

cov(yr(3,2),y/(l))=C0v(yr(2), y r( l ))af(3,2) from Corollary 6.3.8.

cov(Y, (3.2), 7,(1))=0 since cov^Y t(l) ,Y t(2fj=0

therefore:

oov(r,(4),7((l))=fi,(l)*fl,(3,l)a,(4)

So finally:

c o v ^ Y  ,(7),7((l))=j2,(l)*at(3,l)a,(4)((l —a((5))<j,(7,6)+a,(5)a,(7,5))

which is a simple equation in terms of prior means for regression parameters and the 

forecast variance for Yt(l).
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All the covariances produced by this method are simple and easy to calculate. 

Where the values are found recursively, the production of the equations becomes 

easier. If the full covariance matrix is not required but specific covariances are 

needed to calculate marginal variances, this technique is swifter than a fully recursive 

technique.

6.4 The expanded covariance matrix

It can be seen that the approach for calculating covariances described in 

section 6.3 makes extensive use of the decomposed covariances, for example

cov(7,(7,6), 7 r(3)). Further, the same decomposition technique can be applied in

order to find cov[Yt[l,6), Y t(3,2)), for example. When calculating the covariance 

matrix it is possible to store these values as they may contain information useful to 

the forecaster, for example when predicting the effect of structural changes to the 

model. These covariances between decomposed parts of the model can be inserted 

into another matrix introduced here called the expanded covariance matrix.

In this matrix each row and column represent the covariance between one part 

of one node and one part of another (possibly the same) node. Each node has one row 

and one column associated with it for each term in equation 6.3.2. Each node is 

decomposed by the number of regressors in Ft plus the observation noise term. It can 

be populated using the method above and can contain more precise information about 

the flow of traffic than the standard covariance matrix.

Adopt the following notation:

Define Z t to be the one-step ahead covariance matrix for all the Yt(i).
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Define Z t to be the one-step ahead expanded covariance matrix for all the

Yt(i).

Define F t to be such that:

F;

M U ,
v.(l

Y t\n, 1

v,i n

Y, [1

Z , = F , Z , F

In other words, F t is defined such that it maps from the decomposed components of 

all Yt(i) to the Yt(i) themselves.

It is then possible to find S t from Z t and F t .

-6.4.1

This means that if the expanded covariance matrix is found, then the 

covariance matrix can be calculated from it easily.

Consider the first three nodes in the example DAG in figure 6.3.1. The 

expanded covariance matrix has seven rows and columns. Assume the two root 

nodes have a simple constant Ft(i)=l (so that Yt(i)=0t(i)+vt(i)) and that

cov(y,(1),7 ,(2))=0. The seven quantities that form the rows and column of the 

matrix are then 0t(l), vt(l), 0t(2), vt(2), Yt(3,l), Yt(3,2), vt(3).
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As an example of calculating the entries for the expanded covariance matrix,

consider cov[0t(l), 7 f(3 ,l)). Following the decomposition in equation 6.3.2, 0f(/) 

is Yt(l,*), where here • represents a parent that has the constant value of 1. 

cov^9t[\), 7,(3,l))=cov(7,(l, •), 7,(3,l)) as shown above.

cov[Qt(l), 7 r(3,l))=cov(7,(l, •), 7 /(l))af(3,l) from Corollary 6.3.8.

cov =cov(Z((l,') , 7,(1,-)+v ,(l))«,(3,1) from equation 6.3.2.

cov(0 , ( l ), 7,(3,l))=cov(7,(l,-), Z,(l,-))a,(3,l)+cov(7 ,( l,- ) , v,(l))a,(3,l) 

COv(0,(l),7,(3,l)) = Far(7,(l,-))a ,( 3,1) as the V t(i)  are

independent of Yt(l,*).

cov(e, (l), 7,(3, l))= g ,(l, - fa,  (3,l)

However, Q,(l,*)* in this case is Far(0,(1 )) , so:

cov(e, (1 ), 7 , (3 , i ) ) = ^ ( i ) fl, (3 , 1 )

Now consider cov(v,(l), 7,(3,1)) . By the same approach: 

cov(v,(l), 7,(3,l))=cov(v,(l), 7,(1 )J<3,(3,1) from Corollary 6.3.8.

cov(v,(l), 7,(3,l))=cov(v,(l), 7,(1, -)+v,(l))a,(3,l) from equation 6.3.2. 

cov(v,(l),7,(3,l))=cov(v,(l),7,(l,-))a,(3,l)+cov(v,(l),v,(l))u((3,l) 

cov(v,(l), 7,(3,l))=Far(v ,(l))a,(3,1) as the vt(i) are independent of Yt(l,*). 

cov(v, (1 ), 7, (3, l))= F ,(l)u , (3,1)

The entire matrix can be populated in this manner.

The expanded covariance matrix for the first three nodes of the example in 

section 6.3.1 is as follows:
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R,[ i) 0 0 0 Rt(l)at(3,l) 0 0

0 r,(l) 0 0 K,(l)af(3,l) 0 0

0 0 Rt[2) 0 0 Rt( 2)a,(3,2) 0

0 0 0 Vt(2) 0 Vt[2)at(3,2) 0

*,(1)*,(3,1) v tm v ) 0 0 0

0 0 Rt(2)at{3,2) Vt(2)at{3,2) 0

0 0 0 0 0 0 Vt(3)

Unfortunately, covariances between different decomposed parts of the same node (for

example cov[Yt[3,1), 7,(3,2))) are not simple to find. They can, however, be left out

of the expanded covariance matrix. The matrix need not be completely populated in 

order for it to be useful for the forecaster.

In this example:

F t=
1 1 0 0 0 0 0 
0 0 1 1 0 0 0 
0 0 0 0 1 1 1

Calculating the covariance matrix from the expanded covariance and the above gives:

* ,=

Q,{ 1) 0 g,(l)«,(3,l
0 Q,[  2) e,(2)a,(3,2

e,(l)a,(3.l) 0,(2)a,(3,2

It can be seen that the values missing from the expanded covariance matrix only 

affect the variances of their corresponding entry in the covariance matrix. This can be 

corrected easily by calculating the variances through the way shown in section 6 . 2  

and inserting them into the covariance matrix. Once this is done, the covariance 

matrix is found.
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The quantities in the expanded covariance matrix may be of use to the 

forecaster for informing intervention or to gain a deeper understanding of the 

individual flows.

6.5 Covariances between entry points

Entry points to the network may present a problem to the calculation of both 

the covariance matrix and the expanded covariance matrix and thus the production of 

forecast variances. The covariances between them are not found through the MDM 

structure and need to be found another way, such as through the sequential technique 

applied to dynamic Bayes nets in Quintana and West (1987). If an entry point is 

confounded with other parts of the model the covariance between it and other entry 

points is not easily found. In the traffic flow application, such a confounded entry 

point would be a node where traffic flows to a node from one or more parents and 

also from outside the network. The amount flowing into the network at this node 

cannot be found directly, which makes calculating the exact covariance between that 

in-flow and any others impossible. Although Markov Chain Monte Carlo techniques 

can be used to calculate them in tandem with the regression parameters, this is a 

lengthy process and might not be practical in a real world setting. In some 

circumstances, it is possible to assume the covariance between entry points to be 

zero, in which case the MDM network can model a network of arbitrary complexity, 

as long as a DAG can be drawn for it. For simplicity, covariances between entry 

points are assumed to be zero throughout in this thesis, although this is not ideal.
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6.6 Overparameterisation as a technique of intervention

This section presents a new technique of intervention. Consider the following 

form of intervention introduced in section 4.7.2. The modeller intervenes by adding 

an extra term to the observation equation for one time point:

Yt- F t 0t+it+vt

where it is the quantity by which the modeller is intervening, given by

for some values mt* and Ct*. It can be seen that this is functionally identical to adding 

an additional parameter so that:

Y = F : Te:+vt

where:

F t = \ F t 1

Qt —\6t it\ ~ N
YU 

\  1

Ct 0
o c:

G*= G 0 
0 1

This is simply a different representation of acquiring the joint distribution 

between the intervention parameter and the ordinary parameters (West and Harrison 

1999 pg 380). The introduction of the parameter requires a non-square G matrix for 

one time period, as the additional parameter is added. The system equation is then as 

specified above until the parameter is removed, again requiring a non-square G 

matrix. Although the covariances in this equation are given as zero, the model can 

easily handle non-zero values. The use of zeroes assumes independence between
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these overparameterisation parameters and the core model parameters. This 

independent additive assumption need not be made in all cases. Where the 

intervention is anticipated to occur only briefly in response to a simple event, this 

assumption may be sensible to make.

This approach provides a posterior for the intervention quantity. The form 

given in section 4.7.2 does not do this. This can be used to evaluate the accuracy of 

the expert intervention by considering the difference between the prior and the 

posterior. This information may then in turn be used to improve expert intervention 

in the future. In the case where Ct*=oo (a ‘vague prior’), this approach is identical to 

discarding the data point. The posterior distributions become the same as the priors.

Further, if the event provoking the inclusion of the intervention parameter it is 

anticipated to occur for several consecutive time periods, it can be updated in the 

same way as the existing parameters in the model. West and Harrison (1999) 

consider altering a DLM to incorporate an intervention term on a permanent basis- 

i.e. the event that provoked the intervention has become a usual part of the model. 

However, there is no reason for the addition to be permanent and the parameter can 

be removed just as easily, which is not considered in West and Harrison. The it term 

can also be a set of parameters instead of a single value. In this case, the 

independence between the intervention parameters and the core parameters may not 

be sensible to assume. However, if the intention is for the intervention parameters to 

intercept unusual behaviour while the core parameters continue to model the 

underlying system then independence between them may be assumed initially, 

although as the model runs the parameters sets will become highly correlated.
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DLM models require that the model is of a certain correct structure in order 

for the forecast variance to converge. At present there is no formal proof of 

convergence when Ft is not constant in t. By introducing a parameter in this way, the 

forecast variance may not converge- leading to a breakdown of the model with 

rounding errors dominating the forecasts. This is known as overparameterisation, and 

it is possible to reduce an overparameterised model to one that does converge using 

techniques of model reduction (West and Harrison 1999). In practice the growth of 

the forecast variance can be slow and the model can continue to run in the short-term 

without breaking down.

This leads to a further method of intervention here referred to as 

overparameterisation as intervention. This involves introducing additional 

parameters to the model, then removing them later when intervention is no longer 

required. This is distinct from a systematic model change (as the intervention is not 

permanent) and from continuous transient intervention (as the parameters are not 

generated exogenously at each time point).

Using overparameterisation as intervention is useful when the modeller 

anticipates a period of unusual activity but does not know what form this activity 

may take. The added parameters model this deviation from the usual pattern. A 

consequence of this approach is that the intervention parameters become heavily 

correlated with the usual parameters. In itself this is not a problem apart from non­

convergence- at a certain point rounding errors in the covariances will dominate the 

forecast. As noted above, for limited periods of use this does not happen. This 

correlation, however, also has benefits as when the period of intervention ends there 

is a corresponding increase in forecast variance (removing the need for the modeller
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to apply this himself to reflect the additional uncertainty surrounding the original 

parameters now they are no longer confounded with the intervention parameters). If 

the unusual activity becomes permanent, then existing techniques of model reduction 

can be applied to reduce the parameter set and regain model convergence.

This is similar to the inclusion of intervention effects (West and Harrison 

1999)- but in that case it is assumed that the model remains observable once the 

intervention parameter has been included. However, in the case of 

overparameterisation the observability of the model is deliberately broken for a 

limited period in order to apply continuous intervention that would not otherwise be 

possible.
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Chapter 7 -  Applying the MDM to the Traffic Network

This chapter applies the MDM described earlier to the data set introduced in 

chapter 2. Applying the MDM model to the traffic network requires two particular 

tasks: determining the structure of the model based on the real world traffic flows 

and establishing the starting conditions for the model.

7.1 The DAG for the network

The flow diagram (Figure 7.4.1) for the network can be used to heuristically 

elicit the DAG at time t as described in section 5.2. Due to the missing sites, the non­

trivial nodes form two entirely separate graphs. The goal is to construct a DAG 

including all of these nodes as well as the parameters needed to model them through 

an MDM.

For this network, the numbering of the counting stations is used as the 

number for the node (i.e. Yt(167) is the observed flow at time t for counting station 

167). This numbering system does not denote an ordering, although an ordering 

appropriate for the DAG does exist.

Constructing a DAG heuristically from the flow diagram in figure 2.4.1 is 

relatively simple. The four nodes Yt(167), Yt(168), Yt(170a) and Yt(170b) can be 

represented in a DAG for the system by one root node with three children. Following 

the principle of putting multiple children in tiers given in section 6.1, this part of the 

DAG is constructed as shown in figure 7.1.1. In order to differentiate the parameters 

used for MDM nodes from those used for DLM nodes, the parameters for MDM

nodes are given unique Greek letters. In this case oq represents the proportion of 

flow
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0,(167)

¥,(167)

Y(168) Y(170a)+Y(170b)

Y(170a) Y(170b)

Figure 7 .1 .1- Candidate DAG for part of the network
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from Yt(167) that flows to one of Yt(170a) and Yt(170b) and fit represents the 

proportion of that quantity that flows to Yt(170b). It is trivial to check that the 

moralised graph of this subnetwork allows independent updating in the MDM model.

The rest of the DAG can be constructed in a similar way, but there is a 

complication that means the approach does not work in this case. Where a node has 

more than one parent, the MDM model requires that the covariance between the 

parents is known. As shown in section 6, it may not be practical to find this 

covariance where there are multiple entry points to the network. Covariances 

between root nodes (or indeed, any entry points to the network) are not easy to find. 

Without a technique or heuristic to find this covariance, there is little recourse but to 

assume this covariance is zero. If the actual covariance is positive, as it will be if root 

nodes follow some global trend, then the MDM will not accurately produce forecast 

variances and forecast covariances. In practice this leads to a serious problem- an 

exploding variance in some MDM nodes. The reason behind this is not clear but may 

be due to the Ct matrix and the estimate of V having to compensate for this bias, or 

may be due to the discrete nature of the data meaning some observability criterion is 

broken when the observed values are very low. Without a theory of convergence in 

non-constant DLMs, it is not possible to say what the cause is with certainty.

What can be done is to combine the parents for a node into a single parent, 

reducing the number of parameters and thus preventing this between-parent 

covariance in the parameter set. Adding two parents together in this way again 

assumes a zero covariance between them, but does not prevent the model from 

proceeding mechanically. This is not an ideal solution, but it does allow the MDM 

model to be run for the entire network and can serve as an indicator of how sensitive
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the MDM is to such problems. Where this problem is exhibited in the network, 

experimentation was carried out reducing the number of parameters for a given node 

until the variances converged. Ideally, every in-flow to a node would have its own 

subset of parameters, whether it is an entry point to the network or a flow from a 

parent. Instead, all parent flows are summed into a node together with any in-flow. 

This then serves as the single parent for the node. Both this new summed node and 

the original node are modelled, but the number of parameters has been reduced. In 

essence, the one remaining parameter for the node is still a proportion, but the fine 

detail as to the source of the traffic is lost.

Following this process the second part of the network could be represented by 

figure 7.1.2. In this case £ is a parameter modelling Yt(163+164b) as a proportion of 

Yt(162+172). In the flow diagram (figure 2.4.1) it can be seen that Yt(163) has an in­

flow. This is subsumed into the parameter £ as part of the parent flow. Because of 

this, £ may stray above 1 unlike other regression parameters in the model which 

should not.

Five quantities are being modelled here: the four flows Yt(162)-> Yt(163), 

Yt(162)-> Yt(164b), Yt(172)^ Yt(163) and Yt(172)-> Yt(164b) and the in-flow for 

Yt(163). These five quantities are modelled through only two parameters leading to a 

loss of information about the network. This parameter reduction is unfortunately 

necessary to proceed with the MDM model with the information available. This also 

breaks the causative relationship between the four observed nodes, which as has been 

discussed in section 5 is not preferred, particularly when intervention is employed.
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0(162)

Y(162)

Y(172)+Y(162)

Y(163) Y(164b)

Figure 7.1.2 -  Final DAG for the second part of the network
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A similar problem occurs in the first part of the network with nodes Yt(169), 

Yr(170b), Yt(161) and Yt(171) and is dealt with in the same way. The DAG for the 

first part of the network is now as shown in figure 7.1.3.

7.2 Leakage

Where traffic from a node only flows to other nodes in the network and not 

outside the network there is an underlying assumption that the children sum to the 

parent. This assumption is exploited by deterministic twin nodes and is behind the 

tiering required with more than two children. The assumption does not necessarily 

hold as vehicles between counting points when the hour rolls over are counted in the 

following hour, upsetting this equality. However, in the long term this error has mean 

zero and will usually be small relative to the total count of vehicles- small enough to 

be accounted for in the error term. It is advisable to check any such assumptions in 

the model.

In this network, most nodes have a flow leading outside the network or the 

assumption is not possible to check as child nodes have a flow of traffic entering the 

network. The one example where the check is necessary and possible is in the 

children of node Yt(167). It has three direct children -  nodes Yt(168), Yt(170a) and 

Yt(170b) -  separated out in this DAG in two stages. Examination of the difference 

between Yt(167) and the sum of its children reveals that the car count of Yt(167) is 

generally larger than the total car count of its children so that some cars are Tost’ 

between the counting points. This loss is referred to here as ‘leakage’. The leakage 

from Yt(167) overtime is shown in Figure 7.2.1.
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Y(168)

6.(167)

*(167)

Y(170a)+Y(170b)

Y(170a)

0(169)

Y(170b)

Y(170b)+Y(169)

Y(161)

Y(161)+Y(171)

Y(171)

Figure 7 .1 .3- Candidate DAG for the first part of the network
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Figure 7.2.1 -  Plot of leakage from node 167
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Interestingly, the leakage from node Yt(167) over time follows a seasonal 

pattern and, more worryingly, it has a non-zero mean. This could be caused by the 

imperfect nature of the devices used to collect the data. If the four counting points 

involved have different success rates at counting vehicles, different likelihoods of 

false positives, or both, then we would expect such a seasonal pattern. Unfortunately, 

the leakage pattern above does not yield itself to such a correction. It is possible to 

use maximum likelihood to find the linear combination that best fits the above data, 

but even this is a poor fit. It would appear that the mechanism behind the inaccurate 

counting is complex and not readily discerned given the data available. The providers 

of the data (Babtie Reading Highways Agency Traffic Team) suggested that 

exogenous factors such as vehicle speed or road surface conditions may be 

influencing the value. A technique for accounting for measurement error with this 

kind of counting station is given in Hazelton (2001), but for the purposes of this 

model, this leakage is most elegantly modelled by considering it as a separate 

quantity. It is denoted by Yt(L) on the DAG for the network, and the quantity 

Yt(168L) is the sum of this quantity and traffic flow past node Yt(168). This final

DAG for the first part of the network is shown in figure 7.2.2. The parameter y t is 

the proportion of Yt(168L) which is observed in Yt(168).

7.3 Modelling choices

7.3.1 Choice of DAG

While the DAGs produced above are appropriate for the model, there is not a 

single unique DAG that encapsulates the network. The DAGs above closely match
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Y (167)

0(169)Y(168L) Y (170a)+Y (1

Y(170a)Y (168) Y(170b) Y (169)

Y (170b)+Y (169)

Y (161)+Y (171)

Y ( 171)Y ( 161)

Figure 7.2.2 -  Final DAG for the first part of the network.
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the actually flow of traffic through the network and are drawn to make the model as 

easy to follow and as interpretable as possible. The parameters are also easy to 

interpret. Where compromises have been made in order to apply the MDM, this will 

be a good indicator of how sensitive the MDM is to such potential problems. These 

DAGs given in figures 7.1.3 and 7.2.2 are used for the model henceforth.

7.3.2 Choice of model for entry points

Where an MDM node has both parents and in-flows from outside the 

network, the model structure requires that a DLM be used to model this inflowing 

traffic as shown in section 5.2. This is part of the MDM model and attracts no 

additional complication. However, there are no longer any such nodes in the network 

due to the parameter reduction performed in constructing the DAG. Where a node is 

an entry point and has no parents there is greater leeway in what method can be used 

to model it; in essence any methodology could be used. For this model we will use 

standard DLM models for such entry points for convenience and to gain the 

advantages of the DLM-based approach.

7.3.3 Choice of model for seasonality

Of the three principle means of modelling seasonality introduced in section

4.6, seasonal factors are used. They are preferred to Fourier models as they are easier 

to interpret and thus simplify intervention. Full-form Fourier models give identical 

mean squared errors, and reduced form Fourier models perform less well. The 

seasonal effects approach is not used as there is no sensible typical value to estimate. 

These seasonal factor models are used for all nodes in the model. Thus, for a DLM 

root node:
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F=

\°/

G=

0 1 0

0
1 0

For an MDM node with one parent:

FM)=

0 1 o ••• 0
y t\J ) : •.

0 ; G= : •. 0

°  J 0 ■. 1
1 0 ••• •i •• 01

where j is the parent of i. For MDM nodes with more than one parent or an in-flow, 

the superposition principle could be applied but the parameter reduction has 

eliminated any such nodes from the model.

7.3.4 Choice of priors

In a time series of this length the choice of priors should not be critical to the 

model’s long term performance. To improve early performance of the model 

informative priors are used. The first week of data is used as a training set to estimate 

the point forecast and observation noise variance for each node. The system noise 

variance is selected as a deliberately high value to allow the model to converge 

rapidly on an accurate value.

7.3.5 Other model choices

A selection of DLM and MDM nodes were run using different discount 

factors to establish which gave the best performance of the model. On the basis of 

mean squared error, the discount factor of 0.98 was chosen for both types of node. 

This value was adopted throughout the model.
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7.3.6 Final models chosen

The final models for the network were as follows. The root nodes in the 

network were modelled as DLM models of the following form:

\ T

24x1

etu i=

o 1 o

0
1 0

• 0

. 0

. 1
• 0

6 ^ 2 4 X 1 + ^  t(i)

24X24

with discounted Wt(i) and variance learning for V as given in section 4.5.

The models for MDM nodes, all of which have one parent in this DAG, are of 

the following form:

7,1/1=

24X1

etU)=

0 1 0 - 0

\  \  0
0 1
1 0   0 24X24

0 , - ,  ( * L x i + w , M

again with variance learning and discounting.

7.4 Model performance

When inspecting plots of the forecast errors for the model, periods of unusual 

activity can be identified informally by inspecting the forecast errors and variances.
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Periods of unusual activity, even when very short, are signalled by increased errors 

and increased forecast variances in following time periods. For the node Yt(170b), for 

example, we can plot the forecast errors in Figure 7.4.1. The solid line denotes the 

one-step ahead forecast errors, and the dotted line is the square root of the one-step 

ahead forecast variance. It is possible to see how periods of unusual activity tend to 

increase the forecast variance, as evidenced by the behaviour of the model from time 

750 to 950. The seasonality of the variance (discussed in section 6.1) is also 

noticeable.

The Mean Squared Error is used as the primary means of comparing 

performance between models, and the Median Forecast Variance is an informal 

method of comparing how precise models are in their forecasts. The first section of 

table 7.4.1 contains root nodes that are DLMs, the rest of the table are MDM nodes.
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MDM model for Y170b
MSE: 3919.27099518242 MFV: 4306.4833389506
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Figure 7.4.1 -  Forecasts errors and forecast variances for node Y170b in the MDM

model
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Node MSE MFV
162 4374 4190
167 41948 37989
169 678 641
172 7387 7225

161 11299 24662
163 937 1126
164b 6244 4044
168 902 1645
170a 17122 10810
170b 5425 4327
171 43967 26819

Table 7 .4 .1- 
Performance of the 

MDM network.

It can be seen that the MFV is similar to the MSE for many nodes which is only to be 

expected when modelling data expected to exhibit Poisson behaviour.

Examining the autocorrelation of the forecast errors gives Figure 7.4.2. These 

plots show there is some autocorrelation at lag 1 unexplained by the model, but 

modelling this would require either the use of a Fourier form model or a significant 

change in the structure of the model. Either of these would complicate the model to 

the point where its key benefits (in terms of interpretable parameters, short 

calculation time and easy intervention) would be lost. Other slight correlations could 

be the result of evening rush hour traffic flow following morning rush hour traffic 

flow, but without further contextual data it is difficult to draw strong conclusions.

Checking the distribution of the errors yields Figure 7.4.3. The distribution of 

the errors is not particularly normal. The errors seem to be heavy tailed, which is
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Autocorrelation for forecast errors node Y170b
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Figure 7.4.2 -  Autocorrelation of forecast errors for node Y170b in the MDM model

CD plot for forecast errors of Y170b
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Figure 7.4.3 -  Residuals plot of the forecast errors for node Y170b in the MDM model.
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what would be expected from a model using T-distributions. Equivalent plots for 

other nodes yield similar results. Heavy tails might also be expected in a data set with 

periods of unusual activity. In order to improve the performance of the model, these 

periods of unusual activity will have to be accounted for.

7.5 Intervention

Expert intervention can be introduced into the model in order to improve its 

performance. Where there is bad weather, roadworks, accidents or congestion, 

intervention can model the changes to the usual pattern easily as the MDM uses 

univariate DLMs. Intervention requires an expert to assess the data in real-time and 

make decisions regarding whether intervention is necessary and what form it should 

take. The expert need not be the forecaster implementing the model, although the 

forecaster will then need to interpret the expert’s information in order to apply it. As 

motorways are monitored in real-time already, at least during the day time, such an 

approach is practical. Intervening for simple events such as those described above 

requires no structural changes to the model. Where a change is more serious (such as 

one road blocked completely or a new stretch of road built) the model must change 

structurally. However, the existing model can be used to construct the new model, 

including using existing parameters to generate priors for the new model. Indeed, 

much of the model may be unaffected after such a structural change. For example 

consider figure 7.2.2. If a new node was introduced after node Y(169) which 

monitored the traffic leaving the network after that node then the structure for nodes 

Y(161) and Y(171), which are below node Y(169), would change. The rest of the 

network, including the nodes Y(167), Y(168), Y(170a) and Y(170b), would be 

unaffected. The priors for this new model would be based on the parameters from the
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old model. Thus, much of the information learned about the network before the 

change would still be used in the revised model.

In a large network, because of the highly multivariate nature of the problem, 

intervention usually needs to affect a large number of nodes when an unusual event 

occurs. The MDM model can reduce this amount of work considerably as the 

hierarchical structure of the MDM model allows intervention to percolate downwards 

through the model from where it takes place (as shown in section 5.4.1).

The data are supplied without context which makes legitimate intervention 

difficult. In a real-time forecasting system the modeller would have access to good 

information regarding the traffic conditions, for example, pictures of current 

motorway conditions and notification of any future events that may change traffic 

flows. Without an outside source of information, all intervention must be conducted 

on the basis of the raw data. If the modeller uses future data points to inform his 

intervention, then care must be taken not to be too prescient. Not all events that 

might prompt intervention need be due to exogenous factors- the capacity drop 

associated with congestion has several theories that reproduce it (for a recent 

example see Zhang and Kim, 2005) based on the traffic data itself. This raises the 

possibility that automated event detection is feasible and the MDM model can 

incorporate such endogenous information in the form of intervention.

When modelling a network such as this, unusual events can be categorised as 

short-term transient, long-term transient and permanent. The traffic flow returns to its 

original pattern after transient events. In this thesis events are classified as short-term 

transient events if they last for a day or less and long-term transient events if they last 

for longer than a day. The distinction between short-term and long-term transient
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events is a convenience and is by no means significant or universal. In these data 

there are no permanent events identifiable.

The assumption used for the following intervention is that short-term 

transient events have no prior warning, but the modeller knows when long-term 

transient events will occur and what form they are likely to take. For short-term 

events the assumption has been made that the modeller can only intervene for the 

first time point by disregarding the data point (treating it as an outlier or missing 

data). This allows the modeller to avoid biasing the parameters but does not improve 

the forecast error for that point. For subsequent time points in short-term transient 

events and all time points in long-term transient events, the modeller can intervene as 

they see fit. The intervention performed under these assumptions should provide a 

credible assessment of how intervention would affect model performance if 

exogenous information were available.

In a model such as this, there are likely to be characteristic patterns of unusual 

activity for common events like congestion, accidents and special events in the 

immediate area. The modeller can have ‘stock responses’ for such events to make 

intervention simpler still. Maunch and Cassidy (2002) demonstrate that a traffic 

queue for a given location behaves in a particular way and justifies such an approach. 

A technique of traffic forecasting that used periods of historical data as templates for 

current conditions instead of time series methodology was explored in Wild (1997).

A variant of that technique could be used in parallel with the methodology described 

here to handle unusual (but irregularly recurring) events.
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7.5.1 Intervention locations

Locations in the data where intervention is applied are identified informally 

from inspection of the data and forecast errors without intervention. This is 

information that the modeller in a real-time application of this model would have 

available when the event is unanticipated. The nature of the intervention and its 

extent are informally decided based on the assumptions in the section 6.5. 

Intervention could be done formally with a monitoring system- but ultimately the 

form of the monitoring system would depend heavily on the purpose of the forecast. 

As yet, no formal monitoring system has been developed for this model. Intervention 

is kept informal here for simplicity. Applying formal intervention in an MDM model 

of this data set is a possibility for further work.

The instances of intervention are listed tier by tier, as described in section

5.4.1. The figures 7.1.2 and 7.2.2 show the DAG and the tiers used here. Although 

the two sections are completely separate and could be considered simultaneously, 

here the smaller part shown in 7.1.2 is assumed to be after that in 7.2.2. Tiers 1 to 6 

are in the larger part of the network, tiers 7 to 10 are in the smaller.

Tier 1- node Y(167)

This node is a simple DLM. The first event occurs at time 488 in figure

7.5.1.1. This is a depressed flow followed by an inflated flow. This could be 

characteristic of a period of congestion- traffic grinds to a halt in the first time period 

(reducing the flow), then once congestion is eased the flow is inflated as the 

congested cars clear. It is short-term transient. The first time point can be considered 

an outlier and the second can be adjusted for. For congestion, a sensible choice of
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Figure 7.5.1.1 -  Section of forecast errors for Y167
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intervention parameter is of the same magnitude as the error in the first time 

point- the cars that couldn’t get through in the previous hour do so now.

Time Type of intervention Intervention

value

Intervention

variance
488 Disregard data point
489 Add parameter for one time point 700 10000

Table 7.5.1.1 -  First intervention performed at node Y(167)

The result of this intervention is shown in figure 7.5.1.2. The forecast error 

for the second time period of note is much smaller. The increase in forecast variance 

can be seen not just for that time point, but 24 hours later when the model uses that 

parameter again.

The second event occurs from time 625 to 792 in figure 7.5.1.3. This is a 

period of unusual activity where the lunchtime traffic flows are unusually high, but 

not in a way that lends itself to a simple explanation. As a long-term transient event, 

it is assumed that the modeller has prior knowledge that the event will occur, but its 

peculiar nature suggests that the modeller may not have a simple intervention to 

perform. The poor model performance after time 800 may be a result of the unusual 

activity earlier biasing the parameters. This is a good place to attempt to apply the 

overparameterisation intervention technique described in section 6.6- and indeed was 

the motivation for its formulation. The unusual activity is not of a simple form- there 

is an increase in flows during certain hours of the day but not others, and the amount 

by which it changes follows a unimodal curve. The complicated nature of the event 

suggests that even if the forecaster knew the event was going to occur they would not
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Figure 7.5.1.2 -  Section of forecast errors for Y167 after intervention
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Figure 7.5.1.3 -  Section of forecast errors for node Y167
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know by what amount to intervene. This suggests introducing overparameterisation 

with parameters set to zero that are intended to track this pattern

Time Type of intervention Intervention

value

Intervention

variance
625 Add overparameterisation parameters to 

model

( o - o f 50000x1

793 Remove overparameterisation parameters 

from model
Table 7.5.1.2 -  Second intervention performed at node Y(167)

A large intervention variance is specified to allow the parameters to adapt 

quickly. The behaviour of the model when this intervention is performed is shown in 

figure 7.5.1.4.

There is no visible improvement in performance, although examination of the 

mean squared error over the time period in question does show a significant 

improvement. The activity is sufficiently chaotic to suggest that visible improvement 

is unlikely in any realistic circumstance. The additional forecast variance when the 

parameters are applied is easy to identify. The next day shows that the forecast 

variance has returned to a level similar to that before the intervention. During the 

intervention the forecast variance grows- although it seems that the extreme values 

are more significant in its rise than the overparameterisation. After the parameters are 

removed, there is another rise in forecast variance for a day before it returns to usual
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Figure 7.5.1.4 -  Section of forecast errors for node Y167 after intervention
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levels. The intervention parameters at the end of the intervention were non-zero, still 

with very high variances associated with them. There was also a strong negative 

covariance between the intervention parameters and the regular parameters, as would 

be expected.

The final event for this node occurs from time 1139 to 1143 in figure 7.5.1.5. 

This looks like a prolonged period of congestion, with a single time period in the 

middle where flow is normal as the queue begins to clear. The modeller is assumed 

to know how long this congestion will continue for- a realistic assumption as a real­

time traffic monitoring system would most likely have cameras in place to watch 

current road and traffic conditions. This first time point is an outlier (as the event is 

short-term transient), and the subsequent time points can be adjusted for 

appropriately.

Time Type of intervention Intervention

value

Intervention

variance
1139 Disregard data point
1140 Add parameter for one time point -800 10000
1142 Add parameter for one time point 800 10000
1143 Add parameter for one time point 800 10000

Table 7.5.1.3 -  Third intervention performed at node Y(167)
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Y167

t=1143

o -

1130 1135 1140 1145 1193

Tirre

Figure 7.5.1.5 -  Section of forecast errors for node Y167
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The values for the intervention were found by examining the forecast errors of 

the nodes in the event. Without the benefit of hindsight, the expert would have to 

arrive at such figures a different way. The impact of intervention is shown in figure

7.5.1.6. As in the first intervention, there is improvement in the forecast error.

Tier2 -nodes Y(168L), Y(170a)+Y(170b)

Following this intervention, no further intervention is required for nodes 

Y(168L) or Y(170a)+Y(170b) as the intervention in node Y(167) percolates through 

to them. No intervention is required at tier 2.

Tier 3 -nodes Y(168), Y(L), Y(170a), Y(170b), Y(169)

For node Y(168), there is one highly unusual event in this time series starting 

at time 437 in figure 7.5.1.7. This pattern is very different from the usual activity for 

this node. Not only is the magnitude far higher than the rest of the errors, but 

examination of the raw data shows that this activity is a result of a huge number of 

vehicles appearing between node Y(167) and node Y(168). It is possible that the 

event is the result of faulty recording equipment. There is not a consistent value for 

these errors and the pattern is not repeated, so without expert information it is most 

sensible to treat them as pure outliers. This is summarised in table 7.5.1.4.
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Y167

o  -

1=1130

1130 1136 1145 1150

Figure 7.5.1.6 -  Section of forecast errors for node Y167 after intervention

Y168

8 t=437

o

8

450 400 470 480

TirrE

Figure 7.5.1.7 -  Section of forecast errors for node Y 168 after intervention at

node Y167
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Time Type of intervention Intervention

value

Intervention

variance
437 Disregard data point
438 Disregard data point
439 Disregard data point
440 Disregard data point
441 Disregard data point

Table 7.5.1.4 -  Intervention performed at node Y(168)

The result of the intervention is given in figure 7.5.1.8. Although the 

intervention does not improve the forecasts during the period, it improves them one 

day later. The outliers biased the parameters leading to poor forecasting in the next 

cycle. By treating the data points during the event as outliers, the parameters do not 

become biased.

Node Y(L) is not a quantity of particular interest, and in any case is 

determined by the model for Y(168). Deterministic twins should not have 

intervention per se, intervention should be performed on their sibling. The remaining 

nodes in this tier do not require any intervention.

Tier4 -n o d e  Y(170b)+Y(169)

This node is deterministic and the sum of two other nodes. There is no need 

for intervention in it.
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Y168

t=430

1=441

o  -

460 4804/0

Figure 7.5.1.8 -  Section of forecast errors for node Y168 after full intervention
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Tier 5 -  node Y(161)+Y(171)

This node was created in order to have a valid DAG for the MDM model. 

However, intervention in this node is complicated as any unusual activity is a result 

of unusual activity in one, or both, of the nodes 161 and 171. If, for example, the 

activity here stems from activity in node 171, then any intervention here will 

erroneously percolate to node 161, requiring further intervention there. This is 

because the DAG selected does not reflect the causal relationships between the nodes 

correctly, as described in section 5.2.

However, intervention can still take place.

The first event for node Y(161)+Y(171) begins at time 265 in figure 7.5.1.9. 

However, by examining the observed values of Y161 and Y171 it can be seen that 

the event is caused by a drop in flow for Y171 seen in figure 7.5.1.10. The flow 

appears to be approximately half the usual during this period. This translates to a 

proportion of 17/20 in node 161+171 for this long-term transient event. At the start 

of the period of intervention, all the 8t parameters (from figure 7.2.2) are multiplied 

by the proportion 17/20. The variance for the parameter estimate is increased at the 

same time. As this node is an MDM node the model parameter is a regression 

parameter so this increase is on the scale of proportions and not absolute values. It is 

assumed that once the activity ends the inverse proportion is a suitable means of 

restoring the regression parameters to their previous level. When the period ends the 

parameter set is multiplied by 20/17 in the same way.
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Y161.171

o  -

250 300 350 400

Time

Figure 7.5.1.9 -  Section of forecast errors for node Y161+171 after intervention

at node Y 167

Y171

o

F

o  -

250 300 300 400

Hire

Figure 7.5.1.10 -  Section of raw data for node Y171
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Time Type of intervention Intervention

value

Intervention

variance
265 Scale 5t by a value X17/20 +0.01
360 Scale 8t by a value x20/17 +0.01
Table 7.5.1.5 -  First intervention performed at node Y(161)+Y(171)

The affect of the intervention can be seen in figure 7.5.1.11. The forecast 

errors are still large, but are more symmetrical and are more within the error bounds 

from the increased variance.

The second event begins at time 433. The behaviour of this event is the same 

as for the previous one, even down to the proportion, so the same intervention 

method is used.

Time Type of intervention Intervention

value

Intervention

variance
433 Scale 5t by a value X17/20 +0.01
576

Table
Scale 8t by a value 

7.5.1.6 -  Second intervention peri
x20/17 

formed at node
+0.01
Y(161)+Y(171

The final event begins at time 1068 in figure 7.5.1.12. There is a period of 

depressed values, seeming to progress in steps. Although the first step is unusual, it is 

not dramatically so and it is reasonable to assume the modeller would not intervene
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Y161.171

o  -

2XL
Figure 7.5.1.11 -  Section of forecast qfiqprs f°r node Y161+Y171 after full

intervention

Y161.171

o  -

t=1075

t=1074

1060 1080 1060 1100

Time

Figure 7.5.1.12 -  Section of forecast errors for node Y161+171 after intervention

at node Y167
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in this case. For the second, lower, step, the modeller intervenes as for a short-term 

transient event, although the event is ‘signalled’ earlier.

Time Type of intervention Intervention

value

Intervention

variance
1073 Add parameter for one time point -2000 10000
1074 Add parameter for one time point -2000 10000
1075 Add parameter for one time point -2000 10000
Table 7.5.1.7 -  Third intervention performed at node Y(]L61)+Y(171)

The impact of this intervention is shown in figure 7.5.1.13. The points where 

intervention took place show a marked improvement in forecast variance. The 

surrounding nodes are as before- and may be improved through intervention but were 

not as unusual as the central points.

Tier 6 -  nodes Y(161), Y(171)

The only intervention needed at node Y(161) is to undo the intervention at 

Y(161)+Y(171). As the first two events were caused by a reduced flow part node 

Y(171), the intervention also erroneously reduces the flow through node Y(161). 

Correcting this is a simple matter of reversing the intervention. It is summarised 

below.
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Y161.171

t=1075

o  -

1074

£=1077

t=1072

1000 1070 1000 1090 1100

F i gure 7.5.1.13 -  S ecti on of forecast errors for node Y 161+171 after ful 1

intervention
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Time Type of intervention Intervention

value

Intervention

variance
265 Scale st by a value x20/17 +0.005
360 Scale st by a value x 17/20 +0.005
433 Scale st by a value x20/17 +0.005
576 Scale st by a value x 17/20 +0.005

Table 7.5.1.8 -  Intervention performed at node Y(161)

For nodes Y(161) and Y(171) there are further points where intervention 

might be necessary, but they do not stand out from the normal areas as markedly as 

areas for other intervention. A side effect of the hierarchical structure is that 

intervention towards the top of the network is more effective than intervention 

towards to bottom. Effort expended towards the top of the network affects many 

nodes, and thus it may be worthwhile intervening more strenuously at the top of the 

network. It is worth noting that most intervention in this MDM network is carried out 

where traffic is entering the network and little needs to be done at nodes that only 

receive flows from elsewhere in the network.

Tier 7 -  nodes Y(162), Y(172)

Node Y(162) is another simple DLM node. There is only one time point ripe 

for intervention, which is a single outlier not shown in a figure.

Time Type of intervention Intervention

value

Intervention

variance
657 Disregard data point

Tal)le 7.5.1.9 -  Intervention performed at node Y(162)
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Node Y(172) is the final simple DLM node. The first event begins at time 34 

in figure 7.5.1.14. This is a period of depressed flow. The later time periods can be 

intervened for by applying a constant intervention parameter through the period.

Time Type of intervention Intervention

value

Intervention

variance
34 Disregard data point
35 Add parameter for one time point -450 10000
36 Add parameter for one time point -450 10000
37 Add parameter for one time point -450 10000
38 Add parameter for one time point -450 10000

"able 7.5.1.10 -  First intervention performed at node Y(172)

The forecast errors after intervention are shown in figure 7.5.1.15. There is a 

significant improvement in the later nodes of the event.

The second event is a period of inflated flow at time 785 in figure 7.5.1.16. 

Unlike the previous event, there is not a consistent value the points appear to be 

displaced by, so all the time points are treated as outliers. The intervention at this 

node is summarised as:
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Y172

o  -

t=35

t=34

Figure 7.5.1.14 -  Section of forecast errors for node Y172

Y172

t=35

o  -

t=37

25 3530 40 45

Tirre

Figure 7.5.1.15 -  Section of forecast errors for node Y172 after intervention
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Y172

t=787

t=788

t=785

o  -

770 780 7S0 800 810

Time

Figure 7.5.1.16 -  Section of forecast errors for node Y172
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Time Type of intervention Intervention

value

Intervention

variance
785 Disregard data point
786 Disregard data point
787 Disregard data point
788 Disregard data point

Tab! e 7.5.1.11 -  Second intervention performed at node Y(172)

The forecast errors after intervention are shown in figure 7.5.1.17. As with the 

intervention at node Y(168), although treating points during the unusual event as 

outliers does not improve the forecasts for them, it does improve the forecasts one 

day later from time 810 onwards.

Tiers 8, 9 and 1 0 - nodes Y(162)+Y(172), Y(163)+Y(164b), Y(163), 

Y(164b)

The remaining MDM nodes have no remarkable events left to intervene for.

7.5.2 Model performance with intervention

The summary statistics for the model with intervention are given in table 

7.5.2.1, together with those without intervention for comparison purposes.
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Y172

t=787

t=788

o  -

770 780 790 800 810

Figure 7.5.1.17 -  Section of forecast errors for node Y172 after intervention
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Node Intervention No interv.
MSE MFV MSE MFV

162 4288 3661 4374 4190
167 36049 29896 41948 37989
169 678 641 678 641
172 5837 4035 7387 7225

161 13614 17599 11299 24662
163 982 997 937 1126
164b 5556 3158 6244 4044
168 825 771 902 1645
170a 14798 9308 17122 10810
170b 4749 3899 5425 4327
171 32095 19767 43967 26819
Table 7.5.2.1-]VEDM performance with

and without intervention.

The first block of nodes (162, 167, 169, 172) are simple DLMs. The intervention 

gains here, both in terms of forecast errors and forecast variance, are marked where 

intervention took place. For nodes where no compromises had to be made in order to 

construct the DAG- nodes 168, 170a and 170b- the gain was just as noticeable. 

Improvement was patchier in the remaining MDM nodes- probably as a result of the 

compromises in the DAG for those nodes.
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Chapter 8 -  Alternative MDM model

In this section, an alternative to the MDM model used previously is proposed 

and evaluated. It uses informal methods of modelling seasonal variance that is 

currently not allowed for in the model. Variance law approaches exist for DLM 

models (West and Harrison 1999) but they rely on relating the observation variance 

to the system variance or some known set of weights for observations. These are not 

intuitively appropriate for this sort of model as there is no natural value to use for the 

weights so an ad-hoc, alternative method of introducing seasonal variance is 

considered.

8.1 Seasonal variance

Consider equation 6.2.2:

Q,(if-trace Bt{if[Var(F,{i))+F,(ifF,[ifT)Bt(i) +a,(*f Far(F,(/))a,(/)+£,_,(/)

If any parent of this node has a seasonal pattern then F t(i)* will also have a seasonal

pattern over time. Further, if this node, Yt(i), has a seasonal pattern then at(i) will 

have a seasonal pattern. This means that in either of those cases the marginal forecast 

variance will exhibit a seasonal pattern. This pattern can be seen by examining the 

one-step ahead forecast variance of an MDM node, for example figure 8.1.1.

This would be expected as count data usually follow a Poisson distribution 

(and the variance of a Poisson distribution is equal to the mean) - so this seasonal 

variance is therefore not simply an artefact of the MDM model. The regression DLM 

nodes in the MDM have some seasonality in the forecast variance built in as shown 

above. This may be sufficient to encapsulate the seasonality in the forecast variance.
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Forecast variance for Y170

200 300 400 500 eoo

Figure 8.1.1 -  Section of one-step ahead forecast variances for node Y170
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However, the variance of the observation noise St is not made seasonal through this 

approach and this may be significant. In addition, the standard DLM model does not 

include provision for any such seasonality in the observation noise. Modelling 

seasonality in the forecast variance for both MDMs and DLMs may result in 

performance gains.

8.2 Seasonal variance estimation

Transformations of the data can remove seasonal variance in the observation 

noise but identifying a suitable transformation is not necessarily simple. Even when a 

suitable transformation can be identified it may make patterns that are clear on the 

original scale difficult to detect and it may inhibit interpretation of the model. This 

undermines the goal of simplicity and interpretability of the model parameters.

For this work, a simpler model of this seasonality is used. Specifically, a 

vector for the variance of the observation noise with one entry for each hour is 

introduced. Algebraically:

with mod as the modulo function. This can be modelled with ease within the existing 

variance estimation for DLMs- simply by using 24 associated pairs of S and n 

parameters and updating as usual. Algebraically:

A side effect of this approach is that the degrees of freedom for the estimate S (given 

by n) will increase much more slowly than normal. This technique is now employed 

throughout the entire MDM model. The regression DLMs in the MDM model would 

have less need of this approach (as they already have seasonality in the forecast

v, ( /)~N[o ; V tmod24(i)

Qt(i)=FTt (i)Rt( i)Ft( i)+S[tmod 24\{i)
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variance through different means), but they have it applied anyway for comparison 

purposes. Comparison of the performance of the DLM nodes with and without this 

technique is unaffected by the use of this technique further down the model. The 

form of the DLM and MDM nodes in this model is identical to that used in chapter 6, 

except concerning the V term.

8.3 Model performance

In the same format as before, the performance of the model is compared to 

the basic MDM model without intervention.

Node MDM seasonal var MDM no interv.
MSE MFV MSE MFV

162 4652 3258 4374 4190
167 44454 20319 41948 37989
169 712 633 678 641
172 8690 4501 7387 7225

161 12957 22264 11299 24662
163 1433 1870 937 1126
164b 6761 6034 6244 4044
168 1006 1805 902 1645
170a 18013 9171 17122 10810
170b 6214 4559 5425 4327
171 47929 23990 43967 26819

Table 8.3.1 -  Alternative anc standard MDM
model performances.

It can be seen that this approach is markedly worse than the standard MDM model 

for mean squared error. The median forecast variance is generally lower for the 

seasonal variance MDM. In this model the one-step ahead forecast variance varies 

considerably from one time period to the next. The regular MDM model essentially 

smoothes this pattern- leading to different median forecast variances.
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The uniformly worse performance is an indication that the alternative 

seasonal variance model is not effective at modelling for DLM nodes or MDM 

nodes. This implies that more formal methods may be required to model this seasonal 

variance, or that the standard MDM model can model this seasonality systematically 

without needing any such measures in places other than at root nodes. The method 

also leads to less degrees of freedom in the T-distributions, which may be a factor as 

it will increase the variance of a node and thus make the parameters ‘jumpy’ in 

response to observations higher or lower than usual. The structure of the MDM 

model ensures that seasonality in the level of a non-root node and its parents creates 

seasonality in the variance of the node without additional work, so a more 

complicated solution might only need to be applied to the root nodes in the network.

136



Chapter 9 -  Independent DLMs

Chapter 9 -  Independent DLMs

The performance of the MDM model can be compared to the performance of 

a set of independent DLMs. DLMs allow easy intervention in the same way as 

MDMs do. However, a set of independent DLMs does not provide forecast 

covariances between the variables, limiting the information about the network that 

can be acquired. The lack of a relationship between the points is of signal importance 

when intervention is performed. Without the hierarchical structure each event may 

require multiple instances of intervention where an MDM, for example, might only 

need one. The additional information contained in a multivariate structure could itself 

be useful when determining how to intervene. In particular if there are two events 

occurring simultaneously then the MDM may indicate the effect each has distinctly. 

For example, if intervention at a parent node does not correct large errors for a child 

node it is an indication that there is a second event occurring, and its impact can be 

gauged from these errors. In a set of DLMs it would not be possible to say how much 

each event affected the child node, or even to say there were two events. The model 

fitted is a univariate DLM of the following form:

1

Y,[i)=
0 0,(z)+V,(j) vt(;)~JV[0;F(;)]

1°)

0 1 0 -  o'

0,(i)= ••• ••• 0 o ; W t\}]
0 •. 1
1 0 .......  0

with discounting for Wt(i) and variance learning for V(i) as described in section 4.5.
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9.1 Choice of priors

As in the MDM model, each DLM has priors generated from a week of data 

prior to the main run. The estimates of the parameters (mt(i)) and the estimate of the 

observation noise (St(i)) are generated in this way. The degrees of freedom for the 

estimate of the observation noise (nt(i)) are the same for each DLM, set by the length 

of the training data used. The variances of the estimates of the parameters (Ct(i)) are 

set to be of the form cxl, where c is a large scalar chosen to ensure the model adapts 

quickly. These DLMs are identical in form to the root nodes in the MDM model, 

including seasonality. The discount factor was kept the same as for the MDM model.

9.2 Intervention

Intervention can proceed in the same manner as for the MDM model, with the 

previously noted exception that for a single event intervention must take place for 

every node it affects, instead of only at the highest tier the event occurs. In practice, 

the gain through intervention will be near-identical to that in the MDM model. 

However, the DLM model requires more quantity decisions to be made for 

intervention. The only locations where a intervention would be substantively 

different are where the MDM model has parameter reduction in the DAG. In the case 

of nodes 161 and 171, where a certain type of event meant intervention had to be 

performed twice instead of once in the MDM model (Tier 5 in section 7.5.1), 

independent DLMs would only require one intervention each. This still results in the 

same number of interventions taking place- but the MDM missed an opportunity to 

use intervention by tiers to reduce it. Apart from demonstrating how much extra 

work is required to intervene in the DLM models, there is little purpose in 

performing the intervention as the performance gain should be comparable.

138



Chapter 9 -  Independent DLMs

9.3 Results

The results from a set of independent DLMs are reproduced in table 9.3.1, 

together with the results from the MDM model with and without intervention for

comparison purposes.

Node Indep. DLMs MDM no interv. MDM with interv.
MSE MFV MSE MFV MSE MFV

162 4374 4190 4374 4190 4288 3661
167 41948 37989 41948 37989 36049 29896
169 678 641 678 641 678 641
172 7387 7225 7387 7225 5837 4035

161 10795 8589 11299 24662 13614 17599
163 925 854 937 1126 982 997
164b 6243 6075 6244 4044 5556 3158
168 913 965 902 1645 825 771
170a 17059 15637 17122 10810 14798 9308
170b 5439 4587 5425 4327 4749 3899
171 45410 38123 43967 26819 32095 19767

Table 9.3.1 -  Performance of independent D1_Ms, the M DM, and
the MDM with intervention.

The first half of the table is composed of nodes in the MDM model that are 

simple DLMs. For these nodes the DLMs and the MDM model are identical. For 

nodes 168, 170a and 170b the MDM model without intervention performs as well as 

the independent DLMs. However, the MDM model has the advantage of an innately 

more productive means of intervention and the capacity to provide covariances 

between nodes. The remainder of the nodes are nodes where a compromise had to be 

made drawing the DAG, but even in these nodes the performance of the two models 

is close. Despite performance being similar between the two models, it is worth 

noting that even in this relatively small network intervention in the MDM is far 

easier than in the independent DLMs. In a network with more tiers, or even in this
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network had there not been missing series, the reduction in the amount of 

intervention that need be performed would be even more substantial.
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Chapter 10 -  Independent ARIMA Models

Comparing the MDM to independent DLMs shows how it performs 

compared to a simpler Bayesian methodology. It is also of interest to see how it 

compares to a simple non-Bayesian methodology. This chapter compares the 

performance of the MDM with the ARIMA model- a standard non-Bayesian time 

series model.

10.1 Brief definition of ARIMA

ARIMA models (Box and Jenkins 1976) are commonly used time series 

models. An ARIMA (p,d,q) process is a stationary model defined by the hyper­

parameters p, d and q. For a stationary time series X:

x,=ii+<l>1xl_1+(l>2x l_2+...+(ppx t_p- 6 1el_1- 0 2e,_2- . . . - 0 llel_ll+el 

where et is the error term at time t, and p , cf>t and 6t are parameters. 

Where the time series is not stationary, the differences of successive terms are 

modelled as a time series: 

x ' t= x —xt_l

If this still does not yield a stationary series, then differences can be taken again. The 

number of times the difference is taken is given by the hyper-parameter d. The 

parameters are then estimated using least squares.

ARIMA models can also deal with seasonality, by introducing an additional 

ARIMA component that operates at a specific lag. The notation is then ARIMA 

(p,d,q)x(p,,d,,q’)r, where r is the lag required. The equation is then:

x = n  + (j)lx t_l+...+ (l)px t_p- 6 let_ - . . . - 6 qet_q 
+ $ \ x t_r+ p,xt_rp- Q \ e t_r- . .  - O ' q,e't_rq,+et
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where 4>' and 0 ' are the parameters associated with the seasonal part of the model.

10.1.1 Ram ifica tions of ARIMA in th e  ne tw ork

The predictor of an ARIMA (p,d,q) process is the limiting form of a certain 

class of DLMs where no intervention takes place (West and Harrison 1999). 

However, these limiting forms are not reached in applications where intervention 

takes place. There are techniques for performing intervention in ARIMA models, see 

for example Melard and Pasteels (2000) or Bianchi, Jarrett and Hanumara (1998). 

However, the intervention is exogenous to the ARIMA model and is not incorporated 

in the same way that intervention in a DLM model can be. The Bayesian 

methodology of a DLM-based approach allows smoother integration of the 

intervention and provides priors for the intervention parameters. Intervention is 

highly dependent on the information available to the forecaster, so while performing 

intervention in the ARIMA model would indicate the kind of forecasting 

improvements that could be made, it would not be a like-for-like comparison with 

intervention in the MDM model.

ARIMA models also assume constant variance. This assumption falls down 

for this application in two ways- the structure of the system introduces a seasonal 

variance (as can be seen in equation 6.2.2) and examination of the data shows that 

even the variance due to the ‘noise’ parameter seems to follow a seasonal pattern (as 

discussed in chapter 8). Consequently, the standard ARIMA model is not best suited 

to this problem.

A more complex approach for this application may be based on ARIMA 

methodology in the same way as the linear MDM is based on DLMs. For simplicity 

here, however, only a standard ARIMA approach is employed for comparison
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purposes, as the more in-depth approaches are beyond the scope of this thesis. 

Standard ARIMA, by contrast, is well supported in statistical computer packages and 

can serve as a simple non-Bayesian comparator.

In common with the independent DLM models no use is made of the links 

between the time series. ARIMA models also assume the model parameters are 

constant over time, which is not guaranteed in this application.

10.2 Model selection

The autocorrelation and partial autocorrelation for a typical node are shown in 

figure 10.2.1. There is not an obviously correct model, although an ARIMA (0,0,2) 

model might be appropriate before seasonality is considered as there are two large 

initial lags in the partial autocorrelation plot and the autocorrelation plot appears to 

be decaying slowly. The correlation at many lags is statistically significant (as 

indicated by the horizontal bars), but this is most likely because the data are not well 

suited to this model.

In order to establish the most suitable model, a more formal method can be 

used. Comparing models through the Akaike Information Criterion suggests that 

(l,0,0)x(l,0 ,0 ) 2 4  is the most suitable seasonal ARIMA model. Note that the seasonal 

component is at lag 24- the same lag that the MDM and DLM models use- but this 

model also takes into consideration the lag 1 term.

This leads to a model of the form:

The parameters for lag 1 and lag 24 were estimated using a standard function 

in the language S-Plus that uses a convergence-based method.
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Figure 10.2.1 -  Autocorrelation plots for Y167
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10.3 Results

Once the model is established, generating results is a simple matter of 

calculation. The parameters converged to in the model were 0 ^ 0 .5  and $  '^ 1  . 

This implies that the lag 24 term is most significant, but the lag 1 term does influence 

the observed value (as one would expect). The results obtained, as compared to the 

MDM model without intervention are given in table 10.3.1.

Node ARIMA MDM no interv.
MSE MFV MSE MFV

162 5215 5127 4374 4190
167 39408 38548 41948 37989
169 918 907 678 641
172 6183 6167 7387 7225

161 9137 8894 11299 24662
163 1314 1314 937 1126
164b 4851 4813 6244 4044
168 1064 1046 902 1645
170a 16025 15721 17122 10810
170b 5557 5440 5425 4327
171 23682 23086 43967 26819

Table 10.3.1 -  Performance o:"the
independent ARIMA models and the MDM 

without intervention

The parts of the MDM model that are simple DLM models (the upper part of the 

table) perform about as well as the independent ARIMA models. For most of the 

MDM nodes, performance is about the same as for independent ARIMA models. 

Differences between them could be due to the suitability of the ARIMA technique for 

each particular node. Some nodes may be more constant over time than others, or
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may have lag 1 values of greater impact on their level. The one node for which 

performance in the MDM was markedly worse than independent ARIMA models 

was node Y(171). This node was in part of the network where compromises had to be 

made to the DAG, and was also a deterministic twin so was not modelled directly. 

This poor performance may be corrected by making it the modelled node and Y(161) 

the deterministic twin.

It is interesting to note that the ARIMA models use more information than the 

DLM-based models- specifically the data at the previous time point- but offer no 

general performance gain except for one node that is known to have problems. The 

DLM and MDM models have the natural advantage of the greater ease of expert 

intervention. Unlike the independent DLM models, the ARIMA models are not 

restricted to steady seasonals thus a direct comparison may not be made. More 

importantly, the ARIMA estimation uses the entire data set to estimate the 

parameters and then finds the forecast errors over that same set. The DLM-based 

models only use the data up to that time for forecast the next data point. However, 

this may not be an advantage if the model is not stationary (after accounting for 

seasonality). Thus the comparison is not entirely fair, although it is possible to update 

the forecast function of an ARIMA model in a similar way to that of DLMs (Butler, 

1999). However, even though the ARIMA model uses the entire data set the MDM 

model is competitive for nodes where no compromises were made formulating the 

DAG.
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Chapter 11 -  Discussion and Further Research

This chapter has three sections. Firstly there is an analysis of all the methods 

presented for forecasting traffic flow and a discussion of how they compare. The 

second section evaluates the MDM methodology presented here and outlines its 

advantages and problems. The last summarises areas for future research around the 

problem and the model. Whitlock (1999) applied an MDM model to the same data 

set, however, a different DAG was used that did not take into account deterministic 

twins. Also, MCMC was used to simulate missing data instead of amending the 

DAG. MCMC was required because the DAG employed by Whitlock did not allow 

for MDM nodes that had flows from both inside and outside the network. This avoids 

the problem of covariance between entry flows, but represents a more restrictive 

subset of MDM models and requires MCMC in order to deal with missing data. Both 

approaches would be appropriate in different circumstances. Whitlock introduced 

artificial events into the data to demonstrate intervention, but in this thesis the 

existing unusual events (although devoid of context) are used for this purpose.

Cassidy, Anani et al. (2002) provide evidence that congestion on one branch 

of a network causes lowered flow of a peer branch- so traffic congestion causes 

higher correlation between siblings in the network. Maunch and Cassidy (2002) 

suggest this oscillation travels upstream from the congested area. In the MDM, the 

data would first signal this event upstream of the congestion, and if intervention is 

performed reactively then intervention at that point might be the only intervention 

needed to match both these behaviours. The overall reduced flow means that the two 

siblings also have reduced flow. However, if the intervention is to be performed
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actively, then the forecaster must ascertain the first earliest point at which to 

intervene. This might be non-trivial, however, the structure of the MDM ensures that 

the implementation of the intervention remains simple.

11.1 Comparative performance

The performance of the basic MDM against other methodologies is given in 

table 11.1.1. The nodes are divided into three types, root nodes (in the first section), 

nodes where the MDM broke proper causality relationships (the second section) and 

nodes where it did not (the final section). The method with the best mean squared 

error for a node and any methods with a mean squared error within 5% of the best 

have been shown in boldface.
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Node MDM, no 

intervention

Independent 

DLMs, no interv.

ARIMA

MSE MFV MSE MFV MSE MFV
162 4374 4190 4374 4190 5215 5127
167 41948 37989 41948 37989 39408 38548
169 678 641 678 641 918 907
172 7387 7225 7387 7225 6183 6167

161 11299 24662 10795 8589 9137 8894
163 937 1126 925 854 1314 1314
164b 6244 4044 6243 6075 4851 4813
171 43967 26819 45410 38123 23682 23086

168 902 1645 913 965 1064 1046
170a 17122 10810 17059 15637 16025 15721
170b 5425 4327 5439 4587 5557 5440

Table 11.1.1- Performance of the MDM without intervention 
and independent DLM and ARIMA models.

It can be seen that for root nodes, where the MDM is equivalent to the 

independent DLM models, performance is broadly similar between those and 

ARIMA methodology.

In the second section, MDM and DLM methodologies performed similarly, 

but for most of the nodes less well than ARIMA methodology. In particular they 

performed badly for node 171. This is probably due to the unusual activity in node 

171, identified in section 7.5.1. The activity is a period of depressed flow, with clear 

start and end points. The ARIMA method will suffer poor performance around these 

end points, but as the daily pattern remains the same will perform well during these 

periods. The MDM and DLM, however, will slowly adapt to the unusual activity then 

slowly adapt back when it ends leading to poor performance over a longer period. 

Intervention should prevent or alleviate this problem. Even with the loss of causal
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relationships, the MDM performs as well as independent DLMs for these nodes. This 

suggests that the MDM is only losing information from the relationships between the 

sites and not breaking down completely. It also suggests that when such 

compromises may have to be made when formulating the DAG, it is feasible to 

model such nodes with independent DLMs, then pick up the MDM structure from 

then on in. This eliminates any problems in the formulation of the DAG for an MDM 

network, but loses the benefits of intervention by tiers. The forecaster does, at least, 

have this option. In this case, such points are at the end of the flow structure so it 

would be equivalent to modelling all the nodes in the second section with their 

independent DLM equivalents. The competitive performance of the ARIMA model 

for these nodes suggests that the lag 1 term the ARIMA includes may be significant 

enough to warrant inclusion in a future MDM model.

In the third section, performance of all three models is again broadly 

equivalent.

The median forecast variance is similar to the mean squared error for most 

models and nodes, as we would expect as this is count data and thus Poisson. The 

Normal distribution should be a good approximation of this as the observed counts 

are high, as is borne out by the results. The exception is in the second category, 

where the MDM model produces median forecast variances vastly different from the 

mean squared errors. This would appear to be an equalising effect between the 

siblings in this part of the model. Nodes 161 and 171 are siblings, with 161 having a 

high median forecast variance and 171 having a low median forecast variance. Nodes 

163 and 164b show a similar pattern. The precise nature of the smoothing effect 

between these pairs does not seem to be a simple linear trade-off. Its presence can be
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explained by examining the DAG used to predict them (figures 7.1.2 and 7.2.2). In 

each case the pair is an MDM node and its deterministic twin with their sum as their 

parent. It could be that the MDM model does not adequately determine how much of 

the uncertainty regarding the sum should be passed to each of the children. This is 

another drawback of breaking the causality relationships when formulating the 

model. A similar situation exists with nodes 170a and 170b, which in the DAG both 

stem from a parent which is their sum. In this case, however, there is no break in 

causality and the effect appears to be a reduction in forecast variance for both rather 

than a trade-off. The production of forecast bounds narrower than those given by a 

Poisson approach is curious. This could be a result of the MDM exploiting the causal 

relationships beneficially or an artefact of the seasonal variance the MDM produces. 

Further exploration of the effect may be of interest.

The above table only examines how the MDM and DLM models perform 

without intervention. It does establish that even without intervention the MDM is a 

competitive model against others of similar complexity. Once intervention is 

performed, the MDM compares to ARIMA methodology as shown in table 11.1.2.
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Node MDM interv. ARIMA
MSE MFV MSE MFV

162 4288 3661 5215 5127
167 36049 29896 39408 38548
169 678 641 918 907
172 5837 4035 6183 6167

161 13614 17599 9137 8894
163 982 997 1314 1314
164b 5556 3158 4851 4813
171 32095 19767 23682 23086

168 825 771 1064 1046
170a 14798 9308 16025 15721
170b 4749 3899 5557 5440
Table 11.1.2-1 Performance of the MDM

with intervention and independent 
ARIMA models.

The performance of the MDM in the first category of nodes has markedly 

improved after intervention. In particular node 167 has a 14% reduction in mean 

squared error after intervention. Node 167 has the heaviest intervention applied to it 

and it is a good indication that intervention was performed satisfactorily. In 

particular, the MDM now outperforms the ARIMA model in all nodes in this 

category. Of course, these nodes are simply independent DLMs so that model would 

show a similar improvement.

In the second category of nodes, the MDM still performs less well than 

ARIMA methodology. However, the mean squared errors have improved. The 

median forecast variances are still dissimilar to the mean squared errors except now 

for node 163.
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The third section shows the MDM methodology as a clear winner. Once again 

the median forecast variances are lower than would be suggested by a Poisson 

distribution.

This is not a complete like-for-like comparison as no intervention has been 

performed for the ARIMA model. However, ARIMA methodology does not have a 

simple mechanism for intervention. Major improvements could only be gained by 

extensive revision of the methodology. The improvements in the performance of the 

MDM were gained by simple ad hoc intervention. There may be further 

improvements in performance with more rigorous intervention. However, as with all 

cases of expert intervention the capability of the expert is important. Without context 

to place the data in or a trial of the methodology in real-time it is difficult to gauge 

how well intervention could be performed. However, the capacity for intervention is 

the key advantage of the Bayesian approach to this application. In addition, the 

hierarchical structure of the MDM and the intervention by tiers approach offers 

advantages over intervention in a series of independent DLMs.

The adapted MDM model with seasonal observation variances from chapter 8 

is compared to the standard MDM and independent ARIMA models in table 11.1.2.
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Node Adapted MDM MDM no interv. ARIMA
MSE MFV MSE MFV MSE MFV

162 4652 3258 4374 4190 5215 5127
167 44454 20319 41948 37989 39408 38548
169 712 633 678 641 918 907
172 8690 4501 7387 7225 6183 6167

161 12957 22264 11299 24662 9137 8894
163 1433 1870 937 1126 1314 1314
164b 6761 6034 6244 4044 4851 4813
171 47929 23990 43967 26819 23682 23086

168 1006 1805 902 1645 1064 1046
170a 18013 9171 17122 10810 16025 15721
170b 6214 4559 5425 4327 5557 5440
Table 11.1.3- Performance of the adapted anc original MDMs

without intervention and independent ARIMA models.

The performance of this model is uniformly worse than either the original 

MDM or the independent ARIMA models. This may be due to the decreased 

precision in the estimation of the observation noise variances in the adapted model. It 

is clear that if seasonal variances are to be accounted for in either DLMs (for the root 

nodes) or the MDM in general a different approach is needed. However, as an MDM 

model includes terms that will naturally produce seasonality in the forecast variances 

it may not be necessary to apply them to MDM nodes. The DLMs used for root nodes 

might still benefit from such an approach.
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11.2 Evaluation of the methodology

The MDM model performed adequately on the basis of mean squared errors, 

but there are other aspects to consider when assessing its effectiveness.

An important issue concerning model validation is the choice of distributions. 

For root nodes and other inflows into the network, the natural distribution to choose 

is the Poisson. A Normal approximation (and, by extension, the T distribution used 

with variance estimation) is appropriate as long as the mean of the distribution is 

relatively high. However, during the night some nodes have very low observed values 

which might bring into question the validity of a Normal approximation.

Experimentation with formulation of the DAG was performed to account for 

unknown covariances between entry points (see section 7.1). This experimentation 

showed that when the model fails in this circumstance it fails in a way indicative of 

overparameterisation, with unbounded growth in the forecast variance. When this 

happened, it was during the parts of the cycle where flows were very small that 

showed the highest variance growth. It could be possible that these low values are the 

cause of this seeming overparameterisation instead of the model formulation. 

Forecasts for these time points might be considered of little importance by the 

forecaster, and the DLM and MDM could operate with these time points omitted. 

Future work could examine how this changes the behaviour of the model in those 

parts of the DAG that are causing problems. Problems arising from the covariances 

between entry points could also be solved by considering the network as an 

aggregation of the noisy AND-OR-NOT Bayesian networks examined in Schubert 

(2004), or by introducing an overall traffic level component as part of a dynamic 

hierarchical model of the kind described in Gamerman and Migon (1993).
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Similarly, the conditional distribution for an MDM node would be more 

naturally a Binomial distribution. However, this could only be implemented if the 

forecast distributions for the parent nodes had integer values. Additionally, such 

measures may make the marginal distribution more difficult to calculate. A Normal 

approximation to the Binomial is appropriate is most cases, but for some MDM 

nodes there are quite extreme values for p which brings into question the suitability 

of the approximation. However, as the forecasts for MDM nodes consist only of 

point forecasts and variances the symmetry of the distribution is not part of those 

calculations. The approximation is likely to be ‘good enough’ for the purpose of 

forecasting future traffic flows and examining the relationships between them.

The independence of parameters is important in an MDM model. The 

formulation of the DAG guarantees the independent updating of parameters for 

MDM nodes, but does not help with the parameters for root nodes. The model 

presented here assumes independence between inflows. This is not a credible 

assumption and contributed to the problems with compromised sections of the DAG. 

Finding the covariance between root nodes is a significant problem in its own right. 

Ad hoc numerical methods could provide a value for this covariance, but there is no 

Bayesian formulation for covariance between variables. As such obtaining some 

simple distribution that can easily be incorporated into the Bayesian framework of 

the MDM is not possible. The inverse Wishart distribution may be of use but this 

would have to be examined in depth in future work.

The formulation of the DAG is an important concern in MDM models, and 

the DAGs produced here are shown to have problems where there are inflows into 

the network not at root nodes. However, this situation can be avoided by design
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simply by placing the counting points such that no nodes have inflows from outside 

the network as well as parents. In this application the full network of counting points 

meets this criterion- it is only because some of these points have no data available for 

them that the problem arises in the pruned network. If there were some external 

means of determining the covariance between entry points, a composite MDM node 

with parents and an in-flow would still be tractable. In some applications this may be 

possible, but the only recourse in this application would be MCMC methods, which 

are computationally intensive and not really suitable for a real-time system. A 

method for determining whether a multivariate conditional Normal model can be 

decomposed into univariate conditional Normal models is given in Didelez and 

Edwards (2004). This may be of great use in formulating DAGs for an MDM and 

finding parts of the graph where univariate conditional models cannot be created 

without further refinements.

The key advantage of an MDM technique is intervention. A traffic flow 

pattern of this kind is likely to be noisy, and intervention may be needed frequently. 

The tiered structure of the MDM network and the intervention by tiers it engenders 

offer a powerful way of improving the performance of the model. The larger the 

network used, the more powerful this technique becomes. It does not reduce the 

amount of monitoring that needs to be done to check whether intervention is 

necessary, but it makes each intervention more powerful and will reduce the number 

of interventions (and hence the amount of elicitation) that has to be made.

A practical consideration concerning intervention is where the cause of an 

event takes place. Bertini and Cassidy (2002) demonstrate that bottlenecks need not 

form immediately in the vicinity of an entry of exit slip-road. In the context of the
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MDM, this matters little as the event and the intervention for it deals only with the 

flow at the counting points. The position of the bottleneck will affect how quickly the 

congestion will percolate up stream. Mechanistic models would need to account for 

this, but the heuristic method the MDM model uses for intervention eliminates the 

need for a formal system in favour of expert opinions.

The second most important consideration in formulating this model was that 

of simplicity. By making the parameters understandable quantities it makes it easier 

for the forecaster to intervene, not just in terms of making the quantities to be added 

to the model simple, but also making the decisions regarding how to intervene more 

straight-forward. The forecaster can tell at a glance what the parameters are at a 

certain point at a certain time without having to perform any transformations to get 

real-world figures. The use of an easily used base model, the DLM, makes the 

implementation of the model easier and makes the mechanics of intervention simpler.

Another useful property is that by obtaining covariances between quantities of 

interest (see chapter 6) it is possible to form a new model when some structural 

change is made in the network. Traffic monitoring can also be used to improve flow 

by changing some aspects as the sequence of traffic signals (see Cassidy, Anani and 

Haigwood 2002) or temporary speed restrictions. Intervention can be used when this 

takes so the model adapts to the new traffic conditions. A system without 

intervention or some equivalent mechanism might give poor performance whenever 

its forecasts were used to change aspects of the network.

These qualities are of great utility where a model is a candidate for use in a 

real-time system. Such a model must be able to be evaluated as fast as the data are
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gathered. Once the initial work establishing the DAG is in place, the MDM model 

can do this, even including the time needed to intervene.

In particular, the avoidance of MCMC is important both for simplicity and for 

practicality in use as a real-time system. Previous approaches such as Whitlock and 

Queen (2000) and Tebaldi, West et al. (2002) used MCMC techniques as part of a 

Bayesian framework. Whitlock (1999) used MCMC to simulate missing data in the 

same network modelled here, which would not be practical in a real-time system. 

Tebaldi, West et al. modelled a stretch of freeway as a chain of counting points, with 

entries to the network found using a smoothed curve generated using MCMC. In that 

model, the data were minute-by-minute. MCMC is a powerful tool, but has 

drawbacks in this application. The reliability of an MCMC simulation is dependent 

on the time the simulation was run for. In a real-time system, there may not be 

enough time between data points to perform it satisfactorily. In addition, repeated use 

will greatly increase the chance that it produces an erroneous result over the course of 

running the model.

The MDM model is a powerful tool in this application and when applied 

correctly offers many advantages over other approaches of similar complexity. In 

particular, its many advantages in terms of intervention are attractive in any 

application where intervention will be an important part of modelling. Although the 

MDM is competitive as compared to independent DLMs or ARIMA models, it may 

not perform as well as more complicated approaches outlined in chapter 1. However, 

in the same way as ARIMA methodology forms the basis of some of these advanced 

approaches, the MDM model described here could form the basis of a more advanced 

Bayesian system.
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11.3 Future work

There are many areas in which future research might prove fruitful with 

regards to the MDM. The most basic would be to restore the full week to the model. 

At the moment the model assumes continuity between Thursday and Tuesday not 

only for standard running of the model but for intervention. The inclusion of the full 

week using dummy variables as in Whitlock (1999) would be helpful. In particular, 

the dummy variables approach may be simpler than the approach needed for an 

ARIMA model to model the full week.

Given the significance of intervention in the MDM model it would be useful 

to have some formal monitoring method available. General techniques of formal 

monitoring (such as CuSums) could be used for a traffic flow application but it 

would be useful to have a technique specifically tailored to it. Formal monitoring 

would not only make intervention less ad hoc than the method used in this thesis, but 

could also categorise unusual events according to their behaviour. This would be of 

great use when determining how to intervene in response to such an event. Formal 

monitoring could also be used to ensure that intervention, when performed, is 

performed effectively. An additional approach would be to incorporate event 

detection methods exogenous to the MDM, using such methods as those in Coifman 

(2003a), Holland (1998) or Lin and Daganzo (1997).

There are two ways of assessing the effectiveness of intervention in the MDM 

model compared to independent DLMs. One way, as shown earlier, is to compare 

how many interventions need to be made for a particular period of unusual activity. 

This, through intervention by tiers, shows that intervention in an MDM is more 

effective than that in a DLM. The second method would be to compare the MSE for
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nodes in the models with a fixed number of interventions for each model. This would 

show how much better the forecasts obtained are given the same effort expended on 

intervention. However, this would require some means of ordering periods of unusual 

activity so the most significant are intervened for in preference to others. This may be 

possible using formal monitoring methods should they be developed.

The deterministic twins presented in chapter 6 have the limitation that they 

cannot be applied on situations where the directly modelled twin has more than one 

parent. This limitation may be removed by considering a more general approach to 

the constraints imposed in such situations, possibly along the lines of the constrained 

Kalman filter in Pandher (2002).

The seasonal pattern in the variance needs more examination. The MDM 

nodes account for some seasonal pattern in the variance, but the DLMs used for the 

root nodes do not. In particular, the Poisson characteristic that the variance equals the 

mean could be enforced by changing the DLM and MDM nodes as follows:

e;=/:
This eliminates the need to estimate V through any means. This method should be 

applied to the marginal forecasts, which means calculating Vt from equation 6.2.2. 

Difficulties might arise if this would force Vt to take a negative (hence unacceptable) 

value. The formulation of such a model would be of considerable interest as it would 

be of an essentially simpler form than the MDM model presented here!

For both the effective use of the general DLM-based MDM model and the 

production of the covariance matrix for the parameters, it is necessary to find 

covariances between inflows. As mentioned in the previous section this is a suitable 

candidate for future work. One means that allows estimation of in-flows is through
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the introduction of data regarding vehicle reidentification. These data need not be 

complete in order to be useful (Coifman 2003b). Covariates in DAGs for social 

networks have been included in Gill and Swartz (2004) and may be be introduced in 

a similar fashion in this application. Another possibility is the use of nested threshold 

autoregressive models (Astatkie, Watts and Watt 1997)- which decompose a non­

linear dynamic system into linear subsystems. This is the same principle as the MDM 

uses, although the NeTAR models use multiple explanatory inputs and a stateful 

system. However, these two properties may form a bridge between the MDM method 

here and the numerical methods of forecasting found in traffic literature if they are 

used for the entry points to an MDM model.

One missing aspect from the theory of the model is a proof of convergence 

for DLMs with non-constant F. Intuitively, this should be possible using a bounding 

argument, but at present it has not been shown. Attempting to write the observation 

matrix T (equation 4.2.1) for such a model leads to variables appearing in it. It is not 

clear how to treat them when determining whether the model is observable or not. It 

seems likely that the proof will impose properties on the form of an MDM node and 

the values in the F matrix, particularly with regards to covariance. That there are 

conditions in which convergence occurs does not seem to be in doubt, but without 

full understanding of the requirements of convergence it cannot be guaranteed. 

Determining these requirements may well provide insight into the problems with 

portions of the DAG and how to avoid them.

It can be seen that the MDM is an important extension to a general regression 

DLM over time. Consider the model of Tebaldi, West et al. (2002). Each node in that 

model was regressed on its parent node at different time lags. The lags required were
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established through separate analysis. In such a model, as the time periods become 

larger or the distances smaller, the model may have to regress at lag 1 and then need 

to regress at lag 0. This lag 0 regression is what the MDM model allows. A general 

DLM/MDM model could incorporate regression at any non-negative lag. In this 

application, the model could be extended to include regressing on the parents at lag

1. This would attempt to account for vehicles between counting points when the hour 

rolls over- a possible reason for better ARIMA forecast for some nodes. The MDM 

could be a useful extension to any hierarchical DLM model when used in this way. 

This general approach could be used with smaller sampling periods, as used in other 

traffic flow research. Aggregated counts can still be found and modelled as in 

Schmidt and Gamerman (1997).

Additionally, the ARIMA methodology suggests that alternative G-matrices 

may merit further study, where the parameter for time t depends not only on the 

parameter at time t-24, but also on time t-1. The ARIMA model fitted in chapter 9 

suggests that a G-matrix of the form:

may be suitable. However, representing AR models as DLMs generally requires a 

transformation of the series to be zero-mean (West and Harrison 1999), and trans­

formations may fail to meet the goal of making the model readily interpretable as es­

tablished in chapter 1.

0.5 1 0 ••• 0
0 0 1 ’- . ;

G'= \  0
0 1
. . .  0

0
1 0
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