
Open Research Online
The Open University’s repository of research publications
and other research outputs

Tactics from proofs
Thesis
How to cite:

Gurukumba, Tawanda (2007). Tactics from proofs. MPhil thesis The Open University.

For guidance on citations see FAQs.

c© 2007 Tawanda Gurukumba

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

OM £UESTRi C 'T & h

TACTICS FROM PROOFS

By

Tawanda Gurukumba

BSc (Computer Science and Physics, University of Zimbabwe)

MSc (Computation, University of Oxford)

SUBMITTED FOR THE DEGREE OF

MASTER OF PHILOSOPHY

AT

THE COMPUTING DEPARTMENT

FACULTY OF MATHEMATICS, COMPUTING AND TECHNOLOGY

THE OPEN UNIVERSITY

WALTON HALL, MILTON KEYNES

OCTOBER 2007

bftr£ O-T 3 0 2.00 /

bfhre 2 M- ock>%£& 2ce>7

ProQuest Number: 13890037

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13890037

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration

I declare tha t the work in this thesis is my own independent contribution. No portion

of the material offered in this thesis has previously been submitted by me in support of

an application for another degree or qualification to this or any other University, or other

institution of learning. The theory of Architectural Retrenchment in Chapter 5 has been

previously published by the Open University Computing Department [HG01].

Table of Contents

Table of Contents iii

List of Tables viii

List of Figures ix

Abstract xi

Acknowledgements xii

1 Introduction 1
1.1 Why formal proof in software development? 2

1.1.1 Formal methods in software engineering ... 3
1.2 Software tool support for formal m ethods.. 4
1.3 Tactics from p ro o fs .. 5
1.4 Hybrid s y s te m s 6
1.5 Organization of the t h e s i s ... 7

2 Tactics in formal methods 10
2.1 In troduction ... 10
2.2 The state of the art in systems d ev e lo p m en t.. 12
2.3 Formal m e th o d s... 13

2.3.1 The state of the art in Formal m e th o d s ... 14
2.3.1.1 Formal specification and verification lifecycle 14

2.3.2 The state of the art in Software Tool S u p p o r t 17
2.3.2.1 Types of Theorem -provers..................................... 17

2.3.3 Model-based formal specification m e th o d s .. 19
2.3.3.1 Executable specifications.. 20

2.4 Formal Mathematical L o g i c ... 21
2.4.1 Formal logic lan g u ag es ... 22
2.4.2 The formal logic proof s y s te m ... 25

2.4.2.1 Intuitionistic, Constructive, and Classical proof systems . 26
2.4.2.2 Proof S e a r c h .. 28

2.5 The Gentzen Sequent Calculus for Classical logic .. 29
2.5.1 Gentzen Sequent C a lc u lu s .. 29
2.5.2 M etam athem atics.. 31

2.5.2.1 Direct proof via Cut-elimination .. 33

iii

2.5.2.2 Proof complexity 36
2.6 Proof systems for Theorem -proving.. 37

2.6.1 T ac tic s ... 37
2.6.1.1 Implementation of LCF-like ta c t ic s ... 40

2.7 Tactics from proofs state of the a r t 41
2.7.1 Direct encapsulation of proof s t e p s ... 42
2.7.2 The encapsulation of proof structures as proof p la n s 42
2.7.3 Proofs as p ro g ra m s .. 43
2.7.4 Machine in d u c t io n .. 44
2.7.5 Reasoning about t a c t i c s .. 45

2.8 The research p rob lem . . . 46
2.8.1 Problems in proof th e o ry 46

2.8.1.1 Problems in proof developm en t... 47
2.9 The proposed s o lu t io n ... 48

2.9.1 Robust ta c tic s .. 50
2.9.1.1 Research q u e s tio n s .. 51

2.10 S u m m a ry .. 51

3 Towards robust tactics from proofs 53
3.1 In troduction ... 53
3.2 Domain knowledge for proof developm ent... 55

3.2.1 A functional definitional specification s ty le .. 56
3.2.2 Human expertise in formal proof developm ent..................................... 57

3.3 Tactic re fin em en t.. 58
3.3.1 An example derivation of LCF-like tactics 59

3.4 An abstraction of LK inference-rules ... 62
3.4.1 Mechanical LK inference-rules... 63
3.4.2 Creative LK inference-rules .. 65

3.5 The permutability of LK inference ru le s .. 67
3.5.1 Prenex Normal F o rm ... 68
3.5.2 Permutability of the cut-rule with other L K -ru le s 72
3.5.3 Permutability of quantifier-rules with other L K - ru le s 73

3.6 Results from the permutation analysis 73
3.6.1 Creative compositions of p ro o fs tep s ... 73
3.6.2 Factorizing inference-rules.. 75
3.6.3 A strategy for choosing which proofrule to a p p ly 76

3.7 A procedure for constructing robust ta c tic s .. 78
3.7.1 An algorithm for constructing robust t a c t i c s ... 79

3.7.1.1 Labeling the p ro o f tre e .. 79
3.7.1.2 Collecting p roo fru les ... 81
3.7.1.3 Factoring out common inference-rules...................................... 81
3.7.1.4 Permuting the factored inference-ru les................................... 82

3.7.2 An example application of Algorithm 3 .7 .1 .. 82
3.8 Proofs of correctness of Algorithm 3 .7 .1 ... 87

3.8.1 Proof of termination of the a lg o rith m 87
3.8.2 Proof of correctness properties of the algorithm’s o u t p u t 89

3.8.2.1 Proof of Theorem 3 .8 .1 .. 90
3.9 Tactic-proof normal f o r m s ... 91

iv

3.10 Summary 92

4 Robust tactics from proofs in PVS 96
4.1 In troduction .. 96
4.2 An overview of the PVS theorem-prover .. 97

4.2.1 PVS specification language................................... 98
4.2.2 The PVS proof s y s te m .. 99

4.2.2.1 PVS proof ru le s ... 101
4.2.3 PVS tactic la n g u a g e ...101

4.2.3.1 A synopsis of the implementation of t a c t i c s 102
4.3 Encoding LCF-like tactics in P V S ...104

4.3.1 Encoding robust tactics in P V S ...106
4.4 Interacting with the PVS proof s y s te m ...108

4.4.1 An application of Algorithm 3.7.1 in PVS 109
4.5 S u m m a ry ... 110

5 Architectural retrenchment 112
5.1 Introduction 112
5.2 Approaches to formal program d ev e lo p m en t................................... 113

5.2.1 Program synthesis ..114
5.2.2 Program refinem ent..114
5.2.3 Retrenchment 116

5.2.3.1 Patterns in the retrenchment proof obligations............. 119
5.3 Specification and proof of retrenchment in B 120

5.3.1 Architectural retrenchm ent...120
5.3.1.1 The nature of an architectural c h a n g e121
5.3.1.2 The nature of a datatype c h a n g e 122

5.3.2 Proof procedure for architectural retrenchm ent..123
5.4 Specification and proof of retrenchment in P V S ...126

5.4.1 Specification method for B machines in P V S .. 126
5.4.2 High Integrity translation from B to P V S ...127

5.4.2.1 PVS specification of the architectural retrenchment in Fig
ure B .l 130

5.4.3 Proof of the retrenchment specifications in P V S132
5.4.3.1 Proof procedure for architectural retrenchment POs 132

5.5 Tactics from proofs of retrenchment in P V S ... 134
5.5.1 Automatic generation of proof obligations as T C C s134
5.5.2 Tactics for the retrenchment POs not in Normal Form135

5.5.2.1 Rewriting to instantiation p h a s e 137
5.5.2.2 In s ta n t ia t io n .. 138
5.5.2.3 Completing the p roof... 138

5.5.3 Tactics for retrenchment POs in P N F ..139
5.5.4 General retrenchment t a c t i c .. 140

5.6 S u m m a ry ..141

v

6 Retrenching reals by floats 144
6.1 In troduction ..144
6.2 Reliable numerical co m p u ta tio n ..145

6.2.1 Characterization of the problem d o m a in ...146
6.2.1.1 Assumptions about floating-point c o m p u ta tio n147

6.2.2 Specification of programs involving real c o m p u ta tio n 148
6.2.3 Verification of specifications involving re a ls ... 150

6.2.3.1 Theorem Proving with Computer Algebra Systems 150
6.3 The PVS retrenchment of the reals by f lo a t s ...151

6.3.1 Specification in P V S ... 152
6.3.1.1 Real com putation...152
6.3.1.2 Floating-point co m p u ta tio n ... 152
6.3.1.3 Evolving re trenchm ent...157

6.4 Proof of evolving retrenchment in P V S ...158
6.4.1 Tactic-proof of retrenchment in P V S ... 159

6.4.1.1 Verification of the retrenchment in P V S 159
6.5 Generalization and maintenance of ta c tic -p ro o fs ...161

6.5.1 Input architecture retrenchm ent... 161
6.5.2 D ata representation retrenchment161

6.5.2.1 Proof using initialization v a lu e s ...163
6.5.2.2 Proof using lemmas .. 164

6.5.3 O utput architecture retrechment ..166
6.6 Summary ... 166

7 Discussion 169
7.1 Robust tactics from hand-generated p ro o fs ... 170

7.1.1 Tactic re finem en t..170
7.1.2 Abstraction of LK proofsteps into creative or m ech an ica l..................... 171
7.1.3 Permutability of creative steps with mechanical s t e p s172
7.1.4 An algorithm for deriving robust tactics from proofs........................... 173

7.2 Incorporating robust tactics in P V S ..174
7.2.1 Robust PVS (g r in d) ... 174

7.3 Case study: Robust tactics for R etrenchm ent... 175
7.3.1 Architectural retrenchm ent... 176

7.3.1.1 Specifying retrenchment in P V S ... 177
7.3.1.2 Proving retrenchment in P V S .. 178

7.3.2 Theory-driven ex am ple ..179
7.3.2.1 Architectural Evolving re tre n ch m en t... 180

7.4 An transformation system for retrenchment ..182
7.5 Limitations of our a p p ro a c h ... 183
7.6 R e m a r k ... 184

8 Conclusions and Future work 185
8.1 Can robust tactics be derived from p ro o fs? .. 186

8.1.1 Can creative steps be permuted with mechanical o n e s ? 186
8.1.2 Can robust tactics be incorporated into an I T P / P C187
8.1.3 Robust tactics for re tren ch m en t..187

8.1.3.1 Architectural R etrenchm ent..188

vi

8.1.3.2 Architectural Evolving R etrenchm ent...189
8.2 Future w o rk ... 190

8.2.1 Theory of robust tactic construction .. 190
8.2.1.1 Implementation of Algorithm 3 .7 .1 .. 190
8.2.1.2 Improving efficiency using a tactic calculus............................... 191

8.2.2 Mechanization of re tre n c h m e n t................ 191
8.2.2.1 A high level IT P /P C interface.. 191
8.2.2.2 Handling transcendental functions ... 192

8.3 Conclusion.. 192

References 195

A The PVS system 210
A .l The Permutation cases for L K ... 211

B Architectural retrenchment in PVS 214
B .l Backtracking on a failed proof attem pt ... 214
B.2 Evolving Retrenchment in P V S ...223

vii

List of Tables

4.1 Defined rules and s t r a te g ie s .. 104

5.1 B to P V S 129

A .l Permutation of Instantiation with Structural R u l e s 211

A.2 Permutation of Instantiation with Logical R u le s 212

A.3 Permutation of Instantiation with Logical R u le s 213

viii

List of Figures

2.1 The Formal methods application Lifecycle... 15

2.2 The inequivalence of interpretations of correctness.. 32

2.3 The Contraction is not required with the M ix-ru le .. 35

3.1 Proof for h 4 E { 4 ,5 } ... 59

3.2 Attempted proof for 5 E 0 with N o tln T a c .. 60

3.3 Proof for I— {4} C {4,5} .. 61

3.4 Branch-labeled prooftree for {4} { 5 ,6 } ... 62

3.5 An algorithm for constructing tactics from proofs.. 80

3.6 Factorization and permutation of the prooftree in Figure 3.4 at branch (1) 84

3.7 Lattice permutation of the prooftree in Figure 3.4 at branch (1) 84

3.8 Factorization and permutation of the prooftree in Figure 3.7 at branch (2) 85

3.9 The normal form of the prooftree in Figure 3 .4 ... 86

4.1 Specification for {4} £ {5,6} in PVS... 99

4.2 The prooftree from the application of Algorithm 3 .7 .1 109

5.1 The retrenchment proof obligations... 118

5.2 Architectural retrenchment in B ...121

B .l Architecture Retrenchment in B ... 216

ix

B.2 DSub and IASub in P V S .. 217

B.3 DRSub in P V S ...218

B.4 OASub in P V S ...219

B.5 Input architecture retrenchment proof obligations in P V S 220

B.6 D ata representation retrenchment proof obligations in P V S 221

B.7 Output-architecture retrenchment proof obligations in P V S222

B.8 DAddExact and IAAddExact in P V S 223

B.9 DRAddExact in P V S ... 224

B.10 OAAddExact in P V S .. 225

x

A bstract

Proof guarantees the correctness of a formal specification with respect to formal require

ments, and of an implementation with respect to a specification, and so provides valuable

verification methods in high integrity system development. However, proof development

by hand tends to be an erudite, error-prone and seemingly interminable task.

Tactics are programs tha t drive theorem-provers, thus automating proof development

and alleviating some of the problems mentioned above. The development of tactics for

a particular application domain also extends the domain of application of the theorem-

prover. A LCF-tactic is safe in that if it fails to be applicable to a particular conjecture,

then it will not produce an incorrect proof.

The current construction of tactics from proofs does not yield sufficiently robust tactics.

Proofs tend to be specific to the details of a specification and so are not reusable in general,

e.g. the same proof may not work when the definition of a conjecture is changed. The

major challenges in proof development are deciding which proof rule and instantiations to

apply in order to prove a conjecture.

Discerning patterns in formal interactive proof development facilitates the construction

of robust tactics that can withstand definitional changes in conjectures. Having developed

an interactive proof for a conjecture, we develop the necessary abstractions of the proof

steps used, to construct a tactic that can be applicable to other conjectures in th a t domain.

By so doing we encode human expertise used in the proof development, and make proofs

robust and thus generally reusable.

We apply our theory on the proofs of conjectures involving some set theory operators,

and on the proof obligations tha t arise in the formal development of numerical specifica

tions using the retrenchment method under the IEEE-854 floating-point standard in the

PVS theorem-prover/proof-checker.

Acknowledgem ents

I am grateful to my supervisory team, Dr Jon Hall and Prof Darrell Ince, and to Rob

Griffiths and Dr Marian Petre for their many suggestions and support during this research.

Thanks also to The Open University Research School team, the Computing Department

and the MCS TBT team for financial and technical software/hardware support respectively

required for this research.

My interest in formal methods and critical systems engineering is largely due to my

undergraduate and postgraduate studies; thanks in particular to Dr Fortune Mhlanga, Dr

Gifford Hapanyengwi, Dr Rosemary Shumba, Dr Andrew Simpson, Prof Jim Woodcock.

I am also thankful to Dr Mike Poppleton and Dr Richard Banach for support on the

retrenchment method; to Prof Brian Wichmann and Dr Paul Miner for support on floating

point computation; to Dr Ceaser Munoz and Dr David Stringer-Calvert and the SRI team,

for useful discussions on the PVS theorem-prover used in this work; Marina Davidson, and

to all those others referenced in this work.

Last but not least, thanks to my family, workmates, friends, and others too numerous

to mention by name, for their salutary companionship throughout the course of this work.

This thesis was written using Latex2e in WinEdit.

Chapter 1

Introduction

Computer systems are expected to deliver a proper service that adheres to their speci

fied requirements. One promising way to specify the requirements of a computer system

in an unambiguous manner is to use formal specification languages which are based on

Mathematical logic. The requirements specification can then be checked to ensure th a t

it is correct with respect to the formal logic system by the use of formal mathematical

proof. This thesis is on the development of computer programs called tactics th a t can be

used in order to partially automate the task of developing a formal proof in an Interactive

Theorem-Prover/Proof-Checker (ITP/PC).

A proof obligation tha t can arise from a formal specification of a computer program

can be expressed in the form of a conjecture in Mathematical Logic. For such a conjecture,

a formal proof can be developed by hand (and/or with the assistance of a proof-checker)

in the proof system of the formal logic used—such proofs are called hand-generated proofs.

Having derived a formal proof of a conjecture, a tactic can then be encoded from the proof

by collating the proof-steps used in developing tha t formal proof. The main goal of our

research is to derive the so-called robust tactics, i.e. tactics tha t can still be applicable in

1

CHAPTER 1. INTRODUCTION 2

developing formal proofs of other expressions similar to the conjectures from which those

tactics themselves were derived.

Since the robust tactics are to be used in the formal development of mathematical

proofs, the development of such robust tactics themselves should be under a rigorous

mathematical basis. In particular, a robust tactic should yield a normal form of a formal

proof, which is equivalent to the original formal proof from which the robust tactic was

derived. Thus a second goal of this work is to yield a mathematically correct procedure

which can be used to derive such robust tactics from proofs.

The third main goal of the research on tactics is to minimise the amount of interaction

between the Interactive Theorem-Prover/Proof-Checker (ITP/PC) and its human user in

the task of developing formal proofs. The amount of interaction between a human user

and the Interactive Theorem-Prover or Proof-Checker can then be taken as a metric for

the usefulness of a tactic in this endeavour.

Therefore the topic ‘Tactics from Proofs’ is associated with two main research ques

tions: (1) Can robust tactics be derived from hand-generated proofs?; and (2) Can such

tactics be incorporated in a state of the art theorem prover?

1.1 W hy formal proof in software development?

Most of the errors incurred in software development are due to logical errors on the part

of the programmer [YBH97]. Software simulation and testing are the conventional means

of detecting errors in software development. However, it is impossible to create an en

vironment that is a perfect replica of reality when relying on simulation alone to ensure

that a system meets its requirements [Ste98]. It is also impossible to exhaustively test

software for defects using conventional software testing techniques because there are too

CHAPTER 1. INTRODUCTION 3

many paths, possible inputs, and hardware failure modes in a computer system [Ham89].

In addition, software testing also accounts for over half the cost of a software development

project [YBH97].

To aid the process of developing software tha t meets its specified requirements, some

industry standards have mandated and advocated for the use of formal methods in software

development, e.g. the railways, defense, and aviation industries [BS92]. However software

testing and simulation will always be required to validate those parts of the software that

are not amenable to mathematical representation and consequently cannot be formally

verified.

1.1.1 Formal m ethods in software engineering

Formal methods is a collection of software development techniques based on mathematics.

The application of mathematical techniques in software development establishes software

engineering as a true engineering discipline since other branches of engineering, e.g. elec

trical, mechanical, and civil engineering disciplines, are based on mathematics. The main

issue addressed by formal methods is tha t of correctness, i.e. “the delivery of a proper

service tha t adheres to specified requirements” [BS92].

The major criticisms of formal methods are tha t formal methods are: (1) unscalable,

i.e. formal methods have been said to apply only to toy academic projects and are not

usable on industrial-scale projects; (2) intractable, i.e. formal methods techniques are

difficult to reuse; and (3) limited to the mathematical domain, i.e. not everything tha t

is informal can be formalized and conversely [Sim96]. Furthermore, formal methods have

been said to take too long to be successfully applied, especially when applied by hand.

The judicious application of formal methods, i.e. applying formal methods to only those

CHAPTER 1. INTRODUCTION 4

critical parts of a system, as well as the provision of software tools such as theorem-provers

and model-checkers, can go a long way to alleviate these problems [Gri81].

1.2 Software tool support for formal methods

Theorem-provers and model-checkers are two main software tools tha t are used to auto

mate formal methods. However model-checking inherently suffers from the state explosion

problem and thus is restricted to finite domains. Theorem-provers are free from the state-

explosion problem since proof techniques such as mathematical induction can be used to

argue about very large and/or infinite domains. However full automatic theorem-proving

cannot be achieved due to the undecidability problem in First-order and Higher-order log

ics, which are the logics of choice for specifying properties of computer systems. As such,

Automatic Theorem-Provers (APTs) often fail to prove putative theorems of computer

specifications.

In Interactive Theorem-Proving/Proof-Checking (IT P/PC), the theorem-prover acts

as a ‘slave’ in performing automated tasks for a ‘m aster’ expert human-prover/user, who

guides the proof development process. Since humans are better at making strategic de

cisions and computers are better at mechanical processing, IT Ps/PC s tend to be more

effective than ATPs, and often succeed where ATPs fail. However, the user has to be an

expert in mathematical proof development techniques, as well as in the language and proof

system of the IT P /P C being used. In addition, the proof system of most IT P /P C s consist

of the most basic proof rules of the proof system, e.g. the proof system of a IT P /P C based

on classical logic may only consist of the classical logic rules of inference. The formal spec

ification and verification of a system can thus demand extensive man-hours for even the

most simple systems.

CHAPTER 1. INTRODUCTION 5

The partial automation of the proof development using tactics can go a long way to

reduce the level of expertise and man-hours required to specify and verify a computer

system in ITP/PC s. The use of such software tools partially increases the efficiency of

formal proof development since tedious tasks may be automated, thus enabling faster

processing by computer. The incidence of random or human error is also significantly

reduced since computers can faithfully and securely perform mechanical tasks. However

care still needs to be taken tha t the software tools themselves are correct; otherwise

systematic errors would occur when the software tools are used.

1.3 Tactics from proofs

Proof development by hand tends to be an erudite, error-prone and seemingly interminable

task. Tactics are programs that drive theorem-provers by automating the basic tasks in

proof development, and thus tactics provide a means of alleviating these problems. The

development of tactics for a particular application domain also extends the domain of

use of the theorem-prover. A tactic is safe in tha t if a tactic fails to be applicable to a

particular conjecture, it will not produce an incorrect proof.

The current construction of tactics from proofs does not yield sufficiently robust tactics.

In the development of a formal proof, the major challenges are deciding which proof rule

and variable instantiations to apply in order to prove a conjecture. Therefore proofs tend

to be specific to the details of a specification and so are not reusable in general, e.g. the

same proof may not work when the definition of the conjecture is changed.

Our solution to developing robust tactics is to discover patterns in a proof development

in some domain, and then to encode these patterns as a tactic. In particular, the proofsteps

used in the proof development are classified and rearranged to yield a proof in a normal

CHAPTER 1. INTRODUCTION 6

form. This is done incrementally, i.e. when a tactic from one proof development fails

on a different conjecture, a hand proof is developed for tha t conjecture; a new tactic is

developed from tha t proof; and the new tactic is composed with the existent tactics, thus

yielding a more powerful or robust tactic, which is reusable in different proof development

exercises. When the proofs are developed using an IT P /PC , the human expertise used in

the proof development can also be encoded in the tactic, e.g. as formal parameters of the

tactic.

The main contribution of this thesis is the development of an algorithm tha t can

be used to construct such robust tactics from proofs. Another of our contributions is

to use this algorithm to develop tactics tha t can be used to verify retrenchment proof

obligations and thus paving the way towards its mechanization. The Retrenchment method

for software development has been developed to argue about the correctness of computer

hybrid systems.

1.4 Hybrid systems

Hybrid systems are “critical systems composed of continuous components, which are con

trolled and supervised by digital components” [NASa], e.g. control systems. This has

led to an integration of the continuous and the discrete computation models, i.e. real

computations and floating-point computations respectively.

The liberalization of the transformational form of the stepwise refinement method

yielded the Retrenchment method, which is a formal method to specify and reason about

hybrid systems [Ban98, BP99b, BP99a, PB02, PopOl]. The retrenchment method has

been formalized in the B-Method for formal software development [Abr96, Abr98a, BCo02,

Wor96]. However, the B-Method does not adequately formalize continuous mathematics

CHAPTER 1. INTRODUCTION 7

which is based on the real number datatype. Therefore a theorem-prover/proof-checker,

such as PVS, which supports the formalization of the reals, and the formalization of digital

system computation as floats, as well as the encoding of tactics, is more appropriate as a

software tool for the retrenchment method.

1.5 Organization of the thesis

This thesis makes use of standard mathematical and computer science notation, e.g. the

symbol □ is used to signal the end of a definition, or a theorem. Teletype text denotes

machine readable code, e.g. PVS specification text, U0:TYPE = [# a O :re a l, bO :rea l

#], or user input (g r in d) .

The state of the art in Critical Systems, Formal Methods, Tool Support, Mathematical

Logic, and the current methods of constructing tactics from proofs are reviewed in Chapter

2. The nature of the robust tactics to be developed, and the research questions and goals

pertaining to this task are outlined.

Based on the original LCF idea [GMW79, Mil84], Chapter 3 presents our theory for

deriving robust LCF-like tactics from proofs of similar conjectures. The theory is based on

the classification and permutation of proof-steps in a hand-generated proof of a conjecture,

as well as the ability to extend one robust tactic with another. For the tactics produced b y f

this theory, arguments are given for their mathematical integrity, robustness or reuse, and

ability to reduce user-computer interaction in Interactive Theorem-Proving and Proof-

Checking. The procedure is applied on some example simple similar conjectures.

Chapter 4 describes how the theory derived in Chapter 3 can be carried out in the

chosen state of the art Interactive Theorem-Prover and Proof-Checker, PVS. PVS proof

commands (defined-rules) are analogous to LCF-tactics and PVS strategies are analogous

CHAPTER 1. INTRODUCTION 8

to LCF-tacticals [SORSC98c]. However the most powerful tactic (g rin d) in PVS is found

unsafe in that it can sometimes invoke an incorrect instantiation which results in an

incorrect proofstate. Therefore (g rind) is made more robust according to the theory of

Chapter 3. The encoding of such robust tactics in PVS is described for the simple similar

example conjectures in Chapter 3.

Chapter 5 introduces the Architectural Retrenchment method [HG01] for the specifi

cation and proof of the vanilla Banach-Poppleton retrenchment method [PopOl, BP99b,

PB02]. This decomposes a retrenchment specification into three separate architectural

retrenchments; and the operational retrenchment proof obligation into a subrefinement

or a concession. The change in variables from state to input and output variables, and

the Operational Retrenchment proof obligation are made more transparent. PVS specifi

cation templates are formulated for Architectural retrenchment, and the robust (g rin d)

tactic from Chapter 4 is extended in order to prove all the retrenchment proof obligations

automatically for a given example retrenchment taken from [PopOl].

Chapter 6 tackles the task of formulating tactics for reliable numerical computation

using a form of Architectural Evolving Retrenchment incorporating a specification of the

IEEE_854 Floating Point Standard in PVS. This involves a change in datatype from

reals to floats and therefore a change in complexity in the Architectural Retrenchment

specifications as given in Chapter 5. The specification templates and robust tactics from

Chapter 5 are extended to yield a robust tactic (FOpRetTac fn u m term s) which proves

all the retrenchment proof obligations for the exact and inexact representation of reals

by floats, and error propagation in floating-point operations according to floating-point

theory [Gol91].

CHAPTER 1. INTRODUCTION 9

Chapter 7 discusses the main contributions of this thesis, which include (1) a math

ematically correct procedure for constructing robust tactics from proofs, (2) the Archi

tectural Retrenchment method, and (3) specification and proof using the Architectural

Retrenchment method in PVS. An inference of this work is tha t our specification tem

plates and robust tactics constitute a specification and proof system for Architectural

retrenchment. Chapter 8 concludes with how our work achieves the goals and subgoals

of the research, and outlines some possible future work on (1) our tactic construction

method; and (2) the automation of the retrenchment method.

The references used in this work are listed in the References section. Appendix A

lists the proof rules used in this work and their permutation analysis. Appendix B con

tains a sample proof using a robust tactic, the Banach-Poppleton retrenchment and their

corresponding PVS specification templates for Architectural Retrenchment.

Chapter 2

Tactics in formal m ethods

“The search fo r a proof o f a conjecture expressed in some form al language is strikingly

similar to m any goal-seeking activities ... In general then we may express tactics as partial

functions from goals to lists o f goals. ” [Mil84].

This chapter reviews some background information and the state of the art on tactics

in formal methods. The purpose is to identify and evaluate the existing problem(s) in

the construction of robust tactics from proofs. From this discussion, the major research

questions are formulated.

2.1 Introduction

Computer systems are expected to be correct, i.e. to deliver a proper service tha t satisfies

specified requirements. Correctness is particularly im portant for critical computer systems,

which are becoming increasingly used in situations where a malfunction could lead to

catastrophe. It is infeasible to demonstrate correctness through traditional testing and/or

simulation alone [LS93] (Section 2.2).

10

CHAPTER 2. TACTICS IN FORMAL METHODS 11

Most errors incurred in software development, which may lead to the software malfunc

tioning in operation, are logical errors [YBH97]. Formal Methods (Section 2.3) address

correctness by employing Formal Mathematical logic (Section 2.4) to specify and verify

properties of computer systems. However, Formal Methods tend to be an erudite, error-

prone, seemingly interminable, unscalable and intractable to apply successfully. The study

of formal mathematical systems, i.e. Proof Theory (Section 2.5) can help develop better

formal methods. The use of Software Tool Support (Section 2.3.2) as an aid in the study

and application of Formal methods can also greatly improve the tractability and scalability

of Formal Methods, as well as reduce the incidence of human random error. However the

user is expected to be an expert in both the Software Technology used and Mathematical

logic.

LCF-tactics (Sections 2.6, 2.7) are software programs based on a rigorous mathematical

framework, tha t partially automate the task of formal proof development in interactive

theorem-proving and proof-checking. Since the tactics are intended for use in a formal

method, the tactics need to be based on formal logic rather than heuristic or plausible

techniques (see Section 2.8). A major desirable is to derive such robust tactics based on

a rigorous formal mathematical framework, which can be reused to develop proofs with

minimal human assistance despite modest system changes (Section 2.9.1). Such robust

tactics when incorporated in an Interactive Theorem-Prover (IT P /PC), can also minimize

the amount of user-computer interaction in a proof development exercise, as well as the

level of domain-knowledge required of the user IT P /PC .

The major research questions to be addressed in this work are: (1) Can robust tactics

be derived from hand generated proofs?; and (2) Can such tactics be incorporated in a

state of the art theorem-prover?. The main goals of our research are developing a method

CHAPTER 2. TACTICS IN FORMAL METHODS 12

for: (1) deriving robust or reusable tactics with a rigorous mathematical integrity; (2)

encoding such robust tactics in a state of the art theorem prover; and (3) demonstrating

development of such tactics on a formal software development method, and the usefulness

of such tactics in reducing the user-computer interaction (via automation) and the user-

knowledge in formal specification (via specification templates) and proof (via tactic reuse).

2.2 The state of the art in systems development

The specified requirements of a computer system can be classified into two types [DB82]:

(1) functional requirements which specify the internal workings (i.e. specific behaviour)

of the system, e.g. the behaviour of state and input/output variables (see Chapters 5, 6);

and (2) non-functional requirements which specify overall characteristics of the system,

e.g. critical system properties such as reliability, safety, security, and real-timeliness.

A computer system is taken to consist of the following components [Abr98b]: (1) the

software program, i.e. the specified functional requirements expressed in a programming

language; (2) the operational environment, i.e. the entities which interact with the software

program, e.g. the compiler which automatically generates machine code (for the hardware)

from the software program; and (3) hardware, i.e. the physical entities which execute the

machine code (from the compiler), e.g. the processor type of the computer which runs the

software program. From such a system, the functional and non-functional requirements

can then be investigated.

Critical systems must satisfy their functional requirements and must be seen to satisfy

their non-functional requirements, e.g. safety-critical systems must be seen to satisfy the

ultra-critical range of 10_7-10“12 failures per hour, i.e. at most one failure in 1141 to

114 155 251 years! [Rus94]. It is infeasible to show through testing and/or simulation

CHAPTER 2. TACTICS IN FORMAL METHODS 13

that safety-critical systems—whose failure could result in catastrophe—meet such ultra-

high reliability requirements [BF91]. However, if the formal specification of a software

system is provably correct, then this gives confidence tha t the software system satisfies its

requirements. Hence the analysis of safety-critical systems has been classified to fall in

the deductive reasoning domain, which preserves tru th [Lev86].

2.3 Formal methods

Formal methods are mostly relevant in the Critical (or High Integrity) Systems domain

where a very high level of assurance is required tha t the critical system meets is specified

requirements. Traditional Formal methods refer to the use of techniques from formal

logic and discrete mathematics to software engineering problems, i.e. in the specification,

design, and construction of computer systems and software [NASb, Lev86]. However with

the advent of hybrid systems which include both discrete and continuous components,

continuous mathematics are also becoming involved [Har96, PopOl].

D efin ition 2.3.1. (Formal methods) [HB95]: “A formal method is a set of tools and

notations (with a formal semantics) that: (1) are used to specify unambiguously the re

quirements of a computer system; (2) support the proof of properties of tha t specification,

as well as proofs of correctness of an eventual implementation with respect to tha t speci

fication.” □

Examples of commonly-used Formal methods include the B-Method [Abr96] (see Chapter

5), the Z method [WD96], and the VDM method [Jon86].

The criteria for using a formal methodology include that the formal method must be:

CHAPTER 2. TACTICS IN FORMAL METHODS 14

documented, repeatable, teachable, based on proven techniques, validated, and appropri

ate to the problem being solved [Kne97]. The benefits of using formal methods include

among others: precise and rigorous specification, better communication, higher quality,

higher productivity, unification of philosophies, separation of concerns, higher confidence

in the correctness of software, and making testing easier [Vie93]. The incorporation of

lifecycle processes in the application of formal methods also helps to minimize fault in

troduction in systems design, and to maximize the likelihood and the timeliness of the

detection and removal of those faults that may creep in [Vie93].

2.3.1 The state of the art in Formal m ethods

The two main viewpoints of formal methods [Kne97] are (1) the theoretical study of

mathematical logic systems (i.e. Proof Theory or Metamathematics [Kle64]) in order to

derive new robust formal methods; and (2) the development of software tool support (i.e.

Software Technology) for the pragmatic application of formal methods.

2.3.1.1 Formal specification and verification lifecycle

The incorporation of lifecycle approaches in the application of Formal methods greatly

aids the study and development of better formal methods (see Procedure 2.3.1 below).

The derivation of tactics from proofs is mainly concerned with the Generalization and

Maintenance phase (Step 4.d). However all the phases are relevant when the formal

specifications and proofs are developed in-house instead of outsourced—developing the

proofs in-house enhances the level of control over the task of deriving robust tactics from

proofs in tha t the human expertise required will be self-evident.

CHAPTER 2. TACTICS IN FORMAL METHODS 15

P ro c e d u re 2.3.1. The Formal Analysis Lifecycle: The Current Formal Analysis lifecycle con
sists of the following phases [Rus99]a:

1. Specification: specify/design in some generally used language/notation, e.g. the Classical
Higher-Order logic or B-method. The product of this phase is a formal specification.

2. Abstraction: extract the part relevant to the property of interest, e.g. such properties
are proof obligations which need to be proved for the specification to be regarded correct.
The product of this phase are proof obligations that must be discharged or proved for the
specification to be considered correct or valid.

3. Reduction: reduce the proof obligations to a form and notation where algorithmic tech
niques can be applied, e.g. if resolution is the preferred algorithmic technique, the proof-
obligations are to be expressed in negated form. The product of this phase is a rewrite of
the proof-obligations.

4. Verification: Perform the analysis. This phase has its own lifecycle:

(a) Exploration: find the best way to approach the chosen problem. The product of this
phase should be a body of theorems that are mostly true.

(b) Development: generate an efficient overall verification. The product of this phase
is a plan of the proof, e.g. as depicted by a viable hand proof.

(c) Presentation: prepare the proof for the social review process. The product of the ver
ification should be a genuine proof that some property is satisfied by the specification
b. Thus the choice of the algorithmic technique to develop the proof is important.
For example, resolution theorem-provers do not generate a conventional proof at
all; heuristic methods, e.g. proof-plans, can generate proofs that follow unnatural
paths; low-level ITP/PC s overwhelm the reader with trivial data.

(d) Generalization and Maintenance: code the specification and proof for reuse. The
products of this phase are: (a) a coded description, i.e. program that guides the
theorem-prover to repeat the verification “without” human guidance— this corre
sponds to the definition of LCF-type tactics [MGW96, GMW79']. (b) specification
templates to support future applications, to distil general principles, or to explore
alternative assumptions and designs.

5. Iterate steps (1) to (4-d) until satisfied.

Figure 2.1: The Formal methods application Lifecycle.

“Since this thesis is on Formal Methods, the ideas developed in this theses are presented in a manner
which mirrors this Formal Methods Lifecycle.

bA genuine proof is defined as a chained argument as in Definition 2.4.6 that will convince a human
reviewer [ORSvH95].

CHAPTER 2. TACTICS IN FORMAL METHODS 16

The main purpose of the verification lifecycle steps (4.a) to (4.d) sublifecycle is to re

dress the criticism of some verification methods which typically return £yes/ no’ tyPe veri~

fications and/or possibly counterexamples at the level of the abstracted description. For

example, theorem-provers present a formal proof as a prooftree in terms of the inference-

rules used and the subgoals generated; and model-checkers give counterexamples in the

form of a ‘trace of events’, which is a subset of the alphabet of the formal logic system

used, both of which may appear meaningless to a novice user.

The Generalization and Maintenance phase facilitates reuse of specifications and proofs.

The generalized proof description should be robust, i.e. the proof description should be

a strategy derived from the generated proof, as opposed to an exact line by line collation

of the proof commands used in the generated proof [ORSvH95, Wil97]. Deriving such

robust tactics from generated proofs can enable the robust tactics to be reused even after

small changes are introduced in the original proved specification, e.g. due to changes in

requirements or in the interfaces and systems that interact with the one under study. Gen

eralizations of specifications into specification templates is another class of modifications

tha t may be made in order to support future applications, to distill general principles, or

to explore alternative assumptions and designs.

Other criticisms of the Formal Analysis Lifecyle (Procedure 2.3.1 above) are mainly

concerned with the software tool support available [Rus99], e.g. the reduced models (from

step 3 above) are usually built by hand, and this downscaling is considered draconian in

tha t it may produce false negatives and positives in the verification exercise. There is also

usually no connection between different tools or analysis methods used in the lifecycle, e.g.

whereas Theorem-Provers are mainly used for the Specification and Verification phases,

CHAPTER 2. TACTICS IN FORMAL METHODS 17

Static Invariant-Generators and Model-Checkers may be used in the Abstraction and Re

duction phases respectively. This has mainly led to providing software tool support and

integrating different formal methods tools together.

2.3.2 The state of the art in Software Tool Support

Involving the computer in the proof process contributes to the level of formality required

when using formal methods [Mar94]. The incidence of human error is reduced—parsers

ensure tha t specifications are syntactically correct; type-checkers ensure tha t conjectures

are type-correct; and the proof system ensures tha t inference-rules are applied faithfully

and securely. The use of a computer can also shorten the time taken in hand specification

and proof—computers perform mechanical tasks expeditiously and thus can make proof

development efficient.

Since no one Formal Method can tackle all phases of the Formal Methods lifecycle,

or a formal software development lifecycle [Bro87]), the state of the art in software tool

support involves the integration of different formal methods approaches, e.g. integration

of model-checking with automated abstraction, invariant generation, and theorem-proving

in PVS [Rus99]. A common approach in formal software development is the embedding of

different formalisms in general purpose theorem-provers, e.g. the deep embedding of the

B-M ethod in PVS [Mun99].

2.3.2.1 Types of Theorem-provers

Human-oriented Theorem Provers (HOTPs) [Bun96, Bun91] model plausible (i.e. in

formal) reasoning. Machine-Oriented Automatic Theorem Provers (MOATPs) [Rob63,

Rob65], and Interactive Theorem Provers and Proof Checkers (ITPs/PCs) [SORSC98a,

CHAPTER 2. TACTICS IN FORMAL METHODS 18

SORSC98b, SORSC98c] model formal reasoning, which is advocated for in high-integrity

systems construction.

MOATPs lack the techniques tha t human experts use in proving conjectures thus

MOATPs sometimes take too long, or even fail completely, to prove putative theorems.

MOATPs proofs also tend to be difficult to follow and understand [Ker98]. ITPs/PC s

overcome this limitation by allowing the human user to interact with the IT P /P C in mak

ing the strategic decisions required in proof development which make a proof successful.

In particular, domain proof experts are good at deciding which inference-rule to apply in

the development of a proof, and which variable instantiations to make tha t can make the

proof of a particular conjecture successful. ITPs/PC s however have been criticized for

being too interactive [SchOO], thus prolonging the time taken to complete a proof. Partial

automation of some of the tasks in interactive theorem-proving by tactics can reduce the

amount of this interaction, as well as the knowledge of particular proof techniques required

of the human prover.

Theorem-provers have also been integrated with Computer Algebra Systems (CAS),

on the one hand to use CAS as calculation oracles to aid theorem-provers in program

verification [HT93], and on the other hand to use theorem-provers to verify the results

given by CAS [BJ01]. Different Theorem-provers can also be coupled to interact with each

other in a proof development exercise. A top-down prover can generate subgoals which are

then processed by a bottom-up prover; or conversely lemmas generated by the bottom-up

prover are used in a top-down prover to significantly reduce the proof lengths such tha t

proofs can be found with smaller resources [FF98] 1. A HOTP can be integrated with

a MOATP in order to emulate the flexible problem solving behaviour of humans in an

1A top-down theorem-prover implements goal-oriented (backwards) proof, whereas a bottom-up
theorem-prover implements forwards proof (see Section 2.4.2.2)

CHAPTER 2. TACTICS IN FORMAL METHODS 19

agent-based reasoning approach [BJKS99]—the proof-planner splits a goal into subgoals,

and the agents, i.e. ATPs, are then appropriately allocated to the subgoals to be solved.

The agents allow a number of proof attem pts to be executed in parallel, where each

attem pt is on a separate ATP, thus a number of different proof strategies can be used at

the same time in a proof search [Section 2.4.2.2].

A criticism of the use of theorem-provers in verification, is the chicken-and-egg problem

of determining the reliability or correctness of the verifier itself, i.e. who verifies the

verifier?. The use of model-based specification methods in theorem-provers can help the

interpretation of the results given by a theorem-prover.

2.3.3 M odel-based formal specification m ethods

The specification language of a formal method is defined syntactically, i.e. in “strict”

formalisation, there is total abstraction from the meaning of the statements being ma

nipulated and the main concern is the arrangement of these statements, and specifically

whether proofs or refutations can be constructed [Kle64, Gal86] 2.

D efin ition 2.3.2. (Formal s p e c if ic a t io n) [NASa]: “A formal specification is a set

of formulae in a formal language tha t characterizes a planned or existing system in a

particular domain.” □

Appendix B lists some formal specifications in the B-Method [Abr96] and PVS specifica

tion languages [SORSC98a] used in this work, where the specified requirements are the

functional requirements of the computer system.

2 “Abstraction is the process of simplifying and ignoring irrelevant details and focusing, distilling, and
generalising what remains. In formal methods, abstraction is a tool for eliminating distracting detail,
avoiding premature commitment to implementation choices, and focusing on the essence of the problem
at hand” [NASb],

CHAPTER 2. TACTICS IN FORMAL METHODS 20

In a model-based specification the statements in a specification are arranged according

to some model of representation and computation thus giving the specification a certain

structure (or normal form) as well as semantics. A specification method determines the

process by which a satisfying model might be arrived at, e.g. the B-Method [Abr96] uses

the Abstract Machine Notation as its specification method. A B-machine specification is

a formalisation of an imperative software program in terms of the state-machine model,

which typically consists of an abstract representation of a system state, i.e the variables

and their values in the system, and a set of operations tha t manipulate the system state

to effect a transition from one state to the next 3.

2.3.3.1 Executable specifications

Traditionally a formal specification describes what a system does, but not how it does

it, i.e. specifications are not executable [Mor94]. However there has been recent and

on-going work on making specifications executable, e.g. the execution of Z specifications

[GriOO], and the use of declarative languages such as Prolog (logical) [Rob63] and Go

pher (functional) [BW88] as both “formal specification and implementation languages” .

In the logical paradigm, an automatic resolution theorem-prover provides the computa

tional mechanism of proof search; and in the functional paradigm, recursion provides the

computational mechanism of reasoning by mathematical induction. However, proof search

and recursion are very expensive on computer resources such as memory and CPU-time,

which makes declarative languages inefficient for systems implementation.

In order to make the execution of declarative languages more efficient, prover/compiler

optimization techniques for these languages can use heuristic methods, which then make

3The imperative paradigm is based on Turing machines; the functional paradigm is based on Church’s
Lambda Calculus; and the object-oriented paradigm is based on the Russell’s Simple Theory of Types.

CHAPTER 2. TACTICS IN FORMAL METHODS 21

declarative languages unsuitable as formal specification languages since heuristics are in

formal. The main aim of High Integrity Compilation [Ste98, Str98] is to specify and

verify imperative programming languages as well as their respective compilers in order

to yield formally verified programming languages and compilers which can be used in

High-Integrity systems development.

2.4 Formal Mathematical Logic

Formalism was introduced by David Hilbert in order to tackle the crisis caused by para

doxes and the challenges to classical mathematics by the Intuitionists Brouwer and Weyl

[Kle64]. Formalisation is the application of a notation tha t enables specification of a prob

lem in that notation as well as reasoning about some properties of tha t specification. The

purpose of formalising a theory is to get an explicit definition of that theory (i.e. spec

ification), and what constitutes proof in the theory (i.e. verification), both of which are

difficult to do in an informal language, such as natural languages.

D efin ition 2.4.1. (Formal system) [GS93]: A Proof Theory (or Formal (logical) or

Natural Deduction System) is a set of rules defined in terms of the following components:

(1) Alphabet, i.e. a set of symbols. The symbols in the alphabet usually correspond to

whole words (i.e. definitions) instead of to letters [Kle64].

(2) Syntax , i.e. rules for building sentences from the alphabet. Sequences of symbols

correspond to sentences called formulas. The set of well-formed formulas is the language

of the logic.

(3) Axioms , i.e. a set of distinguished, (or self-evident) formulas.

(4) Inference-rules, i.e. a finite set of instructions for generating new formulas from existing

CHAPTER 2. TACTICS IN FORMAL METHODS 22

formulas. A formula is a theorem of the logic if it is an axiom, or if it is generated from

the axioms and previously proved theorems by using the rules of inference. □

The Alphabet and Syntax components of the formal system define the formal specification

language; the Axioms and Inference-rules of the formal system define the proof system.

The three main properties considered of a formal system are completeness, soundness and

decidability:

D efin ition 2.4.2. (Com pleteness, Soundness, D e c id a b ili ty) [WD96]: For an ex

pression P specified in the language of the formal system, the formal logic system is:

(1) complete iff if P is a theorem of tha t formal logic, then P can be derived using only

the inference-rules of tha t logic.

(2) sound/consistent iff there is no P such tha t P and P are theorems in tha t logic.

(3) decidable iff for any P there is an effective procedure for showing whether P is a

theorem or not in tha t logic. □

An example of a state of the art Formal logical system or proof theory is the Gentzen

Sequent Calculus for Classical Logic (LK) which is discussed in Section 2.5.

2.4.1 Formal logic languages

Propositional logic is regarded as the most basic formal logical system. Propositional

classical logic is the language of statements of alleged facts which must be either true or

false [WD96]. A proposition is: a tautology if it evaluates to true in every combination

of truth-values of its constituent propositional statements; a contradiction if it evaluates

to false in every combination of its propositional constituents; and a contingency if it is

neither a tautology nor a contradiction [WD96]. Propositional classical logic is complete,

sound, and decidable [Gal86].

CHAPTER 2. TACTICS IN FORMAL METHODS 23

First-Order logic allows to express assertions about elements of a given basic type—

the assertions are predicates, i.e. statements with a slot for those elements. In First-order

logic, completeness and soundness hold but decidability does not hold [Gal86]. Higher-

order logics generally refer to n-order predicate logics, where n refers to second, third,

etc, and in which quantification is over predicates, predicates of predicates, and so on

respectively. Second-order logic appears to lose completeness too as well as decidability;

only soundness holds [Gal86]. Higher-order logics are the most expressive of these logics,

and are sufficient for the specification of software and hardware [Lei94]. A formal definition

of First-order Logic highlights the im portant properties of propositional and higher-order

logics.

D e f in it io n 2 .4 .3 . (Alphabet for First-Order Logic) [Gal86]: The alphabet of First-Order

logic consists of two parts:

(1) A fixed logical part consisting of:

(i) Truth values: T 4 (true) and _L (false) to denote the tru th or falsity.

“(ii) Logical connectives: -i (not), A (and), V (or), =$■ (implies), <=>• (iff/equivalence),

and equality (=) to formulate compound (nonatomic) formulae from atomic formulae.

(iii) Quantifiers: V (forall), 3 (exists) for binding variables in predicates.

(iv) Variables: a countably infinite set V = {ab, Xi, ...} to express unknowns.

(v) Auxiliary symbols: parenthesis “(” and “)” to scope the logical connectives.

(2) a non-logical part L consisting of:

(i) Function symbols: a (countable, possibly empty) set F of symbols ... and a

rank function r assigning a positive integer r (f) (called the rank or arity) to every function

4T is not included in the definition in [Gal86]; rather if a formula is provable, then it is considered
true. However, especially with tactics, if a formula is unprovable by one tactic, that does not mean the
formula is false.

CHAPTER 2. TACTICS IN FORMAL METHODS 24

/•

(ii) Constant symbols: a (countable, possibly empty) set C of symbols Cq, C i , ... each

of rank 0.

(iii) Predicate symbols: a (countable, possibly empty) set P of symbols P0, P i , ... and

a rank function r assigning a nonnegative integer r(P) (called the rank or arity) to every

predicate P .” □

The sets ¥ , F, C, P are assumed disjoint; the predicate symbols of rank 0 are propositional

symbols (i.e. atomic formula or atoms); the symbols in ¥ , F, C are of type term, and the

symbols in P are of type formula.

D e f in it io n 2 .4 .4 . (Terms and Formulae) [Gal86]:

“(i) Every constant and every variable is a term.

(ii) If t i , ..., tn are terms and / is a function symbol of rank n > 0, then f (t i , ..., tn) is a

term.

(iii) Every predicate symbol of rank 0 (i.e. a propositional symbol) is an atomic formula,

and so is _L.

(iv) If ti , . . . , tn are terms and P is a predicate symbol of rank n > 0, then P (t i , ..., tn) is

an atomic formula, and so is t\ = fa.

(v) For any two formula A , P , then -u4, A A 5 , A V (7, A => B, A & B are formulae.

For any variable x* and any formula A, then V x* : A(x) and 3 Xi : A are formula.” □

The semantics of the formulae in a first-order language L is obtained by interpreting the

function, constant and predicate symbols in L and assigning values to the free variables.

D e f in i t io n 2 .4 .5 . (M odel) [Gal86]: “Given a first-order language L, a L-structure is a

pair M = (M, I) where M (called the domain or carrier of the structure) is a nonempty

CHAPTER 2. TACTICS IN FORMAL METHODS 25

set of values, and I (the interpretation function) assigns functions and predicates over M

to the symbols in L as follows:

(i) For every constant c, 1(c) is an element of M.

(ii) for every function symbol / of rank n > 0, 1(f) : M n —> M is an n-ary function.

(iii) For every predicate symbol P of rank n > 0, I (P) : M n —> BOOL is an n-ary

predicate. Predicate symbols of rank 0 (i.e. propositions) are interpreted as having the

tru th values T (true) or _L (false).” □

The main concerns in Logic are validity (Model Theory) and provability (Proof Theory)

[Gal86]. A formula A is satisfiable in a structure M iff there exists an assignment s : ¥ —>

M of variables in A to values in M, such tha t A evaluates to true (i.e. T). A formula

A is valid in M iff A is true for every assignment s, in which case M is a model of A

(i.e. M 1= A). For a set of formulae, M 1= T iff M is a model for every formula in T. A

formula is universally valid iff the formula is true for any model M. If a formula A is valid

(universally or in a model), then tha t formula is provable (i.e. h A).

2.4.2 The formal logic proof system

An efficient way to determine the provability of a logical formula is to construct a proof

by using the inference-rules and axioms of the Formal logic system. The formal definition

of a formal proof is as follows:

D e f in i t io n 2 .4 .6 . (Formal Proof) [RC90]: “A formal proof in a Formal System is a se

quence of sentences S i , . . . ,S n such tha t for all i < n, either: (2) Si is an axiom; or (2)

there are two members S j , Sk of the sequence with j , k < i, which have Si as a direct

consequence by the (forwards) application of an inference rule. Sn is then a theorem of

the formal deductive system. In such a proof, all of the Si are theorems since the proof of

CHAPTER 2. TACTICS IN FORMAL METHODS 26

Sn can be truncated at Si, giving a proof of S i ” □

A proof is said to be a proof of its last formula and this formula is said to be formally

provable or to be a formal theorem [Kle64]. Such a formal proof can be graphically

presented as a tree:

D e f in i t io n 2 .4 .7 . (Prooftree) [Gal86]: “Given a set E of labels, a E-tree (or prooftree)

is a total function t : D' —> E where D (called the tree domain) is a non-empty subset

of strings in the set N+ of all possible strings from the natural numbers satisfying the

following conditions: (1) for each u G D, every prefix of u is also in D\ and (2) for each

u G D, for every i G N+, if ui G D, then uj G D for every j , 1 < j < i.

The domain of a tree t is denoted dom(t); and every u in dom (t) is called a node or

address.” □

A propositional or predicate formula P is provable iff there exists a prooftree in which tha t

formula is the conclusion; and a provable formula is denoted h P [Gal86]. A proof script

is an algebraic presentation of a prooftree as a traversal of the prooftree using depth-first

search (which is more efficient than breadth-first search [Hop93]).

2.4.2.1 Intuitionistic, Constructive, and Classical proof system s

The Intuitionistic logic proof system consists of the inference-rules for the introduction

and elimination of each of the logical connectives described in the fixed logical part of

Definition 2.4.3, i.e. A (and), V (or), => (implies), -i (not), V (for all), 3 (exists). The

Constructive logic proof system is based on the BHK-interpretation 5 th a t each definition

or proof of existence of an object provides an algorithm for computing or constructing th a t

5BHK refers to the mathematicians Brouwer (Intuitionist), Hilbert (Formalist/Classicist) and Kro-
necker (Constructivist).

CHAPTER 2. TACTICS IN FORMAL METHODS 27

object. Intuitionistic and Constructive logic have been advocated for and used as computer

programming logics because: (1) Intuitionistic logic has a one-to-one correspondence with

typed functional programming languages, i.e. the Typed Lambda Calculus [Wad93]; and

(2) an Automatic Theorem prover such as the NuPRL Theorem-Prover [CAB+86], which

implements Constructive logic, can be used to automatically synthesize a program from a

constructive proof of a logical formula which specifies the program (see Section 2.7.3).

The Classical logic proof system is the Intuitionistic logic proof system with one ad

ditional inference-rule, which can be one of the following [GS93]: (1) The rule of Indirect

Proof, i.e. in proof by contradiction, to prove P , prove ->P and if -iP is true then by

soundness P is not true; (2) The rule of Double Negation, i.e. ->-iP = P by the truth-

table for -i; and (3) The Law of the Excluded Middle, i.e. to prove P V Q it is sufficient to

prove just Q since if Q is true then P V Q is true by the tru th table for V. The addition

of these rules to Intuitionistic logic means th a t an explicit algorithm for the construction

of an object may not be given or required in Classical logic, e.g. in the examples above

it is not explicitly given how the object formula P is constructed from the Intuitionistic

logical-connective inference-rules. Nevertheless some level of constructivism is available

in the Classical logic proof system via the use of the logical-connective inference-rules.

Ideally, the same proof technique should be used throughout a proof development in order

to aid the social review process. The proofs constructed in this work are direct proofs in

Classical logic consisting of the inference-rules (2) and (3).

CHAPTER 2. TACTICS IN FORMAL METHODS 28

2 .4 .2.2 P ro o f S earch

In the definition of a formal proof [Definition 2.4.6], the numbering of sentences Si,.. . , Sn

where Sn is the formula to be proved, corresponds to a Hilbert Style Forwards proof 6

[Kle64], where the proof of a formula Sn starts from axioms and or assumptions Si, then

inference-rules whose premises match the axioms are applied in a forwards manner (from

premises to conclusion) to generate, from the conclusion of the inference-rule, the formulae

Si and eventually the required formula Sn.

The reverse process is the Gentzen-style Backwards-proof 7 whereby the proof search

starts from the formula to be proved (i.e. the goal), then an inference-rule whose conclusion

matches the existing formula is used to generate the premises of tha t formula. Usually

the structure of the goal, i.e. the connectives in the formula to be proved, determine the

inference-rule to be applied in the backwards proof search process. Backwards proof is

easier to perform than Forwards proof [Gor88], since in Forwards proof, the axioms and/or

assumptions to start from may not be obvious.

Logic or machine induction [FR86] can be used to generate new inference-rules from

certain cause-and-effect (i.e. premise(s)-conclusion) examples using plausible (i.e. informal

or heuristic) reasoning, where the side-condition is expressed as a measure of confidence,

e.g. a percentage, in the effectiveness of the inference rule. However, Logic induction

may generate logically incorrect inference-rules if “bad” examples are used, e.g. in the

empirical sciences, one can simply try a huge number of cases and conclude th a t since

no counter-examples could be found, the statement must be true. The Gentzen Sequent

Calculus is a more viable formal way to derive theorems about mathematical theorems,

6This is also known as Bottom-up Proof search or Natural Deduction since this “mimics” the way
humans reason from premises towards a conclusion.

7This is also known as Goal-oriented or Top-down or Abduction since one is “lead away” from the goal
towards axioms.

C H A P T E R 2. TAC TIC S IN F O R M A L M ETH O D S

i.e. Metamathematics.

29

2.5 The Gentzen Sequent Calculus for Classical logic

The Gentzen Sequent Calculus is a state of the art tool for proof-theoretical investigations.

Interactive systems for reasoning about programs are often based on this system as it

models ordinary mathematical reasoning more closely than axiom and/or tableaux systems

[OS97]. The Gentzen System for Classical Logic (LK) is defined as follows:

D e f in i t io n 2 .5 .1 . (The Gentzen System L K) [Gal86]: “The symbols T, A, 0 , E denote

arbitrary (possibly empty) sequences of formula, and A ,£? ,C ',...,P ,Q ,... are arbitrary

formulae. The inference rules of the sequent system L K are structural rules (i.e. Weaken

ing, Contraction, Exchange), the Cut rule, and the logical rules for the logic connectives

A, V,=>, -i, V, 3.” □

2.5.1 Gentzen Sequent Calculus

The Natural Deduction (ND) System (see Definition 2.4.1) formally models the way hu

mans reason. A logical language (see Section 2.4.1) is used to express facts and conjectures

about a domain of interest. Formal proofs are constructed by fitting the inference-rules

together using backwards proof and/or forwards proof [Section 2.4.2]. As in ordinary hu

man (and mathematical) reasoning, temporary assumptions may be made (and lemmas

used) in the course of the proof development, and these have to be discharged for the

proof to be completed. The generalizations of formal proof and of provability [Definition

2.4.6] yield the notions of deduction and deducibility to permit the use of any formulas

D i , . . . , Di called assumption formulas for the deduction of a goal formula [Kle64]. The

CHAPTER 2. TACTICS IN FORMAL METHODS 30

structure of a sequent formalises the notion of deducibility under assumptions to localise

assumptions to goals in the Natural Deduction System:

D efin ition 2.5.2. (Sequent) [OS97]: A sequent T b r A, where T = A i , . . . , Am; and

A = C i , C n, states tha t the conjunction of the formulas in T implies the disjunction

of formulas in A, i.e. A 1}. . . , A m b C\ , . . . , Cn A \ A . . . A A m C\ V . . . V Cn. □

Where b is a Consequence Relational operator, which is read “gives” or “entails” ; r is the

context of the formulas; T is called the antecedent or assumptions—an empty antecedent

(m — 0) is equivalent to T (true); and A is called the succedent or consequent—an empty

consequent (n = 0) is equivalent to ± (false).

In general, a Gentzen Sequent Calculus is a meta-language which directly defines a

consequence relation (via the operator bT) between formulas of an object language being

investigated or used—the relational operator b is not in the alphabet of object language,

e.g. b is not in the alphabet of the First-order Classical Logic which is the object language

considered in this work. Intuitionistic logic (LJ) restricts the number of formulas n in the

succedent to only one formula, i.e. n < 1, whereas in classical logic (LK) n > 0 [Kle64].

There is no restriction on the number of formulas m in the antecedent.

Appendix A lists the inference-rules for the Gentzen Sequent Calculus for Classical

logic (LK). The first axiom is derived from the notion of deducibility under assumptions,

and the other two axioms are derived from the tru th table for implication (=>). The

proof of a sequent T =s> A completes when the antecedent T reduces to false or when the

succedent A reduces to true. A sequent in which the antecedent T reduces to true and

the succedent A reduces to false is unprovable. The symmetries of classical logic are also

much better exhibited in sequent formulations of classical logic. Constant logical symbol

introduction (or right) rules are the succedent rules: I— ■, bA, bV, b=^, b V, b 3, b _L, b T .

CHAPTER 2. TACTICS IN FORMAL METHODS 31

Logical symbol elimination (or left) rules are the antecedent rules: -> b , A h, V b, =^b, V b

,3 b,_L b , T b.

2.5.2 M etam athem atics

The Gentzen Sequent Calculus can be used to reason about other formal systems, and thus

yield metamathematical theorems, i.e. mathematical theorems about other mathematical

theorems. For example one can use the Gentzen Sequent Calculus system to reason about

the definition of correctness to derive metamathematical theorems about correctness.

D efin ition 2.5.3. (Correctness) [Kne97]: Correctness is the delivery of a proper service

tha t adheres to specified requirements. Formally this requirement can be expressed in

either of two ways:

(1) V r : R : 3 s : S : A (r, s) (2) 3 s : S : V r : R : A{r, s). □

Where R, S are sets of requirements and services respectively, and A(r, s) is the “ad

heres to” predicate. It thus appears the informal definition of correctness is “ambiguous” .

The Gentzen Sequent Calculus can be used to reason about whether the two the formal

specification statements of the informal correctness requirement are equivalent or not.

The formula to be proved (the goal g) is presented as a conjecture to the Gentzen

Sequent Calculus proof system in the form b g, i.e. as a sequent whose antecedent list

is empty. Figure 2.2 shows the prooftree for the proof of the equivalence of the interpre

tations of “correctness” 8. Thus from the prooftree, the two formulations of the informal

correctness requirement are not equivalent. Furthermore, the left branch completes with

an axiom, thus yielding a finite proof and therefore 3 s : V r : A{r, s) =$■ V r : 3 s : A { r , s)

8The PVS Interactive-Theorem-Prover/Proof-Checker system uses the Gentzen Sequent Calculus proof
system and the goal-oriented proof search method but displays prooftrees in the Computer Science con
vention, i.e. with the root at the top [SORSC98a, SORSC98b, SORSC98c].

CHAPTER 2. TACTICS IN FORMAL METHODS 32

------------------------- [b Axiom]
A (n , si) b A(ri, si) A (n , s2) b 4 (n , s)

M] ----------------------- ------ — — ----- -[3 b]
A(r\, si) b 3 s : A(r\, s) 3 s : A(r, s) b ^4(ri, s)

[3 H------------------— ------ — — ----- -[Vb]
3 s : A(ri, s) b 3 s : A(r\, s) Vr : 3 s : A{r, s) b A (t\ , s)

[V N — — — ■ — ■, - — — - [H V]
Vr : 3 s : A(r, s) b 3 s : A(r\, s) Vr : 3 s : A{r , s) b Vr : A{r , s)

lh V]------ — =----------------— ■■-----r— r 3]3 s : V r : A(r, s) b V r : 3 s : A{r , s) V r : 3 s : A(r, s) b 3 s : V r : ^4(r, s)
--- [b=>] [b
b 3 s : V r : ^4(r, s) => V r : 3 s : A(r, s) b V r : 3 s : A (r , s) 3 s : V r : ^4(r, s)

b 3 s : V r : ^4(r, s) V r : 3 s : ^4(r, s)

Figure 2.2: The inequivalence of interpretations of correctness.

The proofscript for the above prooftree is as follows:
P"V], [V M» [h 3]j [Axiom]), ([h=^], [b 3], [b V], [Vb], [3 b])))

is a theorem of the Gentzen Sequent Calculus LK. The right branch does not complete

with an axiom of the LK Sequent Calculus and it requires checking A (r i , s2) b A(ri, s) for

every possible r*, Si, thus yielding an infinite proof.

The prooftree in Figure 2.2 demonstrates two fundamental results of Proof-Theory:

(1) the left branch demonstrates Godel’s Completeness Theorem tha t if a formula is true

(valid) then it is provable; and (2) expressions of the form (Vrr : X : 3 y : Y : P (x ,y))

are provable and therefore can be used to define correctness criteria in Formal methods.

The proof of 3 s : V r : A (r , s) =4> V r : 3 s : A (r , s) demonstrates tha t specifications of the

form V r : 3 s : A(r, s) can be provable under a model-like assumption (3 s : V r : A (r , s)),

hence the advantage of using a model-based specification technique in theorem-proving

[Section 2.3.3]. The proof in Figure 2.2 is a constructive proof since the proof yields an

algorithm for constructing the provable formula using the inference-rules of the Gentzen

System LK.

CHAPTER 2. TACTICS IN FORMAL METHODS 33

2 .5.2.1 D ire c t p ro o f v ia C u t-e lim in a tio n

The Cut-rule is the only means to introduce a new formula in the current proofstate. The

Cut-rule can be viewed as a Rule of Indirect Proof where the cut formula is introduced as

a means to shorten the proof. For example, in forwards proof, a cut corresponds to: (1)

the transitivity relation, IF (A =>• B) and (B =b C) THEN {A C); (2) the introduction

of lemmas as intermediate steps in proofs in practical mathematics; (3) the deduction of

P from P V -i (7 and P V C in resolution C :

C h P \ - P ,C
----------------------- Cut(C)

b P

In goal-oriented proof (abduction), the cut-formula is used as an assumption in the left

premise (C b P), and may have to be proved in the right-premise h P , C. Applying the

Cut-rule requires creativity in choosing the cut-formula—this may result in a detour in the

proof development process if the cut formula is complex or very ingenious. A famous result

of Proof Theory is the proof tha t the Cut-rule is redundant in the Gentzen System LK,

yielding the famous Gentzen Cut-elimination (or Hauptsatz) Theorem, and the Gentzen

System LK without the cut rule, Gentzen System L K — {Cut}.

One way to show tha t the cut-rule is redundant in the Gentzen System LK is to

demonstrate the logical equivalence of Gentzen Systems G, L K , and L K — {C ut} , where

the System G is the System L K — {Cut, Contraction, Weakening, Exchange}, i.e. L K

without the cut and structural rules [Gal86] (Theorem 6.2.1, page 260). This result is

known as a Normal-form theorem since it states tha t a proof not in normal form (i.e.

a LA-proof containing the cut-rule(s)) can be reduced to one in a normal form (i.e. a

L K — {Cw£}-proof or G-proof without cuts).

On the other hand, a Normalisation theorem states the above result, and in addition

CHAPTER 2. TACTICS IN FORMAL METHODS 34

gives an effective procedure for the reduction of a proof to a normal proof. Gentzen’s orig

inal Hauptsatz theorem described in [Kle64] (Theorem 48 page 453, Lemma 39 page 454)

is a Normalization theorem in tha t it demonstrates how the mix-rule can be permuted

upwards with each of the Gentzen Sequent Calculus inference-rules to be eventually elim

inated from the proof. The Mix rule is outlined in Figure 2.3, where the sets of formulae

II — {L} and A — {L} are obtained by deleting all occurrences of formula L from II and A

respectively, and the sets of formulae II + {A}, A + {L} both contain one or more occur

rences of a common formula L. A Mix is a generalisation of a Cut in tha t a Cut can easily

be transformed into a Mix by the use of contractions and exchanges. Conversely a Mix

can be transformed into a Cut by using weakenings and exchanges thereby establishing

the equivalence of L K with L K — {Cut}.

The mix-rule is used because of complications in the permutation of the Cut-rule

upwards in a prooftree. The Cut-rule proper cannot be permuted above an Exchange-

rule involving the cut formula because the application of Gentzen System LK inference

rules requires tha t the formula to be manipulated in a sequent must be at the end of the

succedent, or at the beginning of the antecedent. The Cut-rule itself cannot be permuted

with the Contraction-rule where the contraction formula is the one introduced by the

Cut-rule as the Cut-formula—the contracted formula (L in Figure 2.3) will not be present

if the contraction is to occur before the Cut-rule. However when the mix-rule is used

instead of the cut-rule, then the F and A contain one or more occurrences of the mix-

formula therefore the contraction after the mix rule can be viewed as redundant. Gentzen

proved the cut-elimination theorem indirectly by using the Mix-rule instead of the Cut-

rule because attem pts to demonstrate the redundancy of the cut-rule using the cut-rule

proper involve extra complications in proof [BDPOO].

CHAPTER 2. TACTICS IN FORMAL METHODS 35

L,L, IlhA T \ - A ,L ,L
--------------- C h -- ------------- Ch

L , n h A r h A , l
--- CutlL]

r,nhA,A
The Cut cannot be permuted above the Contraction

A,L, I IbA r h A, i , i
----------------------------------- MixlL]

r , n - { i } h A - { t }

Figure 2.3: The Contraction is not required with the Mix-rule

Two corollaries of the Cut-elimination theorem are tha t the inference-rules in cut-free

LK proofs can be permuted without changing the conclusion of the proof, provided: (1)

the eigenvariable conditions 9 are not violated; (2) the subformula property is not violated

[Sha92]. Since the cut-rule is the only rule by which a new formula can be introduced in

the proofstate, all the formulae in a cut-free proof are subformulae of the goal formula:

D e f in i t io n 2 .5 .4 . (Subformula Property) [Kle64]: “

(1- 2) If A is a formula, then A is a subformula of A\ and the subformulas of A are

subformulas of ->A.

(3-5) If A and B are formulas, then the subformulas of A and the subformulas of B are

subformulas of A A £?, A V B and A =£- B.

(5-7) If a; is a variable, A (x) is a formula, and t is a term free for x in A(x), then the

subformulas of A(t) are subformulas of Vx : A{x) and 3 x : A(x).

(8) A formula has only the subformulas required by (l)-(7) above.” □

This inductive definition of formulae can be very effective in Automatic Theorem Proving.

In general, terms, formulas and proofs can be given by inductive definitions, which define a

set S of objects as the smallest set of objects containing a given set X of atoms, and closed

under a given set of constructors F [Gal86j. The set S of objects can be conceptualised

9Eigenvariable conditions are the side conditions to the applicability of an inference rule

CHAPTER 2. TACTICS IN FORMAL METHODS 36

as a free type S : X \ for 1 < i < n, where the constructor /* : F is an injective

function from the set X to the set S [WD96]. The inductive definitions can then be

proved using the Principle of Mathematical Induction on the formulae and/or the logical

connectives (-i, A, V, =>, V, 3). Proofs by mathematical induction can subsequently be

implemented as recursive functions, e.g. formal proofs can be represented as prooftrees,

which can be defined inductively, and implemented functionally as recursive tactics.

2.5.2.2 Proof complexity

Cut-proofs require creativity in the sense tha t the cut-formula may not be a subformula of

any of the formulae in the conclusion. However proofs which do not use the cut-rule (i.e.

cut-free proofs) tend to be exponentially larger than their corresponding proofs where

the Cut rule is used (i.e. cut-proofs) [Gal86] (Theorem 6.4.1 page 280). This gives a

measure of proof complexity and suggests that: “(1) if some creativity (using cuts) is

exercised in proof development, then the proof is considerably shorter than its cut-free

counterpart; and (2) there are theorems with no easy proofs in the sense th a t if the steps

are straightforward, then the proofs are very long, or if the proofs are short then the cuts

are very creative” [Gal86].

The resultant cut-free prooftree is usually larger than the number of proofsteps in

the original prooftree due to the application of structural rules (see Section 3.4.1 for the

purposes of structural rules in LK-proof developments). Choosing not to allow structural

rules (as in the Gentzen System G) yields a resultant permuted prooftree of the same depth

as the original prooftree 10. Linear Logic, which has been advocated to be more suitable

for program verification, disallows the use of contractions and weakenings to mimic the

10The Gentzen System G differs from the Gentzen System LK in that for the latter, it is not necessarily
true that if the conclusion of a rule is valid, then the premises of the rule are valid [Gal86]. For the System
G, the conclusion is valid if and only if the premises are valid.

C H A P T E R 2. TAC TIC S IN F O R M A L M ETH O D S

finiteness of computing resources [Wad93].

37

2.6 Proof systems for Theorem-proving

The proof system is the inference engine of a logic. Proof systems are amenable for im

plementation as theorem-provers. The main proof systems considered in this work are:

(1) LCF-Tactics [GMW79] for Gentzen Sequent Calculus [Section 2.5] in Interactive Theorem-

Proving and Proof-Checking (ITP/PC) [OS97].

(2) Proof plans [Bun96] for Mathematical Induction and Analogical [MW99] or Case-Based

Reasoning [MC98] in Human-Oriented Theorem-Proving (HOTP).

(3) Indirect proof for Resolution and Unification [Rob65] in Machine-Oriented Automatic

Theorem-proving (MOATP).

However, since HOTPs model plausible reasoning, which is often based on heuristics

which are not entirely formal; and MOATPs often fail to prove putative theorems [Section

2 .3.2.1], the preferred proof system in our research is LCF-Tactics [GMW79] for Gentzen

Sequent Calculus in Interactive Theorem-Proving and Pro of-Checking (IT P /PC).

2.6.1 Tactics

Tactics originated from the work on Edinburgh LC F [GMW79], which is essentially a

computer program that acts as a proof checker for Scott’s Logic of Computable Functions

[Sco72]. Tactics support goal-directed proof (or backwards proof), and describe general

expression transformations [Mar94]. The formal definition of a tactic is as follows:

D efin ition 2 .6 .1 . (Tactic) [GMW79]: A (LCF) tactic T, is a function:

T : Goal —* GoalList x (ThmList —► Thru). □

CHAPTER 2. TACTICS IN FORMAL METHODS 38

Where g : Goal is a formula (or conjecture) to be proved in a Formal system; I : GoalList

is a list of subgoal formulas that arise when a tactic t : T is applied to g : Goal; and

p : ThmList —> Thru is a forwards proof (or validation function) for the generation of

the goal g from the subgoal list I. A simplified view of how tactics work is as follows:

for a goal g : Goal, subgoals [<71, gn\ : GoalList and validation p : ThmList —»• T h m , if

T (q) = ([01, • • •, 9n],p), then if p{ : [pi, . . . , p n] achieve g{ : [g1}. . . , gn\ for 1 < i < n, then

p (p i , . . . , pn) achieves g [RC90].

At its primitive level, a tactic is a single rule of inference applied backwards 11. Recall

tha t an inference rule consists of one or more premises (i.e. a list of theorems t : ThmList)

and a single conclusion (i.e. a single theorem t : Thm). Thus an inference rule r, when

applied in a forwards manner, is a function which takes a list of theorems and returns a

single theorem, i.e. r : ThmList —> Thm. Therefore inference-rules can be used as vali

dations for a tactic. The use of inference-rules as validations ensures tha t the validations

can be taken as formal proofs.

At a more complex level, a tactic is a sequential composition of inference-rules. This

composition is achieved by tactic language constructs called tacticals.

D e f in i t io n 2 .6 .2 . (Tactical) [GMW79]: A tactical is a function which operates on tactics,

and returns a new tactic as a result. □

At an informal level, tacticals are used to compose two or more tactics in various ways to

build more complex tactics [SORSC98a], e.g. two or more tactics can be composed to be

applied sequentially (i.e. one after another, e.g. the inference-rules in Figure 2.2) or in

parallel (i.e. simultaneously, e.g. in Figure 2.2 it is possible to attem pt to prove the two

branches simultaneously.)

11 An inference-rule is referred to as a primitive rule [MGW96], or as a primitive tactic [SORSC98a].

CHAPTER 2. TACTICS IN FORMAL METHODS 39

There are two possible outcomes when a tactic is applied to a goal expression [MGW96]:

(1) if the rule matches the expression (i.e. the expression is in the domain of the rule)

then the rule is applied, producing a new expression (i.e. tactic success); or (2) if the rule

doesn’t match then the rule is said to fail (i.e. tactic failure). In the case of (1), the new

expression may be (i) the logical constant true (T) or axiom(s) which means the tactic has

succeeded in proving the expression (i.e. the tactic is total); or (ii) provable subgoal(s) of

the old-expression which means the tactic is a partial proof of the old expression (i.e. the

tactic is partial); or (iii) unprovable subgoal(s) of the old expression, e.g. _L (falsehood).

In the case of (2), the old expression remains unchanged. In the cases of (i) and (ii) we

say tha t the tactic is applicable; and in the cases of (iii) and (2), we say tha t the tactic is

not applicable.

Since it may be impossible to prove the new expression(s) in case (iii) above, a safer

option is to define tactics so tha t if they fail to find a proof for a goal expression, then

the tactic does not change the proof state, i.e. the goal remains unchanged in its original

form. Backtracking is used to revert the goal to its original state [MGW96]. Thus a total

tactic succeeds iff the tactic is applicable on a conjecture, and the conjecture is provable

with tha t tactic.

The above interpretation of tactic application is justified by the fact tha t tactics are

supposed to be safe in the sense that they do not give a false proof [GMW79]. For tactics

implemented in Angel, “Angelic nondeterminism ensures that “when a tactic presents

a choice of possible next steps, the step(s) which will succeed (if any) will be chosen”

[MGW96]. It is demonstrated in Chapter 4 Section 4.3, tha t the PVS instantiation defined-

rule in s t? 12 is not safe nor angelic since it can instantiate with an incorrect term yielding

12PVS defined-rules correspond to LCF-type tactics [Table 4.1].

C H A P T E R 2. TAC TIC S IN F O R M A L M E TH O D S

an improvable proofstate.

40

2.6.1.1 Implementation of LCF-like tactics

The main idea behind LCF-tactics is to implement backwards proof to generate sub

goals from a goal formula (i.e. Goal —> GoalList) and to construct a validation function

ThmList —> Thm for tha t generation where the subgoals are taken as the list of theorems

ThmList and the goal as the theorem Thm. An inference-rule when applied in a forwards

manner can be taken as the validation function, and thus an inference-rule when applied

backwards, is a primitive tactic.

This section gives an example implementation of the LK inference-rules A x, bV, b=>

as primitive LCF-tactics. In forwards proof, these LK inference-rules can be defined as

functions as follows 13:

A x : Form —> Thm = {a i—► T, a b a, A}

OrE : (Thm x Thm) —> Thm = {(T b ai, A, T b .a%) >—> T, a\ V Oq. b A}.

I m p I : Form —> Thm —> Thm = {a i-» (T b 6, A i-» V' b a => 6, A)}

Where Form is a formula in a sequent, i.e. either an antecedent or consequent formula;

T' is r with all occurrences of a deleted. The primitive tactics corresponding to these

inference-rules are then defined as follows:

AxTac = r , a l - f l , AH([]) AxF(a))

OrETac = T , a V b b A ^ ([(r, a b A), (r, b b A)], A(z, y) : [OrE] (x, y))

ImpITac = T' b a b, A h-> ([r, a b b], X x : [ImpI] a x)

Where with reference to the definition of a tactic [Definition 2.6.1], and the tactic OrETac:

13The sequent operators (b and comma ,), and all the logical connectives, bind tighter than h-».

CHAPTER 2. TACTICS IN FORMAL METHODS 41

r , a V b b A is the goal, g : Goal;

[r, a b A, T, b b A] is the list of subgoals produced, [gi, . . . , gn] : GoalList;

(X(x, y) : Or E(x , y)) is the validation function / : (ThmList —> Thm), of the

inference-rule.

The sequential composition of tactics to yield a complex tactic in the backwards proof of

a goal, i.e. (ti ; ^ ; ...; tn)g = t\(x) then h(t i (x)) then . . . then tn(. .. (£i(#))...) can be

validated by the functional composition of the validation functions, i.e. (/i o/2 o . . . o f n)g =

M M - • • i fn{g))•••))• For example, the backwards proof of the conjecture q V p => p V q is

given by the following sequential composition of inference-rules:

(ImpITac, OrlTac; OrETac, (AxTac , AxTac)) (b q V p =$> p V q)

= (OrlTac] OrETac, (AxTac, AxTac))(q V p b p V q)

= (OrETac; (AxTac, AxTac))(q V p b p, q)

= ((AxTac, AxTac))((q b p, q), (p b p, q))

= [] . []

Where (AxTac, AxTac)((q b p, q), (p b p, q)) indicates a branching in the prooftree caused

by OrETac which generates two premises— (q b p, q) and (p b p, q). The empty subgoal

list [] indicates the successful completion of a proof, i.e. the goal (b q V p p V q) is

provable and thus a theorem.

2.7 Tactics from proofs state of the art

Approaches to deriving tactics from proofs include: (1) direct encapsulation of proof steps

[GMW79, Fel93, FH94]; (2) proof-plans tha t capture the general direction of a proof

[Bun91]; and (3) machine induction [Tar92]. These approaches do not necessarily yield

CHAPTER 2. TACTICS IN FORMAL METHODS 42

robust tactics since the tactics tend to be specific to the conjecture to be proved, and thus

the tactic may fail when applied on a different conjecture.

2.7.1 Direct encapsulation of proof steps

The inference-rules tha t are applied in the successful proof of a goal conjecture are encoded

exactly in the sequence in which the proof steps were executed [GMW79, Fel93]. This was

the original idea of deriving tactics from proofs and such tactics are generally called LCF-

like tactics. The approach follows naturally in proof-checking where having manually

discovered a proof, the human prover maps his/her proof strategy in the language of the

IT P /PG of choice, which he/she then uses to ascertain that the proof is correct. Gordon

et al [GMW79] use an IT P /P C and the tactic programming language is a subset of ML,

whereas Felty et al [Fel93] use an ATP to discover the proof and the tactics are encoded in

Lambda Prolog, which is a higher-order logic version of the Prolog programming language

[SS86]. Such tactics may fail when the definition of the conjecture is changed, and so are

not generally reusable.

This approach is similar to the way the PVS system records a proof for replay—the

stored proof is the sequence of proof steps taken to discharge the conjecture, and thus can

be viewed as a tactic. However the same stored proof may not be able to prove the same

conjecture when the definition of tha t conjecture is changed.

2.7.2 The encapsulation of proof structures as proof plans

Proof-plans specify LCF-like tactics as a method—a “plan is a method for one of the top-

level tactics, i.e. the specification of a strategy for controlling a whole proof, or a large

CHAPTER 2. TACTICS IN FORMAL METHODS 43

part of a proof” [BM98] 14.

For example, the mathematical induction proof-plan for an expression s(x) in the

Boyer-Moore theorem-prover [BM79] can be encapsulated as the following methods (or

subplans) [BM98]:

(1) Induction—the choice of the induction variable x.

(2) Ripple-out—a series of waves that carry the s from one place to another in the base and

step cases. The ripple-out subplan consists of two phases: (i) take-out which rewrites the

recursively defined functions using their base equations; and (ii) unfolding which rewrites

the recursively defined functions using their step equations.

(3) Fertilisation—the induction hypothesis is the ‘sperm’ that fertilises the step conclusion

by making it provable.

(4) Simplification—the use of algebraic laws to complete the proof.

However, proof-plans use heuristic knowledge in the design of tactics [Bun91], and

heuristics are not entirely formal. Other work which uses heuristics in developing tactics

is [Fuc95].

2.7.3 Proofs as programs

This approach has been proposed to formalise the construction of proof-plans [Bun91].

The conventional proofs-as-programs approach [Gre69, MW80, BC85] is concerned with

extracting an algorithm from a constructive proof—such an algorithm expressed in a tactic

programming language yields a tactic.

In the proofs-as-programs paradigm, a declarative specification, (D , R , / , 0) is ex

pressed by the statement that a realization of the specification exists: "i{x : D) : 3(z : R) :

14The authors of PVS do not strictly follow this documentation approach which is very convenient for
reasoning about the tactics themselves.

CHAPTER 2. TACTICS IN FORMAL METHODS 44

(I (x) =£► O(Xj z)) , where D is the input data type; R is the output data type; I is the

precondition and 0 is the postcondition [Kre98]. To synthesize an algorithm, a construc

tive proof of this statement is produced. The constructive proof embodies a method for

realizing the specification and this algorithm can then be extracted from the proof.

By analogy with the proof-plan methods, I corresponds to INPUT, 0 corresponds to

OUTPUT, x : D and z : R are variable instantiations. Thus the constructive proof in

the language of the theorem-prover used to construct the constructive proof is a tactic

(for tha t theorem-prover) which takes the INPUT predicate, i.e. the conjecture to be

proved, and then generates the OUTPUT predicate, i.e. the subgoals, which preferably

should be axioms meaning that the tactic is total and can successfully complete the proof

by itself. Constructive proofs can be performed in the NuPRL theorem-prover [CAB+86]

for example. Thus Bundy’s methods for specifying LCF-tactics can also be useful in the

automatic construction of tactics from proofs. Such tactics however tend to be specific to

the details of the proof and thus need to be generalized in order to yield a robust proof.

2.7.4 Machine induction

Machine induction (also known as machine learning) [FR86] is an artificial intelligence

technique for training computers to extract useful information from past experiences

(proofs in this case) and applying the information intelligently themselves to a situation

(a conjecture to be proved in this case). The objective of machine learning is to narrow

the gap between human experts and automatic theorem provers.

In particular, Tarver uses an adapted form of the genetic algorithm, M2, to induce a

tactic tha t solves 14 different conjectures selected from Mendelson’s textbook on M ath

ematical Logic [Tar92]. The induced tactics operate over refinement proofs couched in a

CHAPTER 2. TACTICS IN FORMAL METHODS 45

sequent calculus format, and the tactics are directly translatable into pure Horn clause

programs without negation-as-failure, i.e. the Prolog programming language. The M 2

algorithm is generic over many kinds of logic and may be applicable over a wide domain

of different systems. Similar work on using machine learning to automatically learn proof

methods so as to facilitate subsequent reuse include [JKP02, KW94].

However, as in all learning systems, the quality of the induced tactics depends on the

quality of the original population of proofs. The machine induction may fail due to tactic

interference and negation as failure. Furthermore, because pattern recognition is used in

the learning process, teleological (i.e. human) justifications cannot be given for successful

proofs. Human justification for proofs is relevant to the social process of reviewing proofs

and theorems [DLP79].

2.7.5 Reasoning about tactics

Martin et al [MGW96, Mar94] describe a very general language called Angel, “for ex

pressing tactic programs, making very few assumptions about the form of the expressions

(goals) in the target logic, and about the rules which act upon them transforming one

expression into another” . The work includes up to 92 transformation laws which can

be used to improve the efficiency of tactics written in any tactic programming language.

Angel does not concern itself with the data structures used to represent conjectures 15,

unlike concrete tactic programming languages like that of PVS [SORSC98a] which is more

implementation specific in tha t conjectures are captured using the Common Lisp Object

System [CooOO].

Bundy [Bun91] outlines nine criteria for assessing proof-plans:

15Whence the generality of the language.

CHAPTER 2. TACTICS IN FORMAL METHODS 46

(1) Correctness: the tactic for a proof will construct tha t proof when executed.

(2) Intuitiveness: the tactic structures the proof according to human intuitions.

(3) Psychological validity: the tactic structures the proof like a mathematician would.

(4) Expectancy: there must be a basis for predicting the successful outcome of a proof.

(5) Generality: the tactic gets credit from the number of proofs it succeeds on.

(6) Prescriptiveness: the tactic generates less search and prescribes rules exactly.

(7) Simplicity: a tactic gets more credit for being succinctly stated.

(8) Efficiency: a tactic gets more credit when it is computationally efficient.

(9) Parsimony: fewer general-purpose tactics are required for some collection of proofs.

2.8 The research problem

In this section we discuss problems in proof development and point the way to the deriva

tion of robust tactics.

2.8.1 Problem s in proof theory

The main problems associated with formal methods are [Kne97]:

(1) The limits of mathematics: not everything tha t is informal can be formalized (and

conversely), and not everything is amenable to formal proof. Conjectures expressed in

First and/or Higher-order logics can be undecidable.

(2) Scalability: formal methods apply mainly on toy academic examples, i.e. they are

generally not suitable for use on industrial scale projects.

(3) Tractability: formal methods techniques are not easily adaptable for use on different

projects, i.e. formal methods techniques are generally not reusable.

CHAPTER 2. TACTICS IN FORMAL METHODS 47

In general formal methods are not a panacea [BS92, RvH93]; they should be applied

judiciously. Formal methods should be applied (1) in particular, on only the critical parts

of a system; and (2) in general, on only those parts of a system tha t are amenable to

formal specification and proof.

2.8.1.1 Problems in proof development

Formal proof development tends to be an erudite, error-prone and seemingly interminable

task, i.e. the human prover usually has to be an expert in formal proof techniques; human

error can be easily introduced when proofs are developed solely by hand; and formal proof

usually requires the application of a significant number of inference-rules and thus can

take a very long time to complete respectively. Formal proofs of software also tend to be

difficult to follow and do not usually undergo social review as with ordinary mathematical

proofs [DLP79]. The proofs tend to be specific to the details of the conjecture to be proved

and so are not reusable in general, i.e. the proofs are usually not robust [Wil97]. The

major challenges in proof development are deciding which proof rule to apply, and which

variable instantiations to make that can discharge a conjecture to be proved.

Automated theorem proving is a means to alleviate the problems in proof development—

proof search and instantiation are directly available in Prolog as depth-first search and

unification respectively [FM87, Fel93]. The popular approach in Interactive Theorem-

Proving/Proof-Checking is to use a proof strategy tha t encodes human expertise in proof

search, and to instantiate by pattern matching instantiable variables with those appropri

ate terms 16 in the current in the proofstate [SORSC98b]. However in the former approach,

ATPs may fail to find a solution at all, and may require human guidance to enable the

16In instantiation, a variable is substituted by a suitable term, i.e. constants or function symbols (see
Definitions 2.4.3, 2.4.4).

CHAPTER 2. TACTICS IN FORMAL METHODS 48

search for a suitable instantiation to proceed. In the latter method, the instantiation is not

always the correct one, e.g. PVS’s most powerful tactic, (g rind) often performs incorrect

instantiations.

2.9 The proposed solution

Though many automated theorem provers (ATPs) can be faster than human experts, there

is still a considerable gap between what ATPs can accomplish and what human experts

can do. Human experts improve their performance through practice (i.e. learning), and

use a whole battery of techniques, past proofs and analogies with past proofs in order

to secure a solution [SchOO]. Theorem-proving with tactics can help bridge this gap. In

particular, it is possible to formulate tactics tha t can act as automatic deduction rules for

some domain of interest.

Theorem-proving with tactics can be seen as some form of case-based reasoning, i.e.

proof by cases, because the tactics are formulated from particular proof cases tha t are

successful. Tactic safety ensures tha t a tactic will not generate a false proof when it is

applied on a particular conjecture. For a particular domain, the tactic may work on one

specified conjecture, but may fail when the definition of tha t conjecture has been slightly

changed. An interactive proof development can then be attem pted to find a proof for the

conjecture on which all the present tactics failed to find a proof. A new tactic can then be

derived from tha t new interactive proof, and the new tactic is composed with the current

tactics to yield a composite tactic tha t can prove all the other previous conjectures and

the new (proved) conjecture. Extending current tactics with new tactics in this way can

make the resultant composite tactics robust.

Thus for a particular proof-obligation domain D, it is sought a robust tactic Tp =

CHAPTER 2. TACTICS IN FORMAL METHODS 49

tdi G 0 > — > O tdm where d* € D is a proof-obligation, 0 is an appropriate tactical,

is a robust tactic for the proof-obligation, and Tp is a robust tactic tha t can prove any

proof-obligation di : D.

Intuitively, in Interactive Theorem-Proving and/or Proof-Checking it is ideal to derive

tactics which perform (all) the creative proofsteps (i.e. those proofsteps tha t require

human ingenuity and can therefore only be partially automated) as early as possible in

a proof development so as to leave the rest of the proof development consisting only of

mechanical proofsteps (i.e. those tha t do not require human ingenuity, and can therefore

be fully automated). This then dictates an order of application of proofsteps in a proof

development and defines a normal form for a formal proof or the tactic which encodes

such a proof.

In the case where automatic methods for instantiation may fail, a human-expert with

knowledge of the problem domain may be able to introduce instantiation terms via m ath

ematically rigorous creative tactics. In particular the instantiation method of proof in

Figure 2.2, where skolemisation is performed as early as possible so tha t the skolem vari

ables can be used as instantiation terms, is one such mathematically rigorous creative

tactic detailed in Chapter 3.

The development of specification templates and tactics can make formal methods scal

able and tractable on industrial-scale projects. Specifications that have been proved correct

can be reused as components of other larger specifications, or as specification templates

for similar problems. The reuse of specification templates and tactics is greatly facilitated

by the provision of appropriate software technology.

CHAPTER 2. TACTICS IN FORMAL METHODS 50

2.9.1 Robust tactics

The following are two definitions of robustness found in the literature:

D efin ition 2.9.1. (Robustness) Robustness is: (1) the ability of software systems (i.e.

tactics) to react appropriately to abnormal conditions [Mey97]; and/or (2) the ability of

computer proof systems (i.e. tactics) to demonstrate correctness with minimal human

assistance despite modest system or specification changes [Wil97]. □

Robustness complements correctness, where correctness addresses the behaviour of the

tactic in cases covered by the specification of the tactic. The first definition is a safety-

related issue which is resolved by the fact tha t LCF-tactics are, and should be, safe. The

second definition concurs with tha t given for the argument for proof generalization and

maintenance in Section 2.3.1. For example with the straight-forward collation of inference-

rules from a proof to yield a composite LCF-tactic (see Section 2.7.1), a change in the

specification to yield a new conjecture to be proved may involve the addition of a logical

connective, or a new quantified variable. Since this was absent in the original conjecture

from whose proof the tactic was derived, tha t tactic may fail, especially if the quantified

variable requires human domain knowledge for the quantifier to be eliminated.

Changes in the specification of a conjecture to be proved are due to the extension of

the specification to cater for additional functional/nonfunctional requirements. Extending

a tactic with other tactics by the use of tacticals to yield a composite complex tactic is

one way of achieving tactic robustness. Therefore Definition (2) requires th a t the robust

tactic must be reusable.

CHAPTER 2. TACTICS IN FORMAL METHODS 51

2.9.1.1 R esearch q uestions

The major research questions tha t this work addresses are: (1) Can robust tactics be

derived from hand generated proofs?, and (2) Can such robust tactics be incorporated

into a state of the art theorem prover? The main goal of this research is to develop a

mathematically rigorous method to derive robust tactics from hand-generated proofs.

Chapter 3 addresses the first part; and Chapter 4 addresses the second part of this

question. Chapters 5 and 6 applies our solution on the retrenchment development method.

2.10 Summary

Formal methods based on Mathematical Logic techniques can be used to specify the critical

properties and prove the correctness of software systems. However, the application of

Formal methods tends to be an erudite, error-prone and seemingly interminable task, and

in general the formal proofs are not reusable since they tend to be specific to the details

of the particular proved goal formula. The major challenges in formal proof development

are deciding which proof rule, and variable instantiations/substitutions to apply in proof

search. Another major challenge is to generalise a proof into a robust tactic so tha t the

robust tactic can be reusable with minimal human assistance despite modest specification

changes in the goal formulae.

Tool support can greatly improve the scalability and tractability of formal methods

application. Model-checkers are prone to the state explosion problem, whereas Theorem-

provers can safely use of mathematical induction techniques provided tha t the problem

domain is well-ordered. The shortcomings of the three main types of theorem-provers are

that: (1) Human-oriented Theorem-Provers (HOTPs) model plausible/informal reasoning

CHAPTER 2. TACTICS IN FORMAL METHODS 52

which may not be entirely formalisable; (2) Machine-Oriented Automatic Theorem-Provers

(MOATPs) often fail to prove putative theorems; and (3) Interactive Theorem-Provers and

Proof-Checkers (ITPs/PCs) have been criticized for being too interactive.

Tactics are a means to partially automate formal proof development in IT P /PC s. The

current techniques for deriving composite tactics from proofs do not yield sufficiently ro

bust tactics. W ith the straightforward collation of primitive LCF tactics into composite

LCF tactics, the tactic may fail when the definition of the conjecture is changed. The

shortcomings of using Machine Learning to induce tactics from proofs include: (1) sensi

tivity to the quality of the original proofs; (2) the machine induction may fail due to tactic

interference and negation as failure; and (3) teleological (formal) justifications cannot be

given because pattern recognition is used. Proof-plans also use heuristic knowledge which

is not entirely formal, thus such tactics may not be acceptable in an entirely formal setting,

e.g. in the verification of High-Integrity or safety-critical systems.

The main goal of this thesis is to develop a mathematically rigorous method for deriving

robust tactics from proofs. The major research questions to be addressed in this work

are: (1) Can robust tactics be derived from hand generated p r o o f s and (2) Can such

tactics be incorporated into a state o f the art theorem prover?. The proposed approach to

constructing a robust tactic is to use the Gentzen System LK to develop hand-generated

proofs for proof obligations tha t can arise from the specifications of abstract programs,

from which can be derived a robust LCF-like tactics with mathematical integrity. If tha t

robust tactic is not applicable when the proof obligation is changed, then another robust

tactic can be developed in the same manner for the changed proof obligation, and tacticals

are used to extend the other developed robust tactics with the newly developed robust

tactic.

Chapter 3

Towards robust tactics from proofs

“Convincing proofs o f tactic correctness can be constructed ... Such proofs serve to high

light the properties o f the application area which are being exploited: the proof o f tactic

equivalence generally fails until some property o f the basic rules is a s s u m e d [Mar94].

This chapter answers the first research question: “Can robust tactics be derived from

hand-generated proofs?”. The main goal of this chapter is the formulation of a theory on

the construction of robust tactics that can withstand changes in definition of conjectures

in Interactive Theorem-Proving/Proof-Checking.

3.1 Introduction

The development of a formal proof requires knowledge of both the proof-theory domain

and the application-domain (Section 3.2). A model-based specification method, such as

a functional definitional specification style which proceeds from the simplest definition to

more complex definitions which in turn can be in terms of the simpler definition (Section

3.2.1), can facilitate discerning patterns in formal proofs. A renowned strategy, which en

capsulates the human expertise used in proof search, can also facilitate the hand-generation

53

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 54

of the formal proofs of such specifications (Section 3.2.2).

In Section 3.3 a stepwise Tactic Refinement procedure is defined to implement the

proposed solution of Chapter 2 Section 2.9. An example is given in Section 3.3.1 on

how the ideas above can be used in hand-generated proof development and the straight

collation of proof-steps into LCF-tactics (as described in Chapter 2, Section 2.7.1). The

example highlights tactic safety, the advantages of an order of precedence in specification

and proof, and the potential unreusability of such LCF-like tactics.

A viable way to improve the reusability and thus robustness of LCF-tactics is to classify

the proof-steps of the proof system into creative (i.e. proofs-steps which require human

ingenuity), or mechanical (i.e. proofsteps which can be performed automatically by a

computer) (Section 3.4). It is desirable to perform all creative proof-steps as early as

possible in a proof development, thus leaving the rest of the proof consisting of mechanical

proof steps which can then be performed automatically by the computer. This proposition

gives rise to a subsidiary research question: “Can creative and mechanical proof-steps be

permuted within a proof-tree whilst maintaining the mathematical integrity o f the original

proof?”

A permutation analysis of the LK creative inference-rules with the LK mechanical

inference-rules is undertaken in Section 3.5 to provide a mathematically rigorous answer

to the subsidiary research question above. An algorithm for deriving a normal form of

proof based on the results of the permutation analysis is developed in Section 3.7, and an

example application of the algorithm is given in Section 3.7.2. The proofs of correctness

of this algorithm are given in Section 3.8.

Section 3.9 presents the two main results of this Chapter for the System LK : (1) an

instantiation proof plan; and (2) a tactic normal form for a goal not in prenex normal form.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 55

These two normal forms are equivalent since logical equivalents can be used as rewrite rules

in (1) above, instead of applying the Cut-rule to introduce the prenex normal form of the

goal in (2) above. The chapter concludes with a summary of the main results in this

Chapter.

3.2 Domain knowledge for proof development

There are two types of domain knowledge: (1) tha t of the mathematical and meta-

mathematical knowledge, i.e. the proof-theory domain; and (2) th a t of the area in which

this mathematical/meta-mathematical knowledge is applied, i.e. the application domain

[HJMT95].

In this thesis, the proof theory domain is the Gentzen Sequent Calculus for Classical

logic (Section 2.5); and the application domain is the proof obligations tha t arise from

the formal specifications and developments of abstract computer programs expressed in a

functional First-Order/Higher-Order Classical logic language. In order to develop a formal

proof, a human-prover is expected to have knowledge of both the proof-theory and the

application domains. An example of proof-theory domain-knowledge is tha t it is preferable

to perform skolemisation before instantiation to allow the freedom to use the skolem

variables as instantiation terms (see Figure 2.2). However in the case th a t the skolem

variables are not suitable instantiation terms, then the human expert can use application

domain knowledge to find suitable instantiation terms, e.g. by introducing lemmas about

the application domain or defining suitable functions to generate instantiation terms from

the skolem variables (see Chapters 5 and 6).

Robust tactics are therefore expected to capture both of these domain-knowledge types

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 56

to enable a novice human-prover to use the tactics effectively. An Interactive Theorem-

Prover/Proof-Checker (IPT /PC) (Chapter 4) can be used as a proof assistant to ensure

that the steps in the proof are carried out faithfully without the incidence of human-

random error.

3.2.1 A functional definitional specification style

The application and proof-theory domain knowledge can be captured as definitions and

theorems, which encapsulate particular concepts in a specification. A functional defini

tional specification starts with the definitions of the simplest constructs first, and proceeds

to the definitions of the more complex constructs which can be in terms of the simpler con

structs. For example a functional definitional specification of the set-theoretic operators

6 , C and $£ is in tha t order of complexity

set : T Y P E —> bool.

E, (T Y P E x set) —> bool

e (z, s) = s(x)

(z, s) = -i e (z, s)

C, (set x set) —» bool

C (sl5 s2) = V(z : T Y P E) :E (z, si) =^E (z, s2)

£ (si,s2) = -« Q (si,52)

The datatype T Y P E is a given/maximal set or basic type 2, e.g. the integers Z. The

signature of a function definition defines the structure (i.e. form or syntax) of the function,

e.g. the signatures of set-membership e , ^ are the same but the definitions are different,

1These definitions correspond to those given in the PVS prelude file [SORSC98a].
2 A basic type is a set whose internal structure is invisible—elements of such a set may be introduced,

and properties associated with them, but nothing can assumed about the set itself [WD96].

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 57

and likewise for the set-inclusion operators C, The goals or proof obligations to be

proved are specified in the order from the simplest to the more complex ones, and proved

in that order, since a proof of the simpler proof obligation constitutes a subproof of a more

complex proof obligation which may be defined in terms of the former. Although using

the definitional specification style aids the brevity of specifications, the overhead is tha t

the definitions may have to be expanded fully for a formal proof to proceed. In developing

the proofs from which the LCF-like tactics are to be constructed, a systematic approach

which encodes a notion of human expertise in proof development is used.

3.2.2 Human expertise in formal proof development

In the development of a formal proof, the application of an inference-rule is either decided:

(1) on local hints, i.e. from the information in the proofstate, the human-prover chooses (in

an ad-hoc manner) which inference-rule to apply tha t enables the proof to proceed; or (2)

by a well-known proof strategy, e.g. a proof plan [Section 2.7.2]. A renowned interactive

proof strategy, variations of which have been used successfully in hardware verifications,

e.g. [ALW93, KSK93], encapsulates the human expertise in formal proof development by

the following sequence of general proof tasks [COR+95]:

D efin ition 3.2.1. (ITP/PC Strategy) [COR+95]: The human expertise (in both the proof-

theory and application domains) used in the development of a formal proof can be encap

sulated by an iteration of the following sequence of proofsteps:

(1) Quantifier elimination (by skolemization, instantiation, mathematical induction).

(2) Unfolding definitions (by expanding definitions, rewriting using definitions, introduc

ing new formulas using assumptions, axioms, and lemmas).

(3) Case analysis (i.e. proof by cases, which splits the proof based on selected boolean

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 58

expressions in the current goal; the resulting goals can then be further simplified) □.

This state of the art strategy (or proof plan) is used in developing hand-generated (or

interactive) proofs, i.e. given a conjecture to be proved, the inference-rules are tried

on the conjecture in the order depicted above. In general, for software verification, an

iteration of these proof tasks is required.

3.3 Tactic refinement

An endeavour of constructing robust tactics in the domain of set theory is to derive a tactic

that can prove any conjecture which contains any of the set-theoretic operators e , C,

etc. The process starts with a tactic from a proof for e , which is then extended with the

tactics from proofs of C, $£, and so on respectively. This stepwise development method

for building robust tactics from proofs is coined Tactic refinem ent:

P ro c e d u re 3.3.1. (Tactic refinement:)

1. For a conjecture gi, a hand-generated form al proof pi is developed.

2. From such a proof a LCF-tactic t\, which proves conjecture gi automatically, is derived.

3. Tactic t\ may succeed in the proof o f a different conjecture g2 o f sim ilar structure to gi

but o f different definition, or tactic t\ may fail.

4. In the case tactic t\ fails, a new hand-generated form al proof P2 , is developed fo r g2 and

tactic tz is derived fo r the conjecture gz-

5. The tactics t\ and to, can be composed using tacticals, thus giving a more complex tactic

that can prove both gi and g2.

6. This process can be carried out on the conjectures g \. . . g n that describe some domain

D. The composition (using tacticals) o f the corresponding tactics t \ . . . tn is then be able

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 59

 [b T]
b T , _L

[bV] [(- T]
h T V l | - T

-- [bA]
h T A (T V l)

[.Arithmetic]
K 4 : Z A (4 = 4 V 4 = 5)

-------------------------------------- [A E)
b (A(z :Z) :-z = 4 \l z = 5)(4)
--------------------------------------- [setD]

b { 4 ,5 } (4)
--------------- [e D]
b 4 e { 4 , 5 }

Figure 3.1: Proof for b 4 G { 4 ,5 }
The LCF-tactic for the proof above can be formulated as:

InTac = ([e X>] ([setD] ([A E] {[Arithmetic] ([bA] (([bV] ([b T])), ([b T])))))))

to automatically prove any conjecture in that domain. □

Thus for a particular proof-obligation domain D , this results in a “robust” tactic

Td = tdx O U2 0> -"5 O tdn

Where Q is an appropriate tactical, t^ is a tactic for the proof-obligation di G D, and

Td is a “robust” tactic tha t can prove any proof-obligation di : D.

3.3.1 An example derivation of LCF-like tactics

To facilitate the development of hand-generated proofs, ground terms are used in the spec

ification of the conjectures in this section. Using the notion of human expertise described

in Section 3.2.2 above, the proof of 4 G {4,5} proceeds as shown in Figure 3.1, where the

transformation rule ([G D]([setD]([\ E]))) unfolds the definitions of set membership, set,

and the lambda operator respectively ; [Arithmetic] is an arithmetic decision procedure,

and [bA], [bV], [b T] are the LK inference-rules.

The LCF-tactic InTac fails on the conjecture involving 0. However, since ^ is defined

in terms of G, the proof of a conjecture involving ^ contains the underlined segment in

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 60

b_L
— [J-H

[Algebra]
b 5 : T A l

, /g _---- “7 tAH
b (5 : T A ±)

------------------------[AJET]
b (X(x : T) : J_)(5)
-------------------------[setD]

h {* : T | X }(5)
— — :— — 7— [e D\
b 5 G {x : T | JL}

 — ------------- [0 D]
b 5 € 0
 — ---------------- [\— n]
b 5 G 0
 — ------V D]
b 5 € 0

Figure 3.2: Attempted proof for 5 G 0 with NotlnTac

the tactic InTac in Figure 3.1 above. As expected, the tactic N otlnTac from the proof of

the conjecture 5 0 0 is applicable to the false statement (5 G 0) and demonstrates that

the statement is unprovable as shown in Figure 3.2 3.

The operators G, ^ are of different signature and definition to the operators C, (£, but

they are of the same parity. The tactic InTac and NotlnTac fail on conjectures involving

the operators $£, C because these operators are not in the domain of these tactics. The

proof of the conjecture {4} C {4,5} is shown in Figure 3.3. Note th a t the skolemisation

of the universal quantifier by [b V] requires the generation of a free (Skolem) variable y

for the bound variable x.

The conjecture {4} ^ {5,6} is defined in terms of a negation of the operator C and

this causes the proof of {4} $£ {5,6} to require instantiation (instead of skolemisation)

of the bound variable x (see Figure 3.4, where [XsetE] is the tactic ([se£D]([A #]))). The

instantiation term for the variable x in the subgoal V(a; : Z) : x G {4} ^ i G {5,6} b

can be easily deduced from the expression x G {4} as x — 4 and thus the substitution

b ± is equivalent to true => false which is false by the truth table for

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 61

. [A r l - _ - . - [A o'*]
y : T , y = 4 \ - y = 4 , y = 5 y : T , y = 4 \ ~ y : T
 ;--- [HA]

y : T A y = 4\~ y : T A (?/ = 4 V y = 5)
--- [b=»]
y : T A y = 4 =>• y : T A (y = 4 V y = 5)

-- :------- [A e]
b (A(z : T) : z — 4)(y) {\{z : T) : (z = 4 V z = 5))(y)
---[setD]

k { 4 } (y) ^ { 4 ,5 } (y)
[€ D]

b y e {4} => y e {4 ,5 }
--[I- V]
b V(x : Z) : a; G {4} = > a: G {4 ,5 }
-------------- :--------------------- [c D]

b {4} C {4 ,5 }

Figure 3.3: Proof for b {4} C {4,5}
The LCF-tactic from the proof above is:

SubsetTac = ([c £]([F Y]([b=H([e D]([setD]([XE]([\-AMAx]), ([Ar])))))))))

[4/a;]. Thus the instantiation involves application-domain knowledge of set theory, and

the proof-theoretic knowledge tha t instantiation is required for the subgoal V(z : Z) : x G

{4} =b rr G {5,6} b.

Since $£ is defined in terms of 6 and C, the tactic NotSubsetTac can be used to prove

conjectures involving these operators, but not conjectures involving ^ since NotSubsetTac

does not involve the ^ operator 4. The composite tactic

SetTac = InTac ; N otlnTac ; SubsetTac; NotSubsetTac, where the semicolon (;) is the

sequential tactical operator, is sufficiently robust for the set-theory operators G, C,

However, the tactics NotSubsetTac, N otlnTac , SubsetTac, NotSubsetTac all contain the

tactic InTac therefore tactic NotSubsetTac is not in its normal form. The next sections

propose a theory for deriving a normal form tactic for SetTac and for LCF-like tactics in

general.

4 A theorem-prover such as PVS, which can apply the negation inference-rules automatically, will enable
the tactics InTac and SubsetTac to also work on conjectures involving respectively.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 62

± H (XhI l h I i H
--------- [Algebra} [Algebra] j|_ yj

[Vh] (2)----------------- — :---- [Algebra]
4 = 5 V 4 = 6 h [_ 4 _ 4
 ----------------[A setE] [A setE]

{ 5 ,6}(4) h h (X(x :Z) : x. = 4)(4)
 [g D] [g -D]
4 G {5, 6} b h 4 G {4}

4 g { 4 } = s- 4 g { 5 , 6 } K
[v h

K H (i)

W(x : Z) : re G {4} => £ G {5 ,6 } b
-- [Q 0]

{ 4 } C { 5 , 6 } b
n

b - ’({4} C {5 ,6 })
-----------------------E ^ (0)

h { 4 } ^ { 5 , 6 }

Figure 3.4: Branch-labeled prooftree for {4} ^ {5,6}

3.4 An abstraction of LK inference-rules

The inference-rules involved in a proof development exercise can be typically characterized

as (1) creative (i.e. high-level or strategic steps, which require ingenuity and thus may

only be partially automated); or (2) mechanical (i.e. low-level or straightforward steps,

which require no ingenuity and thus can be automated). The main goal here is to reorder

the inference-rules in a hand-generated proof (or LCF-tactics as derived in Section 3.3.1

above) so tha t creative proofsteps are performed as early as possible thus leaving the rest of

the proof consisting of the mechanical rules which can then be applied automatically. This

then defines a normal form for encoding tactics which work best in Interactive Theorem-

Proving/Proof-Checking whereby the human user performs the creative rules first, and

leaves the IT P /P C to generate the rest of the prooftree 5.

5This is analogical to planting a genetically-modified seed (a robust tactic derived from a proof) and
then watching the seed grow on its accord into a tree of the required shape (a prooftree) under the
nourishment of the environment (the ITP/PC).

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 63

3.4.1 Mechanical LK inference-rules

The mechanical (low-level/straightforward/automatic) LK inference-rules are defined be

low:

D e f in i t io n 3 .4 .1 . (Mechanical LK proof rules) A LK inference-rule is mechanical if the

rule does not require application domain-specific knowledge in its application. The LK

mechanical proof rules are: LKMechanical ::= Contraction | Weakening | Interchange |b

“i | —i b |b A |A b |b V |V b |b = ^ |= ^ b |b V | 3 b. □

Structural rules (Contraction, Weakening and Interchange) concern sequents in general

rather than particular connectives. In goal-oriented proof, contraction rules (b C and

C b) allow a single occurrence of a formula to be replaced by multiple occurrences of the

same form ula , thus allowing a formula to be used more than once. However, when sequents

are considered as sets of formula, the set {A} is identical to the set {A , A } and therefore

contractions are redundant. Formulae are rarely used more than once except in the case

of instantiation ([V b] and [b 3]), where applying contraction before these rules makes

the Gentzen System LK complete [Gal86]. In goal-oriented proof, Weakening rules (b W

and W b) are used to delete unwanted formulae from the antecedent or consequent of a

sequent. However, Linear Logic [Wad93], which has been proposed as most appropriate for

software verification, disallows the weakening and contraction rules to mimic the finiteness

of computing resources such as memory.

The Exchange rules (b E and E b) allow formulas in a sequent to be reordered,

thus asserting tha t the order of the formulas in the antecedent and consequent parts

of the sequent is not important [OS97]. If sequents are considered as sets of formulae

instead of lists of formulae, the Exchange rule is redundant since order is irrelevant in Set

Theory. According to the definition of the original Gentzen System LK inference-rules,

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 64

the Exchange rule is used to put a formula to be manipulated at the front (end) of the

antecedent (succedent) respectively so tha t the inference-rules can manipulate the formula.

Therefore the Exchange rule accounts for the complexity of the proof in manipulating a

sequent into the required form so tha t an inference rule can be applied to tha t sequent.

However, the Exchange rules can be made redundant by allowing the logical connectives to

be manipulated in-line where the logical-connectives are in the scope of the inference-rules

(parentheses and operator-precedence scope the area of operation of a logical operator).

Skolemisation generates new free terms to be used for eliminating quantifiers in expres

sions by using the rules [b V] and [3 b]. The new variables can be constructed or created

without any application-domain knowledge by collecting all variables in the current proof-

state, and then generating a new variables tha t do not currently occur in tha t current

proofstate. This can be done automatically without using any application-domain knowl

edge, by maintaining this eigenvariable condition. Note that in the Resolution method

skolemisation refers to the elimination of the existential quantifier by using Herbrand (or

Skolem) functions. This is because Resolution is a refutation method—to prove a goal

(b 3 r : A(jc)) it is required to show tha t (~>3x : A(ic)) is unsatisfiable with respect to

the defined non-logical axioms of the application domain, i.e. there is no self-evident x

(in the axioms) such tha t A{x) becomes true. If the conjunction of (-i3 x : A{x)) and

the axioms derives a contradiction (or there is no model for the conjunction), then by

consistency, (3 x : A(x)) is a theorem, otherwise it is not. In Gentzen Sequent Calculus,

this assumed negated goal (Axiom s H— * 3 m : A(a:)), becomes (Axiom s A 3 x : A(x) b)

by the application of [I ■], and thus skolemisation ([3 b]) is required to eliminate the

existential quantifier. Similarly, existential quantifiers in the non-logical Axiom s are in

the antecedent, and therefore require skolemisation. Dually in resolution, the universal

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 65

quantifiers are simply dropped, which is equivalent to instantiation by the term(s) in the

current proofstate in direct proof.

Therefore LK mechanical rules can be considered robust primitive tactics since they are

successfully applicable on any formula involving the logical connective in tha t mechanical

rule.

3.4.2 Creative LK inference-rules

These are the creative choices in proof development tha t usually require application-

domain knowledge as well as proof-theory-domain knowledge from the human-user.

D e f in i t io n 3 .4 .2 . (Creative LK proof rules) A LK inference-rule is creative if the rule

requires both proof-theory and application domain-knowledge in its application and thus

can only be partially automated. In LK, the creative proof rules are:

LKCreative Cut \ Mathematical Induction |b 3 | V K □

Mathematical induction (b V, 3 b) requires the choice of a suitable induction variable

from a well-ordered (i.e. either numerically or lexicographically) domain; the construction

of an induction hypothesis; and the proof of the base and step cases. The choice of these

attributes can be quite challenging, thus this is a creative task which requires a proof-

theoretically (or heuristically) justified classification of the application-domain knowledge.

Section 2.7.2 in Chapter 2 briefly describes the partial automation of the Rippling heuristic

induction scheme [BM98] as an LCF-like tactic. The PVS Theorem-Prover/Proof-Checker

(see Chapter 4) also comes with a partially automated defined-rule for mathematical

induction.

Instantiation [b 3], [V b] may require ingenuity in the choice of the instantiation terms.

For example, it was also demonstrated in Chapter 2, Section 2.5 tha t goals of the form

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 66

3 s : V r : A (r , s) are not theorems of the Gentzen Sequent Calculus LK largely due to the

difficulty of finding a instantiation term m as a model of all the possible r, where m is of

the same type as s.

The cut rule is the only viable means of introducing a new form ula (i.e. the cut-

formula), which does not occur in the current proofstate. The application of the Cut-rule

requires the choice of the cut-formula, usually with an insight towards shortening the

length of a proof, e.g. already proven results can be introduced as intermediate steps in a

proof development in the traditional practice of mathematical proof. An example of such

lemma introduction is in proof by mathematical induction where the induction hypothesis

(which has been proved for the base-case) is applied as a lemma in the proof of the step-

case. In tha t respect, the cut rule is approximated by the transitivity relation (IF (A =>•' B)

and (B => C) TH EN (A C)), where (A b C) is the goal, (A b J5), (B b C) are the

subgoals, and the required cut formula is B . Another typical example of the application

of the cut-rule is introducing case-formulae, which are boolean expressions tha t define

the cases in the proof-by-cases approach (Step (3) in Definition 3.2.1). For example, the

conditional statement, IF cond TH EN a l E LSE a2 , can be proved by considering two

cases: (1) when cond is true, a l should hold; and (2) when cond is false a2 should hold.

Thus in general, a case-analysis leads to branching in the prooftree. Ingenuity is required

to ensure that the cases chosen complete the problem domain, and that the introduced

case expressions are provable; otherwise the case proof is not exhaustive. The ingenuity

entails detailed knowledge of both the proof-theory and application domains, as well as

creative insight to choose the appropriate concepts to introduce as cut formulae in order

to aid the proof search.

Therefore LK creative rules are not robust primitive tactics in tha t the incorrect choice

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 67

of the cut-formula, induction variable/hypothesis and the instantiation terms in the cre

ative rules (cut, induction, instantiation respectively) can easily lead to an unprovable

proofstate.

3.5 The permutability of LK inference rules

Given a sequent formula to be proved, the proof can proceed by manipulating those

connectives available for manipulation. In particular, in most IT P/PC s, e.g. PVS (see

Chapter 4), quantifiers can only be manipulated when they are at the front of the sequent-

antecedent or end of the sequent-consequent formula, and logical connectives are manipu

lated when they are in scope. Therefore in the generation of a proof, creative and mechan

ical rules can be mixed when the mechanical rules are necessary to bring the formula in

the scope of the creative rules, e.g. when definitions contain quantifiers (see Figures 3.4,

3.3, Section 3.3.1), or when the goal formula contains some inline quantifiers (see Example

3.5.1 below). The main goal of this section is to give a rigorous mathematical analysis of

the reordering (or permutability) of the inference-rules in a hand-generated proof.

Given a collection of n distinct objects, any (linear) arrangement of these objects

is called a permutation of the collection [Gri99]. When the objects are proofsteps in a

prooftree, the following definition is more relevant:

D efin ition 3 .5 .1 . (Permutation) [LH01]: The permutation of two adjacent inference rules

of a given proof is reversing their order in the proof but without disturbing the rest of the

proof (modulo some duplication of proof branches and a renaming of certain variables) as

a result of which we get a proof equivalent to the given one. □

For two inference-rules to be permutable, the principal formulas (i.e. the formula each

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 68

E x am p le 3.5.1.

(Q(?/i),P(zi,2/i)),P(2/) h P (x 1) , P (x 2)
--- Ah
(Q(jft) A R(xi, ft)), (P (y) h P(aft), P(a&))

--- 3 h
3 y : (Q(y) A p(aft, 2/)), (P(y) h P(xi), P(a&))
---1— i

P (y) b P (xi) j “■ 3 2/ : (<?(?/) A P(a?i,j/)),P(a&)
-- hV)
P (y) h (P (z i) V -- 3 2/ : (Q(?/) A F (z i, ?/))), P(a&)

 h V (twice)
P (y) h V x : (P (z) V ->3y : (Q (y) A R (x , y))) , (V x : P(x))

-- 1 h
(P (y) , - i \ / x : P (z)) h V x : (P (z) V -i 3 y : (Q (y) A F (z , ?/)))

--- hA
(P (y) A - iV x : P(x)) b V z : (P (z) V ~^3y : (Q(y) A R(x, y)))

-- |— i

h V z : (P(x) V -n3 y : (Q (y) A R (x , y))) , ^ (P { y) A -rVz.: P (z))
---hV
(- V i : (P (z) V - i3 2/: (Q(?/) A P (z , y))) V -»(P(y) A -> V z : P (z))

of the inference rules manipulates) have to be present as two distinct formulas in the

sequent. In Example 3.5.1, the quantifier rules cannot be permuted with those logical

required to bring the quantifiers to the front for manipulation. Even with the use of

geographic/structural tactics [Mar94, MGW96] tha t target quantifiers first (i.e. can per

form inline processing of quantifiers), the presence of negation can cause problems, since

the negation changes the semantics of quantifiers, e.g. instead of a skolemisation, an in

stantiation would be required and vice versa (see Section 3.3.1). Therefore to enable all

quantifiers to be eliminated as the first step in a proof development (Definition 3.2.1), a

suitable first step is to “rewrite” the goal formula to a form where all quantifiers are at

the beginning of the goal formula, i.e. prenex normal form.

3.5.1 Prenex Normal Form

The conversion to prenex normal form corresponds to the Reduction phase in the Formal

Methods Lifecycle (Procedure 2.3.1); the goal formula is an Abstraction representing the

proof obligation tha t has to be verified from a Specification.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 69

E x am p le 3.5.2.

Q (w i) , R (x l t w i) , P (y) I- P (x i) , P (w i)
--1 1- twice
Q{w1) , R (x i , w i) , P (y) , - ^ P { w i) h P(x i)

---A l- twice
(Q (m) A R (x i , w i)) , (P(y) A -^P(wi)) 1- P (n)

--- I— i twice
h P (x i) , - i (Q(wi) A P (i i ,u / i)) , (- . (P (y) A - iP(wi)))

--- hV twice
b- (P (x i) V (- i Q (w i) A R(xi , wi)))) V (-. (P (y) A -nP(wi)))

--- : h V thrice
I- Vx : V w : V z : (P(x) V (->(Q(w) A R(x, w)))) V (-i(P(y) A ->P(w)))
--A W y : B (y) = V y : A V B(y))
h V i : Vtu : (P (x) V (-■(Q (w) A P (x , u/)))) V (V w : ~'(P(y) A ->P(w)))

 ;-- . 3 y : B(y) = Vy : - .P (y))
h V i : M w : (P (x) V (~<(Q(w) A P(x , w)))) V (~>3w : (P(y) A - iP(w)))

-- A(x) A 3 y : B (y) = 3 y : (A(x) A B(y))
1 -V i : Vt« : (P (x) V (-<(Q(w) A P (x , iw)))) V (~<(P(y) A 3 w : -*P(w)))

------------------------ :-- i 4 (x) V Vy : B (y) = Vy : V ->S(y))
1- V i : (P (s) V (y w : ->{Q(w) A i?(x, t u)))) V (-»(P(y) A 3 u> : -<P(u;)))

 -- 1Vz : -<4(z) = 3 z : ->i4(z)
h Vx : (P(x) V Viy : ->(Q(w) A R(x , w))) V (~’(P(y) A - iV z : P (z)))

--- — -i 3 w : j4(w) = V w : -yA(w)
t- V i : (P (i) V - i3tu : (Q(w) A R(x , w))) V - i(P (y) A - iV z : P (z))

--— variable renaming
h V i : (P (x) V -i 3 y : (Q(y) A R(x, y))) V ->(P(y) A - i V i : P (i))

Logical equivalents are used to rewrite a goal formula into prenex normal form. In

addition, bound variables of the same name as some free variables need to be renamed to

avoid variable capture—a formula in which all variables are distinct is called a rectified

formula [Gal86]. Converting a goal formula to prenex normal form: (i) gives a unique

representation of a formula as QiXi, ...Qnxn : P (x i , . . . , x n) where X i , . . . , x n are distinct

variables bound by the quantifiers Qi G {3, V}, and P (x i , x n) (called the matrix) is

a quantifier-free formula; and (ii) is useful for eliminating quantifiers first and thus is a

useful Reduction technique (Step 3 of Procedure 2.3.1) for automated theorem proving.

“For every formula A , a prenex normal form formula B can be constructed so tha t A B

is valid (i.e. A is equivalent to B)” [Gal86] (Theorem 7.2.1 page 307). The proof in

Example 3.5.2 first rewrites the goal formula into prenex normal form, and is equivalent

to the proof in Example 3.5.1 in that the same subgoals are achieved.

Instead of rewriting the goal formula by using equivalents as in Example 3.5.2 above,

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 70

E x am p le 3.5.3.

P i P i
-- Cut
\ - \ / x , y : (P(x) V ->3 y : (Q(y) A R(x, y))) V ~^{P(y) A x : P(x))

Where Pi is the proof of the equivalence of the original goal to its prenex normal form as follows:

-- PropSimp
(P (x i) V (-’(<3(2/2) A R (x i , y 2)))) V (->(P(2/ i) A - .P (x2))), Q(y2) A P (x i , y2), P (y i) b P (x i) , P (x 2)

--- :--- V b[4]
V x , y , w , z : (P (x) V (~i(Q(w) A R(x, w)))) V (- ’(P (y) A ->P(z))), Q(y2) A R (x i , y 2), P (y i) b P (x i) , P (x2)
--- 3 b

9PNF,3y : (Q(y) A R(xi , y)) , P (y i) b P (x i) ,P (x 2)
-- h V
9PNF, 3 y : (Q(y) A R (x i , y)) , P (y i) b P (x i) ,V x : P(x)

--- PropSimp
9PNF b P (x i) V - . 3 y : (Q (y) A R(x , y)) , -* (P(y i) A ->Vx : P(x))

-- h V
9PNF b V x ,y : (P(x) V —-32/ : (Q(y) A R{ x , y))) V - '(P (y) A - iV x : P(x))

P2 the proof of the prenex normal form of the goal as follows (the original goal is deleted by a
weakening since it has been proved to be “equivalent” to the prenex normal form, which now needs to be
proved):

Q(wi) , R (x i , w i) , P (y) b P (x i) , P (z 1)
 -i b twice
Q (w i) , R (x i , w i) , P (y) , - > P (z i) b P (x i)

--Ab twice
(Q(w 1) A R (x i , wi)) , (P(y) A - -P(z i)) b P (x i)

-- I— 1 twice
b P(xi) ,-i(<3(wi) A R(x i ,wi)) , (->(P(y) A -iP(xi)))

 bV twice
b (P (x i) V (~i(Q(wi) A R(xi ,W!)))) V (~’(P(y) A - lP (z 1)))

--b V thrice
b V x : V to : V z : (P (x) V (->(Q(w) A R(x, w)))) V (->{ P (y) A ->P(z)))

--- :----------- b W ; [gpNFD]
b gpNF, (Vx : (P (x) V ->3y : (Q (y) A R (x , y))) V ->(P(2/) A -1 Vx : P (x)))

PropSimp is a tactic which applies the LK rules for the logical connectives A, V, =b. When the
above proof is checked in the PVS ITP/PC, PropSimp is available in PVS as the tactic (prop). In Pi,
the powerful instantiation PVS tactic in st? correctly guesses the first two instantiations of variables
x ,w with the skolem variables xi, y2 respectively. However for the instantiation of variables y, z , in st?
tries skolem constants xi, yi respectively, which yields two unprovable subgoals. The correct human
instantiation of variables y ,z with skolem variables y\, x̂ yields the provable proofstate as above.
Therefore the PVS in st? tactic can be considered as unangelic since the tactic can often instantiate
incorrectly thus yielding an unprovable proofstate.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 71

one possible application of the cut rule is to introduce the prenex normal form of the goal

formula to be proved as demonstrated in Example 3.5.3. Comparing proofs in Example

3.5.3 with the original proof of the same goal formula in Examples 3.5.1 and 3.5.2, it is

evident tha t the prooftrees in Example 3.5.3 are in a normal form. There is a clear dis

tinction between quantifier rules and propositional rules in the subproof Pi (the deduction

of the goal formula from its prenex normal form). In the proof of P2 (the prenex normal

form of the goal), first the quantifiers are eliminated, and the rest of the proof consists

of application of the propositional inference-rules. In the prooftree in Example 3.5.1, the

quantifier rules are mixed with the logical rules since the proof is constrained by bringing

quantifiers to the front before they are eliminated. In Example 3.5.2, the reduction of the

original goal to its prenex normal form using logical equivalents is replaced in Example

3.5.3 by the application of the cut-rule, the proof of subtree Pi and the weakening of the

original goal formula in subtree P2. All three examples use the idea of skolemizing quanti

fiers first and using the skolem variables as potential instantiation terms (as demonstrated

in Figure 2.2, Section 2.5, Chapter 2).

The next step is to justify the proposition tha t the LK creative rules should be applied

as early as possible, therefore leaving only the mechanical rules to be applied afterwards.

The crucial criteria in rearranging logical inference rules is that a different order of rules is

used but the same conclusion is reached. The analysis of the permutability of the inference

rules of LK with each other may proceed by considering all cases of the perm utation of all

logical rules with each other, all quantifier rules with either a logical rule, or a structural

rule or the cut rule. However by the Gentzen Hauptsatz Theorem, the Cut-rule permutes

with all the other LK rules, and the b 3 and 3 b rules are dual to the V b and b V rules

respectively. Tables A.2, A.3, A .l in Appendix A .l typifies the permutation of the creative

C H A P T E R 3. TO W A R D S R O B U ST TA C TIC S F R O M PRO O FS

rules with all the other LK rules.

72

3.5.2 Perm utability of the cut-rule w ith other LK-rules

The Cut-rule mostly used in the literature [Gal86, Kle64] is

A h 0 , i L, rbA
------------------------------AtomicCutB

I \ A b A , 0

In the form of the Cut-rule above, the antecedent (A, T) and succedent (0 , A) formulas

are split between the two branches. In this section, the simpler form of the Cut rule

[OS97, Pau99] is used:
i , r h A r h A , i
------------------------------AtomicCutL

rb a

The same antecedent (T) and succedent (A) formulas are repeated in both the two

branches, which makes clearer the conception of the cut-rule as a way to introduce lemmas

or cases in proof since the original sequent formulas are both involved in the assumption

(left branch) and proof (right branch) of the lemma/case formula L.

The Gentzen Cut Elimination (Hauptsatz) Theorem (Section 2.5.2.1) demonstrates

that the Cut-rule permutes with all the other LK rules. Definition 3.4.2 classifies the cut-

rule is as a creative proof rule, therefore it is permuted down the prooftree. Applying the

cut rule before the contraction avoids the problem of permuting cut above the contraction,

which forced Gentzen to use the mix rule in his permutation analysis.

The cut-rule is a branching rule, i.e. an inference-rule with more than one premise,

thus when a cut is permuted below a rule, tha t rule can then duplicated in the branches

of the cut-rule in order to produce the same leaves as in the original prooftree. In the

permutation of the cut-rule with skolemisation (b V, 3 b): (1) the eigenvariable v (the

skolem variable) should not appear in the conclusion, e.g. in A, otherwise the proof would

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 73

violate the eigenvariable condition; and (2) A[v/x] cannot be the cut formula since the

eigenvariable condition would also be violated in tha t case.

3.5.3 Perm utability of quantifier-rules with other LK-rules

Since the V I- and b V rules are dual to the b 3 and 3 b rules respectively, it suffices to

consider only the b 3 (instantiation) and b V (skolemisation or induction) rules in this

case. For those permutations not involving Cut, all formulae in the permuted prooftree

are subformula of the goal formula (see Section 2.5.2.1). The permutation of instantiation

(b 3) with skolemisation/induction (b V) satisfies the eigenvariable conditions tha t the

skolem/induction terms should be new variables which do not occur in the conclusion.

3.6 Results from the permutation analysis

Tables A .l, A.2, A.3 in Appendix A .l show the permutation analysis of these quantifier

with the other LK-rules including Cut. The permutation analysis shows tha t in Gentzen

Sequent Calculus for Classical logic (LK) it is possible to rearrange the order of inference-

rules in a developed proof without prejudicing the validity of the proof 6.

3.6.1 Creative com positions of proofsteps

As demonstrated in Example 3.5.3, the Cut introduces the prenex normal form of the goal

formula; the original form of the goal is then deleted in the right branch by a Weakening;

and the prenex normal form of the goal is contracted to allow completeness of the Gentzen

System LK. Thus a creative combination of the inference rules is Cut ; b W; b C, which

yields a normal form of proof for goals which are not in prenex normal form.

6In Intuitionistic logic (LJ) it is not possible to do so [Sha92].

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 74

D efin ition 3.6.1. (Tactic-proof normal form) A normal form of tactic-proof is a finite proof

where all the creative rules are applied as early as possible in a proof thus leaving the rest

of the proof consisting of mechanical rules possibly automatic. For a goal p where g is not

in prenex normal form, the tactic-proof normal form is a proof of the form:

- Axiom

----------------- Creative; Mechanicalsteps
- (Axiom) h 9p n f , 9p n f

: b gpNF
-------------LKrules — ------- b W
9 p n f b p b p , g PNF

■ CutgpNp
b P

□

This provides an alternative way to reason about the reduction of a goal formula to prenex

normal form. However this reduction can be replaced by definitional equivalences, and

thus eliminating this use of the cut-rule.

When skolemization is performed after instantiation, the eigenvariable condition re

quires tha t the skolem variable £ must not occur in the conclusion. Hence the skolem

variable z must be a new variable (or constant) and cannot be the instantiation term t.

When skolemisation is performed after instantiation, the instantiation term t can be a

variable (Definition 2.4.4), e.g. t can be the skolem variable z and the eigenvariable con

dition is not violated. Therefore performing skolemisation before instantiation can lead to

more freedom in the choice of instantiation terms since the skolem variables can be used

as instantiation terms pending type correctness conditions, i.e. the instantiation term

should be of the same type as the skolem variable. Thus b V; b 3 (which is equivalent to

3 b; V b) is a creative composition of proofsteps. These claims are demonstrated in the

permutation Cut with 3 b (Tables A.3) and in Figure 2.2.

T h eo rem 3.6.1. (Instantiation with skolem terms): Given a sequent T b A where each

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 75

form ula in T, A is in prenex normal form Vn Xi : X : 3m yj : Y : P(x , y) for i , j , n , m > 1

then instantiation term s tj fo r existential variables yj can be generated from the skolem

variables Vi fo r the universal variables x ̂ by a function f : X —> Y , i.e. tj = f (v i) where

the function f generates instantiation terms whilst ensuring type-correctness conditions

between the sets X , Y .

P ro o f: by the permutation analysis of skolemisation with instantiation [Section 3.5]. □

3.6.2 Factorizing inference-rules

The permutation analysis above also shows that for the LK branching rules (Cut, Vh, =>h

, hA), performing the branching rule after a non-branching rule has the effect of factoring

out all common proofsteps among subtrees at the same level, so tha t only one instance of

the non-branching rule is applied in the s tem /trunk of the prooftree (see Appendix A .l).

D efin ition 3.6.2. (Common inference-rules): For a given proof, an inference-rule is com

mon if the same inference-rule occurs among different subtrees at the same level of the

prooftree. □

A common inference-rule can be either a creative-rule, e.g. the h 3 in the permutation

analysis in Appendix A.l; or a mechanical-rule, e.g. the inference-rules [e],[Ase£Z?] in

Figure 3.4. This factorization of common inference-rules can be achieved by repeated

permutation.

T h eo rem 3.6.2. (Rule Factorization): Given a prooftree P in which a branching rule is

applied before a non-branching rule, i f the two rules are permutable, then applying the non

branching rule before the branching rule yields a prooftree P ' in which the non-branching

rule is factored out from the branches o f prooftree P to be applied only once.

P ro o f: by repeated permutation. □

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 76

The permutation of the branching cut-rule upwards the prooftree (Gentzen Cut-elimination

Theorem) can be seen as a way of Factorizing the prooftree. The purpose of performing

branching rules as late as possible is to reduce the duplication of proofsteps tha t the user

may have to endure if the branching rules are applied as early as possible.

3.6.3 A strategy for choosing which proofrule to apply

The analysis of the permutations of the LK rules with each other can determine which

rules are to be applied first, i.e. the order of application of the rules. The example proof

which involves instantiation (see Figure 3.4, Section 3.3.1) shows tha t by first rewriting

the goal (where the goal involves definitions and negation), the instantiation terms can

be more easily deduced, and in addition, the goal would be in its normal form. The

permutation analysis demonstrates tha t it is possible to permute downwards the prooftree

the LK creative proofsteps (C ut, b 3, V h) with all the other LK rules provided that:

(1) the formulae are in prenex normal form; (2) the eigenvariable conditions are satisfied;

and (3) inline processing of logical connectives is allowed. Definition 3.6.1 provides an

alternative means of introducing the prenex normal form of a goal formula; Theorem 3.6.1

provides a viable means for eliminating quantifiers; and Theorem 3.6.2 states tha t it is

preferable to perform non-branching rules before the branching ones. Therefore Theorem

3.6.3 below depicts an order of application of LK proof rules which can be used as a

strategy in an IT P /P C to yield a formal proof in normal form.

T h eo rem 3.6.3. (Tactic-Proof Normal Form): I f a conjecture b g in predicate calculus is

LK-provable by a proof P , then there is a normal form proof P ' where:

(1) creative compositions o f L K rules and the mechanical rules (b=^, I— >, “>bj are used

to rewrite b g into sequent subgoals T* b A* where each form ula in T*, A* is in Prenex

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 77

Normal form [by Definitions 2.5.2, 3.6.1 and Appendix A].

(2) Creative rules (instantiation, induction) are used to eliminate the quantifiers i nT i b A*

to yield quantifier-free sequents T' b A' [by Theorem 3.6.1J.

(3) Each T' b A ' is provable by L K mechanical rules where branching rules are applied as

late as possible [by Theorem 3.6.2].

This produces a normal form o f proof where creative proofsteps are applied as early as

possible by the human prover to leave the rest o f the proof to be performed automatically

by the theorem prover via decision procedures fo r propositional logic and arithmetic.

P ro o f: from the permutation analysis and results in Section 3.5 and Appendix A . l re

spectively. □

In applying the Cut-rule to introduce the prenex normal form of the goal, the reduction

in proofsteps required of the human-prover is afforded in tha t there is no overhead in

applying mechanical-rules to rewrite the goal formula so that all quantifiers are at the

front, in particular when the proof of the left branch is ignored. If the goal formula is

already in prenex normal form, the reduction in proofsteps required of the human-prover is

afforded in tha t the creative proofsteps required of the human-prover are applied first, thus

leaving the rest of the proof automatic. In general the Cut-rule can be used to introduce

new formulae, e.g. definitions, lemmas, and cases in goal-oriented proof with mathematical

integrity. Thus the unfolding of definitions in Definition 3.2.1 can be regarded as a form

of Cut-rule application.

Theorem 3.6.3 can be used in the Generalization and Maintenance phase of the Formal

Analysis Lifecycle to transform a given formal proof into the normal form of proof. This

normal form of proof can the be encoded as a tactic which can be composed with other

tactics in such a normal form to yield a tactic-proof each of whose subtrees (or subproofs)

CH APTER 3. TOW ARDS RO BU ST TACTICS FROM PROOFS

is in normal form.

78

3.7 A procedure for constructing robust tactics

In this section an algorithm tha t can transform a proof into the normal form given by

Theorem 3.6.3 is presented and proved. A method for deriving a normal form of tactic-

proof can be conceptualised as follows:

P ro c e d u re 3.7.1. (Deriving a normal form of tactic-proof) A normal form o f tactic-proof

can be derived from a fin ite proof (which is not in normal form) by distinguishing the

inference-rules used in the proof into creative and mechanical inference-rules, Factorizing

the proof description, and then permuting the inference-rules in accordance to Theorem

3.6.3. □

The procedure is applied iteratively (or recursively) starting from the root of the devel

oped prooftree and proceeding upwards towards the axioms or leaves of the prooftree.

The factorization involves factoring out the prooftree into subtrees (which are effectively

branches of the prooftree), where each subtree is a subproof of the complete proof. A

further factorization involves factoring out the inference-rules th a t are common between

all the subtrees at the same level. These common inference-rules can be distinguished into

creative and/or low-level inference rules.

The permutation involves two phases. The first phase involves permuting the inference-

rules of the subtrees so tha t the common inference-rules are applied just before the

inference-rule that generated the subtrees. This yields a new subproof for the subtrees at

the same level where the common inference-rules are ‘bubbled down’ towards the root of

the prooftree. The second phase involves permuting the inference-rules in the resultant

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 79

proofstem, so tha t the creative inference-rules in tha t proofstem, which are lower in the

creative lattice, are applied first. This bubbles down the creative inference-rules (lower in

the creative-lattice) towards the root of the prooftree.

3.7.1 An algorithm for constructing robust tactics

Procedure 3.7.1 can be conceptualized into an iterative algorithm as shown in Figure 3.5.

The {P} S { Q } notation [Hoa69, Bac86] is used in writing the algorithm in order to

verify the correctness of the algorithm, i.e. {P} = {branch = 0} is the precondition, S

is the program fragment, and {Q} = {branch = n] is the postcondition. LatticePermute

uses the Theorem 3.6.3 to permute inference-rules. Permute does not use Theorem 3.6.3,

but permutes common inference-rules with the inference-rule tha t caused the branching.

Distinguish separates creative inference-rules from mechanical inference-rules. Collecting

inference-rules at a branch-label i is defined as in Algorithm CollectBranchRules, where

CollectRules(i) collects inference-rules at branch i to the next branch (i + 1) for each

subgoal.

3.7.1.1 L abe ling th e p ro o ftree

Given a prooftree and/or its corresponding proofscript, the branches produced by inference-

rules with more than one premise in the prooftree are labeled as follows.

D e f in i t io n 3.7.1. (Labeled Prooftree) A generic labeled prooftree can be conceived as:

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 80

Algorithm 3.7.1. (Normalize: an algorithm for transforming a formal proof into normal form)
{ branch = 0}
FOR branch := 0 TO n DO %the branches are numbered from 0 up to n.

IF branch = 0 then begin %Define the root as at branch 0
LatticePermute(Distinguish(CollectBranchRules (branch)))
branch := branch + 1

ELSE
Permute(FactorCommonRules(CollectBranchRules (branch)))
LatticePermute(Distinguish (CollectBranchRules (branch — 1)))
branch := branch + 1

END
END
{branch = n + 1}

Algorithm 3.7.2. (CollectBranchRules(i))
FOR goal := g .l TO g.n DO %these are the subgoals at that branch-level

CollectRules(i)
END

Figure 3.5: An algorithm for constructing tactics from proofs.

Where the g is the goal; g .l ,g .2 ,g .i , the horizontal dots . . . , and the vertical dots

are subgoals. The numbers in the parentheses— (0), (1), (2), (3)—are branch-labels; and

[a], [6], [c], [d], [e] are the branching inference-rules.

The branching of the prooftree is identified as instances of double opening brackets in

a proofscript—the individual subtrees at a branch are separated by commas. The linear

representation of the above prooftree is:

(o) (* * * ([a] ((i) (** *([d] ((2) (* ,* ,* ,) ([e] ((3)(*, * ,*)))) ,

(***([c])),

* *

m (wo*, *,*))))))))

Where * * * are the inference-rules for the subgoals . .. ; the numbers (1), (2), (3) denote

the branches; and the commas separate the subtrees. □

For each subgoal, the branch-labeling proceeds from tha t subgoal to the leaves of tha t

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 81

subgoal, i.e. depth-first search [Hop93]; and then from left to right for subgoals at the

same branch-level, i.e. breadth-first search [Hop93]. For example, with reference to the

above tree, the branches of the whole subtree for the first subgoal g. 1 is labeled completely

(depth-first search), before proceeding to label the branches of the subsequent subgoals

g .2 , . . . ,g . i which are on the same-branch-level as g .l, (breadth-first-search). See Section

3.7.2 for how the prooftree in Figure 3.4 would be labeled.

3.7.1.2 C ollecting p roo fru les

For each subgoal, the collection of all the inference-rules up to the next branching level

is called a proofstem. The inference-rules in each proofstem are collected into a list and

the lists for each subgoal are concatenated to give a list of all inference-rules at tha t

branch up to the next branch for all the subgoals at the same level (see Section 3.7.2 for

an example). A proofstem is effectively a subproof, or a complete proof for a subgoal,

e.g. the proof of 5 $ 0 in Figure 3.2 consists of one proofstem which is the complete

proof for tha t conjecture. The proof in Figure 3.1 consists of three proofstems: (1) ([e

D] ([setD] ([AF] ([Arithm etic] ([l~A]))))); (2) ([hV] ([h T])); and (3) ([h T]). Thus in

Figure 3.1 the inference-rules at branch 1 are ([hV], [h T], [h T]).

3.7 .1 .3 F ac to rin g o u t com m on in ference-ru les

Factoring out common inference-rules among subtrees means tha t each of these common

inference-rules only has to be applied once instead of n times where n is the number

of subtrees in which they occur, thus reducing the time taken to complete the proof by

(n — l) t where t is the time taken by each of these inference-rules. Furthermore, the

factorization maintains the order of the inference rules in the original prooftree.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 82

Only the inference-rules tha t are not axioms can be factored out because axioms are

the final derivations which require the intermediate proofsteps in order to be generated.

For example, in Figure 3.1, at branch (1), the inference-rule [b T] is common among the

two subtrees at tha t branch but [b T] is an axiom, therefore it cannot be factored out

since this axiom can only be deduced from the branching rule [bA].

3.7.1.4 P e rm u tin g th e fac to red in ference-ru les

The common inference-rules form a new proofstem for all the subtrees at the same branch-

level. The permutation includes the inference-rule tha t caused the branching. This is

illustrated in Section 3.7.2.

Theorem 3.6.3 defines which inference-rules may be applied before others. For example,

in Figure 3.4, the creative-lattice dictates tha t the definition expansion [e D] (which is a

form of Cut application (see Section 3.6.3)) should come before the instantiation [V b].

The effect of this algorithm is to (1) capture commonalities between subproofs at

the same level, and thus improve efficiency; (2) bubble creative inference-rules down the

prooftree so that they can be performed as early as possible; and (3) enable robustness

of the encoded resultant tactic by allowing the creative proofsteps to be passed as actual

parameters when the tactic is invoked by the human-prover. Algorithm 3.7.1 can be

applied recursively on the resultant prooftree tha t it produces until there is no change in

subsequent prooftrees tha t the algorithm generates.

3.7.2 An example application of Algorithm 3.7.1

We apply Algorithm 3.7.1 on the prooftree for conjecture {4} ^ {5,6} in which the

branching rule [=>b] is applied earlier in the proof development.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS

1. The prooftree is labeled as in Figure 3.4.

2. First iteration; branch = 0, and so the I f -part is executed:

(a) CollectBranchRules iff) gives the inference-rules:

< [g J >] , [M , [c D] I | y n > .

(b) Distinguish gives the creative inference-rules:

U D],[C D], [V] h).

(c) LatticePermute returns the same sequence:

< [£ £], [CZ)],[V](-}.

(d) branch := 1

3. Second iteration— branch = 1, and so the Mse-part is executed:

(a) CollectBranchRules (1) gives the inference-rules:

(([e D], [A setE]), ([e D], [XsetE], [Algebra], [FT])).

(b) FactorCommonRules gives the common inference-rules:

([€ D],[\se tE])

(c) Permute gives the prooftree in Figure 3.6.

(d) CollectBranchRules(0) gives the inference-rules:

(\<t D], [h-.], [C D], h V], [6 D], [XsetE]).

(e) Distinguish gives the creative inference-rules:

([$£ D], [c x>], [I- V], [e D]>.

(f) LatticePermute returns the new sequence:

(K o i .ie D], \e o],[hv]>.

This gives the prooftree in Figure 3.7

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 84

± h I± H
--------- [Algebra1--------------- [Algebra1 [u Tl
4 = 6 b 4 = 5 b [_T l J

[Vb] (2) ---------- [Algebra
4 = 5 V 4 = 6 b [- 4 = 4

--- [=^H (1)
4 — 4 = ^ (4 = 5 V 4 = 6) b
---------------------------------- [A setE]

({4}(4)=K5,6}(4))b
 [G D]
4 £ {4} 4 G {5, 6} b

--- [V bj;
\f(x : Z) : x G {4} x G { 5 , 6 } b
--- [C D)

{4} C { 5 , 6 } b
n

1 '{4} C {5,6}
----------------------- 1$ D)
b {4} {5,6} (0)

Figure 3.6: Factorization and permutation of the prooftree in Figure 3.4 at branch (1)

i h | i H i h [iH1
---------- [Algebra] --------- [Algebra] n_ -n
4 = 6 b 4 = 5 b [_- pL J

[Vb] (2) —--------[Algebra]
4 = 5 V 4 = 6 b [—4 — 4

T = ^ ± b
[A setE]

({ 4 } (4) ^ { 5 ,6 } (4)) h
---------------------------------------[Vh]
V(z : Z) : (4}(x) =>■ { 5 ,6}(x) b
-- [G D]

V(4 G {4} => 4 e {5,6}) b
--------------------------------------- [C D]

{ 4 } C { 5 , 6 } h
i m

i '{4} C {5,6}
K D\

•I"]

h { 4 } £ { 5 , 6 }

Figure 3.7: Lattice permutation of the prooftree in Figure 3.4 at branch (1)

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 85

- H 4 - I X H
l v ± h lVhl W _ [h T]

[Algebra] [Algebra]
4 = 5 V 4 = 6 h j _ 4 _ 4

4 = 4 (4 = 5 V 4 = 6) h
---------------------------------- [A setE]

({4}(4) =4- {5,6}(4)) h
---------------------------------------[hV]
V(x : Z) : {4} (ic) =4 {5, 6}(x) h

--- [S D]
V(x : Z) : x € {4} =4- x 6 {5,6} h
--- [CZ>]

{4}C {5,6}h
i m

•H] (1)

!--{4}C {5,6}
K D\

I- {4}£ {5,6} 0

Figure 3.8: Factorization and permutation of the prooftree in Figure 3.7 at branch (2)

(g) branch := 2

4. branch = 2 is satisfied by the /or-statem ent forbranch := 0 to 2, and so we have a

third iteration. The ELSE-part of Algorithm 3.7.1 is executed:

(a) CollectBranchRules (2) gives the inference-rules:

(([Algebra], [J_ h]>, ([Algebra], [-L H>>-

(b) FactorCommonRules gives the common inference-rules:

([Algebra]). The rule [_L h] is an axiom and thus should not be factored out.

(c) Permute gives the prooftree in Figure 3.8.

(d) CollectBranchRules (1) gives the inference-rules:

([Algebra]), ([Algebra]).

(e) Distinguish gives the empty list of creative inference-rules since [Algebra] is a

low-level inference-rule.

(f) LatticePermute returns the same proofstem ([Algebra]):

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 86

± h lx h l i h [i h |
[Vb] (2) [f- T]

-L V J_ b h T
---[=>b] (1)

T => (_L V J_) b
[Algebra] (completion)

4 = 4 =>(4 = 5 V 4 = 6)b
---------------------------------- [XsetE] (completion

({4}(4) =>■ { 5 ,6}(4)) b
[b V] (instantiation)

V(x : Z) : (4}(a;) =4> { 5 ,6}(rc) b
[G -D] (rewrite)

V(rc : Z) : £ G {4} =^-iG {5,6} b
--fC D] (rewrite)

{4} C {5,6} b L~
[I— i] (rewrite)

I '{4} C {5,6}
[$£ -0] (rewrite)

I- {4} ^ {5,6} (0)

Figure 3.9: The normal form of the prooftree in Figure 3.4

This gives the same prooftree as in step 4(c) above.

(g) branch := 3 makes branch = 3.

5. This is not satisfied by fo r branch := 0 to 2, and so the algorithm terminates with

branch = 3 as required.

A second application of Algorithm 3.7.1 on the prooftree in step 4(c) above factors

out the inference rule [Algebra] at branch 1 to give the following final prooftree in

Figure 3.9.

Thus the tactic tha t results from the application of our algorithm is:

NotSubsetTac' =

«£] ([H H «C] ([€ D] ([Vh] ([AseU?] (h -H (([b T]), ([X H])))))))))

For a proofstem consisting of quantifier elimination, the resultant proofstem consists of

three regiments: (1) a rewrite phase from the root to the quantifier elimination inference-

rule prepares the conjecture for quantifier elimination; (2) a quantifier elimination phase

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 87

where the quantifier is eliminated; and (3) a completion phase, which involves mechanical

inference-rules to complete the proof.

Comparing the prooftree in Figure 3.9 to the one in Step 1 Figure 3.4 above, the

inference-rules [A setE], [g D] have been factored out from the two proof branches into

the proofstem to be applied once in the proof development. Furthermore, by application

of the creative-lattice, the inference-rule [g D] has been bubbled down the prooftree

below the instantiation inference-rule [V h], and this unfolding of the definition of set

membership facilitates the finding of the instantiation term, 4, as a witness to the proof.

Note tha t [A setE] requires this witness in order for the boolean computation of (4}(rc) =4>

{5 ,6}(x) to complete. We can view the inference-rules ([j£ Z)]([l— i]([C .D]([g £])))) as

the rewrite phase; the inference-rules [V h] as the instantiation phase; and the inference-

rules ([AsetE]([=^b]((b T),([JL H])))) as the completion phase of the proof. The tactic

NotSubsetTac' can thus be seen as a proof plan for instantiation proofs.

3.8 Proofs of correctness of Algorithm 3.7.1

The proof consists of two parts: (1) a proof by induction on the termination of the

algorithm; and (2) a proof of the properties of the algorithm’s output.

3.8.1 Proof of term ination of the algorithm

We are interested in the termination of and the properties of the resultant tactic given

by Algorithm 3.7.1, which is iterative on the number of branches in the prooftree. The

branches are labeled using natural numbers, and natural numbers constitute a well-ordered

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 88

domain. The mathematical correlation between the subgoal generation and the branch-

labeling in a given prooftree is tha t the root is labeled as branch 0, and the last subgoal

generation in the prooftree is labeled n, where n is the number of branches in the whole

proof tree. Thus we can prove the correctness and termination of Algorithm 3.7.1 for any

prooftree with n branches by using mathematical induction.

The FOR-loop terminates when the guard condition is not satisfied, i.e. -i(0 < 6 < n),

which simplifies to b > n since b : N. The IF-THEN-ELSE statement within the FOR-loop

can be formalised as ((6 = 0 =* 5(6)) A (b > 0 =* T(b — 1))) where 5(6) is the IF-part,

and T(b — 1) is the ELSE-part. Putting this all together, the termination condition for

Algorithm 3.7.1 for any tree with n branches is:

b Vn : 3(6 | (b = 0 =* 5(6)) A b > 0 =* T(6 - 1)) : b > n).

By induction on n, the base case n = 0, i.e. a tree with no branches, requires to prove

the goal:

b 3(6 | (6 = 0 =* S(b)) A (b > 0 =>► T(b - 1))) : b > 0)

The statement branch := branch + 1 in the FOR-loop yields the instantiation [0 + 1/6].

For the step case, the induction hypothesis, (3(6 | (6 = 0=+ S(b)) A (6 > 0 +* T (b — 1))) :

6 > j) , is assumed to hold for a tree with n = j branches, and it is required to prove the

step case n — j + 1 as follows:

b Vj : (3(6 |(6 = 0=+ 5(6)) A 6 > 0 + T(b — 1)) : 6 > j)

+> (3(6 | (6 = 0=* 5(6)) A 6 > 0 =* T(b — 1)) : 6 > j + 1).

Skolemisation, simplification, and the statement branch := branch + 1 in the FOR-loop

establishes the instantiation [((/ + 1) + 1)/6].

Note tha t since the proof above is valid for any tree with n branches, then Algorithm

3.7.1 can also be applied on an infinite prooftree, or a prooftree while the prooftree is in

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 89

the process of being developed. To complete the induction proofs above, it is also required

to establish tha t in the base case, the IF-part of the FOR-loop holds, i.e. I- 5(0) holds;

and in the step case, the ELSE-part also holds, i.e. b > j h T (j + 1). These properties

are established by the proofs in the following section.

3.8.2 Proof of correctness properties of the algorithm ’s output

Algorithm 3.7.1 takes a formal proof P encoded as an LCF-like tactic £i, and returns a

tactic £2, where £2 is expected to: (1) preserve the correctness of t\ and thus the proof

P; (2) be more robust than £i; and (3) be more reusable than t\. However, robustness

and reusability are nonfunctional requirements which are difficult to subject to verification

since they both cannot be expressed succinctly using mathematical formula—both these

properties can be validated by suitable case studies (see Section 3.7.2 and the ensuing

chapters).

Tactic £2 is a syntactic variation of tactic ti in that the proofsteps in tactic t\ are

factorized and permuted according to the creative lattice to yield £2 . To verify correctness

preservation, we can argue in terms of the properties of the abstractions used to transform

a proof P to the tactics t\ and £2. Theorem 3.8.1 describes the correctness preservation of

proof P by tactics t\ and £2.

T h eo re m 3.8.1. (Correctness preservation of formal proof P by LCF-like tactic £1 and robust-

LCF-like tactic to,) The robust-LCF-like tactic £2 produced by Algorithm 3.7.1 preserves the

correctness o f the LCF-like tactic £1 derived from the form al proof P , i.e. V g : Goals :

h(g) = k(g) . □

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 90

3.8.2.1 P ro o f o f T h eo rem 3.8.1

The proof consists of the proofs of the four lemmas below. First it is shown that the direct

collation of the proofsteps used in the development of a proof P into an LCF-tactic fa

maintains the integrity of the proof P.

L em m a 3.8.2. Correctness Preservation o f formal proof P by LCF-like tactic fa: The LCF-

like tactic ti preserves the correctness o f the proof P from which the tactic fa is derived,

i.e. V# : Goals : fa{g) = P

P ro o f:

1. B y Definition 2.4-6, a form al proof is a cartesian product o f a set o f sentences with a

set o f inference rules, i.e. { S i , Sn} x {R 1, ..., R n- i} .

2. B y Definition 2.6.1, a simple tactic is a function from a goal Sn : Goal to a cartesian

product o f a list o f goals, Si : GoalList with a validation function Ri : (Thm List —>

Thm). Tactic fa is a composition o f such simple tactics which generates the list o f subgoals

[Sn_ i , S i] = GoalList from the goal Sn using the inference-rules R ni, R \ : (Thm List —>

Thm)

3. Therefore fa (Sn) gives a form al proof P o f the goal Sn . □

Algorithm 3.7.1 factors out common inference-rules among branches at the same level.

This factorization process can be seen as repeated permutation.

L em m a 3.8.3. Factorization as repeated Permutation: The factorization o f proofsteps com

mon among branches at the same level can be achieved by repeated perm utation according

to the permutation lattice.

P ro o f:

By the permutation analysis (see Sections 3.5, 3.6). In addition, the factorization involves

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 91

only those inference-rules that are not axioms, i.e. all the inference-rules except [Ax], [_L h

],[I-T]. □

The validity of Theorem 3.8.1 depends on the validity of re-ordering (permuting) inference-

rules in a cut-free proof:

L em m a 3.8.4. (Lattice permutability) Mechanical (low-level) inference-rules and creative

(high-level) inference-rules can be permuted in a prooftree according to Theorem 3.6.3.

P ro o f:

B y the permutation analysis in Section 3.5 and Theorem 3.6.3. □

Algorithm 3.7.1 uses a tree-labeling system to process a prooftree:

L em m a 3.8.5. (Prooftree labeling): The labeling o f the branching o f the prooftree is valid.

P r o o f : by the proof for term ination o f the Algorithm 3.7.1 (see Section 3.8.1). □

3.9 Tactic-proof normal forms

Algorithm 3.7.1 yields a normal form for proofs involving instantiation as demonstrated

by the example in Section 3.7.2. The normal form is conceptualized as consisting of the

following regiments.

D efin ition 3.9.1. (I n s ta n t ia t io n proof p lan) Proofs involving instantiation can be

proved using the following phases:

(1) Rewrite—this involves bringing the 3 in the consequent, or the V in the antecedent to

the front of the formula by unfolding definitions, skolemizing, induction and/or creative

tactics (but not instantiation).

(2) Instantiate—this is the elimination of the 3 in the consequent, or the V in the an

tecedent, using [h 3] and [V h]. Deciding the expression to instantiate with may be

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 92

achievable automatically but in general, this may require human guidance.

(3) Completion—this corresponds to the application of LK mechanical rules and decision

procedures to finish the proof. □

In the tactic coding of such a normal form prooftree, the arguments to the creative

inference-rules, e.g. the definitions and instantiations used in the proof development can

be taken as formal parameters to the tactic. A conjecture of similar structure but differ

ent semantics may require a different instantiation of these parameters, which is correctly

derived by a different instantiation of the formal parameters, hence deriving a tactic tha t

can prove tha t conjecture. This makes the tactic robust in tha t it can cater for different

conjectures of same structure but possibly different meaning. Furthermore in the proof in

Figure 3.4, the rewrite phase makes the instantiation trivial.

In Section 3.5.2 it was demonstrated how the cut rule can be applied as the first creative

rule in a proof development to introduce the prenex normal form of a goal which is not

in prenex normal form, thus yielding the Tactic-Cut-proof normal (Definition 3.6.1). The

rewrite phase is equivalent to introducing the prenex normal form of the goal formula

using the Cut-rule, proving the deduction of the prenex normal form of the goal from

the original form of the goal formula (i.e. proof of the left branch), and weakening the

right-branch to delete the original form of goal formula.

3.10 Summary

In this chapter we have developed a formal method for deriving robust tactics from hand

generated formal proofs. The method is based on the application of the Formal Methods

Lifecycle (Procedure 2.3.1). The state of the art formal method used is the Gentzen

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 93

Sequent Calculus LK and the proofs are those of conjectures tha t may arise from the

formal specifications of computer programs in Classical Logic (Section 3.2). The summary

of the main results in this chapter are:

1. The definition of Procedure 3.3.1 for proof obligations (POs) which are specified in

a functional definitional style (Section 3.2.1) for the purpose tha t the proofs of the

simpler POs are subproofs of the more complex POs. Teleological justifications for

patterns in proof obligations (see Section 2.7.4) can then be given in terms of this

specification design and purpose.

2. The application of Procedure 3.2.1 to the proofs of set-theoretic operators G, C

, C using a state of the art Interactive Proof Procedure (Definition 3.2.1) demon

strates tha t the LCF-tactics from the straightforward collation of formal proofsteps

are (see Section 3.3.1): (1) safe in tha t they will not generate a false proof; (2) un-

reusable when the definition of the conjecture is changed; and (3) extendible using

tacticals to yield a robust tactic RobustTac = Ti; T2; . . . ; Tn (where ; is the

tactical for combining tactics in sequence), which may be reusable to prove other

conjectures in tha t domain.

3. The abstraction of LK inference-rules into mechanical (which can be completely

automated, Definition 3.4.1) and creative (which can only be partially automated,

Definition 3.4.2). The mechanical rules are robust primitive tactics since they are

reusable on any conjecture, whereas the creative rules (cut, induction, instantia

tion) can easily introduce terms and formulae which may result in an unprovable

proofstate.

4. The justification of the abstraction above by a mathematically rigorous permutation

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 94

analysis of the creative rules with the mechanical rules (Section 3.5), which also gives

the following results:

(a) Performing the creative steps as soon as possible leaves the rest of the proof

consisting of mechanical steps which are easily performed automatically, thus

the rest of the proof is automatic (Section 3.4).

(b) The creative Cut-rule can be used to introduce the prenex normal form of the

goal formula, which leads to the elimination of quantifiers first, followed by an

automatic proof completion using the mechanical LK rules. This gives a Normal

form of Proof (Definition 3.6.1) for goals which are not in prenex normal form.

(c) Performing creative steps first can reduce proof complexity, e.g. the proof of

the left branch in Definition 3.6.1 is equivalent to using definitional equivalences

to rewrite the original goal formula into prenex normal form (Section 2.5.2.2).

(d) Performing non-branching rules first rather than performing the branching rules

first has the effect of factoring out common proofsteps among branches in a

prooftree, e.g. (b 3; b=4>) has the effect of factoring out common instantiation

instances from the (b=>; b 3) (Section 3.6.2).

(e) Complex tactics can be derived as creative compositions of proofsteps, e.g.

(Skolemisation;Instantiation) gives the option of using skolem variables as in

stantiation terms, and (Cut;Weaken;Contraction) makes the LK system com

plete for the prenex normal form of the goal formula (Section 3.6.1).

(f) Permutation analysis gives a classification of proofsteps (Theorem 3.6.1, The

orem 3.6.2, Theorem 3.6.3), which can be used as an order of application of

proofrules to yield a formal proof in normal form.

CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 95

5. The derivation of Algorithms 3.7.1, 3.7.2 from the permutation analysis of LK

inference-rules, which were demonstrated in Section 3.7.2 to yield a normal form

of proofs involving instantiation (Definition 3.9.1).

6. The proofs of correctness of these Algorithms (Section 3.8), thus justifying the use

of this algorithm to construct a normal form of proof, which can then be encoded as

a tactic.

The next chapter looks at encoding tactics from proofs in the state of the art PVS Inter

active Theorem Prover and Proof Checker.

Chapter 4

R obust tactics from proofs in PV S

P V S is an interactive environment fo r writing form al specifications and checking form al

proofs. [COR+95].

This chapter addresses the second research question: “Can the tactics derived using

Algorithm 3.7.1 be incorporated into a state o f the art theorem-prover?”.

4.1 Introduction

A theorem-prover/proof-checker tha t supports interactive proof development, the Gentzen

System LK, and the encoding of tactics, can be used to facilitate the development of

hand proofs, and the incorporation into tha t IT P /P C of those tactics yielded by the

application of Algorithms 3.7.1, 3.7.2 on a developed proof. This chapter describes the

encoding of robust tactics in such a state-of-the-art theorem-prover/proof-checker, PVS

[SORSC98a, SORSC98b, SORSC98c].

The PVS specification language is based on Classical Higher-Order logic and specifi

cations are defined in a functional style. The proof system is based on Gentzen Sequent

Calculus LK, the defined-rules (or commands) are analogous to LCF-tactics, and the

96

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 97

strategies of the tactic language are analogous to LCF-tacticals. The most powerful PVS

tactic, (g r in d) , can sometimes complete a whole proof development without human as

sistance, but sometimes can fail due to the use of heuristic instantiation, which results in

an unprovable proofstate. Therefore the (g rind) is not safe in the LCF sense.

The definition of (g rind) is made to conform to the normal form of proofs yielded

by Theorem 3.6.3. A robust formulation of (g rind) is introduced which uses backtrack

ing to return the original goal formula when (g rind) fails, thus allowing the interactive

development of a proof for that goal. Thus this chapter also serves as validation for Al

gorithm 3.7.1, and sets PVS as the software tool for further validation of our theory for

constructing and encoding robust tactics from proofs in other domains.

Section 4.2 gives an overview of PVS in terms of the specification language (Section

4.2.1), the proof system (Section 4.2.2), and the tactic language (Section 4.2.3). The

encoding of safe and robust LCF-like tactics based on (g rind) is introduced in Section

4.3. A motivating example on interacting with PVS to develop robust tactics in the normal

form yielded by Algorithm 3.7.1 is given in Section 4.4.

4.2 An overview of the PVS theorem-prover

PVS [SORSC98a, SORSC98b, SORSC98c, OS97] is a general-purpose interactive theorem-

prover which uses a functional classical higher-order logic specification language [Section

2.4.1], the Gentzen Sequent Calculus proof system [Section 2.5], and the Lambda Calculus

[Acz98, Bar94] [Section 2.6.1.1] as the computational/evaluation mechanism for the proof

system. The PVS IT P /P C is implemented in Allegro Common Lisp [Fra88, Ste84].

In comparison with other theorem-provers such as HOL [GM93], Isabelle [Pau94],

Boyer-Moore [BM79], the PVS specification language has a richly expressive type system,

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 98

and the interactive theorem-prover is very effective. The system also comes with a tactic

language which is a subset of Allegro Common Lisp [Fra88], and in which the proof rules

defined within the prover as well as additional user-defined proof rules are implemented.

4.2.1 PV S specification language

The PVS specification language is used in the Specification phase of the Formal Methods

Lifecycle (Procedure 2.3.1). The highest specification encapsulation construct in PVS is

called a THEORY, and this can contain, in the following order, formal parameters, other

PVS THEORYs, assumptions, type declarations, constant declarations, variable declara

tions, functional definitions, and conjectures to be proved. The order of specification of

constructs is important, since no statement may reference a variable or definition tha t has

not been previously declared or defined.

The PVS Prelude file [OS03a] consists of theories tha t are built into PVS, which are

then available for use in other user-defined specifications. For example the Prelude theory

b o o lean s : THEORY defines the type b o o l: NONEMPTY_TYPE = boolean; the Prelude theory

def inecLtypes [t] : THEORY defines the basic type for sets s e to f :TYPE = [t -> bo o l],

where t is some type; and the Prelude theory s e t :THEORY defines the operators E, C as:

set: TYPE = setof[T]

x,y: VAR T

a,b,c: VAR set

member(x, a): bool = a(x)

subset?(a,b):bool = forall (x:TYPE) : member(x, a) implies member(x, b)

Figure 4.1 uses these Prelude definitions in the PVS specification N otSubsetProp of the

conjecture {4} {5,6}. The theory NotSubsetProp does not include parameters, other

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 99

NotSubsetProp 7. [parameters]
: THEORY
BEGIN
7, IMPORTING
7. ASSUMING
7. assuming declarations

7. ENDASSUMING
set:TYPE = setof[number]
nsubset?(sl:set,s2:set):bool = N0T(subset?(sl,s2))
NotSubsetConj: CONJECTURE nsubset?({x:number Ix=4}, {y:number Iy=5 OR y=6})
END NotSubSetOfProp

Figure 4.1: Specification for {4} ^ {5,6} in PVS.

theories nor assumptions hence the slots for these constructs are commented out using the

percentage sign %—the PVS compiler ignores any statements preceded by the % sign. The

type setof [number] is used to define the set of numbers, and nsubset? is the functional

definition of $£. The goal formula to be proved, NotSubsetConj, is specified with the key

word CONJECTURE, and in this case set comprehension is used to formulate the goal formula.

Other keywords tha t can be used to introduce a goal formula are THEOREM, CHALLENGE,

CLAIM, COROLLARY, FACT, FORMULA, LEMMA, SUBLEMMA, PROPOSITION, LAW. Defining

the goal formula in a specification corresponds to the Abstraction phase in the Formal

Methods Lifecycle [Procedure 2.3.1].

4.2.2 The PV S proof system

The PVS proof system is used for the Reduction and Verification phase of the Formal

Methods Lifecycle [Procedure 2.3.1]. The PVS Prover system consists of a parser and

a typechecker which automatically detect syntax errors and type correctness conditions

(TCCs) respectively in a specification. For syntactically incorrect specifications, the parser

returns useful messages which the user can use to write the PVS specification in the

correct syntax. The PVS tactic tc p for TCCs can be invoked to automatically prove

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 100

the TCC proof obligations—those TCCs that cannot be proved automatically (due to

the undecidability of higher-order logic), are tagged as unf in ish e d and the user is then

obliged to prove the TCCs interactively; those TCCs which have been proved are tagged

proved-com plete or proved-incom plete (see Definition 2.4.2).

After parsing and typechecking the PVS specification, the user can then attem pt to

prove the goal formula(s) using PVS proof commands which correspond to the Gentzen

Sequent Calculus inference-rules and decision procedures. In interactive theorem-proving

and proof-checking a given goal formula, the user develops a formal proof by typing in

the name of a defined-rule of the IT P /PC , which the IT P /P C then executes on the cur

rent proofstate. The defined-rule works by reducing the sequent goal formula to simpler

subgoals which can be discharged automatically using the information contained in the

current proofstate. Compared to other interactive theorem-provers such as HOL [GM93]

and the Boyer-Moore prover [BM79], in PVS, all of the LK inference-rules are automated,

and the propositional logical connectives (->, A, V, =$>) are manipulated in-line where

they are in scope.

There are two facets to this automation: (1) the user has to type in the name of the

appropriate defined-rule, and so the execution of the defined-rule occurs only after the

human-prover inputs the name of the inference-rule; and (2) the system automatically

applies the rule by itself without any input from the human-prover to “tidy” up the

proofstate, e.g. the inference-rules for negation, axioms, and lambda evaluation, operate

in this manner. The second kind of automation is effected by the inclusion of simplification

procedures in the PVS defined rules, which helps to minimize the amount of interactivity

that the user may have to endure by having to input a proof command for each proofstep,

even the trivial ones.

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 101

4.2.2.1 P V S p ro o f ru les

There are 26 inference rules documented in [OS97] as Gentzen Sequent Calculus proof

rules, nine of which are axioms. Appendix A lists the natural deduction inference-rules for

classical logic in Gentzen Sequent Calculus, and the rule for the principle of mathematical

induction, which is not listed in [OS97] but is formulated as a strategy in [ShaOl]. For each

LK inference-rule, the name is given of the corresponding PVS defined proof-rule tha t is

used in an interactive session with PVS. In this way hand proof steps conceptualized by

the human expert user are mapped to the machine proof steps used by the PVS theorem-

prover/proof-checker. Those inference rules named auto are invoked automatically by the

PVS system as opposed to the rule being typed-in by the human user.

In addition to the implementation of the Gentzen LK inference-rules as primitive

defined-rules, the PVS prover consists of other automated prover-commands known as

defined-rules and strategies tha t execute a sequence of steps to achieve a task in a proof de

velopment exercise. These involve among others [ShaOl]: rewriting goal formula ((re w r ite)) ,

BDD (Binary Decision Diagram)-based Boolean simplification ((bddsim p)), the arith

metic and equality decision procedures ((a s s e r t)) , model-checking ((m odel-check)),

and the most powerful PVS proof command (g rind) which can be invoked by a novice

user to attem pt to prove a goal formula automatically in PVS. These strategies are defined

using the PVS tactic language.

4.2.3 PV S tactic language

The PVS tactic language is for the Generalisation and Maintenance phase of the Formal

Methods Lifecycle (Procedure 2.3.1). The tactic language enables the user to define more

powerful proof-rules (which correspond to LCF-like tactics), by using predefined proof

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 102

strategies (which correspond to LCF-like tacticals) to compose proof-rules together. The

PVS tactic language is a subset of Allegro Common Lisp, which is the language in which

the PVS system is implemented.

4.2.3.1 A synopsis of th e im p lem en ta tio n o f ta c tic s

The PVS tactic language consists of 16 tacticals [SORSC98a]. PVS tacticals can only

combine proof rules sequentially since there are no strategies for parallel composition of

tactics in PVS at present, probably due to the lack of a parallel programming construct

in Common Lisp [Fra88, Ste84].

The syntax for a strategy expression (or tactical) in PVS is:

D efin ition 4.2.1. (PVS ta c t ic language) [SORSC98b]: (step) :=

(primitive-step) | %LCF-like LK inference-rules

(defined-rule) | %LCF-like composite tactics

(defined-strategy) | %LCF-like tacticals

(quote (step)) | %Identity strategy

(try (stepl) (step2) (step3)) | %Backtracking and subgoaling tactic

(i f (lisp-expression)(step)(step)) | %Conditional tactic

(le t ({((symbol)(lisp-expression))}+)(step)) | %Evaluates/bind Lisp expression/values

(branch step steplist) | %assigning strategies to subgoals

(else step 1 step2) | %Simple Backtracking Strategy

(query*) | %Basic Interaction Strategy

(repeat step) | %Iterate Along Main Proof Branch; (repeat* step) for all branches

(rerun & OPTIONAL proof) | %Rerun a Proof or Partial Proof

(spread step steplist) | %Assigning Strategies to Subgoals; variations are (spread®), (spread!)

(then & R E ST steps) | %Sequencing Strategy

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 103

(time strategy) [%Time a Given Strategy

(try-branch. stepl steplist step2) %Branch or Break

The core of PVS tacticals are (q u o te), (t r y) , (i f) , (l e t) —all the other tacticals

can be defined in terms of these four. The syntax for a PVS defined rule (or tactic) is as

follows:

D efin ition 4.2.2. (PVS d e f in e d -ru le form) [SORSC98b]: A PVS defined-rule has the

form:

(d e fs tep name

(required-parameters &optional optional-parameters &rest parameters)

strategy- expression

documentation-string

form at-string) □

Definition 4.2.2 defines a (blackbox) defined-rule, name and a (glassbox) strategy name$,

i.e. if the user appends the dollar sign to the name of the defined rule on invocation

at the PVS prover prompt, the resulting proof is a trace of each of the proof-rules in

strategy-expression, otherwise the prover just returns the resulting subgoal(s).

Alternatives to the definition form d e fs te p are d e fh e lp e r which defines strategies

tha t are only meant to be used in the definition of other strategies and are not likely to be

invoked by the user directly; and def s t r a t which defines only a glassbox strategy nam e ,

but not the blackbox version, and does not use the final form at-string argument given

in d e fs tep . The differences and similarities between PVS defined-rules and strategies is

summarized in Table 4.1 [SORSC98c].

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 104

Defined rule Strategy
Analogous to LCF tactics Analogous to LCF tacticals
Named and invoked as (name), e.g.
(p ro p).

Named and invoked as (nam e$), e.g.
(p rop$).

Is atomic like a primitive rule (LK
inference-rules) when invoked

Can expand to the application of several
atomic rules when invoked.

Has blackbox behaviour—internal be
haviour is not visible to the user.

Has glassbox behaviour—internal be
haviour is visible to the user.

Saved and rerun in its expanded form Only the expanded form is saved to be re
run.

Returns the unproven subgoals Returns the expanded proof tree.
Can be recursive and involve the applica
tion of a number of primitive proof steps
to achieve an effect.

Same.

Table 4.1: Defined rules and strategies

4.3 Encoding LCF-like tactics in PVS

The most powerful tactic in PVS, (g rin d) is defined as follows:

D efin ition 4.3.1. PVS grind tactic [ShaOl]: The PVS super duper strategy (g rin d) is

defined as follows:

(d e f s t e p g r i n d (& o p t io n a l (d e f s !) ; N IL , T , ! , e x p l i c i t , o r e x p l i c i t !

t h e o r i e s r e w r i t e s e x c l u d e (i f - m a t c h T) (u p d a t e s ? T)

p o l a r i t y ? (i n s t a n t i a t o r i n s t ?))

(t h e n (i n s t a l l - r e w r i t e s $: d e f s d e f s : t h e o r i e s t h e o r i e s

:r e w r i t e s r e w r i t e s : e x c l u d e e x c l u d e)

(t h e n (b d d s i m p) (a s s e r t))

(r e p l a c e *)

(r e d u c e $: i f - m a t c h i f - m a t c h :u p d a t e s ? u p d a t e s ? :p o l a r i t y ? p o l a r i t y ?

: i n s t a n t i a t o r i n s t a n t i a t o r))

"A s u p e r - d u p e r s t r a t e g y . . . ")

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 105

However the PVS (g rin d) (Definition 4.3.1) can sometimes yield an unprovable proofs

ta te if the proof involves instantiation. The PVS tactic (g rind) works by first unfolding

all the definitions in the goal (i.e. (in s ta l l - r e w r i te s $)) ; simplifying all expressions

(i.e. (bddsimp) (a s s e r t)) ; replacing the old expressions with the simpler ones (i.e.

(rep lace*)); and finally reducing the proofstate using the LK inference rules and de

cision procedures ((reduce$)). This (reduce$) tactic invokes the PVS defined-rule for

instantiation via the argument ((in s ta n t ia to r in s t?)) . The automatic instantiator

(in s t?) is defined to heuristically find a suitable instantiation term by simply matching

the type of the variable to be instantiated with the types of the skolem variables and/or

other terms in the current proofstate. It is this heuristic which can lead to instantiation

with an incorrect term thus yielding incorrect and unprovable subgoals; or the heuristic

may fail to find any instantiation term at all. Thus the PVS in s t? is not a safe LCF-like

tactic (see Chapter 2, Section 2.6.1), in tha t its application may result in a false proofstate.

Nevertheless, the definition of g rin d conforms to the normal form of proof given by

Theorem 3.6.3. The proofsteps (th e n (in s ta l l - r e w r i te $) (then(bddsim p) (a s s e r t)))

can be seen as the rewrite phase in Definition 3.9.1; or as a form of Cut-rule application

to introduce normal forms of the definitions in the goal formula to be proved in Defini

tion 3.6.1; or as the reduction phase in the Formal methods lifecycle Definition 2.3.1 to

reduce the formula to be proved to a form where LK inference-rules can be applied by

the (reduce$) tactic. Once the rewrite phase is complete, by Theorem 3.6.3, the subgoal

generated is now in the form where an instantiation can be applied (if required) by tac

tic (reduce$). Theorem 3.6.1 can be used to generate instantiation terms from skolem

variables where an instantiation is required. By Theorem 3.6.3, the resulting subgoal

is a quantifier-free formula, on which only the mechanical inference-rules can be applied

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 106

recursively by the tactic (reduce$) to complete the proof automatically.

Since (g rind) can sometimes find the correct instantiation automatically, as well as

complete a whole proof development by itself, it is persuasive to try the (g rin d) tac

tic as the first attem pt at a proof development in PVS. If (g rind) fails to prove the

conjecture, then backtracking can be used to return to the proofstate just before the auto

matic instantiation invoked by (in s t?) , and then the user can instantiate the proofstate

manually.

4.3.1 Encoding robust tactics in PVS

Therefore in accordance with the instantiation proof plan (Definition 3.6.1), and the idea

to try (g rind) first in a proof, Definition 4.3.2 describes a template for encoding robust

tactics in PVS as follows:

D efin ition 4.3.2. (RobustGrind): In proving a goal formula, (g rind$) can be tried first,

and if (grind$) fails to find a proof, then backtrack to the proofstate just before an instan

tiation to enable manual instantiation by the user to reduce the proofstate to Propositional

logic which is decidable; and thus completion of tha t proofstate by the decision procedures

of Propositional Logic.

(d e fs tep RobustGrind (& optional (defs !))

(t r y (t r y (g r in d) (f a i l) (s k ip))

(sk ip)

(g rin d :d e fs defs : if-m atch n i l))

" t r i e s (g rin d) on th e goal form ula, and i f (g rind) f a i l s ,

perform c re a tiv e p ro o fs tep s f i r s t to reduce p ro o fs ta te to

P ro p o s itio n a l Logic fo r d e c is io n p rocedures to com plete p ro o f .")

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 107

The robustness of Definition 4.3.2 is argued for as follows. The tactic

(t r y (g rind) (f a i l) (sk ip)) enables (g rind) to try to find a proof, and if (g rin d)

produces any subgoals, the backtracking tactic (f a i l) returns the original goal formula

because the resultant subgoals my be unprovable due to incorrect instantiation(s) invoked

by (g rin d). The outermost (try) tactical then invokes (g rin d :d e fs de fs : if-m a tch

n i l) which simplifies the original goal without automatic instantiation (to avoid incorrect

instantiations). If the actual parameter for definitions (defs) is given as n i l , then the

definitions in the goal are not rewritten (to avoid overwhelming the user with too much

detail). This simplification yields one or more subgoals, each of which can be discharged

by the user performing the creative proofsteps (Cut ((ca se)), Instantiation ((in s t)) ,

Induction ((in d u c t))) to reduce the proofstate to Propositional Logic to enable the com

pletion of the proofstate by the decision procedures for propositional logic and arithmetic

in (g rin d).

Theorem 3.6.1 yields a method by which suitable instantiation terms may be ar

rived at or generated. In particular, the user can code the function / to generate suit

able instantiation terms for the proofstate—this is used in Chapter 5 where instantia

tion terms are generated from constructive definitions of the operations in abstract pro

grams. Alternatively an ATP may be used to find the instantiation terms, which can

then be fed back into proof state to complete the proof [Section 2.3.2.1]. The ingenu

ity in choosing a suitable cut formula may assisted by considering a cut as a transi

tive relation ((A B) A (B => C)) =4> (A =>• C), where B is the cut formula, and

A => C is the goal/conjecture to be proved A h C [Section 2.5.2.1]. Note tha t the

antecedent part A may be empty, e.g. Definition 3.6.1 encodes the transitive relation

(b 9pnf) A (gpNF b 9) =$* (b 9): where gpNF is the Cut formula, and b g is the original

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 108

goal. Given a suitable induction variable, the PVS tactics for induction can generate the

induction hypotheses automatically, or the user can define their own induction scheme,

e.g. using Bundy’s induction proof plan [Section 2.7.2].

4.4 Interacting with the PVS proof system

The theory NotSubsetProp .pvs in Section 4.2.1 is proffered to the PVS proof system

by opening the specification in PVS. To prove the conjecture NotSubsetConj, the mouse

cursor is clicked on tha t definition, and then the PVS prover is invoked by clicking on

PVS on the Emacs menu bar, selecting Prover Invocation, and then clicking on Prove.

User-defined tactics saved in the PVS file called pvs-strategies are automatically loaded

and the Conjecture is made available for the user to start inputting proof commands.

The user types in the name of a proof command (i.e. a tactic) at the Rule? prompt,

and on pressing the Keyboard Enter key, PVS executes the proof command. If the proof

command is applicable to the current proofstate, new subgoal(s) are generated from the

current goal formula; otherwise if the proof command is not applicable, then the proof

state does not change (this is akin to what happens in tactic application described in

Chapter 2, Section 2.6.1).

The PVS system uses the tim e strategy to record the time taken in a proof develop

ment. The Run tim e refers to the time the PVS system takes to execute proof rules typed

interactively into the system by a human use; the Real tim e refers to the actual time the

user spends on the proof development process. Since the Real tim e is dependent on the

human-user, the Run tim e is a more accurate measure of the improvement on efficiency

tha t can be afforded by the application of Algorithm 3.7.1 when the normal form of proof

yielded by the algorithm is used in place of the interactively developed proof using the

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 109

------LL H (assert) [_L H (assert)
4 = 5 h 4 = 6 h
 -------------------------------------- [Vh] (split)

4 = 5 V 4 = 6 h
 [G ill (expand "member")
V(4 G {4} 4 G {5,6}) b
 : [C D] (expand "subset?")

{ 4 } C { 5 , 6 } b
 Hi (expand "nsubseteq")
h { 4 } g { 5 , 6 } *

Figure 4.2: The prooftree from the application of Algorithm 3.7.1
The tactic is defined as follows in PVS

(defstep NotSubsetOfTac (fnum &rest terms)
(then (expand* "nsubseteq" "subset?" "member")

(inst fnum terms) (split) (assert) (assert))
"INPUT = NOT(subset?(x,y))
OUTPUT = true"
"proving NotSubsetConj ...")

strategy Definition 3.2.1.

4.4.1 An application of Algorithm 3.7.1 in PVS

The proof of conjecture NotSubsetConj can be developed interactively using the stra t

egy Definition 3.2.1, which yields a formal proof consisting of the sequence of proof steps

((expand "nsubset?") (expand "subset?") (inst?) (expand "member")). The rest

of the proof consists of propositional and arithmetic simplification, which is completed au

tomatically by the PVS proof system. In this case PVS is able to correctly automatically

instantiate ((in s t?)) with the constant 4. An interactive step by step proof, i.e. with

the user typing each primitive proof rule separately at the Rule? prompt, one after the

system executes another, takes approximately 0.13 seconds Run time and 8.41 seconds

Real time.

The prooftree yielded by the application of Algorithm 3.7.1 on the interactive proof

steps ((expand "nsubset?") (expand "subset?") (inst?) (expand "member")) above is

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 110

shown in Figure 4.2, which conforms to the normal form of the Instantiation Proof Plan

(Definition 3.9.1). The proofsteps [I— ■] and [A setD] are invoked automatically by the PVS

proof system without the user having to type in any explicit commands. Thus it appears

expanding the definition of set-membership, [e H], makes redundant the instantiation

step in s t? in the interactively developed proof—PVS performs this step automatically

without prompting the user. The tactic resulting from the application of Algorithm 3.7.1

on the interactive proof was coded in PVS, and applied on the conjecture—this proof took

a Run tim e of 0.05s. Thus the human proof strategy took almost 3 times as much time as

the tactic developed using our method. The Real tim e taken by a user in applying the

strategy Definition 3.2.1 is just under a minute. Thus tactics are very useful for reducing

the time taken to develop a proof, as well as the amount of interaction the user has to

engage with the proof system.

Since PVS automatically finds a correct instantiation in the proof above, PVS’s most

powerful tactic (g rind) completes the proof successfully in 0.08s. However in the more

complex examples, such as those for the proof of the refinement and retrenchment proof

obligations in the following chapters, (g rind) is not able to find a correct instantiation; the

human-prover has to use domain specific knowledge to perform an instantiation manually.

4.5 Summary

This chapter has demonstrated the application of the Theory developed in Chapter 3 to

encode robust tactics in the PVS IT P/PC . PVS is a general-purpose theorem prover with

a functional classical higher-order logic specification language, a Gentzen Sequent Calculus

proof system, a rewrite engine based on the Lambda Calculus, and a tactic language which

is a subset of Allegro Common Lisp.

CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 111

PVS defined proof rules are analogous to LCF tactics and PVS strategies are analogous

to LCF tacticals [Table 4.1]. However the most powerful tactic in PVS (g rin d) can

sometimes automatically instantiate incorrectly due to the heuristic nature of the PVS

(in s t?) tactic which uses pattern matching to decide possible instantiation terms from

the proofstate. Therefore the (g rind) and (in s t?) tactics are not safe in tha t they may

produce a false proof state.

The instantiation proof plan [Definition 3.9.1] can be used to make the task of finding

manual instantiations easier for the human-user by applying the necessary reduction steps

to transform the goal formula, e.g. in a goal formula involving definitions, unfolding the

definitions first may facilitate the task of finding the instantiation term automatically

[Section 3.3.1].

The example application in Section 4.4.1 shows tha t Algorithm 3.7.1 can work in PVS

to reduce the number of proofsteps the user has to enter and thus to reduce the time taken

to perform a proof, which makes interactive proof development more efficient for both the

human user and the IT P /PC . In the next chapters Algorithm 3.7.1 is validated on a more

complex example, tha t of constructing tactics for the Retrenchment method in PVS.

Chapter 5

A rchitectural retrenchm ent

“A s assumptions are strengthened in the Retrenchment Proof Obligation towards refine

ment, the models become more refinement like.” [PopOl].

In this chapter RobustGrind (Definition 4.3.2) is applied to derive manageable subgoals

and robust tactics for Architectural Retrenchment, which is our decomposition of the

Banach-Poppleton simple retrenchment method [BP99a, Ban98], in order to highlight the

modest changes in specification. Some of the material in this chapter has been previously

published in [HG01].

5.1 Introduction

We noted in the Chapter 3 that the successful application of a tactic on a new conjecture

depends on whether the structure of the original conjecture, from whose proof the tactic

was constructed, is the similar to the structure of the new conjecture to be proved. An

example of structured conjectures in formal software development are the refinem ent and

retrenchment proof obligations for specification development [BP99b], given in Figure 5.1.

112

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 113

We explore the derivation of tactics for retrenchment in PVS, using a numerical ex

ample of a B machine adapted from [PopOl]. The example involves the retrenchment of

subtraction in the infinite reals domain to subtraction in reals th a t are bounded above

by some biggest expressible real MaxReal. The purpose of this example is to further

validate our proposition for the construction of robust tactics, as well as derive tactics

for the issue of overflow in computer arithmetic. Section 5.3 describes the nature of this

retrenchment in the B-method. Section 5.4 looks at the specification of the retrenchment

in PVS—a widely-used specification and verification system with ample facilities for con

structing proof tactics. Section 5.5 describes the derivation of tactics from proofs of the

retrenchment proof obligations and describes a general tactic for proving retrenchment

proof obligations in PVS. A further abstraction to derive a general tactic tha t can auto

matically prove any of the proof obligations in this example is described in Section 5.5.4.

Section 5.6 discusses the merits and limitations of our approach and points to further

work.

5.2 Approaches to formal program development

Formal program development entails the application of formal methods in the development

of software programs, and this has been advocated for critical system construction [NASb,

NASa]. Program synthesis and refinement are well known formal program development

techniques. Retrenchment is a liberalization of refinement tha t has been proposed as a

formal development step prior to applying refinement. In particular, retrenchment enables

the construction of a concrete specification from an abstract one. Concrete specifications

are then implemented using a refinement calculus [BP99b].

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 114

5.2.1 Program synthesis

Program synthesis deals with aspects of the software development process which can, at

least in principle, be automated [Kre98] and thus this provides software tools for use in

automated software engineering. Research in this area focusses on (1) the development of

expressive calculi which support formal reasoning about specifications and algorithms, e.g.

A bstract S ta te Machine Notation [Abr96], Specification S ta tem ent [Mor88], Constructive

Type Theories [Mar84, CAB+86, GLT89, CH88, NPS90]; and (2) the implementation of

deductive strategies which derive programs from their specifications, e.g. Hoare Logic

[Hoa69], M organ’s Refinem ent Laws [Mor94], Refinem ent Calculus [Bac80].

There are three approaches to automated program synthesis. The Proofs-as-Programs

approach [Gre69, MW80, BC85] sees the derivation of a program as a proof of the state

ment V(x : D) : 3 (z : R) : (I (x) => 0 (x : z)) [Kre98] which implicitly constructs a program

(see Section 2.7.3). This appears to be the most popular approach, e.g. the NuPRL system.

Transformational Synthesis approach [MW75, BD77] uses general rewriting techniques in

order to transform a specification into a form tha t can straightforwardly be converted into

a program. The Knowledge-Based Program Synthesis approach [Smi85, Dol95] involves the

analysis of algorithmic classes and strategies in order to derive the parameters of program

schemata and instantiate them accordingly. Originally, approaches to program synthesis

were developed in the framework of automated deduction.

5.2.2 Program refinement

D efin ition 5.2.1. (Refinement) [PopOl]: A refinement, So C Si, 1 is “...a correctness

preserving transformation...between possibly abstract, non-executable programs which is

1Sq E Sn means <Sq is refined by Si.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 115

transitive, thus supporting stepwise refinement, and is monotonic with respect to program

constructors, thus supporting piecewise refinement.” □

Stepwise refinement allows one to move gradually from a specification to an implementa

tion and this is possible because refinement is reflexive and transitive.

D efin ition 5.2.2. (Stepwise refinement) [Abr96]: If So C Si C . . . C Sn then S0 C Sn. □

Piecewise refinement enables compositional/top-down development [Ros98] and this is

possible because refinement is monotonic.

D efin ition 5.2.3. (Piecewise refinement) [Abr96]: If S[T] is a program containing a sub

program or statement T then T C V => S[T] C S[T'). □

There are two formal styles of refinement, both of which support piecewise and stepwise

refinement [But98]. In the Invent-and-Verify (Posit-and-Prove) style, a refined specifica

tion R is developed intuitively and then checked against the original specification S via the

standard refinement relation S C R <=> R C S [WD96], i.e. some of the functionality that

is possible in the specification S may not be possible in the implementation R. Methods

tha t support this technique include the B-M ethod [Abr96], VDM [Jon86], Z [WD96].

Transformational (Strict) refinement applies a refinement preserving transformation

rule to all or part of the current specification to produce a refined specification autom ati

cally. Methods tha t support this technique include the refinement calculus for imperative

programs [Bac80, Mor94, Mor97] and the transformational design approach for functional

programs [BD77]. The refinement relation in this case is S C R O S & R , i.e. everything

that the specification S does should be possible in the implementation R.

The standard (transformational) refinement calculi of Back [Bac88], von Wright [vW94],

Morgan [Mor94], and Morris [Mor97] are a formalization of W irth’s stepwise program

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 116

development method [Wir71] and Dijkstra’s weakest precondition semantics approach

[Dij75]. The B -M ethod has been interpreted in standard refinement calculus [Rou99],

and one conclusion of this interpretation was tha t the improper use of the B-M ethod

SE E S clause can lead to unsafe programs. On a similar token, some inconsistencies have

been found in Morgan’s refinement laws [CSJ99].

One of the drawbacks to the uptake of formal methods in industry, is the radical

revolution tha t formal methods imposes on the software development process [Bro87]. The

invent-and-verify refinement technique mirrors conventional programming practice albeit

verification is used instead of informal testing/debugging techniques. A major criticism

of transformational refinement is tha t it is too strict—some informal steps usually have to

be taken when applying refinement in program development.

5.2.3 Retrenchment

Retrenchment is a liberalization of the strict transformational refinement calculus to en

able the development of realistic specifications from idealized specifications using the invent

and verify approach. Some of the strict transformation steps produce verification condi

tions (proof obligations) which must be discharged for the transformational refinement to

be valid, and these proof obligations have been encapsulated as the retrenchment proof

obligations defined in Figure 5.1 [PopOl] 2. In particular, the retrenchment method can

be used to formalize and reason about the relationship between an idealized (also known

as divine, abstract) specification and its realizable (also known as mundane, concrete)

representation, which can then be successfully implemented by using the transformational

refinement method.

2 An earlier criticism of this method was that it did not have a mathematical basis [Smi99].

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 117

D efin ition 5 .2 .4 . (Retrenchment) [BP99b]: The Retrenchment method is governed by the

refinement initialization and invariant preservation proof obligations, and the retrenchment

proof obligations shown in Figure 5.1. □

The variables used in a program specification are distinguished into state w, v, input i , j

and output o, p for the abstract and concrete machines respectively, and the logical vari

ables A which hold before-values of the state and input variables so tha t they may be

referred to in the after-state if necessary. The refinement concrete invariant J (u , v) is

separated into the retrieves relation G(u , v) and the concrete invariant J{v) . The re

trenchment initialization proof obligation requires satisfaction of the retrieves relation,

and the operation retrenchment proof obligation requires satisfaction of the retrieves rela

tion or the concedes relation C(u, v, o, p, A) which relates state and logical variables in the

after-state thus weakening the postcondition. The conjunct P (i J , u, v, A) is the W IT H IN

clause which relates state variables, input, and logical variables A, in the before-state thus

strengthening the precondition.

The initialization and invariant preservation proof obligations are the same as those for

the B-refinement method, but the retrenchment initialization and the retrenchment oper

ation proof obligations differ from those corresponding to the B-refinement method. The

operation-retrenchment proof obligation has the termination condition of the realistic ma

chine, t r m (T) (v , j), in the antecedent whereas the operation-refinement proof obligation

has the termination condition of the idealistic machine, t rm(S) (u, i), in the antecedent.

Thus for retrenchment, it is assumed tha t the realistic machine terminates and it has to

be proved tha t the idealistic machine terminates. Since the idealistic machine is the basis

of the development, it has more merit to prove everything about the idealistic machine,

in particular to prove that it terminates rather than to assume tha t it terminates. The

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 118

• Initialization proof obligations: the initialization of each machine (i.e. the before
state) must satisfy the invariant.
[*(u)]J(u)

• Invariant preservation proof obligations: if the before-state satisfies the invariants
and the termination conditions then the after-state given by the operations shall
satisfy the invariants.
I (u) A t r m (S (u , i)) => [£(w , z, o)]I(u)

J(v) A t r m (T (v , j)) =» l T (v , j , p) \ J (v)

• Retrenchment initialization PO: the initializations of the two machines must satisfy
the retrieves relation.
[Y (v) } ^ [X (n) h G (u , v)

• Operation retrenchment PO: if the before-state satisfies the invariants and the
concrete termination condition, then the abstract termination condition shall be
satisfied, and there shall not be a situation where the after-states of the concrete
and abstract operations should not satisfy the retrieves or concedes relations.
(I (u) A G (u , v) A J(v) A t r m (T) (v , j) A P(i , j , u, v, A))
=» (t rm(S) {u , i) A [T (v , j , p)] - ^ [S (u , i , o) h (G(u , v) V C(u , v , o,p, A)))

Figure 5.1: The retrenchment proof obligations.

operation retrenchment proof obligation enables to reason about whether a retrenchment

preserves the retrieve relation G(u , v)—we call this a subrefinement—or on failing to do

so gives an acceptable degradation of service depicted by the concession (C (u, v, o,p, A)).

Retrenchment is particularly suited to reasoning about systems involving continuous

variables such as hybrid systems, and for changes in the systems architecture [PopOl],

e.g. there is no formalization of the real datatype in the B-Method [Abr96], and refine

ment in the B-Method is only defined for machines with operations of the same signature

[HG01]. Various notions of retrenchment have been proposed, e.g. simple retrenchment

[BP99a, Ban98] which is described in Figure 5.1; sharp retrenchment [BP99b, PopOl]

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 119

which strengthens the retrieves clause with the nevertheless clause 3, and evolving re

trenchment [PB02] in which the retrieve clause G becomes variant 4. We are concerned

with unsharp retrenchment in this chapter; the next chapter deals with a form of evolving

retrenchment. In [PopOl], the Retrenchment method is formalized using the B-Method

Generalized Substitution Language [Abr96], and the provision of software tools akin to

the linking of Automatic Theorem Provers with Computer Algebra Systems [HT93, B J01]

is advocated in order to reason about discrete and continuous datatypes, i.e. floats and

reals respectively.

5.2.3.1 Patterns in the retrenchment proof obligations

The initialization proof obligations have the same structure as the implied conclusions of

the invariant proof obligations, and the retrenchment initialization proof obligation has

the same structure as the second conjunct implied in the operation retrenchment proof

obligation. This is depicted by the underlines in Figure 5.1. However, the definitions

of the constructs of the proof obligations, i.e. I {U) , G(u , v), J(v) etc, may differ from

specification to specification according to what is being specified.

Thus for a particular retrenchment, the Tactic Refinement method (Definition 3.3.1

and Theorem 3.6.3) can be applied for the retrenchment proof obligations defined in the

order depicted in Figure 5.1. Since these proof obligations govern the whole retrenchment,

the robust tactic formulated for the operation retrenchment proof obligation should be

able to prove other retrenchments in the same application domain.

3The nevertheless clause V(u, v , o , p , A) describes nontrivial relationships between the idealized and
realizable after-state variables u,v and the idealized an realizable output variables o, p and the logical
variables A. That is the after-state predicate becomes ((G(u, v) V C(u, v, o,p, 4̂)) A V(u, v, o,p, .A)).

4G becomes mediated with some precision parameters a and (3 and it is usually (but not always)
expected that a < /3 ^ (Ga =>■ Gp)

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 120

5.3 Specification and proof of retrenchment in B

Consider an idealistic B machine, DSub with state variables a , b, and an operation S which

subtracts b from a and puts the result in a , provided a > b. The realistic machine MSub

has a state variable aa, and a corresponding operation T which subtracts an input bb

from aa and puts the result in aa but does so only for aa < Ov and bb < Ov , where Ov

is some threshold value tha t the variables should not exceed. In addition, MSub gives an

output resp to signal whether or not the subtraction has been successfully— ok means tha t

aa := aa — bb, whereas fa il means tha t the subtraction was not possible for the values of

aa and bb given to M Sub , i.e. there was an overflow. This retrenchment of DSub by MSub

is shown in Figure B .l in Appendix B. This is the notion of retrenchment formulated

by Banach and Poppleton [PopOl], and we call it a Banach-Poppleton retrenchment or

BPRet.

5.3.1 Architectural retrenchment

Looking at the retrenchment DSub by MSub in Figure B .l, we can see three components of

two different forms of the retrenchment of DSub as summarized in Figure B .l: (1) input-

architectural retrenchment IA M ach ; (2) data representation retrenchment D R M ach ; and

(3) output-architecture retrenchment OAMach. Note tha t for concise specification, the

state, input and output variables wO, u l, u2, u3, i l , i l , i3, o3, etc, are specified as a record

structure, whose components are the individual variables of the machine. For example,

with reference to the DSub retrenchment shown in figure B .l, the type of C/0 is a record

[#a : R, b : M#], and uO is a variable of this type 5.

5[# z : X, y : Y, ...#] is the PVS syntax for defining record types.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 121

MACHINE DMach lAMach DRMach OAMach

RETRENCHES DMach IAMach DRMach

VARIABLES uO : UO u l : Ul; i l : 71 £ to M ►-
h to u3 : C/3; i3 : 73

INVARIANT inv(u 0) inv (u l) inv (u2) inv (u3)

RETRIEVES G(u0, u l) G (u l , u2) G(u2, u3)

INIT init(uO) in i t (u l) init(u 2) init(u 3)

OPERATIONS S0(u0) S l(u l) (i l) S2(u2)(i2) o3 <— S3(u3)(i3)

LVAR A1 A2 A3

WITHIN W (u0, A l , u l, i l) W (u 0, A l , u l ,A 2 , u2, i, i2) W (u 0, A l , u l, A2, u2, A 3,u 3 , i l , 12, i3)

CONCEDES C(u0', u l ' , A) C (u l ' ,u 2 ') C (u 2 ' ,u 3 ' ,A 3)

Figure 5.2: Architectural retrenchment in B

5.3.1.1 The nature of an architectural change

In this architecture, state variables are moved to input, and/or output variables are intro

duced to indicate exceptional behaviour thus resulting in a change of operation signature

which refinement cannot deal with. For an architectural change to occur, we need to

characterize the architectural change, and to alter the R E T R IE V E S , LV A R , WI THI N,

and CONCEDES clauses to reflect this.

From Figure 5.2 we see tha t the input architecture retrenchment is achieved as follows:

• Transform some state variables to input variables, e.g. in the retrenchment of DSub

by IA Sub , state variable b changes to input variable bb. The architecture (signature)

of the function changes from SO : UO —> UO to 51 : U1 —+ (I I —> Ul) , where

U1 = U 0\I1 .

• Ensure tha t the input variable is of the appropriate type for the operation S I to be

type-correct, e.g. bb E M. This condition becomes part of the precondition to the

operation 51.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 122

• Change the individual clauses as follows. The R E T R IE V E S clause is an identity

relation between the state variables uO of the idealistic machine DMach and the

state variables u l of the more realistic machine IAM ach. The LVAR clause remains

empty, since the variables are of the same type hence everything tha t is possible in

DMach should be possible in IAM ach. The W ITH IN clause is an identity relation

between the new input variables i l and the state variables in uO these input variables

correspond to. The CONCEDES clause becomes fa lse , i.e. we do not envisage a

situation in which the R E T R IE V E S relation cannot be satisfied in this case since

the variables of both machines are of the same type.

The output architectural change is achieved as follows:

• Alter the signature of the operation S 2 to introduce output variables o3, i.e. the

signature of the operation becomes o3 <— 53(^3, z3), which is equivalent to S3 :

U3 - a (13 —> (U3, 03)) .

• The R E T R IE V E S is the same identity relation between u2 and u3. The LVAR

clause declares the logical variables A3. The W ITH IN clause gives values to A3

and i3 in terms of the OAMach and DRM ach respectively. The CO NCEDES clause

defines a weaker postcondition to that described by R E T R IE V E S .

5.3.1.2 The nature of a datatype change

Here, an idealistic datatype is implemented as a realistic datatype type—the infinite reals

R, becomes the finite reals FR. For a datatype change to occur we need to identify

variables whose types may change, and for each such variable, we need to characterize the

type change(s), i.e. to define the relationship between idealistic and realistic variables and

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 123

alter the R E T R IE V E , LV A R , W ITH IN , and CONCEDES clauses to reflect this. From

Figure 5.2 above we see tha t the data change is as follows:

• The type of the state variables changes from u l : U l to u2 : U2.

• This datatype change is described by the retrieves relation. For example the rela

tionship between infinite reals and finite reals in Figure B .l is defined by R (x : R, y :

FIR) = (y < Ov =>- x = y) A (y = Ov =» x > Ov).

• The “structure” of the operation remains the same, i.e. S 2 : U2 —*■ (12 —» U2) has

the same structure as 5 1 : Ul —> (11 —> U2), but the signatures are different in the

sense tha t the datatypes U2, I 2 are different from those of Ul, I I respectively.

• The changes to the individual clauses are tha t the R E T R IE V E S becomes the pred

icate that relates the two datatypes. The LVAR clause declares the logical variables

A2. The W ITH IN clause gives values to the input variables i2 and the logical

variables A2 in terms of the variables of IAM ach and DRM ach respectively. The

CONCEDES clause defines a weaker postcondition in terms of the state variables of

the IAM ach and DRMach.

5.3.2 Proof procedure for architectural retrenchment

Each of the above architectural transformations is a retrenchment in its own right, there

fore we can use the retrenchment proof obligations to reason about the correctness of each

of these transformations. We can unfold a Banach-Poppleton retrenchment as an input-

architecture retrenchment followed by a data-representation retrenchment, and finally by

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 124

an output-architecture retrenchment:

DMach OAMach

IARet J. OARet

IAM ach — > DRMach
DRR et

This requires us to prove the following vertical composition or transitivity result:

Theorem 5.3.1. (Architectural Retrenchment)

DMach < IAMach < DRMach < OAMach =$■ DMach < OAMach

Proof:

DMach < IAMach < DRMach < OAMach

%By Theorem RetCompGSw [PopOl],Chapter 6, page 107.%

inv(uO) A 3 u l • (G(uO, ul) A inv(ul) A G (ul, u2)) A inv{u2) A trm (S2(u2 , i2))

A 3 ul, i l , .Al • (G(uO, ul) A inv{ul) A G {ul, u2) A W(i l , uO, ul, Al)

A W (il, i2, ul, u2, A2)) =>■ trm(SO(uO))

A [<S'2(u2,i2)]-i[50(u0)]->3ul • (G(uO, ul) A inv(ul) A G(ul,u2))

V 3 ul • (G(uO, ul) A C(u l , u2, A2))

V 3 ul, Al • ((7(u0, ul, Al) A G(ul , u2))

V 3 ul, Al • (C(uO, ul, Al) A C(ul , u2, A2)) < OAMach

%By Theorem RetAssocw [PopOl], Chapter 6, page Hl . %

inv(uO) A 3 ul, u2 • {G(u0, ul) A inv(ul) A G(ul, u2) A inv(u2)

A G(u2, u3)) A iuu(u3) A trm(S3(u3, i3)) A 3 ul, u2, il , i2, Al, A2 •

(G(u0, ul) A im;(ul) A G(ul, u2) A in?;(u2) A G(u2, u3) A W{il , u l, il , Al)

A W (il, i2, ul, u2, A2) A W (i2, i3, u2, u3, A3)) trm(S0(u0))

A [53(u3, i3, o3)]-i[«S'0(u0)]-i(3 ul, u2 • (G(u0, ul) A inv{ul)

A G(ul, u2) A inv(u2) A G(u2, u3)) V (3 ul, u2, o3, Al, A2 • (G(u0, ul)

V G(u0, ul, Al)) A (G(ul, u2) V G(ul, u2, A2)) A (G(u2, u3) V C(u2, u3, A3))))

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 125

<=> %>u3 = u2 = ul C uO; unifying/instantiating ul, u2 with uO.%

inv(uQ) A G(uO, uO) A inv(uO) A G(uO, uO) A inu(uO) A (2(u0, u3)

A inu(u3) A trm(S3(u3, i3)) A (7(u0, uO) A inu(uO) A inv(uO) A (7(u0, u3)

A IF(il, ul, i l , A l) A W (il, i2, u l, u2, A2) A W (i2, i3, u2, u3, A3) =*> £rm(S,0(uO))

A [53(u3, i3, o3)]->[S'0(u0)]-n((G!(u0, u0) A inu(uO) A <7(u0, uO)

A inv(uO) A G(uO, u3)) V (<7(uO, uO) V C(uO, uO, uO) V (7(u0, uO)

V C(uQ, uO, uO) A G(uO, u3) V (7(^0, u3, o3, A3)))

%propositional simplification: G(uO,uO)=true; p A p = p ; p = > p = true.%

inu(uO) A G(uO, u3) A inv(u3) A trm(S3(u3, i3)) A W (il, ul, il, Al) A W (il, i2, ul, u2, A2)

A W(i2, i3, u2, u3, A3) => trm(SO(uO)) A [53^3, i3, o3)]->[-S'0(u0)]-i(G(u0, u3) V C(uO, u3, o3, A3))

%Definition of retrenchment %

DMach < OAMash □

In retrenchment (in comparison to refinement), the retrieves relation and the invariant

are separated. A retrenchment specification should satisfy the retrieves relation or the

concedes relation.

Theorem 5.3.2. (Maximally A bs trac t Retrenchment)

The proof o f the operation retrenchment proof obligation requires satisfaction o f the re

trieves relation or the concedes relation. When the retrieves relation is satisfied, we have

a subrefinement. When the concedes relation is satisfied, we have a concession.

Proof:

(inv(S)(u) A G(u, v) A inv{T){v) A t rm(T) (v , j) A W (i , j , u , v , A))

=» (t r m s (S) (u , i) A [T(v , j , p) } - ^ [S(u , i , o)] ^ (G(u , v) V C{u, v , o,p, A)))

<= %[X](A V B) <= [X]A V [X]B :.R H S is a sufficient but not necessary condition%

(inv(S)(u) A G(u , v) A i nv(T) (v) A t r m (T) (v , j) A W (i , j , u , v , A))

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 126

(t r m s (S) (u , i) A [T(v, j ,p)]- i [S(u, i, o)]-^G(u, v)) %subrefinement

V

(i nv (S) (u) A G(u , v) A i nv(T) (v) A t r m (T) (v J) A W (i , j , u , v , A))

=» (t rms (S) (u , z) A [r(^,.;',p)]-i[6f(n, i, o)]—■ C(zz, v, o,p, A)) % concession. □

In some cases, a concession may contain a subrefinement [Ban98]. For example, in the

vanilla Banach-Poppleton retrenchment shown in Figure B .l, the CONCEDES clause has

the same semantics as the IF -T H E N -E L S E construct tha t models the operation in MSub,

and similarly in DRSub and OASub: IF a TH EN b E L SE c & (a = > 6)[|(—»a =>■ c)

(a A 6) V (n f l A c) (a => 6) A (n a c). Thus satisfaction of the concession is actually

a subrefinement in this case.

5.4 Specification and proof of retrenchment in PVS

Mathematical functions provide a convenient way of modeling programming languages.

The BMethod Generalized Substitution Language (BGSL) is based on the imperative

paradigm. The specification language of PVS is based on the functional paradigm. The

example in Figure B .l is in terms of retrenching the idealized specification which involves

the infinite set of all real numbers to a subset of the reals FR. The Reals are formalised

as the standard Abelian group in the PVS system [OS03a]. Both PVS and the B-Method

use the substitution model of evaluation [SORSC98a].

5.4.1 Specification m ethod for B machines in PVS

The style of PVS specification used is a shallow embedding of the B-Method in PVS, where

the B-Method Generalized Substitution Language is translated into the PVS functional

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 127

Classical Higher-order specification language. A B-M AC H IN E corresponds to a PVS

THEORY, and the R E F IN E S clause is effected by the PVS IMPORTING statement. The state

(u , v) t input (i , j) , output (o,p), and logical (A) variables are represented as the record

structures V, V, / , 0 , A respectively. The machine operations X , Y , S , T are specified

constructively, e.g. initialization is record construction; an assignment operation is a record

update in PVS; and a continuation-style semantics [Ste98] can be effected by the PVS LET

construct 6. The machine assertions R E T R IE V E S (G(u,v)) , IN V A R IA N T (I (u) , J (v)),

W ITH IN (W (...)), CO NCEDES (C(...)) are represented by boolean definitions, and the

retrenchment proof obligations in Figure B .l are represented by PVS THEOREMS.

5.4.2 High Integrity translation from B to PV S

The retrenchment proof obligations listed in Figure 5.2 have to be converted from the

B-Method Generalized Substitution Language into PVS classical higher-order logic func

tional specification language. The following theorem derives a predicate logic formula

corresponding to the generalized substitution [T(v,j,p)->[S(u, i, o)}-iR(v,p, u, o):

Theorem 5.4.1. (B GSL in Higher-Order Logic) [BP99b, PopOl]:

[T(v,j ,p)]-i[S(u, i, o)\-iR(v,p, u, o)

t rm(T)(v , j) A (t rm(S)(u , i) => (Vi),p • prd(T) (v , j , v,p) =$■

(3 u, d • prd(S)(u, i , u, d) A R(v, p, u, o))))

Proof:

[T(v,j,p)]->[S(u, i, o)\-iR(v,p, u, o)

& %[S]R = trm(S)(u , i) A (Vu, o • stp(S)(u, i, u , o) => [u , o := w, d]R) if u , o\R%

6As in conventional programming practice, first the variables are initialized, and then the opera
tions act on this initial state to give some after-state. The PVS statement (LET x :in t= 2 , y:int=x*x
IN x+y) is equivalent to the functional Lambda Calculus expression (LAMBDA (x: i n t) : (LAMBDA
(y :in t) :x+y) (x*x)) (2) [SORSC98a].

CHAPTER 5. ARCHITECTURAL RETRENCHMENT

trm(T)(v , j) A (Vft,p • stp(T)(v, j ,v ,p) =4 [v,p := ft,p]

->(trm{S)(u, i) A (V ft, o • stp(S)(u, i , it, o) =4 [u, o := ft, o]-^R(v, p, u , o))))

44 %[u, o := it, o].R(z;, p, zz, o) = R(v, p , it, o) twice%

trm (T) (vJ) A (V ft, p • stp(T)(v, j , ft,p) =4 -i(trm(S)(u, z) A

(V ft, ft • stp(5)(zz, z, ft, o) =4 ->i?(ft, p, ft, o))))

44 %A =4 B = —i A V B; - i \ /x • Q = 3 a ; * —

trm(T)(v,j) A (Vft,p • stp(T)(v, j ,v ,p) =4- (-• trm(S)(u,i) V

(3 ft, o • - i (- i stp(S)(u, z, ft, o) V -ii?(ft, p, ft, o)))))

44 V ~iJ3) = A A B; -A V B = A =4 B %

trm(T)(v,j) A (Vft,p • stp(T)(v,j, ft,p) =4 (trm(S)(u, z) =4

(3 ft, o • s£p(5)(zz, z, ft, o) A R(ft, p, ft, o))))

44 %trm(S)(u,i) zs unbound under Vft,p%

trm(T)(v, j) A (trm(S)(u, z) =4 (Vft,p • stp(T)(v,j, ft,p) =4

(3 ft, o • stp(S)(u, z, ft, o) A R(ft, p, ft, o))))

44 % stp(S)(u, i, zz', o) = trm(S)(u, i) A prd(S)(u, z, zz', o);

stp(T)(v, j ,v ' ,p) = t rm (T)(vJ) A prd(T)(v,j,v' ,p)%:

trm(T)(v,j) A (trm(S)(u, z) =4 (Vft,p • prd(T)(v,j, ft,p) =4

(3 ft, o • prd(S)(u, z, ft, o) A B(ft, p, ft, o))))

44 %Converting to prenex normal form (PNF)—if x does not occur free in A then

A = 4 \ / : t : B 4 4 V : e : A = 4 B and A = 4 3 £ : B 4 4 3 x : A = 4 B % :

Vft,p • 3 ft, o • trm(T)(v,j) A (trm(S)(u, z) =4 (prd(T)(v, j , ft,p) =4

(prd(S)(u, z, ft, o) A B(ft, p, ft, o))))

44 % Generalising the formula by universally quantifying the unquantified variables zt, i,

Vzz, z, v, j, ft,p • 3ft, o • trm(T)(v,j) A (trm(S)(u, z) =4 (prd(T)(v, j , ft,p) =4

(prd(S)(u, z, ft, o) A B(ft, p, ft, o)))) □

128

v , j %

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 129

B PV S stp(S) t rm(S) A
prd(S)

x := E in it ia liz a t io n : (# x := E #)
a ss ig n m e n t in Op:
r WITH [x := E]

x' = E

skip r WITH [x := x] x' = X
P \ S O pN am e(r:R | P) = S (P A t rm(S))

A (P => prdx{S))
S [] T IF t r u e THEN S

ELSE T ENDIF
(t rm(S) A t rm(T))
A (prdx (S) V prdx (T))

P = ^ S COND P - > S ENDCOND (P =? t rm(S))
A (P A prdx(S))

@ z - S FORALL (z :T Y P E): t r m (S)
AND EXISTS (z : T Y P E): p r d (S)

(V z • t rm(S))
A (3 z - p r d x(S)) i f z \ x '

P | @ x ' • (Q x := x') P AND (P IMPLIES Q) P A (P => Q)
x :G E m e m b e r (y ,E) AND m e m b e r (x p ,E) {y G E) A (x' e E)
x : P x :P £ II ^3

Table 5.1: B to PVS

The formulation of the B-Method General Substitution Language in Higher-Order Logic

above conforms to the Proofs as Programs (or Program Synthesis) proof obligation V(ic :

D) : 3 (z : R) : (I (x) => 0 (x , z)) [Kre98] with the difference that the proof obligation is in

terms of one machine (the idealistic machine), whereas the Theorem 5.4.1 is in terms of

two machines (both the idealistic and realistic machines).

The operations S', T can be defined constructively or declaratively in PVS by using

the correspondences in Table 5.1 and the PVS LET statement. Constructive definitions can

be valuable in proof development, particularly for computing values for instantiating exis

tential variables in the retrenchment proof obligations. This provides the mathematically

rigorous mechanism of Lambda Calculus to check the correctness of the retrenchment of

an operationally defined abstract specification by an operationally defined concrete spec

ification. In this way logical errors in the operational definition of the Operations can be

caught by verification thus reducing the likelihood of such errors, which have been found

to account for the greatest percentage of faults in the software development process, and

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 130

consequently the implementations [YBH97].

5.4.2.1 PVS specification of the architectural retrenchment in Figure B .l

The specification of a particular Banach-Poppleton vanilla retrenchment of a divine (ide

alistic) machine by a realistic machine consists of the following PVS THEORYs: (1) the

divine machine Dmach [Figure B.2]; (2) the input architecture machine IAm ach which

imports Dmach [Figure B.2] 7; (3) the data-representation machine DRmach which im

ports IAm ach [Figure B.3]; (4) the output-architecture machine OAmach which imports

DRmach [Figure B.4]; (5) input-architecture proof obligations IAPO s which imports

IAm ach [Figure B.5]; (6) the data-representation proof obligations DRPO s which im

ports DRmach [Figure B.6]; and (7) the output-architecture proof obligations OAPOs

which import OAmach [Figure B.7].

T h e id en tifier s in Dmach are in d e x e d b y th e n u m er ic a l 0, e .g . u 0 : U 0 ,S 0 : [UO - > U O];

th o s e in IAm ach b y 1, e .g . u l : U l , i l : I l , S I : [U l - > [I 1 - > U 1]] ; th o s e in D Rmach b y 2,

a n d th o s e in OAmach b y 3 8. T h e o p e r a t io n s are sp e c if ie d c o n s tr u c t iv e ly a n d d e c la r a t iv e ly

u s in g th e c o r re sp o n d e n c es in T a b le 5 .1 .

N o te t h a t th e W ITH IN c la u s e is a u g m e n te d to in c lu d e th e in it ia l iz a t io n o f th e m a c h in e ,

a n d th e W ITH IN c la u se s o f th e p r ev io u s re tr e n c h m e n ts , e .g . th e WITHIN c la u s e for DRSub

is g iv e n as:

W(uO:UO, ul,Al:U1, u2,A2:U2, il:Il, i2:I2): bool = W(uO,ul,Al,il)

& al(ul)>=bl(il) & (b2(i2)<=10 => bl(il)=b2(i2)) & a2(u2)=a2(A2)
7Note in PVS these are specified as two separate files. They are conjoined here for brevity.
8In [Ban98], for a series of retrenchments, the machine variables and operation names are lexically

ordered from machine to machine , i.e. for DSub we have variables u:U, i : I , o:0 and operation S;
correspondingly for IASub we have variables v:V, j : J, p:P and operation T; for DRSub we would have
variables w:W, k:K, q:Q and operation U; and variables x:X, 1:L, r:R and operation V for OASub.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 131

Where W (u O , u l , A l , i l) is the W ITH IN clause for IA Sub. This is to ensure tha t the

previous conditions ‘within’ which the previous retrenchments were valid, carry through

to the present retrenchment. In particular, in the idealistic machine DSub, all variables

are initialized since all variables are state variables in this case. On the other hand,

IA Sub does not initialize input variables, e.g. b l (i l) is not initialized, thus statements

like a l (u l) > = b l (i l) would not be decidable. This is because in the input-architecture,

data-representation and output-architecture retrenchments, the input variables are not

initialized with actual values since the i n i t D e f operation only works on state variables.

In the input-architecture retrenchment, the W ITH IN clause statement bl(ul)=bO (uO)

provides a rewrite rule where bO (uO) has an actual value from the initialization in DSub,

i.e. the initializations of the more realistic machine are in terms of the initialization of the

idealistic machine, which is included in the W ITH IN clause. Thus the W IT H IN clause

can act as a repository where certain proof obligations, such as the machine initializations

to satisfy the TCCs for a machine specification, can be added so tha t the retrenchment

proof obligations can be made provable. As such the W ITH IN clause can be interpreted

as a “contract” under which a certain retrenchment is valid.

The specification of the input architectural retrenchment proof obligations in classical

higher-order logic is given in Figure B.5. The invariant preservation proof obligations

(excluding the invariant AlnvPO for the divine (idealistic) machine) are also augmented

with the W ITH IN clause of the THEORY being retrenched as a means of chaining the

initialization (of all variables) in the idealistic machine to later retrenchments. This is

similar to the idea of maximally abstract retrenchments [Ban98], Note th a t R e t ln i t P O ,

Subref in em en tP O and C o n c e s s io n P O are specified in the original Banach-Poppleton for

mulation, i.e. the proof obligations are not in prenex normal form. The proof obligations

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 132

can easily be transformed into prenex normal form by performing the last two steps in

Theorem 5.4.1.

Each PVS machine THEORY has slots for the relevant B-machine attributes in which

definitions can be entered to specify a particular machine, e.g. the slots UO, i n i t D e f ,

i n i t , S O D e f, i n v , t r m , p r d for the divine machine Dmach. The retrenchment proof

obligations are general proof obligations for all retrenchment specifications, and thus are

static for all machine definitions. Thus the seven PVS THEORYs above can be used as

specification templates on which the user need only change the variable types, attribute

definitions and the IMPORTING clause to specify a particular Banach-Poppleton Vanilla

Retrenchment to be verified.

5.4.3 Proof of the retrenchment specifications in PVS

The PVS system comes with a parser to ensure tha t no syntax errors are present in the

specification, a typechecker to check that the types of variables used in the specification

are type-consistent, and a prover to prove the correctness of the specification under the

Gentzen Sequent Calculus LK. The parsing and typechecking of the specifications can be

viewed as the Exploration phase in the Formal Methods Lifecycle (Procedure 2.3.1), for

the verification of the retrenchment proof obligations specifications.

5.4.3.1 Proof procedure for architectural retrenchment POs

The proofs are for the particular initialization made in the idealistic machine 9. This is

consistent with conventional programming practice where variables are initialized before

9In particular, we only need to modify the initialization of the idealistic machine to define a new proof
case. This is convenient for the retrenchment of reals to floats for which there are 5 distinct cases of
initializations: (1) underflow, (2) overflow, (3) exact representation, (4) approximation, and (5) not-a-
number.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 133

being passed to operations. In particular, the generalisation in Theorem 5.4.1 to have all

free variables universally quantified ensures tha t the predicate is valid for all initial states:

V u, i, v , j , v , p • 3 u , d • t r m (T) (v , j) A (t rm(S)(u , i) => (prd(T)(v, j , v ,p) =4*

(prd(S)(u , i, u, o) A R (v , p , w, o))))

For a specification where u , i, v , j are from a well-ordered domain, e.g. u, i, v , j : N, the

principle of mathematical induction can be used to reason about the predicate above for

all such initial states. However in this work «, i, v , j are reals which are not well-ordered

and hence an induction scheme for real numbers does not exist. Therefore Theorem 3.6.1

is used instead in this work.

The initialization proof obligations ensure tha t the initializations X(u) , Y(u) etc,

satisfy their machine invariants / , J respectively, and the invariant-preservation proof

obligations ensure tha t the operation(s) S, T etc, satisfy their machine invariants. Thus

these proof obligations ensure the correctness of an individual machine. The retrenchment

initialization, subrefinement and concession proof obligations ensure the correctness of

the ‘realization’ of the idealistic machine by the realistic machine. The retrenchment

initialization proof obligation is concerned with the retrenchment of the initializations

of the two machines, and the other retrenchment proof obligations are concerned with

the retrenchment of the other operations defined in the machine 10. Thus to ensure a

correct retrenchment, one first has to prove tha t each machine is correct, the retrenchment

initialization is correct, and then finally the subrefinement proof can be attempted; if the

subrefinement is unprovable, then the concession must be provable.

The method of Tactic refinement (Procedure 3.3.1) where each tactic is derived accord

ing to Theorem 3.6.3 is used in the proof of each architecture proof obligations THEORYs

10The machines considered in this work contain only one defined operation but it is possible for a
machine to have more than one defined operation, each of which can be proved by the method outlined
herein.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 134

IAPO s, D RPO s, OAPOs. The initialization proof obligations have the same structure

as the invariant proof obligations; the retrenchment initialization POs constitute a sub

proof of the subrefinement and concession proof obligations, both of which have the same

structure (see Figures B.5, B.6 and B.7 in Appendix B). Thus a robust tactic from the

proof of the initialization PO may be reusable to prove an invariant proof obligation,

and similarly a robust tactic from the proof of the subrefinement PO may be reusable

to prove the concession proof obligation. It is likely tha t the tactics from proofs on one

architectural retrenchment may fail on the proof obligations in the next architecture due

to changes in operation signature and datatypes, e.g. since the input-architecture (and

output-architecture) retrenchment involves an operation signature change, the tactics from

proofs of the proof obligations in IAPOs may not be reusable on the proof obligations in

the data-representation retrenchment DRPOs which involves a change in datatype. How

ever it is expected th a t by composing the tactics from IAPOs and those from DRPOs,

the tactics may be reusable in the proof of the OAPOs which involves both an operation

signature change and a datatype change (see Section 5.3.1).

5.5 Tactics from proofs of retrenchment in PVS

The three PVS specifications in Appendix B are parsed successfully which means they do

not contain any syntax errors.

5.5.1 A utom atic generation of proof obligations as TCCs

On ty p e c h e c k in g u s in g th e PVS ty p ec h e c k er , th e m a c h in e sp e c if ic a t io n s D S u b , IA Sub a n d

a ll th e a r ch ite c tu r e r e tr en ch m e n t p r o o f o b lig a t io n s sp e c if ic a t io n s IA P O s, DRPOs, OAPOs

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 135

do not generate any TCCs therefore these specifications are type-correct. However the

machine specifications D RSub, OASub generate TCCs for the machine operations i n i t ,

S 2 D e f , S 3 D e f and messages concerning the types of the state-variables as shown in Fig

ure B.3 and Figure B.4 respectively. The TCCs for the machine theories D R Sub, OASub,

concern the satisfaction of the invariant (a (u) < M axR ea l) by the after-state (u) of the op

erations. From the definition of the initialization operation, the TCC for the initialization

operation in itD e f_ T C C l is proved complete by the PVS tactic for TCCs t c p . However

the TCCs for S2Def and S3Def could not be finished by tactic t c p since these operations

take the input variable b which is not initialized in the machine. Thus it is impossible to

prove tha t the subtraction of an uninitialized variable b from an initialized variable gives

a result satisfying the invariant. These unfinished TCCs are unraveled in the proof of

the architecture retrenchment proof obligations specifications where the W IT H IN clause

chains this information throughout the retrenchment specifications.

5.5.2 Tactics for the retrenchment PO s not in Norm al Form

Chapter 4 demonstrates that the definition of g r i n d conforms to the normal form of

proofs given by Theorem 3.6.3 albeit the instantiator argument defaults to the heuristic

PVS tactic (i n s t ?) which sometimes instantiates with incorrect arguments leading to an

unprovable proofstate, or fails to find a suitable instantiation at all. The R o b u s tG r in d

tactic (Definition 4.3.2) can be used to apply (g r i n d) as the first step in an interactive

proof development, and if (g r i n d) fails due to an incorrect automatic instantiation, the

original goal is simplified into manageable subgoals for the user to perform the creative

proofsteps. The initialization and invariant-preservation proof obligations, can be proved

by (g r i n d) since these two obligations just require skolemisation of variables, which PVS

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 136

can perform automatically.

The proofs of R etlnitPO , which involves initialization operations i n i t (uO), i n i t (u l) ,

i n i t (u 2) , in i t (u 3) ; SubRef inementPO and ConcessionPO which both involve the ma

chine operations SO, S I, S2, S3, both require instantiation of the after-state variables

u, o in Theorem 5.4.1. The PVS (g rin d) tactic is able to find the correct instantia

tion terms uO !l, u l ! l , u 2 ! l for uOp, u lp , u2p respectively for R etln itPO from the

proofstate. However (g rind) is not able to find the correct instantiation terms from the

proofstate for SubRef inementPO and ConcessionPO—it gives the erroneous instantiation

for R etlnitPO above, which results in a subgoal tha t cannot be proved as shown by the

failed proof attem pts in Appendix B .l. Thus the pattern-matching technique used by the

PVS tactic (in s t?) is not powerful enough to find the correct instantiation terms to

enable the proofs for SubRef inementPO and ConcessionPO to complete.

The constructive definitions of the machine operations SO, S I, S3 are used to actu

ally compute from the skolem variables uO! 1, u l ! 1, u 2 ! 1, the values tha t can be used

as instantiation terms in the PVS manual instantiation tactic in s t , e.g. manual instan

tiation by (in s t + "SODef (uO! 1)") completes the proof for SubRef inementPO in the

input-architecture retrenchment IAPOs (see Appendix B .l). This alleviates the human

user from having to construct the instantiation expressions explicitly on the PVS prover

command line, which is more laborious especially for nontrivial instantiations involving

a significant amount of variables. In addition, the correctness of the definition of the

operation itself is checked in that the values the operation computes are actually the val

ues which satisfy the before-state and after-state predicates and the whole retrenchment

as a whole 11. In this way, PVS can be used in the invent-and-verify (posit-and-proof)

11Note that the operations are defined constructively, and the before-state and after-state predicates
are defined declaratively.

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 137

method of specification development, whereby constructive definitions are specified and

then proved by demonstrating tha t they can compute suitable values which satisfy proof

obligations such as the retrenchment proof obligations.

The interactive proof in Appendix B .l demonstrates that the proof of retrenchment

proof obligations not in normal form consists of three phases—rewriting, instantiation and

completion.

5.5.2.1 R ew ritin g to i n s ta n t ia t io n p hase

Definition 4.3.2, when evoked as (RobustGrind :def s n i l) in order to avoid overwhelm

ing the user with too much detail, simplifies the SubRef inementPO proof obligation into

the following two manageable subgoals:

R etr en ch m en tP O l:

i n v (S) (u) , G (u ,v) , i n v (T) (v) , t r m (T) (v , j) , W (u , v , i , j , A) , p r d (T) (v , i , v ’ ,p)

| - EXISTS (u ’ jO ’) : (t r m (S) (u , i) & p r d (S) (u , i , u } , o ’)) & R (v * ,p ’ , u ’ , o ’)

R etr en ch m en tP 0 2 :

i n v (S) (u) , G (u ,v) , i n v (T) (v) , t r m (T) (v , j) , W (u ,v , i , j ,A)

I - (t r m (S) (u , i)

The presence of these two subgoals means tha t the tactic (g rind) is unable to find a proof

automatically, in particular the correct instantiation terms. RetrenchmentP02 requires to

prove that if the before-state satisfies the invariants, retrieves relation, concrete term ina

tion condition, and WITHIN clause, then the abstract termination condition shall be es

tablished. RetrenchmentPOl requires to prove tha t if the antecedent of RetrenchmentP02

and the concrete before-after relation are valid, then the after-state of the abstract ma

chine and retrieves relation the shall be established. Thus to avoid making the proof

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 138

trivial, the antecedent should be true, and this is investigated by proving the initialisa

tion, invariant preservation, and retrenchment initialisation proof obligations first. These

proof obligations, as well as RetrenchmentP02, can be proved by RobustGrind when the

optional defs parameter is not used.

5.5.2.2 Instantiation

The proof obligations tha t require instantiation are R etln itPO and SubRef inementPO and

ConcessionPO, where the instantiation is for the elimination of the existential quantifier.

RobustGrind (Definition 4.3.2 of Chapter 4) is able to find the correct instantiation terms

uO! 1, u l ! 1, u 2 ! 1 for uOp, u lp , u2p respectively for R etlnitPO from the proofstate.

Manual instantiation for SubRef inementPO and ConcessionPO is invoked by the proof-

step (in s t fnum term s), and the instantiation terms are the definitions of the initializa

tion, and of the machine operation; with the skolem variables from the skolemisation of

the initial state as follows:

(in s t + "SODef (uO! 1) ") for IAPOs

(in s t + "S ID ef(u l!1) (i l !1)") for DRPOs

(in s t + "S2Def(u2!1) (i2 ! 1)") for OAPOs

5.5.2.3 Completing the proof

After the instantiation step, all quantifiers will have been eliminated—provided none of

the definitions in the specification are in terms of quantifiers. Thus all th a t is left to do

is to expand some definitions in the proofstate, and perform propositional simplification

using (g rin d :if-m a tc h n i l) .

The ConcessionPO in the input-architecture retrenchment IAPOs does not prove since

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 139

the Concedes relation is defined as false. This demonstrates th a t the antecedent is true,

which is as expected. For example, for the IAPOs in Appendix B, after the rewriting

and instantiation with (in s t + "SODef (uO! 1)"), the proofstate above reduces to the

unprovable proofstate:

C on cession P O :

{ - 1 } (a l (u l ! 1) = 3)

{ - 2 } 3 >= 1

{ - 3 } aO(uO!1) = 3

{ - 4 } bO (uO .'l) = 1

{-5} (b l (i l !1) = 1)

{ - 6 } a l (u l p ! l) = 2

This gives confidence tha t the SubrefinementPO, which is provable, is correct—since the

antecedent of the SubrefinementPO is the same as the antecedent of the ConcessionPO,

therefore the Subrefinement consequent EXISTS (u lp : U l) : p r d (S l! 1) (u l ! 1, i l ! 1,

u lp) & G (ulp, u2p! 1) must be true for the proofstate to be provable.

5.5.3 Tactics for retrenchment PO s in P N F

The retrenchment proof obligations R etln itPO , SubrefinementPO, ConcessionPO can

be expressed in prenex normal form according Theorem 5.4.1, e.g. the retrenchment proof

obligations for IAPOs are converted to prenex normal form as follows:

RetlnitPO: THEOREM

FORALL (uO:UO, ul:Ul, SO:[U0->U0], SI:[Ul->[I1->U1]]):

FORALL (ulp:Ul): EXISTS (u0p:U0): init(uO,ulp) => (init(uO,uOp) & G(uOp,ulp))

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 140

SubRefinementPO: THEOREM

FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):

FORALL (ulp:Ul): EXISTS (uOp:UO): (init(uO) & init(uO,ul)) =>

((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & trm(Sl)(ul,il) & W(uO,A1,ul,il))

=> (trm(SO) (uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (prd(Sl)(ul,il,ulp)) => (prd(SO)(uO,uOp) & G(uOp,ulp)))))

ConcessionPO: THEOREM

FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):

FORALL (ulp:Ul): EXISTS (uOp:UO): (init(uO) & init(uO,ul)) =>

((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & trm(Sl)(ul,il) & W(uO,Al,ul,il))

=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (prd(Sl)(ul,il,ulp) => (prd(SO)(uO,uOp) & C(uOp,ulp,Al))))))

Theorem 3.6.1 can then be applied as the first creative step to skolemise the universal

variables, and then use the skolem variables in the machine operations to generate the

instantiation terms for the after-state. The LK mechanical rules are then applied on the

quantifier-free formula using (g rind) to finish the proof.

5.5.4 General retrenchment tactic

The proofs for the data-representation retrenchment and output-architecture retrenchment

follow the same pattern of proof as tha t described for the input-architecture retrench

ment above, and using the instantiation described in Section 5.5.2.2 above. The input-

architecture was found to be a subrefinement, and the data-representation retrenchments

and output-architecture retrenchment proved for both the subrefinement and concession

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 141

POs, since the Concession is also a subrefinement as alluded to in Section 5.3.2.

A composite tactic of the three phases (Sections 5.5.2.1, 5.5.2.2, 5.5.2.3) tha t can prove

the retrenchment POs in and not in prenex normal form is:

(defstep RSubRetTac (fnum &rest terms)

(then (RobustGrind$) (inst fnum terms) (grind))

"INPUT = IAPOs or DRPOs or OAPOs

OUTPUT = TRUE

PRECONDITIONS = DSub V IASub \/ DRSub \/ OASub

EFFECTS = QED"

"proving retrenchment proof obligation ...")

Where the formal parameters fnum term s are replaced by the actual instantiation argu

ments corresponding to the particular proof obligation being proved as given in Section

5.5.2.2. This tactic was successfully used to automatically prove each of the proof obliga

tions in all the architectural retrenchments for this example.

5.6 Summary

This chapter has demonstrated the shallow embedding of the B-Method in PVS in order

to reason about the Retrenchment Method in PVS. Figure 5.2 summarizes the formulation

of the Banach-Poppleton vanilla retrenchment as Architectural retrenchment, and Figure

B .l shows the B-Method Architectural retrenchment specifications for an example from

[PopOl]. Theorem 5.3.1 demonstrates tha t Architectural Retrenchment is equivalent to

the one-off Banach-Poppleton retrenchment specification of a machine. Theorem 5.3.2

demonstrates tha t the one-off Banach-Poppleton Operation Retrenchment Proof Obliga

tion can be split into 2 separate retrenchments: (1) the satisfaction of the R E T R IE V E S

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 142

relation G (u , v) is considered a subrefinement; and (2) the satisfaction of the CONCEDES

relation C(u, v, o ,p , A) is considered a concession.

Figures B.2 and B.3 show the PVS specifications of the B-Method Architectural re

trenchment specifications in Figure B.l; and Figures B.5, B.6, B.5 show the PVS specifi

cation of the B-Method retrenchment proof obligations. These specifications contain slots

for each of the machine attributes as defined in Figure 5.2 and Figure 5.1 respectively and

thus can be used as specification templates—the user need only type in the relevant defi

nitions corresponding the particular retrenchment. The PVS IMPORTING clause is used for

the R E T R E N C H E S clause, the state is a specified as a PVS record , and operations can

be defined declaratively and constructively using Table 5.1. Theorem 5.4.1 demonstrates

how the Generalized Substitution Language fragment [T(v, j ,p)~ '[S (u , i, o)]~^R(v,p: u, o)

can be converted into a Higher-Order Logic statement (in prenex normal form) to enable

the proof of the B-Method Retrenchment proof obligations in PVS.

On typechecking, each of the PVS specifications DSub, IASub, IAPOs, DRPOs, OAPOs

do not generate any Type Correctness Conditions (TCCs). However DRSub, OASub give

TCCs which are thrown for the operation definitions and concern the value of the input

variable which is not initialized by the operation and thus it is not possible to complete the

proof. These unfinished TCCs are accounted for in the proof of the retrenchment proof

obligations which involves the W ITH IN clause wherein the “contract” on values for the

variables used in the retrenchment is specified. Thus the W ITH IN clause is a means of

chaining values from one specification to another and acts as a repository wherein the TCC

proof obligations generated for a machine can be added to enable a proof of retrenchment

to complete. This can be seen as a formal way to apply logic induction.

For retrenchment proof obligations not in prenex normal form (as in the B.5, B.6, B.5)

CHAPTER 5. ARCHITECTURAL RETRENCHMENT 143

the tactic RobustGrind is used to rewrite the proof obligation to an instantiable form; the

instantiation is then performed as in Section 5.5.2.2; and the proof is finished by applying

the mechanical rules and decision procedures automatically by invoking (g r in d) . For the

proof obligations expressed in prenex normal form using Theorem 5.4.1, Theorem 3.6.1

is the first creative proof step, which is then followed by the automatic application of

mechanical rules and decision procedures via (g r in d) . The resultant proofs both conform

to the normal form given in Theorem 3.6.3. In this work, the other creative rules (cut and

induction) are not used.

For the example of retrenching reals by a subset of the reals

FinReal: TYPE = {x:real I x <= 10}, the robust tactic formulated for the Input Ar

chitecture Retrenchment (RSubRetTac fnum term s) which is defined as

(then (RobustGrind$) (inst fnum terms) (grind)), was found to work for all the

data-representation and output-architecture retrenchments where the actual arguments

fnum terms are the appropriate instantiation for the retrenchment architecture being

proved. This is because the change in datatype is from the set of Reals to a proper subset

of reals FinReal, which is therefore a refinement. The next chapter deals with retrench

ment of reals by floats, where the float data-type and operations are specified according

to the IEEE-854 standard for floating-point computations.

Chapter 6

Retrenching reals by floats

“When performing computations in floating-point arithmetic the computed values o f in

termediate variables as well as the computation o f the final values o f a calculation are

somewhat different from those values computed with the same algorithm in the field o f real

n u m b e r s [KB01].

This chapter examines the modest change in specification from real computation to

floating-point computation.

6.1 Introduction

A recent trend in software engineering is the application of formal methods on the continu

ous domain. We look at the formal development of specifications involving real numerical

computation. Retrenchment, a liberalization of the stepwise refinement method has been

proposed to deal with the problems peculiar in this domain.

Reals are used in the ‘idealistic world’ of hand computation, whereas computers use

floats in the ‘realistic world’ of electronic digital computation, i.e. in computer-aided for

mal software development, the users requirements are captured using idealistic datatypes,

144

CHAPTER 6. RETRENCHING REALS B Y FLOATS 145

e.g. infinite reals, and the implementation is executed on computer using the finite re

sources of the computer, e.g. the machine numbers (floats). The main objective of this

chapter is to investigate whether the tactics formulated for the retrenchment of infinite

reals to finite reals, can successfully prove conjectures if there is a change of datatype and

operation definition to floats and floating-point operations respectively.

Following the formal methods application lifecycle articulated in [NASa], we describe

the problem in Section 6.2, and some approaches to reliable numerical computation in

Section 6.2.2. Section 6.2.1 discusses the characterization of the problem domain in more

detail. The next phase is modeling and this is the subject of Section 6.3. The specification,

Section 6.3.1, is done in PVS, and Section 6.4.1 discusses the proof method employed.

Finally, the extraction of tactics from the proofs using out theory of abstraction is discussed

in Section 6.5. Section 6.6 discusses the results obtained and the viability of our approach.

6.2 Reliable numerical computation

When performing computations in floating-point arithmetic (i.e. finite precision) the com

puted values of intermediate variables as well as the computation of the final values of a

calculation are somewhat different from those values computed with the same algorithm

in the field of real numbers. Additionally, imprecise data ... contaminate the computed

results with errors [KB01]. This is known as the Real-to-Floats problem.

This problem highlights the problems between idealized specifications—those involv

ing real numbers—and realizable specifications—those involving floating-point numbers.

Catastrophes caused by software due to incorrect numerical computing include the explo

sion of Ariane 501 [ESA96], and the Intel Pentium floating-point division instruction flaw

[Pra95].

CHAPTER 6. RETRENCHING REALS B Y FLOATS 146

6.2.1 Characterization of the problem domain

A floating-point representation format is “a data structure specifying the fields tha t com

prise a floating-point numeral, the layout of these fields, and their arithmetic interpreta

tion.” [Sun96].

Definition 6.2.1. (F lo a tin g -p o in t number) [Gol91]: In general, a floating-point num

ber will be represented as s d .dd...d x be which represents the number ±(do + d\ x 6-1 +

. . . + dp- 1 x x be where 0 < di < b. The float datatype can be stored as a tuple

^ = (^j / j G!) 6maxi &min)

Where b is the base or radix; / is the fraction (mantissa or significand) d.dd...d\ the

exponent adjustment a is approximately equal to (3 x (emax — emin))/A and should also

be exactly divisible by 12 [IEE87]; emax and emin are the maximal and minimal exponent

allowed by the precision; p is the precision (i.e. number of digits in the fraction); and s is

the sign (-F or -) of the float. For example, the IEEE single representation form at consists

of a 23-bit fraction, an 8-bit biased exponent, a 1-bit sign, and the base is 2 on a digital

computer.

A floating-point storage format specifies how a floating-point representation format is

stored in the memory of a computer. The IEEE standard defines representation formats,

but the choice of storage formats is left to the implementers, e.g. in the double repre

sentation format, in the SPARC architecture, the higher address 32-bit word contains the

least significant bits of the fraction, whereas in the Intel and PowerPC architectures, the

lower address 32-bit word contains the least significant 32 bits of the fraction [Sun96].

Assembly language software sometimes relies on using storage formats but higher level

languages deal with linguistic notions of floating-point data types, e.g. single, double,

double extended representation or precision [Sun96].

CHAPTER 6. RETRENCHING REALS B Y FLOATS 147

The floating-point representation format is at the sufficient level of abstraction for

our purposes as it does not go into details of how the representation is actually stored

in the computer memory space. Normalization ensures that for the most significand

bit of the mantissa/significand (msb), (0 < msb < b), and this ensures the smallest

possible exponent (e) is used, e.g. normalization ensures that msb = 1 on a digital/binary

computer, and the msb bit can be used as an extra fraction bit thereby increasing the

precision of the format. However normalization only occurs after the real has already

been converted to a float, and so can be ignored without loss of generality.

6.2.1.1 Assumptions about floating-point computation

The following assumptions hold for computer (i.e. floating-point) arithmetic, where the

function value(J) calculates the corresponding real value of a float representation / .

Assum ption 6.2.1. ((1 + e) -p r o p er ty) [KB01]: For an operation o e {+, —, x , / } on

reals, and its machine analog © 6 {©, ©, 0 , 0 } on floats, the relative error between the

operation is given by \ \< £ fo r all floating-point numbers f u f2 where

| (value(fi) o v a lu e ^)) |G [M inReal, MaxReal]; and e = e fo r round to nearest; e = 2e fo r

directed rounded operations; the machine epsilon e = (b/2)(b~p).

Thus the relative error between a real computation and its floating-point counterpart can

be expressed in terms of the machine epsilon e which can be determined from the precision

used for representing the floats. The (l + e)-property corresponds to Theorem 2 of [Gol91]

provided the operation (subtraction or addition) is done with p -f- 1 digits, i.e. with one

guard digit which means tha t the truncation of the operands is done to p + 1 digits and the

result is rounded to p digits. Note tha t the process of normalization ensures the availability

of one guard digit. Theorem 1 [Gol91] says tha t the relative error can be as large as 6 — 1.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 148

For a normalized float, MinReal = 1.00...00 x bemin = bemin and MaxReal = 1.11...11 x b6min

where there are p digits in the fraction.

Assum ption 6.2.2. (Underflow) In the underflow range, U = (—M inReal, M inReal),

i.e. fo r floating-point operands f l , f 2 with \ value(fi) o value(fz) \< M inReal, it holds that

| (value(fi) o v a lu e d)) — value(R 0 /2) < MinReal

The sign of the exact result (value(fl) o value(f2)) and the sign of the result of the floating

point operation value(fl © f 2) are always the same.

Assumption 6.2.3. (Exact r e s u l t) Let f l , f 2 be floats. Whenever the result o f a real

operation with floating-point operands is already representable as a floating-point number,

this number m ust be the result of the corresponding floating-point operation:

/1J 2 £ F => v a lu e (fi© f2) = (value(fl) o value(f2)).

Sun’s numerical computation guide [Sun96] identifies five exceptions tha t arise in floating

point computation: overflow, underflow, inexact representation, invalid operation and

division by zero. Invalid operation, division by zero, and overflow are common exceptions

which can seldom be ignored when they occur, and can be trapped by the ieee_handler(3m)

software. Underflow and inexact are seen more often, with most operations incurring the

inexact exception, and they can usually though not always, be safely ignored.

6.2.2 Specification of programs involving real com putation

To formally specify and develop a program, / , which given a quantity x, calculates the

value of f (x) , the following approaches can be used [BK96]:

1. Specify / using computational real numbers and refine the specification to use com

putational reals [Bri79, San68]. Computational real [EscOO] numbers are those real

CHAPTER 6. RETRENCHING REALS B Y FLOATS 149

numbers such tha t an algorithm exists that computes rational approximations of ar

bitrary precision to them. This makes reasoning about the specification easy but at

the expense of a final program tha t uses enormous amounts of computing resources.

2. Specify / using floating-point numbers and refine the specification to use floating

point numbers [Bro81, Wic89]. There is loss of abstraction and a detailed error

analysis of final code is required in order to ensure that results are returned within

acceptable error bounds. Also, the use of many of the convenient properties of the

reals is lost.

3. Specify / using intervals of reals in the original specification and refine them to

intervals bounded by floating-point numbers in the implementation [AA98, BK96,

Kre95] This maintains the convenience and abstractness of the reals while retaining

the speed of floats. Natural translations of numerical algorithms over the reals

to floating point numbers are usually incorrect whereas intervals retain correctness

by providing a stringent way of representing and reasoning about associated errors

already present in measurements taken as input data. This brings about a slightly

different notion of data refinement.

4. Specify / using real numbers and approximate the reals by floating-point numbers

[PopOl, PB02, Har96]. Programs produced have good performance but at the ex

pense of making specification and reasoning difficult—natural specifications are likely

to be infeasible, and reasoning will need to constantly refer to the detailed properties

of floating-point numbers in order to carry out the necessary error analysis.

In the context of stepwise software development, the last two approaches are natural—

in particular, the retrenchment method [PopOl] can be used to formalize the problem of

CHAPTER 6. RETRENCHING REALS B Y FLOATS 150

approximating reals with floats. The detailed properties of floating-point numbers can be

made available through a formal specification of a floating point standard, e.g. the IEEE-

854 floating-point standard [IEE87] defines the datatype float and the basic floating-point

operations Add, Sub, Mul, Div, Rem, Sqrt. The float datatype depicts how the computer

actually represents numbers, and the floating-point operations depict how the computer

actually performs operations on numbers.

The IEEE-854 standard has been specified and proved in PVS [Min95, CM95]. Thus

by incorporating the IEEE-854 standard in PVS retrenchment specifications, proofs of

correctness for the fourth style of specification above can be performed, and error bounds

in terms of the machine epsilon can be derived 1. In this way, the operational environment

in which the software specified is to run is also incorporated in the verification exercise,

e.g. Intel, Sun and PowerPC hardware conform to this standard [Sun96].

6.2.3 Verification of specifications involving reals

Other than the Retrenchment method, other approaches tha t have been proposed in

the verification of specifications yielded by the last two approaches above include: (1)

Theorem-proving with Computer Algebra systems [HT93, BJ01]; (2) Tactics for real arith

metic in PVS [Di 01], [MM01]; and (3) Automatic forward error analysis [Kra98, KB01].

6.2.3.1 Theorem Proving with Computer Algebra Systems

There are two main strands in linking Theorem Provers with Computer Algebra Systems

(CAS). One strand uses Computer Algebra Systems to handle numerical computations

since most Theorem-provers do not have numerical calculation capabilities, e.g. the CAS

1Kramer et al devised a technique for specification of error bounds [Kra98], and derived rigorous
absolute and relative error bounds for the basic floating-point operations [KB01]. However the ‘imple
mentation’ of this approach in a theorem prover like PVS suffers from type-correctness issues.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 151

Maple is used as an calculation oracle to aid to the Theorem-prover HOL in verification

[HT93]. The other strand recognizes tha t CAS are known to give incorrect results at times

therefore the results of the CAS need to be verified in a general purpose Theorem-prover,

e.g. P V S is used to justify the numerical results given by Maple [BJ01].

Whereas the HOL+M aple approach provides a leeway to trace an incorrect numerical

computation result in the CAS, the PVS+ M aple equips Theorem provers with the capacity

to reason about numerical results and thus such Theorem-provers can be solely used

for correct numerical verification. For example, the formal safety analysis of Air Traffic

Management Systems resulted in the extension of PVS with tactics to reason about the

formalization of the reals—a package [Di 01] of strategies and functions for manipulating

arithmetic expressions in PVS was used to develop a semi-decision procedure FIELD for

the formalisation of real numbers, which may be used in the verification of specifications

involving the reals numbers [MM01].

6.3 The PVS retrenchment of the reals by floats

A relational interpretation of the retrenchment of real computation specifications by

floating-point specifications under the IEEE-854 standard is as follows:

• Real Computations : R <-»• R

• Floating-point Computations / IEEE-854 standard : F <-> F

• Retrenchment : (R <-»• R) <-► (F F)

• Specification and Proof : BG SL <-> P V S

CHAPTER 6. RETRENCHING REALS B Y FLOATS 152

Refinement is basically a subtype relation: S C R R C S [WD96], hence the subre

finement result tha t was derived for the retrenchment of the set of all reals by a subset

of the reals FinReal in Chapter 5. The retrenchment of reals by floats deals with the

representation of an ‘infinite’ real value by a ‘finite’ float value. The successful proof of

a subrefinement means an exact representation of a real by a float whereas a concession

means an inexact representation of a real by a float within some margin of error.

6.3.1 Specification in PVS

The PVS Specification language and the specification templates formulated in Chapter 5,

are used to specify the retrenchment of reals by floats under the IEEE_854 floating-point

standard. The retrenchment proof obligations can be used to specify how the real domain

is related to the float domain via the R E T R IE V E S , W IT H IN , and CO NCEDES clauses.

Chapter 5 demonstrates how a B-Method Retrenchment can be specified and proved in

PVS.

6.3.1.1 Real computation

Computation in the field of real numbers is modeled by an Abelian group [Gri99]. The

P V S Prelude file [OS03a] contains a formalization of the real numbers as the Abelian field,

and all the other number types—rationals, integers, naturals—are specified as subtypes of

real in PVS.

6.3.1.2 Floating-point computation

The IEEE-854 standard specifies floating-point computation in terms of real computation—

operations on floats (F —► F) are lifted to operations on the reals (R —► R)—and has also

CHAPTER 6. RETRENCHING REALS B Y FLOATS 153

been specified in PVS [Min95, CM95]. This emulates the hardware on which the specified

algorithm is to run on, i.e. IEEE-854 compliant hardware such as Sun, Intel, PowerPC

hardware, thus giving a ‘systems’ view to our verification exercise.

The float datatype is not a direct subtype of the real data type:

fp_num: datatype

begin

finite(sign:sign_rep, Exp:Exponent, d:digits): finite?

infinite(i_sign:sign_rep): infinite?

NaN(status:NaN_type, data:NaN_data): NaN?

end fp_num

Hence the retrenchment of reals to floats provides a more rigorous test bed for the data-

representation retrenchment. The PVS specification of IEEE-854 standard is imported

into a retrenchment architecture by providing actual values for the formal parameters b ,

a lp h a , p , emax, emin, i.e. the base/radix, exponent-adjustment (normalization), man

tissa, maximal exponent, and minimal exponent respectively (see Section 6.2.1. An 8-bit

representation format IMPORTING IEEE_854[2 ,6 ,1 9 2 ,2 ,-1] is used in the verifications

in this Chapter. The corresponding floating-point operations fp_add, fp_sub, fp_mul,

fp_div , fp _ sq rt are also made available in the specification by the importation of the

PVS IEEE-854 specifications.

In the PVS IEEE-854 specification [Min95, CM95], the function f_op provides a tem

plate for defining floating-point operations:

fp_°p(°p, finl, (fin2:{fin|div?(op)=>N0T zero?(fin)}), mode):fp_num =

LET r = fp_round(apply(op,finl,fin2), mode) IN

IF r=0 THEN signed_zero(op, finl, fin2, mode) ELSE real_to_fp(r) ENDIF

CHAPTER 6. RETRENCHING REALS B Y FLOATS 154

Where:

apply(op,finl, (fin2:{fin|div?(op)=>N0T zero?(fin)}), mode):real =

CASES op OF

add: value(finl) + value(fin2), sub: value(finl) + value(fin2),

div: value(finl) / value(fin2), mult: value(finl) * value(fin2)

ENDCASES

fp_round(r:real, mode):real =

IF r=0 THEN 0 ELSIF over_under?(r) THEN round_exceptions(r,mode)

ELSE round_scaled(r,mode) ENDIF

over_under?(r:real): bool = (r/=0 & (abs(r)>max_pos or abs(r)<b~(-p)))

round_scaled(r:nzreal, mode:rounding_mode): real =

b~scale(abs(r)) * round(b"(-scale(abs(r)))*r, mode)

scale(x:posreal):{i:int|b~(i+p-l)<=x & x<b~(i+p)} = Exp_of(x)-(p-l)

The function rea l_ to_ fp tha t converts a real to a float in the function f_op above is

defined as:

real_to_fp(r:real):fp_num =

IF abs(r) >= b'‘(E_max+l) THEN infinite (sign_or(r))

ELSIF abs(r) < b''(E_max+l) THEN finite(sign_or(r) ,E_min,truncate(E_min,abs(r)))

ELSE finite(sign_or(r), Exp_of(abs(r)), truncate(Exp_of(abs(r)), abs(r)))

ENDIF

Where:

truncate(E:integer, nnx: nonneg_real): digits =

(lambda (i:below(p)): mod(floor(b~(i-E)*nnx),b))

digits: TYPE = [below(p)->below(b)];

b is the radix/base; p is the size of the mantissa/significant.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 155

The function value which is used to convert a float to a real in the function apply above

is defined as follows:

value (fin :fp_num): real = (-l)~sign(fin) * b~Exp(fin) * Sum (p, value _digit(d (fin)))

Where:

value_digit(d:digits)(n:nat):nonneg_real = IF n<p THEN

d(n)*b~(-n) ELSE 0 ENDIF Sum(j:nat, F:[nat->nat]):recursive real =

IF j=0 THEN 0 ELSE F(j-l) + Sum(j-1,F) ENDIF MEASURE j

Using the definitions above, the floating point subtraction operation is defined as follows

[Min95]:

fp_sub(fpl:fp_num, fp2:fp_num, mode:rounding_mode): fp_num =

IF finite?(fpl) & finite?(fp2) THEN fp_op(sub, fpl, fp2, mode)

ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan(sub, fpl, fp2)

ELSE fp_sub_inf(fpl, fp2) ENDIF

Where:

rounding_mode:TYPE = {to_nearest, to_zero, to_pos, to_neg}

round(r:ral, mode:rounding_mode): integer =

CASES mode OF

to_nearest: round_to_even(r), to_zero: sgn(r) * floor(abs(r)),

to_pos: ceiling(r), to_neg: floor(r)

ENDCASES

round_to_even(r:real):integer =

IF r-floor(r) < ceiling(r)-r THEN floor(r)

ELSIF ceiling(r)-r < r-floor(r) THEN ceiling(r)

ELSIF floor(r) = ceiling(r) THEN floor(r)

ELSE 2*floor(ceiling(r)/2)

CHAPTER 6. RETRENCHING REALS B Y FLOATS 156

ENDIF

In the proof of the IEEE-854 specification, lemmas about the definitions used in the IEEE-

854 specification are defined, and these lemmas are used in the proof of the definitions.

However the PVS (LEMMA lem m a) command puts the definition of lemma (defined in the

THEORY or imported THEORYs) in the antecedent of the proofstate and thus the lemma

is an assumption in the proofstate and is not proved explicitly as in the introduction of a

new formula to the proofstate by the Cut-rule. Therefore there is a risk tha t the Lemma

may reduce to false in the proofstate, thereby making the proofstate provable trivially

under the false assumed lemma.

To avoid this scenario, the PVS specification of the IEEE-854 standard is actually

executed using the constants supplied in the retrenchment machines to compute the cor

responding floating-point representations and argue about their correctness according to

the retrenchment proof obligations. In order to make the IEEE-854 definitions executable,

the following constructive definitions are imported into the IEEE-854 specification, and

used in place of the IEEE-854 defined ones, e.g. where the IEEE-854 PVS specification

refers to div, the definition Mydiv below is used in place of div:

MyDefs: THEORY

BEGIN

mydiv(x:real, y:above(1)): RECURSIVE int =

IF x < y THEN 0 ELSE mydiv(x - y, y) +1 ENDIF MEASURE x

mymul(x:real, y:above(1)): RECURSIVE int =

IF x = 0 THEN 0 ELSE mymul(x - y, y) + x ENDIF MEASURE x

myceiling(x:real): {i:nonzero_integer I x <= i AND i < x+1} = mydiv(x, 1)+1

myfloor(xrreal): {i:nonzero_integer I i <= x AND x < i+1} = mydiv(x, 1)

mymod(x, y:real): RECURSIVE int = IF (x < y) THEN x ELSE mymod(x-y, y) ENDIF

CHAPTER 6. RETRENCHING REALS B Y FLOATS 157

MEASURE (LAMBDA (x,y: real): x+y)

myExp_of(x:real, b:int): RECURSIVE {i:int I b~i<=x AND x<b'*(i+l)> =

IF x/b < b then 1 ELSE 1 + myExp_of(x/b, b) ENDIF

MEASURE (LAMBDA (x:real, b:int): mydiv(x, b))

Mysqrt(r,e:real): RECURSIVE real =

IF max(r,l)<e THEN 0 ELSIF (Mysqrt(r,2*e)+e)~2<=r THEN Mysqrt(r,2*e)+e

ELSE Mysqrt(r,2*e) ENDIF MEASURE max(r,l)

END MyDefs

Unlike the DSub example in Chapter 5, some of the definitions above involve recursion,

therefore it would be interesting to see whether the “robust” tactic derived in Chapter 5

work in this case, and whether the same relative error margin of 2e is achieved between

the real computation and the floating-point computation.

6.3.1.3 Evolving retrenchment

The R E T R IE V E S and CONCEDES predicates are used to specify the relative errors be

tween the floating-point calculations and their corresponding real arithmetic calculations.

The retrieve relation G is a predicate tha t corresponds to the desired relation concerning

the real computation results and floating-point computation results. The concedes rela

tion C denotes a weaker relation tha t the operation is supposed to achieve if the retrieve

relation cannot be maintained 2.

For the basic operations add, substract, m ultily , division , the expected relative error

between the real computation (the idealistic values i in the real world) and the corre

sponding floating-point computation (the realistic values c on a digital computer) is given

2This use of RETRIEVES and CONCEDES predicates conforms to a “try-catch” programming lan
guage construct.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 158

by Assumption 6.2.1. In the case of exact representation (Assumption 6.2.3), the expected

relative error | |= 0, i.e. c — i. In the case of inexact representation, | ^ \< fe ,

where / = 2 according to Assumption 6.2.1.

Appendix B.2 shows the evolving retrenchment specifications for a small example

on the addition operation using the specification templates from Chapter 5. The di

vine addition and the input-architecture retrenchment, Figure B.8, do not generate any

Type Correctness Conditions (TCCs). However the data-representation (Figure B.9) and

output-architecture retrenchments (Figure B.10) generate TCCs in terms of the change

in datatype from real to float—the same TCCs are generated for both specifications.

The “unfinished” TCCs all refer to the details of the float datatype as specified by the

IEEE-854 standard, and as highlighted in Section 6.2.2, item 4. The PVS tactic tc p for

TCCs could not prove the IEEE_854_TCCs due to the limited 8-bit IEEE-854 precision

used. Tactic tc p could also not prove tha t forall values of the state variables: the addition

is finite (S2Def_TCC) and tha t the retrieve relation is valid (G_TCC1). Since induction is

not applicable on the reals domain, such TCCs cannot be proved exhaustively, but will

be unraveled in the proof of the architecture retrenchment proof obligations specifications

IAPOs, DRPOs, OAPOs where these TCCs can be discharged by the values available in the

machine specifications. Importing the machine specifications into the retrenchment proof

obligations specifications do not generate any TCCs as in Chapter 5.

6.4 Proof of evolving retrenchment in PVS

The more abstract/idealistic specification and the more concrete/realistic specification

have different types—real and floats respectively. In calculating the value of a float, the

operation value (f: f p_num): r e a l converts a float f to a real by using a recursive function

CHAPTER 6. RETRENCHING REALS B Y FLOATS 159

Sum to compute the real value of f . Mathematical induction is the most common way

of proving recursion and iteration, but induction over the domain of reals or floats is not

possible since by Cantor’s Diagonalization method, the reals are not countable. Therefore,

the technique of Theorem 3.6.1 is used to skolemise universal variables and to formulate

instantiation terms from the skolem variables and constructive operation definitions.

6.4.1 Tactic-proof of retrenchment in PVS

A tactic-proof proceeds by applying tactics rather tha t basic proof rules as proof steps

[FM87]. If the most powerful tactic available proves the conjecture successfully, then we

are done, otherwise the tactic needs to be extended to handle the new conjecture. The

general tactic (RSubRetTac fnum term s) derived in Chapter 5 is used to try to prove

the proof obligations for the particular retrenchment of reals by floats where fn u m is the

consequent formula given by +, and terms is the instantiation term which is the operation

being retrenched with the appropriate skolem variables as arguments 3. It is envisaged

that the input-architecture retrenchments should be provable using the tactic from the

complex example because this architecture involves the datatype real but not the float

datatype. However the data representation and output-architecture retrenchment proofs

may not be successful using the tactic RSubRetTac due to the use of the datatype fp_num

and floating-point operations for floats.

6.4.1.1 Verification of the retrenchment in PVS

For the data-representation and output-architecture retrenchment proof obligations, the

verification starts with the retrieve relation depicting exact representation:

3Since (grind) without backtracking sometimes fails, the tactic RSubRetTac is our most powerful tactic
in PVS.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 160

C (f , r) = RelError(f, r) < 0; and the concedes as false. The retrenchment initialization

proof obligation, RetlnitPO, checks whether this retrieve relation can be satisfied for the

initial state, e.g. G is true for exactly representable arguments within the range of the ma

chine representable numbers, and so RetlnitPO should be provable, which means tha t the

operation retrenchment is possible. The verification then proceeds to the proofs of Sub-

RefinementPO or ConcessionPO, where, from the theory for directly rounded operations,

the Concession clause is C = RelError(value(f), r) < 2s, for a concrete/realistic represen

tation / ; an abstract/idealistic representation r, and the machine epsilon e [KB01, Gol91].

For inexact representation, G (r , f) = R elE rror(f, r) < 0 is false and hence RetlnitPO

should not prove. RetlnitPO is used to find the least error tha t makes G true, i.e. the

least relative error margin for which RetlnitPO is provable. The verification then proceeds

to the proof of either SubRefinementPO or ConcessionPO, where the Concession in this

case will be the least relative error which makes ConcessionPO provable when SubRefine-

mentPO is unprovable. In this manner relative errors can be derived, which depict an

acceptable degradation of the real computations when they are expressed as floating-point

computations on a particular platform. This gives a stepwise approach similar to Evolving

retrenchment [PB02], for calculating relative errors for operations, where the concession

for the RetlnitPO becomes a possible retrieves relation for the SubRefinementPO.

Although the relative errors are specifically dependent on the nature of the operands

of the operation, in general, relative errors are dependent on the precision used, i.e. the

machine epsilon e. In the verification examples in this Chapter, the IEEE single precision

is scaled down by a factor of four, i.e. from 32 bits to 8 bits representation where e = 2

and p = 6. This 8-bit precision is sufficient for computing arithmetic with one guard digit

C H A P T E R 6. R E T R E N C H IN G R E A L S B Y FLO ATS

which preserves the relative error of 2e [Gol91] 4.

161

6.5 Generalization and maintenance of tactic-proofs

The results on the investigation of the development of tactics from the proofs of evolving

retrenchment are in terms of the tactic used, the time taken in seconds, and the overall

relative error incurred in terms of the machine epsilon e.

6.5.1 Input architecture retrenchment

The tactic RSubRetTac formulated in Chapter 5 proves successfully all the proof obliga

tions for this architecture for exact and inexact representation, and error propagation for

all the basic operations. As expected, a relative error of Oe was found to make the Subre

finementPO provable for the exact and inexact representation and error propagation cases

since both the divine machine and the input-architecture machine use the reals datatype.

Thus the input-architecture machine is a data-subrefinement of the divine machine.

6.5.2 D ata representation retrenchment

The specification DRSub, DRAdd, DRMul, DRDiv, DRSqrt are for an algorithm tha t en

sures that only ‘finite floats’ (i.e. not NANs or infinite floats [Section 6.3.1.2]) are stored

as the result of an operation. The tactic RSubRetTac can successfully prove the initial

ization proof obligations AlnitPO and CInitPO, and the abstract invariant preservation

proof obligation AlnvPO.

4This makes the proofs on our machine tractable, since using the single (32-bit) precision, IEEE-
854[2,24,192,127,-126], causes stack overflow in computing the function truncate which is used in the
function real_to_fp which converts a real to a float. Given a computer with more resources, i.e. more
memory and processing power, a full 32 bit precision verification can be possible. 8-bit processors are
used in embedded systems [Won02].

CHAPTER 6. RETRENCHING REALS B Y FLOATS 162

However, the proofs for CInvPO and R etlnitPO , could not complete with RSubRetTac.

The proofs for these proof obligations diverge with this tactic due to the recursion used

in the constructive definitions of the PVS IEEE-854 specification, e.g. in the Sum oper

ation which is used in the value operation for calculating the corresponding real value

of a float [Section 6.3.1.2]. When the skolem variables in the proofstate are passed to a

recursive definition, the recursion, e.g. in the rewriting of the float to a real value, does not

terminate because the skolem variables cannot effectively reduce the recursive definition

to its base case. For example, value (rea l_ to _ f lo a t (i ! 1)) tries to continuously rewrite

definitions in terms of i l l in trying to compute the real value tha t corresponds to the

float re a l_ to _ f lo a t (i ! 1). Due to finite memory resources, the PVS system terminates

the proof, giving the following message:

Error: 16777216 is invalid size for make-string

[condition type: SIMPLE-ERROR]

Restart actions (select using :continue):

0: Return to Top Level (an "abort" restart)

1: Abort #<PR0CESS Initial Lisp Listener>

[1] PVS (18):

It is also not possible to find a suitable automatic instantiation term, i.e. the initialised

state, for R etln itPO as in Chapter 5. In order to make the proofs complete there are two

solutions: (l)the use of lemmas in the proof; and/or (2) the use of constants available in

the specification, e.g. from the initialization operation. The proofs using the initialization

values in the machine specifications requires the constructive definitions given in Section

6.3.1.2 above.

CHAPTER 6. RETRENCHING REALS B Y FLOATS 163

6.5.2.1 P ro o f using in itia liza tio n values

As described in Section 5.4.2.1, the W ITH IN clause is augmented with the W ITH IN

clauses of the previous machines in order to allow a continuation style semantics whereby

the initializations of the idealistic machines are chained through to the more realistic

machines. The inclusion of the W ITH IN clause, which in turn includes the initial

ization operation predicate i n i t (. . .) , in the invariant preservation and retrenchment

initialisation proof obligations (see DRPOs and OAPOs specification templates in Fig

ures B.6, B.7) provides the actual constant values for the skolem variables as the ini

tialised state. This enables the PVS proof system to actually compute the values of

functions re a l_ to _ f lo a t (. . .) , f i n i t e (. . .) , fp_add(. . .) , v a l u e (. . .) , which can

then be used to reason about the correctness preservation of the real computation by

the floating-point computation via proofs of the retrenchment proof obligations. How

ever the g rin d tactic needs to be constrained to use my constructive definitions MyDef s :

THEORY in Section 6.3.1.2 to enable the computation of the actual float values from the real

values. Otherwise just trying (g rind) without this constraint will still cause divergence in

the recursive definitions because the non-constructive definitions of d iv , mul, c e i l in g ,

f l o o r , mod, Exp_of will be used instead.

(defstep FInvPOTac ()

(RobustGrind :defs "MyDefs")

"INPUT = CInvPO

OUTPUT = true"

"proving invariant preservation PO")

CHAPTER 6. RETRENCHING REALS B Y FLOATS 164

F InvP O T ac is a b le to fin d t h e co rrec t a u to m a t ic in s ta n t ia t io n for R e t ln i t P O . F u rth erm o re

th e in s ta n t ia t io n w ith th e c o n s tr u c t iv e o p e r a t io n d e f in it io n s in th e m a c h in e sp e c if ic a

t io n s w h ic h ta k e a s a r g u m e n ts th e sk o le m v a r ia b les g e n e r a te d fro m t h e ta c t ic F In vP O T ac,

a n d fu rth er a p p lic a t io n o f th e m e c h a n ic a l ru les w a s fo u n d t o m a k e S u b r e f in em e n tP O ,

C o n c e s s io n P O provab le:

(defstep FOpRetTac (fmun &rest terms)

(then (FInvPOTac) (inst fnum terms) (grind :if-match nil :defs "IEEE_854"))

"INPUT = IAPOs or DRPOs or OAPOs

OUTPUT = TRUE

PRECONDITIONS = DSub V IASub V DRSub V OASub

EFFECTS = QED"

"proving retrenchment proof obligation ...")

For the cases where the float is exactly representable as a float, a relative error of Os

between the input-architecture machine and the data-representation machine was found

to make the SubrefinementPO provable. For inexact presentation, a relative error of 2e was

found to make SubrefinementPO provable. For error propagation in a formula involving

a sequence of operations such as Kahan’s formula (M ysqrt((a © (b © c)) © (c © (a © b)) ©

(c © (a © b)) © (a © (b © c))) 0 4 where a, b, c are floats and a < b < c), the relative error

of 2e was found to make RetlnitPO provable, but SubrefinementPO was unprovable for

this relative error—the least relative error for a Concession was 11s.

6.5.2.2 Proof using lemmas

This proof technique can apply to the original formulation of the invariant preservation

retrenchment proof obligations where the W ITH IN clause is not included in the antecedent

as described in Section 6.5.2.1 above. Attempting the proof of the invariant preservation

CHAPTER 6. RETRENCHING REALS B Y FLOATS 165

PO by invoking Definition 4.3.2 as (try g r in d :defs "IEEEL854") gives the following as

two subgoals:

CInvPO.2.1:

{-1} (u2p!l = (# a2 := fp_add(a2(u2!1), b2(i2!1),to_nearest) #))

[-2] finite?(b2(i2!l))

[-3] finite?(a2(u2!1))

{1} over_under?(value(fp_add(a2(u2!1), b2(i2!l), to_nearest)))

[2] finite?(a2(u2p!1))

CInvPO.2.2:

{-1} (u2p!l = (# a2 := fp_add(a2(u2!1), b2(i2!1),to_nearest) #))

[-2] finite?(b2(i2!1))

[-3] finite?(a2(u2!1))

[-4] over_under?(value(fp_add(a2(u2!1), b2(i2!l), to_nearest)))

[1] finite?(a2(u2p!l))

Invoking the tactic (g rind) on these subgoals results in an infinite proof because the

recursive function value rewrites definitions in terms of skolem constants u 2 ! l , i 2 ! l ,

which cannot be reduced to their base cases. However, in classical logic the consequent

of CInvPO .2.1 is true by the law of the excluded middle—for finite arguments a 2 ! 1,

b2! 1, the addition can only result in an overflow or underflow (i.e. a subnormal float or

an infinite float respectively) or a finite sum. We cannot have a NaN float as a result

because the arguments are both floats. This can be coded as a lemma of a property of

floating-point numbers:

CHAPTER 6. RETRENCHING REALS B Y FLOATS 166

Lemma 6.5.1. V(a, b : fpnum) : fin ite?(a) A fin ite?(b) =£■

over-under?(value(fp-add(a, b, to-nearest))) V fin ite?(a)

The lemma is most suitably defined in the retrenchment proof obligations file. Invoking

this lemma in the proof by using the command (lemma "AddLemma") adds the lemma in

the antecedent of the proof; automatic instantiation (in s t?) correctly instantiates a,b

with a2! 1, b2! 1; and the proof completes by s p l i t —the axiom rule is applied autom at

ically. The same lemma can be used to prove CInvPO .2.2 without appealing to the actual

values of the skolem variables.

6.5.3 Output architecture retrechment

Since this architecture involves floating-point computation, the tactics formulated in the

data representation architecture were used for the respective proof obligations in this ar

chitecture. The tactic (FInvPOTac) successfully proves both AlnvPO and CInvPO; and the

tactic (FOpRetTac) successfully proves R etln itPO , SubRef inementPO or ConcessionPO.

As expected, the relative error between the data-representation machines and the

output-architecture machines is zero since both machines use the float datatype. Thus

the output-architecture machine is a data-subrefinement of the data-representation ma

chine.

6.6 Summary

This Chapter has demonstrated the reuse of the specification templates and tactics from

Chapter 5 to specify and prove Evolving Retrenchment. The relative error between an

idealistic/divine real computation and its realistic/concrete floating-point computation

CHAPTER 6. RETRENCHING REALS B Y FLOATS 167

is expressed in terms of the machine e [Section 6.3.1.3]. TCCs, in terms of the de

tails of the IEEE-854 floating-point representation used, are only generated for the data-

representation and the output-architecture machines [Appendix B.2]. The TCCs require

proof of these IEEE-854 details for all possible state variables, which are of type real,

and thus Mathematical Induction is not possible since the reals are not countable. Those

“unfinished” TCCs which the PVS tactic tc p for TCCs is unable to prove are unravelled

in the proof of the architecture retrenchment proof obligations.

The robust tactic (RSubRetTac fnum term s) from Chapter 5 can successfully prove

the Input-architecture retrenchment but diverges on the data-representation and output-

architecture retrenchment. This is because the rewriting of the recursive definitions does

not terminate due to the fact tha t some computational aspects of the original IEEE-854

specification are defined in terms of lemmas and assertions and thus the IEEE-854 recursive

definitions cannot reduce the skolem variables to the required base cases for the recursion to

terminate. In order to make the IEEE-854 specification executable, constructive definitions

are given for some IEEE-854 constructs defined in terms of lemmas or assertions such as

f l o o r , c e i l in g , d iv , s q r t [Section 6.3.1.2].

For the exact and inexact representations of reals by floats, the derived robust tactic

(FOpRetTac fnum term) takes under one second to successfully prove the basic arithmetic

operations under the input architecture retrenchment. For data representation retrench

ment, the worst-time proof case is slightly more than a minute (69s), and this is incurred

by the multiplication operation. The output architecture retrenchment incurs a worst-time

proof of nearly four-and-a-half minutes (260 seconds) for the addition operation. For error

propagation, the run time for the tactic FOpRetTac is nearly 45 minutes (2560.84s) for the

data representation retrenchment of Kahan’s formula involving the following operations:

CHAPTER 6. RETRENCHING REALS B Y FLOATS 168

four additions, four subtractions, three multiplications, one division and one square root

operation. The relative error in terms of the machine epsilon is at most 2e, and this is

incurred for inexact representation, which agrees with Assumption 6.2.1 [Gol91, KB01].

For error propagation, the relative error of at most 11s agrees with Theorem 3 page 165

[Gol91] which states the same error margin for Kahan’s formula. Thus for the retrench

ment of a real computation by a float-pointing computation, a relative error of at most 2s

can be taken as a subrefinement.

The arithmetic operations can be defined in terms of addition and subtraction, e.g.

multiplication is repeated addition, division is repeated subtraction, exponentiation is re

peated multiplication, and sqrt is in terms of exponentiation, etc. The relative errors

between real computation and floating-point computation in the above approach con

sists of: (1) truncation errors in the representation of reals by floats; and (2) rounding

errors due to the rounding mode used in the floating-point operations. The absolute

(random/statistical) data errors associated with the reals themselves can be handled in

the same manner as above to yield the relative error in terms of the machine epsilon.

Thus instead of using the formulae given in [KB01] to calculate the error bounds for a

given operation, our approach enables establishing the overall relative error in terms of

the machine epsilon e via the proof of the evolving retrenchment specifications under the

IEEE-854 specification.

Chapter 7

D iscussion

Use o f logic is sim ilar to game-playing: certain rules are given and it is assumed that

the players are perfect, in the sense that they always obey the rules. Occasionally it may

happen that following the rules leads to inconsistencies in which case it m ay be necessary

to revise the rules ” [Gal86].

This thesis has followed both viewpoints of formal methods in: (1) studying formal

proofs in the Gentzen Sequent Calculus LK in order to derive robust tactics from such

proofs [Chapter 2 Chapter 3, and Chapter 4]; and (2) applying our method of constructing

robust tactics from proofs in the specification and verification of formal program specifi

cations using the Retrenchment Method [Chapter 5 and Chapter 6].

In comparison of this work with tha t the current literature, we discuss the contributions

made in this thesis to the construction of tactics from proofs, and the partial automation

of the retrenchment method in PVS. An inference from the work we have done is tha t

the tactics constructed using Algorithm 3.7.1 for proving retrenchment can constitute an

expert system for proving retrenchment proof obligations in PVS. In this way, the proof

application domain of PVS is extended.

169

CHAPTER 7. DISCUSSION 170

7.1 Robust tactics from hand-generated proofs

A LCF-like tactic is a program tha t can guide a Theorem-prover to perform a verification

without human guidance [GMW79, GMNW78, Mil84, Mil72] [Section 2.6.1]. A robust

tactic is expected to repeat the same verification without (or with minimal) human guid

ance when there has been a modest change in the specification of the conjecture from

which the tactic was derived [Wil97, OS03b] [Section 2.9]. The main criticisms of the cur

rent techniques of building robust tactics from proofs are that the tactics are often based

on heuristics and tha t the tactics not generally reusable. In addition, First-Order and

Higher-Order logics which are the preferred logics for formal specification and verification

are inherently undecidable [Gal86].

7.1.1 Tactic refinement

Since the tactics sought are for application in formal methods, The Gentzen Sequent

Calculus LK [Section 2.5], is the state of the art Proof Theory system used to investigate

the problem of deriving tactics from hand-generated proofs. Chapter 3 introduces the

Tactic refinement method [Procedure 3.3.1] which can be used to derive robust tactics of

the form TD — ^ O U O i - j O k i where Q is an appropriate tactical, is a robust

tactic for the proof-obligation di G D, and TD is a robust tactic tha t can prove any

proof-obligation di : D above. The development of the hand-generated proofs from which

the tactics are to be constructed by this method is facilitated by a functional definitional

specification style [Section 3.2.1] and a proof strategy tha t encodes a notion of human

expertise [Section 3.2.2].

CHAPTER 7. DISCUSSION 171

7.1.2 Abstraction of LK proofsteps into creative or mechanical

A condition for composing the tactics ^ : Tf> is tha t each U must be a robust tactic,

i.e. U must be in a normal form, and tha t Vg : Goals : t f F(g) = t FCF(g), where t f CF

is the straight collation of proofsteps in a hand-generated proof, and t(fF is the robust

tactic in normal form. The idea of minimal human assistance being required of a robust

tactic leads to the idea of performing all the creative steps (Cut, induction, instantiation)

that may require human ingenuity as early as possible so as to leave the rest of the

proof development consisting of mechanical steps (the rest of the LK rules) which can be

performed automatically [Section 3.4]. Each mechanical LK inference-rule for a logical

connective is a primitive robust tactic since it can be successfully applied on any goal

involving that connective, whereas the application of a creative step can easily lead to an

unprovable proofstate when an incorrect cut formula, induction hypothesis or instantiation

term is introduced into the proofstate.

In the literature, “standard” proofsteps are described as those which are inline with

the structure of a proof, e.g. base case, inductive hypothesis and step case in inductive

proofs; and “interesting/creative” proofsteps are described as those which deviate from

the standard proof technique, e.g. analogical proof steps [Bun91, COR+95]. In this

work the characterizations of proofsteps into creative and mechanical are given a rigorous

mathematical basis of the permutation analysis in Section 3.5, Chapter 3. The rigorous

mathematical basis of the permutation analysis also gives the robust tactics developed by

our method the sufficient formality for them to be used in an entirely formal setting.

CHAPTER 7. DISCUSSION 172

7.1.3 Perm utability of creative steps with mechanical steps

For a given formula which is not in prenex normal form (e.g. the formulation of the

original retrenchment proof obligations [PopOl] in Appendix B), some steps are required

to bring the 3 to the front so tha t it can be eliminated by instantiation, and thus the

instantiation cannot be permuted with such steps. Therefore, in order to perform the

permutation in a prooftree, each of the formula to be permuted must be in prenex normal

form (PNF) [Section 3.5]. The creative rules are found to permute with all the other LK

rules [Sections 3.5.2, 3.5.3] provided the eigenvariable conditions are satisfied and every

formula in a cut-free proof is a subformula of the endsequent [Sha92] [Appendix A.l].

The sole use of the cut-rule in this work is to introduce the prenex normal form of the

goal formula as a new formula in goal-oriented LK proof [Section 3.5.1]. The deduction

of the goal formula from its corresponding PNF formula is proved in the left branch, and

the original goal formula is weakened in the right-branch, which results in a normal form

of proof as depicted in Definition 3.6.1. However, by the Prenex Normal Form Theorem

[Gal86], a formula can also be reduced to PNF by rewriting using logical equivalences,

and thus this application of Cut can be eliminated by rewriting which yields a cut-free

proof, which is one celebrated normal form of proofs [Section 2.5.2.1]. This demonstrates

the idea of eliminating a creative rule (such as the cut-rule) by transforming tha t rule

into mechanical steps, e.g. rewriting is performed automatically in PVS as long as the

definitions to rewrite with are made available to the system.

The permutation analysis of LK rules [Section 3.6] gives the following results for the

problems of choosing which instantiations to make and which proof rule to use [Section

2 .8 .1.1]:

(1) Instantiation can be made more automatic by applying skolemisation first and then

CHAPTER 7. DISCUSSION 173

using the skolem variables as possible instantiation terms [Theorem 3.6.1].

(2) Delaying the application of branching-rules has the effect of factoring out common

rules among branches at the same level, which yields a more uniform prooftree [Theorem

3.6.2]. For example, in the Gentzen Cut-elimination (Hauptsatz) Theorem, the mix-rule

(which is a form of the branching cut-rule) is permuted upwards the prooftree to yield a

non-branching tree (or a tree with one less branch on elimination of the mix).

(3) The idea of performing creative steps as early as possible yields Theorem 3.6.3 which

is a result similar to the Sharpened Hauptsatz [Gal86] (Theorem 7.3.1, page 320).

7.1.4 An algorithm for deriving robust tactics from proofs

The results of the permutation analysis were used to formulate a method [Procedure 3.7.1]

for deriving a normal form for LCF-like tactics, and this method was encoded as Algorithm

3.7.1, which was demonstrated to work in Section 3.7.2 and proved in Section 3.8.1. For

proofs involving instantiation, Algorithm 3.7.1 yields a tactic normal form Definition 3.9.1,

which is equivalent to Definition 3.6.1 for a goal formula not in prenex normal form. For

a goal of the form b V u : P(u) 3 v : Q(u, v) , the introduction of the prenex normal

from of a goal by the cut-rule is reduced to applying rewrite rules to reduce the goal to

P(ui) b 3 v : Q (u , v), whereby instantiation can then be applied to the consequent to

eliminate the existential quantifier 3.

CHAPTER 7. DISCUSSION 174

7.2 Incorporating robust tactics in PVS

Chapter 4 demonstrates the incorporation of robust tactics derived using the theory out

lined in Chapter 3 in the state of the art Interactive Theorem-prover/Proof-Checker [Sec

tions 2.3.2, 2.6] PVS. The PVS proof system is based on Gentzen Sequent Calculus LK

[Chapter 3, Section 4.2.2], and uses Lambda Calculus as the computational mechanism

for executing PVS specifications [Sections 2.3.3.1, 2.6.1.1]. PVS uses a functional pro

gramming style for specification [Sections 3.2.1, 4.2.1] and the tactic language of PVS

[Section 4.2.3] is a subset of Common Lisp, which uses the Common Lisp Object System

for specification of sequents, prooftrees, and tactics.

7.2.1 Robust PV S (grind)

PVS defined proof rules are analogous to LCF tactics, and PVS strategies are analogous

to LCF tacticals [Table 4.1]. The overall form of the most powerful tactic (g rin d) in

PVS conforms to the normal form of proofs yielded by Definition 3.9.1. However (g rin d)

is hardwired with the PVS automatic instantiation tactic (in s t?) which is based on

pattern matching variables to be instantiated with skolem variables, constants or functions

defined in the current proofstate. This heuristic pattern matching often leads to incorrect

instantiations, which yield unprovable proofstates. Therefore the PVS tactics which invoke

automatic instantiation ((in s t?) , (g r in d) , (reduce)) are not safe in the LCF-sense

tha t they do not produce a false proof, since the proofstate from an incorrect instantiation

is false, and the definition of a proof requires tha t each intermediate statement in a proof

is true.

However since (g rind) can at times complete a whole proof development without

human assistance, it is preferable to try (g rin d) first in a proof development. Definition

CHAPTER 7. DISCUSSION 175

4.3.2 introduces backtracking to yield a robust tactic which attem pts (g rin d) first, and

if (g rind) does not finish the proof, the proofstate reverts to the original goal formula,

which is then rewritten into manageable subgoals without using instantiation.

Section 4.4.1, demonstrates the advantages afforded by our theory from Chapter 3,

and the effectiveness of the PVS theorem-prover:

(1) PVS can automatically find and perform the instantiation correctly when Algorithm

3.7.1 is applied to convert a tactic proof into normal form. Therefore unfolding definitions

first can assist PVS in finding a correct automatic instantiation.

(2) The automatic application of the inference-rules for negation and lambda calculus

simplification reduces the amount of interaction.

7.3 Case study: Robust tactics for Retrenchment

The Retrenchment method was designed for formulating realistic specifications from ideal

istic ones, which can then be refined into implementations using the strict transformational

refinement calculus. Tool support has been advocated for the Retrenchment method in

the form of integrating theorem-proving with Computer Algebra Systems (CAS) [PopOl]

in order to reason about the discrete and continuous components in hybrid systems. How

ever results from CAS cannot be entirely trusted and therefore may need to be verified as

well [BJ01].

The PVS Prelude formalises the reals as the standard Abelian Group [OS03a], and tac

tics for real computation have been developed in [Di 01, MM01]. In addition, floating-point

computation is available in PVS from the formalisation of the IEEE-854 floating-point

standard [Min95, CM95]. Therefore PVS can provide a single general-purpose framework

for specification and verification using the retrenchment method.

CHAPTER 7. DISCUSSION 176

The B-Method has been formalised in PVS to yield the PBS system [Mun99] for

the specification and verification of B-Method-like machines in PVS. However the PBS

system uses predicate subtyping to generate refinement proof obligations as TCCs in

PVS, and thus can only handle B-refinement but not B-retrenchment. Our formalisation

of the B-Retrenchment Method in PVS has the advantage of executing posited B-machine

specifications under the Lambda Calculus computation mechanism under which the PVS

proof system is implemented.

The retrenchment initialization, subrefinement and concession proof obligations are of

the form V(...) : 3(...) : (...), which characterizes the Proofs as Programs paradigm [Kre98].

A specification technique for Retrenchment in PVS and the derivation of robust tactics

from proofs of such specifications achieves the partial mechanization of the retrenchment

method [Chapters 5 and 6]. The PVS system is extended with the B-Method Retrenchment

Calculus for formal software development, and the realistic specifications developed by

our method can then be refined in PVS using the PBS system [Mun99] for the B-Method

Refinement Calculus.

7.3.1 Architectural retrenchment

We introduce Architectural Retrenchment [HG01] [Section 5.3.1] as a problem decomp-

sition technique which: (1) makes more transparent the semantics of retrenchment, and

therefore (2) can make easier the task of reasoning about retrenchment. The vanilla

Banach-Poppleton retrenchment [Section 5.2.3] was decomposed into three architectural

retrenchments [Figure 5.2]: (1) the input architecture is concerned with the retrench

ment of state variables to input variables [Section 5.3.1.1]; (2) the data-representation

architecture is concerned with changes in datatype [Section 5.3.1.2]; and (3) the output

CHAPTER 7. DISCUSSION 177

architecture is concerned with the introduction of output variables [Section 5.3.1.1].

Theorem 5.3.1 shows tha t the proof of a Poppleton-Banach vanilla retrenchment is

equivalent to the proof of the its input-architectural retrenchment followed by its data-

representation retrenchment and finally its output-architecture retrenchment. Theorem

5.3.2 decomposes the operation retrenchment proof obligation into a subrefinement or a

concession, which avoids making proof trivial by the application of the Law of the excluded

middle in the case the CONCEDES relation is a negation of the R E T R IE V E S relation

since PVS is based on a classical higher-order logic proof system.

7.3.1.1 Specifying retrenchment in PVS

Theorem 5.4.1 and Table 5.1 demonstrate the High-integrity translation of the B-Method

Generalized Substitution Language (BGSL) into the PVS functional Classical Higher-

Order Logic specification language [Section 5.4.2]. A shallow embedding of the B-Method

in PVS resulted in specification templates for the each architecture retrenchment [Section

5.4.2.1, Appendix B]. The machine operations are defined constructively so tha t the

operations can be checked by computing values to be used in instantiations.

On typechecking the example specifications in Appendix B [Section 5.5.1], the divine

and input-architecture machines (DMach, IAMach), as well as the architecture retrench

ment proof obligations specifications IAPOs, DRPOs, IAPOs do not generate any type

correctness conditions (TCCs). However the data-representation and output architecture

machines generate TCCs in terms of the data-type changes. The TCCs require the proof

for all state variables, but the PVS tactic tcp for TCCs is not able to finish the proof

automatically, and Mathematical induction cannot be used on the state variables which

CHAPTER 7. DISCUSSION 178

are of type real. These unfinished TCCs are unraveled by the incorporation of the ma

chine initializations in the W ITH IN clause, and this is demonstrated by the fact tha t the

architecture retrenchment proof obligations specifications do not generate any TCCs for

the machine specifications. Thus the W ITH IN clause can be used as a means of chaining

proof obligations from one specification to another so tha t the latter retrenchments can

be made provable.

7.3.1.2 Proving retrenchment in PVS

The proof of the architecture retrenchment proof obligations specifications (IAPOs, DRPOs,

IAPOs) begins with the initialization, then the invariant preservation, then the retrench

ment initialization, followed by the subrefinement; if the subrefinement fails, then the

concession proof obligation is attempted [Section 5.5.2]. Using Theorem 3.6.1, the con

structive definitions of the machine operations are used to construct instantiation terms

using the skolem variables from the skolemisation. In the case of the input-architecture

retrenchment example in Chapter 5, the Concedes is specified as fa lse , and the Conces-

sionPO was not provable, which demonstrates tha t the subrefinement must be valid, as

expected [Section 5.5.2.3].

The tactic Definition 4.3.2 from Chapter 4 was found to prove the initialization, the

invariant preservation POs, and the retrenchment initialization POs. However, Definition

4.3.2 was unable to prove the subrefinement and concession proof obligations due to the

fact tha t (g rind) invokes an incorrect instantiation [Appendix B.l]. In the retrenchment

initialization proof obligation, (g rind) was able to find the correct instantiation by the

incorporation of the machine initializations in the W ITH IN clause. From Theorem 3.6.3,

the proofs of the SubrefinementPO and the ConcessionPO was found to consist of 3 phases:

CHAPTER 7. DISCUSSION 179

(1) a rewrite phase (g rin d :if-m a tc h n i l :d e fs n i l) which suppresses instantiation

and unfolding of definitions but skolemizes variables [Section 5.5.2.1]; (2) an instantiation

phase (in s t + term) where term is the machine operation with the skolem variables

from phase (1) [Section 5.5.2.2]; and (3) a completion phase (g rin d :if-m a tc h n i l)

which unfolds definitions and applies the LK mechanical rules to finish the proof [Section

5.5.2.3]. This yields the formally parameterized tactic (RSubRetTac fnum term s) where

the actual arguments fnum and terms are respectively, the consequent formulas given by

+, and the instantiation terms SODef(uOll) for IAPOs; SIDef (u l ! 1) (i l ! 1) for DRPOs;

S2Def (u2!2) (i2 ! 1) for OAPOs [Section 5.5.4].

Since the specifications in Chapter 5 are in terms of a subset of the reals

FinReal:TYPE = { x :re a l | x<=MaxReal}, the architectural retrenchment was found to

be a subrefinement as expected.

7.3.2 Theory-driven example

When a program is specified using real numbers and the reals are approximated by floating

point numbers, natural (divine/idealistic) specifications are likely to be infeasible, and

reasoning will need to constantly refer to the detailed properties of floating-point numbers

in order to carry out the necessary error analysis.

In order to make more apparent the data-representation architecture when the real

data-type in the divine and input-architecture machines is retrenched to the float data

type, Architectural Evolving retrenchment was introduced in Chapter 6. The IEEE-

854 floating-point PVS specification [Min95, CM95] was imported in the machine data-

representation and output-architecture retrenchment specifications to unravel the details

of the floating-point computation [Section 6.2], by executing the floating-point operations,

CHAPTER 7. DISCUSSION 180

and thus the machine specifications [Section 6.2.2]. In order to make the IEEE-854 PVS

specification executable, some definitions, which were expressed as lemmas in the original

IEEE-854 PVS specification, were rewritten as constructive definitions [Section 6.3.1.2].

7.3.2.1 Architectural Evolving retrenchment

The specification templates from Chapter 5 were successfully used in the Evolving re

trenchment specifications of Chapter 6, where: (1) the R E T R IE V E S relation (G(. . .))

is specified as a relative error between the real computation and the floating-point com

putation to demonstrate the intricacies of the data-representation retrenchment [Section

6.3.1.3]; and (2) only the THEORY name, IMPORTING clause, data TYPEs, and definitions

have to be updated to specify a particular retrenchment.

No TCCs were generated for the idealistic and input-architecture machines [Figure

B.8], as well as for the architecture retrenchment proof obligations specifications [Figures

B.5, B.6, B.7]. However TCCs in terms of the float data-type for the IEEE-854 precision

used, were generated for the data-representation [Figure B.9], and output-architecture

machines [Figure B.10]—an 8-bit precision IEEE-854 [2, 6, 6, 2, -1] was used for the

specifications in Appendix B.2. As in Chapter 5, the TCCs unfinished by the PVS tactic

tc p are unraveled in the W ITH IN (W(. . .)) clause as demonstrated by the non-generation

of TCCs in IAPOs, DRPOs, OAPOs.

The tactic-proof method for Evolving retrenchment is as follows [Section 6.4.1.1]: For

a given IEEE-854 floating-point precision the retrenchment initialization proof obligation

R etlnitPO is used to discover a relative error in terms of the machine epsilon which can

make R etlnitPO provable. Then the proof of the subrefinement is attem pted with this rel

ative error, and if SubRef inementPO is not provable for tha t relative error, ConcessionPO

CHAPTER 7. DISCUSSION 181

is used to discover a relative error tha t makes the retrenchment provable.

The robust tactic (RSubRetTac fnum term s) from Chapter 5 was able to prove the

input-architecture retrenchment IAPOs [Section 6.5.1] and initialization and invariant

preservation POs in DRPOs but was unable to prove the concrete invariant preservation

CInvPO and all the other proof obligations in DRPOs, OAPOs because those proof obliga

tions involve the float data-type [Section 6.5.2]. The floating-point operations use recursive

definitions to convert a real to a float and a float to a real, and (g rin d) is not able to

reduce the skolem variables to their respective base-cases to enable the recursion to ter

minate. The original proof of the IEEE-854 uses lemmas to introduce base cases for the

recursive definitions [Section 6.5.2.2]. However, unlike the Cut-rule ((case term), the

PVS lemma command does not enforce the proof of the lemma itself thus a false lemma

can easily make the proofstate trivial. In addition mathematical induction, which is the

most likely way to prove recursive definitions is difficult to apply on the float data-type or

the reals.

Therefore in Section 6.5.2.1, the initialization values in the machine specifications are

used instead to execute the machine operations under the IEEE-854 definitions in Sec

tion 6.3.1.2. Theorem 3.6.3 was used to derive the robust tactics for Evolving retrench

ment (FInvPOTac ()) for the initialization and invariant-preservation POs which involve

the float datatype, and (FOpRetTac fnum term s) for R etln itPO , SubRef inementPO,

ConcessionPO [Section 6.5.2.1].

The robust tactic (FOpRetTac fnum term s):

(1) reuses Definition 4.3.2 as (RobustGrind :defs MyDef s) for the rewrite phase in or

der to use the constructive definitions of Section 6.3.1.2 and enable the termination of the

recursive IEEE-854 floating-point definitions.

CHAPTER 7. DISCUSSION 182

(2) uses the instantiation terms defined in Section 7.3.1.2 above.

(3) u se s (g r i n d i f : m a t c h n i l : d e f s " IE E E -8 5 4 ") as th e c o m p le t io n p h a se .

(3) enables the recursive IEEE-854 specification definitions to terminate with the correct

real values when executing the retrenchment machine specifications.

(4) is able to prove all the architectural retrenchments for all the exact and inexact rep

resentation cases for the floating-point operations and for error propagation in Kahan’s

formula ((Mysqrt((a © (b © c)) 0 (c © (a © b)) 0 (c © (a © b)) 0 (a © (b © c))) 0 4 where

a, b, c are floats and a < b < c)).

The data-representation retrenchment was found to be in terms of the standard worst-

case relative error estimates, i.e. 2e for one application of a floating-point operation, and

l i e for a sequence of floating-point operations, which agrees with floating-point compu

tation theory [Gol91]. Thus the robust tactic (FOpRetTac fnum term s) can be used as

an oracle to justify the correctness of a retrenchment according to floating-point theory,

i.e. if a subrefinement proof obligation fails to prove for 2e or l i e values for a single

floating-point operation or a sequence of floating-point operations respectively, then a

new realizable machine may need to be posited. In this way the validity of the operation

used in the instantiation can also be verified for logical errors.

7.4 An transformation system for retrenchment

The tactics we have formulated for architectural retrenchment prove the proof obligations

that arise in transforming an ideal/divine specification into a realistic/mundane specifica

tion. In particular, an ideal specification can be transformed into a realistic specification

using the steps in Section 5.3.1 provided the architectural retrenchment proof obligations

are provable by the robust tactic (FOpRetTac fnum terms) , i.e:

CHAPTER 7. DISCUSSION 183

IF (FOpRetTac fnum term s) (IAPOs) A (FOpRetTac fnum terms)(DRPOs) A

(FOpRetTac fnum terms) (OAPOs) THEN Op(u) <BPRet 0 <— Op(v)(j)

The ELSE part of the above rule is the case where a posited “retrenchment” may not satisfy

the operation retrenchment proof obligation. This may mean that: (1) the “retrenchment”

is not a valid retrenchment, i.e. it is wrongly formulated; or (2) the “retrenchment” is par

tially valid. In either case, the unprovable subgoals constitute extra information required

in the retrenchment clauses for the retrenchment to be valid. Such extra information may

be added to the pre-existent clauses of the retrenching machine, e.g. the initialization of

the machines were added to the W ITH IN clause in Chapters 5 and 6.

7.5 Limitations of our approach

On the tractability issue, the time the robust tactic (FOpRetTac fnum term s) may be

considered too long for such relatively modest applications. The time taken by our tactics

depends on: (1) the computer used in the verification exercise; (2) the magnitude of the

operands used in the operations; and (3) the precision of the imported IEEE-854 standard

used.

This work used the PVS 2.4.1 system installed on a Linux server with two 1GHz

CPUs, and accessed remotely on a x86 Family 6 Model 5 Stepping 2 A T /A T Compatible

Windows NT workstation with a 300Mhz CPU and 196MB of RAM. A ‘stand-alone’ con

figuration, of a dedicated relatively powerful PC running the PVS system, may shorten

the time taken by our tactics. In addition, the bigger the initialization values used in the

B-machine specifications, and the bigger the precision of the imported IEEE-854 stan

dard, the longer the time taken by the floating-point and real computations. Computer

CHAPTER 7. DISCUSSION 184

Algebra Systems can be used to deal with the real computations, but in our approach, the

theorem-prover will still be required for the floating-point computations. The IEEE single

precision (32-bit) format, IE E E L 854[2 ,24 ,192 ,127 ,-126], causes a stack overflow, thus

the floating-point precision was scaled down by a factor of four to the 8-bit configuration

IE E E L 854[2 ,6 , 192 , 2 , -1] .

7.6 Remark

It can be said tha t Theorem 3.6.1 encodes a tactic a novice chess player can at least achieve

a draw in a tournament of two simultaneous chess games where a grandmaster plays white

on one board and black on the other board by electing the grandmaster to start first,

and then repeating the same moves on either board; thus the rest of the tournam ent is

“automatic” for the novice player. Theorem 3.6.3 encodes a tactic a professional snooker

player may use to leave most of the color balls undisturbed on their spots to enable an

“automatic” clearance.

Chapter 8

Conclusions and Future work

We conclude with a brief summary of the main contributions in made in this work to

the task of deriving robust tactics from proofs, which are: (1) a mathematically rigor

ous method for constructing robust tactics from proofs [Chapter 3]; (2) a method for

encoding these robust tactics from proofs based in a state of the art Interactive Theorem-

prover/Proof-Checker, PVS [Chapter 4]; (3) a decomposition of the Retrenchment method

into Architectural Retrenchment [Chapter 5]; and (4) a robust tactic which can be used

as an oracle for Maximally Abstract and Evolving Architectural Retrenchment [Chapter

6].

Section 8.2 gives some pointers to future work on the construction of tactics from

proofs (Section 8.2.1), and on the mechanization of the retrenchment method in Section

8 .2 .2 .

Finally, in Section 8.3, we conclude with a with a discussion of the contribution and

limitations of this work, how general the method is, to which extent the obtained tactics

are reusable and robust, and the relation of the techniques in Chapter 3 and Chapters 5

and 6.

185

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 186

8.1 Can robust tactics be derived from proofs?

In this work we have demonstrated tha t using the method of Tactic Refinement, for a

particular proof-obligation domain D, a robust tactic: TD = idl Q 0 , . . . , 0 tdn can be

derived, where 0 is an appropriate tactical, is a robust tactic for the proof-obligation

di £ .D, and Tp is a robust tactic that can prove any proof-obligation di : D. By this

method, a repository of robust tactics can be developed which can act as a proof system

for tha t domain.

In the context of Interactive Theorem Proving in particular, the task of proof devel

opment is handled in a way that best suits the human user and the theorem-prover by:

(1) the abstraction of LK proofsteps into creative (Cut, Induction, Instantiation) or me

chanical (the rest of the LK rules); and (2) the idea that applying the creative proofsteps

in the proof development as early as possible leaves the rest of the proofsteps consisting

of mechanical proofsteps which can be automatically and faithfully carried out by the

computer.

8.1.1 Can creative steps be perm uted with mechanical ones?

In this work we have shown in Chapter 3 tha t for a provable goal formula in Gentzen

Sequent Calculus LK, the proof steps can be rearranged according to Algorithm 3.7.1 to

yield a normal form of proof which is equivalent to the original proof. Thus our approach

has the advantage of first demonstrating tha t the goal is provable. In addition, Algorithm

3.7.1 is formulated from the results of the rigorous permutation analysis, and the algorithm

was proved correct.

The equivalence of Definition 3.6.1 and Definition 3.9.1 from Theorem 3.6.3 demon

strates how the cut-rule which is a creative proof rule can be reduced to a rewriting with

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 187

equivalence definitions, i.e. the creative rule is reduced to a sequence of mechanical rules.

The method of Theorem 3.6.1 is a novel way to mechanize instantiation by generating

instantiation terms from constructive definitions using skolem variables. This technique

works in particular for the proof of statements of the form V(x : D) : 3 (z : R) : (I (x) =$■

0 (x , z)) j which may also be expressed in prenex normal form as V(x : D) : 3 (z : R) :

(I (x) =>■ 0 (x , z)) . Goals of this form were found to be generally provable in Gentzen

Sequent Calculus whereas goals of the form 3 (z : R) : V(z : D) : (I { x) =>• 0 (x , z)) were

found to be more amenable to satisfaction using Model Checking (Figure 2.2, Section 2.5,

Chapter 2).

8.1.2 Can robust tactics be incorporated into an IT P /P C

The definition of (g rind) conforms to the normal form of tactics yielded by Theorem

3.6.3 and Definition 3.9.1. A viable way of handling the heuristic instantiation by PVS

tactic (g rind) is to backtrack to the original goal formula when the proofstate yielded

by a tactic is unprovable [Definition 4.3.2]. The goal is then rewritten into manageable

subgoals by invoking grind without instantiation.

8.1.3 Robust tactics for retrenchment

The use of PVS affords the specification and verification of the floating-point computation

results against real-computation results via the IEEE-854 formal specification [Min95,

CM95], and the formalisation the reals as the standard Abelian Group [OS03a].

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 188

8.1.3.1 A rc h ite c tu ra l R e tre n c h m e n t

Architectural retrenchment demonstrates modest changes in specification [Figure 5.2], and

makes the proof of the BPRet proof obligations more scalable [Theorem 5.3.1] and tractable

[Theorem 5.3.2]. The specification of the BPRet in PVS is justified by the high-integrity

translation of the B-Method into PVS [Theorem 5.4.1, Table 5.1]. The machine operations

are specified constructively in PVS so tha t they can be used to generate instantiation terms

from the skolem variables, with the side-effect that the posited constructive definitions are

themselves checked for correctness.

The specification of a particular Banach-Poppleton vanilla retrenchment on a divine

(idealistic) machine by a realistic machine consists of the PVS Theory templates in [Ap

pendix B], where the specifications D R P O s , and OAPOs generated TCCs in terms of the

data-type changes. The proofs of these TCCs could not be completed by the PVS TCCs-

tactic, (t c p) . The W ITH IN clause unravels these unfinished TCCs by incorporating the

initializations of the machines, and this is evidenced by the non-generation of TCCs within

the architecture-retrenchment proof obligations specifications.

The tactic Robust Grind from Chapter 4 was found to prove the initialization and

invariant-preservation POs in IAPOs, but not the retrenchment initialization, subrefine

ment and concession POs which require instantiation. The tactic (RSubRetTac fnum

term s) extends RobustGrind (the rewrite phase) with the instantiation and completion

phases in accordance to Theorem 3.6.3. The DRPO s and OAPOs specifications were

found to be provable subrefinements by the tactic (RSubRetTac fnum term s) due to the

fact that the data-change is to a subset of the reals.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 189

8.1.3.2 A rc h ite c tu ra l E volv ing R e tre n c h m e n t

The specific details of floating-point computation are afforded by IMPORTING the IEEE-

854 PVS specification, which was rendered executable by giving constructive definitions

for some lemmas in the original IEEE-854 specifications [Section 6.3.1.2]. This enables

the recursive floating-point definitions in the IEEE-854 specification to reduce to their

base cases and terminate with the correct real values for the machine initialization values.

The specification templates from Chapter 5 were used to specify Architectural Evolving

Retrenchment, were the R E T R IE V E S relation is expressed in terms of the machine epsilon

as a relative error between the real computation and the floating-point computation.

The robust tactic (RSubRetTac fnum term s) from Chapter 5 was found to prove

IAPOs but was found to diverge on the proof obligations in DRPOs and OAPOs which involve

the float data-type. This resulted in the tactics FInvPOTac for the concrete invariant

preservation POs, and the robust tactic (FOpRetTac fnum term s) for the retrenchment

initialization, subrefinement and concession POs. The latter was able to prove all the

proof obligations in IAPOs, DRPOs, OAPOs, where fnum is the consequent formulas given

by +, and term is the instantiation term given by the respective machine operation for the

proof obligation, e.g. (FOpRetTac + "SIDef (u l ! 1) (i l ! 1)") proves the subrefinement

PO in DRPOs.

The relative error the results of 2s for a single operation and l i e agree with The

ory [Gol91] (see Section 6.6). Therefore our approach can be used to posit and prove

(invent and verify) the retrenchment of real computation B-machines by floating-point

computation B-machines using the specification templates in Appendix B. B.2.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 190

8.2 Future work

We identify five areas in which this work can be extended. The two strands of this

extension are further work on the theory of constructing tactics from proofs, and further

work on the mechanization of retrenchment.

8.2.1 Theory of robust tactic construction

Future work on the construction of robust tactics from proofs includes: (1) the implemen

tation of Algorithm 3.7.1; and (2) improving the efficiency of the robust tactics.

8.2.1.1 Implementation of Algorithm 3.7.1

The process of abstracting tactics from proofs is also currently done by hand. Algorithm

3.7.1 serves as a basis for automating the task of constructing tactics from proofs. The au

tomation consists of coding the modules CollectProofsteps(bi), CollectBranchProofsteps(bi),

D istinguishQ , FactorCommonProofstepsQ , P erm uteQ , LatticePermute, which are then

composed in the recursive module Tacterise.

The PVS system gives a proof script for each interactive proof. The subtrees are

denoted by double brackets. This proofscript can act as input to the CollectProofsteps (bi)

module, which acts as input to CollectBranchProofsteps(bi), which is input to D istingushQ ,

which is input LatticePermute. And similarly for

Permute(FactorCommonProofsteps (CollectBranchProofsteps (bi).

The automation involves the intricacies of lexical analysis of the proofscript and proof-

step hierarchies, and thus proof-theory.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 191

8.2.1.2 Improving efficiency using a tactic calculus

The efficiency of our tactics can be improved by using the tactic calculus of Martin et al

[MGW96]. The worst-case time taken by our tactics is approximately 13 minutes for the

proof of the concession proof obligation in the data representation retrenchment of Kahan’s

formula using the tactic (FOpRetTac fnum terms). Thus this tactic is a candidate for

the application of the tactic calculus in order to reduce the time taken in proof. Aiming

to reduce the time taken by our tactics can even lead to the conception of new rules and

thus the extension of the present tactic calculus.

8.2.2 M echanization of retrenchment

Some future work in the mechanization of the retrenchment method includes: (1) devel

oping a high-level interface for PVS; and (2) handling more complex retrenchments, e.g.

those involving transcendental functions.

8.2.2.1 A high level IT P /P C interface

In Appendix B .l, in the B-Method specifications in Figure B .l, the user only has to pro

vide the imperative definitions of the machine operations, and the declarative definitions

are formulated by the machine tool support. In the corresponding PVS specifications,

the user has to formulate the machine operation definitions functionally in the machine

specifications, and declaratively in the retrenchment proof obligations specifications. The

automation of the High Integrity translation of B-Method specifications into PVS code

can avoid human error in such translations [Gur98, Ste98].

Currently the user decides which tactic to apply and then types in the name of this

tactic together with the arguments (if any) tha t the tactic takes in its application, e.g. to

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 192

prove a retrenchment after its specification, the user has to interact with the PVS system

as described in Section 4.4.1. A high level PVS interface can present a choice of possible

tactics to apply (i.e. Angelic nondeterminism [Mar94]) as hints in proof development, as

well as alleviate the user from the explicit syntax of the tool.

8.2.2.2 Handling transcendental functions

Floating-point verification involving transcendental functions (i.e. logarithms, exponenti

ation, trigonometric functions, differentiation, integration, etc) have been investigated in

the HOL Theorem-prover [Har96]. In tha t work, floating-point computation is represented

as integer computation, where “it is assumed tha t n-bit integer arithmetic operations

(signed and unsigned) are available for any given n, with which floating-point operations

are implemented” [Har96]. This assumption was discharged in our approach which incor

porates the PVS IEEE-854 floating-point standard, and thus floating-point computation

in our retrenchment specifications.

The IEEE-854 standard does not involve transcendental functions since they can be

defined in terms of the basic arithmetic operations [Sun96]. In this case, it is projected

tha t the error analysis results would be the same as tha t for a sequence of floating-point

operations, i.e. l ie . However some hardware implementations do contain more efficient

algorithms for computing transcendental functions.

8.3 Conclusion

The method of Chapter 3 can be seen as an extension of a form of the Sharpened Hauptsatz

Theorem (Theorem 3.6.3) to demonstrate tha t from a provable formula, a robust tactic

can be derived, which can be reusable on tha t formula when there has been a modest

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 193

change in the definition of tha t formula. The novel idea to distinguish between creative

and mechanical proofsteps depicts the critical parts of the proof as the creative steps which

may require human expert domain knowledge. The implementation of this idea in PVS as

the safe tactic (R obustgrind) (Definition 4.3.2) enables incorrect automatic instantiations

to be caught in a proof development, in which case the user is prompted for a manual

instantiation. The normal form of proof yielded by our method improves on the IT P /P C

strategy (Definition 3.2.1) in tha t rewriting is performed first, and this may actually

enable the user or IT P /P C to discern the correct creative proofstep, e.g. an automatic

instantiation. A limitation of our approach may be tha t due to the undecidability and

incompleteness of Higher-Order Logic, the user is required to manually deduce the correct

application of a creative proofstep.

The method of tactic refinement generalises to a metamathematical way of performing

machine induction. The definitions of creative and mechanical proofsteps can apply to the

inference-rules or tasks in other rule-based systems or problem domains. The permutation

analysis ensures that the provisos for the creative tasks are not violated when the tasks are

permuted, thus guaranteeing the same conclusion when the rules are reordered according

to a desired strategy. The formulation of the tactic R obustgrind is intuitive in th a t in

attempting to solve a task, one normally tries to simplify the task to its lowest form, i.e.

rewriting, after which ingenious steps can be introduced to make the completion of the

task easier.

Although the robust tactics formulated from one specification may not be reusable

when there is a change in the datatypes used, a robust tactic only requires human assis

tance for the creative or strategic proofsteps, e.g. instantiation. In this work, the use of

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 194

executable specifications enables our robust tactics to take as formal arguments, the oper

ational definitions for constructing datatypes and instantiation terms (where the skolem

variables from the current proofstate are passed as the actual parameters), thereby making

our robust tactics more reusable and efficient in IT P /PC . W ith respect to the specifica

tions in Appendix B, the RobustGrind tactic is partial, whereas the tactic FOpRetTac is

total.

The method of Tactic Refinement described in Chapter 3 is used to derive robust tac

tics and manageable subgoals for the Architectural Retrenchment method in Chapters

5 and 6. Theorem 3.6.1 is used as the method of instantiation in Chapter 5, which a

programmer can use to check the correctness of program specifications thereby helping

to eliminate logical errors in software development. Furthermore, the incorporation of

formal specifications of the operational environment can enable checking nonfunctional

requirements, e.g. the IEEE-854 standard is incorporated in Chapter 6 to ensure tha t

the program gives an acceptable degraded service. The use of robust tactics as proof ora

cles enables an abductive style of building specifications using the retrenchment method,

whereby unprovable subgoals relating to the operational environment can be added into

the WITHIN clause thereby establishing an operational contract of the program in tha t

environment. In this way, a knowledgebase of specifications and robust tactics can be built

for Architectural Retrenchment based on the specification templates in Appendix B.

References

[AA98]

[Abr96]

[Abr98a]

[Abr98b]

[Acz98]

[ALW93]

[Bac80]

[Bac86]

[Bac88]

Yamine Ait-Ameur. Refinement of rational end-points real numbers by

means of floating-point numbers. Science o f Computer Programming,

33:133-162, 1998.

J-R. Abrial. The B-Book: Assigning Programs to meanings. Cambridge

University Press, first edition edition, 1996.

J.-R. Abrial. Atelier B. http://www.atelierb.societe.com/index_uk.html,

1998.

J.-R. Abrial. System Study: Method and Example. Avail

able on the web at www-lsr.imag.fr/B/Documents/ClearSy-

CaseStudies/PORTES/Texte/porte.anglais.ps.gz, 1998.

Peter Aczel. Notes on the simply typed lambda calculus. Manchester Uni

versity, UK, 1998.

Mark Aagaard, Miriam Leeser, and Phil Windley. Towards a super duper

hardware tactic. In Proceedings o f the HOL User’s Workshop, pages 401-414,

1993.

R.J.R. Back. Correctness Preserving Program Refinements: Proof Theory

and Applications. Tract 131, Mathematisch Centrum, Amsterdam, 1980.

R.C. Backhouse. Program Construction and Verification. Series in Computer

Science, Prentice-Hall International, 1986.

R.J.R. Back. A calculus of refinements for program derivations. Acta Infor-

matica , 25:593-624, 1988.

195

http://www.atelierb.societe.com/index_uk.html

REFERENCES 196

[Ban98]

[Bar94]

[BC85]

[BCo02]

[BD77]

[BDPOO]

[BF91]

[BJOl]

[BJKS99]

[BK96]

[BM79]

R. Banach. Maximally Abstract Retrenchments. In Proceedings o f the 3rd

IE E E International Conference on Formal Engineering Methods, 1998.

H. Barendregt. The Lambda Calculus. North Holland Publishing Co., Ams

terdam, second edition, 1994.

J. Bates and R. Constable. Proofs as Programs. A C M Transactions on

Programming Languages and Systems, 7(1):113—136, 1985.

BCore. BToolkit On-line Manual: Contents. Available on the web at

http://www.b-core.com/ONLINEDOC/Contents.html, 2002.

R. Burstall and J. Darlington. A Transformation System for Developing

Recursive Programs. Journal o f the ACM, 24(l):44-67, 1977.

Mirjana Borisavljevic, Kosta Dosen, and Zoran Petrie. On permuting cut

with contraction. Mathematical Structures in Computer Science, 10(2):99-

136, 2000.

R.W. Butler and G.B. Finelli. The Infeasibility of Experimental Quan

tification of Life-Critical Software Reliability. Software Engineering Notes,

16(5) :66—76, 1991.

Richard J. Boulton and Paul B. Jackson, editors. Computer Algebra meets

Automated Theorem Proving: Integrating Maple and PVS, volume 2152 of

Lecture Notes in Computer Science. Springer, 2001.

Christoph Benzmiiller, Mateja Jamnik, Manfred Kerber, and Volker Sorge.

Agent based mathematical reasoning. Electr. Notes Theor. Comput. Sci.,

23(3), 1999.

A. Bloesh and E. Kazmierczak. Refining Real Valued Specifications to Float

ing Point Programs: A Case Study. Australian Computer Science Com m u

nications, 18(1) :35—44, 1996.

R.S. Boyer and J.S. Moore. A Computaional Logic. Academic Press, New

York, NY, 1979.

http://www.b-core.com/ONLINEDOC/Contents.html

REFERENCES 197

[BM98]

[BP 99a]

[BP99b]

[Bri79]

[Bro81]

[Bro87]

[BS92]

[Bun91]

[Bun96]

[But98]

[BW88]

A. Bundy and D. McLean. The Use of Explicit Plans to Guide Inductive

Proofs. In CADE, number 310 in 9, pages 111-120. Springer-Verlag, 1998.

R. Banach and M. Poppleton. Retrenchment: An Engineering Variation

on Refinement. Technical Report UMCS-99-3-2, Computer Science Dept,

Manchester University, 1999.

R. Banach and M. Poppleton. Sharp Retrenchment, Modulated Refinement

and Simulation. Formal Aspects o f Computing, 11:498-540, 1999.

Douglas Bridges. Constructive Functional Analysis. In Research Notes in

Mathematics, volume 28. Pitm an Publishing, London, 1979.

W.S. Brown. A Simple but Realistic Model of Floating Point Computation.

A C M Transactions on M athematical Software, 7(4):445-480, 1981.

F.P. Brookes Jr. No silver bullet - Essence and accidents of software engi

neering. Computer, 20(4):10-19, April 1987.

J.P. Bowen and V. Stavridou. Safety-critical systems, formal methods and

standards. Technical Report OUCL PRG paper, Oxford University Com

puting Laboratory, December 1992.

Alan Bundy. A science of reasoning. In Computational Logic - Essays in

Honor o f Alan Robinson, pages 178-198, 1991.

Alan Bundy. Proof planning. In Brian Drabble, editor, Proceedings o f the

Third International Conference on Artificial Intelligence Planning Systems,

Edinburgh, Scotland, May 29-31, 1996. AAAI, 1996.

M. Butler. Towards Tool Support for Formal Refinement. Available at

http://www.ecs.soton.ac.uk/publications/rj/1997-1998/DSSE/paper05.pdf,

1998.

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-

Hall, New York, 1988.

http://www.ecs.soton.ac.uk/publications/rj/1997-1998/DSSE/paper05.pdf

REFERENCES 198

[CAB+86]

[CH88]

[CM95]

[CooOO]

[COR+95]

[CSJ99]

[DB82]

[Di 01]

[Dij75]

[DLP79]

[Dol95]

R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,

R.W.Harper, Douglas J. Howe, T.B. Knoblock, N.P. Mendler, P. Panan-

gaden, James T. Sasaki, and Scot F. Smith. Implementing M athematics in

the N uP RL Proof Development System. Prentice Hall, 1986.

T. Conquant and G. Huet. The Calculus of Constructions. Inform ation and

Computation , 76:95-120, 1988.

V.A. Carreno and P.S. Miner. Specification of the IEEE-854 Floating point

Standard in HOL and PVS, 1995.

D. J. Cooper. Basic Lisp Techniques. Franz Inc, 2000.

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial In

troduction to PVS. In W IF T ’95: Workshop on Industrial-Strength Formal

Specification Techniques, Boca raton, Florida, 1995, 1995.

A. Cavalanti, A. Sampaio, and J.Woodcock. An inconsistency in procedures,

parameters, and substitution in the refinement calculus. Science o f Computer

Programming, 33:87-96, 1999.

D.D. Douglas and V.R. Basili. A Comparative Analysis of Functional Cor

rectness. Computing Surveys, 14(2):229-244, June 1982.

B.L. Di Vito. A PVS Prover Package for Common Lisp Manip

ulations, Version 0.9. http://shem esh.larc.nasa.gov/fm /ftp/larc/PVS2-

library/pvslib.html, November 2001.

Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs. Communications o f the A C M , 18(8):453-457, Au

gust 1975.

R.A. De Millo, R.L. Lipton, and A.J. Perlis. Social processes and proofs of

theorems and programs. Communications o f the A C M , 22(5), March 1979.

Axel Dold. Representing, Verifying and Applying Software Development

Steps using the PVS System. In V.S. Alagar and Maurice Nivat, editors,

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-

REFERENCES 199

[ESA96]

[EscOO]

[Fel93]

[FF98]

[FH94]

[FM87]

[FR86]

[Fra88]

Proceedings o f the Fourth International Conference on Algebraic Methodol

ogy and Software Technology, A M A S T ’95, Montreal, volume 936 of Lecture

Notes in Computer Science, pages 431-435. Springer-Verlag, 1995.

ESA/CNES. Ariane 501 Presentation on Inquiry Board report. Tech

nical report, European Space Agency, 8-10 rue Mario Nikis, 75738

Paris Cedex 15, France, June 1996. Available on the web at

http://www.sp.ph.ic.ac.uk/ balogh/ariane5.html.

M. Escardo. Introduction to exact real computation. Notes for a tutorial at

ISSAC 2000, August 2000.

Amy Felty. Implementing tactics and tacticals in a higher-order logic pro

gramming language. Journal o f Automated Reasoning, 11(1):41—81, 1993.

Dirk Fuchs and Marc Fuchs. Cooperation between top-down and bottom-

up theorem provers. In Jacques Calmet and Jan A. Plaza, editors, AISC ,

Artificial Intelligence and Symbolic Computation, International Conference

A IS C ’98, Plattsburgh, New York, USA, September 16-18, 1998, Proceedings,

volume 1476 of Lecture Notes in Computer Science. Springer, 1998.

Amy Felty and Douglas Howe. Tactic theorem proving with refinement-tree

proofs and metavariables. In Alan Bundy, editor, Proceedings o f the 12th

International Conference on Automated Deduction, pages 605-619, Nancy,

France, 1994. Springer-Verlag LNAI 596.

Amy Felty and Dale Miller. Proof explanation and revision. Technical Report

MS-CIS-88-17, LINC LAB 104, Dept, of Computer and Information Science,

University of Pennsylvania, March 1987.

R. Forsyth and R. Rada. Machine Learning: applications in expert system s

and information retrieval Ellis Horwood Series in Artificial Intelligence.

Ellis Horwood Limited, Chichester, 1986.

Franz Inc. Common Lisp, The Reference. Addison-Wesley Publishing Com

pany, Inc., 1988.

http://www.sp.ph.ic.ac.uk/

REFERENCES 200

[Fuc95]

[GaI86]

[GLT89]

[GM93]

[GMNW78]

[GMW79]

[Gol91]

[Gor88]

[Gre69]

[Gri81]

[Gri99]

M. Fuchs. Experiments in the Heuristic Use of Past Proof Experience. Tech

nical Report SEKI-Report SR-95-10, University of Kaiserslautern, November

1995.

Jean H Gallier. Logic fo r Computer Science: Foundations o f A uto

matic Theorem Proving. New York: Wiley, 1986. Also available at

http://www.cis.upenn.edu/ jean/gbooks/logic.html.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Uni

versity Press, 1989.

M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem-

proving environment fo r higher-order logic. Cambridge University Press,

1993.

M. Gordon, R. Milner, M. Newey, and C.P. Wadsworth. A metalanguage for

interactive proof in lcf. In Proceedings o f the 5th A C M SIG A C T -SIG P L A N

symposium on Principles o f programming languages, pages 119-130. ACM

Press, New York, NY, USA, 1978.

M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mecha

nised Logic of Computation. Lecture Notes in Computer Science, 78, 1979.

D. Goldberg. W hat every computer scientist should know about floating

point arithmetic. A C M Computing Surveys, 23(l):l-48, March 1991.

M.J.C. Gordon. Mechanizing Programming Logics in HOL. Available on

the web at http://www.cam .sri.eom /tr/crc034/paper.ps.Z, 1988.

C. Green. An application of Theorem Proving to Problem Solving. In 1st

Iternational Joint Conference on Artificial Intelligence, pages 219-239. Mor

gan Kaufman, 1969.

David Gries. The Science o f Programming. SV, 1981.

Ralph P. Grimaldi. Discrete and combinatorial mathematics. Addison-

Wesley, fourth edition, 1999.

http://www.cis.upenn.edu/
http://www.cam.sri.eom/tr/crc034/paper.ps.Z

REFERENCES 201

[GriOO]

[GS93]

[Gur98]

[Ham89]

[Har96]

[HB95]

[HG01]

[HJMT95]

[Hoa69]

[Hop93]

[HT93]

Wolfgang Grieskamp. A Computation Model for Z Based on Concurrent

Constraint Resolution. In ZB2000: Formal Specification and Development

in Z and B , pages 414-432, 2000.

David Gries and Fred B. Schneider. A Logical Approach To Discrete Math.

SV, 1993.

T. Gurukumba. From GDL to CSP: Towards the full formal verification

of solid state interlockings. M aster’s thesis, Oxford University Computing

Laboratory, September 1998.

R. Hamlet. Testing fo r trustworthiness, pages 97-104. Ablex Publishing

Company, 1989.

J.R. Harrison. Theorem Proving with Real Numbers. PhD thesis, University

of Cambridge, 1996.

M. G. Hinchey and J. P. Bowen. Applications o f Formal Methods. Prentice

Hall, 1995.

J.G. Hall and T. Gurukumba. Decomposing the DSub retrenchment. Techni

cal Report Research Report, Computing Department, The Open University,

June 2001.

Jon G. Hall, Jeremy L. Jacob, John A. McDermid, and Ian Toyn. Towards a

Z Method: the two button press case study. IE E Colloquium on ”Practical

Application o f Formal M ethods”, 1995.

C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Com mu

nications o f the AC M , 12(10):576-583, October 1969.

A. A. Hopgood. Knowledge-Based System s fo r Engineers and Scientists. CRC

Press, 1993.

John Harrison and Laurent Thery. Reasoning About the Reals: The Mar

riage of HOL and Maple. In Logic Programming and Autom ated Reasoning ,

pages 351-353, 1993.

REFERENCES 202

[IEE87]

[JKP02]

[Jon86]

[KB01]

[Ker98]

[Kle64]

[Kne97]

[Kra98]

[Kre95]

[Kre98]

IEEE. Standard fo r binary floating point arithmetic. The Institute of Elec

trical and Electronic Engineers, Inc, 345 East 47th Street, New York, NY

10017, USA, ANSI/IEEE Standard 854-1987 edition, 1987.

M. Jamnik, M. Kerber, and M. Pollet. Automatic learning in proof plan

ning. Technical Report CSRP-02-3, University of Birmingham, School of

Computer Science, March 2002.

C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall,

Eaglewood Cliffs, NJ., 1986.

W. Kramer and A. Bantle. Forward error analysis for floating point algo

rithms. Reliable Computing, 7:321-340, 2001.

M. Kerber. Proof planning: A practical approach to mechanized reasoning in

mathematics. In Wolfgang Bibel and Peter H. Schmidt, editors, Autom ated

Deduction: A Basis fo r Applications. Volume III, Applications. Kluwer Aca

demic Publishers, Dordrecht, 1998.

Stephen Cole Kleene. Introduction to Metamathematics. North-Holland

Publishing Co. —Amsterdam, 1964.

R. Kneuper. Limits of Formal Methods. Formal Aspects o f Computing ,

9:379-394, 1997.

W. Kramer. Constructive error analysis. Journal o f Universal Computer

Science, 4(2):147-163, 1998.

V. Kreinovich. D ata Processing Beyond Traditional Statistics: Applications

of Interval Computations. A Brief Introduction. In V. Kreinovich, editor,

Supplement to the International Workshop on Applications o f Interval Com

putations., International Journal of Reliable Computing, pages 13-21, 1995.

C. Kreitz. Program synthesis. In Automated Deduction— A Basis fo r Appli

cations, chapter III.2.5, pages 105-134. Kluwer, 1998.

REFERENCES 203

[KSK93]

[KW94]

[Lei94]

[Lev86]

[LH01]

[LS93]

[Mar 84]

[Mar94]

[MC98]

[Mey97]

[MGW96]

[Mil72]

R. Kumar, K. Schneider, and T. Kropf. Structuring and Automating Hard

ware Proofs in a Higher-Order Theorem Proving Environment. Formal M eth

ods in System Design, 2(2):165-223, 1993.

Thomas Kolbe and Christoph Walther. Reusing proofs. In European Con

ference on Artificial Intelligence, pages 80-84, 1994.

Daniel Leivant. Higher order logic. In D. M. Gabbay, C. J. Hogger, and

J. A. Robinson, editors, Handbook o f Logic in Artificial Intelligence and

Logic Programming, Volume 2: Deduction Methodologies, pages 229-321.

Clarendon Press, Oxford, 1994.

N.G. Leveson. Software Safety: Why, W hat, How. Computing Surveys,

18(2), June 1986.

Tatjana Lutovac and James Harland. Proof manipulations for logic program

ming proof systems. Available at citeseer.nj.nec.com/lutovac01proof.html,

2001.

B. Littlewood and L. Strigini. Validation of ultra-high dependebility of

software-based systems. CACM, 1993.

P. Martin. Intuitionistic Type Theory. Bibliopolis, 1984.

A. Martin. M achine-Assisted Theorem-Proving fo r Software Engineering.

PhD thesis, Pembroke College, University of Oxford, 1994.

Erica Melis and Jaime G. Carbonell. An argument for derivational analogy.

In Advances in Analogy and Research, 1998.

Bertrand Meyer. Oject- Oriented Software Construction. Prentice Hall PTR,

Upper Saddle River, New Jersey, 07458, Second edition, 1997.

A.P. Martin, P.H.B. Gardiner, and J.C.P. Woodcock. A Tactic Calculus.

Formal Aspects o f Computing, 8(E):244-285, 1996.

Robin Milner. Implementation and applications of Scott’s logic for Com

putable Functions. In Proceedings o f the A C M on Proving Assertions about

Programs, pages 1-6. ACM Press, New York, NY, USA, 1972.

REFERENCES 204

[Mil84]

[Min95]

[MM01]

[Mor88]

[Mor94]

[Mor97]

[Mun99]

[MW75]

[MW80]

[MW99]

[NASa]

R. Milner. The Use of Machines to Assist in Rigorous Proof. Royal Society

o f London Philosophical Transactions Series A , 312:411-421, October 1984.

P.S. Miner. Defining the IEEE-854 Floating-Point Standard in PVS. Techni

cal Report Technical Memorandum 110167, NASA Langely Research Center,

NASA Langely Research Center Hampton, VA 23681-001, June 1995.

C. Munoz and M. Mayero. Real Automation on the Field. Avail

able on the web at http://shem esh.larc.nasa.gov/fm /ftp/larc/PVS2-

library/pvslib.html, November 2001.

C.C. Morgan. The Specification Statement. A C M Transactions on Program

ming Languages and System s, 10(3):403-409, 1988.

C.C. Morgan. Programming from Specifications. Series in Computer Science.

Prentice-Hall International, second edition edition, 1994.

J.M. Morris. A theoretical basis for stepwise refinement and the program

ming calculus. Science o f Computer Programming, 9(3):287-306, 1997.

Cesar Munoz. PBS: Support for the B-Method in PVS. Technical report,

Computer Science Lab, SRI International, February 1999.

Z. Manna and R. Waldinger. Knowledge and Reasoning in Program Synthe

sis. Artificial Intelligence, 6(2):175—208, 1975.

Z. Manna and R. Waldinger. A Deductive Approach to Program Synthesis.

A C M Transactions on Programming Languages and Systems, 2(1):90—121,

1980.

Erica Melis and Jon Whittle. Analogy in inductive theorem proving. Journal

o f Automated Reasoning, 22(2):117—147, 1999.

NASA. Formal methods specification and analysis guidebook for the verifica

tion of software and computer systems, volume ii: A practioner’s companion.

http://eis.jpl.nasa.gov/quality/Formal_M ethods/.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-
http://eis.jpl.nasa.gov/quality/Formal_Methods/

REFERENCES 205

[NASb]

[NPS90]

[GRSvH95]

[OS97]

[OS03a]

[OS03b]

[Pau94]

[Pau99]

[PB02]

[PopOl]

[Pra95]

NASA. Formal methods specification and analysis guidebook for the verifi

cation of software and computer systems, volume i: Planning and technology

insertion. http://eis.jpl.nasa.gov/quality/Form al_M ethods/.

B. Nordstrom, K. Petersson, and J. Smith. Programming in M arting-Lof’s

Type Theory. A n Introduction. Clarendon Press, 1990.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification

for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IE E E

Transactions on Software Engineering, 20(2), February 1995.

Sam Owre and N atarajan Shankar. The Formal Semantics of PVS. Techni

cal report, SRI International, Computer Science Laboratory, August 1997.

URL:http: / / www.csl.sri.com/sri-csl-fm.html.

S. Owre and N. Shankar. The PVS Prelude Library. Technical Report

SRI-CSL-03-01, Computer Science Lab, SRI International, March 2003.

Sam Owre and N. Shankar. Writing PVS proof strategies. In Myla

Archer, Ben Di Vito, and Cesar Munoz, editors, Design and Application

o f Strategies/Tactics in Higher Order Logics (ST R A T A 2003), number CP-

2003-212448 in NASA Conference Publication, pages 1-15, Hampton, VA,

September 2003. NASA Langley Research Center.

L.C. Paulson. Isabelle: A generic Theorem Prover. Lecture Notes in Com

puter Science, (828), 1994.

Lawrence C. Paulson. Logic and proof, 1999. Lecture Notes, Computer

Laboratory, University of Cambridge.

M. Poppleton and R. Banach. Controlling Control Systems: An Application

of Evolving Retrenchment. In Proc. ZB-02, LNCS, volume 2272, 2002.

M.R. Poppleton. Formal Methods fo r Continuous Systems. PhD thesis,

Department of Computer Science, University of Manchester, 2001.

V. R. P ratt. Anatomy of the Pentium bug. In P. D. Mosses and M.

Nielsen and M. I. Schwatzbach, editor, Proceedings o f the 5th International

http://eis.jpl.nasa.gov/quality/Formal_Methods/
http://www.csl.sri.com/sri-csl-fm.html

REFERENCES 206

[RC90]

[Rob63]

[Rob65]

[Ros98]

[Rou99]

[Rus94]

[Rus99]

[RvH93]

[San68]

Joint Conference on the theory and practice of software development (TAP -

S O F T ’95), volume 915, pages 97-107. Springer-Verlag, 1995.

S. Reeves and M. Clarke. Logic fo r Computer Science. Addison-Wesley,

1990.

J.A. Robinson. Theorem-Proving on the Computer. Journal o f the A C M ,

10(2) :163—174, April 1963.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.

Journal o f the A C M , 12(1):23—41, January 1965.

A.W. Roscoe. The Theory and Practice o f Concurrency. Prentice Hall

Series in Computer Science, 1998. FDR is available on the web at

http://www.formal.demon.co.uk/FDR2.html.

Y. Rouzard. Interpreting the B-Method in Refinement Calculus. In J. Wing,

J. Woodcock, and J. Davies, editor, Proc. F M ’99: World Congress on Formal

Methods, Toulouse, France, volume 1708. Springer-Verlag, September 1999.

J. Rushby. Critical System Properties: Survey and Taxonomy. Reliability

Engineering and System Safety , 43(2):189-219, 1994.

J. Rushby. Integrating Formal Verification: using Model Checking with

Automated Abstraction, Invariant Generation and Theorem Proving. In

D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Theoretical and

Practical Aspects o f SP IN Model Checking: 5th and 6th International SP IN

Workshops, volume 1680, pages 1-11. Springer-Verlag, July 1999. Invited

paper presented at 5th SPIN workshop, Trento, Italy, 5th July 1999.

J. Rushby and F. von Henke. Formal Verification of Algorithms for Critical

Systems. IE E E Transactions on Software Engineering, 19(1):13—23, January

1993.

N.A. Sanin. Constructive Real Numbers and Constructive Function Spaces.

In Translations of M athematical Monographs, volume 21. American M ath

ematical Society, Providence, Rhode Island, 1968.

http://www.formal.demon.co.uk/FDR2.html

REFERENCES 207

[SchOO] Johann Schumann. Automated theorem proving in high-quality design. In

Steffen Holldobler, editor, Intellectics and Computational Logic, volume 19

of Applied Logic Series. Kluwer, 2000.

[Sco72] D.S. Scott. Formal Semantics o f Programming Languages, chapter Lattice

theory, data tyoes and semantics, pages 66-106. Prentice-Hall, Englewood

Cliffs, NJ, 1972.

[Sha92] Natarajan Shankar. Proof search in the intuitionistic sequent calculus. In

D. Kapur, editor, Proceedings 11th Intl. Conf. on Automated Deduction,

C A D E ’92, Saratoga Springs, CA, USA, 15-18 June 1992, volume 607, pages

522-536. Springer-Verlag, Berlin, 1992.

[ShaOl] N. Shankar. Strategies.lisp. Made available via the PVS Users email list,

pvs-owner@csl.sri.com, nov 2001.

[Sim96] A. C. Simpson. Safety through security. PhD thesis, Oxford University

Computing Laboratory, 1996.

[Smi85] D. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial

Intelligence, 27(l):43-96, 1985.

[Smi99] G. Smith. Stepwise development from ideal specifications. Technical Re

port 99-35, Software Verification Research Centre, School of Information

and Technology, University of Queensland, Brisbane, Australia, November

1999.

[SORSC98a] N. Shankar, S. Owre, J.M. Rushby, and M.W.J. Stringer-Calvert. P V S

Language Reference, 1998. Available at http://www.csl.sri.com/pvs.html.

[SORSC98b] N. Shankar, S. Owre, J.M. Rushby, and M.W.J. Stringer-Calvert. P V S

Prover Guide, 1998. Available at http://www.csl.sri.com/pvs.html.

[SORSC98c] N. Shankar, S. Owre, J.M. Rushby, and M.W.J. Stringer-Calvert. P V S

System Guide, 1998. Available at http://www.csl.sri.com/pvs.html.

[SS86] L. Sterling and E. Shapiro. The A rt of Prolog: Advanced Programming

Techniques. MIT Press, 1986.

mailto:pvs-owner@csl.sri.com
http://www.csl.sri.com/pvs.html
http://www.csl.sri.com/pvs.html
http://www.csl.sri.com/pvs.html

REFERENCES 208

[Ste84]

[Ste98]

[Str98]

[Sun96]

[Tar92]

[Vie93]

[vW94]

[Wad93]

[WD96]

[Wic89]

[Wil97]

[Wir71]

G. L. Steel. Common Lisp, The Language. Digital Press, 1984.

S. Stepney. High Integrity Compilation, a case study. Prentice Hall Interna

tional (UK) Ltd, web edition edition, October 1998.

D.W.J. Stringer-Calvert. Mechanical Verification o f Compliler Correctness.

PhD thesis, Department of Computer Science, University of York, 1998.

Sun Microsystems. Numerical Computation Guide. Available on the web at

http://docs.sun.com /db/doc/806-7996, December 1996.

M. Tarver. An Algorithm for Inducing Tactics from Proofs. Technical report,

Artificial Intelligence Division, University of Leeds, 1992. Available by ftp

on agora.scs.leeds.ac.uk/scs/ doc.

R. Vienneau. A review of formal methods. Technical report, Kaman Science

Corporation, 1993.

J. von Wright. The lattice of data refinement. Acta Inform atica , 31:105-135,

1994.

P. Wadler. A taste of linear logic. Lecture Notes in Computer Science, 711,

1993. Invited lecture delivered at Mathematical Foundations of Computer

Science/Gdansk, August-September.

J.C.P. Woodcock and J. Davies. Using Z Specification, Refinem ent and

Proof. Series in Computer Science. Prentice-Hall International, 1996.

B.A. Wichmann. Towards a Formal Specification of Floating Point. Com

puter Journal, 32(5):4321-435, 1989.

Matthew Wilding. Robust Computer System Proofs in PVS. In C. Michael

Holloway and Kelly J. Hayhurst, editors, LFM97: Fourth N A SA Langley

Formal Methods Workshop. NASA Conference Publication, 1997.

N. Wirth. Program evelopment by Stepwise Refinement. Communications

of the A C M , 14(4):221—227, April 1971.

http://docs.sun.com/db/doc/806-7996

REFERENCES 209

[Won02]

[Wor96]

[YBH97]

W. Wong. 8-Bitters Flourish In A 32-Bit World. Electronic Design, June

2002 .

J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

W.D. Yu, A. Barshefsky, and S.T. Huang. An Empirical Study of Software

Faults Preventable a t a Personal Level in a Very Large Software Development

Environment. Bell Labs Technical Journal, Summer 1997:221-232, 1997.

A ppendix A

The PV S system

S , a h r a, A

T h A
------------- W h (d e le te) (h ide)
A, T h A

A , A ,T h A
-----------------(C h) (copy) (rev ea l)

A , T \ - A

r i , 5 , A , r h A
--------------------- - (E h)
F i , A , B , r 2 h A

r h A , A
--------------- (-> h) auto
->A ,r h A

A , r h A B . r h A
--------------------------------------- (V h) (s p l i t)

A V B , T h A

r , A , B h A
---------------------- (A h) (f la t te n)
T ,(A A B) h A

B , r h A r h A , A
-- (=>h) (s p l i t)

r ,A => B h A

S , a, b hp ,a A E, c hr,-,a a > A
 (<^h) (smash) E G V 2

S , I F (a , b , c) h r A

r ,A [t /x] h A
-------------------- (V h) (in s t?)
r , V x : A h A

r , A[y/x] h A
-------------------- (3 h) (skolem) EVC1
T, 3 x : A h A

(V(r : T) : a) = (X(x : T) : a)

A . T h A r h A, A

----------------(h T) auto
S h r T, A

T h A
------------- h W (d e le te) (h ide)
T h A , A

T h A , A, A
 h C (copy) (rev ea l)

r h A , A

r h A i , 5 , a , a 2
--------------------------h E
r h A i , a , b , a 2

A , r h a

--------------- (I— i) auto
r h A , ^
r h A , B , A

 (h V) (f la t te n)
r h A V -B, A

r h A , A r h B , A
----------------------------- (h A) (s p l i t)

T h (A A B), A

r , A h B , A
---------------------(h=>) (f la t te n)
T h A ^ B , A

S , a hr,a b ,A S hr,-,a o, c,A
--(h'O) (smash) (bash)

2 hr IF(a, b, c), A

T h A [y / x] , A
-------------------- (hV) (skolem !) EVC1
r h V i : A ,A

r h A[f/r], A
--------------------- (h 3) (in s t?)
T h 3 x : A, A

(3 (r : T) : a) = -.(V(x : T) : -.a)

h P (tiq) (V n | no < n : (V i \ no < i < n : P (i)) h P (n + 1))
(Cut) (case) --------- (ind u ct "n")

r h A (h V n | r c o < n : P (n))

Rules labeled (auto) are automatically invoked by PVS. The Exchange rule is entirely om itted in PVS [SORSC98b]. EVC1
is the eigenvariable condition that x is not free in the assumptions nor in p. E V C 2 is the eigenvariable condition that A is
A with all instances of a eliminated. Mathematical induction is over the set {no, no + 1, no + 2 , . . . } of integers [GS93].

(Ax) auto (J. h) auto
E,_L hr A

210

APPENDIX A. THE PVS SYSTEM

A .l The Permutation cases for LK

211

Original Prooftree Permuted Prooftree

■1-3
r h A ,3a: : A

r h A ,3a: : A , B
h W

T h A, A[t /x\

T h A , A [t / x] , B

T h A , B , A [t / x]

T h A ,B ,3 a : : A

h W

h E

h 3

h E
T h A , 3 x : A , B

T h A , A [t / x \
h 3

r h A , 3 x : A
W h

B , r h A , 3 i : A

rhA,A[«/2)]

B . r h A , A [t / x]
h w

■ h 3
B , T h A , 3 * : A

T h A , B , A [t / x]
h 3

r h A , B , 3 a : : A
h E

r h A , 3 i : A , B

r h A, B, A\ t / x \

T h & , A [t / x] , B
h E

■ h 3
r h A , B , 3 i : A

T , B h A , A [t / x]

r , B h A , 3 i : A

B , r h A , 3 i : A

h 3

E h

r , B h A , A [t / i]

B , T [- A , A [t / x]

B , r h A , 3 i : A

E h

• h 3

r h A , A [t / x] , B , B

T h A , 3 x : A , B , B
h 3

h C
T h A , 3 z : A , B

T h A , A [t / x) , B , B

T h A , A [t / x] , B
h C

h 3
T h A , 3 x : A , B

B , B , T \ - A , A [t / x]

B , B , r , h A , 3 i : A
■ h 3

C h
B , r h A , 3 i : A

B , B , T \ - A , A [t / x]
C h

B , r h A , A [t / x \
h 3

B , r h A , 3 i : A

Table A.l: Permutation of Instantiation with Structural Rules

APPENDIX A. THE PVS SYSTEM 212

Original Prooftree Permuted Prooftree

T h A , A [t / x] , B

T h A, 3 1 : A , B
h 3

T h A [t / x] , A , B T h A , 3 x : A , C
h W h w

r h A , 3 x : A { x) , C
hA

r h A , 3 x : A(x) , B A C

Where the same instantiation can be performed in the
right branch or a different instantiation can be used.
Using the same instantiation makes the proof uniform.
Therefore performing branching rules as early as pos
sible can result in common inference-rules among the
prooftree branches.

T \ - A [t / x] , A , B , 3 x : A T h A[t /x] , A , C , 3 x : A
------------------------------------ h E h E

r h A[t /x] , A , 3 x \ A , C
h/'

r h ^ . A ^ i ^ . B A C

r h A , 3 i : A , B A C , A [t / x \
h E

■ h 3
r h A , 3 * : A IB A C , 3 s : i l

r h A, 3 a; : A , B A C
(h E-, h C; h E)

W here, according to Gentzen’s original formulation, the
Exchange-rule is used to bring formula in scope for manipulation
by the inference-rules; Contraction is advocated before eliminat
ing a quantifier in order to retain the quantified formula in the
premise as in Gentzen System G and this makes Gentzen System
L K complete; and weakening produces the same leaves as in the
original prooftree. This use of structural rules to obtain the same
leaves as in the Original Prooftree increases the complexity of the
Permuted Prooftree.

B , C , r h A, A[t /x]
h 3

B , C , r h A , 3 i : A,

B, C , r h A , A [t / x]

B A C , r h A , A [t / x]
Ah

Ah h 3
B A G , r h A , 3 x : A B A C , r h A , 3 i : i

T h A , A [t / x] , B , C

T \ - A , 3 x : A , B , C
h 3

r h A , A [t / x \ , B , C

r h A , A [t / x] , B V C
•hV

•hV ■ h 3
r h A , 3 x : A , B V C r h A , 3 i : 4 , B V C

B , f h A , A [t / x] B , T h A , A [y / x) C , v y - A , A [t / x]
h 3 Vh

B , r h A , 3 x : A r h A , 3 x : A(x)

B V C , r h A , 3 i : A,

B y c , r h A ,^ i[t/x]
Vh

The 3 in the right-branch may also need to be elim
inated for the proof to proceed, and the same instan
tiation term in the left branch may be used. Hence
performing a branching rule before a none-branching
one has the effect of duplicating proofsteps among
prooftree branches.

------------------------------- h 3
B V C7, rh A , 3 x : A

Ignoring structural rules gives a Permuted Prooftree of the same
complexity as the Original Prooftree. The Permuted Prooftree has
the effect of factoring out the common instantiation terms among
the prooftree branches (Theorem 3.6.2). However, structural rules
can be used to return the same leaves as in the Original Prooftree
if desired.

B , T \ - A , A [t / x]

B, r h A , 3 x : A
h 3

B , r h A , A [t / x)

r h A , i [t / i] , - n B
■h

h 3
r h A , 3 i : A , ^ B rhA, 3®

Table A.2: Permutation of Instantiation with Logical Rules

APPENDIX A. THE PVS SYSTEM 213

Original Prooftree Perm uted. Prooftree

T \ - A , A [t / x] , B
\- 3

r h A , A [t / x] , B

n - A ,3a: : A , B A , A [t / x]

- . B . n - A , 3 * : A
l_ 3

- n B . r b A ,3a: : A

B . T h A , A [t / x \ , C
3

B . T h A , A [t / x] , C

B , r h A , 3 i : A, C r h A , A [t / x] , B => C

T\~ A , 3 x : A , B => C
■.... - — 1- 3

T I- A, 3 x : A, B => C

T h A , A [t / x] , B C , T \ - A , A [t / x \ .
P 3 1-3

r i - A , 3 ® : A , B C , r h A , 3 * : i l
-- =>h

B=J> C , r i - A , 3 * : A,

The same instantiation can be applied in both sub
trees thus yielding a uniform proof in terms of the
instantiation terms used in the proof.

r h A , % / i] , B C , T \ - A , A [t / x)
-- =£.(-

B => <7,r.l- A , A [t / x)
------------------ :-------h 3
B => C , T P A , 3 x : A

Applying the instantiation before the branching =>b has the effect
of factoring out the common instantiation terms among the proof
branches in the Original Prooftree (Theorem 3.6.2).

T \ - A , A [t / x] , B [z / w]
3

T \ - A , A [t / x] ,B [z / w]

T \ - A , B x : A , B [z / w]
1- V

A[y/ x] ,T I- A , A[t / x] , ' i w : B

T 1- A, 3i r : A, Vi a : B

The skolem variable z can be used as the instantiation
term t pending type-correctness conditions (Theorem
3.6.1).

r h A , 3 i : A. Vi u : B

The skolem variable z should not occur in the conclusion and
therefore z and t must be distinct.

B [t / w] , A[t / x]Y 1- A
(- 3

B[t / w] Y H A , A[t /x]

B [t / w } , T \ - A , 3 x : A
w

V w : J5, r b A , A[t /x]

V w : B , T h A , 3 x : A

The same instantiation term used in the V 1- rule
can be used for the 1- 3 rule pending type correctness
conditions.

Vw : B , r h A , 3 x : A

The same instantiation term used in the V 1- rule can be used for
the h- 3 rule pending type correctness conditions.

L , T \ - A , A [t / x] T b A , A [t / x] , L
Cut

L , r i - A , A [i / x] r H A, A [t / x \ , L
1-3 i_ q

r h A, A[t /x]
\- 3

L , T b A , 3 x : A(x) T b A, 3 x : A(x) , L

n - A , 3 x : A(x)

Where Pi = r h A l i [t / i] . Gentzen Hauptsatz The
orem permutes the Cut above other inference-rules as
in the Original Prooftree above, which has the effect
of factoring-out common rules among the cut branches
in the adjacent Permuted Prooftree (Theorem 3.6.2).

r h A , 3 x : A(x)

Where P 2 = T h A , 3 z : A(x) , L. The permutation of Cut
down the prooftree enables the creative introduction of a new
formula (the Cut formula) as early as possible in the proofstate.
In addition, it may be possible to eliminate the cut, e.g. the cut
is used to introduce the PNF of the goal formula in Section 3.5.1
but goal formula can also be rewritten into PN F by definitional
equivalences.

Table A.3: Permutation of Instantiation with Logical Rules

A ppendix B

A rchitectural retrenchm ent in PV S

B .l Backtracking on a failed proof attem pt
S u b R e fin e m e n tP O :

{ 1 } FORALL (SO : [UO - > UO] , S I : [U1 - > [I I - > U l]] , S 2 : [U 2 - > [1 2 - > U 2]] ,
uO: UO, A l , u l : U l , A 2 , u 2 : U 2 , i l : I I , i 2 : 1 2 , A 2: U 2) :

((i n v (S l) (u l) k G (u l , u 2) k i n v (S 2) (u 2) k t r m (S 2) (u 2 , i 2) k W (uO, A l , u l , A 2 , u 2 , i l , i 2))
= > (t r m (S l) (u l , i l) k t r m (S 2) (u 2 , i 2) k (t r m (S l) (u l , i l) => (FORALL (u 2 p : U 2) : p r d (S 2) (u 2 , i 2 , u 2 p)

= > (E X IST S (u l p : U l) : p r d (S l) (u l , i l , u l p) k G (u l p , u 2 p))))))

R u le ? ((t r y (g r i n d) (f a i l) (s k i p)) (s k i p) (g r i n d : d e f s n i l : i f - m a t c h n i l))

T r y i n g r e p e a t e d s k o l e m i z a t i o n , i n s t a n t i a t i o n , a n d i f - l i f t i n g ,
t h i s s i m p l i f i e s t o :
S u b R e f in e m e n tP O :

{ - 1 } a l (u l ! l) = a 2 (A 2 ! 1)
{ - 2 } a 2 (A 2 ! 1) <= 10
{ - 3 } (b 2 (i 2 ! 1) <= 1 0)
{ - 4 } (a 2 (u 2 ! 1) = a 2 (A 2 ! l))
{ - 5 } a O (u O !1) = a 2 (A 2 ! 1)
{ - 6 } b O (u O !1) = b 2 (i 2 ! 1)
{ - 7 } a l (A l ! 1) = a 2 (A 2 ! 1)
{ - 8 } (b l (i l ! l) = b 2 (i 2 ! l))
{ - 9 } a 2 (A 2 ! 1) >= b 2 (i 2 ! l)
{ - 1 0 } 1 = b 2 (i 2 ! 1)
{ - 1 1 } 3 = a 2 (A 2 ! 1)
{ - 1 2 } a 2 (u 2 p ! 1) = a 2 (A 2 ! l) - b 2 (i 2 ! l)

| -

A t t e m p t e d p r o o f o f S u b R e fin e m e n tP O f a i l e d .

A t t e m p t e d p r o o f o f S u b R e fin e m e n tP O f a i l e d .
S u b R e fin e m e n tP O :

|--------
[1] FORALL (SO : [UO - > U O], S I : [U l - > [I I - > U l]] , S 2 : [U 2 - > [1 2 - > U 2]] ,

uO: UO, A l , u l : U l , A 2 , u 2 : U 2 , i l : I I , i 2 : 1 2 , A 2: U 2) :
((i n v (S l) (u l) k G (u l , u 2) k i n v (S 2) (u 2) k t r m (S 2) (u 2 , i 2) k W (uO, A l , u l , A 2 , u 2 , i l , i 2))

=> (t r m (S l) (u l , i l) k t r m (S 2) (u 2 , i 2) k (t r m (S l) (u l , i l) => (FORALL (u 2 p : U 2) : p r d (S 2) (u 2 , i 2 , u 2 p)
=> (E X IST S (u l p : U l) : p r d (S l) (u l , i l , u l p) k G (u l p , u 2 p))))))

T r y i n g r e p e a t e d s k o l e m i z a t i o n , i n s t a n t i a t i o n , a n d i f - l i f t i n g ,
t h i s y i e l d s 2 s u b g o a l s :

S u b R e f in e m e n tP O .1 :

{ - 1 } i n v (S l ! 1) (u l ! 1)

214

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS

{ - 2 } G (u l ! 1 , u 2 ! l)
{ - 3 } i n v (S 2 ! 1) (u 2 ! 1)
{ - 4 } t r m (S 2 ! 1) (u 2 ! 1 , i 2 ! l)
-C -5} W(uO! 1 , A l ! 1 , u l ! 1 , A 2 ! l , u 2 ! l , i l ! l , i 2 ! l)
{ - 6 } p r d (S 2 ! l) (u 2 ! l , i 2 ! l , u 2 p ! l)

|--------
■Cl} EX ISTS (u l p : U l) : p r d (S l ! l) (u l ! l , i l ! 1 , u l p) & G (u l p , u 2 p ! l)

R u le ? (i n s t + " S I D e f (u l ! 1) (i l ! 1) ")
I n s t a n t i a t i n g t h e t o p q u a n t i f i e r i n + w i t h t h e t e r m s : S I D e f (u l ! 1) (i l ! 1) , t h i s y i e l d s

S u b R e f in e m e n tP O . 1 . 1 :

[- 1] i n v (S l ! 1) (u l ! 1)
[- 2] G (u l ! 1 , u 2 ! 1)
[- 3] i n v (S 2 ! l) (u 2 ! l)
[- 4] t r m (S 2 ! 1) (u 2 ! 1 , i 2 ! l)
[- 5] W (uO !1 , A l ! 1 , U l ! 1 , A 2 ! l , u 2 ! l , i l ! 1 , i 2 ! l)
[- 6] p r d (S 2 ! l) (u 2 ! l , i 2 ! l , u 2 p ! l)|--------
{ 1 } p r d (S l ! 1) (u l ! 1 , i l ! 1 , S I D e f (u l ! l) (i l ! 1)) & G (S l D e f (u l ! 1) (i l ! 1) , u 2 p ! l)

R u le ? (g r i n d)

T r y i n g r e p e a t e d s k o l e m i z a t i o n , i n s t a n t i a t i o n , a n d i f - l i f t i n g ,

T h i s c o m p l e t e s t h e p r o o f o f S u b R e f in e m e n tP O .1 . 1 .

S u b R e f in e m e n tP O . 1 . 2 (T C C):

[- 1] i n v (S l ! 1) (u l ! 1)
[- 2] G (u l ! 1 , u 2 ! 1)
[- 3] i n v (S 2 ! 1) (u 2 ! 1)
[- 4] t r m (S 2 ! 1) (u 2 ! 1 , 1 2 ! 1)
[- 5] W (uO !1 , A l ! 1 , u l ! 1 , A 2 ! l , u 2 ! l , i l ! 1 , 1 2 ! 1)
[- 6] p r d (S 2 ! 1) (u 2 ! 1 , i 2 ! l , u 2 p ! l)
|--------

-C l} r e a l ? (b l (i l ! l)) & (a l (u l ! l) >= b l (i l ! l))

R u le ? (g r i n d)

T r y i n g r e p e a t e d s k o l e m i z a t i o n , i n s t a n t i a t i o n , a n d i f - l i f t i n g ,

T h i s c o m p le t e s t h e p r o o f o f S u b R e f in e m e n tP O .1 . 2 .

T h i s c o m p le t e s t h e p r o o f o f S u b R e f in e m e n t P O . l .

S u b R e f in e m e n tP O . 2 :

{ - 1 } i n v (S l ! 1) (u l ! 1)
{ - 2 } G (u l ! l , u 2 ! 1)
-C -3} i n v (S 2 ! 1) (u 2 ! 1)
{ - 4 } t r m (S 2 ! l) (u 2 ! l , 1 2 ! 1)
{ - 5 } W (uO !1 , A l ! 1 , u l ! 1 , A 2 ! l , u 2 ! l , i l ! l , i 2 ! l)

{ 1 } t r m (S l ! 1) (u l ! 1 , i l ! 1)

R u le ? (g r i n d)

T r y i n g r e p e a t e d s k o l e m i z a t i o n , i n s t a n t i a t i o n , a n d i f - l i f t i n g ,

T h is c o m p le t e s t h e p r o o f o f S u b R e f in e m e n tP O .2 .

Q .E .D .
Run t im e = 1 . 4 1 s e c s .
R e a l t im e = 5 5 9 . 7 6 s e c s .
NIL
P V S (4 0) :

2 s u b g o a l s

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS

MACHINE DSub MACHINE MSub
RETRENCHES DSub

VARIABLES a, b VARIABLES aa
INVARIANT a £ R INVARIANT aa £ FR

A 6 £ R
RETRIEVES (a a < Ov a

A (a a = Ov =>
INIT * («) INIT y (v)
OPERATIONS OPERATIONS

5 = resp <— T(bb) -
BEGIN BEGIN

a > 6 | a : = a — 6 6 6 £ FR |
END a a < Ov A a a > 66 =>

dd i— dd — 66 |[resp := ok

aa = Ov V aa < bb =>
aa := aa A resp := fail

LVAR AA
W ITHIN a > 6 A A A = aa A (6 6 < Ov =► 6 = bb)
CONCEDES (resp — ok =$ a = aa)

A (resp = fail => aa = AA)
END

END END

MACHINE DSub MACHINE I A Sub
RETRENCHES DSub

VARIABLES a, 6 VARIABLES aa
INVARIANT a £ R INVARIANT aa £ R

A 6 £ R
RETRIEVES d ~— dd

INIT X (u) INIT Y (v)
OPERATIONS OPERATIONS

S = T(bb) =
BEGIN BEGIN

a > 6 | a : = a — 6 6 6 £ R A aa > bb |
END dd * — dd -- 6 6

LVAR AA
WITHIN 6 = 6 6

CONCEDES false
END

END END

MACHINE
RETRENCHES
VARIABLES
INVARIANT
RETRIEVES

DRSub
I A Sub
aaa
aaa £ FR
(aaa < Ov =$> aa = aaa)
A (aaa = Ov => aa > Ov)
Z(u)INIT

OPERATIONS
1/ (666) =
BEGIN

666 £ FR |
aaa < Ov A aaa > 6 6 6 =s>

aaa := aaa — 6 6 6

[]
aaa — Ov V aaa < 6 6 6 =s>

ddd ddd
LVAR AAA
WITHIN aa > 6 6 A AAA = aaa

A 6 6 6 < Ov => bb = 6 6 6

CONCEDES (aaa < Ov =$■ aa = aaa)
A (aaa = Ou => AAA — aaa)

END
END

MACHINE
RETRENCHES
VARIABLES
INVARIANT
RETRIEVES

OASub
DRSub
aaaa
aaaa £ FR
QC LC L — CLCLCLCL

a(v)INIT
OPERATIONS

resp <— V(bbbb) =
BEGIN

6666 £ FR |
a a a a < OF A a a a a > 6 6 6 6 =>

a a a a : = a a a a — 6 6 6 6 || resp — ok
[}
aaaa = Ov V a a a a < 6 6 6 6 =>

a a a a : = a a a a || resp : = fail
LVAR AAAA
WITHIN a a a > 6 6 6 A AAAA = a a a a

A (6 6 6 6 < Ov => 6 6 6 = 6 6 6 6)
CONCEDES (a a a < Ov => aaa = a a a a A resp = o

A (a a a = Ov => a a a a = AAAA A resp = /a iZ)
END

END

Figure B.l: Architecture Retrenchment in B

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 217

D S u b : THEORY
BEGIN

UO:TYPE = [# aO : r e a l , b O : r e a l #]
SO: VAR [UO - > UO]

i n i t D e f (u O :U O): UO = LET uO = (# a 0 : = 3 , b O := l #) IN uO

i n i t (u O p : U O) : b o o l = (a 0 (u 0 p) = 3 & b O (u O p)= l)

S O D e f(u O : U O I(a O (u O)> = b O (u O))) : UO = LET u O = in i t D e f (u O) IN uO WITH [a O := a O (u O)-b O (u O) , b O := b O (u O)]

in v (S O) (u O : U O) : b o o l = r e a l? (a O (u O)) & r e a l? (b O (u O))

t r m (S O) (u O : U O): b o o l = (a O (u O)> = b O (u O))

p r d (S O)(u O :U O ,u O p :U O):b o o l = ((a O (u O)> = b O (u O)) = > (a O (u O p) = a O (u O)-b O (u O) & b O (u O p)= b O (u O)))
END DSub

No TCCs g e n e r a t e d .

I A S u b : THEORY
BEGIN

IMPORTING DSub
U 1:TY PE = [# a l : r e a l #]
I I :T Y P E = [# b l : r e a l #]
A:TYPE = [# a l : r e a l #]
S I : VAR [U l - > [I I - > U l]]

i n i t D e f (u O : U O , u l : U l) : U l = LET u l = (# a l : = 3 #) IN u l

i n i t (u O : U O , u l p : U l) : b o o l = a l (u l p) = a O (u O)

S I D e f (u l : U 1) (i l : I I I r e a l ? (b l (i l)) & (a l (u l) > = b l (i l))) : U l = LET u l = (# a l : = 3 #) IN u l WITH [a l : = a l (u l) - b l (i l)]

i n v (S l) (u l : U l) : b o o l = r e a l ? (a l (u l))

t r m (S l) (u l : U l , i l : I l) : b o o l = (r e a l ? (b l (i l)) & a l (u l) > = b l (i l))

p r d (S l) (u l : U l , i l : I l , u l p : U l) : b o o l =
(r e a l ? (b l (i l)) & a l (u l) > = b l (i l)) => a l (u l p) = a l (u l) - b l (i l)

G (uO :U O , u l : U l) : b o o l = (a l (u l) = a O (u O))

W (uO:UO, A 1 :A , u l : U l , i l : I l) : b o o l = i n i t (u O) & i n i t (u O . u l) & (b l (i l) = b O (u O))

C (u p O :U O , u p l : U l , A 1 :A): b o o l = f a l s e
END IA S u b .

No TCCs g e n e r a t e d .

Figure B.2: DSub and IASub in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 218

DR Sub: THEORY
BEGIN

IMPORTING IA S u b
M a x R e a l : p o s r e a l= 1 0
F in R e a l:T Y P E = { x : r e a l I x < = M a x R e a l}
U 2:TY PE = [# a 2 : F i n R e a l #]
1 2 : TYPE = [# b 2 : F i n R e a l #]
S2:V A R [U2 - > [1 2 - > U 2]]
AA:TYPE = [# a 2 : F in R e a l #]

i n i t D e f (u O : U O , u 2 : U 2) : U 2 = LET u 2 = (# a 2 : = 3 #) IN u 2

in i t (u O : U O , u 2 p : U 2) : b o o l = (a 2 (u 2 p) = 3)

S 2 D e f (u 2 : U 2) (i 2 : I 2 | r e a l ? (b 2 (i 2))) : U2 = LET u 2 = (# a 2 : = 3 #) IN
I F (a 2 (u 2) < 1 0 & a 2 (u 2) > = b 2 (i 2)) THEN u 2 WITH C a 2 : = a 2 (u 2) - b 2 (i 2)] ELSE u 2 WITH [a 2 : = a 2 (u 2 >] ENDIF

i n v (S 2) (u 2 : U 2) : b o o l = a 2 (u 2) <= 1 0

t r m (S 2) (u 2 : U 2 , i 2 : I 2) : b o o l =

(b 2 (i 2) < = 1 0) & C (a 2 (u 2) < = 1 0 & a 2 (u 2) > = b 2 (i 2)) => t r u e) & ((a 2 (u 2) = 1 0 OR (a 2 (u 2) < b 2 (i 2))) = > t r u e)

p r d (S 2) (u 2 : U 2 , i 2 : I 2 , u 2 p : U 2) : b o o l = (b 2 (i 2) < = 1 0) =>

(((a 2 (u 2) < 1 0 & a 2 (u 2) > = b 2 (i 2)) & a 2 (u 2 p) = a 2 (u 2) - b 2 (i 2)) OR
C (a 2 (u 2) = 1 0 OR a 2 (u 2) < b 2 (i 2)) & a 2 (u 2 p) = a 2 (u 2)))

G (u l : U l , u 2 : U 2) : b o o l = (a 2 (u 2) < 1 0 = > a l (u l) = a 2 (u 2)) & (a 2 (u 2) = 1 0 => a l (u l) > = 1 0)

W (uO:UO, A 1 :A , u l : U l , A 2 : AA, u 2 : U 2 , i l : I l , i 2 : I 2) : b o o l = i n i t (u 0 , u 2) & W (u O ,u l ,A l , i l) &
a l (u l) > = b l (i l) & (b 2 (i 2) < = 1 0 => b l (i l) = b 2 (i 2)) & a 2 (u 2) = a 2 (A 2)

C (u l p : U l , u 2 p : U 2 , A 2 : A A): b o o l =
(a 2 (u 2 p) < 1 0 => a l (u l p) = a 2 (u 2 p)) & (a 2 (u 2 p) = 1 0 => a 2 (u 2 p) = a 2 (A 2))

END DRSub

*/. S u b ty p e TCC g e n e r a t e d (a t l i n e 1 1 , c o lu m n 2 9) f o r LET u 2 = (# a 2 := 3 #) IN u 2 ‘/ . e x p e c t e d t y p e U2
'/, p r o v e d - c o m p le t e

in i t D e f _ T C C 1 : OBLIGATION FORALL (u 2 1 : U 2) : LET u 2 : [# a 2 : r e a l #] = (# a 2 := 3 #) IN u 2 ‘ a 2 <= 1 0 ;

*/. S u b ty p e TCC g e n e r a t e d (a t l i n e 1 5 , c o lu m n 4 2) f o r LET u 2 = (# a 2 := 3 #) IN
‘/. I F (a 2 (u 2) < 1 0 & a 2 (u 2) >= b 2 (i 2)) THEN u 2 WITH [a 2 := a 2 (u 2) - b 2 (i 2)]
’/. ELSE u 2 WITH [a 2 := a 2 (u 2)] ENDIF ‘/ . e x p e c t e d t y p e U2

*/. u n f i n i s h e d

S 2 D e f_ T C C l: OBLIGATION FORALL (i 2 : 1 2 | r e a l ? (i 2 ‘ b 2) , u 2 1 : U 2) : LET u 2 : [# a 2 : r e a l #] = (# a 2 := 3 #) IN
IF (u 2 ‘ a 2 < 1 0 & u 2 ‘ a 2 >= i 2 ‘b 2) THEN u 2 WITH [a 2 :■= u 2 ‘ a 2 - i 2 cb 2]
ELSE u 2 WITH [a 2 := u 2 ‘ a 2] ENDIF ‘ a 2 <= 1 0 ;

M e s s a g e s f o r t h e o r y D R Sub4:

LET/WHERE v a r i a b l e u 2 . . . i s g i v e n t y p e [# a 2 : r e a l #] f r o m i t s v a l u e e x p r e s s i o n .

LET/WHERE v a r i a b l e u 2 . . . i s g i v e n t y p e [# a 2 : r e a l #] f r o m i t s v a l u e e x p r e s s i o n .

Figure B.3: DRSub in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 219

OASub: THEORY
BEGIN

IMPORTING DRSub
R e s p o n s e :TYPE = - [o k , f a i l }
U3:TY PE = [# a 3 : F i n R e a l #]
1 3 : TYPE = [# b 3 : F i n R e a l #]
0 3 : TYPE = [# r e s p : R e s p o n s e #]
S 3 : VAR [U 3 - > [1 3 - > [U 3 . 0 3]])
AAA:TYPE = [# a 3 : F i n R e a l #]

i n i t D e f (u O : U O , u 3 : U 3) : U 3 = (# a 3 : = 3 #)

i n i t (u 0 : U 0 , u 3 : U 3) : b o o l = (a 3 (u 3) = 3)

S 3 D e f (u 3 : U 3) (i 3 : I 3 I r e a l ? (b 3 (i 3))) : [U 3 .0 3] = LET u 3 = (# a 3 : = 3 #) IN
I F (a 3 (u 3) < 1 0 k a 3 (u 3) > = b 3 (i 3)) THEN (u 3 WITH C a 3 : = a 3 (u 3) - b 3 (i 3)] , (# r e s p : = o k #))
ELSE (u 3 WITH [a 3 : = a 3 (u 3)] , (# r e s p : = f a i l #)) ENDIF

i n v (S 3) (u 3 : U 3) : b o o l = (a 3 (u 3) <= 1 0)

t r m (S 3) (u 3 : U 3 , i 3 : I 3) : b o o l =
b 3 (i 3) < = 1 0 k C (a 3 (u 3) < 1 0 k a 3 (u 3) > = b 3 (i 3)) = > TRUE) k
((a 3 (u 3) > = 1 0 OR a 3 (u 3) < = b 3 (i 3)) = > TRUE)

p r d (S 3) (u 3 : U 3 , i 3 : I 3 , u 3 p : U 3 , o 3 : 0 3) : b o o l =
b 3 (i 3) < = 1 0 =>

C ((a 3 (u 3) < 1 0 k a 3 (u 3) > = b 3 (i 3)) k C a 3 (u 3 p) = a 3 (u 3) - b 3 (i 3) k r e s p (o 3) = o k))
OR ((a 3 (u 3) = 1 0 OR a 3 (u 3) < b 3 (i 3)) k C a 3 (u 3 p) = a 3 (u 3) & r e s p (o 3) = f a i l)))

G (u 2 : U 2 , u 3 : U 3) : b o o l =
(a 3 (u 3) < = 1 0 => a 2 (u 2) = a 3 (u 3))

W (uO:UO, A 1 :A , u l : U l , A 2 : AA, u 2 : U 2 , A 3 : AAA, u 3 : U 3 , i l : I l , i 2 : I 2 , i 3 : I 3) : b o o l = i n i t (u 0 , u 3) k
W (u O , A l , u l , A 2 , u 2 , i l , i 2) k (b 3 (i 3) < = 1 0 = > b 2 (i 2) = b 3 (i 3)) k a 3 (A 3) = a 3 (A 3)

C (u 2 p : U 2 , u 3 p : U 3 , o 3 : 0 3 , A 3 : A A A): b o o l =
(r e s p (o 3) = o k => a 2 (u 2 p) = a 3 (u 3 p)) k (r e s p (o 3) = f a i l = > a 3 (u 3 p) = a 3 (A 3))

END OASub

'/, S u b ty p e TCC g e n e r a t e d (a t l i n e 1 5 , c o lu m n 49) f o r LET u 3 = (# a 3 := 3 #) IN
*/. I F (a 3 (u 3) < 1 0 k a 3 (u 3) >= b 3 (i 3)) THEN (u 3 WITH [a 3 := a 3 (u 3) - b 3 (i 3)] , (# r e s p := o k #))
*/. ELSE (u 3 WITH [a 3 := a 3 (u 3)] , (# r e s p := f a i l #)) ENDIF
'/, e x p e c t e d t y p e [U 3 , 0 3]

'/, u n f i n i s h e d
S 3 D e f_ T C C i: OBLIGATION FORALL (i 3 : 1 3 I r e a l ? (i 3 ‘ b 3) , u 3 1 : U 3) : LET u 3 : [# a 3 : r e a l #] = (# a 3 := 3 #) IN

IF (u 3 *a 3 < 1 0 k u 3 ‘ a 3 >= i 3 ‘ b 3) THEN (u 3 WITH [a 3 := u 3 ‘ a 3 - i 3 ‘ b 3] , (# r e s p := o k #))
ELSE (u 3 WITH [a 3 := u 3 ‘ a 3] , (# r e s p := f a i l #)) E N D IF‘ l ‘ a 3 <= 1 0 ;

M e s s a g e s f o r t h e o r y 0 A S u b 4 :

LET/WHERE v a r i a b l e u 3 a t l i n e 1 5 , c o l 5 3 i s g i v e n t y p e
[# a 3 : r e a l #] fr o m i t s v a l u e e x p r e s s i o n .

Figure B.4: OASub in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 220

IAPOs: THEORY
BEGIN

IMPORTING IASub

AlnitPO: THEOREM
FORALL (uO:UO, SO:[UO -> UO]): init(uO) => inv(SO)(uO)

CInitPO: THEOREM
FORALL (uO:UO,ul:Ul, SI: [Ul->[I1->U1]]): init(uO) & init(uO,ul) => inv(Sl)(ul)

AlnvPO: THEOREM
FORALL (uO:UO, SO:[UO -> UO]): init(uO) =>
(inv(SO)(uO) & trm(SO)(uO) => (trm(SO)(uO) &
(FORALL (uOp:UO): (trm(SO)(uO) & prd(SO)(uO,uOp)) => inv(SO)(uOp))))

CInvPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, il:Il, S1:[U1 -> [II -> Ul]]):
((inv(Sl)(ul) & trm(Sl)(ul,il)) => (trm(Sl)(ul,il) & (FORALL (ulp:Ul):
(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp)) => inv(Sl)(ulp))))

RetlnitPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, il:Il, SO:[UO->UO], SI:[Ul->[I1->U1]]): FORALL (ulp:Ul):
(init(uO,ulp) & W(uO,Al,ul,il)) => (EXISTS (uOp:UO): init(uOp) & G(uOp,ulp))

SubRefinementPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):
((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) &
trm(Sl)(ul,il) & W(uO,Al,ul,il))
=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (FORALL (ulp:Ul): (trm(Sl)(ul,il) & prd(Sl)(ul.il,ulp))
=> (EXISTS (uOp:UO): (trm(SO)(uO) & prd(SO)(uO,uOp)) & G(uOp,ulp))))))

ConcessionPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):
((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) &
trm(Sl)(ul,il) & W(uO,Al,ul,il))
=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (FORALL (ulp:Ul):(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp))
=> (EXISTS (uOp:UO):(trm(SO)(uO) & prd(SO)(uO.uOp)) & C(uOp,ulp,Al))))))

END IAPOs

No TCCs are generated.

Figure B.5: Input architecture retrenchment proof obligations in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 221

DRPOs: THEORY
BEGIN

IMPORTING DRSub

AlnitPO: THEOREM
FORALL (uO:UO,ul:Ul, S1:[U1 -> [II -> Ul]]):
(init(uO) & init(uO,ul)) => inv(Sl)(ul)

CInitPO: THEOREM
FORALL (u0:U0,u2:U2, S2: [U2 -> [12 -> U2]]):
(init(uO) & init(u0,u2)) => inv(S2)(u2)

AlnvPO: THEOREM
FORALL (uO:UO,ul:Ul, il:Il, S1:[U1 -> [II -> Ul]]):
inv(Sl)(ul) & trm(Sl)(ul,il) => (trm(Sl)(ul,il) &

(FORALL (ulp:Ul):(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp)) => inv(Sl)(ulp)))

CInvPO: THEOREM
FORALL (uO:UO, ul:Ul, u2:U2, il:Il, 12:12, A1:U1, A2:fp_num, S2:[U2 -> [12 -> U2]]):
((inv(S2)(u2) & trm(S2)(u2,i2) & W(uO,Al,ul,A2,u2,il,i2)) => (trm(S2)(u2,i2)
& (FORALL (u2p:U2): (trm(S2)(u2,i2) & prd(S2)(u2,i2,u2p)) => inv(S2)(u2p))))

RetlnitPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, A2:fp_num, u2:U2, 11:11, i2:I2, S1:[U1 -> [II -> Ul]],
S2:[U2 -> [12 -> U2]]): FORALL (u2p:U2): (init(uO,u2p) & W(uO,Al,ul,A2,u2,il,i2))

=> (EXISTS (ulp:Ul): init(uO,ulp) & G(ulp,u2p))

SubRefinementPO: THEOREM
FORALL (SO:[UO -> UO], S1:[U1 -> [II -> Ul]], S2:[U2 -> [12 -> U2]],

uO:UO, Al,ul:U1, A2,u2:U2, il:Il, i2:I2, A2:fp_num):
((inv(Sl)(ul) & G(ul,u2) & inv(S2)(u2) & trm(S2)(u2,i2) & W(uO,Al,ul,A2,u2,il,i2))

=> (trm(Sl)(ul,il) & trm(S2)(u2,i2) & (trm(Sl)(ul,il) => (FORALL (u2p:U2):
prd(S2)(u2,i2,u2p) => (EXISTS (ulp:Ul): prd(Sl)(ul,il,ulp) & G(ulp,u2p))))))

ConcessionPO: THEOREM
FORALL (SO:[UO -> UO], S1:[U1 -> [II -> Ul]], S2:[U2 -> [12 -> U2]],

uO:UO, Al,ul:Ul, A2,u2:U2, il:Il, 12:12, A2:fp_num):
((inv(Sl)(ul) & G(ul,u2) & inv(S2)(u2) & trm(S2)(u2,i2) & W(uO, Al,ul,A2,u2,il,i2))

=> (trm(Sl)(ul,il) & trm(S2)(u2,i2) & (trm(Sl)(ul,il) => (FORALL (u2p:U2):
prd(S2)(u2,i2,u2p) => (EXISTS (ulp:Ul):prd(Sl)(ul,il,ulp) & C(ulp,u2p,A2))))))

END DRPOs

No TCCs are generated.

Figure B.6: Data representation retrenchment proof obligations in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 222

OAPOs: THEORY
BEGIN

IMPORTING OASub

AlnitPO: THEOREM
FORALL (u0:U0,u2:U2, S2: [U2 -> [12 -> U2]]):
(init(uO) k init(u0,u2)) => inv(S2)(u2)

CInitPO: THEOREM
FORALL (u0:U0,u3:U3, S3:[U3 -> [13 -> [U3,03]]]):
(init(uO) k init(u0,u3)) => inv(S3)(u3)

AlnvPO: THEOREM
FORALL (uO:UO,Al,ul:Ul, A2:fp_num, u2:U2, 11:11,12:12, S2:[U2 -> [12 -> U2]3):
((inv(S2)(u2) k trm(S2)(u2,i2) k W(uO,Al,ul,A2,u2,il,i2)) => (trm(S2)(u2,i2) k
(FORALL (u2p:U2): (trm(S2)(u2,i2) k prd(S2)(u2,i2,u2p)) => inv(S2)(u2p))))

CInvPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, A2:fp_num, u2:U2, A3:fp_num, u3:U3, il:Il, i2:I2,i3:I3,

S3: [U3 -> [13 -> [U3,03]]]): #/,(init(uO) k init(u0,u3)) =>
((inv(S3)(u3) k trm(S3)(u3,i3) k W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) =>
(tnn(S3)(u3,i3) k (FORALL (u3p:U3, o3:03):
(trm(S3)(u3,i3) k prd(S3)(u3,i3,u3p,o3)) => inv(S3)(u3p))))

RetlnitPO: THEOREM
FORALL (uO:UO, ul:Ul, u2:U2, u3:U3, il:Il, i2:I2, i3:I3, A1:U1, A2:fp_num, A3:fp_num,

S2:[U2->[I2->U2]], S3:[U3->[13->[U3,03]]]):
FORALL (u3p:U3): (init(u0,u3p) k W(u0,Al,ul,A2,u2,A3,u3Jil,i2,i3)) =>
(EXISTS (u2p:U2): init(u0,u2p) k G(u2p,u3p))

SubRefinementPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, u2:U2, A2:fp_num, u3:U3, A3:fp_num, il:Il, i2:I2, i3:I3,
SO:[UO->UO], SI:[U1->[I1->U1]], S2:[U2->[I2->U2]], S3:[U3->[I3->[U3,03]]]):
((inv(S2)(u2) k G(u2,u3) k inv(S3)(u3) k trm(S3)(u3,i3) k
W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) => (trm(S2)(u2,i2) k trm(S3)(u3,i3) k
(trm(S2)(u2,i2) => (FORALL (u3p:U3,o3:03):prd(S3)(u3,i3,u3p,o3)

=> (EXISTS (u2p:U2):prd(S2)(u2,i2,u2p) k G(u2p,u3p))))))

ConcessionPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, u2:U2, A2:fp_num, u3:U3, A3:fp_num, il:II, i2:I2, i3:I3,
SO:[UO->UO], SI:[Ul->[I1->U1]], S2:[U2->[I2->U2]], S3:[U3->[I3->[U3,03]]]):
((inv(S2)(u2) k G(u2,u3) k inv(S3)(u3) k trm(S3)(u3,i3) k
W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) => (trm(S2)(u2,i2) & trm(S3)(u3,i3) k
(trm(S2)(u2,i2) => (FORALL (u3p:U3,o3:03):prd(S3)(u3,i3,u3p,o3)

=> (EXISTS (u2p:U2): prd(S2)(u2,i2,u2p) k C(u2p,u3p,o3,A3))))))
END OAPOs

No TCCs are generated

Figure B.7: Output-architecture retrenchment proof obligations in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS

B.2 Evolving Retrenchment in PVS

D A d d E x a ct: THEORY
BEGIN

UO: TYPE = [# a O : r e a l , b O : r e a l #]
SO:VAR [U 0 -> U 0]

i n i t D e f (u O : U O) : U 0 = (# a 0 : = l / 4 , b 0 : = l / 4 #)

i n i t (u O : U O):b o o l = (a 0 (u 0) = l / 4 & b 0 (u 0) = l / 4)

S O D e f(u O :U O):U 0 = (# a O := a O (u O)+ b O (u O), b O := b O (u O) #)

i n v (S O) (u O : U O) : b o o l = r e a l? (a O (u O)) & r e a l? (b O (u O))

t r m (S O) (u O : U O) :b o o l = TRUE

p r d (S O) (u 0 : U 0 , u 0 p : U 0) : b o o l = (a O (u O p)= a O (u O)+ b O (u O) & b O (u O p)= b O (u O))
END D A d d E x a ct

I A A d d E x a c t : THEORY ’/ .U s e s t h e i d e a o f m a x im a l ly a b s t r a c t r e t r e n c h m e n t s
BEGIN

IMPORTING D A d d E x a ct
U lrT Y P E = [# a l : r e a l #]
I 1 : TYPE = [# b l : r e a l #]

S1:V A R [U l - > [I I - > U l]]
u l : U l

i n i t D e f (u O : U O ,u l : U l) : U 1 = (# a l := a O (u O) #)

i n i t (u O : U O , u l : U l) : b o o l = (a l (u l) = a O (u O))

S I D e f (u l : U l) (i l : I l) : U l = (# a l : = a l (u l) + b l (i l) #)

i n v (S l) (u l : U l) : b o o l = r e a l ? (a l (u l))

t r m (S l) (u l : U 1 , i l : I l) : b o o l = r e a l ? (b l (i l))

p r d (S l) (u l : U l , i l : I l , u l p : U l) : b o o l = r e a l ? (b l (i l)) <=> a l (u l p) = a l (u l) + b l (i l)

G (u O : UO, u l : U l) : b o o l = (a l (u l) = a O (u O))

W (uO:UO, A l , u l : U l , i l : I I) : b o o l = b l (i l) = b O (u O) & i n i t (u O) & i n i t (u O . u l)

C (u pO :U O , u p l : U l , A 1 : U 1): b o o l = f a l s e
END IA A d d E x a c t

No TCCs g e n e r a t e d

Figure B.8: DAddExact and IAAddExact in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 224

D R A d d E x a ct: THEORY
BEGIN

IMPORTING I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1] , IA A d d E x a c t
U 2 : TYPE = [# a 2 : fp _ n u m #]
1 2 : TYPE = [# b 2 : fp _ n u m #]
S2:V A R [U 2 - > [1 2 - > U 2]]
u 2 : U2
i 2 : 1 2

i n i t D e f (u 0 : U 0 ,u 2 : U 2) : U 2 = (# a 2 : = r e a l _ t o _ f p (a O (u O)) #)

i n i t (u 0 : U 0 , u 2 : U 2) : b o o l = (a 2 (u 2) = r e a l _ t o _ f p (a O (u O)))

S 2 D e f (u 2 : U 2) (i 2 : 1 2) : U 2 = I F (NOT o v e r _ u n d e r ? (v a l u e (f p _ a d d (a 2 (u 2) , b 2 (i 2) t t o _ n e a r e s t)))) THEN
(# a 2 : = f p _ a d d (a 2 (u 2) , b 2 (i 2) , t o _ n e a r e s t) #) ELSE (# a 2 : = r e a l _ t o _ f p (l / 3 2) #) ENDIF

i n v (S 2) (u 2 : U 2) : b o o l = f i n i t e ? (a 2 (u 2))

t r m (S 2) (u 2 : U 2 , i 2 : I 2) : b o o l = f i n i t e ? (b 2 (i 2))

p r d (S 2) (u 2 : U 2 , i 2 : I 2 , u 2 p : U 2) : b o o l = f i n i t e ? (b 2 (i 2)) =>
((N O T o v e r _ u n d e r ? (v a l u e (f p _ a d d (a 2 (u 2) , b 2 (i 2) , t o . n e a r e s t)))) &

(u 2 p = (# a 2 : = f p _ a d d (a 2 (u 2) , b 2 (i 2) , t o _ n e a r e s t) #)))
OR ((o v e r _ u n d e r ? (v a l u e (f p _ a d d (a 2 (u 2) , b 2 (i 2) , t o _ n e a r e s t)))) & (u 2 p = (# a 2 : = r e a l _ t o _ f p (l / 3 2) #)))

G (u l : U l , u 2 : U 2) : b o o l = (NOT o v e r _ u n d e r ? (a l (u l))) => (R e l E r r o r (v a l u e (a 2 (u 2)) , a l (u l)) <= 0)

W (u 0 :U 0 , A 1 :U 1 , u l : U l , A 2 : fp _ n u m , u 2 : U 2 , i l : I l , i 2 : I 2) : b o o l = i n i t (u 0 , u 2) &
W (u O , A l , u l , i l) & ((N O T o v e r _ u n d e r ? (b l (i l))) = > (b 2 (i 2) = r e a l _ t o _ f p (b l (i l))))

C (u l p : U l , u 2 p : U 2 , A 2 : f p _ n u m): b o o l = f a l s e
END D R A d d E xact

*/. A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1]
' / .g e n e r a t e d f r o m a s s u m p t i o n I E E E _ 8 5 4 .E x p o n e n t _ r a n g e ' / .u n f in i s h e d

IM P _IE E E _854_T C C 1: OBLIGATION (2 - - 1) / 6 > 5 ;

'/. A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1]
' / .g e n e r a t e d f r o m a s s u m p t i o n IF.F.F._854. S i g n i f i c a n d _ s i z e '/. u n f i n i s h e d

IM P _IE E E _854_T C C 2: OBLIGATION 2 " (6 - 1) >= 1 0 “ 5 ;

'/. A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1]
' / .g e n e r a t e d f r o m a s s u m p t i o n IE E E _ 8 5 4 . E x p o n e n t .A d j u s t m e n t '/. u n f i n i s h e d

IM P _IE E E _854_T C C 3: OBLIGATION a b s (6 - (3 * (2 - - 1) / 4)) <= 6 & i n t e g e r ? (6 / 1 2) ;

'/. S u b ty p e TCC g e n e r a t e d (a t l i n e 1 5 , c o lu m n 3 0) f o r f p _ a d d (a 2 (u 2) , b 2 (i 2) , t o . n e a r e s t) :
' / .e x p e c t e d t y p e (f i n i t e ? [2 , 6 , 2 , - 1]) '/,u n f i n i s h e d

S 2 D e f_ T C C l: OBLIGATION
FORALL (i 2 : 1 2 , u 2 : U 2) : f i n i t e ? [2 , 6 , 2 , - 1] (f p _ a d d [2 , 6 , 6 , 2 , - I] (u 2 ‘ a 2 , i 2 ‘ b 2 , t o . n e a r e s t)) ;

'/. S u b ty p e TCC g e n e r a t e d (a t l i n e 3 2 , c o lu m n 4 9) f o r a 2 (u 2) : e x p e c t e d t y p e (f i n i t e ? [2 , 6 , 2 , - 1])
'/, u n f i n i s h e d

G .TC C 2: OBLIGATION
FORALL (u l : U l , u 2 : U 2) : (NOT o v e r . u n d e r ? [2 , 6 , 6 , 2 , - l] (u l ca l)) IM PLIES f i n i t e ? [2 , 6 , 2 , - I] (u 2 ‘ a 2) ;

'/, S u b ty p e TCC g e n e r a t e d (a t l i n e 3 5 , c o lu m n 2 2) f o r b l (i l) : e x p e c t e d t y p e r e a l % p ro v ed - i n c o m p l e t e
VLTCC1: OBLIGATION

FORALL (A l , i l : I I , uO : UO, u l : U l , u 2 : U 2) : W (uO, A l , u l , i l) AND i n i t (u O , u 2) IM PLIES r e a l _ p r e d (i l ‘ b l) ;

Figure B.9: DRAddExact in PVS

APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 225

O A A d d E x a ct: THEORY
BEGIN

IMPORTING I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1] , D R A dd E xact '/,8 - b i t a r c h i t e c t u r e
R e sp o n s e :T Y P E ■= -[o k , f a i l >
U 3:TY PE = [# a 3 : fp _ n u m #]
1 3 : TYPE = [# b 3 : fp _ n u m #]
0 3 : TYPE = [# r e s p : R e s p o n s e #]
S 3 : VAR [U 3 - > [1 3 - > [U 3 , 0 3]]]
u 3 : U3
i 3 : 13

i n i t D e f (u 0 : U 0 ,u 3 : U 3) : U 3 = (# a 3 : = r e a l _ t o _ f p (a O (u O)) #)

i n i t (u 0 : U 0 , u 3 : U 3) : b o o l = (a 3 (u 3) = r e a l _ t o _ f p (a O (u O)))

S 3 D e f (u 3 : U 3) (i 3 : I 3) : [U 3 , 0 3] = I F (NOT o v e r _ u n d e r ? (v a l u e (f p _ a d d (a 3 (u 3) , b 3 (i 3) , t o _ n e a r e s t))))
THEN ((# a 3 : = f p _ a d d (a 3 (u 3) , b 3 (i 3) , t o _ n e a r e s t) #) , (# r e s p : = o k #))
ELSE ((# a 3 : = r e a l _ t o _ f p (M a c h E p s (2 , 5)) #) , (# r e s p : = f a i l #)) ENDIF

i n v (S 3) (u 3 : U 3) : b o o l = f i n i t e ? (a 3 (u 3))

t r m (S 3) (u 3 : U 3 , i 3 : I 3) : b o o l = f i n i t e ? (b 3 (i 3))

p r d (S 3) (u 3 : U 3 , i 3 : I 3 , u 3 p : U 3 , o 3 : 0 3) : b o o l = f i n i t e ? (b 3 (i 3)) =>
((N O T o v e r _ u n d e r ? (v a l u e (f p . a d d (a 3 (u 3) , b 3 (i 3) , t o _ n e a r e s t)))) &

(u 3 p = (# a 3 : = f p _ a d d (a 3 (u 3) , b 3 (i 3) , t o _ n e a r e s t) #) & r e s p (o 3) = o k) >
OR ((o v e r _ u n d e r ? (v a l u e (f p . a d d (a 3 (u 3) , b 3 (i 3) , t o _ n e a r e s t)))) &

(u 3 p = (# a 3 : = r e a l _ t o _ f p (M a c h E p s (2 , 5)) #) & r e s p (o 3) = f a i l))

G (u 2 : U 2 , u 3 : U 3) : b o o l = (NOT o v e r _ u n d e r ? (v a l u e (a 2 (u 2)))) =>
(R e l E r r o r (v a l u e (a 3 (u 3)) . v a l u e (a 2 (u 2))) <= 0)

W (u 0 :U 0 , A l , u l : U l , A 2 : fp _ n u m , u 2 : U 2 , A 3 : fp _ n u m , u 3 : U 3 , 1 1 : 1 1 , i 2 : I 2 , i 3 : I 3) : b o o l =
i n i t (u 0 , u 3) & W (u O , A l , u l , A 2 , u 2 , i l , i 2) & f i n i t e ? (b 2 (i 2)) &
((N O T o v e r _ u n d e r ? (v a l u e (b 2 (i 2)))) => (b 3 (i 3) = b 2 (i 2)))

C (u 2 p : U 2 , u 3 p : U 3 , o 3 : 0 3 , A 3 : f p _ n u m) : b o o l = f a l s e
7,R e l E r r o r (v a l u e (a 3 (u 3 p)) , v a l u e (a 2 (u 2 p))) < = 2 * M a c h E p s(2 , 5)

END O A A ddE xact

7. A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1] :
7 .g e n e r a t e d f r o m a s s u m p t i o n IF .E F ._854. E x p o n e n t . .r a n g e ' / u n f i n i s h e d

IM P _IE E E _854_T C C 1: OBLIGATION (2 - - 1) / 6 > 5 ;

'/, A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1] :
' / .g e n e r a t e d f r o m a s s u m p t i o n I E E E _ 8 5 4 .S i g n i f i c a n d _ s i z e 7 . u n f i n i s h e d

IM P _IE E E _854_T C C 2: OBLIGATION 2 ‘ (6 - 1) >= 1 0 “ 5 ;

'/, A s s u m in g TCC g e n e r a t e d (a t l i n e 3 , c o lu m n 1 2) f o r I E E E _ 8 5 4 [2 , 6 , 6 , 2 , - 1] :
' / .g e n e r a t e d f r o m a s s u m p t i o n I E E E _ 8 5 4 .E x p o n e n t .A d j u s t m e n t / . u n f i n i s h e d

IM P _IE E E _854_T C C 3: OBLIGATION a b s (6 - (3 * (2 - - 1) / 4)) <= 6 & i n t e g e r ? (6 / 1 2) ;

7. S u b ty p e TCC g e n e r a t e d (a t l i n e 1 7 , c o lu m n 3 0) f o r f p _ a d d (a 3 (u 3) , b 3 (i 3) , t o . n e a r e s t) :
' / .e x p e c t e d t y p e (f i n i t e ? [2 , 6 , 2 , - 1] '/, u n f i n i s h e d

S 3 D e f_ T C C l: OBLIGATION
FORALL (i 3 : 1 3 , u 3 : U 3) : f i n i t e ? [2 , 6 , 2 , - 1] (f p _ a d d [2 , 6 , 6 , 2 , - I] (u 3 ‘ a 3 , i 3 ‘ b 3 , t o . n e a r e s t)) ;

'/. S u b ty p e TCC g e n e r a t e d (a t l i n e 3 4 , c o lu m n 2 7) f o r a 2 (u 2) : e x p e c t e d t y p e (f i n i t e ? [2 , 6 , 2 , - 1])
'/, u n f i n i s h e d

G .T C C 1: OBLIGATION FORALL (u 2 : U 2) : f i n i t e ? [2 , 6 , 2 , - I] (u 2 ‘ a 2) ;

'/, S u b ty p e TCC g e n e r a t e d (a t l i n e 3 5 , c o lu m n 2 0) f o r a 3 (u 3) : e x p e c t e d t y p e (f i n i t e ? [2 , 6 , 2 , - 1])
'/. u n f i n i s h e d

G .TC C 2: OBLIGATION FORALL (u 2 : U 2 , u 3 : U 3) : (NOT o v e r . u n d e r ? [2 , 6 , 6 , 2 , - l] (v a l u e [2 , 6 , 2 , - I] (u 2 ‘ a 2)))
IM PLIES f i n i t e ? [2 , 6 , 2 , - I] (u 3 ‘ a 3) ;

Figure B. 10: OAAddExact in PVS

