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A bstract

Proof guarantees the correctness of a formal specification with respect to formal require­

ments, and of an implementation with respect to a specification, and so provides valuable 

verification methods in high integrity system development. However, proof development 

by hand tends to be an erudite, error-prone and seemingly interminable task.

Tactics are programs tha t drive theorem-provers, thus automating proof development 

and alleviating some of the problems mentioned above. The development of tactics for 

a particular application domain also extends the domain of application of the theorem- 

prover. A LCF-tactic is safe in that if it fails to be applicable to a particular conjecture, 

then it will not produce an incorrect proof.

The current construction of tactics from proofs does not yield sufficiently robust tactics. 

Proofs tend to be specific to the details of a specification and so are not reusable in general, 

e.g. the same proof may not work when the definition of a conjecture is changed. The 

major challenges in proof development are deciding which proof rule and instantiations to 

apply in order to prove a conjecture.

Discerning patterns in formal interactive proof development facilitates the construction 

of robust tactics that can withstand definitional changes in conjectures. Having developed 

an interactive proof for a conjecture, we develop the necessary abstractions of the proof 

steps used, to construct a tactic that can be applicable to other conjectures in th a t domain. 

By so doing we encode human expertise used in the proof development, and make proofs 

robust and thus generally reusable.

We apply our theory on the proofs of conjectures involving some set theory operators, 

and on the proof obligations tha t arise in the formal development of numerical specifica­

tions using the retrenchment method under the IEEE-854 floating-point standard in the 

PVS theorem-prover/proof-checker.
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Chapter 1

Introduction

Computer systems are expected to deliver a proper service that adheres to their speci­

fied requirements. One promising way to specify the requirements of a computer system 

in an unambiguous manner is to use formal specification languages which are based on 

Mathematical logic. The requirements specification can then be checked to ensure th a t 

it is correct with respect to the formal logic system by the use of formal mathematical 

proof. This thesis is on the development of computer programs called tactics th a t can be 

used in order to partially automate the task of developing a formal proof in an Interactive 

Theorem-Prover/Proof-Checker (ITP/PC ).

A proof obligation tha t can arise from a formal specification of a computer program 

can be expressed in the form of a conjecture in Mathematical Logic. For such a conjecture, 

a formal proof can be developed by hand (and/or with the assistance of a proof-checker) 

in the proof system of the formal logic used—such proofs are called hand-generated proofs. 

Having derived a formal proof of a conjecture, a tactic can then be encoded from the proof 

by collating the proof-steps used in developing tha t formal proof. The main goal of our 

research is to derive the so-called robust tactics, i.e. tactics tha t can still be applicable in

1



CHAPTER 1. INTRODUCTION 2

developing formal proofs of other expressions similar to the conjectures from which those 

tactics themselves were derived.

Since the robust tactics are to be used in the formal development of mathematical 

proofs, the development of such robust tactics themselves should be under a rigorous 

mathematical basis. In particular, a robust tactic should yield a normal form of a formal 

proof, which is equivalent to the original formal proof from which the robust tactic was 

derived. Thus a second goal of this work is to yield a mathematically correct procedure 

which can be used to derive such robust tactics from proofs.

The third main goal of the research on tactics is to minimise the amount of interaction 

between the Interactive Theorem-Prover/Proof-Checker (ITP/PC ) and its human user in 

the task of developing formal proofs. The amount of interaction between a human user 

and the Interactive Theorem-Prover or Proof-Checker can then be taken as a metric for 

the usefulness of a tactic in this endeavour.

Therefore the topic ‘Tactics from Proofs’ is associated with two main research ques­

tions: (1) Can robust tactics be derived from hand-generated proofs?; and (2) Can such 

tactics be incorporated in a state of the art theorem prover?

1.1 W hy formal proof in software development?

Most of the errors incurred in software development are due to logical errors on the part 

of the programmer [YBH97]. Software simulation and testing are the conventional means 

of detecting errors in software development. However, it is impossible to create an en­

vironment that is a perfect replica of reality when relying on simulation alone to ensure 

that a system meets its requirements [Ste98]. It is also impossible to exhaustively test 

software for defects using conventional software testing techniques because there are too
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many paths, possible inputs, and hardware failure modes in a computer system [Ham89]. 

In addition, software testing also accounts for over half the cost of a software development 

project [YBH97].

To aid the process of developing software tha t meets its specified requirements, some 

industry standards have mandated and advocated for the use of formal methods in software 

development, e.g. the railways, defense, and aviation industries [BS92]. However software 

testing and simulation will always be required to validate those parts of the software that 

are not amenable to mathematical representation and consequently cannot be formally 

verified.

1.1.1 Formal m ethods in software engineering

Formal methods is a collection of software development techniques based on mathematics. 

The application of mathematical techniques in software development establishes software 

engineering as a true engineering discipline since other branches of engineering, e.g. elec­

trical, mechanical, and civil engineering disciplines, are based on mathematics. The main 

issue addressed by formal methods is tha t of correctness, i.e. “the delivery of a proper 

service tha t adheres to specified requirements” [BS92].

The major criticisms of formal methods are tha t formal methods are: (1) unscalable,

i.e. formal methods have been said to apply only to toy academic projects and are not 

usable on industrial-scale projects; (2) intractable, i.e. formal methods techniques are 

difficult to reuse; and (3) limited to the mathematical domain, i.e. not everything tha t 

is informal can be formalized and conversely [Sim96]. Furthermore, formal methods have 

been said to take too long to be successfully applied, especially when applied by hand. 

The judicious application of formal methods, i.e. applying formal methods to only those
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critical parts of a system, as well as the provision of software tools such as theorem-provers 

and model-checkers, can go a long way to alleviate these problems [Gri81].

1.2 Software tool support for formal methods

Theorem-provers and model-checkers are two main software tools tha t are used to auto­

mate formal methods. However model-checking inherently suffers from the state explosion 

problem and thus is restricted to finite domains. Theorem-provers are free from the state- 

explosion problem since proof techniques such as mathematical induction can be used to 

argue about very large and/or infinite domains. However full automatic theorem-proving 

cannot be achieved due to the undecidability problem in First-order and Higher-order log­

ics, which are the logics of choice for specifying properties of computer systems. As such, 

Automatic Theorem-Provers (APTs) often fail to prove putative theorems of computer 

specifications.

In Interactive Theorem-Proving/Proof-Checking (IT P/PC ), the theorem-prover acts 

as a ‘slave’ in performing automated tasks for a ‘m aster’ expert human-prover/user, who 

guides the proof development process. Since humans are better at making strategic de­

cisions and computers are better at mechanical processing, IT Ps/PC s tend to be more 

effective than ATPs, and often succeed where ATPs fail. However, the user has to be an 

expert in mathematical proof development techniques, as well as in the language and proof 

system of the IT P /P C  being used. In addition, the proof system of most IT P /P C s consist 

of the most basic proof rules of the proof system, e.g. the proof system of a IT P /P C  based 

on classical logic may only consist of the classical logic rules of inference. The formal spec­

ification and verification of a system can thus demand extensive man-hours for even the 

most simple systems.



CHAPTER 1. INTRODUCTION  5

The partial automation of the proof development using tactics can go a long way to 

reduce the level of expertise and man-hours required to specify and verify a computer 

system in ITP/PC s. The use of such software tools partially increases the efficiency of 

formal proof development since tedious tasks may be automated, thus enabling faster 

processing by computer. The incidence of random or human error is also significantly 

reduced since computers can faithfully and securely perform mechanical tasks. However 

care still needs to be taken tha t the software tools themselves are correct; otherwise 

systematic errors would occur when the software tools are used.

1.3 Tactics from proofs

Proof development by hand tends to be an erudite, error-prone and seemingly interminable 

task. Tactics are programs that drive theorem-provers by automating the basic tasks in 

proof development, and thus tactics provide a means of alleviating these problems. The 

development of tactics for a particular application domain also extends the domain of 

use of the theorem-prover. A tactic is safe in tha t if a tactic fails to be applicable to a 

particular conjecture, it will not produce an incorrect proof.

The current construction of tactics from proofs does not yield sufficiently robust tactics. 

In the development of a formal proof, the major challenges are deciding which proof rule 

and variable instantiations to apply in order to prove a conjecture. Therefore proofs tend 

to be specific to the details of a specification and so are not reusable in general, e.g. the 

same proof may not work when the definition of the conjecture is changed.

Our solution to developing robust tactics is to discover patterns in a proof development 

in some domain, and then to encode these patterns as a tactic. In particular, the proofsteps 

used in the proof development are classified and rearranged to yield a proof in a normal
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form. This is done incrementally, i.e. when a tactic from one proof development fails 

on a different conjecture, a hand proof is developed for tha t conjecture; a new tactic is 

developed from tha t proof; and the new tactic is composed with the existent tactics, thus 

yielding a more powerful or robust tactic, which is reusable in different proof development 

exercises. When the proofs are developed using an IT P /PC , the human expertise used in 

the proof development can also be encoded in the tactic, e.g. as formal parameters of the 

tactic.

The main contribution of this thesis is the development of an algorithm tha t can 

be used to construct such robust tactics from proofs. Another of our contributions is 

to use this algorithm to develop tactics tha t can be used to verify retrenchment proof 

obligations and thus paving the way towards its mechanization. The Retrenchment method 

for software development has been developed to argue about the correctness of computer 

hybrid systems.

1.4 Hybrid systems

Hybrid systems are “critical systems composed of continuous components, which are con­

trolled and supervised by digital components” [NASa], e.g. control systems. This has 

led to an integration of the continuous and the discrete computation models, i.e. real 

computations and floating-point computations respectively.

The liberalization of the transformational form of the stepwise refinement method 

yielded the Retrenchment method, which is a formal method to specify and reason about 

hybrid systems [Ban98, BP99b, BP99a, PB02, PopOl]. The retrenchment method has 

been formalized in the B-Method for formal software development [Abr96, Abr98a, BCo02, 

Wor96]. However, the B-Method does not adequately formalize continuous mathematics
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which is based on the real number datatype. Therefore a theorem-prover/proof-checker, 

such as PVS, which supports the formalization of the reals, and the formalization of digital 

system computation as floats, as well as the encoding of tactics, is more appropriate as a 

software tool for the retrenchment method.

1.5 Organization of the thesis

This thesis makes use of standard mathematical and computer science notation, e.g. the 

symbol □  is used to signal the end of a definition, or a theorem. Teletype text denotes 

machine readable code, e.g. PVS specification text, U0:TYPE = [# a O :re a l, bO :rea l 

#], or user input (g r in d ) .

The state of the art in Critical Systems, Formal Methods, Tool Support, Mathematical 

Logic, and the current methods of constructing tactics from proofs are reviewed in Chapter

2. The nature of the robust tactics to be developed, and the research questions and goals 

pertaining to this task are outlined.

Based on the original LCF idea [GMW79, Mil84], Chapter 3 presents our theory for 

deriving robust LCF-like tactics from proofs of similar conjectures. The theory is based on 

the classification and permutation of proof-steps in a hand-generated proof of a conjecture, 

as well as the ability to extend one robust tactic with another. For the tactics produced b y f 

this theory, arguments are given for their mathematical integrity, robustness or reuse, and 

ability to reduce user-computer interaction in Interactive Theorem-Proving and Proof- 

Checking. The procedure is applied on some example simple similar conjectures.

Chapter 4 describes how the theory derived in Chapter 3 can be carried out in the 

chosen state of the art Interactive Theorem-Prover and Proof-Checker, PVS. PVS proof 

commands (defined-rules) are analogous to LCF-tactics and PVS strategies are analogous
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to LCF-tacticals [SORSC98c]. However the most powerful tactic (g rin d ) in PVS is found 

unsafe in that it can sometimes invoke an incorrect instantiation which results in an 

incorrect proofstate. Therefore (g rind ) is made more robust according to the theory of 

Chapter 3. The encoding of such robust tactics in PVS is described for the simple similar 

example conjectures in Chapter 3.

Chapter 5 introduces the Architectural Retrenchment method [HG01] for the specifi­

cation and proof of the vanilla Banach-Poppleton retrenchment method [PopOl, BP99b, 

PB02]. This decomposes a retrenchment specification into three separate architectural 

retrenchments; and the operational retrenchment proof obligation into a subrefinement 

or a concession. The change in variables from state to input and output variables, and 

the Operational Retrenchment proof obligation are made more transparent. PVS specifi­

cation templates are formulated for Architectural retrenchment, and the robust (g rin d ) 

tactic from Chapter 4 is extended in order to prove all the retrenchment proof obligations 

automatically for a given example retrenchment taken from [PopOl].

Chapter 6 tackles the task of formulating tactics for reliable numerical computation 

using a form of Architectural Evolving Retrenchment incorporating a specification of the 

IEEE_854 Floating Point Standard in PVS. This involves a change in datatype from 

reals to floats and therefore a change in complexity in the Architectural Retrenchment 

specifications as given in Chapter 5. The specification templates and robust tactics from 

Chapter 5 are extended to yield a robust tactic (FOpRetTac fn u m  term s) which proves 

all the retrenchment proof obligations for the exact and inexact representation of reals 

by floats, and error propagation in floating-point operations according to floating-point 

theory [Gol91].
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Chapter 7 discusses the main contributions of this thesis, which include (1) a math­

ematically correct procedure for constructing robust tactics from proofs, (2) the Archi­

tectural Retrenchment method, and (3) specification and proof using the Architectural 

Retrenchment method in PVS. An inference of this work is tha t our specification tem­

plates and robust tactics constitute a specification and proof system for Architectural 

retrenchment. Chapter 8 concludes with how our work achieves the goals and subgoals 

of the research, and outlines some possible future work on (1) our tactic construction 

method; and (2) the automation of the retrenchment method.

The references used in this work are listed in the References section. Appendix A 

lists the proof rules used in this work and their permutation analysis. Appendix B con­

tains a sample proof using a robust tactic, the Banach-Poppleton retrenchment and their 

corresponding PVS specification templates for Architectural Retrenchment.



Chapter 2

Tactics in formal m ethods

“The search fo r  a proof o f a conjecture expressed in some form al language is strikingly 

similar to m any goal-seeking activities ... In  general then we may express tactics as partial 

functions from  goals to lists o f goals. ” [Mil84].

This chapter reviews some background information and the state of the art on tactics 

in formal methods. The purpose is to identify and evaluate the existing problem(s) in 

the construction of robust tactics from proofs. From this discussion, the major research 

questions are formulated.

2.1 Introduction

Computer systems are expected to be correct, i.e. to deliver a proper service tha t satisfies 

specified requirements. Correctness is particularly im portant for critical computer systems, 

which are becoming increasingly used in situations where a malfunction could lead to 

catastrophe. It is infeasible to demonstrate correctness through traditional testing and/or 

simulation alone [LS93] (Section 2.2).

10
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Most errors incurred in software development, which may lead to the software malfunc­

tioning in operation, are logical errors [YBH97]. Formal Methods (Section 2.3) address 

correctness by employing Formal Mathematical logic (Section 2.4) to specify and verify 

properties of computer systems. However, Formal Methods tend to be an erudite, error- 

prone, seemingly interminable, unscalable and intractable to apply successfully. The study 

of formal mathematical systems, i.e. Proof Theory (Section 2.5) can help develop better 

formal methods. The use of Software Tool Support (Section 2.3.2) as an aid in the study 

and application of Formal methods can also greatly improve the tractability and scalability 

of Formal Methods, as well as reduce the incidence of human random error. However the 

user is expected to be an expert in both the Software Technology used and Mathematical 

logic.

LCF-tactics (Sections 2.6, 2.7) are software programs based on a rigorous mathematical 

framework, tha t partially automate the task of formal proof development in interactive 

theorem-proving and proof-checking. Since the tactics are intended for use in a formal 

method, the tactics need to be based on formal logic rather than heuristic or plausible 

techniques (see Section 2.8). A major desirable is to derive such robust tactics based on 

a rigorous formal mathematical framework, which can be reused to develop proofs with 

minimal human assistance despite modest system changes (Section 2.9.1). Such robust 

tactics when incorporated in an Interactive Theorem-Prover (IT P /PC ), can also minimize 

the amount of user-computer interaction in a proof development exercise, as well as the 

level of domain-knowledge required of the user IT P /PC .

The major research questions to be addressed in this work are: (1) Can robust tactics 

be derived from hand generated proofs?; and (2) Can such tactics be incorporated in a 

state of the art theorem-prover?. The main goals of our research are developing a method
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for: (1) deriving robust or reusable tactics with a rigorous mathematical integrity; (2) 

encoding such robust tactics in a state of the art theorem prover; and (3) demonstrating 

development of such tactics on a formal software development method, and the usefulness 

of such tactics in reducing the user-computer interaction (via automation) and the user- 

knowledge in formal specification (via specification templates) and proof (via tactic reuse).

2.2 The state of the art in systems development

The specified requirements of a computer system can be classified into two types [DB82]: 

(1) functional requirements which specify the internal workings (i.e. specific behaviour) 

of the system, e.g. the behaviour of state and input/output variables (see Chapters 5, 6); 

and (2) non-functional requirements which specify overall characteristics of the system, 

e.g. critical system properties such as reliability, safety, security, and real-timeliness.

A computer system is taken to consist of the following components [Abr98b]: (1) the 

software program, i.e. the specified functional requirements expressed in a programming 

language; (2) the operational environment, i.e. the entities which interact with the software 

program, e.g. the compiler which automatically generates machine code (for the hardware) 

from the software program; and (3) hardware, i.e. the physical entities which execute the 

machine code (from the compiler), e.g. the processor type of the computer which runs the 

software program. From such a system, the functional and non-functional requirements 

can then be investigated.

Critical systems must satisfy their functional requirements and must be seen to satisfy 

their non-functional requirements, e.g. safety-critical systems must be seen to satisfy the 

ultra-critical range of 10_7-10“12 failures per hour, i.e. at most one failure in 1141 to 

114 155 251 years! [Rus94]. It is infeasible to show through testing and/or simulation



CHAPTER 2. TACTICS IN FORMAL METHODS 13

that safety-critical systems—whose failure could result in catastrophe—meet such ultra- 

high reliability requirements [BF91]. However, if the formal specification of a software 

system is provably correct, then this gives confidence tha t the software system satisfies its 

requirements. Hence the analysis of safety-critical systems has been classified to fall in 

the deductive reasoning domain, which preserves tru th  [Lev86].

2.3 Formal methods

Formal methods are mostly relevant in the Critical (or High Integrity) Systems domain 

where a very high level of assurance is required tha t the critical system meets is specified 

requirements. Traditional Formal methods refer to the use of techniques from formal 

logic and discrete mathematics to software engineering problems, i.e. in the specification, 

design, and construction of computer systems and software [NASb, Lev86]. However with 

the advent of hybrid systems which include both discrete and continuous components, 

continuous mathematics are also becoming involved [Har96, PopOl].

D efin ition  2.3.1. (Formal methods) [HB95]: “A formal method is a set of tools and 

notations (with a formal semantics) that: (1) are used to specify unambiguously the re­

quirements of a computer system; (2) support the proof of properties of tha t specification, 

as well as proofs of correctness of an eventual implementation with respect to tha t speci­

fication.” □

Examples of commonly-used Formal methods include the B-Method [Abr96] (see Chapter 

5), the Z method [WD96], and the VDM method [Jon86].

The criteria for using a formal methodology include that the formal method must be:
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documented, repeatable, teachable, based on proven techniques, validated, and appropri­

ate to the problem being solved [Kne97]. The benefits of using formal methods include 

among others: precise and rigorous specification, better communication, higher quality, 

higher productivity, unification of philosophies, separation of concerns, higher confidence 

in the correctness of software, and making testing easier [Vie93]. The incorporation of 

lifecycle processes in the application of formal methods also helps to minimize fault in­

troduction in systems design, and to maximize the likelihood and the timeliness of the 

detection and removal of those faults that may creep in [Vie93].

2.3.1 The state of the art in Formal m ethods

The two main viewpoints of formal methods [Kne97] are (1) the theoretical study of 

mathematical logic systems (i.e. Proof Theory or Metamathematics [Kle64]) in order to 

derive new robust formal methods; and (2) the development of software tool support (i.e. 

Software Technology) for the pragmatic application of formal methods.

2.3.1.1 Formal specification and verification lifecycle

The incorporation of lifecycle approaches in the application of Formal methods greatly 

aids the study and development of better formal methods (see Procedure 2.3.1 below). 

The derivation of tactics from proofs is mainly concerned with the Generalization and 

Maintenance phase (Step 4.d). However all the phases are relevant when the formal 

specifications and proofs are developed in-house instead of outsourced—developing the 

proofs in-house enhances the level of control over the task of deriving robust tactics from 

proofs in tha t the human expertise required will be self-evident.
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P ro c e d u re  2.3.1. The Formal Analysis Lifecycle: The Current Formal Analysis lifecycle con­
sists of the following phases [Rus99]a:

1. Specification: specify/design in some generally used language/notation, e.g. the Classical 
Higher-Order logic or B-method. The product of this phase is a formal specification.

2. Abstraction: extract the part relevant to the property of interest, e.g. such properties 
are proof obligations which need to be proved for the specification to be regarded correct. 
The product of this phase are proof obligations that must be discharged or proved for the 
specification to be considered correct or valid.

3. Reduction: reduce the proof obligations to a form and notation where algorithmic tech­
niques can be applied, e.g. if  resolution is the preferred algorithmic technique, the proof- 
obligations are to be expressed in negated form. The product of this phase is a rewrite of 
the proof-obligations.

4. Verification: Perform the analysis. This phase has its own lifecycle:

(a) Exploration: find the best way to approach the chosen problem. The product of this 
phase should be a body of theorems that are mostly true.

(b) Development: generate an efficient overall verification. The product of this phase 
is a plan of the proof, e.g. as depicted by a viable hand proof.

(c) Presentation: prepare the proof for the social review process. The product of the ver­
ification should be a genuine proof that some property is satisfied by the specification 
b. Thus the choice of the algorithmic technique to develop the proof is important. 
For example, resolution theorem-provers do not generate a conventional proof at 
all; heuristic methods, e.g. proof-plans, can generate proofs that follow unnatural 
paths; low-level ITP/PC s overwhelm the reader with trivial data.

(d) Generalization and Maintenance: code the specification and proof for reuse. The 
products of this phase are: (a) a coded description, i.e. program that guides the 
theorem-prover to repeat the verification “without” human guidance— this corre­
sponds to the definition of LCF-type tactics [MGW96, GMW79']. (b) specification 
templates to support future applications, to distil general principles, or to explore 
alternative assumptions and designs.

5. Iterate steps (1) to (4-d) until satisfied.

Figure 2.1: The Formal methods application Lifecycle.

“Since this thesis is on Formal Methods, the ideas developed in this theses are presented in a manner 
which mirrors this Formal Methods Lifecycle.

bA genuine proof is defined as a chained argument as in Definition 2.4.6 that will convince a human 
reviewer [ORSvH95].
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The main purpose of the verification lifecycle steps (4.a) to (4.d) sublifecycle is to re­

dress the criticism of some verification methods which typically return £yes/ no’ tyPe veri~ 

fications and/or possibly counterexamples at the level of the abstracted description. For 

example, theorem-provers present a formal proof as a prooftree in terms of the inference- 

rules used and the subgoals generated; and model-checkers give counterexamples in the 

form of a ‘trace of events’, which is a subset of the alphabet of the formal logic system 

used, both of which may appear meaningless to a novice user.

The Generalization and Maintenance phase facilitates reuse of specifications and proofs. 

The generalized proof description should be robust, i.e. the proof description should be 

a strategy derived from the generated proof, as opposed to an exact line by line collation 

of the proof commands used in the generated proof [ORSvH95, Wil97]. Deriving such 

robust tactics from generated proofs can enable the robust tactics to be reused even after 

small changes are introduced in the original proved specification, e.g. due to changes in 

requirements or in the interfaces and systems that interact with the one under study. Gen­

eralizations of specifications into specification templates is another class of modifications 

tha t may be made in order to support future applications, to distill general principles, or 

to explore alternative assumptions and designs.

Other criticisms of the Formal Analysis Lifecyle (Procedure 2.3.1 above) are mainly 

concerned with the software tool support available [Rus99], e.g. the reduced models (from 

step 3 above) are usually built by hand, and this downscaling is considered draconian in 

tha t it may produce false negatives and positives in the verification exercise. There is also 

usually no connection between different tools or analysis methods used in the lifecycle, e.g. 

whereas Theorem-Provers are mainly used for the Specification and Verification phases,
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Static Invariant-Generators and Model-Checkers may be used in the Abstraction and Re­

duction phases respectively. This has mainly led to providing software tool support and 

integrating different formal methods tools together.

2.3.2 The state of the art in Software Tool Support

Involving the computer in the proof process contributes to the level of formality required 

when using formal methods [Mar94]. The incidence of human error is reduced—parsers 

ensure tha t specifications are syntactically correct; type-checkers ensure tha t conjectures 

are type-correct; and the proof system ensures tha t inference-rules are applied faithfully 

and securely. The use of a computer can also shorten the time taken in hand specification 

and proof—computers perform mechanical tasks expeditiously and thus can make proof 

development efficient.

Since no one Formal Method can tackle all phases of the Formal Methods lifecycle, 

or a formal software development lifecycle [Bro87]), the state of the art in software tool 

support involves the integration of different formal methods approaches, e.g. integration 

of model-checking with automated abstraction, invariant generation, and theorem-proving 

in PVS [Rus99]. A common approach in formal software development is the embedding of 

different formalisms in general purpose theorem-provers, e.g. the deep embedding of the 

B-M ethod  in PVS [Mun99].

2.3.2.1 Types of Theorem-provers

Human-oriented Theorem Provers (HOTPs) [Bun96, Bun91] model plausible (i.e. in­

formal) reasoning. Machine-Oriented Automatic Theorem Provers (MOATPs) [Rob63, 

Rob65], and Interactive Theorem Provers and Proof Checkers (ITPs/PCs) [SORSC98a,
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SORSC98b, SORSC98c] model formal reasoning, which is advocated for in high-integrity 

systems construction.

MOATPs lack the techniques tha t human experts use in proving conjectures thus 

MOATPs sometimes take too long, or even fail completely, to prove putative theorems. 

MOATPs proofs also tend to be difficult to follow and understand [Ker98]. ITPs/PC s 

overcome this limitation by allowing the human user to interact with the IT P /P C  in mak­

ing the strategic decisions required in proof development which make a proof successful. 

In particular, domain proof experts are good at deciding which inference-rule to apply in 

the development of a proof, and which variable instantiations to make tha t can make the 

proof of a particular conjecture successful. ITPs/PC s however have been criticized for 

being too interactive [SchOO], thus prolonging the time taken to complete a proof. Partial 

automation of some of the tasks in interactive theorem-proving by tactics can reduce the 

amount of this interaction, as well as the knowledge of particular proof techniques required 

of the human prover.

Theorem-provers have also been integrated with Computer Algebra Systems (CAS), 

on the one hand to use CAS as calculation oracles to aid theorem-provers in program 

verification [HT93], and on the other hand to use theorem-provers to verify the results 

given by CAS [BJ01]. Different Theorem-provers can also be coupled to interact with each 

other in a proof development exercise. A top-down prover can generate subgoals which are 

then processed by a bottom-up prover; or conversely lemmas generated by the bottom-up 

prover are used in a top-down prover to significantly reduce the proof lengths such tha t 

proofs can be found with smaller resources [FF98] 1. A HOTP can be integrated with

a MOATP in order to emulate the flexible problem solving behaviour of humans in an

1A  top-down theorem-prover implements goal-oriented (backwards) proof, whereas a bottom-up 
theorem-prover implements forwards proof (see Section 2.4.2.2)
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agent-based reasoning approach [BJKS99]—the proof-planner splits a goal into subgoals, 

and the agents, i.e. ATPs, are then appropriately allocated to the subgoals to be solved. 

The agents allow a number of proof attem pts to be executed in parallel, where each 

attem pt is on a separate ATP, thus a number of different proof strategies can be used at 

the same time in a proof search [Section 2.4.2.2].

A criticism of the use of theorem-provers in verification, is the chicken-and-egg problem 

of determining the reliability or correctness of the verifier itself, i.e. who verifies the 

verifier?. The use of model-based specification methods in theorem-provers can help the 

interpretation of the results given by a theorem-prover.

2.3.3 M odel-based formal specification m ethods

The specification language of a formal method is defined syntactically, i.e. in “strict” 

formalisation, there is total abstraction from the meaning of the statements being ma­

nipulated and the main concern is the arrangement of these statements, and specifically 

whether proofs or refutations can be constructed [Kle64, Gal86] 2.

D efin ition  2.3.2. (Formal s p e c if ic a t io n )  [NASa]: “A formal specification is a set 

of formulae in a formal language tha t characterizes a planned or existing system in a 

particular domain.” □

Appendix B lists some formal specifications in the B-Method [Abr96] and PVS specifica­

tion languages [SORSC98a] used in this work, where the specified requirements are the

functional requirements of the computer system.

2 “Abstraction is the process of simplifying and ignoring irrelevant details and focusing, distilling, and 
generalising what remains. In formal methods, abstraction is a tool for eliminating distracting detail, 
avoiding premature commitment to implementation choices, and focusing on the essence of the problem 
at hand” [NASb],
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In a model-based specification the statements in a specification are arranged according 

to some model of representation and computation thus giving the specification a certain 

structure (or normal form) as well as semantics. A specification method determines the 

process by which a satisfying model might be arrived at, e.g. the B-Method [Abr96] uses 

the Abstract Machine Notation as its specification method. A B-machine specification is 

a formalisation of an imperative software program in terms of the state-machine model, 

which typically consists of an abstract representation of a system state, i.e the variables 

and their values in the system, and a set of operations tha t manipulate the system state 

to effect a transition from one state to the next 3.

2.3.3.1 Executable specifications

Traditionally a formal specification describes what a system does, but not how it does 

it, i.e. specifications are not executable [Mor94]. However there has been recent and 

on-going work on making specifications executable, e.g. the execution of Z specifications 

[GriOO], and the use of declarative languages such as Prolog (logical) [Rob63] and Go­

pher (functional) [BW88] as both “formal specification and implementation languages” . 

In the logical paradigm, an automatic resolution theorem-prover provides the computa­

tional mechanism of proof search; and in the functional paradigm, recursion provides the 

computational mechanism of reasoning by mathematical induction. However, proof search 

and recursion are very expensive on computer resources such as memory and CPU-time, 

which makes declarative languages inefficient for systems implementation.

In order to make the execution of declarative languages more efficient, prover/compiler

optimization techniques for these languages can use heuristic methods, which then make

3The imperative paradigm is based on Turing machines; the functional paradigm is based on Church’s 
Lambda Calculus; and the object-oriented paradigm is based on the Russell’s Simple Theory of Types.
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declarative languages unsuitable as formal specification languages since heuristics are in­

formal. The main aim of High Integrity Compilation [Ste98, Str98] is to specify and 

verify imperative programming languages as well as their respective compilers in order 

to yield formally verified programming languages and compilers which can be used in 

High-Integrity systems development.

2.4 Formal Mathematical Logic

Formalism was introduced by David Hilbert in order to tackle the crisis caused by para­

doxes and the challenges to classical mathematics by the Intuitionists Brouwer and Weyl 

[Kle64]. Formalisation is the application of a notation tha t enables specification of a prob­

lem in that notation as well as reasoning about some properties of tha t specification. The 

purpose of formalising a theory is to get an explicit definition of that theory (i.e. spec­

ification), and what constitutes proof in the theory (i.e. verification), both of which are 

difficult to do in an informal language, such as natural languages.

D efin ition  2.4.1. (Formal system) [GS93]: A Proof Theory (or Formal (logical) or

Natural Deduction System) is a set of rules defined in terms of the following components:

(1) Alphabet, i.e. a set of symbols. The symbols in the alphabet usually correspond to

whole words (i.e. definitions) instead of to letters [Kle64].

(2) Syntax , i.e. rules for building sentences from the alphabet. Sequences of symbols 

correspond to sentences called formulas. The set of well-formed formulas is the language 

of the logic.

(3) Axioms , i.e. a set of distinguished, (or self-evident) formulas.

(4) Inference-rules, i.e. a finite set of instructions for generating new formulas from existing
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formulas. A formula is a theorem of the logic if it is an axiom, or if it is generated from 

the axioms and previously proved theorems by using the rules of inference. □

The Alphabet and Syntax  components of the formal system define the formal specification 

language; the Axioms  and Inference-rules of the formal system define the proof system. 

The three main properties considered of a formal system are completeness, soundness and 

decidability:

D efin ition  2.4.2. (Com pleteness, Soundness, D e c id a b ili ty )  [WD96]: For an ex­

pression P  specified in the language of the formal system, the formal logic system is:

(1) complete iff if P  is a theorem of tha t formal logic, then P  can be derived using only 

the inference-rules of tha t logic.

(2) sound/consistent iff there is no P  such tha t P  and P  are theorems in tha t logic.

(3) decidable iff for any P  there is an effective procedure for showing whether P  is a 

theorem or not in tha t logic. □

An example of a state of the art Formal logical system or proof theory is the Gentzen 

Sequent Calculus for Classical Logic (LK) which is discussed in Section 2.5.

2.4.1 Formal logic languages

Propositional logic is regarded as the most basic formal logical system. Propositional 

classical logic is the language of statements of alleged facts which must be either true or 

false [WD96]. A proposition is: a tautology if it evaluates to true in every combination 

of truth-values of its constituent propositional statements; a contradiction if it evaluates 

to false in every combination of its propositional constituents; and a contingency if it is 

neither a tautology nor a contradiction [WD96]. Propositional classical logic is complete, 

sound, and decidable [Gal86].
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First-Order logic allows to express assertions about elements of a given basic type— 

the assertions are predicates, i.e. statements with a slot for those elements. In First-order 

logic, completeness and soundness hold but decidability does not hold [Gal86]. Higher- 

order logics generally refer to n-order predicate logics, where n  refers to second, third, 

etc, and in which quantification is over predicates, predicates of predicates, and so on 

respectively. Second-order logic appears to lose completeness too as well as decidability; 

only soundness holds [Gal86]. Higher-order logics are the most expressive of these logics, 

and are sufficient for the specification of software and hardware [Lei94]. A formal definition 

of First-order Logic highlights the im portant properties of propositional and higher-order 

logics.

D e f in it io n  2 .4 .3 .  (Alphabet for First-Order Logic) [Gal86]: The alphabet of First-Order 

logic consists of two parts:

(1) A fixed logical part consisting of:

(i) Truth values: T  4 (true) and _L (false) to denote the tru th  or falsity.

“(ii) Logical connectives: -i (not), A (and), V (or), =$■ (implies), <=>• (iff/equivalence), 

and equality (=) to formulate compound (nonatomic) formulae from atomic formulae.

(iii) Quantifiers: V (forall), 3 (exists) for binding variables in predicates.

(iv) Variables: a countably infinite set V =  {ab, Xi, ...} to express unknowns.

(v) Auxiliary symbols: parenthesis “(” and “)” to scope the logical connectives.

(2) a non-logical part L consisting of:

(i) Function symbols: a (countable, possibly empty) set F of symbols ... and a

rank function r  assigning a positive integer r ( f )  (called the rank or arity) to every function

4T is not included in the definition in [Gal86]; rather if a formula is provable, then it is considered 
true. However, especially with tactics, if a formula is unprovable by one tactic, that does not mean the 
formula is false.
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/•

(ii) Constant symbols: a (countable, possibly empty) set C of symbols Cq,  C i ,  ... each 

of rank 0.

(iii) Predicate symbols: a (countable, possibly empty) set P of symbols P0, P i , ... and 

a rank function r  assigning a nonnegative integer r(P )  (called the rank or arity) to every 

predicate P .” □

The sets ¥ , F, C, P are assumed disjoint; the predicate symbols of rank 0 are propositional 

symbols (i.e. atomic formula or atoms); the symbols in ¥ , F, C are of type term, and the 

symbols in P are of type formula.

D e f in it io n  2 .4 .4 .  (Terms and Formulae) [Gal86]:

“(i) Every constant and every variable is a term.

(ii) If t i , ..., tn are terms and /  is a function symbol of rank n > 0, then f ( t i , ..., tn) is a 

term.

(iii) Every predicate symbol of rank 0 (i.e. a propositional symbol) is an atomic formula, 

and so is _L.

(iv) If ti , . . . , tn  are terms and P  is a predicate symbol of rank n > 0, then P ( t i , ..., tn) is 

an atomic formula, and so is t\ = fa.

(v) For any two formula A , P , then -u4, A A 5 ,  A V (7, A => B, A  &  B  are formulae. 

For any variable x* and any formula A, then V x* : A(x)  and 3 Xi : A  are formula.” □

The semantics of the formulae in a first-order language L is obtained by interpreting the 

function, constant and predicate symbols in L and assigning values to the free variables.

D e f in i t io n  2 .4 .5 .  (M odel) [Gal86]: “Given a first-order language L, a L-structure is a 

pair M =  (M, I )  where M  (called the domain or carrier of the structure) is a nonempty
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set of values, and I  (the interpretation function) assigns functions and predicates over M  

to the symbols in L  as follows:

(i) For every constant c, 1(c) is an element of M.

(ii) for every function symbol /  of rank n >  0, 1(f)  : M n —> M  is an n-ary function.

(iii) For every predicate symbol P  of rank n >  0, I (P )  : M n —> BOOL  is an n-ary 

predicate. Predicate symbols of rank 0 (i.e. propositions) are interpreted as having the 

tru th  values T  (true) or _L (false).” □

The main concerns in Logic are validity (Model Theory) and provability (Proof Theory) 

[Gal86]. A formula A  is satisfiable in a structure M iff there exists an assignment s : ¥  —> 

M  of variables in A  to values in M, such tha t A  evaluates to true (i.e. T). A formula 

A  is valid in M iff A  is true for every assignment s, in which case M is a model of A  

(i.e. M 1= A). For a set of formulae, M 1= T  iff M is a model for every formula in T. A 

formula is universally valid iff the formula is true for any model M. If a formula A  is valid 

(universally or in a model), then tha t formula is provable (i.e. h A).

2.4.2 The formal logic proof system

An efficient way to determine the provability of a logical formula is to construct a proof 

by using the inference-rules and axioms of the Formal logic system. The formal definition 

of a formal proof is as follows:

D e f in i t io n  2 .4 .6 .  (Formal Proof) [RC90]: “A  formal proof in a Formal System is a se­

quence of sentences S i , . . . ,S n such tha t for all i <  n, either: (2) Si is an axiom; or (2) 

there are two members S j , Sk of the sequence with j ,  k < i, which have Si as a direct 

consequence by the (forwards) application of an inference rule. Sn is then a theorem of 

the formal deductive system. In such a proof, all of the Si are theorems since the proof of
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Sn can be truncated at Si, giving a proof of S i ” □

A proof is said to be a proof of its last formula and this formula is said to be formally 

provable or to be a formal theorem [Kle64]. Such a formal proof can be graphically 

presented as a tree:

D e f in i t io n  2 .4 .7 .  (Prooftree) [Gal86]: “Given a set E of labels, a E-tree (or prooftree) 

is a total function t : D' —> E where D  (called the tree domain) is a non-empty subset 

of strings in the set N+ of all possible strings from the natural numbers satisfying the 

following conditions: (1) for each u  G D, every prefix of u  is also in D\ and (2) for each 

u G D, for every i G N+, if ui G D, then uj G D for every j ,  1 <  j  < i.

The domain of a tree t is denoted dom(t); and every u in dom (t) is called a node or 

address.” □

A propositional or predicate formula P  is provable iff there exists a prooftree in which tha t 

formula is the conclusion; and a provable formula is denoted h P  [Gal86]. A proof script 

is an algebraic presentation of a prooftree as a traversal of the prooftree using depth-first 

search (which is more efficient than breadth-first search [Hop93]).

2.4.2.1 Intuitionistic, Constructive, and Classical proof system s

The Intuitionistic logic proof system consists of the inference-rules for the introduction 

and elimination of each of the logical connectives described in the fixed logical part of 

Definition 2.4.3, i.e. A (and), V (or), => (implies), -i (not), V (for all), 3 (exists). The 

Constructive logic proof system is based on the BHK-interpretation 5 th a t each definition

or proof of existence of an object provides an algorithm for computing or constructing th a t

5BHK refers to the mathematicians Brouwer (Intuitionist), Hilbert (Formalist/Classicist) and Kro- 
necker (Constructivist).
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object. Intuitionistic and Constructive logic have been advocated for and used as computer 

programming logics because: (1) Intuitionistic logic has a one-to-one correspondence with 

typed functional programming languages, i.e. the Typed Lambda Calculus [Wad93]; and

(2) an Automatic Theorem prover such as the NuPRL Theorem-Prover [CAB+86], which 

implements Constructive logic, can be used to automatically synthesize a program from a 

constructive proof of a logical formula which specifies the program (see Section 2.7.3).

The Classical logic proof system is the Intuitionistic logic proof system with one ad­

ditional inference-rule, which can be one of the following [GS93]: (1) The rule of Indirect 

Proof, i.e. in proof by contradiction, to prove P , prove ->P and if -iP  is true then by 

soundness P  is not true; (2) The rule of Double Negation, i.e. ->-iP =  P  by the truth- 

table for -i; and (3) The Law of the Excluded Middle, i.e. to prove P  V Q it is sufficient to 

prove just Q since if Q is true then P  V Q is true by the tru th  table for V. The addition 

of these rules to Intuitionistic logic means th a t an explicit algorithm for the construction 

of an object may not be given or required in Classical logic, e.g. in the examples above 

it is not explicitly given how the object formula P  is constructed from the Intuitionistic 

logical-connective inference-rules. Nevertheless some level of constructivism is available 

in the Classical logic proof system via the use of the logical-connective inference-rules. 

Ideally, the same proof technique should be used throughout a proof development in order 

to aid the social review process. The proofs constructed in this work are direct proofs in 

Classical logic consisting of the inference-rules (2) and (3).
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2 .4 .2.2 P ro o f  S earch

In the definition of a formal proof [Definition 2.4.6], the numbering of sentences Si,.. . ,  Sn 

where Sn is the formula to be proved, corresponds to a Hilbert Style Forwards proof 6 

[Kle64], where the proof of a formula Sn starts from axioms and or assumptions Si, then 

inference-rules whose premises match the axioms are applied in a forwards manner (from 

premises to conclusion) to generate, from the conclusion of the inference-rule, the formulae 

Si and eventually the required formula Sn.

The reverse process is the Gentzen-style Backwards-proof 7 whereby the proof search 

starts from the formula to be proved (i.e. the goal), then an inference-rule whose conclusion 

matches the existing formula is used to generate the premises of tha t formula. Usually 

the structure of the goal, i.e. the connectives in the formula to be proved, determine the 

inference-rule to be applied in the backwards proof search process. Backwards proof is 

easier to perform than Forwards proof [Gor88], since in Forwards proof, the axioms and/or 

assumptions to start from may not be obvious.

Logic or machine induction [FR86] can be used to generate new inference-rules from 

certain cause-and-effect (i.e. premise(s)-conclusion) examples using plausible (i.e. informal 

or heuristic) reasoning, where the side-condition is expressed as a measure of confidence, 

e.g. a percentage, in the effectiveness of the inference rule. However, Logic induction 

may generate logically incorrect inference-rules if “bad” examples are used, e.g. in the 

empirical sciences, one can simply try a huge number of cases and conclude th a t since 

no counter-examples could be found, the statement must be true. The Gentzen Sequent

Calculus is a more viable formal way to derive theorems about mathematical theorems,

6This is also known as Bottom-up Proof search or Natural Deduction since this “mimics” the way 
humans reason from premises towards a conclusion.

7This is also known as Goal-oriented or Top-down or Abduction since one is “lead away” from the goal 
towards axioms.
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2.5 The Gentzen Sequent Calculus for Classical logic

The Gentzen Sequent Calculus is a state of the art tool for proof-theoretical investigations. 

Interactive systems for reasoning about programs are often based on this system as it 

models ordinary mathematical reasoning more closely than axiom and/or tableaux systems 

[OS97]. The Gentzen System for Classical Logic (LK )  is defined as follows:

D e f in i t io n  2 .5 .1 .  (The Gentzen System L K )  [Gal86]: “The symbols T, A, 0 ,  E denote 

arbitrary (possibly empty) sequences of formula, and A ,£? ,C ',...,P ,Q ,... are arbitrary 

formulae. The inference rules of the sequent system L K  are structural rules (i.e. Weaken­

ing, Contraction, Exchange), the Cut rule, and the logical rules for the logic connectives 

A, V,=>, -i, V, 3.” □

2.5.1 Gentzen Sequent Calculus

The Natural Deduction (ND) System (see Definition 2.4.1) formally models the way hu­

mans reason. A logical language (see Section 2.4.1) is used to express facts and conjectures 

about a domain of interest. Formal proofs are constructed by fitting the inference-rules 

together using backwards proof and/or forwards proof [Section 2.4.2]. As in ordinary hu­

man (and mathematical) reasoning, temporary assumptions may be made (and lemmas 

used) in the course of the proof development, and these have to be discharged for the 

proof to be completed. The generalizations of formal proof and of provability [Definition 

2.4.6] yield the notions of deduction and deducibility to permit the use of any formulas 

D i , . . . ,  Di called assumption formulas for the deduction of a goal formula [Kle64]. The
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structure of a sequent formalises the notion of deducibility under assumptions to localise 

assumptions to goals in the Natural Deduction System:

D efin ition  2.5.2. (Sequent) [OS97]: A sequent T  b r A, where T =  A i , . . . ,  Am; and 

A =  C i , C n, states tha t the conjunction of the formulas in T  implies the disjunction 

of formulas in A, i.e. A 1}. . . ,  A m b C\ , . . . ,  Cn A \  A . . .  A A m C\ V . . .  V Cn. □

Where b is a Consequence Relational operator, which is read “gives” or “entails” ; r  is the 

context of the formulas; T  is called the antecedent or assumptions—an empty antecedent 

(m — 0) is equivalent to T  (true); and A is called the succedent or consequent—an empty 

consequent (n =  0) is equivalent to ±  (false).

In general, a Gentzen Sequent Calculus is a meta-language which directly defines a 

consequence relation (via the operator bT) between formulas of an object language being 

investigated or used—the relational operator b is not in the alphabet of object language, 

e.g. b is not in the alphabet of the First-order Classical Logic which is the object language 

considered in this work. Intuitionistic logic (LJ) restricts the number of formulas n  in the 

succedent to only one formula, i.e. n < 1, whereas in classical logic (LK) n >  0 [Kle64]. 

There is no restriction on the number of formulas m  in the antecedent.

Appendix A lists the inference-rules for the Gentzen Sequent Calculus for Classical 

logic (LK).  The first axiom is derived from the notion of deducibility under assumptions, 

and the other two axioms are derived from the tru th  table for implication (=>). The 

proof of a sequent T =s> A completes when the antecedent T reduces to false or when the 

succedent A reduces to true. A sequent in which the antecedent T reduces to true and 

the succedent A reduces to false is unprovable. The symmetries of classical logic are also 

much better exhibited in sequent formulations of classical logic. Constant logical symbol 

introduction (or right) rules are the succedent rules: I— ■, bA, bV, b=^, b V, b 3, b _L, b T .
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Logical symbol elimination (or left) rules are the antecedent rules: -> b , A h, V b, =^b, V b  

,3  b,_L b , T  b.

2.5.2 M etam athem atics

The Gentzen Sequent Calculus can be used to reason about other formal systems, and thus 

yield metamathematical theorems, i.e. mathematical theorems about other mathematical 

theorems. For example one can use the Gentzen Sequent Calculus system to reason about 

the definition of correctness to derive metamathematical theorems about correctness.

D efin ition  2.5.3. (Correctness) [Kne97]: Correctness is the delivery of a proper service 

tha t adheres to specified requirements. Formally this requirement can be expressed in 

either of two ways:

(1) V r  : R  : 3 s : S  : A (r, s) (2) 3 s : S  : V r  : R  : A{r, s). □

Where R, S  are sets of requirements and services respectively, and A(r, s) is the “ad­

heres to” predicate. It thus appears the informal definition of correctness is “ambiguous” . 

The Gentzen Sequent Calculus can be used to reason about whether the two the formal 

specification statements of the informal correctness requirement are equivalent or not.

The formula to be proved (the goal g) is presented as a conjecture to the Gentzen 

Sequent Calculus proof system in the form b g, i.e. as a sequent whose antecedent list 

is empty. Figure 2.2 shows the prooftree for the proof of the equivalence of the interpre­

tations of “correctness” 8. Thus from the prooftree, the two formulations of the informal 

correctness requirement are not equivalent. Furthermore, the left branch completes with

an axiom, thus yielding a finite proof and therefore 3 s : V r  : A{r, s) =$■ V r  : 3 s : A { r , s )

8The PVS Interactive-Theorem-Prover/Proof-Checker system uses the Gentzen Sequent Calculus proof 
system and the goal-oriented proof search method but displays prooftrees in the Computer Science con­
vention, i.e. with the root at the top [SORSC98a, SORSC98b, SORSC98c].
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------------------------- [b Axiom]
A (n ,  si) b A(ri, si) A (n ,  s2) b 4 ( n ,  s)

M ] ----------------------- ------ — — ----- -[3 b]
A(r\, si) b 3 s : A(r\, s) 3 s :  A(r, s) b ^4(ri, s)

[3 H------------------— ------ — — ----- -[Vb]
3 s : A(ri, s) b 3 s : A(r\, s) Vr : 3 s : A{r, s ) b A (t\ ,  s)

[V N  — — — ■ — ■, - — — -  [H V]
Vr : 3 s : A(r, s) b 3 s : A(r\, s) Vr : 3 s : A{r , s) b Vr : A{r , s)

lh V]------ — =----------------—  ■■-----r— r  3]3 s : V r  : A(r, s) b V r  : 3 s : A{r , s) V r : 3 s : A(r, s) b 3 s : V r  : ^4(r, s)
------------------------------------------------- [b=>]  [b
b 3 s : V r  : ^4(r, s) => V r  : 3 s : A(r, s) b V r  : 3 s : A (r , s) 3 s : V r  : ^4(r, s)

b 3 s : V r  : ^4(r, s) V r : 3 s : ^4(r, s)

Figure 2.2: The inequivalence of interpretations of correctness.

The proofscript for the above prooftree is as follows:
P"V], [V M» [h 3 ]j [Axiom]), ([h=^], [b 3], [b V], [Vb], [3 b])))

is a theorem of the Gentzen Sequent Calculus LK. The right branch does not complete 

with an axiom of the LK Sequent Calculus and it requires checking A ( r i , s2) b A(ri,  s ) for 

every possible r*, Si, thus yielding an infinite proof.

The prooftree in Figure 2.2 demonstrates two fundamental results of Proof-Theory:

(1) the left branch demonstrates Godel’s Completeness Theorem tha t if a formula is true 

(valid) then it is provable; and (2) expressions of the form (Vrr : X  : 3 y : Y  : P ( x ,y ) )  

are provable and therefore can be used to define correctness criteria in Formal methods. 

The proof of 3 s : V r  : A ( r , s) =4> V r  : 3 s : A ( r , s) demonstrates tha t specifications of the 

form V r : 3 s : A(r, s) can be provable under a model-like assumption (3 s : V r : A (r ,  s)), 

hence the advantage of using a model-based specification technique in theorem-proving 

[Section 2.3.3]. The proof in Figure 2.2 is a constructive proof since the proof yields an 

algorithm for constructing the provable formula using the inference-rules of the Gentzen 

System LK.
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2 .5.2.1 D ire c t p ro o f v ia  C u t-e lim in a tio n

The Cut-rule is the only means to introduce a new formula in the current proofstate. The

Cut-rule can be viewed as a Rule of Indirect Proof where the cut formula is introduced as

a means to shorten the proof. For example, in forwards proof, a cut corresponds to: (1)

the transitivity relation, IF (A  =>• B)  and (B  =b C) THEN {A C); (2) the introduction

of lemmas as intermediate steps in proofs in practical mathematics; (3) the deduction of

P  from P  V -i (7 and P  V C  in resolution C :

C h P  \ - P ,C
----------------------- Cut(C)

b P

In goal-oriented proof (abduction), the cut-formula is used as an assumption in the left 

premise (C  b P), and may have to be proved in the right-premise h P , C. Applying the 

Cut-rule requires creativity in choosing the cut-formula—this may result in a detour in the 

proof development process if the cut formula is complex or very ingenious. A famous result 

of Proof Theory is the proof tha t the Cut-rule is redundant in the Gentzen System LK, 

yielding the famous Gentzen Cut-elimination (or Hauptsatz) Theorem, and the Gentzen 

System LK without the cut rule, Gentzen System L K  — {Cut}.

One way to show tha t the cut-rule is redundant in the Gentzen System LK is to 

demonstrate the logical equivalence of Gentzen Systems G, L K ,  and L K  — {C ut} ,  where 

the System G is the System L K  — {Cut, Contraction, Weakening, Exchange}, i.e. L K  

without the cut and structural rules [Gal86] (Theorem 6.2.1, page 260). This result is 

known as a Normal-form theorem since it states tha t a proof not in normal form (i.e. 

a LA-proof containing the cut-rule(s)) can be reduced to one in a normal form (i.e. a 

L K  — {Cw£}-proof or G-proof without cuts).

On the other hand, a Normalisation theorem states the above result, and in addition
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gives an effective procedure for the reduction of a proof to a normal proof. Gentzen’s orig­

inal Hauptsatz theorem described in [Kle64] (Theorem 48 page 453, Lemma 39 page 454) 

is a Normalization theorem in tha t it demonstrates how the mix-rule can be permuted 

upwards with each of the Gentzen Sequent Calculus inference-rules to be eventually elim­

inated from the proof. The Mix rule is outlined in Figure 2.3, where the sets of formulae 

II — {L}  and A — {L}  are obtained by deleting all occurrences of formula L from II and A 

respectively, and the sets of formulae II +  {A}, A +  {L}  both contain one or more occur­

rences of a common formula L. A  Mix  is a generalisation of a Cut in tha t a Cut can easily 

be transformed into a Mix by the use of contractions and exchanges. Conversely a Mix 

can be transformed into a Cut by using weakenings and exchanges thereby establishing 

the equivalence of L K  with L K  — {Cut}.

The mix-rule is used because of complications in the permutation of the Cut-rule 

upwards in a prooftree. The Cut-rule proper cannot be permuted above an Exchange- 

rule involving the cut formula because the application of Gentzen System LK inference 

rules requires tha t the formula to be manipulated in a sequent must be at the end of the 

succedent, or at the beginning of the antecedent. The Cut-rule itself cannot be permuted 

with the Contraction-rule where the contraction formula is the one introduced by the 

Cut-rule as the Cut-formula—the contracted formula (L  in Figure 2.3) will not be present 

if the contraction is to occur before the Cut-rule. However when the mix-rule is used 

instead of the cut-rule, then the F  and A contain one or more occurrences of the mix- 

formula therefore the contraction after the mix rule can be viewed as redundant. Gentzen 

proved the cut-elimination theorem indirectly by using the Mix-rule instead of the Cut- 

rule because attem pts to demonstrate the redundancy of the cut-rule using the cut-rule 

proper involve extra complications in proof [BDPOO].
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L,L, IlhA T \ - A ,L ,L
--------------- C h -- ------------- Ch

L , n h A  r h A  , l
--------------------------------------------- CutlL]

r,nhA,A
The Cut cannot be permuted above the Contraction

A,L, I IbA r  h A, i ,  i
----------------------------------- MixlL]

r , n - { i } h A - { t }

Figure 2.3: The Contraction is not required with the Mix-rule

Two corollaries of the Cut-elimination theorem are tha t the inference-rules in cut-free 

LK proofs can be permuted without changing the conclusion of the proof, provided: (1) 

the eigenvariable conditions 9 are not violated; (2) the subformula property is not violated 

[Sha92]. Since the cut-rule is the only rule by which a new formula can be introduced in 

the proofstate, all the formulae in a cut-free proof are subformulae of the goal formula:

D e f in i t io n  2 .5 .4 .  (Subformula Property) [Kle64]: “

(1- 2) If A is a formula, then A is a subformula of A\ and the subformulas of A  are 

subformulas of ->A.

(3-5) If A  and B  are formulas, then the subformulas of A  and the subformulas of B  are 

subformulas of A  A £?, A  V B  and A  =£- B.

(5-7) If a; is a variable, A (x)  is a formula, and t  is a term  free for x  in A(x), then the 

subformulas of A(t)  are subformulas of Vx : A{x) and 3 x  : A(x).

(8) A formula has only the subformulas required by (l)-(7) above.” □

This inductive definition of formulae can be very effective in Automatic Theorem Proving.

In general, terms, formulas and proofs can be given by inductive definitions, which define a

set S  of objects as the smallest set of objects containing a given set X  of atoms, and closed

under a given set of constructors F  [Gal86j. The set S  of objects can be conceptualised

9Eigenvariable conditions are the side conditions to the applicability of an inference rule
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as a free type S  : X  \ for 1 < i < n, where the constructor /* : F  is an injective

function from the set X  to the set S  [WD96]. The inductive definitions can then be 

proved using the Principle of Mathematical Induction on the formulae and/or the logical 

connectives (-i, A, V, =>, V, 3). Proofs by mathematical induction can subsequently be 

implemented as recursive functions, e.g. formal proofs can be represented as prooftrees, 

which can be defined inductively, and implemented functionally as recursive tactics.

2.5.2.2 Proof complexity

Cut-proofs require creativity in the sense tha t the cut-formula may not be a subformula of 

any of the formulae in the conclusion. However proofs which do not use the cut-rule (i.e. 

cut-free proofs) tend to be exponentially larger than their corresponding proofs where 

the Cut rule is used (i.e. cut-proofs) [Gal86] (Theorem 6.4.1 page 280). This gives a 

measure of proof complexity and suggests that: “(1) if some creativity (using cuts) is 

exercised in proof development, then the proof is considerably shorter than its cut-free 

counterpart; and (2) there are theorems with no easy proofs in the sense th a t if the steps 

are straightforward, then the proofs are very long, or if the proofs are short then the cuts 

are very creative” [Gal86].

The resultant cut-free prooftree is usually larger than the number of proofsteps in 

the original prooftree due to the application of structural rules (see Section 3.4.1 for the 

purposes of structural rules in LK-proof developments). Choosing not to allow structural 

rules (as in the Gentzen System G ) yields a resultant permuted prooftree of the same depth 

as the original prooftree 10. Linear Logic, which has been advocated to be more suitable

for program verification, disallows the use of contractions and weakenings to mimic the

10The Gentzen System G differs from the Gentzen System LK  in that for the latter, it is not necessarily 
true that if the conclusion of a rule is valid, then the premises of the rule are valid [Gal86]. For the System 
G, the conclusion is valid if and only if the premises are valid.
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finiteness of computing resources [Wad93].
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2.6 Proof systems for Theorem-proving

The proof system is the inference engine of a logic. Proof systems are amenable for im­

plementation as theorem-provers. The main proof systems considered in this work are:

(1) LCF-Tactics [GMW79] for Gentzen Sequent Calculus [Section 2.5] in Interactive Theorem- 

Proving and Proof-Checking (ITP/PC ) [OS97].

(2) Proof plans [Bun96] for Mathematical Induction and Analogical [MW99] or Case-Based 

Reasoning [MC98] in Human-Oriented Theorem-Proving (HOTP).

(3) Indirect proof for Resolution and Unification [Rob65] in Machine-Oriented Automatic 

Theorem-proving (MOATP).

However, since HOTPs model plausible reasoning, which is often based on heuristics 

which are not entirely formal; and MOATPs often fail to prove putative theorems [Section 

2 .3.2.1], the preferred proof system in our research is LCF-Tactics [GMW79] for Gentzen 

Sequent Calculus in Interactive Theorem-Proving and Pro of-Checking (IT P /PC ).

2.6.1 Tactics

Tactics originated from the work on Edinburgh LC F  [GMW79], which is essentially a 

computer program that acts as a proof checker for Scott’s Logic of Computable Functions 

[Sco72]. Tactics support goal-directed proof (or backwards proof), and describe general 

expression transformations [Mar94]. The formal definition of a tactic is as follows:

D efin ition  2 .6 .1 . (Tactic) [GMW79]: A (LCF) tactic T, is a function:

T  : Goal —* GoalList x ( ThmList  —► Thru). □
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Where g : Goal is a formula (or conjecture) to be proved in a Formal system; I : GoalList 

is a list of subgoal formulas that arise when a tactic t : T  is applied to g : Goal; and 

p : ThmList —> Thru is a forwards proof (or validation function) for the generation of 

the goal g from the subgoal list I. A simplified view of how tactics work is as follows: 

for a goal g : Goal, subgoals [<71, gn\ : GoalList and validation p : ThmList —»• T h m , if 

T ( q) =  ([01, • • •, 9n],p), then if p{ : [pi, . . . , p n] achieve g{ : [g1}. . . ,  gn\ for 1 <  i < n, then 

p (p i , . . .  , pn) achieves g [RC90].

At its primitive level, a tactic is a single rule of inference applied backwards 11. Recall 

tha t an inference rule consists of one or more premises (i.e. a list of theorems t : ThmList)  

and a single conclusion (i.e. a single theorem t  : Thm). Thus an inference rule r, when 

applied in a forwards manner, is a function which takes a list of theorems and returns a 

single theorem, i.e. r  : ThmList —> Thm. Therefore inference-rules can be used as vali­

dations for a tactic. The use of inference-rules as validations ensures tha t the validations 

can be taken as formal proofs.

At a more complex level, a tactic is a sequential composition of inference-rules. This 

composition is achieved by tactic language constructs called tacticals.

D e f in i t io n  2 .6 .2 . (Tactical) [GMW79]: A tactical is a function which operates on tactics, 

and returns a new tactic as a result. □

At an informal level, tacticals are used to compose two or more tactics in various ways to

build more complex tactics [SORSC98a], e.g. two or more tactics can be composed to be

applied sequentially (i.e. one after another, e.g. the inference-rules in Figure 2.2) or in

parallel (i.e. simultaneously, e.g. in Figure 2.2 it is possible to attem pt to prove the two

branches simultaneously.)

11 An inference-rule is referred to as a primitive rule [MGW96], or as a primitive tactic [SORSC98a].
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There are two possible outcomes when a tactic is applied to a goal expression [MGW96]:

(1) if the rule matches the expression (i.e. the expression is in the domain of the rule) 

then the rule is applied, producing a new expression (i.e. tactic success); or (2) if the rule 

doesn’t match then the rule is said to fail (i.e. tactic failure). In the case of (1), the new 

expression may be (i) the logical constant true (T) or axiom(s) which means the tactic has 

succeeded in proving the expression (i.e. the tactic is total); or (ii) provable subgoal(s) of 

the old-expression which means the tactic is a partial proof of the old expression (i.e. the 

tactic is partial); or (iii) unprovable subgoal(s) of the old expression, e.g. _L (falsehood). 

In the case of (2), the old expression remains unchanged. In the cases of (i) and (ii) we 

say tha t the tactic is applicable; and in the cases of (iii) and (2), we say tha t the tactic is 

not applicable.

Since it may be impossible to prove the new expression(s) in case (iii) above, a safer 

option is to define tactics so tha t if they fail to find a proof for a goal expression, then 

the tactic does not change the proof state, i.e. the goal remains unchanged in its original 

form. Backtracking is used to revert the goal to its original state [MGW96]. Thus a total 

tactic succeeds iff the tactic is applicable on a conjecture, and the conjecture is provable 

with tha t tactic.

The above interpretation of tactic application is justified by the fact tha t tactics are

supposed to be safe in the sense that they do not give a false proof [GMW79]. For tactics

implemented in Angel, “Angelic nondeterminism ensures that “when a tactic presents

a choice of possible next steps, the step(s) which will succeed (if any) will be chosen”

[MGW96]. It is demonstrated in Chapter 4 Section 4.3, tha t the PVS instantiation defined-

rule in s t?  12 is not safe nor angelic since it can instantiate with an incorrect term  yielding

12PVS defined-rules correspond to LCF-type tactics [Table 4.1].
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2.6.1.1 Implementation of LCF-like tactics

The main idea behind LCF-tactics is to implement backwards proof to generate sub­

goals from a goal formula (i.e. Goal —> GoalList) and to construct a validation function 

ThmList —> Thm  for tha t generation where the subgoals are taken as the list of theorems 

ThmList and the goal as the theorem Thm. An inference-rule when applied in a forwards 

manner can be taken as the validation function, and thus an inference-rule when applied 

backwards, is a primitive tactic.

This section gives an example implementation of the LK inference-rules A x,  bV, b=> 

as primitive LCF-tactics. In forwards proof, these LK inference-rules can be defined as 

functions as follows 13:

A x  : Form —> Thm =  {a i—► T, a b  a, A}

OrE  : ( Thm  x Thm) —> Thm =  {(T b ai, A, T b .a%) >—> T, a\ V Oq. b A}.

I m p I : Form —> Thm  —> Thm =  {a i-» (T b 6, A i-» V' b a => 6, A)}

Where Form is a formula in a sequent, i.e. either an antecedent or consequent formula; 

T' is r with all occurrences of a deleted. The primitive tactics corresponding to these 

inference-rules are then defined as follows:

AxTac  =  r , a l - f l , AH( [ ] ) AxF(a))

OrETac = T , a V b  b A ^  ([(r, a b A), (r, b b A)], A(z, y) : [OrE] (x, y))

ImpITac  =  T' b a b, A h-> ([r, a b b], X x  : [ImpI] a x)

Where with reference to the definition of a tactic [Definition 2.6.1], and the tactic OrETac:

13The sequent operators (b and comma ,), and all the logical connectives, bind tighter than h-».



CHAPTER 2. TACTICS IN  FORMAL METHODS 41

r ,  a V b b A is the goal, g : Goal;

[r, a b A, T, b b A] is the list of subgoals produced, [gi, . . . ,  gn] : GoalList;

(X(x, y) : Or E( x , y)) is the validation function /  : ( ThmList —> Thm), of the 

inference-rule.

The sequential composition of tactics to yield a complex tactic in the backwards proof of 

a goal, i.e. (ti ; ^  ; ...; tn)g = t\(x) then h( t i (x) )  then . . .  then tn( . .. (£i(#))...) can be 

validated by the functional composition of the validation functions, i.e. (/i o/2 o . . .  o f n)g =  

M M - • • i fn{g))•••))• For example, the backwards proof of the conjecture q V p => p V q is 

given by the following sequential composition of inference-rules:

(ImpITac, OrlTac; OrETac, (AxTac , AxTac)) (b q V  p =$> p  V q)

= (OrlTac] OrETac, (AxTac, AxTac))(q  V p  b p  V q)

=  ( OrETac; (AxTac, AxTac))(q  V p  b p, q)

= ((AxTac, AxTac))((q  b  p, q), (p b  p, q))

=  [ ] . [ ]

Where (AxTac, AxTac)((q  b p, q), (p b p, q)) indicates a branching in the prooftree caused 

by OrETac which generates two premises— (q b p, q) and (p b p, q). The empty subgoal 

list [ ] indicates the successful completion of a proof, i.e. the goal (b q V p p  V q) is 

provable and thus a theorem.

2.7 Tactics from proofs state of the art

Approaches to deriving tactics from proofs include: (1) direct encapsulation of proof steps 

[GMW79, Fel93, FH94]; (2) proof-plans tha t capture the general direction of a proof 

[Bun91]; and (3) machine induction [Tar92]. These approaches do not necessarily yield
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robust tactics since the tactics tend to be specific to the conjecture to be proved, and thus 

the tactic may fail when applied on a different conjecture.

2.7.1 Direct encapsulation of proof steps

The inference-rules tha t are applied in the successful proof of a goal conjecture are encoded 

exactly in the sequence in which the proof steps were executed [GMW79, Fel93]. This was 

the original idea of deriving tactics from proofs and such tactics are generally called LCF- 

like tactics. The approach follows naturally in proof-checking where having manually 

discovered a proof, the human prover maps his/her proof strategy in the language of the 

IT P /PG  of choice, which he/she then uses to ascertain that the proof is correct. Gordon 

et al [GMW79] use an IT P /P C  and the tactic programming language is a subset of ML, 

whereas Felty et al [Fel93] use an ATP to discover the proof and the tactics are encoded in 

Lambda Prolog, which is a higher-order logic version of the Prolog programming language 

[SS86]. Such tactics may fail when the definition of the conjecture is changed, and so are 

not generally reusable.

This approach is similar to the way the PVS system records a proof for replay—the 

stored proof is the sequence of proof steps taken to discharge the conjecture, and thus can 

be viewed as a tactic. However the same stored proof may not be able to prove the same 

conjecture when the definition of tha t conjecture is changed.

2.7.2 The encapsulation of proof structures as proof plans

Proof-plans specify LCF-like tactics as a method—a “plan is a method for one of the top- 

level tactics, i.e. the specification of a strategy for controlling a whole proof, or a large
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part of a proof” [BM98] 14.

For example, the mathematical induction proof-plan for an expression s(x)  in the 

Boyer-Moore theorem-prover [BM79] can be encapsulated as the following methods (or 

subplans) [BM98]:

(1) Induction—the choice of the induction variable x.

(2) Ripple-out—a series of waves that carry the s from one place to another in the base and 

step cases. The ripple-out subplan consists of two phases: (i) take-out which rewrites the 

recursively defined functions using their base equations; and (ii) unfolding which rewrites 

the recursively defined functions using their step equations.

(3) Fertilisation—the induction hypothesis is the ‘sperm’ that fertilises the step conclusion 

by making it provable.

(4) Simplification—the use of algebraic laws to complete the proof.

However, proof-plans use heuristic knowledge in the design of tactics [Bun91], and 

heuristics are not entirely formal. Other work which uses heuristics in developing tactics 

is [Fuc95].

2.7.3 Proofs as programs

This approach has been proposed to formalise the construction of proof-plans [Bun91]. 

The conventional proofs-as-programs approach [Gre69, MW80, BC85] is concerned with 

extracting an algorithm from a constructive proof—such an algorithm expressed in a tactic 

programming language yields a tactic.

In the proofs-as-programs paradigm, a declarative specification, (D , R , / ,  0 )  is ex­

pressed by the statement that a realization of the specification exists: "i{x : D) : 3(z  : R) :

14The authors of PVS do not strictly follow this documentation approach which is very convenient for 
reasoning about the tactics themselves.
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( I (x)  =£► O(Xj z) ) ,  where D is the input data type; R  is the output data type; I  is the 

precondition and 0  is the postcondition [Kre98]. To synthesize an algorithm, a construc­

tive proof of this statement is produced. The constructive proof embodies a method for 

realizing the specification and this algorithm can then be extracted from the proof.

By analogy with the proof-plan methods, I  corresponds to INPUT, 0  corresponds to 

OUTPUT, x  : D  and z  : R  are variable instantiations. Thus the constructive proof in 

the language of the theorem-prover used to construct the constructive proof is a tactic 

(for tha t theorem-prover) which takes the INPUT predicate, i.e. the conjecture to be 

proved, and then generates the OUTPUT predicate, i.e. the subgoals, which preferably 

should be axioms meaning that the tactic is total and can successfully complete the proof 

by itself. Constructive proofs can be performed in the NuPRL theorem-prover [CAB+86] 

for example. Thus Bundy’s methods for specifying LCF-tactics can also be useful in the 

automatic construction of tactics from proofs. Such tactics however tend to be specific to 

the details of the proof and thus need to be generalized in order to yield a robust proof.

2.7.4 Machine induction

Machine induction (also known as machine learning) [FR86] is an artificial intelligence 

technique for training computers to extract useful information from past experiences 

(proofs in this case) and applying the information intelligently themselves to  a situation 

(a conjecture to be proved in this case). The objective of machine learning is to narrow 

the gap between human experts and automatic theorem provers.

In particular, Tarver uses an adapted form of the genetic algorithm, M2, to induce a 

tactic tha t solves 14 different conjectures selected from Mendelson’s textbook on M ath­

ematical Logic [Tar92]. The induced tactics operate over refinement proofs couched in a
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sequent calculus format, and the tactics are directly translatable into pure Horn clause 

programs without negation-as-failure, i.e. the Prolog programming language. The M 2  

algorithm is generic over many kinds of logic and may be applicable over a wide domain 

of different systems. Similar work on using machine learning to automatically learn proof 

methods so as to facilitate subsequent reuse include [JKP02, KW94].

However, as in all learning systems, the quality of the induced tactics depends on the 

quality of the original population of proofs. The machine induction may fail due to tactic 

interference and negation as failure. Furthermore, because pattern recognition is used in 

the learning process, teleological (i.e. human) justifications cannot be given for successful 

proofs. Human justification for proofs is relevant to the social process of reviewing proofs 

and theorems [DLP79].

2.7.5 Reasoning about tactics

Martin et al [MGW96, Mar94] describe a very general language called Angel, “for ex­

pressing tactic programs, making very few assumptions about the form of the expressions 

(goals) in the target logic, and about the rules which act upon them transforming one 

expression into another” . The work includes up to 92 transformation laws which can 

be used to improve the efficiency of tactics written in any tactic programming language. 

Angel does not concern itself with the data structures used to represent conjectures 15, 

unlike concrete tactic programming languages like that of PVS [SORSC98a] which is more 

implementation specific in tha t conjectures are captured using the Common Lisp Object 

System [CooOO].

Bundy [Bun91] outlines nine criteria for assessing proof-plans:

15Whence the generality of the language.
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(1) Correctness: the tactic for a proof will construct tha t proof when executed.

(2) Intuitiveness: the tactic structures the proof according to human intuitions.

(3) Psychological validity: the tactic structures the proof like a mathematician would.

(4) Expectancy: there must be a basis for predicting the successful outcome of a proof.

(5) Generality: the tactic gets credit from the number of proofs it succeeds on.

(6) Prescriptiveness: the tactic generates less search and prescribes rules exactly.

(7) Simplicity: a tactic gets more credit for being succinctly stated.

(8) Efficiency: a tactic gets more credit when it is computationally efficient.

(9) Parsimony: fewer general-purpose tactics are required for some collection of proofs.

2.8 The research problem

In this section we discuss problems in proof development and point the way to the deriva­

tion of robust tactics.

2.8.1 Problem s in proof theory

The main problems associated with formal methods are [Kne97]:

(1) The limits of mathematics: not everything tha t is informal can be formalized (and 

conversely), and not everything is amenable to formal proof. Conjectures expressed in 

First and/or Higher-order logics can be undecidable.

(2) Scalability: formal methods apply mainly on toy academic examples, i.e. they are 

generally not suitable for use on industrial scale projects.

(3) Tractability: formal methods techniques are not easily adaptable for use on different 

projects, i.e. formal methods techniques are generally not reusable.
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In general formal methods are not a panacea [BS92, RvH93]; they should be applied 

judiciously. Formal methods should be applied (1) in particular, on only the critical parts 

of a system; and (2) in general, on only those parts of a system tha t are amenable to 

formal specification and proof.

2.8.1.1 Problems in proof development

Formal proof development tends to be an erudite, error-prone and seemingly interminable 

task, i.e. the human prover usually has to be an expert in formal proof techniques; human 

error can be easily introduced when proofs are developed solely by hand; and formal proof 

usually requires the application of a significant number of inference-rules and thus can 

take a very long time to complete respectively. Formal proofs of software also tend to be 

difficult to follow and do not usually undergo social review as with ordinary mathematical 

proofs [DLP79]. The proofs tend to be specific to the details of the conjecture to be proved 

and so are not reusable in general, i.e. the proofs are usually not robust [Wil97]. The 

major challenges in proof development are deciding which proof rule to apply, and which 

variable instantiations to make that can discharge a conjecture to be proved.

Automated theorem proving is a means to alleviate the problems in proof development— 

proof search and instantiation are directly available in Prolog as depth-first search and 

unification respectively [FM87, Fel93]. The popular approach in Interactive Theorem- 

Proving/Proof-Checking is to use a proof strategy tha t encodes human expertise in proof 

search, and to instantiate by pattern matching instantiable variables with those appropri­

ate terms 16 in the current in the proofstate [SORSC98b]. However in the former approach,

ATPs may fail to find a solution at all, and may require human guidance to enable the

16In instantiation, a variable is substituted by a suitable term, i.e. constants or function symbols (see 
Definitions 2.4.3, 2.4.4).
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search for a suitable instantiation to proceed. In the latter method, the instantiation is not 

always the correct one, e.g. PVS’s most powerful tactic, (g rind ) often performs incorrect 

instantiations.

2.9 The proposed solution

Though many automated theorem provers (ATPs) can be faster than human experts, there 

is still a considerable gap between what ATPs can accomplish and what human experts 

can do. Human experts improve their performance through practice (i.e. learning), and 

use a whole battery of techniques, past proofs and analogies with past proofs in order 

to secure a solution [SchOO]. Theorem-proving with tactics can help bridge this gap. In 

particular, it is possible to formulate tactics tha t can act as automatic deduction rules for 

some domain of interest.

Theorem-proving with tactics can be seen as some form of case-based reasoning, i.e. 

proof by cases, because the tactics are formulated from particular proof cases tha t are 

successful. Tactic safety ensures tha t a tactic will not generate a false proof when it is 

applied on a particular conjecture. For a particular domain, the tactic may work on one 

specified conjecture, but may fail when the definition of tha t conjecture has been slightly 

changed. An interactive proof development can then be attem pted to find a proof for the 

conjecture on which all the present tactics failed to find a proof. A new tactic can then be 

derived from tha t new interactive proof, and the new tactic is composed with the current 

tactics to yield a composite tactic tha t can prove all the other previous conjectures and 

the new (proved) conjecture. Extending current tactics with new tactics in this way can 

make the resultant composite tactics robust.

Thus for a particular proof-obligation domain D, it is sought a robust tactic Tp  =
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tdi G  0 >  — > O  tdm where d* € D is a proof-obligation, 0  is an appropriate tactical, 

is a robust tactic for the proof-obligation, and Tp is a robust tactic tha t can prove any 

proof-obligation di : D.

Intuitively, in Interactive Theorem-Proving and/or Proof-Checking it is ideal to derive 

tactics which perform (all) the creative proofsteps (i.e. those proofsteps tha t require 

human ingenuity and can therefore only be partially automated) as early as possible in 

a proof development so as to leave the rest of the proof development consisting only of 

mechanical proofsteps (i.e. those tha t do not require human ingenuity, and can therefore 

be fully automated). This then dictates an order of application of proofsteps in a proof 

development and defines a normal form for a formal proof or the tactic which encodes 

such a proof.

In the case where automatic methods for instantiation may fail, a human-expert with 

knowledge of the problem domain may be able to introduce instantiation terms via m ath­

ematically rigorous creative tactics. In particular the instantiation method of proof in 

Figure 2.2, where skolemisation is performed as early as possible so tha t the skolem vari­

ables can be used as instantiation terms, is one such mathematically rigorous creative 

tactic detailed in Chapter 3.

The development of specification templates and tactics can make formal methods scal­

able and tractable on industrial-scale projects. Specifications that have been proved correct 

can be reused as components of other larger specifications, or as specification templates 

for similar problems. The reuse of specification templates and tactics is greatly facilitated 

by the provision of appropriate software technology.
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2.9.1 Robust tactics

The following are two definitions of robustness found in the literature:

D efin ition  2.9.1. (Robustness) Robustness is: (1) the ability of software systems (i.e. 

tactics) to react appropriately to abnormal conditions [Mey97]; and/or (2) the ability of 

computer proof systems (i.e. tactics) to demonstrate correctness with minimal human 

assistance despite modest system or specification changes [Wil97]. □

Robustness complements correctness, where correctness addresses the behaviour of the 

tactic in cases covered by the specification of the tactic. The first definition is a safety- 

related issue which is resolved by the fact tha t LCF-tactics are, and should be, safe. The 

second definition concurs with tha t given for the argument for proof generalization and 

maintenance in Section 2.3.1. For example with the straight-forward collation of inference- 

rules from a proof to yield a composite LCF-tactic (see Section 2.7.1), a change in the 

specification to yield a new conjecture to be proved may involve the addition of a logical 

connective, or a new quantified variable. Since this was absent in the original conjecture 

from whose proof the tactic was derived, tha t tactic may fail, especially if the quantified 

variable requires human domain knowledge for the quantifier to be eliminated.

Changes in the specification of a conjecture to be proved are due to the extension of 

the specification to cater for additional functional/nonfunctional requirements. Extending 

a tactic with other tactics by the use of tacticals to yield a composite complex tactic is 

one way of achieving tactic robustness. Therefore Definition (2) requires th a t the robust 

tactic must be reusable.
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2.9.1.1 R esearch  q uestions

The major research questions tha t this work addresses are: (1) Can robust tactics be 

derived from hand generated proofs?, and (2) Can such robust tactics be incorporated 

into a state of the art theorem prover? The main goal of this research is to develop a 

mathematically rigorous method to derive robust tactics from hand-generated proofs.

Chapter 3 addresses the first part; and Chapter 4 addresses the second part of this 

question. Chapters 5 and 6 applies our solution on the retrenchment development method.

2.10 Summary

Formal methods based on Mathematical Logic techniques can be used to specify the critical 

properties and prove the correctness of software systems. However, the application of 

Formal methods tends to be an erudite, error-prone and seemingly interminable task, and 

in general the formal proofs are not reusable since they tend to be specific to the details 

of the particular proved goal formula. The major challenges in formal proof development 

are deciding which proof rule, and variable instantiations/substitutions to apply in proof 

search. Another major challenge is to generalise a proof into a robust tactic so tha t the 

robust tactic can be reusable with minimal human assistance despite modest specification 

changes in the goal formulae.

Tool support can greatly improve the scalability and tractability of formal methods 

application. Model-checkers are prone to the state explosion problem, whereas Theorem- 

provers can safely use of mathematical induction techniques provided tha t the problem 

domain is well-ordered. The shortcomings of the three main types of theorem-provers are 

that: (1) Human-oriented Theorem-Provers (HOTPs) model plausible/informal reasoning
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which may not be entirely formalisable; (2) Machine-Oriented Automatic Theorem-Provers 

(MOATPs) often fail to prove putative theorems; and (3) Interactive Theorem-Provers and 

Proof-Checkers (ITPs/PCs) have been criticized for being too interactive.

Tactics are a means to partially automate formal proof development in IT P /PC s. The 

current techniques for deriving composite tactics from proofs do not yield sufficiently ro­

bust tactics. W ith the straightforward collation of primitive LCF tactics into composite 

LCF tactics, the tactic may fail when the definition of the conjecture is changed. The 

shortcomings of using Machine Learning to induce tactics from proofs include: (1) sensi­

tivity to the quality of the original proofs; (2) the machine induction may fail due to tactic 

interference and negation as failure; and (3) teleological (formal) justifications cannot be 

given because pattern recognition is used. Proof-plans also use heuristic knowledge which 

is not entirely formal, thus such tactics may not be acceptable in an entirely formal setting, 

e.g. in the verification of High-Integrity or safety-critical systems.

The main goal of this thesis is to develop a mathematically rigorous method for deriving 

robust tactics from proofs. The major research questions to be addressed in this work 

are: (1) Can robust tactics be derived from  hand generated p r o o f s and (2) Can such 

tactics be incorporated into a state o f the art theorem prover?. The proposed approach to 

constructing a robust tactic is to use the Gentzen System LK to develop hand-generated 

proofs for proof obligations tha t can arise from the specifications of abstract programs, 

from which can be derived a robust LCF-like tactics with mathematical integrity. If tha t 

robust tactic is not applicable when the proof obligation is changed, then another robust 

tactic can be developed in the same manner for the changed proof obligation, and tacticals 

are used to extend the other developed robust tactics with the newly developed robust 

tactic.



Chapter 3

Towards robust tactics from proofs

“Convincing proofs o f tactic correctness can be constructed ... Such proofs serve to high­

light the properties o f the application area which are being exploited: the proof o f tactic 

equivalence generally fails until some property o f the basic rules is a s s u m e d [Mar94].

This chapter answers the first research question: “Can robust tactics be derived from  

hand-generated proofs?”. The main goal of this chapter is the formulation of a theory on 

the construction of robust tactics that can withstand changes in definition of conjectures 

in Interactive Theorem-Proving/Proof-Checking.

3.1 Introduction

The development of a formal proof requires knowledge of both the proof-theory domain 

and the application-domain (Section 3.2). A model-based specification method, such as 

a functional definitional specification style which proceeds from the simplest definition to 

more complex definitions which in turn  can be in terms of the simpler definition (Section 

3.2.1), can facilitate discerning patterns in formal proofs. A renowned strategy, which en­

capsulates the human expertise used in proof search, can also facilitate the hand-generation

53
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of the formal proofs of such specifications (Section 3.2.2).

In Section 3.3 a stepwise Tactic Refinement procedure is defined to implement the 

proposed solution of Chapter 2 Section 2.9. An example is given in Section 3.3.1 on 

how the ideas above can be used in hand-generated proof development and the straight 

collation of proof-steps into LCF-tactics (as described in Chapter 2, Section 2.7.1). The 

example highlights tactic safety, the advantages of an order of precedence in specification 

and proof, and the potential unreusability of such LCF-like tactics.

A viable way to improve the reusability and thus robustness of LCF-tactics is to classify 

the proof-steps of the proof system into creative (i.e. proofs-steps which require human 

ingenuity), or mechanical (i.e. proofsteps which can be performed automatically by a 

computer) (Section 3.4). It is desirable to perform all creative proof-steps as early as 

possible in a proof development, thus leaving the rest of the proof consisting of mechanical 

proof steps which can then be performed automatically by the computer. This proposition 

gives rise to a subsidiary research question: “Can creative and mechanical proof-steps be 

permuted within a proof-tree whilst maintaining the mathematical integrity o f the original 

proof?”

A  permutation analysis of the LK creative inference-rules with the LK mechanical 

inference-rules is undertaken in Section 3.5 to provide a mathematically rigorous answer 

to the subsidiary research question above. An algorithm for deriving a normal form of 

proof based on the results of the permutation analysis is developed in Section 3.7, and an 

example application of the algorithm is given in Section 3.7.2. The proofs of correctness 

of this algorithm are given in Section 3.8.

Section 3.9 presents the two main results of this Chapter for the System LK : (1) an 

instantiation proof plan; and (2) a tactic normal form for a goal not in prenex normal form.
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These two normal forms are equivalent since logical equivalents can be used as rewrite rules 

in (1) above, instead of applying the Cut-rule to introduce the prenex normal form of the 

goal in (2) above. The chapter concludes with a summary of the main results in this 

Chapter.

3.2 Domain knowledge for proof development

There are two types of domain knowledge: (1) tha t of the mathematical and meta- 

mathematical knowledge, i.e. the proof-theory domain; and (2) th a t of the area in which 

this mathematical/meta-mathematical knowledge is applied, i.e. the application domain 

[HJMT95].

In this thesis, the proof theory domain is the Gentzen Sequent Calculus for Classical 

logic (Section 2.5); and the application domain is the proof obligations tha t arise from 

the formal specifications and developments of abstract computer programs expressed in a 

functional First-Order/Higher-Order Classical logic language. In order to develop a formal 

proof, a human-prover is expected to have knowledge of both the proof-theory and the 

application domains. An example of proof-theory domain-knowledge is tha t it is preferable 

to perform skolemisation before instantiation to allow the freedom to use the skolem 

variables as instantiation terms (see Figure 2.2). However in the case th a t the skolem 

variables are not suitable instantiation terms, then the human expert can use application 

domain knowledge to find suitable instantiation terms, e.g. by introducing lemmas about 

the application domain or defining suitable functions to generate instantiation terms from 

the skolem variables (see Chapters 5 and 6).

Robust tactics are therefore expected to capture both of these domain-knowledge types
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to enable a novice human-prover to use the tactics effectively. An Interactive Theorem- 

Prover/Proof-Checker (IPT /PC ) (Chapter 4) can be used as a proof assistant to ensure 

that the steps in the proof are carried out faithfully without the incidence of human- 

random error.

3.2.1 A functional definitional specification style

The application and proof-theory domain knowledge can be captured as definitions and 

theorems, which encapsulate particular concepts in a specification. A functional defini­

tional specification starts with the definitions of the simplest constructs first, and proceeds 

to the definitions of the more complex constructs which can be in terms of the simpler con­

structs. For example a functional definitional specification of the set-theoretic operators 

6 , C and $£ is in tha t order of complexity

set : T Y P E  —> bool. 

E, ( T Y P E  x set) —> bool 

e  (z, s) = s(x)  

(z, s) =  -i e  (z, s) 

C, (set x set) —» bool

C (sl5 s2) =  V(z : T Y P E )  :E (z, si) =^E (z, s2)

£  (si,s2) =  -« Q (si,52)

The datatype T Y P E  is a given/maximal set or basic type 2, e.g. the integers Z. The 

signature of a function definition defines the structure (i.e. form or syntax) of the function,

e.g. the signatures of set-membership e , ^  are the same but the definitions are different,

1These definitions correspond to those given in the PVS prelude file [SORSC98a].
2 A basic type is a set whose internal structure is invisible—elements of such a set may be introduced, 

and properties associated with them, but nothing can assumed about the set itself [WD96].
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and likewise for the set-inclusion operators C, The goals or proof obligations to be 

proved are specified in the order from the simplest to the more complex ones, and proved 

in that order, since a proof of the simpler proof obligation constitutes a subproof of a more 

complex proof obligation which may be defined in terms of the former. Although using 

the definitional specification style aids the brevity of specifications, the overhead is tha t 

the definitions may have to be expanded fully for a formal proof to proceed. In developing 

the proofs from which the LCF-like tactics are to be constructed, a systematic approach 

which encodes a notion of human expertise in proof development is used.

3.2.2 Human expertise in formal proof development

In the development of a formal proof, the application of an inference-rule is either decided: 

(1) on local hints, i.e. from the information in the proofstate, the human-prover chooses (in 

an ad-hoc manner) which inference-rule to apply tha t enables the proof to proceed; or (2) 

by a well-known proof strategy, e.g. a proof plan [Section 2.7.2]. A renowned interactive 

proof strategy, variations of which have been used successfully in hardware verifications, 

e.g. [ALW93, KSK93], encapsulates the human expertise in formal proof development by 

the following sequence of general proof tasks [COR+95]:

D efin ition  3.2.1. (ITP/PC Strategy) [COR+95]: The human expertise (in both the proof- 

theory and application domains) used in the development of a formal proof can be encap­

sulated by an iteration of the following sequence of proofsteps:

(1) Quantifier elimination (by skolemization, instantiation, mathematical induction).

(2) Unfolding definitions (by expanding definitions, rewriting using definitions, introduc­

ing new formulas using assumptions, axioms, and lemmas).

(3) Case analysis (i.e. proof by cases, which splits the proof based on selected boolean
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expressions in the current goal; the resulting goals can then be further simplified) □.

This state of the art strategy (or proof plan) is used in developing hand-generated (or 

interactive) proofs, i.e. given a conjecture to be proved, the inference-rules are tried 

on the conjecture in the order depicted above. In general, for software verification, an 

iteration of these proof tasks is required.

3.3 Tactic refinement

An endeavour of constructing robust tactics in the domain of set theory is to derive a tactic 

that can prove any conjecture which contains any of the set-theoretic operators e , C, 

etc. The process starts with a tactic from a proof for e , which is then extended with the 

tactics from proofs of C, $£, and so on respectively. This stepwise development method 

for building robust tactics from proofs is coined Tactic refinem ent:

P ro c e d u re  3.3.1. (Tactic refinement:)

1. For a conjecture gi, a hand-generated form al proof pi is developed.

2. From such a proof a LCF-tactic t\, which proves conjecture gi automatically, is derived.

3. Tactic t\ may succeed in the proof o f a different conjecture g2 o f sim ilar structure to gi 

but o f different definition, or tactic t\ may fail.

4. In  the case tactic t\ fails, a new hand-generated form al proof P2 , is developed fo r  g2 and 

tactic tz is derived fo r the conjecture gz-

5. The tactics t\ and to, can be composed using tacticals, thus giving a more complex tactic 

that can prove both gi and g2.

6. This process can be carried out on the conjectures g \. . . g n that describe some domain  

D. The composition (using tacticals) o f the corresponding tactics t \ . . .  tn is then be able
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 [b T]
b T , _L

[bV]  [(- T ]
h T V l  | - T

------------------------------------------------  [bA]
h T A ( T V l )

[.Arithmetic]
K 4 : Z A ( 4  =  4 V 4  =  5)

-------------------------------------- [A E)
b (A(z :Z ) :-z = 4 \l  z = 5)(4)
--------------------------------------- [setD]

b { 4 ,5 } (4 )
--------------- [e D]
b 4 e { 4 , 5 }

Figure 3.1: Proof for b 4 G { 4 ,5 }
The LCF-tactic for the proof above can be formulated as:

InTac = ([e X>] ([setD] ([A E] {[Arithmetic] ([bA] (([bV] ([b T])), ([b T ])))))))

to automatically prove any conjecture in that domain. □

Thus for a particular proof-obligation domain D , this results in a “robust” tactic

Td =  tdx O U2 0> -"5 O tdn

Where Q  is an appropriate tactical, t^ is a tactic for the proof-obligation di G D, and 

Td is a “robust” tactic tha t can prove any proof-obligation di : D.

3.3.1 An example derivation of LCF-like tactics

To facilitate the development of hand-generated proofs, ground terms are used in the spec­

ification of the conjectures in this section. Using the notion of human expertise described 

in Section 3.2.2 above, the proof of 4 G {4,5} proceeds as shown in Figure 3.1, where the 

transformation rule ([G D]([setD]([\ E]))) unfolds the definitions of set membership, set, 

and the lambda operator respectively ; [Arithmetic] is an arithmetic decision procedure, 

and [bA], [bV], [b T] are the LK inference-rules.

The LCF-tactic InTac  fails on the conjecture involving 0. However, since ^  is defined 

in terms of G, the proof of a conjecture involving ^  contains the underlined segment in
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b_L
—  [J-H

[Algebra]
b 5 : T A l

, /g _---- “7 tAH
b (5 : T  A ± )

------------------------[AJET]
b (X(x : T) : J_)(5)
-------------------------[setD]

h {*  : T | X }(5)
— — :— — 7—  [e D\
b 5 G {x : T  | JL}

 — ------------- [0 D]
b 5 € 0
 — ---------------- [\— n]
b 5 G 0
 — ------V D ]
b 5 € 0

Figure 3.2: Attempted proof for 5 G 0  with NotlnTac

the tactic InTac  in Figure 3.1 above. As expected, the tactic N otlnTac  from the proof of 

the conjecture 5 0  0  is applicable to the false statement (5 G 0 )  and demonstrates that 

the statement is unprovable as shown in Figure 3.2 3.

The operators G, ^  are of different signature and definition to the operators C, (£, but 

they are of the same parity. The tactic InTac and NotlnTac  fail on conjectures involving 

the operators $£, C because these operators are not in the domain of these tactics. The 

proof of the conjecture {4} C {4,5} is shown in Figure 3.3. Note th a t the skolemisation 

of the universal quantifier by [b V] requires the generation of a free (Skolem) variable y 

for the bound variable x.

The conjecture {4} ^  {5,6} is defined in terms of a negation of the operator C and 

this causes the proof of {4} $£ {5,6} to require instantiation (instead of skolemisation) 

of the bound variable x  (see Figure 3.4, where [XsetE] is the tactic ([se£D]([A #]))). The 

instantiation term for the variable x  in the subgoal V(a; : Z) : x  G {4} ^  i  G {5,6} b 

can be easily deduced from the expression x  G {4} as x  — 4 and thus the substitution

b ±  is equivalent to true => false which is false by the truth table for
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. [ A r l - _ - . - [ A o'*]
y : T , y  =  4 \ - y  =  4 , y  =  5 y : T , y  =  4 \ ~ y : T
 ;--------------------------------------------------------------------------- [HA]

y : T  A y =  4\~ y : T  A (?/ =  4 V y =  5)
------------------------------------------------------- [b=»]
y : T  A y =  4 =>• y : T  A (y =  4 V y =  5)

---------------------------------------------------------------------------- :------- [A e ]
b (A(z : T)  : z — 4 )(y) {\{z  : T)  : (z =  4 V  z =  5))(y)
-------------------------------------------------------------------------[setD]

k { 4 } ( y ) ^ { 4 ,5 } ( y )
[€ D]

b y e  {4} => y e  {4 ,5 }
--------------------------------------------------[I- V]
b V(x : Z) : a; G {4} = >  a: G {4 ,5 }
-------------- :---------------------  [c D]

b {4} C {4 ,5 }

Figure 3.3: Proof for b {4} C {4,5}
The LCF-tactic from the proof above is:

SubsetTac = ([c £]([F Y]([b=H([e D]([setD]([XE]([\-AMAx]), ([Ar])))))))))

[4/a;]. Thus the instantiation involves application-domain knowledge of set theory, and 

the proof-theoretic knowledge tha t instantiation is required for the subgoal V(z : Z) : x  G 

{4} =b rr G {5,6} b.

Since $£ is defined in terms of 6 and C, the tactic NotSubsetTac can be used to  prove 

conjectures involving these operators, but not conjectures involving ^  since NotSubsetTac  

does not involve the ^  operator 4. The composite tactic

SetTac = InTac ; N otlnTac ; SubsetTac; NotSubsetTac, where the semicolon (; ) is the 

sequential tactical operator, is sufficiently robust for the set-theory operators G, C,

However, the tactics NotSubsetTac, N otlnTac , SubsetTac, NotSubsetTac all contain the 

tactic InTac  therefore tactic NotSubsetTac is not in its normal form. The next sections 

propose a theory for deriving a normal form tactic for SetTac and for LCF-like tactics in 

general.

4 A theorem-prover such as PVS, which can apply the negation inference-rules automatically, will enable 
the tactics InTac and SubsetTac to also work on conjectures involving respectively.
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± H (XhI l h I i H
--------- [Algebra}  [Algebra]  j|_ yj

[Vh] (2)----------------- — :---- [Algebra]
4 =  5 V  4 =  6 h [ _ 4 _ 4
 ----------------[A setE]  [A setE]

{ 5 ,6}(4) h h (X(x :Z) : x. = 4)(4)
 [g  D]  [g  -D]
4 G {5, 6} b h 4 G {4}

4 g { 4 } = s- 4 g { 5 , 6 } K
[v h

K H  (i)

W(x : Z) : re G {4} => £ G {5 ,6 }  b
------------------------------------------ [Q 0 ]

{ 4 } C { 5 , 6 } b
n

b - ’({4} C {5 ,6 })
-----------------------E  ^  (0)

h { 4 } ^ { 5 , 6 }

Figure 3.4: Branch-labeled prooftree for {4} ^  {5,6}

3.4 An abstraction of LK inference-rules

The inference-rules involved in a proof development exercise can be typically characterized 

as (1) creative (i.e. high-level or strategic steps, which require ingenuity and thus may 

only be partially automated); or (2) mechanical (i.e. low-level or straightforward steps, 

which require no ingenuity and thus can be automated). The main goal here is to reorder 

the inference-rules in a hand-generated proof (or LCF-tactics as derived in Section 3.3.1 

above) so tha t creative proofsteps are performed as early as possible thus leaving the rest of 

the proof consisting of the mechanical rules which can then be applied automatically. This 

then defines a normal form for encoding tactics which work best in Interactive Theorem- 

Proving/Proof-Checking whereby the human user performs the creative rules first, and

leaves the IT P /P C  to generate the rest of the prooftree 5.

5This is analogical to planting a genetically-modified seed (a robust tactic derived from a proof) and 
then watching the seed grow on its accord into a tree of the required shape (a prooftree) under the 
nourishment of the environment (the ITP/PC).
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3.4.1 Mechanical LK inference-rules

The mechanical (low-level/straightforward/automatic) LK inference-rules are defined be­

low:

D e f in i t io n  3 .4 .1 .  (Mechanical LK proof rules) A LK inference-rule is mechanical if the 

rule does not require application domain-specific knowledge in its application. The LK 

mechanical proof rules are: LKMechanical ::= Contraction | Weakening | Interchange |b  

“i | —i b |b A |A b |b V |V b |b = ^ |= ^ b |b  V | 3 b. □

Structural rules (Contraction, Weakening and Interchange) concern sequents in general 

rather than particular connectives. In goal-oriented proof, contraction rules (b C  and 

C  b) allow a single occurrence of a formula to be replaced by multiple occurrences of the 

same form ula , thus allowing a formula to be used more than once. However, when sequents 

are considered as sets of formula, the set {A} is identical to the set {A , A }  and therefore 

contractions are redundant. Formulae are rarely used more than once except in the case 

of instantiation ([V b] and [b 3]), where applying contraction before these rules makes 

the Gentzen System LK complete [Gal86]. In goal-oriented proof, Weakening rules (b W  

and W  b) are used to delete unwanted formulae from the antecedent or consequent of a 

sequent. However, Linear Logic [Wad93], which has been proposed as most appropriate for 

software verification, disallows the weakening and contraction rules to mimic the finiteness 

of computing resources such as memory.

The Exchange rules (b E  and E  b) allow formulas in a sequent to be reordered, 

thus asserting tha t the order of the formulas in the antecedent and consequent parts 

of the sequent is not important [OS97]. If sequents are considered as sets of formulae 

instead of lists of formulae, the Exchange rule is redundant since order is irrelevant in Set 

Theory. According to the definition of the original Gentzen System LK inference-rules,
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the Exchange rule is used to put a formula to be manipulated at the front (end) of the 

antecedent (succedent) respectively so tha t the inference-rules can manipulate the formula. 

Therefore the Exchange rule accounts for the complexity of the proof in manipulating a 

sequent into the required form so tha t an inference rule can be applied to tha t sequent. 

However, the Exchange rules can be made redundant by allowing the logical connectives to 

be manipulated in-line where the logical-connectives are in the scope of the inference-rules 

(parentheses and operator-precedence scope the area of operation of a logical operator).

Skolemisation generates new free terms to be used for eliminating quantifiers in expres­

sions by using the rules [b V] and [3 b]. The new variables can be constructed or created 

without any application-domain knowledge by collecting all variables in the current proof- 

state, and then generating a new variables tha t do not currently occur in tha t current 

proofstate. This can be done automatically without using any application-domain knowl­

edge, by maintaining this eigenvariable condition. Note that in the Resolution method 

skolemisation refers to the elimination of the existential quantifier by using Herbrand (or 

Skolem) functions. This is because Resolution is a refutation method—to prove a goal 

(b  3 r  : A(jc)) it is required to show tha t (~>3x : A(ic)) is unsatisfiable with respect to 

the defined non-logical axioms of the application domain, i.e. there is no self-evident x  

(in the axioms) such tha t A{x)  becomes true. If the conjunction of (-i3  x  : A{x))  and 

the axioms derives a contradiction (or there is no model for the conjunction), then by 

consistency, (3 x  : A(x))  is a theorem, otherwise it is not. In Gentzen Sequent Calculus, 

this assumed negated goal (Axiom s H— * 3 m : A(a:)), becomes (Axiom s  A 3 x  : A(x)  b)

by the application of [I ■], and thus skolemisation ([3 b]) is required to eliminate the

existential quantifier. Similarly, existential quantifiers in the non-logical Axiom s  are in 

the antecedent, and therefore require skolemisation. Dually in resolution, the universal
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quantifiers are simply dropped, which is equivalent to instantiation by the term(s) in the 

current proofstate in direct proof.

Therefore LK mechanical rules can be considered robust primitive tactics since they are 

successfully applicable on any formula involving the logical connective in tha t mechanical 

rule.

3.4.2 Creative LK inference-rules

These are the creative choices in proof development tha t usually require application- 

domain knowledge as well as proof-theory-domain knowledge from the human-user.

D e f in i t io n  3 .4 .2 .  (Creative LK proof rules) A LK inference-rule is creative if the rule 

requires both proof-theory and application domain-knowledge in its application and thus 

can only be partially automated. In LK, the creative proof rules are:

LKCreative Cut \ Mathematical Induction  |b 3 | V K  □

Mathematical induction (b V, 3 b) requires the choice of a suitable induction variable 

from a well-ordered (i.e. either numerically or lexicographically) domain; the construction 

of an induction hypothesis; and the proof of the base and step cases. The choice of these 

attributes can be quite challenging, thus this is a creative task which requires a proof- 

theoretically (or heuristically) justified classification of the application-domain knowledge. 

Section 2.7.2 in Chapter 2 briefly describes the partial automation of the Rippling heuristic 

induction scheme [BM98] as an LCF-like tactic. The PVS Theorem-Prover/Proof-Checker 

(see Chapter 4) also comes with a partially automated defined-rule for mathematical 

induction.

Instantiation [b 3], [V b] may require ingenuity in the choice of the instantiation terms. 

For example, it was also demonstrated in Chapter 2, Section 2.5 tha t goals of the form



CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 66

3 s  : V r  : A ( r , s )  are not theorems of the Gentzen Sequent Calculus LK largely due to the 

difficulty of finding a instantiation term  m  as a model of all the possible r, where m  is of 

the same type as s.

The cut rule is the only viable means of introducing a new form ula  (i.e. the cut- 

formula), which does not occur in the current proofstate. The application of the Cut-rule 

requires the choice of the cut-formula, usually with an insight towards shortening the 

length of a proof, e.g. already proven results can be introduced as intermediate steps in a 

proof development in the traditional practice of mathematical proof. An example of such 

lemma introduction is in proof by mathematical induction where the induction hypothesis 

(which has been proved for the base-case) is applied as a lemma in the proof of the step- 

case. In tha t respect, the cut rule is approximated by the transitivity relation (IF  (A  =>•' B )  

and (B  => C) TH EN  (A C )), where (A  b C) is the goal, (A  b J5), (B  b C ) are the 

subgoals, and the required cut formula is B . Another typical example of the application 

of the cut-rule is introducing case-formulae, which are boolean expressions tha t define 

the cases in the proof-by-cases approach (Step (3) in Definition 3.2.1). For example, the 

conditional statement, IF  cond TH EN  a l E LSE  a2 , can be proved by considering two 

cases: (1) when cond is true, a l should hold; and (2) when cond is false a2 should hold. 

Thus in general, a case-analysis leads to branching in the prooftree. Ingenuity is required 

to ensure that the cases chosen complete the problem domain, and that the introduced 

case expressions are provable; otherwise the case proof is not exhaustive. The ingenuity 

entails detailed knowledge of both the proof-theory and application domains, as well as 

creative insight to choose the appropriate concepts to introduce as cut formulae in order 

to aid the proof search.

Therefore LK creative rules are not robust primitive tactics in tha t the incorrect choice
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of the cut-formula, induction variable/hypothesis and the instantiation terms in the cre­

ative rules (cut, induction, instantiation respectively) can easily lead to an unprovable 

proofstate.

3.5 The permutability of LK inference rules

Given a sequent formula to be proved, the proof can proceed by manipulating those 

connectives available for manipulation. In particular, in most IT P/PC s, e.g. PVS (see 

Chapter 4), quantifiers can only be manipulated when they are at the front of the sequent- 

antecedent or end of the sequent-consequent formula, and logical connectives are manipu­

lated when they are in scope. Therefore in the generation of a proof, creative and mechan­

ical rules can be mixed when the mechanical rules are necessary to bring the formula in 

the scope of the creative rules, e.g. when definitions contain quantifiers (see Figures 3.4, 

3.3, Section 3.3.1), or when the goal formula contains some inline quantifiers (see Example

3.5.1 below). The main goal of this section is to give a rigorous mathematical analysis of 

the reordering (or permutability) of the inference-rules in a hand-generated proof.

Given a collection of n distinct objects, any (linear) arrangement of these objects 

is called a permutation of the collection [Gri99]. When the objects are proofsteps in a 

prooftree, the following definition is more relevant:

D efin ition  3 .5 .1 .  (Permutation) [LH01]: The permutation of two adjacent inference rules 

of a given proof is reversing their order in the proof but without disturbing the rest of the 

proof (modulo some duplication of proof branches and a renaming of certain variables) as 

a result of which we get a proof equivalent to the given one. □

For two inference-rules to be permutable, the principal formulas (i.e. the formula each
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E x am p le  3.5.1.

(Q(?/i),P(zi,2/i)),P(2/) h P ( x 1) , P ( x 2)
--------------------------------------------------------------- Ah
(Q(jft) A R(xi, ft)), (P (y ) h P(aft), P(a&))

------------------------------------------------------------------- 3 h
3 y  : ( Q(y )  A p(aft, 2/)), (P(y) h P(xi), P(a&))
---------------------------------------------------------------------------------------------------------------------------------------------------------1— i

P (y ) b P ( xi ) j “■ 3 2/ : (<?(?/) A P(a?i,j/)),P(a&)
------------------------------------------------------------------------ hV)
P (y ) h (P (z i)  V -- 3 2/ : (Q(?/) A F (z i, ?/))), P(a&)

 h V (twice)
P ( y ) h V x  : (P (z )  V ->3y  : ( Q ( y ) A R ( x , y ) ) ) , ( V x  : P( x) )

-------------------------------------------------------------------------------------------- 1 h
( P ( y ) , - i \ / x  : P (z ))  h V x  : (P (z )  V -i 3 y  : (Q ( y ) A F (z , ?/)))

--------------------------------------------------------------------------------------------- hA
(P (y ) A - iV x : P( x) )  b V z : (P (z )  V ~^3y : ( Q( y )  A R(x,  y)))

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |— i

h V z : (P(x) V -n3 y : (Q ( y ) A R ( x , y ) ) ) , ^ ( P { y )  A -rVz.: P (z ))
---------------------------------------------------------------------------------------------------hV
( - V i :  (P ( z ) V - i3  2/: (Q(?/) A P (z , y))) V -»(P(y) A -> V z : P (z ))

of the inference rules manipulates) have to be present as two distinct formulas in the

sequent. In Example 3.5.1, the quantifier rules cannot be permuted with those logical

required to bring the quantifiers to the front for manipulation. Even with the use of

geographic/structural tactics [Mar94, MGW96] tha t target quantifiers first (i.e. can per­

form inline processing of quantifiers), the presence of negation can cause problems, since

the negation changes the semantics of quantifiers, e.g. instead of a skolemisation, an in­

stantiation would be required and vice versa (see Section 3.3.1). Therefore to enable all

quantifiers to be eliminated as the first step in a proof development (Definition 3.2.1), a

suitable first step is to “rewrite” the goal formula to a form where all quantifiers are at

the beginning of the goal formula, i.e. prenex normal form.

3.5.1 Prenex Normal Form

The conversion to prenex normal form corresponds to the Reduction phase in the Formal

Methods Lifecycle (Procedure 2.3.1); the goal formula is an Abstraction representing the

proof obligation tha t has to be verified from a Specification.
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E x am p le  3.5.2.

Q ( w i ) , R ( x l t w i ) , P ( y ) I- P ( x i ) , P ( w i )
--------------------------------------------------------------1 1- twice
Q{w1) , R ( x i , w i ) , P ( y ) , - ^ P { w i )  h  P(x i )

-----------------------------------------------------------------------A l-  twice
( Q ( m )  A R ( x i , w i ) ) ,  ( P( y)  A -^P(wi))  1- P ( n )

----------------------------------------------------------------------------- I— i twice
h P ( x i ) , - i ( Q( wi )  A  P ( i i ,u / i ) ) , ( - . ( P ( y )  A - iP(wi ) ) )

----------------------------------------------------------------------------------------- hV twice
b- (P (x i )  V ( - i Q ( w i ) A  R( xi , wi ) ) ) )  V  (-. (P ( y ) A  -nP(wi)))

----------------------------------------------------------------------- : h V thrice
I- Vx : V w  : V z : (P(x)  V  (->( Q(w)  A  R(x,  w))))  V  (-i(P(y)  A ->P(w)))
----------------------------------------------------------------------------------------------------------A W y  : B ( y )  =  V y  : A  V  B(y) )
h V i  : Vtu : (P ( x ) V  (-■( Q ( w ) A  P (x ,  u/)))) V (V w :  ~'(P(y)  A  ->P(w)))

 ;-------------------------------------------------------------------------------------------------- . 3 y  : B( y)  =  Vy : - .P (y ))
h V i  : M w : (P ( x ) V  (~<(Q(w) A P(x ,  w))))  V (~>3w : (P( y)  A - iP(w) ) )

---------------------------------------------------------------------------------------------------------- A(x)  A 3  y  : B ( y )  =  3 y : (A(x)  A B(y) )
1 -V i  : Vt« : ( P ( x)  V  (-<(Q(w) A  P (x ,  iw)))) V (~<(P(y) A 3 w : -*P(w)))

------------------------ :-------------------------------------------------------------------------------------------------------------- i 4 ( x )  V  Vy : B (y)  =  Vy : V  ->S(y))
1- V i  : (P ( s )  V  ( y  w  : ->{Q(w)  A  i?(x, t u ) ) ) )  V  (-»(P(y) A 3 u> : -<P(u;)))

 ------------------------------------------------------------------------------ 1Vz : -<4(z) = 3 z : ->i4(z)
h Vx : (P(x)  V Viy : ->(Q(w)  A R( x , w) ) )  V (~’(P(y)  A - iV z  : P (z)))

------------------------------------------------------------------------------------------------- —  -i 3 w  : j4(w) =  V w : -yA(w)
t- V i  : ( P ( i )  V  - i3tu  : ( Q(w)  A R( x , w) ) )  V  - i(P (y)  A - iV z  : P (z ))

------------------------------------------------------------------------------------------------— variable renaming
h V i  : (P (x )  V -i 3 y : (Q(y) A R( x, y ) ) )  V ->(P(y) A - i V i  : P ( i ) )

Logical equivalents are used to rewrite a goal formula into prenex normal form. In

addition, bound variables of the same name as some free variables need to be renamed to

avoid variable capture—a formula in which all variables are distinct is called a rectified

formula [Gal86]. Converting a goal formula to prenex normal form: (i) gives a unique

representation of a formula as QiXi, ...Qnxn : P (x i , . . . , x n )  where X i , . . . , x n  are distinct

variables bound by the quantifiers Qi G {3, V}, and P ( x i , x n) (called the matrix) is

a quantifier-free formula; and (ii) is useful for eliminating quantifiers first and thus is a

useful Reduction technique (Step 3 of Procedure 2.3.1) for automated theorem proving.

“For every formula A , a prenex normal form formula B  can be constructed so tha t A B

is valid (i.e. A  is equivalent to B )” [Gal86] (Theorem 7.2.1 page 307). The proof in

Example 3.5.2 first rewrites the goal formula into prenex normal form, and is equivalent

to the proof in Example 3.5.1 in that the same subgoals are achieved.

Instead of rewriting the goal formula by using equivalents as in Example 3.5.2 above,
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E x am p le  3.5.3.

P i P i
-------------------------------------------------------------------------------------- Cut
\ - \ / x , y  : (P( x)  V ->3 y :  ( Q( y ) A R(x,  y)))  V ~^{P(y) A x  : P( x) )

Where Pi is the proof of the equivalence of the original goal to its prenex normal form as follows:

-------------------------------------------------------------------------------------------------------------------------------------------------- PropSimp
(P (x i )  V (-’(<3(2/2) A R ( x i , y 2)))) V (->(P(2/ i)  A - .P (x2))), Q(y2) A P (x i ,  y2), P ( y i )  b P ( x i ) , P ( x 2)

--------------------------------------------------------------------------------------------------------------- :--------------------------------------------- V b[4]
V x , y , w , z  : (P (x)  V (~i(Q(w)  A R(x,  w )))) V ( - ’(P (y)  A ->P(z))),  Q(y2) A R ( x i , y 2), P ( y i )  b P (x i ) ,  P (x2)
------------------------------------------------------------------------------------------------------------------------------------------------------------- 3 b

9PNF,3y  : ( Q( y ) A R(xi ,  y)) ,  P (y i )  b P ( x i ) ,P ( x 2)
---------------------------------------------------------------------------------- h V
9PNF,  3 y : (Q(y) A R ( x i , y ) ) , P ( y i )  b P (x i ) ,V x  : P(x)

------------------------------------------------------------------------------------------------- PropSimp
9PNF b P ( x i )  V - . 3 y  : ( Q ( y ) A R( x , y ) ) , -* (P( y i )  A ->Vx : P(x))

-------------------------------------------------------------------------------------------------------------- h V
9PNF b V x ,y  : (P(x)  V —-32/ : (Q(y) A R{ x , y ) ) )  V - '(P (y)  A - iV x  : P(x))

P2 the proof of the prenex normal form of the goal as follows (the original goal is deleted by a 
weakening since it has been proved to be “equivalent” to the prenex normal form, which now needs to be 
proved):

Q(wi) ,  R ( x i , w i ) ,  P (y )  b P ( x i ) , P ( z 1)
 -i b twice
Q ( w i ) , R ( x i , w i ) , P ( y ) , - > P ( z i )  b P (x i )

----------------------------------------------------------------------Ab twice
( Q( w  1 ) A R ( x i , wi ) ) ,  (P( y)  A - -P(z i ) )  b P (x i )

---------------------------------------------------------------------------- I— 1 twice
b  P(xi) ,-i(<3(wi)  A R(x i ,wi ) ) , ( ->(P(y )  A -iP(xi)) )

 bV twice
b (P (x i )  V (~i(Q(wi) A R(xi ,W!)) ) )  V (~’(P(y)  A - lP (z 1)))

--------------------------------------------------------------------------------------------------------b V thrice
b  V x : V to : V z  : (P (x )  V (->(Q(w) A R(x,  w)) ) )  V (->{ P ( y ) A ->P(z)))

----------------------------------------------------- :----------- b  W  ; [gpNFD]
b gpNF,  (Vx : (P (x)  V ->3y : ( Q ( y ) A R ( x , y ))) V ->(P(2/) A -1  Vx : P (x)))

PropSimp is a tactic which applies the LK rules for the logical connectives A, V, =b. When the 
above proof is checked in the PVS ITP/PC, PropSimp is available in PVS as the tactic (prop). In Pi, 
the powerful instantiation PVS tactic in st?  correctly guesses the first two instantiations of variables 
x ,w  with the skolem variables xi, y2 respectively. However for the instantiation of variables y, z , in st?  
tries skolem constants xi, yi respectively, which yields two unprovable subgoals. The correct human 
instantiation of variables y ,z  with skolem variables y\, x̂  yields the provable proofstate as above. 
Therefore the PVS in st?  tactic can be considered as unangelic since the tactic can often instantiate 
incorrectly thus yielding an unprovable proofstate.
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one possible application of the cut rule is to introduce the prenex normal form of the goal 

formula to be proved as demonstrated in Example 3.5.3. Comparing proofs in Example

3.5.3 with the original proof of the same goal formula in Examples 3.5.1 and 3.5.2, it is 

evident tha t the prooftrees in Example 3.5.3 are in a normal form. There is a clear dis­

tinction between quantifier rules and propositional rules in the subproof Pi (the deduction 

of the goal formula from its prenex normal form). In the proof of P2 (the prenex normal 

form of the goal), first the quantifiers are eliminated, and the rest of the proof consists 

of application of the propositional inference-rules. In the prooftree in Example 3.5.1, the 

quantifier rules are mixed with the logical rules since the proof is constrained by bringing 

quantifiers to the front before they are eliminated. In Example 3.5.2, the reduction of the 

original goal to its prenex normal form using logical equivalents is replaced in Example

3.5.3 by the application of the cut-rule, the proof of subtree Pi and the weakening of the 

original goal formula in subtree P2. All three examples use the idea of skolemizing quanti­

fiers first and using the skolem variables as potential instantiation terms (as demonstrated 

in Figure 2.2, Section 2.5, Chapter 2).

The next step is to justify the proposition tha t the LK creative rules should be applied 

as early as possible, therefore leaving only the mechanical rules to be applied afterwards. 

The crucial criteria in rearranging logical inference rules is that a different order of rules is 

used but the same conclusion is reached. The analysis of the permutability of the inference 

rules of LK with each other may proceed by considering all cases of the perm utation of all 

logical rules with each other, all quantifier rules with either a logical rule, or a structural 

rule or the cut rule. However by the Gentzen Hauptsatz Theorem, the Cut-rule permutes 

with all the other LK rules, and the b 3 and 3 b rules are dual to the V b and b V rules 

respectively. Tables A.2, A.3, A .l in Appendix A .l typifies the permutation of the creative
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3.5.2 Perm utability of the cut-rule w ith other LK-rules

The Cut-rule mostly used in the literature [Gal86, Kle64] is

A h 0 , i  L, rbA
------------------------------AtomicCutB

I \ A b A , 0

In the form of the Cut-rule above, the antecedent (A, T) and succedent (0 , A) formulas 

are split between the two branches. In this section, the simpler form of the Cut rule 

[OS97, Pau99] is used:
i , r h A  r h A , i
------------------------------AtomicCutL

rb a

The same antecedent (T) and succedent (A) formulas are repeated in both the two 

branches, which makes clearer the conception of the cut-rule as a way to introduce lemmas 

or cases in proof since the original sequent formulas are both involved in the assumption 

(left branch) and proof (right branch) of the lemma/case formula L.

The Gentzen Cut Elimination (Hauptsatz) Theorem (Section 2.5.2.1) demonstrates 

that the Cut-rule permutes with all the other LK rules. Definition 3.4.2 classifies the cut- 

rule is as a creative proof rule, therefore it is permuted down the prooftree. Applying the 

cut rule before the contraction avoids the problem of permuting cut above the contraction, 

which forced Gentzen to use the mix rule in his permutation analysis.

The cut-rule is a branching rule, i.e. an inference-rule with more than one premise, 

thus when a cut is permuted below a rule, tha t rule can then duplicated in the branches 

of the cut-rule in order to produce the same leaves as in the original prooftree. In the 

permutation of the cut-rule with skolemisation (b V, 3 b): (1) the eigenvariable v (the 

skolem variable) should not appear in the conclusion, e.g. in A, otherwise the proof would
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violate the eigenvariable condition; and (2) A[v/x]  cannot be the cut formula since the 

eigenvariable condition would also be violated in tha t case.

3.5.3 Perm utability of quantifier-rules with other LK-rules

Since the V I- and b V rules are dual to the b 3 and 3 b rules respectively, it suffices to 

consider only the b 3 (instantiation) and b V (skolemisation or induction) rules in this 

case. For those permutations not involving Cut, all formulae in the permuted prooftree 

are subformula of the goal formula (see Section 2.5.2.1). The permutation of instantiation 

(b 3) with skolemisation/induction (b V) satisfies the eigenvariable conditions tha t the 

skolem/induction terms should be new variables which do not occur in the conclusion.

3.6 Results from the permutation analysis

Tables A .l, A.2, A.3 in Appendix A .l show the permutation analysis of these quantifier 

with the other LK-rules including Cut. The permutation analysis shows tha t in Gentzen 

Sequent Calculus for Classical logic (LK) it is possible to rearrange the order of inference- 

rules in a developed proof without prejudicing the validity of the proof 6.

3.6.1 Creative com positions of proofsteps

As demonstrated in Example 3.5.3, the Cut introduces the prenex normal form of the goal

formula; the original form of the goal is then deleted in the right branch by a Weakening;

and the prenex normal form of the goal is contracted to allow completeness of the Gentzen

System LK. Thus a creative combination of the inference rules is Cut ; b W;  b C,  which

yields a normal form of proof for goals which are not in prenex normal form.

6In Intuitionistic logic (LJ) it is not possible to do so [Sha92].
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D efin ition  3.6.1. (Tactic-proof normal form) A normal form of tactic-proof is a finite proof

where all the creative rules are applied as early as possible in a proof thus leaving the rest

of the proof consisting of mechanical rules possibly automatic. For a goal p where g is not

in prenex normal form, the tactic-proof normal form is a proof of the form:

- Axiom

----------------- Creative; Mechanicalsteps
- (Axiom)  h 9p n f , 9p n f

: b gpNF
-------------LKrules — ------- b W
9 p n f  b p  b p , g PNF

■ CutgpNp
b P

□

This provides an alternative way to reason about the reduction of a goal formula to prenex 

normal form. However this reduction can be replaced by definitional equivalences, and 

thus eliminating this use of the cut-rule.

When skolemization is performed after instantiation, the eigenvariable condition re­

quires tha t the skolem variable £ must not occur in the conclusion. Hence the skolem 

variable z  must be a new variable (or constant) and cannot be the instantiation term  t. 

When skolemisation is performed after instantiation, the instantiation term  t can be a 

variable (Definition 2.4.4), e.g. t can be the skolem variable z  and the eigenvariable con­

dition is not violated. Therefore performing skolemisation before instantiation can lead to 

more freedom in the choice of instantiation terms since the skolem variables can be used 

as instantiation terms pending type correctness conditions, i.e. the instantiation term  

should be of the same type as the skolem variable. Thus b V; b 3 (which is equivalent to 

3 b; V b) is a creative composition of proofsteps. These claims are demonstrated in the 

permutation Cut with 3 b (Tables A.3) and in Figure 2.2.

T h eo rem  3.6.1. (Instantiation with skolem terms): Given a sequent T b A where each
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form ula in T, A is in prenex normal form  Vn Xi : X  : 3m yj : Y  : P(x ,  y) for  i , j , n , m  > 1 

then instantiation term s tj fo r  existential variables yj can be generated from  the skolem  

variables Vi fo r  the universal variables x  ̂ by a function f  : X  —> Y , i.e. tj = f ( v i ) where 

the function f  generates instantiation terms whilst ensuring type-correctness conditions 

between the sets X , Y .

P ro o f:  by the permutation analysis of skolemisation with instantiation [Section 3.5]. □

3.6.2 Factorizing inference-rules

The permutation analysis above also shows that for the LK branching rules (Cut,  Vh, =>h 

, hA), performing the branching rule after a non-branching rule has the effect of factoring 

out all common proofsteps among subtrees at the same level, so tha t only one instance of 

the non-branching rule is applied in the s tem /trunk  of the prooftree (see Appendix A .l).

D efin ition  3.6.2. (Common inference-rules): For a given proof, an inference-rule is com­

mon if the same inference-rule occurs among different subtrees at the same level of the 

prooftree. □

A common inference-rule can be either a creative-rule, e.g. the h 3 in the permutation 

analysis in Appendix A.l; or a mechanical-rule, e.g. the inference-rules [e],[Ase£Z?] in 

Figure 3.4. This factorization of common inference-rules can be achieved by repeated 

permutation.

T h eo rem  3.6.2. (Rule Factorization): Given a prooftree P  in which a branching rule is 

applied before a non-branching rule, i f  the two rules are permutable, then applying the non­

branching rule before the branching rule yields a prooftree P ' in which the non-branching 

rule is factored out from  the branches o f prooftree P  to be applied only once.

P ro o f:  by repeated permutation. □
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The permutation of the branching cut-rule upwards the prooftree (Gentzen Cut-elimination 

Theorem) can be seen as a way of Factorizing the prooftree. The purpose of performing 

branching rules as late as possible is to reduce the duplication of proofsteps tha t the user 

may have to endure if the branching rules are applied as early as possible.

3.6.3 A strategy for choosing which proofrule to  apply

The analysis of the permutations of the LK rules with each other can determine which 

rules are to be applied first, i.e. the order of application of the rules. The example proof 

which involves instantiation (see Figure 3.4, Section 3.3.1) shows tha t by first rewriting 

the goal (where the goal involves definitions and negation), the instantiation terms can 

be more easily deduced, and in addition, the goal would be in its normal form. The 

permutation analysis demonstrates tha t it is possible to permute downwards the prooftree 

the LK creative proofsteps ( C ut, b 3, V h) with all the other LK rules provided that: 

(1) the formulae are in prenex normal form; (2) the eigenvariable conditions are satisfied; 

and (3) inline processing of logical connectives is allowed. Definition 3.6.1 provides an 

alternative means of introducing the prenex normal form of a goal formula; Theorem 3.6.1 

provides a viable means for eliminating quantifiers; and Theorem 3.6.2 states tha t it is 

preferable to perform non-branching rules before the branching ones. Therefore Theorem

3.6.3 below depicts an order of application of LK proof rules which can be used as a 

strategy in an IT P /P C  to yield a formal proof in normal form.

T h eo rem  3.6.3. (Tactic-Proof Normal Form): I f  a conjecture b g in predicate calculus is 

LK-provable by a proof P , then there is a normal form  proof P ' where:

(1) creative compositions o f L K  rules and the mechanical rules (b=^, I— >, “>bj are used 

to rewrite b g into sequent subgoals T* b A* where each form ula in  T*, A* is in Prenex
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Normal form  [by Definitions 2.5.2, 3.6.1 and Appendix A].

(2) Creative rules (instantiation, induction) are used to eliminate the quantifiers i nT i  b A* 

to yield quantifier-free sequents T' b A' [by Theorem 3.6.1J.

(3) Each T' b A ' is provable by L K  mechanical rules where branching rules are applied as 

late as possible [by Theorem 3.6.2].

This produces a normal form  o f proof where creative proofsteps are applied as early as 

possible by the human prover to leave the rest o f the proof to be performed automatically 

by the theorem prover via decision procedures fo r  propositional logic and arithmetic. 

P ro o f:  from  the permutation analysis and results in Section 3.5 and Appendix A . l  re­

spectively. □

In applying the Cut-rule to introduce the prenex normal form of the goal, the reduction 

in proofsteps required of the human-prover is afforded in tha t there is no overhead in 

applying mechanical-rules to rewrite the goal formula so that all quantifiers are at the 

front, in particular when the proof of the left branch is ignored. If the goal formula is 

already in prenex normal form, the reduction in proofsteps required of the human-prover is 

afforded in tha t the creative proofsteps required of the human-prover are applied first, thus 

leaving the rest of the proof automatic. In general the Cut-rule can be used to introduce 

new formulae, e.g. definitions, lemmas, and cases in goal-oriented proof with mathematical 

integrity. Thus the unfolding of definitions in Definition 3.2.1 can be regarded as a form 

of Cut-rule application.

Theorem 3.6.3 can be used in the Generalization and Maintenance phase of the Formal 

Analysis Lifecycle to transform a given formal proof into the normal form of proof. This 

normal form of proof can the be encoded as a tactic which can be composed with other 

tactics in such a normal form to yield a tactic-proof each of whose subtrees (or subproofs)
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is in normal form.
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3.7 A procedure for constructing robust tactics

In this section an algorithm tha t can transform a proof into the normal form given by 

Theorem 3.6.3 is presented and proved. A method for deriving a normal form of tactic- 

proof can be conceptualised as follows:

P ro c e d u re  3.7.1. (Deriving a normal form of tactic-proof)  A  normal form  o f tactic-proof 

can be derived from  a fin ite proof (which is not in normal form ) by distinguishing the 

inference-rules used in the proof into creative and mechanical inference-rules, Factorizing 

the proof description, and then permuting the inference-rules in accordance to Theorem  

3.6.3. □

The procedure is applied iteratively (or recursively) starting from the root of the devel­

oped prooftree and proceeding upwards towards the axioms or leaves of the prooftree. 

The factorization involves factoring out the prooftree into subtrees (which are effectively 

branches of the prooftree), where each subtree is a subproof of the complete proof. A 

further factorization involves factoring out the inference-rules th a t are common between 

all the subtrees at the same level. These common inference-rules can be distinguished into 

creative and/or low-level inference rules.

The permutation involves two phases. The first phase involves permuting the inference- 

rules of the subtrees so tha t the common inference-rules are applied just before the 

inference-rule that generated the subtrees. This yields a new subproof for the subtrees at 

the same level where the common inference-rules are ‘bubbled down’ towards the root of 

the prooftree. The second phase involves permuting the inference-rules in the resultant
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proofstem, so tha t the creative inference-rules in tha t proofstem, which are lower in the 

creative lattice, are applied first. This bubbles down the creative inference-rules (lower in 

the creative-lattice) towards the root of the prooftree.

3.7.1 An algorithm for constructing robust tactics

Procedure 3.7.1 can be conceptualized into an iterative algorithm as shown in Figure 3.5. 

The {P} S  { Q } notation [Hoa69, Bac86] is used in writing the algorithm in order to 

verify the correctness of the algorithm, i.e. {P} =  {branch =  0} is the precondition, S  

is the program fragment, and {Q} =  {branch = n]  is the postcondition. LatticePermute  

uses the Theorem 3.6.3 to permute inference-rules. Permute does not use Theorem 3.6.3, 

but permutes common inference-rules with the inference-rule tha t caused the branching. 

Distinguish separates creative inference-rules from mechanical inference-rules. Collecting 

inference-rules at a branch-label i is defined as in Algorithm CollectBranchRules, where 

CollectRules(i) collects inference-rules at branch i to the next branch (i +  1) for each 

subgoal.

3.7.1.1 L abe ling  th e  p ro o ftree

Given a prooftree and/or its corresponding proofscript, the branches produced by inference- 

rules with more than one premise in the prooftree are labeled as follows.

D e f in i t io n  3.7.1. (Labeled Prooftree) A generic labeled prooftree can be conceived as:
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Algorithm 3.7.1. (Normalize: an algorithm for transforming a formal proof into normal form) 
{ branch = 0}
FOR branch := 0 TO n DO %the branches are numbered from 0 up to n.

IF  branch = 0 then begin %Define the root as at branch 0 
LatticePermute(Distinguish( CollectBranchRules (branch ))) 
branch := branch + 1 

ELSE
Permute(FactorCommonRules( CollectBranchRules (branch )))
LatticePermute(Distinguish (CollectBranchRules (branch — 1))) 
branch := branch + 1 

END 
END
{branch = n +  1}

Algorithm 3.7.2. (CollectBranchRules( i ) )
FOR goal := g .l TO g.n DO %these are the subgoals at that branch-level 

CollectRules(i)
END

Figure 3.5: An algorithm for constructing tactics from proofs.

Where the g is the goal; g .l ,g .2 ,g .i ,  the horizontal dots . . . ,  and the vertical dots 

are subgoals. The numbers in the parentheses— (0), (1), (2), (3)—are branch-labels; and

[a], [6], [c], [d], [e] are the branching inference-rules.

The branching of the prooftree is identified as instances of double opening brackets in 

a proofscript—the individual subtrees at a branch are separated by commas. The linear 

representation of the above prooftree is:

( o ) ( * * *  ([a] ( ( i ) (**  *([d] ( (2) (* ,* ,* , )  ([e] ((3)(*, * ,* ) ) ) ) ,

(***([c])),

* *

m  (wo*, *,*))))))))

Where * * * are the inference-rules for the subgoals . .. ;  the numbers (1), (2), (3) denote 

the branches; and the commas separate the subtrees. □

For each subgoal, the branch-labeling proceeds from tha t subgoal to the leaves of tha t
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subgoal, i.e. depth-first search [Hop93]; and then from left to right for subgoals at the 

same branch-level, i.e. breadth-first search [Hop93]. For example, with reference to the 

above tree, the branches of the whole subtree for the first subgoal g. 1 is labeled completely 

(depth-first search), before proceeding to label the branches of the subsequent subgoals 

g .2 , . . . ,g . i  which are on the same-branch-level as g .l, (breadth-first-search). See Section

3.7.2 for how the prooftree in Figure 3.4 would be labeled.

3.7.1.2 C ollecting  p roo fru les

For each subgoal, the collection of all the inference-rules up to the next branching level 

is called a proofstem. The inference-rules in each proofstem are collected into a list and 

the lists for each subgoal are concatenated to give a list of all inference-rules at tha t 

branch up to the next branch for all the subgoals at the same level (see Section 3.7.2 for 

an example). A proofstem is effectively a subproof, or a complete proof for a subgoal, 

e.g. the proof of 5 $  0  in Figure 3.2 consists of one proofstem which is the complete 

proof for tha t conjecture. The proof in Figure 3.1 consists of three proofstems: (1) ([e 

D] ([setD] ([AF] ([Arithm etic] ([l~A]))))); (2) ([hV] ([h T])); and (3) ([h T]). Thus in 

Figure 3.1 the inference-rules at branch 1 are ([hV], [h T], [h T]).

3.7 .1 .3  F ac to rin g  o u t com m on in ference-ru les

Factoring out common inference-rules among subtrees means tha t each of these common 

inference-rules only has to be applied once instead of n times where n is the number 

of subtrees in which they occur, thus reducing the time taken to complete the proof by 

(n  — l ) t  where t is the time taken by each of these inference-rules. Furthermore, the 

factorization maintains the order of the inference rules in the original prooftree.
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Only the inference-rules tha t are not axioms can be factored out because axioms are 

the final derivations which require the intermediate proofsteps in order to be generated. 

For example, in Figure 3.1, at branch (1), the inference-rule [b T] is common among the 

two subtrees at tha t branch but [b T] is an axiom, therefore it cannot be factored out 

since this axiom can only be deduced from the branching rule [bA].

3.7.1.4 P e rm u tin g  th e  fac to red  in ference-ru les

The common inference-rules form a new proofstem for all the subtrees at the same branch- 

level. The permutation includes the inference-rule tha t caused the branching. This is 

illustrated in Section 3.7.2.

Theorem 3.6.3 defines which inference-rules may be applied before others. For example, 

in Figure 3.4, the creative-lattice dictates tha t the definition expansion [e D ] (which is a 

form of Cut application (see Section 3.6.3)) should come before the instantiation [V b].

The effect of this algorithm is to (1) capture commonalities between subproofs at 

the same level, and thus improve efficiency; (2) bubble creative inference-rules down the 

prooftree so that they can be performed as early as possible; and (3) enable robustness 

of the encoded resultant tactic by allowing the creative proofsteps to be passed as actual 

parameters when the tactic is invoked by the human-prover. Algorithm 3.7.1 can be 

applied recursively on the resultant prooftree tha t it produces until there is no change in 

subsequent prooftrees tha t the algorithm generates.

3.7.2 An example application of Algorithm  3.7.1

We apply Algorithm 3.7.1 on the prooftree for conjecture {4} ^  {5,6} in which the 

branching rule [=>b] is applied earlier in the proof development.
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1. The prooftree is labeled as in Figure 3.4.

2. First iteration; branch =  0, and so the I f -part is executed:

(a) CollectBranchRules iff) gives the inference-rules:

< [ g J > ] , [ M , [ c D ] I | y n > .

(b) Distinguish gives the creative inference-rules:

U  D],[C D], [V] h).

(c) LatticePermute returns the same sequence:

< [£ £ ], [CZ)],[V](-}.

(d) branch := 1

3. Second iteration— branch =  1, and so the Mse-part is executed:

(a) CollectBranchRules (1) gives the inference-rules:

(([e D], [A setE]), ([e D], [XsetE], [Algebra], [FT])).

(b) FactorCommonRules gives the common inference-rules:

([€ D ],[\se tE ])

(c) Permute gives the prooftree in Figure 3.6.

(d) CollectBranchRules(0) gives the inference-rules:

(\<t D], [h-.], [C D], h V], [6 D], [XsetE]).

(e) Distinguish gives the creative inference-rules:

([$£ D], [c x>], [I- V], [e D]>.

(f) LatticePermute returns the new sequence:

(K o i .ie  D], \e  o],[hv]>.

This gives the prooftree in Figure 3.7
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± h I± H
--------- [Algebra1--------------- [Algebra1  [u Tl
4 =  6 b 4 =  5 b [_T l J

[Vb] (2) ---------- [Algebra
4 = 5 V 4 = 6 b  [ - 4  =  4

--------------------------------------------------------------------------- [=^H (1)
4 — 4 = ^ ( 4  =  5 V 4  =  6 ) b  
---------------------------------- [A setE]

({4}(4)=K5,6}(4))b
 [G D]
4 £ {4} 4 G {5, 6} b

----------------------------------------- [V bj;
\f(x : Z) : x G {4} x G { 5 , 6 } b
----------------------------------------- [C D)

{4} C { 5 , 6 } b
n

1 '{4} C {5,6}
----------------------- 1$ D)
b {4} {5,6} (0)

Figure 3.6: Factorization and permutation of the prooftree in Figure 3.4 at branch (1)

i h | i H  i h [iH1
---------- [Algebra] --------- [Algebra]  n_ -n
4 =  6  b 4 =  5 b [ _- pL J

[Vb] (2) —--------[Algebra]
4 =  5 V 4  =  6 b  [—4  — 4

T = ^ ± b
[A setE]

( { 4 } ( 4 ) ^ { 5 ,6 } ( 4 ) ) h
---------------------------------------[Vh]
V(z : Z) : (4}(x) =>■ { 5 ,6}(x) b
------------------------------------------ [G D]

V(4 G {4} => 4 e  {5,6}) b
--------------------------------------- [C D]

{ 4 } C { 5 , 6 } h
i m

i '{4} C {5,6}
K D\

•I"]

h { 4 } £ { 5 , 6 }

Figure 3.7: Lattice permutation of the prooftree in Figure 3.4 at branch (1)
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- H 4 - I X H
l v ± h  lVhl W _  [h T]

[Algebra]  [Algebra]
4 =  5 V 4  =  6 h  j _ 4 _ 4

4 =  4 (4 =  5 V 4 =  6) h
---------------------------------- [A setE]

({4}(4) =4- {5,6}(4)) h
---------------------------------------[hV]
V(x : Z) : {4} (ic) =4 {5, 6}(x) h

----------------------------------------- [S D]
V(x : Z) : x € {4} =4- x 6  {5,6} h
----------------------------------------- [CZ>]

{4}C {5,6}h
i m

•H] (1)

!--{4}C {5,6}
K D\

I- {4}£ {5,6} 0

Figure 3.8: Factorization and permutation of the prooftree in Figure 3.7 at branch (2)

(g) branch := 2

4. branch =  2 is satisfied by the /or-statem ent forbranch :=  0 to 2, and so we have a 

third iteration. The ELSE-part of Algorithm 3.7.1 is executed:

(a) CollectBranchRules (2) gives the inference-rules:

(([Algebra], [J_ h]>, ([Algebra], [-L H>>-

(b) FactorCommonRules gives the common inference-rules:

([Algebra]). The rule [_L h] is an axiom and thus should not be factored out.

(c) Permute  gives the prooftree in Figure 3.8.

(d) CollectBranchRules (1) gives the inference-rules:

([Algebra]), ([Algebra]).

(e) Distinguish gives the empty list of creative inference-rules since [Algebra] is a 

low-level inference-rule.

(f) LatticePermute returns the same proofstem ([Algebra]):



CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 86

± h lx h l i h [ i h |
[Vb] (2)  [f- T]

-L V J_ b h T
---------------------------------------------------[=>b] (1)

T  => (_L V J_) b
[Algebra] (completion)

4 =  4 =>( 4  =  5 V 4  = 6)b
---------------------------------- [XsetE] (completion

({4}(4) =>■ { 5 ,6}(4)) b
[b V] (instantiation)

V(x : Z) : (4}(a;) =4> { 5 ,6}(rc) b
[G -D] (rewrite)

V(rc : Z) : £ G {4} =^-iG {5,6} b
--------------------------------------------------fC D] (rewrite)

{4} C {5,6} b L~
[I— i] (rewrite)

I '{4} C {5,6}
[$£ -0] (rewrite)

I- {4} ^ {5,6} (0)

Figure 3.9: The normal form of the prooftree in Figure 3.4

This gives the same prooftree as in step 4(c) above.

(g) branch := 3 makes branch =  3.

5. This is not satisfied by fo r  branch := 0 to 2, and so the algorithm terminates with 

branch =  3 as required.

A second application of Algorithm 3.7.1 on the prooftree in step 4(c) above factors 

out the inference rule [Algebra] at branch 1 to give the following final prooftree in 

Figure 3.9.

Thus the tactic tha t results from the application of our algorithm is:

NotSubsetTac' =

«£] ([H H  «C] ([€ D] ([Vh] ([AseU?] (h -H  (([b T]), ([X H])))))))))

For a proofstem consisting of quantifier elimination, the resultant proofstem consists of 

three regiments: (1) a rewrite phase from the root to the quantifier elimination inference- 

rule prepares the conjecture for quantifier elimination; (2) a quantifier elimination phase
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where the quantifier is eliminated; and (3) a completion phase, which involves mechanical 

inference-rules to complete the proof.

Comparing the prooftree in Figure 3.9 to the one in Step 1 Figure 3.4 above, the 

inference-rules [A setE], [g D] have been factored out from the two proof branches into 

the proofstem to be applied once in the proof development. Furthermore, by application 

of the creative-lattice, the inference-rule [g D] has been bubbled down the prooftree 

below the instantiation inference-rule [V h], and this unfolding of the definition of set 

membership facilitates the finding of the instantiation term, 4, as a witness to the proof. 

Note tha t [A setE] requires this witness in order for the boolean computation of (4}(rc) =4> 

{5 ,6}(x) to complete. We can view the inference-rules ([j£ Z)]([l— i]([C .D]([g £])))) as 

the rewrite phase; the inference-rules [V h] as the instantiation phase; and the inference- 

rules ([AsetE]([=^b]((b T),([JL H])))) as the completion phase of the proof. The tactic 

NotSubsetTac' can thus be seen as a proof plan for instantiation proofs.

3.8 Proofs of correctness of Algorithm 3.7.1

The proof consists of two parts: (1) a proof by induction on the termination of the 

algorithm; and (2) a proof of the properties of the algorithm’s output.

3.8.1 Proof of term ination of the algorithm

We are interested in the termination of and the properties of the resultant tactic given 

by Algorithm 3.7.1, which is iterative on the number of branches in the prooftree. The 

branches are labeled using natural numbers, and natural numbers constitute a well-ordered
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domain. The mathematical correlation between the subgoal generation and the branch- 

labeling in a given prooftree is tha t the root is labeled as branch 0, and the last subgoal 

generation in the prooftree is labeled n, where n  is the number of branches in the whole 

proof tree. Thus we can prove the correctness and termination of Algorithm 3.7.1 for any 

prooftree with n branches by using mathematical induction.

The FOR-loop terminates when the guard condition is not satisfied, i.e. -i(0 <  6 <  n), 

which simplifies to b > n  since b : N. The IF-THEN-ELSE statement within the FOR-loop 

can be formalised as ((6 =  0 =* 5(6)) A (b > 0 =* T(b  — 1))) where 5(6) is the IF-part, 

and T(b  — 1) is the ELSE-part. Putting this all together, the termination condition for 

Algorithm 3.7.1 for any tree with n  branches is:

b Vn : 3(6 | (b =  0 =* 5(6)) A b >  0 =* T(6 -  1)) : b > n).

By induction on n, the base case n =  0, i.e. a tree with no branches, requires to prove 

the goal:

b 3(6 | (6 =  0 =* S(b)) A (b > 0 =>► T(b -  1))) : b > 0)

The statement branch := branch +  1 in the FOR-loop yields the instantiation [0 +  1/6]. 

For the step case, the induction hypothesis, (3(6 | (6 =  0=+ S(b)) A (6 > 0 +* T (b  — 1))) : 

6 > j ) ,  is assumed to hold for a tree with n  =  j  branches, and it is required to prove the 

step case n — j  +  1 as follows:

b Vj : (3(6 |(6  =  0=+ 5(6)) A 6 > 0  +  T(b  — 1)) : 6 > j )

+> (3(6 | (6 =  0=* 5(6)) A 6 > 0 =* T(b  — 1)) : 6 > j  +  1).

Skolemisation, simplification, and the statement branch := branch +  1 in the FOR-loop 

establishes the instantiation [((/ +  1) +  1)/6].

Note tha t since the proof above is valid for any tree with n branches, then Algorithm

3.7.1 can also be applied on an infinite prooftree, or a prooftree while the prooftree is in
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the process of being developed. To complete the induction proofs above, it is also required 

to establish tha t in the base case, the IF-part of the FOR-loop holds, i.e. I- 5(0) holds; 

and in the step case, the ELSE-part also holds, i.e. b > j  h T ( j  +  1). These properties 

are established by the proofs in the following section.

3.8.2 Proof of correctness properties of the algorithm ’s output

Algorithm 3.7.1 takes a formal proof P  encoded as an LCF-like tactic £i, and returns a 

tactic £2, where £2 is expected to: (1) preserve the correctness of t\ and thus the proof 

P; (2) be more robust than £i; and (3) be more reusable than t\. However, robustness 

and reusability are nonfunctional requirements which are difficult to subject to verification 

since they both cannot be expressed succinctly using mathematical formula—both these 

properties can be validated by suitable case studies (see Section 3.7.2 and the ensuing 

chapters).

Tactic £2 is a syntactic variation of tactic ti in that the proofsteps in tactic t\ are 

factorized and permuted according to the creative lattice to yield £2 . To verify correctness 

preservation, we can argue in terms of the properties of the abstractions used to transform 

a proof P  to the tactics t\ and £2. Theorem 3.8.1 describes the correctness preservation of 

proof P  by tactics t\ and £2.

T h eo re m  3.8.1. (Correctness preservation of formal proof P by LCF-like tactic £1 and robust- 

LCF-like tactic to,) The robust-LCF-like tactic £2 produced by Algorithm 3.7.1 preserves the 

correctness o f the LCF-like tactic £1 derived from  the form al proof P , i.e. V g  : Goals : 

h(g) =  k(g) .  □
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3.8.2.1 P ro o f  o f T h eo rem  3.8.1

The proof consists of the proofs of the four lemmas below. First it is shown that the direct 

collation of the proofsteps used in the development of a proof P  into an LCF-tactic fa 

maintains the integrity of the proof P.

L em m a 3.8.2. Correctness Preservation o f formal proof P  by LCF-like tactic fa: The LCF- 

like tactic ti preserves the correctness o f the proof P  from  which the tactic fa is derived, 

i.e. V# : Goals : fa{g) = P  

P ro o f:

1. B y Definition 2.4-6, a form al proof is a cartesian product o f a set o f sentences with a 

set o f inference rules, i.e. { S i , Sn} x {R 1, ..., R n- i} .

2. B y Definition 2.6.1, a simple tactic is a function from  a goal Sn : Goal to a cartesian 

product o f a list o f goals, Si : GoalList with a validation function  Ri : ( Thm List —> 

Thm ). Tactic fa is a composition o f such simple tactics which generates the list o f subgoals 

[Sn_ i , S i ]  =  GoalList from  the goal Sn using the inference-rules R ni, R \ : ( Thm List —> 

Thm)

3. Therefore fa (Sn) gives a form al proof P  o f the goal Sn . □

Algorithm 3.7.1 factors out common inference-rules among branches at the same level. 

This factorization process can be seen as repeated permutation.

L em m a 3.8.3. Factorization as repeated Permutation: The factorization o f proofsteps com­

mon among branches at the same level can be achieved by repeated perm utation according 

to the permutation lattice.

P ro o f:

By the permutation analysis (see Sections 3.5, 3.6). In  addition, the factorization involves



CHAPTER 3. TOWARDS ROBUST TACTICS FROM PROOFS 91

only those inference-rules that are not axioms, i.e. all the inference-rules except [Ax], [_L h 

],[I-T ]. □

The validity of Theorem 3.8.1 depends on the validity of re-ordering (permuting) inference- 

rules in a cut-free proof:

L em m a 3.8.4. (Lattice permutability) Mechanical (low-level) inference-rules and creative 

(high-level) inference-rules can be permuted in a prooftree according to Theorem 3.6.3. 

P ro o f:

B y the permutation analysis in Section 3.5 and Theorem 3.6.3. □

Algorithm 3.7.1 uses a tree-labeling system to process a prooftree:

L em m a 3.8.5. (Prooftree labeling): The labeling o f the branching o f the prooftree is valid. 

P r o o f  : by the proof for term ination o f the Algorithm 3.7.1 (see Section 3.8.1). □

3.9 Tactic-proof normal forms

Algorithm 3.7.1 yields a normal form for proofs involving instantiation as demonstrated 

by the example in Section 3.7.2. The normal form is conceptualized as consisting of the 

following regiments.

D efin ition  3.9.1. ( I n s ta n t ia t io n  proof p lan ) Proofs involving instantiation can be 

proved using the following phases:

(1) Rewrite—this involves bringing the 3 in the consequent, or the V in the antecedent to 

the front of the formula by unfolding definitions, skolemizing, induction and/or creative 

tactics (but not instantiation).

(2) Instantiate—this is the elimination of the 3 in the consequent, or the V in the an­

tecedent, using [h 3] and [V h]. Deciding the expression to instantiate with may be
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achievable automatically but in general, this may require human guidance.

(3) Completion—this corresponds to the application of LK mechanical rules and decision 

procedures to finish the proof. □

In the tactic coding of such a normal form prooftree, the arguments to the creative 

inference-rules, e.g. the definitions and instantiations used in the proof development can 

be taken as formal parameters to the tactic. A conjecture of similar structure but differ­

ent semantics may require a different instantiation of these parameters, which is correctly 

derived by a different instantiation of the formal parameters, hence deriving a tactic tha t 

can prove tha t conjecture. This makes the tactic robust in tha t it can cater for different 

conjectures of same structure but possibly different meaning. Furthermore in the proof in 

Figure 3.4, the rewrite phase makes the instantiation trivial.

In Section 3.5.2 it was demonstrated how the cut rule can be applied as the first creative 

rule in a proof development to introduce the prenex normal form of a goal which is not 

in prenex normal form, thus yielding the Tactic-Cut-proof normal (Definition 3.6.1). The 

rewrite phase is equivalent to introducing the prenex normal form of the goal formula 

using the Cut-rule, proving the deduction of the prenex normal form of the goal from 

the original form of the goal formula (i.e. proof of the left branch), and weakening the 

right-branch to delete the original form of goal formula.

3.10 Summary

In this chapter we have developed a formal method for deriving robust tactics from hand­

generated formal proofs. The method is based on the application of the Formal Methods 

Lifecycle (Procedure 2.3.1). The state of the art formal method used is the Gentzen
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Sequent Calculus LK and the proofs are those of conjectures tha t may arise from the 

formal specifications of computer programs in Classical Logic (Section 3.2). The summary 

of the main results in this chapter are:

1. The definition of Procedure 3.3.1 for proof obligations (POs) which are specified in 

a functional definitional style (Section 3.2.1) for the purpose tha t the proofs of the 

simpler POs are subproofs of the more complex POs. Teleological justifications for 

patterns in proof obligations (see Section 2.7.4) can then be given in terms of this 

specification design and purpose.

2. The application of Procedure 3.2.1 to the proofs of set-theoretic operators G, C 

, C using a state of the art Interactive Proof Procedure (Definition 3.2.1) demon­

strates tha t the LCF-tactics from the straightforward collation of formal proofsteps 

are (see Section 3.3.1): (1) safe in tha t they will not generate a false proof; (2) un- 

reusable when the definition of the conjecture is changed; and (3) extendible using 

tacticals to yield a robust tactic RobustTac =  Ti; T2; . . . ;  Tn (where ; is the 

tactical for combining tactics in sequence), which may be reusable to prove other 

conjectures in tha t domain.

3. The abstraction of LK inference-rules into mechanical (which can be completely 

automated, Definition 3.4.1) and creative (which can only be partially automated, 

Definition 3.4.2). The mechanical rules are robust primitive tactics since they are 

reusable on any conjecture, whereas the creative rules (cut, induction, instantia­

tion) can easily introduce terms and formulae which may result in an unprovable 

proofstate.

4. The justification of the abstraction above by a mathematically rigorous permutation
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analysis of the creative rules with the mechanical rules (Section 3.5), which also gives 

the following results:

(a) Performing the creative steps as soon as possible leaves the rest of the proof 

consisting of mechanical steps which are easily performed automatically, thus 

the rest of the proof is automatic (Section 3.4).

(b) The creative Cut-rule can be used to introduce the prenex normal form of the 

goal formula, which leads to the elimination of quantifiers first, followed by an 

automatic proof completion using the mechanical LK rules. This gives a Normal 

form of Proof (Definition 3.6.1) for goals which are not in prenex normal form.

(c) Performing creative steps first can reduce proof complexity, e.g. the proof of 

the left branch in Definition 3.6.1 is equivalent to using definitional equivalences 

to rewrite the original goal formula into prenex normal form (Section 2.5.2.2).

(d) Performing non-branching rules first rather than performing the branching rules 

first has the effect of factoring out common proofsteps among branches in a 

prooftree, e.g. (b 3; b=4>) has the effect of factoring out common instantiation 

instances from the (b=>; b  3) (Section 3.6.2).

(e) Complex tactics can be derived as creative compositions of proofsteps, e.g. 

(Skolemisation;Instantiation) gives the option of using skolem variables as in­

stantiation terms, and (Cut;Weaken;Contraction) makes the LK system com­

plete for the prenex normal form of the goal formula (Section 3.6.1).

(f) Permutation analysis gives a classification of proofsteps (Theorem 3.6.1, The­

orem 3.6.2, Theorem 3.6.3), which can be used as an order of application of 

proofrules to yield a formal proof in normal form.
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5. The derivation of Algorithms 3.7.1, 3.7.2 from the permutation analysis of LK 

inference-rules, which were demonstrated in Section 3.7.2 to yield a normal form 

of proofs involving instantiation (Definition 3.9.1).

6. The proofs of correctness of these Algorithms (Section 3.8), thus justifying the use 

of this algorithm to construct a normal form of proof, which can then be encoded as 

a tactic.

The next chapter looks at encoding tactics from proofs in the state of the art PVS Inter­

active Theorem Prover and Proof Checker.



Chapter 4

R obust tactics from proofs in PV S

P V S  is an interactive environment fo r  writing form al specifications and checking form al 

proofs. [COR+95].

This chapter addresses the second research question: “Can the tactics derived using 

Algorithm 3.7.1 be incorporated into a state o f the art theorem-prover?”.

4.1 Introduction

A theorem-prover/proof-checker tha t supports interactive proof development, the Gentzen 

System LK, and the encoding of tactics, can be used to facilitate the development of 

hand proofs, and the incorporation into tha t IT P /P C  of those tactics yielded by the 

application of Algorithms 3.7.1, 3.7.2 on a developed proof. This chapter describes the 

encoding of robust tactics in such a state-of-the-art theorem-prover/proof-checker, PVS 

[SORSC98a, SORSC98b, SORSC98c].

The PVS specification language is based on Classical Higher-Order logic and specifi­

cations are defined in a functional style. The proof system is based on Gentzen Sequent 

Calculus LK, the defined-rules (or commands) are analogous to LCF-tactics, and the

96
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strategies of the tactic language are analogous to LCF-tacticals. The most powerful PVS 

tactic, (g r in d ) , can sometimes complete a whole proof development without human as­

sistance, but sometimes can fail due to the use of heuristic instantiation, which results in 

an unprovable proofstate. Therefore the (g rind ) is not safe in the LCF sense.

The definition of (g rind ) is made to conform to the normal form of proofs yielded 

by Theorem 3.6.3. A robust formulation of (g rind ) is introduced which uses backtrack­

ing to return the original goal formula when (g rind ) fails, thus allowing the interactive 

development of a proof for that goal. Thus this chapter also serves as validation for Al­

gorithm 3.7.1, and sets PVS as the software tool for further validation of our theory for 

constructing and encoding robust tactics from proofs in other domains.

Section 4.2 gives an overview of PVS in terms of the specification language (Section

4.2.1), the proof system (Section 4.2.2), and the tactic language (Section 4.2.3). The 

encoding of safe and robust LCF-like tactics based on (g rind ) is introduced in Section 

4.3. A motivating example on interacting with PVS to develop robust tactics in the normal 

form yielded by Algorithm 3.7.1 is given in Section 4.4.

4.2 An overview of the PVS theorem-prover

PVS [SORSC98a, SORSC98b, SORSC98c, OS97] is a general-purpose interactive theorem- 

prover which uses a functional classical higher-order logic specification language [Section

2.4.1], the Gentzen Sequent Calculus proof system [Section 2.5], and the Lambda Calculus 

[Acz98, Bar94] [Section 2.6.1.1] as the computational/evaluation mechanism for the proof 

system. The PVS IT P /P C  is implemented in Allegro Common Lisp [Fra88, Ste84].

In comparison with other theorem-provers such as HOL [GM93], Isabelle [Pau94], 

Boyer-Moore [BM79], the PVS specification language has a richly expressive type system,



CHAPTER 4. ROBUST TACTICS FROM PROOFS IN PVS 98

and the interactive theorem-prover is very effective. The system also comes with a tactic 

language which is a subset of Allegro Common Lisp [Fra88], and in which the proof rules 

defined within the prover as well as additional user-defined proof rules are implemented.

4.2.1 PV S specification language

The PVS specification language is used in the Specification phase of the Formal Methods 

Lifecycle (Procedure 2.3.1). The highest specification encapsulation construct in PVS is 

called a THEORY, and this can contain, in the following order, formal parameters, other 

PVS THEORYs, assumptions, type declarations, constant declarations, variable declara­

tions, functional definitions, and conjectures to be proved. The order of specification of 

constructs is important, since no statement may reference a variable or definition tha t has 

not been previously declared or defined.

The PVS Prelude file [OS03a] consists of theories tha t are built into PVS, which are 

then available for use in other user-defined specifications. For example the Prelude theory 

b o o lean s : THEORY defines the type b o o l: NONEMPTY_TYPE = boolean; the Prelude theory 

def inecLtypes [ t]  : THEORY defines the basic type for sets s e to f  :TYPE = [ t  -> bo o l], 

where t  is some type; and the Prelude theory s e t :THEORY defines the operators E, C as:

set: TYPE = setof[T]

x,y: VAR T

a,b,c: VAR set

member(x, a): bool = a(x)

subset?(a,b):bool = forall (x:TYPE) : member(x, a) implies member(x, b)

Figure 4.1 uses these Prelude definitions in the PVS specification N otSubsetProp of the 

conjecture {4} {5,6}. The theory NotSubsetProp does not include parameters, other
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NotSubsetProp 7. [ parameters ]
: THEORY 
BEGIN
7, IMPORTING 
7. ASSUMING 
7. assuming declarations

7. ENDASSUMING 
set:TYPE = setof[number]
nsubset?(sl:set,s2:set):bool = N0T(subset?(sl,s2))
NotSubsetConj: CONJECTURE nsubset?({x:number Ix=4}, {y:number Iy=5 OR y=6}) 
END NotSubSetOfProp

Figure 4.1: Specification for {4} ^  {5,6} in PVS.

theories nor assumptions hence the slots for these constructs are commented out using the 

percentage sign %—the PVS compiler ignores any statements preceded by the % sign. The 

type setof [number] is used to define the set of numbers, and nsubset? is the functional 

definition of $£. The goal formula to  be proved, NotSubsetConj, is specified with the key­

word CONJECTURE, and in this case set comprehension is used to formulate the goal formula. 

Other keywords tha t can be used to introduce a goal formula are THEOREM, CHALLENGE, 

CLAIM, COROLLARY, FACT, FORMULA, LEMMA, SUBLEMMA, PROPOSITION, LAW. Defining 

the goal formula in a specification corresponds to the Abstraction  phase in the Formal 

Methods Lifecycle [Procedure 2.3.1].

4.2.2 The PV S proof system

The PVS proof system is used for the Reduction  and Verification phase of the Formal 

Methods Lifecycle [Procedure 2.3.1]. The PVS Prover system consists of a parser and 

a typechecker which automatically detect syntax errors and type correctness conditions 

(TCCs) respectively in a specification. For syntactically incorrect specifications, the parser 

returns useful messages which the user can use to write the PVS specification in the 

correct syntax. The PVS tactic tc p  for TCCs can be invoked to automatically prove
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the TCC proof obligations—those TCCs that cannot be proved automatically (due to 

the undecidability of higher-order logic), are tagged as unf in ish e d  and the user is then 

obliged to prove the TCCs interactively; those TCCs which have been proved are tagged 

proved-com plete or proved-incom plete (see Definition 2.4.2).

After parsing and typechecking the PVS specification, the user can then attem pt to 

prove the goal formula(s) using PVS proof commands which correspond to the Gentzen 

Sequent Calculus inference-rules and decision procedures. In interactive theorem-proving 

and proof-checking a given goal formula, the user develops a formal proof by typing in 

the name of a defined-rule of the IT P /PC , which the IT P /P C  then executes on the cur­

rent proofstate. The defined-rule works by reducing the sequent goal formula to simpler 

subgoals which can be discharged automatically using the information contained in the 

current proofstate. Compared to other interactive theorem-provers such as HOL [GM93] 

and the Boyer-Moore prover [BM79], in PVS, all of the LK inference-rules are automated, 

and the propositional logical connectives (->, A, V, =$>) are manipulated in-line where 

they are in scope.

There are two facets to this automation: (1) the user has to type in the name of the 

appropriate defined-rule, and so the execution of the defined-rule occurs only after the 

human-prover inputs the name of the inference-rule; and (2) the system automatically 

applies the rule by itself without any input from the human-prover to “tidy” up the 

proofstate, e.g. the inference-rules for negation, axioms, and lambda evaluation, operate 

in this manner. The second kind of automation is effected by the inclusion of simplification 

procedures in the PVS defined rules, which helps to minimize the amount of interactivity 

that the user may have to endure by having to input a proof command for each proofstep, 

even the trivial ones.
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4.2.2.1 P V S  p ro o f ru les

There are 26 inference rules documented in [OS97] as Gentzen Sequent Calculus proof 

rules, nine of which are axioms. Appendix A lists the natural deduction inference-rules for 

classical logic in Gentzen Sequent Calculus, and the rule for the principle of mathematical 

induction, which is not listed in [OS97] but is formulated as a strategy in [ShaOl]. For each 

LK inference-rule, the name is given of the corresponding PVS defined proof-rule tha t is 

used in an interactive session with PVS. In this way hand proof steps conceptualized by 

the human expert user are mapped to the machine proof steps used by the PVS theorem- 

prover/proof-checker. Those inference rules named auto are invoked automatically by the 

PVS system as opposed to the rule being typed-in by the human user.

In addition to the implementation of the Gentzen LK inference-rules as primitive 

defined-rules, the PVS prover consists of other automated prover-commands known as 

defined-rules and strategies tha t execute a sequence of steps to achieve a task in a proof de­

velopment exercise. These involve among others [ShaOl]: rewriting goal formula ( ( re w r ite ) ) ,  

BDD (Binary Decision Diagram)-based Boolean simplification ((bddsim p)), the arith­

metic and equality decision procedures ( ( a s s e r t ) ) ,  model-checking ((m odel-check)), 

and the most powerful PVS proof command (g rind ) which can be invoked by a novice 

user to attem pt to prove a goal formula automatically in PVS. These strategies are defined 

using the PVS tactic language.

4.2.3 PV S tactic language

The PVS tactic language is for the Generalisation and Maintenance phase of the Formal 

Methods Lifecycle (Procedure 2.3.1). The tactic language enables the user to define more 

powerful proof-rules (which correspond to LCF-like tactics), by using predefined proof
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strategies (which correspond to LCF-like tacticals) to compose proof-rules together. The 

PVS tactic language is a subset of Allegro Common Lisp, which is the language in which 

the PVS system is implemented.

4.2.3.1 A  synopsis of th e  im p lem en ta tio n  o f ta c tic s

The PVS tactic language consists of 16 tacticals [SORSC98a]. PVS tacticals can only 

combine proof rules sequentially since there are no strategies for parallel composition of 

tactics in PVS at present, probably due to the lack of a parallel programming construct 

in Common Lisp [Fra88, Ste84].

The syntax for a strategy expression (or tactical) in PVS is:

D efin ition  4.2.1. (PVS ta c t ic  language) [SORSC98b]: (step) :=

(primitive-step) | %LCF-like LK inference-rules 

(defined-rule) | %LCF-like composite tactics 

(defined-strategy) | %LCF-like tacticals 

(quote (step)) | %Identity strategy

(try  (stepl) (step2) (step3)) | %Backtracking and subgoaling tactic 

( i f  (lisp-expression)(step)(step)) | %Conditional tactic

( le t  ({((symbol)(lisp-expression))}+)(step)) | %Evaluates/bind Lisp expression/values 

(branch step steplist) | %assigning strategies to subgoals 

(else  step 1 step2) | %Simple Backtracking Strategy 

(query*) | %Basic Interaction Strategy

(repeat step) | %Iterate Along Main Proof Branch; (repeat* step) for all branches 

(rerun & OPTIONAL proof) | %Rerun a Proof or Partial Proof

(spread step steplist) | %Assigning Strategies to Subgoals; variations are (spread®), (spread!) 

(then & R E ST steps) | %Sequencing Strategy
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(time strategy) [ %Time a Given Strategy 

(try-branch. stepl steplist step2) %Branch or Break

The core of PVS tacticals are (q u o te ), ( t r y ) ,  ( i f ) ,  ( l e t ) —all the other tacticals 

can be defined in terms of these four. The syntax for a PVS defined rule (or tactic) is as 

follows:

D efin ition  4.2.2. (PVS d e f in e d -ru le  form) [SORSC98b]: A PVS defined-rule has the 

form:

(d e fs tep  name

(required-parameters &optional optional-parameters &rest parameters) 

strategy- expression 

documentation-string 

form at-string) □

Definition 4.2.2 defines a (blackbox) defined-rule, name and a (glassbox) strategy name$, 

i.e. if the user appends the dollar sign to the name of the defined rule on invocation 

at the PVS prover prompt, the resulting proof is a trace of each of the proof-rules in 

strategy-expression, otherwise the prover just returns the resulting subgoal(s).

Alternatives to the definition form d e fs te p  are d e fh e lp e r which defines strategies 

tha t are only meant to be used in the definition of other strategies and are not likely to be 

invoked by the user directly; and def s t r a t  which defines only a glassbox strategy nam e , 

but not the blackbox version, and does not use the final form at-string  argument given 

in d e fs tep . The differences and similarities between PVS defined-rules and strategies is 

summarized in Table 4.1 [SORSC98c].
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Defined rule Strategy
Analogous to LCF tactics Analogous to LCF tacticals
Named and invoked as (name), e.g. 
(p ro p ).

Named and invoked as (nam e$), e.g. 
(p rop$).

Is atomic like a primitive rule (LK 
inference-rules) when invoked

Can expand to the application of several 
atomic rules when invoked.

Has blackbox behaviour—internal be­
haviour is not visible to the user.

Has glassbox behaviour—internal be­
haviour is visible to the user.

Saved and rerun in its expanded form Only the expanded form is saved to be re­
run.

Returns the unproven subgoals Returns the expanded proof tree.
Can be recursive and involve the applica­
tion of a number of primitive proof steps 
to achieve an effect.

Same.

Table 4.1: Defined rules and strategies

4.3 Encoding LCF-like tactics in PVS

The most powerful tactic in PVS, (g rin d ) is defined as follows:

D efin ition  4.3.1. PVS grind tactic [ShaOl]: The PVS super duper strategy (g rin d ) is 

defined as follows:

( d e f s t e p  g r i n d  ( & o p t io n a l  ( d e f s  ! ) ;  N IL , T , ! ,  e x p l i c i t ,  o r  e x p l i c i t !

t h e o r i e s  r e w r i t e s  e x c l u d e  ( i f - m a t c h  T) ( u p d a t e s ?  T) 

p o l a r i t y ?  ( i n s t a n t i a t o r  i n s t ? ) )

( t h e n  ( i n s t a l l - r e w r i t e s $  : d e f s  d e f s  : t h e o r i e s  t h e o r i e s

:r e w r i t e s  r e w r i t e s  : e x c l u d e  e x c l u d e )

( t h e n  ( b d d s i m p ) ( a s s e r t ) )

( r e p l a c e * )

( r e d u c e $  : i f - m a t c h  i f - m a t c h  :u p d a t e s ?  u p d a t e s ?  :p o l a r i t y ?  p o l a r i t y ?

: i n s t a n t i a t o r  i n s t a n t i a t o r ) )

"A s u p e r - d u p e r  s t r a t e g y  . . . " )
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However the PVS (g rin d ) (Definition 4.3.1) can sometimes yield an unprovable proofs­

ta te  if the proof involves instantiation. The PVS tactic (g rind ) works by first unfolding 

all the definitions in the goal (i.e. ( in s ta l l - r e w r i te s $ ) ) ;  simplifying all expressions 

(i.e. (bddsimp) ( a s s e r t) ) ;  replacing the old expressions with the simpler ones (i.e. 

(rep lace* )); and finally reducing the proofstate using the LK inference rules and de­

cision procedures ((reduce$)). This (reduce$) tactic invokes the PVS defined-rule for 

instantiation via the argument ( ( in s ta n t ia to r  in s t? ) ) .  The automatic instantiator 

( in s t? )  is defined to heuristically find a suitable instantiation term by simply matching 

the type of the variable to be instantiated with the types of the skolem variables and/or 

other terms in the current proofstate. It is this heuristic which can lead to instantiation 

with an incorrect term thus yielding incorrect and unprovable subgoals; or the heuristic 

may fail to find any instantiation term at all. Thus the PVS in s t?  is not a safe LCF-like 

tactic (see Chapter 2, Section 2.6.1), in tha t its application may result in a false proofstate.

Nevertheless, the definition of g rin d  conforms to the normal form of proof given by 

Theorem 3.6.3. The proofsteps ( th e n ( in s ta l l - r e w r i te $ )  (then(bddsim p) ( a s s e r t ) ) )  

can be seen as the rewrite phase in Definition 3.9.1; or as a form of Cut-rule application 

to introduce normal forms of the definitions in the goal formula to be proved in Defini­

tion 3.6.1; or as the reduction phase in the Formal methods lifecycle Definition 2.3.1 to 

reduce the formula to be proved to a form where LK inference-rules can be applied by 

the (reduce$) tactic. Once the rewrite phase is complete, by Theorem 3.6.3, the subgoal 

generated is now in the form where an instantiation can be applied (if required) by tac­

tic (reduce$). Theorem 3.6.1 can be used to generate instantiation terms from skolem 

variables where an instantiation is required. By Theorem 3.6.3, the resulting subgoal 

is a quantifier-free formula, on which only the mechanical inference-rules can be applied
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recursively by the tactic (reduce$) to complete the proof automatically.

Since (g rind ) can sometimes find the correct instantiation automatically, as well as 

complete a whole proof development by itself, it is persuasive to try  the (g rin d ) tac­

tic as the first attem pt at a proof development in PVS. If (g rind ) fails to prove the 

conjecture, then backtracking can be used to return to the proofstate just before the auto­

matic instantiation invoked by ( in s t? ) ,  and then the user can instantiate the proofstate 

manually.

4.3.1 Encoding robust tactics in PVS

Therefore in accordance with the instantiation proof plan (Definition 3.6.1), and the idea 

to try  (g rind ) first in a proof, Definition 4.3.2 describes a template for encoding robust 

tactics in PVS as follows:

D efin ition  4.3.2. (RobustGrind): In proving a goal formula, (g rind$) can be tried first, 

and if (grind$) fails to find a proof, then backtrack to the proofstate just before an instan­

tiation to enable manual instantiation by the user to reduce the proofstate to Propositional 

logic which is decidable; and thus completion of tha t proofstate by the decision procedures 

of Propositional Logic.

(d e fs tep  RobustGrind (& optional (defs  !))

( t r y  ( t r y  ( g r in d ) ( f a i l ) ( s k ip ) )

(sk ip )

(g rin d  :d e fs  defs  : if-m atch  n i l ) )

" t r i e s  (g rin d ) on th e  goal form ula, and i f  (g rind ) f a i l s ,  

perform  c re a tiv e  p ro o fs tep s  f i r s t  to  reduce p ro o fs ta te  to  

P ro p o s itio n a l Logic fo r  d e c is io n  p rocedures to  com plete p ro o f ." )
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The robustness of Definition 4.3.2 is argued for as follows. The tactic 

( t r y  (g rind ) ( f a i l )  (sk ip ))  enables (g rind ) to try  to find a proof, and if (g rin d ) 

produces any subgoals, the backtracking tactic ( f a i l )  returns the original goal formula 

because the resultant subgoals my be unprovable due to incorrect instantiation(s) invoked 

by (g rin d ). The outermost ( try )  tactical then invokes (g rin d  :d e fs  de fs  : if-m a tch  

n i l )  which simplifies the original goal without automatic instantiation (to avoid incorrect 

instantiations). If the actual parameter for definitions (defs) is given as n i l ,  then the 

definitions in the goal are not rewritten (to avoid overwhelming the user with too much 

detail). This simplification yields one or more subgoals, each of which can be discharged 

by the user performing the creative proofsteps (Cut ((ca se )), Instantiation ( ( in s t ) ) ,  

Induction (( in d u c t)))  to reduce the proofstate to Propositional Logic to enable the com­

pletion of the proofstate by the decision procedures for propositional logic and arithmetic 

in (g rin d ).

Theorem 3.6.1 yields a method by which suitable instantiation terms may be ar­

rived at or generated. In particular, the user can code the function /  to generate suit­

able instantiation terms for the proofstate—this is used in Chapter 5 where instantia­

tion terms are generated from constructive definitions of the operations in abstract pro­

grams. Alternatively an ATP may be used to find the instantiation terms, which can 

then be fed back into proof state to complete the proof [Section 2.3.2.1]. The ingenu­

ity in choosing a suitable cut formula may assisted by considering a cut as a transi­

tive relation ((A B ) A (B  => C )) =4> (A  =>• C), where B  is the cut formula, and 

A => C is the goal/conjecture to be proved A  h C [Section 2.5.2.1]. Note tha t the 

antecedent part A  may be empty, e.g. Definition 3.6.1 encodes the transitive relation 

(b 9pnf) A (gpNF b 9) =$* (b 9 ): where gpNF is the Cut formula, and b g is the original
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goal. Given a suitable induction variable, the PVS tactics for induction can generate the 

induction hypotheses automatically, or the user can define their own induction scheme, 

e.g. using Bundy’s induction proof plan [Section 2.7.2].

4.4 Interacting with the PVS proof system

The theory NotSubsetProp .pvs in Section 4.2.1 is proffered to the PVS proof system 

by opening the specification in PVS. To prove the conjecture NotSubsetConj, the mouse 

cursor is clicked on tha t definition, and then the PVS prover is invoked by clicking on 

PVS on the Emacs menu bar, selecting Prover Invocation, and then clicking on Prove. 

User-defined tactics saved in the PVS file called pvs-strategies are automatically loaded 

and the Conjecture is made available for the user to start inputting proof commands.

The user types in the name of a proof command (i.e. a tactic) at the Rule? prompt, 

and on pressing the Keyboard Enter key, PVS executes the proof command. If the proof 

command is applicable to the current proofstate, new subgoal(s) are generated from the 

current goal formula; otherwise if the proof command is not applicable, then the proof 

state does not change (this is akin to what happens in tactic application described in 

Chapter 2, Section 2.6.1).

The PVS system uses the tim e strategy to record the time taken in a proof develop­

ment. The Run tim e refers to the time the PVS system takes to execute proof rules typed 

interactively into the system by a human use; the Real tim e refers to the actual time the 

user spends on the proof development process. Since the Real tim e is dependent on the 

human-user, the Run tim e is a more accurate measure of the improvement on efficiency 

tha t can be afforded by the application of Algorithm 3.7.1 when the normal form of proof 

yielded by the algorithm is used in place of the interactively developed proof using the
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------LL H (assert)  [_L H  (assert)
4 =  5 h 4 =  6 h
 -------------------------------------- [Vh] (split)

4 = 5 V 4 = 6 h
 [G ill (expand "member")
V(4 G {4} 4 G {5,6}) b
 : [C D] (expand "subset?")

{ 4 } C { 5 , 6 } b
 Hi (expand "nsubseteq")
h { 4 } g { 5 , 6 } *

Figure 4.2: The prooftree from the application of Algorithm 3.7.1 
The tactic is defined as follows in PVS

(defstep NotSubsetOfTac (fnum &rest terms)
(then (expand* "nsubseteq" "subset?" "member")

(inst fnum terms) (split) (assert) (assert))
"INPUT = NOT(subset?(x,y))
OUTPUT = true"
"proving NotSubsetConj ...")

strategy Definition 3.2.1.

4.4.1 An application of Algorithm  3.7.1 in PVS

The proof of conjecture NotSubsetConj can be developed interactively using the stra t­

egy Definition 3.2.1, which yields a formal proof consisting of the sequence of proof steps

((expand "nsubset?") (expand "subset?") (inst?) (expand "member")). The rest

of the proof consists of propositional and arithmetic simplification, which is completed au­

tomatically by the PVS proof system. In this case PVS is able to correctly automatically

instantiate ( ( in s t? ) )  with the constant 4. An interactive step by step proof, i.e. with

the user typing each primitive proof rule separately at the Rule? prompt, one after the

system executes another, takes approximately 0.13 seconds Run time and 8.41 seconds

Real time.

The prooftree yielded by the application of Algorithm 3.7.1 on the interactive proof

steps ((expand "nsubset?") (expand "subset?") (inst?) (expand "member")) above is
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shown in Figure 4.2, which conforms to the normal form of the Instantiation Proof Plan 

(Definition 3.9.1). The proofsteps [I— ■] and [A setD ] are invoked automatically by the PVS 

proof system without the user having to type in any explicit commands. Thus it appears 

expanding the definition of set-membership, [e H], makes redundant the instantiation 

step in s t?  in the interactively developed proof—PVS performs this step automatically 

without prompting the user. The tactic resulting from the application of Algorithm 3.7.1 

on the interactive proof was coded in PVS, and applied on the conjecture—this proof took 

a Run tim e of 0.05s. Thus the human proof strategy took almost 3 times as much time as 

the tactic developed using our method. The Real tim e taken by a user in applying the 

strategy Definition 3.2.1 is just under a minute. Thus tactics are very useful for reducing 

the time taken to develop a proof, as well as the amount of interaction the user has to 

engage with the proof system.

Since PVS automatically finds a correct instantiation in the proof above, PVS’s most 

powerful tactic (g rind ) completes the proof successfully in 0.08s. However in the more 

complex examples, such as those for the proof of the refinement and retrenchment proof 

obligations in the following chapters, (g rind ) is not able to find a correct instantiation; the 

human-prover has to use domain specific knowledge to perform an instantiation manually.

4.5 Summary

This chapter has demonstrated the application of the Theory developed in Chapter 3 to 

encode robust tactics in the PVS IT P/PC . PVS is a general-purpose theorem prover with 

a functional classical higher-order logic specification language, a Gentzen Sequent Calculus 

proof system, a rewrite engine based on the Lambda Calculus, and a tactic language which 

is a subset of Allegro Common Lisp.
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PVS defined proof rules are analogous to LCF tactics and PVS strategies are analogous 

to LCF tacticals [Table 4.1]. However the most powerful tactic in PVS (g rin d ) can 

sometimes automatically instantiate incorrectly due to the heuristic nature of the PVS 

( in s t? )  tactic which uses pattern matching to decide possible instantiation terms from 

the proofstate. Therefore the (g rind ) and ( in s t? )  tactics are not safe in tha t they may 

produce a false proof state.

The instantiation proof plan [Definition 3.9.1] can be used to make the task of finding 

manual instantiations easier for the human-user by applying the necessary reduction steps 

to transform the goal formula, e.g. in a goal formula involving definitions, unfolding the 

definitions first may facilitate the task of finding the instantiation term automatically 

[Section 3.3.1].

The example application in Section 4.4.1 shows tha t Algorithm 3.7.1 can work in PVS 

to reduce the number of proofsteps the user has to enter and thus to reduce the time taken 

to perform a proof, which makes interactive proof development more efficient for both the 

human user and the IT P /PC . In the next chapters Algorithm 3.7.1 is validated on a more 

complex example, tha t of constructing tactics for the Retrenchment method in PVS.



Chapter 5

A rchitectural retrenchm ent

“A s assumptions are strengthened in the Retrenchment Proof Obligation towards refine­

ment, the models become more refinement like.” [PopOl].

In this chapter RobustGrind (Definition 4.3.2) is applied to derive manageable subgoals 

and robust tactics for Architectural Retrenchment, which is our decomposition of the 

Banach-Poppleton simple retrenchment method [BP99a, Ban98], in order to highlight the 

modest changes in specification. Some of the material in this chapter has been previously 

published in [HG01].

5.1 Introduction

We noted in the Chapter 3 that the successful application of a tactic on a new conjecture 

depends on whether the structure of the original conjecture, from whose proof the tactic 

was constructed, is the similar to the structure of the new conjecture to be proved. An 

example of structured conjectures in formal software development are the refinem ent and 

retrenchment proof obligations for specification development [BP99b], given in Figure 5.1.

112
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We explore the derivation of tactics for retrenchment in PVS, using a numerical ex­

ample of a B machine adapted from [PopOl]. The example involves the retrenchment of 

subtraction in the infinite reals domain to subtraction in reals th a t are bounded above 

by some biggest expressible real MaxReal. The purpose of this example is to further 

validate our proposition for the construction of robust tactics, as well as derive tactics 

for the issue of overflow in computer arithmetic. Section 5.3 describes the nature of this 

retrenchment in the B-method. Section 5.4 looks at the specification of the retrenchment 

in PVS—a widely-used specification and verification system with ample facilities for con­

structing proof tactics. Section 5.5 describes the derivation of tactics from proofs of the 

retrenchment proof obligations and describes a general tactic for proving retrenchment 

proof obligations in PVS. A further abstraction to derive a general tactic tha t can auto­

matically prove any of the proof obligations in this example is described in Section 5.5.4. 

Section 5.6 discusses the merits and limitations of our approach and points to further 

work.

5.2 Approaches to formal program development

Formal program development entails the application of formal methods in the development 

of software programs, and this has been advocated for critical system construction [NASb, 

NASa]. Program synthesis and refinement are well known formal program development 

techniques. Retrenchment is a liberalization of refinement tha t has been proposed as a 

formal development step prior to applying refinement. In particular, retrenchment enables 

the construction of a concrete specification from an abstract one. Concrete specifications 

are then implemented using a refinement calculus [BP99b].
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5.2.1 Program synthesis

Program synthesis deals with aspects of the software development process which can, at 

least in principle, be automated [Kre98] and thus this provides software tools for use in 

automated software engineering. Research in this area focusses on (1) the development of 

expressive calculi which support formal reasoning about specifications and algorithms, e.g. 

A bstract S ta te  Machine Notation  [Abr96], Specification S ta tem ent [Mor88], Constructive 

Type Theories [Mar84, CAB+86, GLT89, CH88, NPS90]; and (2) the implementation of 

deductive strategies which derive programs from their specifications, e.g. Hoare Logic 

[Hoa69], M organ’s Refinem ent Laws [Mor94], Refinem ent Calculus [Bac80].

There are three approaches to automated program synthesis. The Proofs-as-Programs 

approach [Gre69, MW80, BC85] sees the derivation of a program as a proof of the state­

ment V(x : D) : 3 (z : R) : ( I (x)  => 0 ( x : z))  [Kre98] which implicitly constructs a program 

(see Section 2.7.3). This appears to be the most popular approach, e.g. the NuPRL system. 

Transformational Synthesis approach [MW75, BD77] uses general rewriting techniques in 

order to transform a specification into a form tha t can straightforwardly be converted into 

a program. The Knowledge-Based Program Synthesis approach [Smi85, Dol95] involves the 

analysis of algorithmic classes and strategies in order to derive the parameters of program 

schemata and instantiate them accordingly. Originally, approaches to program synthesis 

were developed in the framework of automated deduction.

5.2.2 Program refinement

D efin ition  5.2.1. (Refinement) [PopOl]: A refinement, So C Si, 1 is “...a correctness

preserving transformation...between possibly abstract, non-executable programs which is

1Sq E Sn means <Sq is refined by Si.
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transitive, thus supporting stepwise refinement, and is monotonic with respect to program 

constructors, thus supporting piecewise refinement.” □

Stepwise refinement allows one to move gradually from a specification to an implementa­

tion and this is possible because refinement is reflexive and transitive.

D efin ition  5.2.2. (Stepwise refinement) [Abr96]: If So C Si C . . .  C Sn then S0 C Sn. □

Piecewise refinement enables compositional/top-down development [Ros98] and this is 

possible because refinement is monotonic.

D efin ition  5.2.3. (Piecewise refinement) [Abr96]: If S[T] is a program containing a sub­

program or statement T  then T  C V  => S[T]  C S[T').  □

There are two formal styles of refinement, both of which support piecewise and stepwise 

refinement [But98]. In the Invent-and-Verify (Posit-and-Prove) style, a refined specifica­

tion R  is developed intuitively and then checked against the original specification S  via the 

standard refinement relation S  C R  <=> R  C S  [WD96], i.e. some of the functionality that 

is possible in the specification S  may not be possible in the implementation R. Methods 

tha t support this technique include the B-M ethod  [Abr96], VDM [Jon86], Z  [WD96].

Transformational (Strict) refinement applies a refinement preserving transformation 

rule to all or part of the current specification to produce a refined specification autom ati­

cally. Methods tha t support this technique include the refinement calculus for imperative 

programs [Bac80, Mor94, Mor97] and the transformational design approach for functional 

programs [BD77]. The refinement relation in this case is S  C R  O  S  &  R , i.e. everything 

that the specification S  does should be possible in the implementation R.

The standard (transformational) refinement calculi of Back [Bac88], von Wright [vW94], 

Morgan [Mor94], and Morris [Mor97] are a formalization of W irth’s stepwise program
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development method [Wir71] and Dijkstra’s weakest precondition semantics approach 

[Dij75]. The B -M ethod  has been interpreted in standard refinement calculus [Rou99], 

and one conclusion of this interpretation was tha t the improper use of the B-M ethod  

SE E S  clause can lead to unsafe programs. On a similar token, some inconsistencies have 

been found in Morgan’s refinement laws [CSJ99].

One of the drawbacks to the uptake of formal methods in industry, is the radical 

revolution tha t formal methods imposes on the software development process [Bro87]. The 

invent-and-verify refinement technique mirrors conventional programming practice albeit 

verification is used instead of informal testing/debugging techniques. A major criticism 

of transformational refinement is tha t it is too strict—some informal steps usually have to 

be taken when applying refinement in program development.

5.2.3 Retrenchment

Retrenchment is a liberalization of the strict transformational refinement calculus to en­

able the development of realistic specifications from idealized specifications using the invent 

and verify approach. Some of the strict transformation steps produce verification condi­

tions (proof obligations) which must be discharged for the transformational refinement to 

be valid, and these proof obligations have been encapsulated as the retrenchment proof 

obligations defined in Figure 5.1 [PopOl] 2. In particular, the retrenchment method can 

be used to formalize and reason about the relationship between an idealized (also known 

as divine, abstract) specification and its realizable (also known as mundane, concrete) 

representation, which can then be successfully implemented by using the transformational 

refinement method.

2 An earlier criticism of this method was that it did not have a mathematical basis [Smi99].
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D efin ition  5 .2 .4 .  (Retrenchment) [BP99b]: The Retrenchment method is governed by the 

refinement initialization and invariant preservation proof obligations, and the retrenchment 

proof obligations shown in Figure 5.1. □

The variables used in a program specification are distinguished into state w, v, input i , j  

and output o, p for the abstract and concrete machines respectively, and the logical vari­

ables A  which hold before-values of the state and input variables so tha t they may be 

referred to in the after-state if necessary. The refinement concrete invariant J ( u , v ) is 

separated into the retrieves relation G(u , v )  and the concrete invariant J{v) .  The re­

trenchment initialization proof obligation requires satisfaction of the retrieves relation, 

and the operation retrenchment proof obligation requires satisfaction of the retrieves rela­

tion or the concedes relation C(u,  v, o, p, A)  which relates state and logical variables in the 

after-state thus weakening the postcondition. The conjunct P ( i J , u, v, A)  is the W IT H IN  

clause which relates state variables, input, and logical variables A, in the before-state thus 

strengthening the precondition.

The initialization and invariant preservation proof obligations are the same as those for 

the B-refinement method, but the retrenchment initialization and the retrenchment oper­

ation proof obligations differ from those corresponding to the B-refinement method. The 

operation-retrenchment proof obligation has the termination condition of the realistic ma­

chine, t r m ( T ) ( v , j ), in the antecedent whereas the operation-refinement proof obligation 

has the termination condition of the idealistic machine, t rm(S) (u,  i), in the antecedent. 

Thus for retrenchment, it is assumed tha t the realistic machine terminates and it has to 

be proved tha t the idealistic machine terminates. Since the idealistic machine is the basis 

of the development, it has more merit to prove everything about the idealistic machine, 

in particular to prove that it terminates rather than to assume tha t it terminates. The
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• Initialization proof obligations: the initialization of each machine (i.e. the before­
state) must satisfy the invariant.
[*(u)]J(u)

• Invariant preservation proof obligations: if the before-state satisfies the invariants 
and the termination conditions then the after-state given by the operations shall 
satisfy the invariants.
I (u)  A t r m ( S ( u , i)) => [£(w , z, o)]I(u)  

J(v)  A t r m ( T ( v , j ) )  =» l T ( v , j , p ) \ J ( v )

•  Retrenchment initialization PO: the initializations of the two machines must satisfy 
the retrieves relation.
[ Y ( v ) } ^ [ X ( n ) h G ( u , v )

• Operation retrenchment PO: if the before-state satisfies the invariants and the 
concrete termination condition, then the abstract termination condition shall be 
satisfied, and there shall not be a situation where the after-states of the concrete 
and abstract operations should not satisfy the retrieves or concedes relations. 
( I (u)  A G ( u , v) A J(v)  A t r m ( T ) ( v , j )  A P(i ,  j ,  u, v,  A ))
=» (t rm(S ) {u , i) A [ T ( v , j , p ) ] - ^ [ S ( u , i , o ) h ( G( u , v )  V C( u , v ,  o,p,  A)))

Figure 5.1: The retrenchment proof obligations.

operation retrenchment proof obligation enables to reason about whether a retrenchment 

preserves the retrieve relation G( u , v )—we call this a subrefinement—or on failing to do 

so gives an acceptable degradation of service depicted by the concession (C (u, v, o,p,  A)).

Retrenchment is particularly suited to reasoning about systems involving continuous 

variables such as hybrid systems, and for changes in the systems architecture [PopOl], 

e.g. there is no formalization of the real datatype in the B-Method [Abr96], and refine­

ment in the B-Method is only defined for machines with operations of the same signature 

[HG01]. Various notions of retrenchment have been proposed, e.g. simple retrenchment 

[BP99a, Ban98] which is described in Figure 5.1; sharp retrenchment [BP99b, PopOl]
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which strengthens the retrieves clause with the nevertheless clause 3, and evolving re­

trenchment [PB02] in which the retrieve clause G becomes variant 4. We are concerned 

with unsharp retrenchment in this chapter; the next chapter deals with a form of evolving 

retrenchment. In [PopOl], the Retrenchment method is formalized using the B-Method 

Generalized Substitution Language [Abr96], and the provision of software tools akin to 

the linking of Automatic Theorem Provers with Computer Algebra Systems [HT93, B J01] 

is advocated in order to reason about discrete and continuous datatypes, i.e. floats and 

reals respectively.

5.2.3.1 Patterns in the retrenchment proof obligations

The initialization proof obligations have the same structure as the implied conclusions of 

the invariant proof obligations, and the retrenchment initialization proof obligation has 

the same structure as the second conjunct implied in the operation retrenchment proof 

obligation. This is depicted by the underlines in Figure 5.1. However, the definitions 

of the constructs of the proof obligations, i.e. I {U) ,  G( u , v), J(v)  etc, may differ from 

specification to specification according to what is being specified.

Thus for a particular retrenchment, the Tactic Refinement method (Definition 3.3.1 

and Theorem 3.6.3) can be applied for the retrenchment proof obligations defined in the 

order depicted in Figure 5.1. Since these proof obligations govern the whole retrenchment, 

the robust tactic formulated for the operation retrenchment proof obligation should be

able to prove other retrenchments in the same application domain.

3The nevertheless clause V(u, v , o , p , A)  describes nontrivial relationships between the idealized and 
realizable after-state variables u,v  and the idealized an realizable output variables o, p and the logical 
variables A. That is the after-state predicate becomes ((G(u, v) V C(u, v, o,p,  4̂)) A V(u, v, o,p,  .A)).

4G becomes mediated with some precision parameters a  and (3 and it is usually (but not always) 
expected that a  <  /3 ^  (Ga =>■ Gp)
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5.3 Specification and proof of retrenchment in B

Consider an idealistic B machine, DSub with state variables a , b, and an operation S  which 

subtracts b from a and puts the result in a , provided a > b. The realistic machine MSub 

has a state variable aa, and a corresponding operation T  which subtracts an input bb 

from aa and puts the result in aa but does so only for aa < Ov and bb < Ov , where Ov 

is some threshold value tha t the variables should not exceed. In addition, MSub gives an 

output resp to signal whether or not the subtraction has been successfully— ok means tha t 

aa := aa — bb, whereas fa il means tha t the subtraction was not possible for the values of 

aa and bb given to M Sub , i.e. there was an overflow. This retrenchment of DSub by MSub 

is shown in Figure B .l in Appendix B. This is the notion of retrenchment formulated 

by Banach and Poppleton [PopOl], and we call it a Banach-Poppleton retrenchment or 

BPRet.

5.3.1 Architectural retrenchment

Looking at the retrenchment DSub by MSub in Figure B .l, we can see three components of

two different forms of the retrenchment of DSub as summarized in Figure B .l: (1) input-

architectural retrenchment IA M ach ; (2) data representation retrenchment D R M ach ; and

(3) output-architecture retrenchment OAMach. Note tha t for concise specification, the

state, input and output variables wO, u l, u2, u3, i l ,  i l ,  i3, o3, etc, are specified as a record

structure, whose components are the individual variables of the machine. For example,

with reference to the DSub retrenchment shown in figure B .l, the type of C/0 is a record

[#a  : R, b : M#], and uO is a variable of this type 5.

5[# z  : X,  y : Y,  ...#] is the PVS syntax for defining record types.
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MACHINE DMach lAMach DRMach OAMach

RETRENCHES DMach IAMach DRMach

VARIABLES uO : UO u l  : Ul;  i l  : 71 £ to M ►-
h to u3 : C/3; i3 : 73

INVARIANT inv(u 0) inv (u l) inv (u2) inv (u3)

RETRIEVES G(u0, u l) G (u l ,  u2) G(u2, u3)

INIT init(uO) in i t (u l) init(u  2) init(u  3)

OPERATIONS S0(u0) S l(u l) ( i l) S2(u2)(i2) o3 <—  S3(u3)(i3)

LVAR A1 A2 A3

WITHIN W (u0, A l ,  u l, i l )  W ( u 0, A l ,  u l ,A 2 ,  u2, i, i2) W ( u 0, A l ,  u l, A2,  u2, A 3,u 3 ,  i l ,  12, i3)

CONCEDES C(u0', u l ' ,  A) C (u l ' ,u 2 ' ) C (u 2 ' ,u 3 ' ,A 3)

Figure 5.2: Architectural retrenchment in B

5.3.1.1 The nature of an architectural change

In this architecture, state variables are moved to input, and/or output variables are intro­

duced to indicate exceptional behaviour thus resulting in a change of operation signature 

which refinement cannot deal with. For an architectural change to occur, we need to 

characterize the architectural change, and to alter the R E T R IE V E S , LV A R , WI THI N,  

and CONCEDES  clauses to reflect this.

From Figure 5.2 we see tha t the input architecture retrenchment is achieved as follows:

• Transform some state variables to input variables, e.g. in the retrenchment of DSub 

by IA Sub , state variable b changes to input variable bb. The architecture (signature) 

of the function changes from SO : UO —> UO to 51 : U1 —+ ( I I  —> Ul) ,  where 

U1 = U 0\I1 .

• Ensure tha t the input variable is of the appropriate type for the operation S I  to be 

type-correct, e.g. bb E M. This condition becomes part of the precondition to the 

operation 51.
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• Change the individual clauses as follows. The R E T R IE V E S  clause is an identity 

relation between the state variables uO of the idealistic machine DMach and the 

state variables u l  of the more realistic machine IAM ach. The LVAR  clause remains 

empty, since the variables are of the same type hence everything tha t is possible in 

DMach should be possible in IAM ach. The W ITH IN  clause is an identity relation 

between the new input variables i l  and the state variables in uO these input variables 

correspond to. The CONCEDES  clause becomes fa lse , i.e. we do not envisage a 

situation in which the R E T R IE V E S  relation cannot be satisfied in this case since 

the variables of both machines are of the same type.

The output architectural change is achieved as follows:

• Alter the signature of the operation S 2 to introduce output variables o3, i.e. the 

signature of the operation becomes o3 <—  53(^3, z3), which is equivalent to S3  : 

U3 - a (13 —> (U3, 03)) .

•  The R E T R IE V E S  is the same identity relation between u2 and u3. The LVAR  

clause declares the logical variables A3. The W ITH IN  clause gives values to A3 

and i3 in terms of the OAMach and DRM ach  respectively. The CO NCEDES  clause 

defines a weaker postcondition to that described by R E T R IE V E S .

5.3.1.2 The nature of a datatype change

Here, an idealistic datatype is implemented as a realistic datatype type—the infinite reals 

R, becomes the finite reals FR. For a datatype change to occur we need to identify 

variables whose types may change, and for each such variable, we need to characterize the 

type change(s), i.e. to define the relationship between idealistic and realistic variables and
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alter the R E T R IE V E , LV A R , W ITH IN , and CONCEDES  clauses to reflect this. From 

Figure 5.2 above we see tha t the data change is as follows:

• The type of the state variables changes from u l  : U l to u2 : U2.

•  This datatype change is described by the retrieves relation. For example the rela­

tionship between infinite reals and finite reals in Figure B .l is defined by R (x  : R, y : 

FIR) =  (y < Ov =>- x = y) A (y =  Ov =» x > Ov).

•  The “structure” of the operation remains the same, i.e. S 2 : U2 —*■ (12 —» U2) has 

the same structure as 5 1 : Ul  —> (11 —> U2), but the signatures are different in the 

sense tha t the datatypes U2, I 2  are different from those of Ul,  I I  respectively.

• The changes to the individual clauses are tha t the R E T R IE V E S  becomes the pred­

icate that relates the two datatypes. The LVAR  clause declares the logical variables 

A2. The W ITH IN  clause gives values to the input variables i2 and the logical 

variables A2 in terms of the variables of IAM ach  and DRM ach  respectively. The 

CONCEDES clause defines a weaker postcondition in terms of the state variables of 

the IAM ach  and DRMach.

5.3.2 Proof procedure for architectural retrenchment

Each of the above architectural transformations is a retrenchment in its own right, there­

fore we can use the retrenchment proof obligations to reason about the correctness of each 

of these transformations. We can unfold a Banach-Poppleton retrenchment as an input- 

architecture retrenchment followed by a data-representation retrenchment, and finally by
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an output-architecture retrenchment:

DMach OAMach

IARet  J. OARet

IAM ach  — > DRMach
DRR et

This requires us to prove the following vertical composition or transitivity result:

Theorem 5.3.1. (Architectural Retrenchment)

DMach < IAMach < DRMach < OAMach =$■ DMach < OAMach 

Proof:

DMach < IAMach < DRMach < OAMach

%By Theorem RetCompGSw [PopOl],Chapter 6, page 107.% 

inv(uO) A 3 u l • (G(uO, ul) A inv(ul)  A G (ul, u2)) A inv{u2) A trm (S2(u2 , i2))

A 3 ul, i l , .Al • (G(uO, ul) A inv{ul) A G {ul, u2) A W(i l ,  uO, ul, Al)

A W (il, i2, ul, u2, A2)) =>■ trm(SO(uO))

A [<S'2(u2,i2)]-i[50(u0)]->3ul • (G(uO, ul) A inv(ul)  A G(ul,u2))

V 3 ul • (G(uO, ul) A C( u l , u2, A2))

V 3 ul, Al • ((7(u0, ul, Al) A G(ul ,  u2))

V 3 ul, Al • (C(uO, ul, Al) A C(ul ,  u2, A2)) <  OAMach 

%By Theorem RetAssocw [PopOl], Chapter 6, page Hl . %

inv(uO) A 3 ul, u2 • {G(u0, ul) A inv(ul) A G(ul, u2) A inv(u2)

A G(u2,  u3)) A iuu(u3) A trm(S3(u3, i3)) A 3 ul, u2, il , i2, Al, A2 •

(G(u0, ul) A im;(ul) A G(ul, u2) A in?;(u2) A G(u2, u3) A W{il ,  u l, il ,  Al)

A W (il, i2, ul, u2, A2) A W (i2, i3, u2, u3, A3)) trm(S0(u0))

A [53(u3, i3, o3)]-i[«S'0(u0)]-i(3 ul, u2 • (G(u0, ul) A inv{ul)

A G(ul, u2) A inv(u2) A G(u2, u3)) V (3 ul, u2, o3, Al, A2 • (G(u0, ul)

V G(u0, ul, Al)) A (G(ul, u2) V G(ul, u2, A2)) A (G(u2, u3) V C(u2, u3, A3))))
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<=> %>u3 = u2 = ul C  uO; unifying/instantiating ul, u2 with uO.% 

inv(uQ) A G(uO, uO) A inv(uO) A G(uO, uO) A inu(uO) A (2(u0, u3)

A inu(u3) A trm(S3(u3, i3)) A (7(u0, uO) A inu(uO) A inv(uO) A (7(u0, u3)

A IF(il, ul, i l ,  A l)  A W (il, i2, u l, u2, A2) A W (i2, i3, u2, u3, A3) =*> £rm(S,0(uO))

A [53(u3, i3, o3)]->[S'0(u0)]-n((G!(u0, u0) A inu(uO) A <7(u0, uO)

A inv(uO) A G(uO, u3)) V (<7(uO, uO) V C(uO, uO, uO) V (7(u0, uO)

V C(uQ, uO, uO) A G(uO, u3) V (7(^0, u3, o3, A3)))

%propositional simplification: G(uO,uO)=true; p A p = p ; p = > p  = true.% 

inu(uO) A G(uO, u3) A inv(u3) A trm(S3(u3, i3)) A W (il, ul, il, Al) A W (il, i2, ul, u2, A2)

A W(i2, i3, u2, u3, A3) => trm(SO(uO)) A [53^3, i3, o3)]->[-S'0(u0)]-i(G(u0, u3) V C(uO, u3, o3, A3)) 

%Definition of retrenchment %

DMach < OAMash □

In retrenchment (in comparison to refinement), the retrieves relation and the invariant 

are separated. A retrenchment specification should satisfy the retrieves relation or the 

concedes relation.

Theorem 5.3.2. (Maximally A bs trac t  Retrenchment)

The proof o f the operation retrenchment proof obligation requires satisfaction o f the re­

trieves relation or the concedes relation. When the retrieves relation is satisfied, we have

a subrefinement. When the concedes relation is satisfied, we have a concession.

Proof:

( inv(S)(u)  A G(u,  v) A inv{T){v)  A t rm(T) ( v ,  j )  A W ( i , j , u , v , A ) )

=» (t r m s ( S ) ( u , i ) A [T(v , j , p ) } - ^ [S( u , i , o ) ] ^ ( G( u , v )  V C{u, v ,  o,p,  A)))

<= %[X](A V B)  <= [X]A V [X]B :.R H S  is a sufficient but not necessary condition%  

( inv(S)(u)  A G(u , v )  A i nv(T) (v )  A t r m ( T ) ( v , j )  A W ( i , j , u , v , A ) )
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(t r m s ( S ) ( u , i ) A [T(v, j ,p)]- i [S(u,  i, o)]-^G(u, v)) %subrefinement 

V 

(i nv ( S) (u ) A G(u , v )  A i nv(T) (v )  A t r m ( T ) ( v J )  A W ( i , j , u , v ,  A))

=» (t rms (S ) (u , z) A [r(^,.;',p)]-i[6f(n, i, o)]—■ C(zz, v, o,p,  A))  % concession. □

In some cases, a concession may contain a subrefinement [Ban98]. For example, in the 

vanilla Banach-Poppleton retrenchment shown in Figure B .l, the CONCEDES  clause has 

the same semantics as the IF -T H E N -E L S E  construct tha t models the operation in MSub, 

and similarly in DRSub and OASub: IF  a TH EN  b E L SE  c &  (a = >  6)[|(—»a =>■ c)

(a A 6) V ( n f l  A c) ( a  => 6) A ( n a  c). Thus satisfaction of the concession is actually 

a subrefinement in this case.

5.4 Specification and proof of retrenchment in PVS

Mathematical functions provide a convenient way of modeling programming languages. 

The BMethod Generalized Substitution Language (BGSL) is based on the imperative 

paradigm. The specification language of PVS is based on the functional paradigm. The 

example in Figure B .l is in terms of retrenching the idealized specification which involves 

the infinite set of all real numbers to a subset of the reals FR. The Reals are formalised 

as the standard Abelian group in the PVS system [OS03a]. Both PVS and the B-Method 

use the substitution model of evaluation [SORSC98a].

5.4.1 Specification m ethod for B machines in PVS

The style of PVS specification used is a shallow embedding of the B-Method in PVS, where 

the B-Method Generalized Substitution Language is translated into the PVS functional
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Classical Higher-order specification language. A B-M AC H IN E  corresponds to a PVS 

THEORY, and the R E F IN E S  clause is effected by the PVS IMPORTING statement. The state 

( u , v ) t input ( i , j ) ,  output (o,p), and logical (A) variables are represented as the record 

structures V, V,  / ,  0 ,  A  respectively. The machine operations X , Y , S ,  T  are specified 

constructively, e.g. initialization is record construction; an assignment operation is a record 

update in PVS; and a continuation-style semantics [Ste98] can be effected by the PVS LET 

construct 6. The machine assertions R E T R IE V E S  (G(u,v) ) ,  IN V A R IA N T  (I ( u ) , J ( v )), 

W ITH IN  (W (...)), CO NCEDES  (C(...)) are represented by boolean definitions, and the 

retrenchment proof obligations in Figure B .l are represented by PVS THEOREMS.

5.4.2 High Integrity translation from B to PV S

The retrenchment proof obligations listed in Figure 5.2 have to be converted from the 

B-Method Generalized Substitution Language into PVS classical higher-order logic func­

tional specification language. The following theorem derives a predicate logic formula 

corresponding to the generalized substitution [T(v,j,p)->[S(u, i, o)}-iR(v,p,  u, o):

Theorem 5.4.1. (B GSL in Higher-Order Logic) [BP99b, PopOl]:

[T(v,j ,p)]-i[S(u,  i, o)\-iR(v,p, u, o)

t rm(T)(v , j )  A (t rm(S)(u , i) => (Vi),p • prd(T) (v , j , v,p) =$■

(3 u, d • prd(S)(u, i , u, d) A R(v, p, u, o))))

Proof:

[T(v,j,p)]->[S(u, i, o)\-iR(v,p, u, o)

&  %[S]R = trm(S)(u , i) A (Vu, o • stp(S)(u, i, u , o) => [u , o := w, d]R) if  u , o\R%

6As in conventional programming practice, first the variables are initialized, and then the opera­
tions act on this initial state to give some after-state. The PVS statement (LET x :in t= 2 , y:int=x*x  
IN x+y) is equivalent to the functional Lambda Calculus expression (LAMBDA (x: i n t ) : (LAMBDA 
(y :in t)  :x+y) (x*x)) (2) [SORSC98a].
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trm(T)(v , j) A (Vft,p • stp(T)(v, j ,v ,p ) =4 [v,p :=  ft,p]

->(trm{S)(u, i) A (V ft, o • stp(S)(u, i , it, o) =4 [u, o := ft, o]-^R(v, p, u , o))))

44 %[u, o :=  it, o].R(z;, p, zz, o) =  R(v, p , it, o) twice% 

trm (T) (vJ ) A (V ft, p •  stp(T)(v, j , ft,p) =4 -i(trm(S)(u, z) A 

(V ft, ft •  stp(5)(zz, z, ft, o) =4 ->i?(ft, p, ft, o))))

44 %A =4 B =  —i A V B; - i \ /x  • Q =  3 a ; * — 

trm(T)(v,j)  A (Vft,p • stp(T)(v, j ,v ,p ) =4- (-• trm(S)(u,i)  V 

(3 ft, o • - i ( - i stp(S)(u, z, ft, o) V -ii?(ft, p, ft, o)))))

44 V ~iJ3) =  A A B; -A  V B =  A =4 B %

trm(T)(v,j)  A (Vft,p • stp(T)(v,j,  ft,p) =4 (trm(S)(u, z) =4 

(3 ft, o •  s£p(5)(zz, z, ft, o) A R(ft, p, ft, o))))

44 %trm(S)(u,i) zs unbound under Vft,p% 

trm(T)(v, j ) A (trm(S)(u, z) =4 (Vft,p • stp(T)(v,j,  ft,p) =4 

(3 ft, o • stp(S)(u, z, ft, o) A R(ft, p, ft, o))))

44 % stp(S)(u, i, zz', o) =  trm(S)(u, i) A prd(S)(u,  z, zz', o);

stp(T)(v, j ,v ' ,p ) =  t rm (T)(vJ ) A prd(T)(v,j,v' ,p)%:  

trm(T)(v,j)  A (trm(S)(u, z) =4 (Vft,p •  prd(T)(v,j,  ft,p) =4 

(3 ft, o •  prd(S)(u, z, ft, o) A B(ft, p, ft, o))))

44 %Converting to prenex normal form (PNF)—if x does not occur free in A then 

A = 4 \ / : t : B 4 4 V : e : A = 4 B  and A = 4 3 £ : B 4 4  3 x : A = 4 B % :

Vft,p • 3 ft, o • trm(T)(v,j)  A (trm(S)(u, z) =4 (prd(T)(v, j , ft,p) =4 

(prd(S)(u, z, ft, o) A B(ft, p, ft, o))))

44 % Generalising the formula by universally quantifying the unquantified variables zt, i, 

Vzz, z, v, j,  ft,p • 3ft, o • trm(T)(v,j)  A (trm(S)(u, z) =4 (prd(T)(v, j , ft,p) =4 

(prd(S)(u, z, ft, o) A B(ft, p, ft, o)))) □

128

v , j  %
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B PV S stp(S) t rm(S)  A 
prd(S)

x  := E in it ia liz a t io n :  (#  x  :=  E # )  
a ss ig n m e n t in  Op: 
r  WITH [x  :=  E]

x' = E

skip r  WITH [x  :=  x ] x' =  X
P \ S O pN am e(r:R  | P ) = S (P  A t rm(S) )

A (P => prdx{S))
S  [] T IF  t r u e  THEN S 

ELSE T ENDIF
( t rm(S)  A t rm(T) )
A (prdx (S ) V prdx (T) )

P = ^ S COND P - >  S ENDCOND ( P =? t rm(S) )
A (P  A prdx(S))

@ z - S FORALL (z :T Y P E ): t r m ( S )
AND EXISTS ( z : T Y P E ): p r d ( S )

(V z  • t rm(S) )
A ( 3 z - p r d x(S))  i f  z \ x '

P  | @ x ' • ( Q x  :=  x') P AND (P  IMPLIES Q) P  A (P  => Q)
x :G E m e m b e r (y ,E )  AND m e m b e r (x p ,E ) {y G E )  A (x' e  E )
x  : P x :P £ II ^3

Table 5.1: B to PVS

The formulation of the B-Method General Substitution Language in Higher-Order Logic 

above conforms to the Proofs as Programs (or Program Synthesis) proof obligation V(ic : 

D) : 3 (z  : R) : ( I (x)  => 0 ( x , z )) [Kre98] with the difference that the proof obligation is in 

terms of one machine (the idealistic machine), whereas the Theorem 5.4.1 is in terms of 

two machines (both the idealistic and realistic machines).

The operations S', T  can be defined constructively or declaratively in PVS by using 

the correspondences in Table 5.1 and the PVS LET statement. Constructive definitions can 

be valuable in proof development, particularly for computing values for instantiating exis­

tential variables in the retrenchment proof obligations. This provides the mathematically 

rigorous mechanism of Lambda Calculus to check the correctness of the retrenchment of 

an operationally defined abstract specification by an operationally defined concrete spec­

ification. In this way logical errors in the operational definition of the Operations can be 

caught by verification thus reducing the likelihood of such errors, which have been found 

to account for the greatest percentage of faults in the software development process, and
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consequently the implementations [YBH97].

5.4.2.1 PVS specification of the architectural retrenchment in Figure B .l

The specification of a particular Banach-Poppleton vanilla retrenchment of a divine (ide­

alistic) machine by a realistic machine consists of the following PVS THEORYs: (1) the 

divine machine Dmach [Figure B.2]; (2) the input architecture machine IAm ach  which 

imports Dmach [Figure B.2] 7; (3) the data-representation machine DRmach  which im­

ports IAm ach  [Figure B.3]; (4) the output-architecture machine OAmach which imports 

DRmach [Figure B.4]; (5) input-architecture proof obligations IAPO s  which imports 

IAm ach  [Figure B.5]; (6) the data-representation proof obligations DRPO s which im­

ports DRmach  [Figure B.6]; and (7) the output-architecture proof obligations OAPOs 

which import OAmach [Figure B.7].

T h e  id en tifier s  in  Dmach are in d e x e d  b y  th e  n u m er ic a l 0, e .g . u 0 : U 0 ,S 0 :  [UO - >  U O ]; 

th o s e  in  IAm ach  b y  1, e .g . u l : U l , i l : I l ,  S I :  [ U l - > [ I 1 - > U 1 ] ] ;  th o s e  in  D Rmach  b y  2, 

a n d  th o s e  in  OAmach b y  3 8. T h e  o p e r a t io n s  are sp e c if ie d  c o n s tr u c t iv e ly  a n d  d e c la r a t iv e ly  

u s in g  th e  c o r re sp o n d e n c es  in  T a b le  5 .1 .

N o te  t h a t  th e  W ITH IN  c la u s e  is  a u g m e n te d  to  in c lu d e  th e  in it ia l iz a t io n  o f  th e  m a c h in e , 

a n d  th e  W ITH IN  c la u se s  o f  th e  p r ev io u s  re tr e n c h m e n ts , e .g . th e  WITHIN c la u s e  for DRSub 

is  g iv e n  as:

W(uO:UO, ul,Al:U1, u2,A2:U2, il:Il, i2:I2): bool = W(uO,ul,Al,il)

& al(ul)>=bl(il) & (b2(i2)<=10 => bl(il)=b2(i2)) & a2(u2)=a2(A2)
7Note in PVS these are specified as two separate files. They are conjoined here for brevity.
8In [Ban98], for a series of retrenchments, the machine variables and operation names are lexically 

ordered from machine to machine , i.e. for DSub we have variables u:U, i : I ,  o:0 and operation S; 
correspondingly for IASub we have variables v:V, j : J, p:P and operation T; for DRSub we would have 
variables w:W, k:K, q:Q and operation U; and variables x:X, 1:L, r:R and operation V for OASub.
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Where W ( u O , u l , A l , i l )  is the W ITH IN  clause for IA Sub. This is to ensure tha t the 

previous conditions ‘within’ which the previous retrenchments were valid, carry through 

to the present retrenchment. In particular, in the idealistic machine DSub, all variables 

are initialized since all variables are state variables in this case. On the other hand, 

IA Sub does not initialize input variables, e.g. b l ( i l )  is not initialized, thus statements 

like a l ( u l ) > = b l ( i l )  would not be decidable. This is because in the input-architecture, 

data-representation and output-architecture retrenchments, the input variables are not 

initialized with actual values since the i n i t D e f  operation only works on state variables. 

In the input-architecture retrenchment, the W ITH IN  clause statement bl(ul)=bO (uO) 

provides a rewrite rule where bO (uO ) has an actual value from the initialization in DSub, 

i.e. the initializations of the more realistic machine are in terms of the initialization of the 

idealistic machine, which is included in the W ITH IN  clause. Thus the W IT H IN  clause 

can act as a repository where certain proof obligations, such as the machine initializations 

to satisfy the TCCs for a machine specification, can be added so tha t the retrenchment 

proof obligations can be made provable. As such the W ITH IN  clause can be interpreted 

as a “contract” under which a certain retrenchment is valid.

The specification of the input architectural retrenchment proof obligations in classical 

higher-order logic is given in Figure B.5. The invariant preservation proof obligations 

(excluding the invariant AlnvPO  for the divine (idealistic) machine) are also augmented 

with the W ITH IN  clause of the THEORY being retrenched as a means of chaining the 

initialization (of all variables) in the idealistic machine to later retrenchments. This is 

similar to the idea of maximally abstract retrenchments [Ban98], Note th a t R e t ln i t P O ,  

Subref in em en tP O  and C o n c e s s io n P O  are specified in the original Banach-Poppleton for­

mulation, i.e. the proof obligations are not in prenex normal form. The proof obligations
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can easily be transformed into prenex normal form by performing the last two steps in 

Theorem 5.4.1.

Each PVS machine THEORY has slots for the relevant B-machine attributes in which 

definitions can be entered to specify a particular machine, e.g. the slots UO, i n i t D e f , 

i n i t ,  S O D e f, i n v ,  t r m , p r d  for the divine machine Dmach. The retrenchment proof 

obligations are general proof obligations for all retrenchment specifications, and thus are 

static for all machine definitions. Thus the seven PVS THEORYs above can be used as 

specification templates on which the user need only change the variable types, attribute 

definitions and the IMPORTING clause to specify a particular Banach-Poppleton Vanilla 

Retrenchment to be verified.

5.4.3 Proof of the retrenchment specifications in PVS

The PVS system comes with a parser to ensure tha t no syntax errors are present in the 

specification, a typechecker to check that the types of variables used in the specification 

are type-consistent, and a prover to prove the correctness of the specification under the 

Gentzen Sequent Calculus LK. The parsing and typechecking of the specifications can be 

viewed as the Exploration phase in the Formal Methods Lifecycle (Procedure 2.3.1), for 

the verification of the retrenchment proof obligations specifications.

5.4.3.1 Proof procedure for architectural retrenchment POs

The proofs are for the particular initialization made in the idealistic machine 9. This is

consistent with conventional programming practice where variables are initialized before

9In particular, we only need to modify the initialization of the idealistic machine to define a new proof 
case. This is convenient for the retrenchment of reals to floats for which there are 5 distinct cases of 
initializations: (1) underflow, (2) overflow, (3) exact representation, (4) approximation, and (5) not-a- 
number.
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being passed to operations. In particular, the generalisation in Theorem 5.4.1 to have all 

free variables universally quantified ensures tha t the predicate is valid for all initial states: 

V u, i, v , j , v , p  • 3 u , d  •  t r m ( T ) ( v , j ) A ( t rm(S)(u , i) => (prd(T)(v, j ,  v ,p)  =4*

(prd(S)(u , i, u, o) A R ( v , p , w, o))))

For a specification where u , i, v , j  are from a well-ordered domain, e.g. u, i, v , j  : N, the 

principle of mathematical induction can be used to reason about the predicate above for 

all such initial states. However in this work «, i, v , j  are reals which are not well-ordered 

and hence an induction scheme for real numbers does not exist. Therefore Theorem 3.6.1 

is used instead in this work.

The initialization proof obligations ensure tha t the initializations X(u) ,  Y(u)  etc, 

satisfy their machine invariants / ,  J  respectively, and the invariant-preservation proof 

obligations ensure tha t the operation(s) S, T  etc, satisfy their machine invariants. Thus 

these proof obligations ensure the correctness of an individual machine. The retrenchment 

initialization, subrefinement and concession proof obligations ensure the correctness of 

the ‘realization’ of the idealistic machine by the realistic machine. The retrenchment 

initialization proof obligation is concerned with the retrenchment of the initializations 

of the two machines, and the other retrenchment proof obligations are concerned with 

the retrenchment of the other operations defined in the machine 10. Thus to ensure a 

correct retrenchment, one first has to prove tha t each machine is correct, the retrenchment 

initialization is correct, and then finally the subrefinement proof can be attempted; if the 

subrefinement is unprovable, then the concession must be provable.

The method of Tactic refinement (Procedure 3.3.1) where each tactic is derived accord­

ing to Theorem 3.6.3 is used in the proof of each architecture proof obligations THEORYs

10The machines considered in this work contain only one defined operation but it is possible for a 
machine to have more than one defined operation, each of which can be proved by the method outlined 
herein.
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IAPO s, D RPO s, OAPOs. The initialization proof obligations have the same structure 

as the invariant proof obligations; the retrenchment initialization POs constitute a sub­

proof of the subrefinement and concession proof obligations, both of which have the same 

structure (see Figures B.5, B.6 and B.7 in Appendix B). Thus a robust tactic from the 

proof of the initialization PO may be reusable to prove an invariant proof obligation, 

and similarly a robust tactic from the proof of the subrefinement PO may be reusable 

to prove the concession proof obligation. It is likely tha t the tactics from proofs on one 

architectural retrenchment may fail on the proof obligations in the next architecture due 

to changes in operation signature and datatypes, e.g. since the input-architecture (and 

output-architecture) retrenchment involves an operation signature change, the tactics from 

proofs of the proof obligations in IAPOs may not be reusable on the proof obligations in 

the data-representation retrenchment DRPOs which involves a change in datatype. How­

ever it is expected th a t by composing the tactics from IAPOs and those from DRPOs, 

the tactics may be reusable in the proof of the OAPOs which involves both an operation 

signature change and a datatype change (see Section 5.3.1).

5.5 Tactics from proofs of retrenchment in PVS

The three PVS specifications in Appendix B are parsed successfully which means they do 

not contain any syntax errors.

5.5.1 A utom atic generation of proof obligations as TCCs

On ty p e c h e c k in g  u s in g  th e  PVS ty p ec h e c k er , th e  m a c h in e  sp e c if ic a t io n s  D S u b , IA Sub  a n d  

a ll th e  a r ch ite c tu r e  r e tr en ch m e n t p r o o f  o b lig a t io n s  sp e c if ic a t io n s  IA P O s, DRPOs, OAPOs
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do not generate any TCCs therefore these specifications are type-correct. However the 

machine specifications D RSub, OASub generate TCCs for the machine operations i n i t ,  

S 2 D e f , S 3 D e f and messages concerning the types of the state-variables as shown in Fig­

ure B.3 and Figure B.4 respectively. The TCCs for the machine theories D R Sub, OASub, 

concern the satisfaction of the invariant ( a ( u )  < M axR ea l) by the after-state (u ) of the op­

erations. From the definition of the initialization operation, the TCC for the initialization 

operation in itD e f_ T C C l is proved complete by the PVS tactic for TCCs t c p .  However 

the TCCs for S2Def and S3Def could not be finished by tactic t c p  since these operations 

take the input variable b which is not initialized in the machine. Thus it is impossible to 

prove tha t the subtraction of an uninitialized variable b from an initialized variable gives 

a result satisfying the invariant. These unfinished TCCs are unraveled in the proof of 

the architecture retrenchment proof obligations specifications where the W IT H IN  clause 

chains this information throughout the retrenchment specifications.

5.5.2 Tactics for the retrenchment PO s not in Norm al Form

Chapter 4 demonstrates that the definition of g r i n d  conforms to the normal form of 

proofs given by Theorem 3.6.3 albeit the instantiator argument defaults to the heuristic 

PVS tactic ( i n s t ? )  which sometimes instantiates with incorrect arguments leading to an 

unprovable proofstate, or fails to find a suitable instantiation at all. The R o b u s tG r in d  

tactic (Definition 4.3.2) can be used to apply ( g r i n d )  as the first step in an interactive 

proof development, and if ( g r i n d )  fails due to an incorrect automatic instantiation, the 

original goal is simplified into manageable subgoals for the user to perform the creative 

proofsteps. The initialization and invariant-preservation proof obligations, can be proved 

by ( g r i n d )  since these two obligations just require skolemisation of variables, which PVS
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can perform automatically.

The proofs of R etlnitPO , which involves initialization operations i n i t  (uO), i n i t  ( u l ) , 

i n i t ( u 2 ) , in i t ( u 3 ) ;  SubRef inementPO and ConcessionPO which both involve the ma­

chine operations SO, S I, S2, S3, both require instantiation of the after-state variables 

u, o in Theorem 5.4.1. The PVS (g rin d ) tactic is able to find the correct instantia­

tion terms uO !l, u l ! l ,  u 2 ! l for uOp, u lp , u2p respectively for R etln itPO  from the 

proofstate. However (g rind ) is not able to find the correct instantiation terms from the 

proofstate for SubRef inementPO and ConcessionPO—it gives the erroneous instantiation 

for R etlnitPO  above, which results in a subgoal tha t cannot be proved as shown by the 

failed proof attem pts in Appendix B .l. Thus the pattern-matching technique used by the 

PVS tactic ( in s t? )  is not powerful enough to find the correct instantiation terms to 

enable the proofs for SubRef inementPO and ConcessionPO to complete.

The constructive definitions of the machine operations SO, S I, S3 are used to actu­

ally compute from the skolem variables uO! 1, u l ! 1, u 2 ! 1, the values tha t can be used 

as instantiation terms in the PVS manual instantiation tactic in s t ,  e.g. manual instan­

tiation by ( in s t  + "SODef (uO! 1)") completes the proof for SubRef inementPO in the 

input-architecture retrenchment IAPOs (see Appendix B .l). This alleviates the human 

user from having to construct the instantiation expressions explicitly on the PVS prover 

command line, which is more laborious especially for nontrivial instantiations involving 

a significant amount of variables. In addition, the correctness of the definition of the 

operation itself is checked in that the values the operation computes are actually the val­

ues which satisfy the before-state and after-state predicates and the whole retrenchment

as a whole 11. In this way, PVS can be used in the invent-and-verify (posit-and-proof)

11Note that the operations are defined constructively, and the before-state and after-state predicates 
are defined declaratively.
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method of specification development, whereby constructive definitions are specified and 

then proved by demonstrating tha t they can compute suitable values which satisfy proof 

obligations such as the retrenchment proof obligations.

The interactive proof in Appendix B .l demonstrates that the proof of retrenchment 

proof obligations not in normal form consists of three phases—rewriting, instantiation and 

completion.

5.5.2.1 R ew ritin g  to  i n s ta n t ia t io n  p hase

Definition 4.3.2, when evoked as (RobustGrind :def s n i l )  in order to  avoid overwhelm­

ing the user with too much detail, simplifies the SubRef inementPO proof obligation into 

the following two manageable subgoals:

R etr en ch m en tP O l:

i n v ( S ) ( u ) , G ( u ,v ) , i n v ( T ) ( v ) ,  t r m ( T ) ( v , j ) , W ( u , v , i , j , A ) , p r d ( T ) ( v , i , v ’ ,p )

| -  EXISTS ( u ’ jO ’ ) :  ( t r m ( S ) ( u , i )  & p r d ( S ) ( u , i , u } , o ’ ) )  & R ( v * ,p ’ , u ’ , o ’ ) 

R etr en ch m en tP 0 2 :

i n v ( S ) ( u ) , G ( u ,v ) , i n v ( T ) ( v ) ,  t r m ( T ) ( v , j ) ,  W ( u ,v , i , j ,A )

I -  ( t r m ( S ) ( u , i )

The presence of these two subgoals means tha t the tactic (g rind ) is unable to find a proof 

automatically, in particular the correct instantiation terms. RetrenchmentP02 requires to 

prove that if the before-state satisfies the invariants, retrieves relation, concrete term ina­

tion condition, and WITHIN clause, then the abstract termination condition shall be es­

tablished. RetrenchmentPOl requires to prove tha t if the antecedent of RetrenchmentP02 

and the concrete before-after relation are valid, then the after-state of the abstract ma­

chine and retrieves relation the shall be established. Thus to avoid making the proof
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trivial, the antecedent should be true, and this is investigated by proving the initialisa­

tion, invariant preservation, and retrenchment initialisation proof obligations first. These 

proof obligations, as well as RetrenchmentP02, can be proved by RobustGrind when the 

optional defs  parameter is not used.

5.5.2.2 Instantiation

The proof obligations tha t require instantiation are R etln itPO  and SubRef inementPO and 

ConcessionPO, where the instantiation is for the elimination of the existential quantifier. 

RobustGrind (Definition 4.3.2 of Chapter 4) is able to find the correct instantiation terms 

uO! 1, u l ! 1, u 2 ! 1 for uOp, u lp , u2p respectively for R etlnitPO  from the proofstate.

Manual instantiation for SubRef inementPO and ConcessionPO is invoked by the proof- 

step ( in s t  fnum  term s), and the instantiation terms are the definitions of the initializa­

tion, and of the machine operation; with the skolem variables from the skolemisation of 

the initial state as follows:

( in s t  + "SODef (uO! 1) ") for IAPOs 

( in s t  + "S ID ef(u l!1 ) ( i l !1 )") for DRPOs 

( in s t  + "S2Def(u2!1 ) ( i2 ! 1)") for OAPOs

5.5.2.3 Completing the proof

After the instantiation step, all quantifiers will have been eliminated—provided none of 

the definitions in the specification are in terms of quantifiers. Thus all th a t is left to do 

is to expand some definitions in the proofstate, and perform propositional simplification 

using (g rin d  :if-m a tc h  n i l ) .

The ConcessionPO in the input-architecture retrenchment IAPOs does not prove since
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the Concedes relation is defined as false. This demonstrates th a t the antecedent is true, 

which is as expected. For example, for the IAPOs in Appendix B, after the rewriting 

and instantiation with ( in s t  + "SODef (uO! 1 )"), the proofstate above reduces to the 

unprovable proofstate:

C on cession P O  :

{ - 1 }  ( a l  ( u l ! 1) = 3 )

{ - 2 }  3 >= 1

{ - 3 }  aO(uO!1 ) = 3

{ - 4 }  bO (uO .'l) = 1

{-5} ( b l ( i l !1 )  = 1)

{ - 6 }  a l ( u l p ! l )  = 2

This gives confidence tha t the SubrefinementPO, which is provable, is correct—since the 

antecedent of the SubrefinementPO is the same as the antecedent of the ConcessionPO, 

therefore the Subrefinement consequent EXISTS (u lp : U l) : p r d ( S l! 1) ( u l ! 1, i l ! 1,

u lp ) & G (ulp, u2p! 1) must be true for the proofstate to be provable.

5.5.3 Tactics for retrenchment PO s in P N F

The retrenchment proof obligations R etln itPO , SubrefinementPO, ConcessionPO can 

be expressed in prenex normal form according Theorem 5.4.1, e.g. the retrenchment proof 

obligations for IAPOs are converted to prenex normal form as follows:

RetlnitPO: THEOREM 

FORALL (uO:UO, ul:Ul, SO:[U0->U0], SI:[Ul->[I1->U1]]):

FORALL (ulp:Ul): EXISTS (u0p:U0): init(uO,ulp) => (init(uO,uOp) & G(uOp,ulp))
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SubRefinementPO: THEOREM 

FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):

FORALL (ulp:Ul): EXISTS (uOp:UO): (init(uO) & init(uO,ul)) =>

((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & trm(Sl)(ul,il) & W(uO,A1,ul,il))

=> (trm(SO) (uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (prd(Sl)(ul,il,ulp)) => (prd(SO)(uO,uOp) & G(uOp,ulp)))))

ConcessionPO: THEOREM 

FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):

FORALL (ulp:Ul): EXISTS (uOp:UO): (init(uO) & init(uO,ul)) =>

((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & trm(Sl)(ul,il) & W(uO,Al,ul,il))

=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (prd(Sl)(ul,il,ulp) => (prd(SO)(uO,uOp) & C(uOp,ulp,Al))))))

Theorem 3.6.1 can then be applied as the first creative step to skolemise the universal 

variables, and then use the skolem variables in the machine operations to generate the 

instantiation terms for the after-state. The LK mechanical rules are then applied on the 

quantifier-free formula using (g rind ) to finish the proof.

5.5.4 General retrenchment tactic

The proofs for the data-representation retrenchment and output-architecture retrenchment 

follow the same pattern of proof as tha t described for the input-architecture retrench­

ment above, and using the instantiation described in Section 5.5.2.2 above. The input- 

architecture was found to be a subrefinement, and the data-representation retrenchments 

and output-architecture retrenchment proved for both the subrefinement and concession
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POs, since the Concession is also a subrefinement as alluded to in Section 5.3.2.

A composite tactic of the three phases (Sections 5.5.2.1, 5.5.2.2, 5.5.2.3) tha t can prove 

the retrenchment POs in and not in prenex normal form is:

(defstep RSubRetTac (fnum &rest terms)

(then (RobustGrind$) (inst fnum terms) (grind))

"INPUT = IAPOs or DRPOs or OAPOs 

OUTPUT = TRUE

PRECONDITIONS = DSub V  IASub \/ DRSub \/ OASub 

EFFECTS = QED"

"proving retrenchment proof obligation ...")

Where the formal parameters fnum term s are replaced by the actual instantiation argu­

ments corresponding to the particular proof obligation being proved as given in Section 

5.5.2.2. This tactic was successfully used to automatically prove each of the proof obliga­

tions in all the architectural retrenchments for this example.

5.6 Summary

This chapter has demonstrated the shallow embedding of the B-Method in PVS in order 

to reason about the Retrenchment Method in PVS. Figure 5.2 summarizes the formulation 

of the Banach-Poppleton vanilla retrenchment as Architectural retrenchment, and Figure 

B .l shows the B-Method Architectural retrenchment specifications for an example from 

[PopOl]. Theorem 5.3.1 demonstrates tha t Architectural Retrenchment is equivalent to 

the one-off Banach-Poppleton retrenchment specification of a machine. Theorem 5.3.2 

demonstrates tha t the one-off Banach-Poppleton Operation Retrenchment Proof Obliga­

tion can be split into 2 separate retrenchments: (1) the satisfaction of the R E T R IE V E S
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relation G (u , v) is considered a subrefinement; and (2) the satisfaction of the CONCEDES  

relation C(u, v, o ,p , A) is considered a concession.

Figures B.2 and B.3 show the PVS specifications of the B-Method Architectural re­

trenchment specifications in Figure B.l; and Figures B.5, B.6, B.5 show the PVS specifi­

cation of the B-Method retrenchment proof obligations. These specifications contain slots 

for each of the machine attributes as defined in Figure 5.2 and Figure 5.1 respectively and 

thus can be used as specification templates—the user need only type in the relevant defi­

nitions corresponding the particular retrenchment. The PVS IMPORTING clause is used for 

the R E T R E N C H E S  clause, the state is a specified as a PVS record , and operations can 

be defined declaratively and constructively using Table 5.1. Theorem 5.4.1 demonstrates 

how the Generalized Substitution Language fragment [T(v, j ,p )~ '[S (u , i, o)]~^R(v,p: u, o) 

can be converted into a Higher-Order Logic statement (in prenex normal form) to enable 

the proof of the B-Method Retrenchment proof obligations in PVS.

On typechecking, each of the PVS specifications DSub, IASub, IAPOs, DRPOs, OAPOs 

do not generate any Type Correctness Conditions (TCCs). However DRSub, OASub give 

TCCs which are thrown for the operation definitions and concern the value of the input 

variable which is not initialized by the operation and thus it is not possible to complete the 

proof. These unfinished TCCs are accounted for in the proof of the retrenchment proof 

obligations which involves the W ITH IN  clause wherein the “contract” on values for the 

variables used in the retrenchment is specified. Thus the W ITH IN  clause is a means of 

chaining values from one specification to another and acts as a repository wherein the TCC 

proof obligations generated for a machine can be added to enable a proof of retrenchment 

to complete. This can be seen as a formal way to apply logic induction.

For retrenchment proof obligations not in prenex normal form (as in the B.5, B.6, B.5)
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the tactic RobustGrind is used to rewrite the proof obligation to an instantiable form; the 

instantiation is then performed as in Section 5.5.2.2; and the proof is finished by applying 

the mechanical rules and decision procedures automatically by invoking (g r in d ) . For the 

proof obligations expressed in prenex normal form using Theorem 5.4.1, Theorem 3.6.1 

is the first creative proof step, which is then followed by the automatic application of 

mechanical rules and decision procedures via (g r in d ) . The resultant proofs both conform 

to the normal form given in Theorem 3.6.3. In this work, the other creative rules (cut and 

induction) are not used.

For the example of retrenching reals by a subset of the reals 

FinReal: TYPE = {x:real I x <= 10}, the robust tactic formulated for the Input Ar­

chitecture Retrenchment (RSubRetTac fnum  term s) which is defined as 

(then (RobustGrind$) (inst fnum terms) (grind)), was found to work for all the 

data-representation and output-architecture retrenchments where the actual arguments 

fnum  terms are the appropriate instantiation for the retrenchment architecture being 

proved. This is because the change in datatype is from the set of Reals to a proper subset 

of reals FinReal, which is therefore a refinement. The next chapter deals with retrench­

ment of reals by floats, where the float data-type and operations are specified according 

to the IEEE-854 standard for floating-point computations.



Chapter 6

Retrenching reals by floats

“When performing computations in floating-point arithmetic the computed values o f in ­

termediate variables as well as the computation o f the final values o f a calculation are 

somewhat different from  those values computed with the same algorithm in the field o f real 

n u m b e r s [KB01].

This chapter examines the modest change in specification from real computation to 

floating-point computation.

6.1 Introduction

A recent trend in software engineering is the application of formal methods on the continu­

ous domain. We look at the formal development of specifications involving real numerical 

computation. Retrenchment, a liberalization of the stepwise refinement method has been 

proposed to deal with the problems peculiar in this domain.

Reals are used in the ‘idealistic world’ of hand computation, whereas computers use 

floats in the ‘realistic world’ of electronic digital computation, i.e. in computer-aided for­

mal software development, the users requirements are captured using idealistic datatypes,

144
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e.g. infinite reals, and the implementation is executed on computer using the finite re­

sources of the computer, e.g. the machine numbers (floats). The main objective of this 

chapter is to investigate whether the tactics formulated for the retrenchment of infinite 

reals to finite reals, can successfully prove conjectures if there is a change of datatype and 

operation definition to floats and floating-point operations respectively.

Following the formal methods application lifecycle articulated in [NASa], we describe 

the problem in Section 6.2, and some approaches to reliable numerical computation in 

Section 6.2.2. Section 6.2.1 discusses the characterization of the problem domain in more 

detail. The next phase is modeling and this is the subject of Section 6.3. The specification, 

Section 6.3.1, is done in PVS, and Section 6.4.1 discusses the proof method employed. 

Finally, the extraction of tactics from the proofs using out theory of abstraction is discussed 

in Section 6.5. Section 6.6 discusses the results obtained and the viability of our approach.

6.2 Reliable numerical computation

When performing computations in floating-point arithmetic (i.e. finite precision) the com­

puted values of intermediate variables as well as the computation of the final values of a 

calculation are somewhat different from those values computed with the same algorithm 

in the field of real numbers. Additionally, imprecise data ... contaminate the computed 

results with errors [KB01]. This is known as the Real-to-Floats problem.

This problem highlights the problems between idealized specifications—those involv­

ing real numbers—and realizable specifications—those involving floating-point numbers. 

Catastrophes caused by software due to incorrect numerical computing include the explo­

sion of Ariane 501 [ESA96], and the Intel Pentium floating-point division instruction flaw 

[Pra95].
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6.2.1 Characterization of the problem domain

A floating-point representation format is “a data structure specifying the fields tha t com­

prise a floating-point numeral, the layout of these fields, and their arithmetic interpreta­

tion.” [Sun96].

Definition 6.2.1. (F lo a tin g -p o in t number) [Gol91]: In general, a floating-point num­

ber will be represented as s d .dd...d  x be which represents the number ±(do +  d\ x 6-1 +

. . .  +  dp- 1 x x be where 0 < di < b. The float datatype can be stored as a tuple

^  =  (^j / j  G!) 6maxi &min)

Where b is the base or radix; /  is the fraction (mantissa or significand) d.dd...d\ the 

exponent adjustment a  is approximately equal to (3 x (emax — emin))/A  and should also 

be exactly divisible by 12 [IEE87]; emax and emin are the maximal and minimal exponent 

allowed by the precision; p  is the precision (i.e. number of digits in the fraction); and s is 

the sign (-F or -) of the float. For example, the IEEE single representation form at consists 

of a 23-bit fraction, an 8-bit biased exponent, a 1-bit sign, and the base is 2 on a digital 

computer.

A floating-point storage format specifies how a floating-point representation format is 

stored in the memory of a computer. The IEEE standard defines representation formats, 

but the choice of storage formats is left to the implementers, e.g. in the double repre­

sentation format, in the SPARC architecture, the higher address 32-bit word contains the 

least significant bits of the fraction, whereas in the Intel and PowerPC architectures, the 

lower address 32-bit word contains the least significant 32 bits of the fraction [Sun96]. 

Assembly language software sometimes relies on using storage formats but higher level 

languages deal with linguistic notions of floating-point data types, e.g. single, double, 

double extended representation or precision [Sun96].
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The floating-point representation format is at the sufficient level of abstraction for 

our purposes as it does not go into details of how the representation is actually stored 

in the computer memory space. Normalization ensures that for the most significand 

bit of the mantissa/significand (msb), (0 <  msb < b), and this ensures the smallest 

possible exponent (e) is used, e.g. normalization ensures that msb =  1 on a digital/binary 

computer, and the msb bit can be used as an extra fraction bit thereby increasing the 

precision of the format. However normalization only occurs after the real has already 

been converted to a float, and so can be ignored without loss of generality.

6.2.1.1 Assumptions about floating-point computation

The following assumptions hold for computer (i.e. floating-point) arithmetic, where the 

function value(J) calculates the corresponding real value of a float representation / .

Assum ption 6.2.1. ((1 +  e ) -p r o p er ty )  [KB01]: For an operation o e {+, —, x , / }  on 

reals, and its machine analog © 6 {©, ©, 0 ,  0 }  on floats, the relative error between the 

operation is given by \ \< £ fo r  all floating-point numbers f u f2 where

| (value(fi) o v a lu e ^ ) )  |G [M inReal, MaxReal]; and e = e fo r  round to nearest; e = 2e fo r  

directed rounded operations; the machine epsilon e = (b/2)(b~p).

Thus the relative error between a real computation and its floating-point counterpart can 

be expressed in terms of the machine epsilon e which can be determined from the precision 

used for representing the floats. The (l +  e)-property corresponds to Theorem  2 of [Gol91] 

provided the operation (subtraction or addition) is done with p  -f- 1 digits, i.e. with one 

guard digit which means tha t the truncation of the operands is done to p  + 1  digits and the 

result is rounded to p digits. Note tha t the process of normalization ensures the availability 

of one guard digit. Theorem 1 [Gol91] says tha t the relative error can be as large as 6 — 1.
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For a normalized float, MinReal =  1.00...00 x bemin = bemin and MaxReal =  1.11...11 x b6min 

where there are p  digits in the fraction.

Assum ption 6.2.2. (Underflow)  In  the underflow range, U = (—M inReal, M inReal), 

i.e. fo r  floating-point operands f l , f 2 with \ value(fi) o value(fz) \< M inReal, it holds that 

| (value(fi) o v a lu e d ))  — value(R  0 /2) <  MinReal

The sign of the exact result (value(fl) o value(f2)) and the sign of the result of the floating­

point operation value(fl © f 2 ) are always the same.

Assumption 6.2.3. (Exact r e s u l t )  Let f l , f 2  be floats. Whenever the result o f a real 

operation with floating-point operands is already representable as a floating-point number, 

this number m ust be the result of the corresponding floating-point operation:

/1J 2 £ F => v a lu e ( fi© f2) = (value(fl) o value(f2)).

Sun’s numerical computation guide [Sun96] identifies five exceptions tha t arise in floating­

point computation: overflow, underflow, inexact representation, invalid operation and 

division by zero. Invalid operation, division by zero, and overflow are common  exceptions 

which can seldom be ignored when they occur, and can be trapped by the ieee_handler(3m) 

software. Underflow and inexact are seen more often, with most operations incurring the 

inexact exception, and they can usually though not always, be safely ignored.

6.2.2 Specification of programs involving real com putation

To formally specify and develop a program, / ,  which given a quantity x, calculates the 

value of f ( x ) ,  the following approaches can be used [BK96]:

1. Specify /  using computational real numbers and refine the specification to use com­

putational reals [Bri79, San68]. Computational real [EscOO] numbers are those real
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numbers such tha t an algorithm exists that computes rational approximations of ar­

bitrary precision to them. This makes reasoning about the specification easy but at 

the expense of a final program tha t uses enormous amounts of computing resources.

2. Specify /  using floating-point numbers and refine the specification to use floating­

point numbers [Bro81, Wic89]. There is loss of abstraction and a detailed error 

analysis of final code is required in order to ensure that results are returned within 

acceptable error bounds. Also, the use of many of the convenient properties of the 

reals is lost.

3. Specify /  using intervals of reals in the original specification and refine them to 

intervals bounded by floating-point numbers in the implementation [AA98, BK96, 

Kre95] This maintains the convenience and abstractness of the reals while retaining 

the speed of floats. Natural translations of numerical algorithms over the reals 

to floating point numbers are usually incorrect whereas intervals retain correctness 

by providing a stringent way of representing and reasoning about associated errors 

already present in measurements taken as input data. This brings about a slightly 

different notion of data refinement.

4. Specify /  using real numbers and approximate the reals by floating-point numbers 

[PopOl, PB02, Har96]. Programs produced have good performance but at the ex­

pense of making specification and reasoning difficult—natural specifications are likely 

to be infeasible, and reasoning will need to constantly refer to the detailed properties 

of floating-point numbers in order to carry out the necessary error analysis.

In the context of stepwise software development, the last two approaches are natural— 

in particular, the retrenchment method [PopOl] can be used to formalize the problem of
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approximating reals with floats. The detailed properties of floating-point numbers can be 

made available through a formal specification of a floating point standard, e.g. the IEEE- 

854 floating-point standard [IEE87] defines the datatype float and the basic floating-point 

operations Add, Sub, Mul, Div, Rem, Sqrt. The float datatype depicts how the computer 

actually represents numbers, and the floating-point operations depict how the computer 

actually performs operations on numbers.

The IEEE-854 standard has been specified and proved in PVS [Min95, CM95]. Thus 

by incorporating the IEEE-854 standard in PVS retrenchment specifications, proofs of 

correctness for the fourth style of specification above can be performed, and error bounds 

in terms of the machine epsilon can be derived 1. In this way, the operational environment 

in which the software specified is to run is also incorporated in the verification exercise, 

e.g. Intel, Sun and PowerPC hardware conform to this standard [Sun96].

6.2.3 Verification of specifications involving reals

Other than the Retrenchment method, other approaches tha t have been proposed in 

the verification of specifications yielded by the last two approaches above include: (1) 

Theorem-proving with Computer Algebra systems [HT93, BJ01]; (2) Tactics for real arith­

metic in PVS [Di 01], [MM01]; and (3) Automatic forward error analysis [Kra98, KB01].

6.2.3.1 Theorem Proving with Computer Algebra Systems

There are two main strands in linking Theorem Provers with Computer Algebra Systems 

(CAS). One strand uses Computer Algebra Systems to handle numerical computations

since most Theorem-provers do not have numerical calculation capabilities, e.g. the CAS

1Kramer et al devised a technique for specification of error bounds [Kra98], and derived rigorous 
absolute and relative error bounds for the basic floating-point operations [KB01]. However the ‘imple­
mentation’ of this approach in a theorem prover like PVS suffers from type-correctness issues.
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Maple is used as an calculation oracle to aid to the Theorem-prover HOL in verification 

[HT93]. The other strand recognizes tha t CAS are known to give incorrect results at times 

therefore the results of the CAS need to be verified in a general purpose Theorem-prover, 

e.g. P V S  is used to justify the numerical results given by Maple [BJ01].

Whereas the HOL+M aple approach provides a leeway to trace an incorrect numerical 

computation result in the CAS, the PVS+ M aple  equips Theorem provers with the capacity 

to reason about numerical results and thus such Theorem-provers can be solely used 

for correct numerical verification. For example, the formal safety analysis of Air Traffic 

Management Systems resulted in the extension of PVS with tactics to reason about the 

formalization of the reals—a package [Di 01] of strategies and functions for manipulating 

arithmetic expressions in PVS was used to develop a semi-decision procedure FIELD for 

the formalisation of real numbers, which may be used in the verification of specifications 

involving the reals numbers [MM01].

6.3 The PVS retrenchment of the reals by floats

A relational interpretation of the retrenchment of real computation specifications by 

floating-point specifications under the IEEE-854 standard is as follows:

• Real Computations : R <-»• R

• Floating-point Computations /  IEEE-854 standard : F <-> F

• Retrenchment : (R <-»• R) <-► (F F)

• Specification and Proof : BG SL  <-> P V S
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Refinement is basically a subtype relation: S  C R  R  C S  [WD96], hence the subre­

finement result tha t was derived for the retrenchment of the set of all reals by a subset 

of the reals FinReal in Chapter 5. The retrenchment of reals by floats deals with the 

representation of an ‘infinite’ real value by a ‘finite’ float value. The successful proof of 

a subrefinement means an exact representation of a real by a float whereas a concession 

means an inexact representation of a real by a float within some margin of error.

6.3.1 Specification in PVS

The PVS Specification language and the specification templates formulated in Chapter 5, 

are used to specify the retrenchment of reals by floats under the IEEE_854 floating-point 

standard. The retrenchment proof obligations can be used to specify how the real domain 

is related to the float domain via the R E T R IE V E S , W IT H IN , and CO NCEDES  clauses. 

Chapter 5 demonstrates how a B-Method Retrenchment can be specified and proved in 

PVS.

6.3.1.1 Real computation

Computation in the field of real numbers is modeled by an Abelian group [Gri99]. The 

P V S  Prelude file [OS03a] contains a formalization of the real numbers as the Abelian field, 

and all the other number types—rationals, integers, naturals—are specified as subtypes of 

real in PVS.

6.3.1.2 Floating-point computation

The IEEE-854 standard specifies floating-point computation in terms of real computation— 

operations on floats (F —► F) are lifted to operations on the reals (R —► R)—and has also
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been specified in PVS [Min95, CM95]. This emulates the hardware on which the specified 

algorithm is to run on, i.e. IEEE-854 compliant hardware such as Sun, Intel, PowerPC 

hardware, thus giving a ‘systems’ view to our verification exercise.

The float datatype is not a direct subtype of the real data type:

fp_num: datatype 

begin

finite(sign:sign_rep, Exp:Exponent, d:digits): finite? 

infinite(i_sign:sign_rep): infinite?

NaN(status:NaN_type, data:NaN_data): NaN? 

end fp_num

Hence the retrenchment of reals to floats provides a more rigorous test bed for the data- 

representation retrenchment. The PVS specification of IEEE-854 standard is imported 

into a retrenchment architecture by providing actual values for the formal parameters b , 

a lp h a , p , emax, emin, i.e. the base/radix, exponent-adjustment (normalization), man­

tissa, maximal exponent, and minimal exponent respectively (see Section 6.2.1. An 8-bit 

representation format IMPORTING IEEE_854[2 ,6 ,1 9 2 ,2 ,-1 ]  is used in the verifications 

in this Chapter. The corresponding floating-point operations fp_add, fp_sub, fp_mul, 

fp_div , fp _ sq rt are also made available in the specification by the importation of the 

PVS IEEE-854 specifications.

In the PVS IEEE-854 specification [Min95, CM95], the function f_op provides a tem­

plate for defining floating-point operations:

fp_°p(°p, finl, (fin2:{fin|div?(op)=>N0T zero?(fin)}), mode):fp_num =

LET r = fp_round(apply(op,finl,fin2), mode) IN

IF r=0 THEN signed_zero(op, finl, fin2, mode) ELSE real_to_fp(r) ENDIF
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Where:

apply(op,finl, (fin2:{fin|div?(op)=>N0T zero?(fin)}), mode):real =

CASES op OF

add: value(finl) + value(fin2), sub: value(finl) + value(fin2), 

div: value(finl) / value(fin2), mult: value(finl) * value(fin2)

ENDCASES 

fp_round(r:real, mode):real =

IF r=0 THEN 0 ELSIF over_under?(r) THEN round_exceptions(r,mode)

ELSE round_scaled(r,mode) ENDIF 

over_under?(r:real): bool = (r/=0 & (abs(r)>max_pos or abs(r)<b~(-p))) 

round_scaled(r:nzreal, mode:rounding_mode): real = 

b~scale(abs(r)) * round(b"(-scale(abs(r)))*r, mode) 

scale(x:posreal):{i:int|b~(i+p-l)<=x & x<b~(i+p)} = Exp_of(x)-(p-l)

The function rea l_ to_ fp  tha t converts a real to a float in the function f_op above is 

defined as:

real_to_fp(r:real):fp_num =

IF abs(r) >= b'‘(E_max+l) THEN infinite (sign_or(r))

ELSIF abs(r) < b''(E_max+l) THEN finite(sign_or(r) ,E_min,truncate(E_min,abs(r))) 

ELSE finite(sign_or(r), Exp_of(abs(r)), truncate(Exp_of(abs(r)), abs(r)))

ENDIF 

Where:

truncate(E:integer, nnx: nonneg_real): digits =

(lambda (i:below(p)): mod(floor(b~(i-E)*nnx),b)) 

digits: TYPE = [below(p)->below(b)];

b is the radix/base; p is the size of the mantissa/significant.
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The function value which is used to convert a float to a real in the function apply above 

is defined as follows:

value (fin :fp_num): real = (-l)~sign(fin) * b~Exp(fin) * Sum (p, value _digit(d (fin))) 

Where:

value_digit(d:digits)(n:nat):nonneg_real = IF n<p THEN

d(n)*b~(-n) ELSE 0 ENDIF Sum(j:nat, F:[nat->nat]):recursive real =

IF j=0 THEN 0 ELSE F(j-l) + Sum(j-1,F) ENDIF MEASURE j

Using the definitions above, the floating point subtraction operation is defined as follows 

[Min95]:

fp_sub(fpl:fp_num, fp2:fp_num, mode:rounding_mode): fp_num =

IF finite?(fpl) & finite?(fp2) THEN fp_op(sub, fpl, fp2, mode)

ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan(sub, fpl, fp2)

ELSE fp_sub_inf(fpl, fp2) ENDIF 

Where:

rounding_mode:TYPE = {to_nearest, to_zero, to_pos, to_neg} 

round(r:ral, mode:rounding_mode): integer =

CASES mode OF

to_nearest: round_to_even(r), to_zero: sgn(r) * floor(abs(r)), 

to_pos: ceiling(r), to_neg: floor(r)

ENDCASES 

round_to_even(r:real):integer =

IF r-floor(r) < ceiling(r)-r THEN floor(r)

ELSIF ceiling(r)-r < r-floor(r) THEN ceiling(r)

ELSIF floor(r) = ceiling(r) THEN floor(r)

ELSE 2*floor(ceiling(r)/2)
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ENDIF

In the proof of the IEEE-854 specification, lemmas about the definitions used in the IEEE- 

854 specification are defined, and these lemmas are used in the proof of the definitions. 

However the PVS (LEMMA lem m a) command puts the definition of lemma (defined in the 

THEORY or imported THEORYs) in the antecedent of the proofstate and thus the lemma 

is an assumption in the proofstate and is not proved explicitly as in the introduction of a 

new formula to the proofstate by the Cut-rule. Therefore there is a risk tha t the Lemma 

may reduce to false in the proofstate, thereby making the proofstate provable trivially 

under the false assumed lemma.

To avoid this scenario, the PVS specification of the IEEE-854 standard is actually 

executed using the constants supplied in the retrenchment machines to compute the cor­

responding floating-point representations and argue about their correctness according to 

the retrenchment proof obligations. In order to make the IEEE-854 definitions executable, 

the following constructive definitions are imported into the IEEE-854 specification, and 

used in place of the IEEE-854 defined ones, e.g. where the IEEE-854 PVS specification 

refers to div, the definition Mydiv below is used in place of div:

MyDefs: THEORY 

BEGIN

mydiv(x:real, y:above(1)): RECURSIVE int =

IF x < y THEN 0 ELSE mydiv(x - y, y) +1 ENDIF MEASURE x 

mymul(x:real, y:above(1)): RECURSIVE int =

IF x = 0 THEN 0 ELSE mymul(x - y, y) + x ENDIF MEASURE x

myceiling(x:real): {i:nonzero_integer I x <= i AND i < x+1} = mydiv(x, 1)+1

myfloor(xrreal): {i:nonzero_integer I i <= x AND x < i+1} = mydiv(x, 1)

mymod(x, y:real): RECURSIVE int = IF (x < y) THEN x ELSE mymod(x-y, y) ENDIF
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MEASURE (LAMBDA (x,y: real): x+y) 

myExp_of(x:real, b:int): RECURSIVE {i:int I b~i<=x AND x<b'*(i+l)> =

IF x/b < b then 1 ELSE 1 + myExp_of(x/b, b) ENDIF 

MEASURE (LAMBDA (x:real, b:int): mydiv(x, b))

Mysqrt(r,e:real): RECURSIVE real =

IF max(r,l)<e THEN 0 ELSIF (Mysqrt(r,2*e)+e)~2<=r THEN Mysqrt(r,2*e)+e 

ELSE Mysqrt(r,2*e) ENDIF MEASURE max(r,l)

END MyDefs

Unlike the DSub example in Chapter 5, some of the definitions above involve recursion, 

therefore it would be interesting to see whether the “robust” tactic derived in Chapter 5 

work in this case, and whether the same relative error margin of 2e is achieved between 

the real computation and the floating-point computation.

6.3.1.3 Evolving retrenchment

The R E T R IE V E S  and CONCEDES  predicates are used to specify the relative errors be­

tween the floating-point calculations and their corresponding real arithmetic calculations. 

The retrieve relation G is a predicate tha t corresponds to the desired relation concerning 

the real computation results and floating-point computation results. The concedes rela­

tion C denotes a weaker relation tha t the operation is supposed to achieve if the retrieve 

relation cannot be maintained 2.

For the basic operations add, substract, m ultily , division , the expected relative error 

between the real computation (the idealistic values i in the real world) and the corre­

sponding floating-point computation (the realistic values c on a digital computer) is given

2This use of RETRIEVES and CONCEDES predicates conforms to a “try-catch” programming lan­
guage construct.
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by Assumption 6.2.1. In the case of exact representation (Assumption 6.2.3), the expected 

relative error | |=  0, i.e. c — i. In the case of inexact representation, | ^  \< fe ,

where /  =  2 according to Assumption 6.2.1.

Appendix B.2 shows the evolving retrenchment specifications for a small example 

on the addition operation using the specification templates from Chapter 5. The di­

vine addition and the input-architecture retrenchment, Figure B.8, do not generate any 

Type Correctness Conditions (TCCs). However the data-representation (Figure B.9) and 

output-architecture retrenchments (Figure B.10) generate TCCs in terms of the change 

in datatype from real to float—the same TCCs are generated for both specifications. 

The “unfinished” TCCs all refer to the details of the float datatype as specified by the 

IEEE-854 standard, and as highlighted in Section 6.2.2, item 4. The PVS tactic tc p  for 

TCCs could not prove the IEEE_854_TCCs due to the limited 8-bit IEEE-854 precision 

used. Tactic tc p  could also not prove tha t forall values of the state variables: the addition 

is finite (S2Def_TCC) and tha t the retrieve relation is valid (G_TCC1). Since induction is 

not applicable on the reals domain, such TCCs cannot be proved exhaustively, but will 

be unraveled in the proof of the architecture retrenchment proof obligations specifications 

IAPOs, DRPOs, OAPOs where these TCCs can be discharged by the values available in the 

machine specifications. Importing the machine specifications into the retrenchment proof 

obligations specifications do not generate any TCCs as in Chapter 5.

6.4 Proof of evolving retrenchment in PVS

The more abstract/idealistic specification and the more concrete/realistic specification 

have different types—real and floats respectively. In calculating the value of a float, the 

operation value (f: f p_num): r e a l  converts a float f to a real by using a recursive function
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Sum to compute the real value of f . Mathematical induction is the most common way 

of proving recursion and iteration, but induction over the domain of reals or floats is not 

possible since by Cantor’s Diagonalization method, the reals are not countable. Therefore, 

the technique of Theorem 3.6.1 is used to skolemise universal variables and to formulate 

instantiation terms from the skolem variables and constructive operation definitions.

6.4.1 Tactic-proof of retrenchment in PVS

A tactic-proof proceeds by applying tactics rather tha t basic proof rules as proof steps 

[FM87]. If the most powerful tactic available proves the conjecture successfully, then we 

are done, otherwise the tactic needs to be extended to handle the new conjecture. The 

general tactic (RSubRetTac fnum  term s) derived in Chapter 5 is used to  try  to prove 

the proof obligations for the particular retrenchment of reals by floats where fn u m  is the 

consequent formula given by +, and terms is the instantiation term which is the operation 

being retrenched with the appropriate skolem variables as arguments 3. It is envisaged 

that the input-architecture retrenchments should be provable using the tactic from the 

complex example because this architecture involves the datatype real but not the float 

datatype. However the data representation and output-architecture retrenchment proofs 

may not be successful using the tactic RSubRetTac due to the use of the datatype fp_num 

and floating-point operations for floats.

6.4.1.1 Verification of the retrenchment in PVS

For the data-representation and output-architecture retrenchment proof obligations, the

verification starts with the retrieve relation depicting exact representation:

3Since (grind) without backtracking sometimes fails, the tactic RSubRetTac is our most powerful tactic 
in PVS.
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C ( f , r )  = RelError(f, r) < 0; and the concedes as false. The retrenchment initialization 

proof obligation, RetlnitPO, checks whether this retrieve relation can be satisfied for the 

initial state, e.g. G is true for exactly representable arguments within the range of the ma­

chine representable numbers, and so RetlnitPO  should be provable, which means tha t the 

operation retrenchment is possible. The verification then proceeds to the proofs of Sub- 

RefinementPO or ConcessionPO, where, from the theory for directly rounded operations, 

the Concession clause is C = RelError(value(f), r) <  2s, for a concrete/realistic represen­

tation / ;  an abstract/idealistic representation r, and the machine epsilon e [KB01, Gol91].

For inexact representation, G ( r , f ) =  R elE rror(f, r) <  0 is false and hence RetlnitPO  

should not prove. RetlnitPO  is used to find the least error tha t makes G true, i.e. the 

least relative error margin for which RetlnitPO  is provable. The verification then proceeds 

to the proof of either SubRefinementPO or ConcessionPO, where the Concession in this 

case will be the least relative error which makes ConcessionPO provable when SubRefine- 

mentPO is unprovable. In this manner relative errors can be derived, which depict an 

acceptable degradation of the real computations when they are expressed as floating-point 

computations on a particular platform. This gives a stepwise approach similar to  Evolving 

retrenchment [PB02], for calculating relative errors for operations, where the concession 

for the RetlnitPO  becomes a possible retrieves relation for the SubRefinementPO.

Although the relative errors are specifically dependent on the nature of the operands 

of the operation, in general, relative errors are dependent on the precision used, i.e. the 

machine epsilon e. In the verification examples in this Chapter, the IEEE single precision 

is scaled down by a factor of four, i.e. from 32 bits to 8 bits representation where e =  2 

and p = 6. This 8-bit precision is sufficient for computing arithmetic with one guard digit
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which preserves the relative error of 2e [Gol91] 4.
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6.5 Generalization and maintenance of tactic-proofs

The results on the investigation of the development of tactics from the proofs of evolving 

retrenchment are in terms of the tactic used, the time taken in seconds, and the overall 

relative error incurred in terms of the machine epsilon e.

6.5.1 Input architecture retrenchment

The tactic RSubRetTac formulated in Chapter 5 proves successfully all the proof obliga­

tions for this architecture for exact and inexact representation, and error propagation for 

all the basic operations. As expected, a relative error of Oe was found to make the Subre­

finementPO provable for the exact and inexact representation and error propagation cases 

since both the divine machine and the input-architecture machine use the reals datatype. 

Thus the input-architecture machine is a data-subrefinement of the divine machine.

6.5.2 D ata representation retrenchment

The specification DRSub, DRAdd, DRMul, DRDiv, DRSqrt are for an algorithm tha t en­

sures that only ‘finite floats’ (i.e. not NANs or infinite floats [Section 6.3.1.2]) are stored 

as the result of an operation. The tactic RSubRetTac can successfully prove the initial­

ization proof obligations AlnitPO and CInitPO, and the abstract invariant preservation

proof obligation AlnvPO.

4This makes the proofs on our machine tractable, since using the single (32-bit) precision, IEEE- 
854[2,24,192,127,-126], causes stack overflow in computing the function truncate which is used in the 
function real_to_fp which converts a real to a float. Given a computer with more resources, i.e. more 
memory and processing power, a full 32 bit precision verification can be possible. 8-bit processors are 
used in embedded systems [Won02].
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However, the proofs for CInvPO and R etlnitPO , could not complete with RSubRetTac. 

The proofs for these proof obligations diverge with this tactic due to the recursion used 

in the constructive definitions of the PVS IEEE-854 specification, e.g. in the Sum oper­

ation which is used in the value  operation for calculating the corresponding real value 

of a float [Section 6.3.1.2]. When the skolem variables in the proofstate are passed to a 

recursive definition, the recursion, e.g. in the rewriting of the float to a real value, does not 

terminate because the skolem variables cannot effectively reduce the recursive definition 

to its base case. For example, value (rea l_ to _ f lo a t  ( i ! 1)) tries to continuously rewrite 

definitions in terms of i l l  in trying to compute the real value tha t corresponds to the 

float re a l_ to _ f lo a t ( i ! 1). Due to finite memory resources, the PVS system terminates 

the proof, giving the following message:

Error: 16777216 is invalid size for make-string 

[condition type: SIMPLE-ERROR]

Restart actions (select using :continue):

0: Return to Top Level (an "abort" restart)

1: Abort #<PR0CESS Initial Lisp Listener>

[1] PVS (18):

It is also not possible to find a suitable automatic instantiation term, i.e. the initialised 

state, for R etln itPO  as in Chapter 5. In order to make the proofs complete there are two 

solutions: (l)the use of lemmas in the proof; and/or (2) the use of constants available in 

the specification, e.g. from the initialization operation. The proofs using the initialization 

values in the machine specifications requires the constructive definitions given in Section

6.3.1.2 above.
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6.5.2.1 P ro o f  using  in itia liza tio n  values

As described in Section 5.4.2.1, the W ITH IN  clause is augmented with the W ITH IN  

clauses of the previous machines in order to allow a continuation style semantics whereby 

the initializations of the idealistic machines are chained through to the more realistic 

machines. The inclusion of the W ITH IN  clause, which in turn  includes the initial­

ization operation predicate i n i t  ( . . . ) ,  in the invariant preservation and retrenchment 

initialisation proof obligations (see DRPOs and OAPOs specification templates in Fig­

ures B.6, B.7) provides the actual constant values for the skolem variables as the ini­

tialised state. This enables the PVS proof system to actually compute the values of 

functions re a l_ to _ f lo a t ( . . . ) ,  f i n i t e ( . . . ) ,  fp_add( . . . ) ,  v a l u e ( . . . ) ,  which can 

then be used to reason about the correctness preservation of the real computation by 

the floating-point computation via proofs of the retrenchment proof obligations. How­

ever the g rin d  tactic needs to be constrained to use my constructive definitions MyDef s : 

THEORY in Section 6.3.1.2 to enable the computation of the actual float values from the real 

values. Otherwise just trying (g rind ) without this constraint will still cause divergence in 

the recursive definitions because the non-constructive definitions of d iv , mul, c e i l in g ,  

f l o o r ,  mod, Exp_of will be used instead.

(defstep FInvPOTac ()

(RobustGrind :defs "MyDefs")

"INPUT = CInvPO 

OUTPUT = true"

"proving invariant preservation PO")
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F InvP O T ac is  a b le  to  fin d  t h e  co rrec t a u to m a t ic  in s ta n t ia t io n  for R e t ln i t P O . F u rth erm o re  

th e  in s ta n t ia t io n  w ith  th e  c o n s tr u c t iv e  o p e r a t io n  d e f in it io n s  in  th e  m a c h in e  sp e c if ic a ­

t io n s  w h ic h  ta k e  a s a r g u m e n ts  th e  sk o le m  v a r ia b les  g e n e r a te d  fro m  t h e  ta c t ic  F In vP O T ac, 

a n d  fu rth er  a p p lic a t io n  o f  th e  m e c h a n ic a l ru les  w a s  fo u n d  t o  m a k e  S u b r e f  in em e n tP O , 

C o n c e s s io n P O  provab le:

(defstep FOpRetTac (fmun &rest terms)

(then (FInvPOTac) (inst fnum terms) (grind :if-match nil :defs "IEEE_854")) 

"INPUT = IAPOs or DRPOs or OAPOs 

OUTPUT = TRUE

PRECONDITIONS = DSub V  IASub V  DRSub V  OASub 

EFFECTS = QED"

"proving retrenchment proof obligation ...")

For the cases where the float is exactly representable as a float, a relative error of Os 

between the input-architecture machine and the data-representation machine was found 

to make the SubrefinementPO provable. For inexact presentation, a relative error of 2e was 

found to make SubrefinementPO provable. For error propagation in a formula involving 

a sequence of operations such as Kahan’s formula (M ysqrt((a  © (b © c)) © (c © (a © b)) © 

(c © (a © b)) © (a © (b © c))) 0  4 where a, b, c are floats and a < b < c), the relative error 

of 2e was found to make RetlnitPO provable, but SubrefinementPO was unprovable for 

this relative error—the least relative error for a Concession was 11s.

6.5.2.2 Proof using lemmas

This proof technique can apply to the original formulation of the invariant preservation 

retrenchment proof obligations where the W ITH IN  clause is not included in the antecedent 

as described in Section 6.5.2.1 above. Attempting the proof of the invariant preservation
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PO by invoking Definition 4.3.2 as ( try g r in d  :defs  "IEEEL854") gives the following as 

two subgoals:

CInvPO.2.1:

{-1} (u2p!l = (# a2 := fp_add(a2(u2!1), b2(i2!1),to_nearest) #))

[-2] finite?(b2(i2!l))

[-3] finite?(a2(u2!1))

{1} over_under?(value(fp_add(a2(u2!1), b2(i2!l), to_nearest)))

[2] finite?(a2(u2p!1))

CInvPO.2.2:

{-1} (u2p!l = (# a2 := fp_add(a2(u2!1), b2(i2!1),to_nearest) #)) 

[-2] finite?(b2(i2!1))

[-3] finite?(a2(u2!1))

[-4] over_under?(value(fp_add(a2(u2!1), b2(i2!l), to_nearest)))

[1] finite?(a2(u2p!l))

Invoking the tactic (g rind ) on these subgoals results in an infinite proof because the 

recursive function value rewrites definitions in terms of skolem constants u 2 ! l ,  i 2 ! l ,  

which cannot be reduced to their base cases. However, in classical logic the consequent 

of CInvPO .2.1 is true by the law of the excluded middle—for finite arguments a 2 ! 1, 

b2! 1, the addition can only result in an overflow or underflow (i.e. a subnormal float or 

an infinite float respectively) or a finite sum. We cannot have a NaN float as a result 

because the arguments are both floats. This can be coded as a lemma of a property of 

floating-point numbers:
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Lemma 6.5.1. V(a, b : fpnum ) : fin ite?(a ) A fin ite?(b ) =£■

over-under?(value(fp-add(a, b, to-nearest))) V fin ite?(a )

The lemma is most suitably defined in the retrenchment proof obligations file. Invoking 

this lemma in the proof by using the command (lemma "AddLemma") adds the lemma in 

the antecedent of the proof; automatic instantiation ( in s t? )  correctly instantiates a,b 

with a2! 1, b2! 1; and the proof completes by s p l i t —the axiom rule is applied autom at­

ically. The same lemma can be used to prove CInvPO .2.2 without appealing to the actual 

values of the skolem variables.

6.5.3 Output architecture retrechment

Since this architecture involves floating-point computation, the tactics formulated in the 

data representation architecture were used for the respective proof obligations in this ar­

chitecture. The tactic (FInvPOTac) successfully proves both AlnvPO and CInvPO; and the 

tactic (FOpRetTac) successfully proves R etln itPO , SubRef inementPO or ConcessionPO.

As expected, the relative error between the data-representation machines and the 

output-architecture machines is zero since both machines use the float datatype. Thus 

the output-architecture machine is a data-subrefinement of the data-representation ma­

chine.

6.6 Summary

This Chapter has demonstrated the reuse of the specification templates and tactics from 

Chapter 5 to specify and prove Evolving Retrenchment. The relative error between an 

idealistic/divine real computation and its realistic/concrete floating-point computation
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is expressed in terms of the machine e [Section 6.3.1.3]. TCCs, in terms of the de­

tails of the IEEE-854 floating-point representation used, are only generated for the data- 

representation and the output-architecture machines [Appendix B.2]. The TCCs require 

proof of these IEEE-854 details for all possible state variables, which are of type real, 

and thus Mathematical Induction is not possible since the reals are not countable. Those 

“unfinished” TCCs which the PVS tactic tc p  for TCCs is unable to prove are unravelled 

in the proof of the architecture retrenchment proof obligations.

The robust tactic (RSubRetTac fnum  term s) from Chapter 5 can successfully prove 

the Input-architecture retrenchment but diverges on the data-representation and output- 

architecture retrenchment. This is because the rewriting of the recursive definitions does 

not terminate due to the fact tha t some computational aspects of the original IEEE-854 

specification are defined in terms of lemmas and assertions and thus the IEEE-854 recursive 

definitions cannot reduce the skolem variables to the required base cases for the recursion to 

terminate. In order to make the IEEE-854 specification executable, constructive definitions 

are given for some IEEE-854 constructs defined in terms of lemmas or assertions such as 

f l o o r ,  c e i l in g ,  d iv ,  s q r t  [Section 6.3.1.2].

For the exact and inexact representations of reals by floats, the derived robust tactic 

(FOpRetTac fnum  term ) takes under one second to successfully prove the basic arithmetic 

operations under the input architecture retrenchment. For data representation retrench­

ment, the worst-time proof case is slightly more than a minute (69s), and this is incurred 

by the multiplication operation. The output architecture retrenchment incurs a worst-time 

proof of nearly four-and-a-half minutes (260 seconds) for the addition operation. For error 

propagation, the run time for the tactic FOpRetTac is nearly 45 minutes (2560.84s) for the 

data representation retrenchment of Kahan’s formula involving the following operations:
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four additions, four subtractions, three multiplications, one division and one square root 

operation. The relative error in terms of the machine epsilon is at most 2e, and this is 

incurred for inexact representation, which agrees with Assumption 6.2.1 [Gol91, KB01]. 

For error propagation, the relative error of at most 11s agrees with Theorem  3 page 165 

[Gol91] which states the same error margin for Kahan’s formula. Thus for the retrench­

ment of a real computation by a float-pointing computation, a relative error of at most 2s 

can be taken as a subrefinement.

The arithmetic operations can be defined in terms of addition and subtraction, e.g. 

multiplication is repeated addition, division is repeated subtraction, exponentiation is re­

peated multiplication, and sqrt is in terms of exponentiation, etc. The relative errors 

between real computation and floating-point computation in the above approach con­

sists of: (1) truncation errors in the representation of reals by floats; and (2) rounding 

errors due to the rounding mode used in the floating-point operations. The absolute 

(random/statistical) data errors associated with the reals themselves can be handled in 

the same manner as above to yield the relative error in terms of the machine epsilon. 

Thus instead of using the formulae given in [KB01] to calculate the error bounds for a 

given operation, our approach enables establishing the overall relative error in terms of 

the machine epsilon e via the proof of the evolving retrenchment specifications under the 

IEEE-854 specification.



Chapter 7

D iscussion

Use o f logic is sim ilar to game-playing: certain rules are given and it is assumed that 

the players are perfect, in the sense that they always obey the rules. Occasionally it may  

happen that following the rules leads to inconsistencies in which case it m ay be necessary 

to revise the rules ” [Gal86].

This thesis has followed both viewpoints of formal methods in: (1) studying formal 

proofs in the Gentzen Sequent Calculus LK in order to derive robust tactics from such 

proofs [Chapter 2 Chapter 3, and Chapter 4]; and (2) applying our method of constructing 

robust tactics from proofs in the specification and verification of formal program specifi­

cations using the Retrenchment Method [Chapter 5 and Chapter 6].

In comparison of this work with tha t the current literature, we discuss the contributions 

made in this thesis to the construction of tactics from proofs, and the partial automation 

of the retrenchment method in PVS. An inference from the work we have done is tha t 

the tactics constructed using Algorithm 3.7.1 for proving retrenchment can constitute an 

expert system for proving retrenchment proof obligations in PVS. In this way, the proof 

application domain of PVS is extended.

169
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7.1 Robust tactics from hand-generated proofs

A LCF-like tactic is a program tha t can guide a Theorem-prover to perform a verification 

without human guidance [GMW79, GMNW78, Mil84, Mil72] [Section 2.6.1]. A robust 

tactic is expected to repeat the same verification without (or with minimal) human guid­

ance when there has been a modest change in the specification of the conjecture from 

which the tactic was derived [Wil97, OS03b] [Section 2.9]. The main criticisms of the cur­

rent techniques of building robust tactics from proofs are that the tactics are often based 

on heuristics and tha t the tactics not generally reusable. In addition, First-Order and 

Higher-Order logics which are the preferred logics for formal specification and verification 

are inherently undecidable [Gal86].

7.1.1 Tactic refinement

Since the tactics sought are for application in formal methods, The Gentzen Sequent 

Calculus LK [Section 2.5], is the state of the art Proof Theory system used to investigate 

the problem of deriving tactics from hand-generated proofs. Chapter 3 introduces the 

Tactic refinement method [Procedure 3.3.1] which can be used to derive robust tactics of 

the form TD — ^ O U O i - j O  k i  where Q  is an appropriate tactical, is a robust 

tactic for the proof-obligation di G D, and TD is a robust tactic tha t can prove any 

proof-obligation di : D above. The development of the hand-generated proofs from which 

the tactics are to be constructed by this method is facilitated by a functional definitional 

specification style [Section 3.2.1] and a proof strategy tha t encodes a notion of human 

expertise [Section 3.2.2].
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7.1.2 Abstraction of LK proofsteps into creative or mechanical

A condition for composing the tactics ^ : Tf> is tha t each U must be a robust tactic, 

i.e. U must be in a normal form, and tha t Vg : Goals : t f F(g) = t FCF(g), where t f CF 

is the straight collation of proofsteps in a hand-generated proof, and t(fF is the robust 

tactic in normal form. The idea of minimal human assistance being required of a robust 

tactic leads to the idea of performing all the creative steps (Cut, induction, instantiation) 

that may require human ingenuity as early as possible so as to leave the rest of the 

proof development consisting of mechanical steps (the rest of the LK rules) which can be 

performed automatically [Section 3.4]. Each mechanical LK inference-rule for a logical 

connective is a primitive robust tactic since it can be successfully applied on any goal 

involving that connective, whereas the application of a creative step can easily lead to an 

unprovable proofstate when an incorrect cut formula, induction hypothesis or instantiation 

term is introduced into the proofstate.

In the literature, “standard” proofsteps are described as those which are inline with 

the structure of a proof, e.g. base case, inductive hypothesis and step case in inductive 

proofs; and “interesting/creative” proofsteps are described as those which deviate from 

the standard proof technique, e.g. analogical proof steps [Bun91, COR+95]. In this 

work the characterizations of proofsteps into creative and mechanical are given a rigorous 

mathematical basis of the permutation analysis in Section 3.5, Chapter 3. The rigorous 

mathematical basis of the permutation analysis also gives the robust tactics developed by 

our method the sufficient formality for them to be used in an entirely formal setting.
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7.1.3 Perm utability of creative steps with mechanical steps

For a given formula which is not in prenex normal form (e.g. the formulation of the 

original retrenchment proof obligations [PopOl] in Appendix B), some steps are required 

to bring the 3 to the front so tha t it can be eliminated by instantiation, and thus the 

instantiation cannot be permuted with such steps. Therefore, in order to perform the 

permutation in a prooftree, each of the formula to be permuted must be in prenex normal 

form (PNF) [Section 3.5]. The creative rules are found to permute with all the other LK 

rules [Sections 3.5.2, 3.5.3] provided the eigenvariable conditions are satisfied and every 

formula in a cut-free proof is a subformula of the endsequent [Sha92] [Appendix A.l].

The sole use of the cut-rule in this work is to introduce the prenex normal form of the 

goal formula as a new formula in goal-oriented LK proof [Section 3.5.1]. The deduction 

of the goal formula from its corresponding PNF formula is proved in the left branch, and 

the original goal formula is weakened in the right-branch, which results in a normal form 

of proof as depicted in Definition 3.6.1. However, by the Prenex Normal Form Theorem 

[Gal86], a formula can also be reduced to PNF by rewriting using logical equivalences, 

and thus this application of Cut can be eliminated by rewriting which yields a cut-free 

proof, which is one celebrated normal form of proofs [Section 2.5.2.1]. This demonstrates 

the idea of eliminating a creative rule (such as the cut-rule) by transforming tha t rule 

into mechanical steps, e.g. rewriting is performed automatically in PVS as long as the 

definitions to rewrite with are made available to the system.

The permutation analysis of LK rules [Section 3.6] gives the following results for the 

problems of choosing which instantiations to make and which proof rule to use [Section 

2 .8 .1.1]:

(1) Instantiation can be made more automatic by applying skolemisation first and then
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using the skolem variables as possible instantiation terms [Theorem 3.6.1].

(2) Delaying the application of branching-rules has the effect of factoring out common 

rules among branches at the same level, which yields a more uniform prooftree [Theorem 

3.6.2]. For example, in the Gentzen Cut-elimination (Hauptsatz) Theorem, the mix-rule 

(which is a form of the branching cut-rule) is permuted upwards the prooftree to yield a 

non-branching tree (or a tree with one less branch on elimination of the mix).

(3) The idea of performing creative steps as early as possible yields Theorem 3.6.3 which 

is a result similar to the Sharpened Hauptsatz [Gal86] (Theorem 7.3.1, page 320).

7.1.4 An algorithm for deriving robust tactics from proofs

The results of the permutation analysis were used to formulate a method [Procedure 3.7.1] 

for deriving a normal form for LCF-like tactics, and this method was encoded as Algorithm

3.7.1, which was demonstrated to work in Section 3.7.2 and proved in Section 3.8.1. For 

proofs involving instantiation, Algorithm 3.7.1 yields a tactic normal form Definition 3.9.1, 

which is equivalent to Definition 3.6.1 for a goal formula not in prenex normal form. For 

a goal of the form b V u : P(u)  3 v : Q(u, v) ,  the introduction of the prenex normal 

from of a goal by the cut-rule is reduced to applying rewrite rules to reduce the goal to 

P(ui)  b 3 v : Q ( u , v ), whereby instantiation can then be applied to the consequent to 

eliminate the existential quantifier 3.
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7.2 Incorporating robust tactics in PVS

Chapter 4 demonstrates the incorporation of robust tactics derived using the theory out­

lined in Chapter 3 in the state of the art Interactive Theorem-prover/Proof-Checker [Sec­

tions 2.3.2, 2.6] PVS. The PVS proof system is based on Gentzen Sequent Calculus LK 

[Chapter 3, Section 4.2.2], and uses Lambda Calculus as the computational mechanism 

for executing PVS specifications [Sections 2.3.3.1, 2.6.1.1]. PVS uses a functional pro­

gramming style for specification [Sections 3.2.1, 4.2.1] and the tactic language of PVS 

[Section 4.2.3] is a subset of Common Lisp, which uses the Common Lisp Object System 

for specification of sequents, prooftrees, and tactics.

7.2.1 Robust PV S (grind)

PVS defined proof rules are analogous to LCF tactics, and PVS strategies are analogous 

to LCF tacticals [Table 4.1]. The overall form of the most powerful tactic (g rin d ) in 

PVS conforms to the normal form of proofs yielded by Definition 3.9.1. However (g rin d ) 

is hardwired with the PVS automatic instantiation tactic ( in s t? )  which is based on 

pattern matching variables to be instantiated with skolem variables, constants or functions 

defined in the current proofstate. This heuristic pattern matching often leads to incorrect 

instantiations, which yield unprovable proofstates. Therefore the PVS tactics which invoke 

automatic instantiation ( ( in s t? ) ,  (g r in d ) , (reduce)) are not safe in the LCF-sense 

tha t they do not produce a false proof, since the proofstate from an incorrect instantiation 

is false, and the definition of a proof requires tha t each intermediate statement in a proof 

is true.

However since (g rind ) can at times complete a whole proof development without 

human assistance, it is preferable to try  (g rin d ) first in a proof development. Definition
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4.3.2 introduces backtracking to yield a robust tactic which attem pts (g rin d ) first, and 

if (g rind ) does not finish the proof, the proofstate reverts to the original goal formula, 

which is then rewritten into manageable subgoals without using instantiation.

Section 4.4.1, demonstrates the advantages afforded by our theory from Chapter 3, 

and the effectiveness of the PVS theorem-prover:

(1) PVS can automatically find and perform the instantiation correctly when Algorithm

3.7.1 is applied to convert a tactic proof into normal form. Therefore unfolding definitions 

first can assist PVS in finding a correct automatic instantiation.

(2) The automatic application of the inference-rules for negation and lambda calculus 

simplification reduces the amount of interaction.

7.3 Case study: Robust tactics for Retrenchment

The Retrenchment method was designed for formulating realistic specifications from ideal­

istic ones, which can then be refined into implementations using the strict transformational 

refinement calculus. Tool support has been advocated for the Retrenchment method in 

the form of integrating theorem-proving with Computer Algebra Systems (CAS) [PopOl] 

in order to reason about the discrete and continuous components in hybrid systems. How­

ever results from CAS cannot be entirely trusted and therefore may need to be verified as 

well [BJ01].

The PVS Prelude formalises the reals as the standard Abelian Group [OS03a], and tac­

tics for real computation have been developed in [Di 01, MM01]. In addition, floating-point 

computation is available in PVS from the formalisation of the IEEE-854 floating-point 

standard [Min95, CM95]. Therefore PVS can provide a single general-purpose framework 

for specification and verification using the retrenchment method.
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The B-Method has been formalised in PVS to yield the PBS system [Mun99] for 

the specification and verification of B-Method-like machines in PVS. However the PBS 

system uses predicate subtyping to generate refinement proof obligations as TCCs in 

PVS, and thus can only handle B-refinement but not B-retrenchment. Our formalisation 

of the B-Retrenchment Method in PVS has the advantage of executing posited B-machine 

specifications under the Lambda Calculus computation mechanism under which the PVS 

proof system is implemented.

The retrenchment initialization, subrefinement and concession proof obligations are of 

the form V(...) : 3(...) : (...), which characterizes the Proofs as Programs paradigm [Kre98]. 

A specification technique for Retrenchment in PVS and the derivation of robust tactics 

from proofs of such specifications achieves the partial mechanization of the retrenchment 

method [Chapters 5 and 6]. The PVS system is extended with the B-Method Retrenchment 

Calculus for formal software development, and the realistic specifications developed by 

our method can then be refined in PVS using the PBS system [Mun99] for the B-Method 

Refinement Calculus.

7.3.1 Architectural retrenchment

We introduce Architectural Retrenchment [HG01] [Section 5.3.1] as a problem decomp- 

sition technique which: (1) makes more transparent the semantics of retrenchment, and 

therefore (2) can make easier the task of reasoning about retrenchment. The vanilla 

Banach-Poppleton retrenchment [Section 5.2.3] was decomposed into three architectural 

retrenchments [Figure 5.2]: (1) the input architecture is concerned with the retrench­

ment of state variables to input variables [Section 5.3.1.1]; (2) the data-representation 

architecture is concerned with changes in datatype [Section 5.3.1.2]; and (3) the output
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architecture is concerned with the introduction of output variables [Section 5.3.1.1].

Theorem 5.3.1 shows tha t the proof of a Poppleton-Banach vanilla retrenchment is 

equivalent to the proof of the its input-architectural retrenchment followed by its data- 

representation retrenchment and finally its output-architecture retrenchment. Theorem

5.3.2 decomposes the operation retrenchment proof obligation into a subrefinement or a 

concession, which avoids making proof trivial by the application of the Law of the excluded 

middle in the case the CONCEDES  relation is a negation of the R E T R IE V E S  relation 

since PVS is based on a classical higher-order logic proof system.

7.3.1.1 Specifying retrenchment in PVS

Theorem 5.4.1 and Table 5.1 demonstrate the High-integrity translation of the B-Method 

Generalized Substitution Language (BGSL) into the PVS functional Classical Higher- 

Order Logic specification language [Section 5.4.2]. A shallow embedding of the B-Method 

in PVS resulted in specification templates for the each architecture retrenchment [Section

5.4.2.1, Appendix B]. The machine operations are defined constructively so tha t the 

operations can be checked by computing values to be used in instantiations.

On typechecking the example specifications in Appendix B [Section 5.5.1], the divine 

and input-architecture machines (DMach, IAMach), as well as the architecture retrench­

ment proof obligations specifications IAPOs, DRPOs, IAPOs do not generate any type 

correctness conditions (TCCs). However the data-representation and output architecture 

machines generate TCCs in terms of the data-type changes. The TCCs require the proof 

for all state variables, but the PVS tactic tcp for TCCs is not able to finish the proof 

automatically, and Mathematical induction cannot be used on the state variables which
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are of type real. These unfinished TCCs are unraveled by the incorporation of the ma­

chine initializations in the W ITH IN  clause, and this is demonstrated by the fact tha t the 

architecture retrenchment proof obligations specifications do not generate any TCCs for 

the machine specifications. Thus the W ITH IN  clause can be used as a means of chaining 

proof obligations from one specification to another so tha t the latter retrenchments can 

be made provable.

7.3.1.2 Proving retrenchment in PVS

The proof of the architecture retrenchment proof obligations specifications (IAPOs, DRPOs, 

IAPOs) begins with the initialization, then the invariant preservation, then the retrench­

ment initialization, followed by the subrefinement; if the subrefinement fails, then the 

concession proof obligation is attempted [Section 5.5.2]. Using Theorem 3.6.1, the con­

structive definitions of the machine operations are used to construct instantiation terms 

using the skolem variables from the skolemisation. In the case of the input-architecture 

retrenchment example in Chapter 5, the Concedes is specified as fa lse , and the Conces- 

sionPO was not provable, which demonstrates tha t the subrefinement must be valid, as 

expected [Section 5.5.2.3].

The tactic Definition 4.3.2 from Chapter 4 was found to prove the initialization, the 

invariant preservation POs, and the retrenchment initialization POs. However, Definition

4.3.2 was unable to prove the subrefinement and concession proof obligations due to the 

fact tha t (g rind ) invokes an incorrect instantiation [Appendix B.l]. In the retrenchment 

initialization proof obligation, (g rind ) was able to find the correct instantiation by the 

incorporation of the machine initializations in the W ITH IN  clause. From Theorem 3.6.3, 

the proofs of the SubrefinementPO and the ConcessionPO was found to consist of 3 phases:
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(1) a rewrite phase (g rin d  :if-m a tc h  n i l  :d e fs  n i l )  which suppresses instantiation 

and unfolding of definitions but skolemizes variables [Section 5.5.2.1]; (2) an instantiation 

phase ( in s t  + term ) where term  is the machine operation with the skolem variables 

from phase (1) [Section 5.5.2.2]; and (3) a completion phase (g rin d  :if-m a tc h  n i l )  

which unfolds definitions and applies the LK mechanical rules to finish the proof [Section

5.5.2.3]. This yields the formally parameterized tactic (RSubRetTac fnum  term s) where 

the actual arguments fnum  and terms are respectively, the consequent formulas given by 

+, and the instantiation terms SODef(uOll) for IAPOs; SIDef ( u l ! 1) ( i l ! 1) for DRPOs; 

S2Def (u2!2) ( i2 ! 1) for OAPOs [Section 5.5.4].

Since the specifications in Chapter 5 are in terms of a subset of the reals 

FinReal:TYPE = { x :re a l  | x<=MaxReal}, the architectural retrenchment was found to 

be a subrefinement as expected.

7.3.2 Theory-driven example

When a program is specified using real numbers and the reals are approximated by floating­

point numbers, natural (divine/idealistic) specifications are likely to be infeasible, and 

reasoning will need to constantly refer to the detailed properties of floating-point numbers 

in order to carry out the necessary error analysis.

In order to make more apparent the data-representation architecture when the real 

data-type in the divine and input-architecture machines is retrenched to  the float data­

type, Architectural Evolving retrenchment was introduced in Chapter 6. The IEEE- 

854 floating-point PVS specification [Min95, CM95] was imported in the machine data- 

representation and output-architecture retrenchment specifications to unravel the details 

of the floating-point computation [Section 6.2], by executing the floating-point operations,
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and thus the machine specifications [Section 6.2.2]. In order to make the IEEE-854 PVS 

specification executable, some definitions, which were expressed as lemmas in the original 

IEEE-854 PVS specification, were rewritten as constructive definitions [Section 6.3.1.2].

7.3.2.1 Architectural Evolving retrenchment

The specification templates from Chapter 5 were successfully used in the Evolving re­

trenchment specifications of Chapter 6, where: (1) the R E T R IE V E S  relation (G(. . . ))  

is specified as a relative error between the real computation and the floating-point com­

putation to demonstrate the intricacies of the data-representation retrenchment [Section

6.3.1.3]; and (2) only the THEORY name, IMPORTING clause, data TYPEs, and definitions 

have to be updated to specify a particular retrenchment.

No TCCs were generated for the idealistic and input-architecture machines [Figure 

B.8], as well as for the architecture retrenchment proof obligations specifications [Figures 

B.5, B.6, B.7]. However TCCs in terms of the float data-type for the IEEE-854 precision 

used, were generated for the data-representation [Figure B.9], and output-architecture 

machines [Figure B.10]—an 8-bit precision IEEE-854 [2, 6, 6, 2, -1] was used for the 

specifications in Appendix B.2. As in Chapter 5, the TCCs unfinished by the PVS tactic 

tc p  are unraveled in the W ITH IN  (W(. . . ) )  clause as demonstrated by the non-generation 

of TCCs in IAPOs, DRPOs, OAPOs.

The tactic-proof method for Evolving retrenchment is as follows [Section 6.4.1.1]: For 

a given IEEE-854 floating-point precision the retrenchment initialization proof obligation 

R etlnitPO  is used to discover a relative error in terms of the machine epsilon which can 

make R etlnitPO  provable. Then the proof of the subrefinement is attem pted with this rel­

ative error, and if SubRef inementPO is not provable for tha t relative error, ConcessionPO
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is used to discover a relative error tha t makes the retrenchment provable.

The robust tactic (RSubRetTac fnum  term s) from Chapter 5 was able to prove the 

input-architecture retrenchment IAPOs [Section 6.5.1] and initialization and invariant 

preservation POs in DRPOs but was unable to prove the concrete invariant preservation 

CInvPO and all the other proof obligations in DRPOs, OAPOs because those proof obliga­

tions involve the float data-type [Section 6.5.2]. The floating-point operations use recursive 

definitions to convert a real to a float and a float to a real, and (g rin d ) is not able to 

reduce the skolem variables to their respective base-cases to enable the recursion to ter­

minate. The original proof of the IEEE-854 uses lemmas to introduce base cases for the 

recursive definitions [Section 6.5.2.2]. However, unlike the Cut-rule ((case  term ), the 

PVS lemma command does not enforce the proof of the lemma itself thus a false lemma 

can easily make the proofstate trivial. In addition mathematical induction, which is the 

most likely way to prove recursive definitions is difficult to apply on the float data-type or 

the reals.

Therefore in Section 6.5.2.1, the initialization values in the machine specifications are 

used instead to execute the machine operations under the IEEE-854 definitions in Sec­

tion 6.3.1.2. Theorem 3.6.3 was used to derive the robust tactics for Evolving retrench­

ment (FInvPOTac ())  for the initialization and invariant-preservation POs which involve 

the float datatype, and (FOpRetTac fnum  term s) for R etln itPO , SubRef inementPO, 

ConcessionPO [Section 6.5.2.1].

The robust tactic (FOpRetTac fnum  term s):

(1) reuses Definition 4.3.2 as (RobustGrind :defs  MyDef s) for the rewrite phase in or­

der to use the constructive definitions of Section 6.3.1.2 and enable the termination of the 

recursive IEEE-854 floating-point definitions.
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(2) uses the instantiation terms defined in Section 7.3.1.2 above.

(3 ) u se s  ( g r i n d  i f : m a t c h  n i l  : d e f s  " IE E E -8 5 4 " ) as th e  c o m p le t io n  p h a se .

(3) enables the recursive IEEE-854 specification definitions to terminate with the correct 

real values when executing the retrenchment machine specifications.

(4) is able to prove all the architectural retrenchments for all the exact and inexact rep­

resentation cases for the floating-point operations and for error propagation in Kahan’s 

formula ((Mysqrt((a © (b © c)) 0  (c © (a © b)) 0  (c © (a © b)) 0  (a © (b © c))) 0  4 where 

a, b, c are floats and a <  b < c)).

The data-representation retrenchment was found to be in terms of the standard worst- 

case relative error estimates, i.e. 2e for one application of a floating-point operation, and 

l i e  for a sequence of floating-point operations, which agrees with floating-point compu­

tation theory [Gol91]. Thus the robust tactic (FOpRetTac fnum  term s) can be used as 

an oracle to justify the correctness of a retrenchment according to floating-point theory, 

i.e. if a subrefinement proof obligation fails to prove for 2e or l i e  values for a single 

floating-point operation or a sequence of floating-point operations respectively, then a 

new realizable machine may need to be posited. In this way the validity of the operation 

used in the instantiation can also be verified for logical errors.

7.4 An transformation system  for retrenchment

The tactics we have formulated for architectural retrenchment prove the proof obligations 

that arise in transforming an ideal/divine specification into a realistic/mundane specifica­

tion. In particular, an ideal specification can be transformed into a realistic specification 

using the steps in Section 5.3.1 provided the architectural retrenchment proof obligations 

are provable by the robust tactic (FOpRetTac fnum  terms) ,  i.e:
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IF (FOpRetTac fnum  term s) (IAPOs) A (FOpRetTac fnum terms)(DRPOs) A 

(FOpRetTac fnum terms) (OAPOs) THEN Op(u) <BPRet 0 <—  Op(v)( j )

The ELSE part of the above rule is the case where a posited “retrenchment” may not satisfy 

the operation retrenchment proof obligation. This may mean that: (1) the “retrenchment” 

is not a valid retrenchment, i.e. it is wrongly formulated; or (2) the “retrenchment” is par­

tially valid. In either case, the unprovable subgoals constitute extra information required 

in the retrenchment clauses for the retrenchment to be valid. Such extra information may 

be added to the pre-existent clauses of the retrenching machine, e.g. the initialization of 

the machines were added to the W ITH IN  clause in Chapters 5 and 6.

7.5 Limitations of our approach

On the tractability issue, the time the robust tactic (FOpRetTac fnum  term s) may be 

considered too long for such relatively modest applications. The time taken by our tactics

depends on: (1) the computer used in the verification exercise; (2) the magnitude of the

operands used in the operations; and (3) the precision of the imported IEEE-854 standard 

used.

This work used the PVS 2.4.1 system installed on a Linux  server with two 1GHz 

CPUs, and accessed remotely on a x86 Family 6 Model 5 Stepping 2 A T /A T  Compatible 

Windows NT workstation with a 300Mhz CPU and 196MB of RAM. A ‘stand-alone’ con­

figuration, of a dedicated relatively powerful PC running the PVS system, may shorten 

the time taken by our tactics. In addition, the bigger the initialization values used in the 

B-machine specifications, and the bigger the precision of the imported IEEE-854 stan­

dard, the longer the time taken by the floating-point and real computations. Computer
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Algebra Systems can be used to deal with the real computations, but in our approach, the 

theorem-prover will still be required for the floating-point computations. The IEEE single­

precision (32-bit) format, IE E E L 854[2 ,24 ,192 ,127 ,-126 ], causes a stack overflow, thus 

the floating-point precision was scaled down by a factor of four to the 8-bit configuration 

IE E E L 854[2 ,6 , 192 , 2 , -1 ] .

7.6 Remark

It can be said tha t Theorem 3.6.1 encodes a tactic a novice chess player can at least achieve 

a draw in a tournament of two simultaneous chess games where a grandmaster plays white 

on one board and black on the other board by electing the grandmaster to start first, 

and then repeating the same moves on either board; thus the rest of the tournam ent is 

“automatic” for the novice player. Theorem 3.6.3 encodes a tactic a professional snooker 

player may use to leave most of the color balls undisturbed on their spots to enable an 

“automatic” clearance.



Chapter 8

Conclusions and Future work

We conclude with a brief summary of the main contributions in made in this work to 

the task of deriving robust tactics from proofs, which are: (1) a mathematically rigor­

ous method for constructing robust tactics from proofs [Chapter 3]; (2) a method for 

encoding these robust tactics from proofs based in a state of the art Interactive Theorem- 

prover/Proof-Checker, PVS [Chapter 4]; (3) a decomposition of the Retrenchment method 

into Architectural Retrenchment [Chapter 5]; and (4) a robust tactic which can be used 

as an oracle for Maximally Abstract and Evolving Architectural Retrenchment [Chapter 

6].

Section 8.2 gives some pointers to future work on the construction of tactics from 

proofs (Section 8.2.1), and on the mechanization of the retrenchment method in Section 

8 .2 .2 .

Finally, in Section 8.3, we conclude with a with a discussion of the contribution and 

limitations of this work, how general the method is, to which extent the obtained tactics 

are reusable and robust, and the relation of the techniques in Chapter 3 and Chapters 5 

and 6.

185
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8.1 Can robust tactics be derived from proofs?

In this work we have demonstrated tha t using the method of Tactic Refinement, for a 

particular proof-obligation domain D, a robust tactic: TD =  idl Q  0 , . . . ,  0  tdn can be 

derived, where 0  is an appropriate tactical, is a robust tactic for the proof-obligation 

di £ .D, and Tp is a robust tactic that can prove any proof-obligation di : D. By this 

method, a repository of robust tactics can be developed which can act as a proof system 

for tha t domain.

In the context of Interactive Theorem Proving in particular, the task of proof devel­

opment is handled in a way that best suits the human user and the theorem-prover by: 

(1) the abstraction of LK proofsteps into creative (Cut, Induction, Instantiation) or me­

chanical (the rest of the LK rules); and (2) the idea that applying the creative proofsteps 

in the proof development as early as possible leaves the rest of the proofsteps consisting 

of mechanical proofsteps which can be automatically and faithfully carried out by the 

computer.

8.1.1 Can creative steps be perm uted with mechanical ones?

In this work we have shown in Chapter 3 tha t for a provable goal formula in Gentzen 

Sequent Calculus LK, the proof steps can be rearranged according to Algorithm 3.7.1 to 

yield a normal form of proof which is equivalent to the original proof. Thus our approach 

has the advantage of first demonstrating tha t the goal is provable. In addition, Algorithm

3.7.1 is formulated from the results of the rigorous permutation analysis, and the algorithm 

was proved correct.

The equivalence of Definition 3.6.1 and Definition 3.9.1 from Theorem 3.6.3 demon­

strates how the cut-rule which is a creative proof rule can be reduced to a rewriting with
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equivalence definitions, i.e. the creative rule is reduced to a sequence of mechanical rules. 

The method of Theorem 3.6.1 is a novel way to mechanize instantiation by generating 

instantiation terms from constructive definitions using skolem variables. This technique 

works in particular for the proof of statements of the form V(x : D ) : 3 (z : R) : ( I (x)  =$■ 

0 ( x , z ) ) j  which may also be expressed in prenex normal form as V(x  : D ) : 3 (z : R)  : 

( I (x)  =>■ 0 ( x , z ) ) .  Goals of this form were found to be generally provable in Gentzen 

Sequent Calculus whereas goals of the form 3 (z : R)  : V(z : D)  : (I { x ) =>• 0 ( x , z)) were 

found to be more amenable to satisfaction using Model Checking (Figure 2.2, Section 2.5, 

Chapter 2).

8.1.2 Can robust tactics be incorporated into an IT P /P C

The definition of (g rind ) conforms to the normal form of tactics yielded by Theorem

3.6.3 and Definition 3.9.1. A viable way of handling the heuristic instantiation by PVS 

tactic (g rind ) is to backtrack to the original goal formula when the proofstate yielded 

by a tactic is unprovable [Definition 4.3.2]. The goal is then rewritten into manageable 

subgoals by invoking grind without instantiation.

8.1.3 Robust tactics for retrenchment

The use of PVS affords the specification and verification of the floating-point computation 

results against real-computation results via the IEEE-854 formal specification [Min95, 

CM95], and the formalisation the reals as the standard Abelian Group [OS03a].
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8.1.3.1 A rc h ite c tu ra l R e tre n c h m e n t

Architectural retrenchment demonstrates modest changes in specification [Figure 5.2], and 

makes the proof of the BPRet proof obligations more scalable [Theorem 5.3.1] and tractable 

[Theorem 5.3.2]. The specification of the BPRet in PVS is justified by the high-integrity 

translation of the B-Method into PVS [Theorem 5.4.1, Table 5.1]. The machine operations 

are specified constructively in PVS so tha t they can be used to generate instantiation terms 

from the skolem variables, with the side-effect that the posited constructive definitions are 

themselves checked for correctness.

The specification of a particular Banach-Poppleton vanilla retrenchment on a divine 

(idealistic) machine by a realistic machine consists of the PVS Theory templates in [Ap­

pendix B], where the specifications D R P O s , and OAPOs generated TCCs in terms of the 

data-type changes. The proofs of these TCCs could not be completed by the PVS TCCs- 

tactic, ( t c p ) . The W ITH IN  clause unravels these unfinished TCCs by incorporating the 

initializations of the machines, and this is evidenced by the non-generation of TCCs within 

the architecture-retrenchment proof obligations specifications.

The tactic Robust Grind from Chapter 4 was found to prove the initialization and 

invariant-preservation POs in IAPOs, but not the retrenchment initialization, subrefine­

ment and concession POs which require instantiation. The tactic (RSubRetTac fnum  

term s) extends RobustGrind (the rewrite phase) with the instantiation and completion 

phases in accordance to Theorem 3.6.3. The DRPO s and OAPOs specifications were 

found to be provable subrefinements by the tactic (RSubRetTac fnum  term s) due to the 

fact that the data-change is to a subset of the reals.
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8.1.3.2 A rc h ite c tu ra l E volv ing  R e tre n c h m e n t

The specific details of floating-point computation are afforded by IMPORTING the IEEE- 

854 PVS specification, which was rendered executable by giving constructive definitions 

for some lemmas in the original IEEE-854 specifications [Section 6.3.1.2]. This enables 

the recursive floating-point definitions in the IEEE-854 specification to reduce to their 

base cases and terminate with the correct real values for the machine initialization values. 

The specification templates from Chapter 5 were used to specify Architectural Evolving 

Retrenchment, were the R E T R IE V E S  relation is expressed in terms of the machine epsilon 

as a relative error between the real computation and the floating-point computation.

The robust tactic (RSubRetTac fnum  term s) from Chapter 5 was found to prove 

IAPOs but was found to diverge on the proof obligations in DRPOs and OAPOs which involve 

the float data-type. This resulted in the tactics FInvPOTac for the concrete invariant 

preservation POs, and the robust tactic (FOpRetTac fnum  term s) for the retrenchment 

initialization, subrefinement and concession POs. The latter was able to prove all the 

proof obligations in IAPOs, DRPOs, OAPOs, where fnum  is the consequent formulas given 

by +, and term  is the instantiation term given by the respective machine operation for the 

proof obligation, e.g. (FOpRetTac + "SIDef ( u l ! 1) ( i l ! 1)") proves the subrefinement 

PO in DRPOs.

The relative error the results of 2s  for a single operation and l i e  agree with The­

ory [Gol91] (see Section 6.6). Therefore our approach can be used to posit and prove 

(invent and verify) the retrenchment of real computation B-machines by floating-point 

computation B-machines using the specification templates in Appendix B. B.2.
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8.2 Future work

We identify five areas in which this work can be extended. The two strands of this 

extension are further work on the theory of constructing tactics from proofs, and further 

work on the mechanization of retrenchment.

8.2.1 Theory of robust tactic construction

Future work on the construction of robust tactics from proofs includes: (1) the implemen­

tation of Algorithm 3.7.1; and (2) improving the efficiency of the robust tactics.

8.2.1.1 Implementation of Algorithm 3.7.1

The process of abstracting tactics from proofs is also currently done by hand. Algorithm

3.7.1 serves as a basis for automating the task of constructing tactics from proofs. The au­

tomation consists of coding the modules CollectProofsteps(bi), CollectBranchProofsteps(bi), 

D istinguishQ , FactorCommonProofstepsQ , P erm uteQ , LatticePermute, which are then 

composed in the recursive module Tacterise.

The PVS system gives a proof script for each interactive proof. The subtrees are 

denoted by double brackets. This proofscript can act as input to the CollectProofsteps (bi) 

module, which acts as input to CollectBranchProofsteps(bi), which is input to D istingushQ , 

which is input LatticePermute. And similarly for 

Permute(FactorCommonProofsteps ( CollectBranchProofsteps (bi).

The automation involves the intricacies of lexical analysis of the proofscript and proof- 

step hierarchies, and thus proof-theory.
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8.2.1.2 Improving efficiency using a tactic calculus

The efficiency of our tactics can be improved by using the tactic calculus of Martin et al 

[MGW96]. The worst-case time taken by our tactics is approximately 13 minutes for the 

proof of the concession proof obligation in the data representation retrenchment of Kahan’s 

formula using the tactic (FOpRetTac fnum terms). Thus this tactic is a candidate for 

the application of the tactic calculus in order to reduce the time taken in proof. Aiming 

to reduce the time taken by our tactics can even lead to the conception of new rules and 

thus the extension of the present tactic calculus.

8.2.2 M echanization of retrenchment

Some future work in the mechanization of the retrenchment method includes: (1) devel­

oping a high-level interface for PVS; and (2) handling more complex retrenchments, e.g. 

those involving transcendental functions.

8.2.2.1 A high level IT P /P C  interface

In Appendix B .l, in the B-Method specifications in Figure B .l, the user only has to pro­

vide the imperative definitions of the machine operations, and the declarative definitions 

are formulated by the machine tool support. In the corresponding PVS specifications, 

the user has to formulate the machine operation definitions functionally in the machine 

specifications, and declaratively in the retrenchment proof obligations specifications. The 

automation of the High Integrity translation of B-Method specifications into PVS code 

can avoid human error in such translations [Gur98, Ste98].

Currently the user decides which tactic to apply and then types in the name of this 

tactic together with the arguments (if any) tha t the tactic takes in its application, e.g. to



CHAPTER 8. CONCLUSIONS AND FUTURE WORK  192

prove a retrenchment after its specification, the user has to interact with the PVS system 

as described in Section 4.4.1. A high level PVS interface can present a choice of possible 

tactics to apply (i.e. Angelic nondeterminism [Mar94]) as hints in proof development, as 

well as alleviate the user from the explicit syntax of the tool.

8.2.2.2 Handling transcendental functions

Floating-point verification involving transcendental functions (i.e. logarithms, exponenti­

ation, trigonometric functions, differentiation, integration, etc) have been investigated in 

the HOL Theorem-prover [Har96]. In tha t work, floating-point computation is represented 

as integer computation, where “it is assumed tha t n-bit integer arithmetic operations 

(signed and unsigned) are available for any given n, with which floating-point operations 

are implemented” [Har96]. This assumption was discharged in our approach which incor­

porates the PVS IEEE-854 floating-point standard, and thus floating-point computation 

in our retrenchment specifications.

The IEEE-854 standard does not involve transcendental functions since they can be 

defined in terms of the basic arithmetic operations [Sun96]. In this case, it is projected 

tha t the error analysis results would be the same as tha t for a sequence of floating-point 

operations, i.e. l ie .  However some hardware implementations do contain more efficient 

algorithms for computing transcendental functions.

8.3 Conclusion

The method of Chapter 3 can be seen as an extension of a form of the Sharpened Hauptsatz 

Theorem (Theorem 3.6.3) to demonstrate tha t from a provable formula, a robust tactic 

can be derived, which can be reusable on tha t formula when there has been a modest
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change in the definition of tha t formula. The novel idea to distinguish between creative 

and mechanical proofsteps depicts the critical parts of the proof as the creative steps which 

may require human expert domain knowledge. The implementation of this idea in PVS as 

the safe tactic (R obustgrind) (Definition 4.3.2) enables incorrect automatic instantiations 

to be caught in a proof development, in which case the user is prompted for a manual 

instantiation. The normal form of proof yielded by our method improves on the IT P /P C  

strategy (Definition 3.2.1) in tha t rewriting is performed first, and this may actually 

enable the user or IT P /P C  to discern the correct creative proofstep, e.g. an automatic 

instantiation. A limitation of our approach may be tha t due to the undecidability and 

incompleteness of Higher-Order Logic, the user is required to manually deduce the correct 

application of a creative proofstep.

The method of tactic refinement generalises to a metamathematical way of performing 

machine induction. The definitions of creative and mechanical proofsteps can apply to the 

inference-rules or tasks in other rule-based systems or problem domains. The permutation 

analysis ensures that the provisos for the creative tasks are not violated when the tasks are 

permuted, thus guaranteeing the same conclusion when the rules are reordered according 

to a desired strategy. The formulation of the tactic R obustgrind is intuitive in th a t in 

attempting to solve a task, one normally tries to simplify the task to its lowest form, i.e. 

rewriting, after which ingenious steps can be introduced to make the completion of the 

task easier.

Although the robust tactics formulated from one specification may not be reusable 

when there is a change in the datatypes used, a robust tactic only requires human assis­

tance for the creative or strategic proofsteps, e.g. instantiation. In this work, the use of
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executable specifications enables our robust tactics to take as formal arguments, the oper­

ational definitions for constructing datatypes and instantiation terms (where the skolem 

variables from the current proofstate are passed as the actual parameters), thereby making 

our robust tactics more reusable and efficient in IT P /PC . W ith respect to the specifica­

tions in Appendix B, the RobustGrind tactic is partial, whereas the tactic FOpRetTac is 

total.

The method of Tactic Refinement described in Chapter 3 is used to derive robust tac­

tics and manageable subgoals for the Architectural Retrenchment method in Chapters 

5 and 6. Theorem 3.6.1 is used as the method of instantiation in Chapter 5, which a 

programmer can use to check the correctness of program specifications thereby helping 

to eliminate logical errors in software development. Furthermore, the incorporation of 

formal specifications of the operational environment can enable checking nonfunctional 

requirements, e.g. the IEEE-854 standard is incorporated in Chapter 6 to ensure tha t 

the program gives an acceptable degraded service. The use of robust tactics as proof ora­

cles enables an abductive style of building specifications using the retrenchment method, 

whereby unprovable subgoals relating to the operational environment can be added into 

the WITHIN clause thereby establishing an operational contract of the program in tha t 

environment. In this way, a knowledgebase of specifications and robust tactics can be built 

for Architectural Retrenchment based on the specification templates in Appendix B.
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A ppendix A  

The PV S system

S , a h r a, A 

T h  A
------------- W  h (d e le te )  (h ide)
A, T h  A

A , A ,T h  A
-----------------( C  h) (copy) (rev ea l)

A , T \ -  A

r i , 5 , A , r h  A
--------------------- - ( E  h)
F i , A , B , r 2 h A

r h A , A
--------------- (-> h) auto
->A ,r h A

A , r h A  B . r h A  
--------------------------------------- ( V h )  ( s p l i t )

A  V  B , T  h A

r , A , B  h A
---------------------- ( A h )  ( f la t te n )
T ,(A  A  B)  h A

B , r h A  r h A , A
---------------------------------------------- (=>h) ( s p l i t )

r ,A  => B  h A  

S , a, b hp ,a A E, c hr,-,a a > A
 (<^h) (smash) E G V 2

S , I F ( a , b , c ) h r A

r ,A [t /x ]  h A
-------------------- (V h) ( in s t? )
r , V x  : A  h A

r ,  A[y/x]  h A
-------------------- (3 h) (skolem) EVC1
T, 3 x  : A h A

(V(r : T)  : a) =  (X(x : T)  : a)

A . T h A  r  h A,  A

----------------(h T) auto
S h r T, A

T h  A
-------------  h  W  (d e le te )  (h ide)
T h A , A

T h A , A, A
  h  C  (copy) (rev ea l)

r  h A , A

r h  A i , 5 , a , a 2
--------------------------h E
r h  A i , a , b , a 2 

A , r  h a

--------------- (I— i) auto
r h A , ^  
r h  A , B , A

 ( h V )  ( f la t te n )
r  h A V  -B, A

r h A , A  r h B , A
----------------------------- ( h A )  ( s p l i t )

T h (A A B),  A

r ,  A h  B , A
---------------------(h=>) ( f la t te n )
T h  A ^  B , A

S , a hr,a b ,A  S hr,-,a o, c,A
------------------------------------------------(h'O) (smash) (bash)

2  hr IF(a, b, c), A

T h  A [ y / x ] , A
-------------------- (hV ) (skolem !) EVC1
r h V i  : A ,A

r  h A[f/r], A
--------------------- ( h  3) ( in s t? )
T h 3 x  : A, A

(3 (r  : T) : a) =  -.(V(x : T)  : -.a)

h P ( tiq) (V n  | no <  n  : (V i  \ no <  i  <  n  : P ( i ) )  h P (n  +  1))
(Cut)  (case) --------- (ind u ct "n")

r h  A  ( h V n | r c o < n :  P ( n ) )

Rules labeled (auto) are automatically invoked by PVS. The Exchange rule is entirely om itted in PVS [SORSC98b]. EVC1  
is the eigenvariable condition that x is not free in the assumptions nor in p. E V C 2 is the eigenvariable condition that A  is 
A with all instances of a eliminated. Mathematical induction is over the set {no, no +  1, no +  2 , . . . }  of integers [GS93].

(Ax)  auto  (J. h) auto
E,_L hr  A

210
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A .l The Permutation cases for LK

211

Original Prooftree Permuted Prooftree

■1-3
r h  A ,3a: : A 

r h  A ,3a: : A , B
h W

T h  A,  A[ t /x\  

T h  A , A [ t / x ] , B  

T h  A , B , A [ t / x ]  

T h  A ,B ,3 a :  : A

h W

h E

h 3

h E
T h  A , 3 x  : A , B

T h  A , A [ t / x \
h 3

r h A , 3 x : A
W  h

B , r h A , 3 i : A

rhA,A[«/2)] 

B . r h  A , A [ t / x ]
h w

■ h 3
B , T h  A , 3 *  : A

T h  A , B , A [ t / x ]
h 3

r h A , B , 3 a : : A
h E

r h A , 3 i : A , B

r  h A,  B,  A\ t / x \  

T h  & , A [ t / x ] , B
h E

■ h 3
r h A , B , 3 i  : A

T , B  h A , A [ t / x ]  

r , B h A , 3 i : A  

B , r h A , 3 i : A

h 3

E  h

r , B h A , A [ t / i ]  

B , T [ - A , A [ t / x ]  

B , r h A , 3 i  : A

E  h

• h 3

r h  A , A [ t / x ] , B , B  

T h  A , 3 x  : A , B , B
h 3

h C
T h  A , 3 z  : A , B

T h  A , A [ t / x ) , B , B

T h  A , A [ t / x ] , B
h C

h 3
T h  A , 3 x  : A , B

B , B , T \ -  A , A [ t / x ]  

B , B ,  r , h A , 3 i  : A
■ h 3

C  h
B , r h A , 3 i : A

B , B , T \ -  A , A [ t / x ]
C  h

B , r h  A , A [ t / x \
h 3

B , r h A , 3 i : A

Table A.l: Permutation of Instantiation with Structural Rules
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Original Prooftree Permuted Prooftree

T h  A , A [ t / x ] , B  

T h  A,  3 1 : A , B
h 3

T h  A [ t / x ] , A , B T h  A , 3 x  : A , C
h W h w

r h  A , 3 x  : A { x ) , C
hA

r  h A , 3 x  : A(x) ,  B  A C

Where the same instantiation can be performed in the 
right branch or a different instantiation can be used. 
Using the same instantiation makes the proof uniform. 
Therefore performing branching rules as early as pos­
sible can result in common inference-rules among the 
prooftree branches.

T \ -  A [ t / x ] , A , B , 3 x  : A T h A[t /x] ,  A , C , 3 x  : A
------------------------------------ h E   h E

r  h A[t /x] ,  A , 3 x  \ A , C
h/'

r h ^ . A ^ i ^ . B A  C  

r h A , 3 i  : A , B  A C , A [ t / x \
h E

■ h 3
r h A , 3 * : A IB A C , 3 s : i l

r  h A,  3 a; : A , B  A C
(h E-, h C; h E)

W here, according to Gentzen’s original formulation, the 
Exchange-rule is used to bring formula in scope for manipulation 
by the inference-rules; Contraction is advocated before eliminat­
ing a quantifier in order to retain the quantified formula in the 
premise as in Gentzen System G and this makes Gentzen System  
L K  complete; and weakening produces the same leaves as in the 
original prooftree. This use of structural rules to  obtain the same 
leaves as in the Original Prooftree increases the complexity of the 
Permuted Prooftree.

B , C , r h  A,  A[t /x]
h 3

B , C , r h A , 3 i  : A,

B,  C , r h  A , A [ t / x ]  

B  A C , r h  A , A [ t / x ]
Ah

Ah h 3
B  A G , r h  A , 3 x  : A B A C , r h A , 3 i : i

T h  A , A [ t / x ] , B ,  C  

T \ -  A , 3 x  : A , B , C
h 3

r  h A , A [ t / x \ , B ,  C  

r h  A , A [ t / x ] , B  V C
•hV

•hV ■ h 3
r h  A , 3 x  : A , B  V C r h A , 3 i  : 4 , B V  C

B , f h  A , A [ t / x ] B , T  h A , A [ y / x ) C , v y -  A , A [ t / x ]
h 3 Vh

B , r h A , 3 x : A  r  h A , 3 x  : A(x)  

B V  C , r h A , 3 i  : A,

B y  c , r h  A ,^ i[t/x ]
Vh

The 3 in the right-branch may also need to be elim­
inated for the proof to proceed, and the same instan­
tiation term in the left branch may be used. Hence 
performing a branching rule before a none-branching 
one has the effect of duplicating proofsteps among 
prooftree branches.

------------------------------- h 3
B  V C7, rh A , 3 x  : A

Ignoring structural rules gives a Permuted Prooftree of the same 
complexity as the Original Prooftree. The Permuted Prooftree has 
the effect of factoring out the common instantiation terms among 
the prooftree branches (Theorem 3.6.2). However, structural rules 
can be used to return the same leaves as in the Original Prooftree 
if  desired.

B , T  \ - A , A [ t / x ]  

B,  r  h A , 3 x : A
h 3

B , r h  A , A [ t / x )  

r h A , i [ t / i ] , - n B
■h

h 3
r h A , 3 i  : A , ^ B rhA, 3®

Table A.2: Permutation of Instantiation with Logical Rules
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Original Prooftree Perm uted. Prooftree

T \ - A , A [ t / x ] , B
\- 3

r h  A , A [ t / x ] , B

n -  A ,3a: : A , B A , A [ t / x ]

- . B . n - A , 3 *  : A
l_ 3

- n B . r b  A ,3a: : A

B . T h  A , A [ t / x \ , C
3

B . T h  A , A [ t / x ] , C

B , r h A , 3 i  : A, C r  h A , A [ t / x ] , B  => C

T\~ A , 3 x  : A , B  => C
■.... - — 1- 3

T I- A,  3 x  : A,  B  => C

T h  A , A [ t / x ] , B  C , T \ - A , A [ t / x \  .
P 3  1-3 

r i - A , 3 ® : A , B  C , r h A , 3 * : i l
---------------------------------------------------- =>h

B=J> C , r i - A , 3 * :  A,

The same instantiation can be applied in both sub­
trees thus yielding a uniform proof in terms of the 
instantiation terms used in the proof.

r h A , % / i ] , B  C , T \ -  A , A [ t / x )  
------------------------------------------------------------ =£.(-

B  => <7,r.l- A , A [ t / x )
------------------ :-------h 3
B => C , T P  A , 3 x  : A

Applying the instantiation before the branching =>b has the effect 
of factoring out the common instantiation terms among the proof 
branches in the Original Prooftree (Theorem 3.6.2).

T \ -  A , A [ t / x ] , B [ z / w ]
3

T \ -  A ,  A [ t / x ] ,B [ z / w]

T \ - A , B x : A , B [ z / w ]
1- V

A[ y/ x] ,T  I- A , A[ t / x ] , ' i w  : B

T 1- A, 3i r  : A, Vi a : B

The skolem variable z  can be used as the instantiation  
term t  pending type-correctness conditions (Theorem  
3.6.1).

r h  A , 3 i  : A. Vi u : B

The skolem variable z  should not occur in the conclusion and 
therefore z  and t  must be distinct.

B [ t / w] , A[ t / x ]Y  1- A
(- 3

B[ t / w] Y  H A , A[t /x]

B [ t / w } , T \ -  A , 3 x  : A
w

V w : J5, r  b A , A[t /x]

V w  : B , T h  A , 3 x  : A

The same instantiation term used in the V 1- rule 
can be used for the 1- 3 rule pending type correctness 
conditions.

Vw : B , r h A , 3 x  : A

The same instantiation term used in the V 1- rule can be used for 
the h- 3 rule pending type correctness conditions.

L , T \ -  A , A [ t / x ]  T b A , A [ t / x ] , L
Cut

L , r i - A , A [ i / x ]  r  H A,  A [ t / x \ , L
1-3 i_ q

r  h A,  A[t /x]
\- 3

L , T b  A , 3 x  : A(x)  T b A,  3 x : A(x) ,  L

n -  A , 3 x  : A(x)

Where Pi  = r h A l i [ t / i ] .  Gentzen Hauptsatz The­
orem permutes the Cut above other inference-rules as 
in the Original Prooftree above, which has the effect 
of factoring-out common rules among the cut branches 
in the adjacent Permuted Prooftree (Theorem 3.6.2).

r h A , 3 x  : A(x)

Where P 2 =  T h A , 3 z  : A(x) ,  L. The permutation of Cut 
down the prooftree enables the creative introduction of a new  
formula (the Cut formula) as early as possible in the proofstate. 
In addition, it may be possible to  eliminate the cut, e.g. the cut 
is used to introduce the PNF of the goal formula in Section 3.5.1 
but goal formula can also be rewritten into PN F by definitional 
equivalences.

Table A.3: Permutation of Instantiation with Logical Rules
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A rchitectural retrenchm ent in PV S

B .l Backtracking on a failed proof attem pt
S u b R e fin e m e n tP O  :

{ 1 }  FORALL (SO : [UO - >  UO] , S I :  [U1 - >  [ I I  - >  U l ] ] , S 2 :  [U 2 - >  [ 1 2  - >  U 2 ] ] ,
uO: UO, A l ,  u l :  U l ,  A 2 , u 2 :  U 2 , i l :  I I ,  i 2 :  1 2 ,  A 2: U 2 ) :

( (  i n v ( S l ) ( u l )  k  G ( u l ,  u 2 )  k  i n v ( S 2 ) ( u 2 )  k  t r m ( S 2 ) ( u 2 ,  i 2 )  k  W (uO, A l ,  u l ,  A 2 , u 2 ,  i l ,  i 2 ) )
= >  ( t r m ( S l ) ( u l ,  i l )  k t r m ( S 2 ) ( u 2 ,  i 2 )  k  ( t r m ( S l ) ( u l ,  i l )  =>  (FORALL ( u 2 p :  U 2 ) : p r d ( S 2 ) ( u 2 ,  i 2 ,  u 2 p )

= >  (E X IST S ( u l p :  U l ) :  p r d ( S l ) ( u l ,  i l ,  u l p )  k  G ( u l p ,  u 2 p ) ) ) ) ) )

R u le ?  ( ( t r y  ( g r i n d )  ( f a i l )  ( s k i p ) )  ( s k i p )  ( g r i n d  : d e f s  n i l  : i f - m a t c h  n i l ) )

T r y i n g  r e p e a t e d  s k o l e m i z a t i o n ,  i n s t a n t i a t i o n ,  a n d  i f - l i f t i n g ,  
t h i s  s i m p l i f i e s  t o :
S u b R e f  in e m e n tP O  :

{ - 1 }  a l ( u l ! l )  =  a 2 ( A 2 ! 1 )
{ - 2 }  a 2 ( A 2 ! 1 )  <= 10
{ - 3 }  ( b 2 ( i 2 ! 1 )  <= 1 0 )
{ - 4 }  ( a 2 ( u 2 ! 1 )  =  a 2 ( A 2 ! l ) )
{ - 5 }  a O (u O !1 )  = a 2 ( A 2 ! 1 )
{ - 6 }  b O (u O !1 )  = b 2 ( i 2 ! 1 )
{ - 7 }  a l ( A l ! 1 )  = a 2 ( A 2 ! 1 )
{ - 8 }  ( b l ( i l ! l )  =  b 2 ( i 2 ! l ) )
{ - 9 }  a 2 ( A 2 ! 1 )  >= b 2 ( i 2 ! l )
{ - 1 0 }  1 =  b 2 ( i 2 ! 1 )
{ - 1 1 }  3  = a 2 ( A 2 ! 1 )
{ - 1 2 }  a 2 ( u 2 p ! 1 )  = a 2 ( A 2 ! l )  -  b 2 ( i 2 ! l )

|  -

A t t e m p t e d  p r o o f  o f  S u b R e fin e m e n tP O  f a i l e d .

A t t e m p t e d  p r o o f  o f  S u b R e fin e m e n tP O  f a i l e d .
S u b R e fin e m e n tP O  :

|--------
[ 1 ]  FORALL (SO : [UO - >  U O ], S I :  [U l  - >  [ I I  - >  U l ] ] ,  S 2 :  [U 2 - >  [ 1 2  - >  U 2 ] ] ,

uO: UO, A l ,  u l :  U l ,  A 2 , u 2 :  U 2 , i l :  I I ,  i 2 :  1 2 ,  A 2: U 2 ) :
( (  i n v ( S l ) ( u l )  k  G ( u l ,  u 2 )  k  i n v ( S 2 ) ( u 2 )  k  t r m ( S 2 ) ( u 2 ,  i 2 )  k  W (uO, A l ,  u l ,  A 2 , u 2 ,  i l ,  i 2 ) )

=>  ( t r m ( S l ) ( u l ,  i l )  k  t r m ( S 2 ) ( u 2 ,  i 2 )  k  ( t r m ( S l ) ( u l ,  i l )  =>  (FORALL (u 2 p :  U 2 ) : p r d ( S 2 ) ( u 2 ,  i 2 ,  u 2 p )
=>  (E X IST S ( u l p :  U l ) :  p r d ( S l ) ( u l ,  i l ,  u l p )  k  G ( u l p ,  u 2 p ) ) ) ) ) )

T r y i n g  r e p e a t e d  s k o l e m i z a t i o n ,  i n s t a n t i a t i o n ,  a n d  i f - l i f t i n g ,  
t h i s  y i e l d s  2  s u b g o a l s :

S u b R e f  in e m e n tP O .1  :

{ - 1 }  i n v ( S l ! 1 ) ( u l ! 1 )
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{ - 2 }  G ( u l ! 1 ,  u 2 ! l )
{ - 3 }  i n v ( S 2 ! 1 ) ( u 2 ! 1 )
{ - 4 }  t r m ( S 2 ! 1 ) ( u 2 ! 1 ,  i 2 ! l )
-C -5} W(uO! 1 ,  A l ! 1 ,  u l ! 1 ,  A 2 ! l ,  u 2 ! l ,  i l ! l ,  i 2 ! l )
{ - 6 }  p r d ( S 2 ! l ) ( u 2 ! l ,  i 2 ! l ,  u 2 p ! l )

|--------
■Cl} EX ISTS ( u l p :  U l ) :  p r d ( S l ! l ) ( u l ! l ,  i l ! 1 ,  u l p )  & G ( u l p ,  u 2 p ! l )

R u le ?  ( i n s t  +  " S I D e f ( u l ! 1 ) ( i l ! 1 ) " )
I n s t a n t i a t i n g  t h e  t o p  q u a n t i f i e r  i n  +  w i t h  t h e  t e r m s :  S I D e f ( u l ! 1 ) ( i l ! 1 ) ,  t h i s  y i e l d s

S u b R e f  in e m e n tP O . 1 . 1  :

[ - 1 ]  i n v ( S l ! 1 ) ( u l ! 1 )
[ - 2 ]  G ( u l ! 1 ,  u 2 ! 1 )
[ - 3 ]  i n v ( S 2 ! l ) ( u 2 ! l )
[ - 4 ]  t r m ( S 2 ! 1 ) ( u 2 ! 1 ,  i 2 ! l )
[ - 5 ]  W (uO !1 ,  A l ! 1 ,  U l ! 1 ,  A 2 ! l ,  u 2 ! l ,  i l ! 1 ,  i 2 ! l )
[ - 6 ]  p r d ( S 2 ! l ) ( u 2 ! l ,  i 2 ! l ,  u 2 p ! l )|--------
{ 1 }  p r d ( S l ! 1 ) ( u l ! 1 ,  i l ! 1 ,  S I D e f ( u l ! l ) ( i l ! 1 ) )  & G ( S l D e f ( u l ! 1 ) ( i l ! 1 ) ,  u 2 p ! l )

R u le ?  ( g r i n d )

T r y i n g  r e p e a t e d  s k o l e m i z a t i o n ,  i n s t a n t i a t i o n ,  a n d  i f - l i f t i n g ,

T h i s  c o m p l e t e s  t h e  p r o o f  o f  S u b R e f in e m e n tP O .1 . 1 .

S u b R e f  in e m e n tP O . 1 . 2  (T C C ):

[ - 1 ]  i n v ( S l ! 1 ) ( u l ! 1 )
[ - 2 ]  G ( u l ! 1 ,  u 2 ! 1 )
[ - 3 ]  i n v ( S 2 ! 1 ) ( u 2 ! 1 )
[ - 4 ]  t r m ( S 2 ! 1 ) ( u 2 ! 1 ,  1 2 ! 1 )
[ - 5 ]  W (uO !1 ,  A l ! 1 ,  u l ! 1 ,  A 2 ! l ,  u 2 ! l ,  i l ! 1 ,  1 2 !  1 )
[ - 6 ]  p r d ( S 2 ! 1 ) ( u 2 ! 1 ,  i 2 ! l ,  u 2 p ! l )
|--------

-C l} r e a l ? ( b l ( i l ! l ) )  & ( a l ( u l ! l )  >= b l ( i l ! l ) )

R u le ?  ( g r i n d )

T r y i n g  r e p e a t e d  s k o l e m i z a t i o n ,  i n s t a n t i a t i o n ,  a n d  i f - l i f t i n g ,

T h i s  c o m p le t e s  t h e  p r o o f  o f  S u b R e f in e m e n tP O .1 . 2 .

T h i s  c o m p le t e s  t h e  p r o o f  o f  S u b R e f in e m e n t P O . l .

S u b R e f  in e m e n tP O . 2  :

{ - 1 }  i n v ( S l ! 1 ) ( u l ! 1 )
{ - 2 }  G ( u l ! l ,  u 2 ! 1 )
-C -3} i n v ( S 2 !  1 )  ( u 2 !  1 )
{ - 4 }  t r m ( S 2 ! l ) ( u 2 ! l ,  1 2 ! 1 )
{ - 5 }  W (uO !1 ,  A l ! 1 ,  u l ! 1 ,  A 2 ! l ,  u 2 ! l ,  i l ! l ,  i 2 ! l )

{ 1 }  t r m ( S l ! 1 ) ( u l ! 1 ,  i l ! 1 )

R u le ?  ( g r i n d )

T r y i n g  r e p e a t e d  s k o l e m i z a t i o n ,  i n s t a n t i a t i o n ,  a n d  i f - l i f t i n g ,  

T h is  c o m p le t e s  t h e  p r o o f  o f  S u b R e f in e m e n tP O .2 .

Q .E .D .
Run t im e  =  1 . 4 1  s e c s .
R e a l  t im e  = 5 5 9 . 7 6  s e c s .
NIL
P V S ( 4 0 ) :

2  s u b g o a l s
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MACHINE DSub MACHINE MSub
RETRENCHES DSub

VARIABLES a, b VARIABLES aa
INVARIANT a  £  R INVARIANT aa £  FR

A  6 £  R
RETRIEVES ( a a  < Ov  a

A ( a a  =  Ov =>
INIT * ( « ) INIT y (v )
OPERATIONS OPERATIONS

5  = resp <— T(bb) -
BEGIN BEGIN

a > 6 | a : = a  — 6 6 6  £ FR |
END a a  <  Ov A a a  >  66  =>

dd i— dd — 66 |[ resp :=  ok

aa =  Ov  V aa <  bb => 
aa :=  aa A resp := fail 

LVAR AA
W ITHIN a >  6  A A A  =  aa A ( 6 6  <  Ov =► 6  =  bb) 
CONCEDES (resp — ok =$ a =  aa)

A (resp =  fail  => aa =  AA)
END

END END

MACHINE DSub MACHINE I  A Sub
RETRENCHES DSub

VARIABLES a, 6 VARIABLES aa
INVARIANT a £  R INVARIANT aa £  R

A 6  £  R
RETRIEVES d ~— dd

INIT X ( u) INIT Y (v )
OPERATIONS OPERATIONS

S = T(bb)  =
BEGIN BEGIN

a > 6 | a : = a  — 6 6 6  £  R A aa >  bb |
END dd * — dd -- 6 6

LVAR AA
WITHIN 6  =  6 6  

CONCEDES false 
END

END END

MACHINE
RETRENCHES
VARIABLES
INVARIANT
RETRIEVES

DRSub  
I  A Sub 
aaa
aaa £  FR
(aaa <  Ov =$> aa =  aaa)
A (aaa =  Ov => aa >  Ov)  
Z(u)INIT  

OPERATIONS 
1/ ( 666) =
BEGIN  

666 £  FR |
aaa <  Ov  A aaa >  6 6 6  =s> 

aaa :=  aaa — 6 6 6

[]
aaa — Ov V aaa <  6 6 6  =s>

ddd ddd
LVAR AAA
WITHIN aa >  6 6  A AAA =  aaa 

A 6 6 6  <  Ov => bb =  6 6 6  

CONCEDES (aaa <  Ov =$■ aa =  aaa) 
A (aaa =  Ou => AAA — aaa)

END
END

MACHINE
RETRENCHES
VARIABLES
INVARIANT
RETRIEVES

OASub
DRSub
aaaa
aaaa £  FR
QC LC L  —  CLCLCLCL

a( v)INIT
OPERATIONS

resp <—  V(bbbb) =
BEGIN

6666 £  FR |
a a a a  <  OF A a a a a  >  6 6 6 6  => 

a a a a  : =  a a a a  — 6 6 6 6  || resp — ok
[}
aaaa =  Ov  V a a a a  <  6 6 6 6  => 

a a a a  : =  a a a a  || resp : =  fail  
LVAR AAAA
WITHIN a a a  >  6 6 6  A AAAA =  a a a a  

A ( 6 6 6 6  <  Ov => 6 6 6  =  6 6 6 6 )
CONCEDES ( a a a  <  Ov => aaa =  a a a a  A resp =  o 

A ( a a a  =  Ov => a a a a  =  AAAA A resp =  /a iZ )  
END  

END

Figure B.l: Architecture Retrenchment in B
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D S u b : THEORY 
BEGIN

UO:TYPE = [ #  aO : r e a l ,  b O : r e a l  # ]
SO: VAR [UO - >  UO]

i n i t D e f ( u O :U O ): UO = LET uO = ( #  a 0 : = 3 ,  b O := l  # )  IN  uO 

i n i t ( u O p : U O ) : b o o l  =  ( a 0 ( u 0 p ) = 3  & b O (u O p )= l)

S O D e f(u O : U O I(a O (u O )> = b O (u O )) ) : UO =  LET u O = in i t D e f ( u O )  IN  uO WITH [a O := a O (u O )-b O (u O ) , b O := b O (u O )]  

in v ( S O ) ( u O : U O ) : b o o l  =  r e a l? ( a O ( u O ) )  & r e a l? ( b O ( u O ) )  

t r m ( S O ) ( u O : U O ): b o o l  =  (a O (u O )> = b O (u O ))

p r d (S O )(u O :U O ,u O p :U O ):b o o l  =  ( (a O (u O )> = b O (u O ))  = >  (a O (u O p ) =  a O (u O )-b O (u O ) & b O (u O p )= b O (u O )) )
END DSub

No TCCs g e n e r a t e d .

I A S u b : THEORY 
BEGIN

IMPORTING DSub  
U 1:TY PE = [ #  a l : r e a l  # ]
I I :T Y P E  = [ #  b l : r e a l  # ]
A:TYPE =  [ #  a l : r e a l  # ]
S I :  VAR [ U l  - >  [ I I  - >  U l ] ]

i n i t D e f ( u O : U O ,  u l : U l ) : U l  =  LET u l  =  ( #  a l : = 3  # )  IN  u l  

i n i t ( u O : U O ,  u l p : U l ) :  b o o l  =  a l ( u l p ) = a O ( u O )

S I D e f ( u l : U 1 ) ( i l : I I I  r e a l ? ( b l ( i l ) )  & ( a l ( u l ) > = b l ( i l ) ) ) : U l  =  LET u l = ( #  a l : = 3  # )  IN  u l  WITH [ a l : = a l ( u l ) - b l ( i l ) ]  

i n v ( S l ) ( u l : U l ) : b o o l  =  r e a l ? ( a l ( u l ) )

t r m ( S l ) ( u l : U l , i l : I l ) : b o o l  =  ( r e a l ? ( b l ( i l ) )  & a l ( u l ) > = b l ( i l ) )

p r d ( S l ) ( u l : U l ,  i l : I l ,  u l p : U l ) :  b o o l  =
( r e a l ? ( b l ( i l ) )  & a l ( u l ) > = b l ( i l ) )  =>  a l ( u l p ) = a l ( u l ) - b l ( i l )

G (uO :U O , u l : U l ) :  b o o l  = ( a l ( u l )  = a O (u O ))

W (uO:UO, A 1 :A , u l : U l ,  i l : I l ) :  b o o l  = i n i t ( u O )  & i n i t ( u O . u l )  & ( b l ( i l )  = b O (u O ))

C (u p O :U O , u p l : U l ,  A 1 :A ):  b o o l  = f a l s e  
END IA S u b  .

No TCCs g e n e r a t e d .

Figure B.2: DSub and IASub in PVS
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DR Sub: THEORY 
BEGIN

IMPORTING IA S u b
M a x R e a l : p o s r e a l= 1 0
F in R e a l:T Y P E  = { x : r e a l  I x < = M a x R e a l}
U 2:TY PE = [ #  a 2 : F i n R e a l  # ]
1 2 : TYPE = [ #  b 2 : F i n R e a l  # ]
S2:V A R  [U2 - >  [ 1 2  - >  U 2 ] ]
AA:TYPE =  [#  a 2 : F in R e a l  # ]

i n i t D e f ( u O : U O ,  u 2 : U 2 ) : U 2  =  LET u 2  =  ( #  a 2 : = 3  # )  IN  u 2  

in i t ( u O : U O ,  u 2 p : U 2 ) :  b o o l  = ( a 2 ( u 2 p ) = 3 )

S 2 D e f ( u 2 : U 2 ) ( i 2 : I 2 | r e a l ? ( b 2 ( i 2 ) ) ) :  U2 =  LET u 2 =  ( #  a 2 : = 3  # )  IN
I F  ( a 2 ( u 2 ) < 1 0  & a 2 ( u 2 ) > = b 2 ( i 2 ) )  THEN u 2  WITH C a 2 : = a 2 ( u 2 ) - b 2 ( i 2 ) ]  ELSE u 2  WITH [ a 2 : = a 2 ( u 2 > ]  ENDIF

i n v ( S 2 ) ( u 2 : U 2 ) : b o o l  =  a 2 ( u 2 )  <= 1 0

t r m ( S 2 ) ( u 2 : U 2 ,  i 2 : I 2 ) :  b o o l  =

( b 2 ( i 2 ) < = 1 0 )  & C ( a 2 ( u 2 ) < = 1 0  & a 2 ( u 2 ) > = b 2 ( i 2 ) )  =>  t r u e )  & ( ( a 2 ( u 2 ) = 1 0  OR ( a 2 ( u 2 ) < b 2 ( i 2 ) ) )  = >  t r u e )

p r d ( S 2 ) ( u 2 : U 2 ,  i 2 : I 2 ,  u 2 p : U 2 ) :  b o o l  =  ( b 2 ( i 2 ) < = 1 0 )  =>

( ( ( a 2 ( u 2 ) < 1 0  & a 2 ( u 2 ) > = b 2 ( i 2 ) )  & a 2 ( u 2 p ) = a 2 ( u 2 ) - b 2 ( i 2 ) )  OR 
C ( a 2 ( u 2 ) = 1 0  OR a 2 ( u 2 ) < b 2 ( i 2 ) )  & a 2 ( u 2 p ) = a 2 ( u 2 ) ) )

G ( u l : U l ,  u 2 : U 2 ) :  b o o l  = ( a 2 ( u 2 ) < 1 0  = >  a l ( u l ) = a 2 ( u 2 ) )  & ( a 2 ( u 2 ) = 1 0  =>  a l ( u l ) > = 1 0 )

W (uO:UO, A 1 :A , u l : U l ,  A 2 : AA, u 2 : U 2 ,  i l : I l ,  i 2 : I 2 ) :  b o o l =  i n i t ( u 0 , u 2 )  & W ( u O ,u l ,A l , i l )  & 
a l ( u l ) > = b l ( i l )  & ( b 2 ( i 2 ) < = 1 0  =>  b l ( i l ) = b 2 ( i 2 ) )  & a 2 ( u 2 ) = a 2 ( A 2 )

C ( u l p : U l ,  u 2 p : U 2 ,  A 2 : A A ): b o o l  =
( a 2 ( u 2 p ) < 1 0  =>  a l ( u l p ) = a 2 ( u 2 p ) )  & ( a 2 ( u 2 p ) = 1 0  =>  a 2 ( u 2 p ) = a 2 ( A 2 ) )

END DRSub

*/. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  1 1 ,  c o lu m n  2 9 )  f o r  LET u 2  =  ( #  a 2  :=  3 # )  IN  u 2  ‘/ . e x p e c t e d  t y p e  U2  
'/, p r o v e d  -  c o m p le t e

in i t D e f _ T C C 1 : OBLIGATION FORALL ( u 2 1 :  U 2 ) : LET u 2 :  [ #  a 2 :  r e a l  # ]  =  ( #  a 2  :=  3 # )  IN  u 2 ‘ a 2  <= 1 0 ;

*/. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  1 5 ,  c o lu m n  4 2 )  f o r  LET u 2  =  ( #  a 2  :=  3 # )  IN
‘/. I F  ( a 2 ( u 2 )  < 1 0  & a 2 ( u 2 )  >= b 2 ( i 2 ) )  THEN u 2  WITH [ a 2  :=  a 2 ( u 2 )  -  b 2 ( i 2 ) ]
’/. ELSE u 2  WITH [ a 2  :=  a 2 ( u 2 ) ]  ENDIF ‘/ . e x p e c t e d  t y p e  U2

*/. u n f i n i s h e d

S 2 D e f_ T C C l:  OBLIGATION FORALL ( i 2 :  1 2  | r e a l ? ( i 2 ‘ b 2 ) , u 2 1 :  U 2 ) : LET u 2 :  [ #  a 2 :  r e a l  # ]  =  ( #  a 2  :=  3 # )  IN  
IF  ( u 2 ‘ a 2  < 1 0  & u 2 ‘ a 2  >=  i 2 ‘b 2 )  THEN u 2  WITH [ a 2  :■= u 2 ‘ a 2  -  i 2 cb 2 ]
ELSE u 2  WITH [ a 2  :=  u 2 ‘ a 2 ]  ENDIF ‘ a 2  <= 1 0 ;

M e s s a g e s  f o r  t h e o r y  D R Sub4:

LET/WHERE v a r i a b l e  u 2  . . .  i s  g i v e n  t y p e  [ #  a 2 :  r e a l  # ]  f r o m  i t s  v a l u e  e x p r e s s i o n .  

LET/WHERE v a r i a b l e  u 2  . . .  i s  g i v e n  t y p e  [ #  a 2 :  r e a l  # ]  f r o m  i t s  v a l u e  e x p r e s s i o n .

Figure B.3: DRSub in PVS



APPENDIX B. ARCHITECTURAL RETRENCHMENT IN PVS 219

OASub: THEORY 
BEGIN

IMPORTING DRSub 
R e s p o n s e  :TYPE = - [ o k , f a i l }
U3:TY PE =  [ #  a 3 : F i n R e a l  # ]
1 3 : TYPE =  [ #  b 3 : F i n R e a l  # ]
0 3 : TYPE =  [ #  r e s p : R e s p o n s e  # ]
S 3 : VAR [U 3 - >  [ 1 3  - >  [ U 3 . 0 3 ] ] )
AAA:TYPE = [ #  a 3 : F i n R e a l  # ]

i n i t D e f ( u O : U O ,  u 3 : U 3 ) : U 3  =  ( #  a 3 : = 3  # )

i n i t ( u 0 : U 0 ,  u 3 : U 3 ) :  b o o l  =  ( a 3 ( u 3 ) = 3 )

S 3 D e f ( u 3 : U 3 ) ( i 3 : I 3  I r e a l ? ( b 3 ( i 3 ) ) ) : [ U 3 .0 3 ]  = LET u 3 = ( #  a 3 : = 3  # )  IN
I F  ( a 3 ( u 3 ) < 1 0  k  a 3 ( u 3 ) > = b 3 ( i 3 ) )  THEN ( u 3  WITH C a 3 : = a 3 ( u 3 ) - b 3 ( i 3 ) ] , ( # r e s p : = o k # ) )
ELSE ( u 3  WITH [ a 3 : = a 3 ( u 3 ) ] , ( # r e s p : = f a i l # ) )  ENDIF

i n v ( S 3 ) ( u 3 : U 3 ) : b o o l  =  ( a 3 ( u 3 )  <= 1 0 )

t r m ( S 3 ) ( u 3 : U 3 ,  i 3 : I 3 ) :  b o o l  =  
b 3 ( i 3 ) < = 1 0  k  C ( a 3 ( u 3 ) < 1 0  k  a 3 ( u 3 ) > = b 3 ( i 3 ) )  = >  TRUE) k  
( ( a 3 ( u 3 ) > = 1 0  OR a 3 ( u 3 ) < = b 3 ( i 3 ) )  = >  TRUE)

p r d ( S 3 ) ( u 3 : U 3 ,  i 3 : I 3 ,  u 3 p : U 3 ,  o 3 : 0 3 ) :  b o o l  = 
b 3 ( i 3 ) < = 1 0  =>

C ( ( a 3 ( u 3 ) < 1 0  k  a 3 ( u 3 ) > = b 3 ( i 3 ) )  k  C a 3 ( u 3 p ) = a 3 ( u 3 ) - b 3 ( i 3 )  k  r e s p ( o 3 ) = o k ) )
OR ( ( a 3 ( u 3 ) = 1 0  OR a 3 ( u 3 ) < b 3 ( i 3 ) )  k  C a 3 ( u 3 p ) = a 3 ( u 3 )  & r e s p ( o 3 ) = f a i l ) ) )

G (u 2 : U 2 , u 3 : U 3 ) : b o o l  =
( a 3 ( u 3 ) < = 1 0  =>  a 2 ( u 2 ) = a 3 ( u 3 ) )

W (uO:UO, A 1 :A , u l : U l ,  A 2 : AA, u 2 : U 2 ,  A 3 : AAA, u 3 : U 3 ,  i l : I l ,  i 2 : I 2 ,  i 3 : I 3 ) :  b o o l  = i n i t ( u 0 , u 3 )  k  
W ( u O , A l , u l , A 2 , u 2 , i l , i 2 )  k  ( b 3 ( i 3 ) < = 1 0  = >  b 2 ( i 2 ) = b 3 ( i 3 ) )  k  a 3 ( A 3 ) = a 3 ( A 3 )

C (u 2 p : U 2 ,  u 3 p : U 3 ,  o 3 : 0 3 ,  A 3 : A A A ): b o o l  =
( r e s p ( o 3 ) = o k  =>  a 2 ( u 2 p ) = a 3 ( u 3 p ) )  k  ( r e s p ( o 3 ) = f a i l  = >  a 3 ( u 3 p ) = a 3 ( A 3 ) )

END OASub

'/, S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  1 5 ,  c o lu m n  49) f o r  LET u 3  =  ( #  a 3  :=  3  # )  IN
*/. I F  ( a 3 ( u 3 )  < 1 0  k  a 3 ( u 3 )  >=  b 3 ( i 3 ) )  THEN ( u 3  WITH [ a 3  :=  a 3 ( u 3 )  -  b 3 ( i 3 ) ] , ( #  r e s p  :=  o k  # ) )
*/. ELSE ( u 3  WITH [ a 3  :=  a 3 ( u 3 ) ]  , ( #  r e s p  :=  f a i l  # ) )  ENDIF
'/, e x p e c t e d  t y p e  [U 3 , 0 3 ]

'/, u n f i n i s h e d
S 3 D e f_ T C C i:  OBLIGATION FORALL ( i 3 :  1 3  I r e a l ? ( i 3 ‘ b 3 ) , u 3 1 :  U 3 ) : LET u 3 :  [ #  a 3 :  r e a l  # ]  =  ( #  a 3  :=  3  # )  IN

IF  ( u 3 *a 3  < 1 0  k u 3 ‘ a 3  >=  i 3 ‘ b 3 )  THEN ( u 3  WITH [ a 3  :=  u 3 ‘ a 3  -  i 3 ‘ b 3 ] , ( #  r e s p  :=  o k  # ) )
ELSE (u 3  WITH [ a 3  :=  u 3 ‘ a 3 ] ,  ( #  r e s p  :=  f a i l  # ) )  E N D IF‘ l ‘ a 3  <= 1 0 ;

M e s s a g e s  f o r  t h e o r y  0 A S u b 4 :

LET/WHERE v a r i a b l e  u 3  a t  l i n e  1 5 ,  c o l  5 3  i s  g i v e n  t y p e  
[#  a 3 :  r e a l  # ]  fr o m  i t s  v a l u e  e x p r e s s i o n .

Figure B.4: OASub in PVS
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IAPOs: THEORY 
BEGIN

IMPORTING IASub

AlnitPO: THEOREM 
FORALL (uO:UO, SO:[UO -> UO]): init(uO) => inv(SO)(uO)

CInitPO: THEOREM
FORALL (uO:UO,ul:Ul, SI: [Ul->[I1->U1]]): init(uO) & init(uO,ul) => inv(Sl)(ul)

AlnvPO: THEOREM 
FORALL (uO:UO, SO:[UO -> UO]): init(uO) =>
(inv(SO)(uO) & trm(SO)(uO) => (trm(SO)(uO) &
(FORALL (uOp:UO): (trm(SO)(uO) & prd(SO)(uO,uOp)) => inv(SO)(uOp))))

CInvPO: THEOREM 
FORALL (uO:UO, Al,ul:Ul, il:Il, S1:[U1 -> [II -> Ul]]):
((inv(Sl)(ul) & trm(Sl)(ul,il)) => (trm(Sl)(ul,il) & (FORALL (ulp:Ul):
(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp)) => inv(Sl)(ulp))))

RetlnitPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, il:Il, SO:[UO->UO], SI:[Ul->[I1->U1]]): FORALL (ulp:Ul):
( init(uO,ulp) & W(uO,Al,ul,il)) => (EXISTS (uOp:UO): init(uOp) & G(uOp,ulp))

SubRefinementPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):
((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & 
trm(Sl)(ul,il) & W(uO,Al,ul,il))
=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (FORALL (ulp:Ul): (trm(Sl)(ul,il) & prd(Sl)(ul.il,ulp))
=> (EXISTS (uOp:UO): (trm(SO)(uO) & prd(SO)(uO,uOp)) & G(uOp,ulp))))))

ConcessionPO: THEOREM
FORALL (uO:UO, ul,Al:Ul, il:Il, SO:[UO -> UO], S1:[U1 -> [II -> Ul]]):
((inv(SO)(uO) & G(uO,ul) & inv(Sl)(ul) & 
trm(Sl)(ul,il) & W(uO,Al,ul,il))
=> (trm(SO)(uO) & trm(Sl)(ul,il) & (trm(SO)(uO)

=> (FORALL (ulp:Ul):(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp))
=> (EXISTS (uOp:UO):(trm(SO)(uO) & prd(SO)(uO.uOp)) & C(uOp,ulp,Al))))))

END IAPOs

No TCCs are generated.

Figure B.5: Input architecture retrenchment proof obligations in PVS
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DRPOs: THEORY 
BEGIN

IMPORTING DRSub

AlnitPO: THEOREM
FORALL (uO:UO,ul:Ul, S1:[U1 -> [II -> Ul]]):
(init(uO) & init(uO,ul)) => inv(Sl)(ul)

CInitPO: THEOREM
FORALL (u0:U0,u2:U2, S2: [U2 -> [12 -> U2]]):
(init(uO) & init(u0,u2)) => inv(S2)(u2)

AlnvPO: THEOREM 
FORALL (uO:UO,ul:Ul, il:Il, S1:[U1 -> [II -> Ul]]): 
inv(Sl)(ul) & trm(Sl)(ul,il) => (trm(Sl)(ul,il) &

(FORALL (ulp:Ul):(trm(Sl)(ul,il) & prd(Sl)(ul,il,ulp)) => inv(Sl)(ulp)))

CInvPO: THEOREM
FORALL (uO:UO, ul:Ul, u2:U2, il:Il, 12:12, A1:U1, A2:fp_num, S2:[U2 -> [12 -> U2]]): 
((inv(S2)(u2) & trm(S2)(u2,i2) & W(uO,Al,ul,A2,u2,il,i2) ) => (trm(S2)(u2,i2)
& (FORALL (u2p:U2): (trm(S2)(u2,i2) & prd(S2)(u2,i2,u2p)) => inv(S2)(u2p))))

RetlnitPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, A2:fp_num, u2:U2, 11:11, i2:I2, S1:[U1 -> [II -> Ul]], 
S2:[U2 -> [12 -> U2]]): FORALL (u2p:U2): (init(uO,u2p) & W(uO,Al,ul,A2,u2,il,i2))

=> (EXISTS (ulp:Ul): init(uO,ulp) & G(ulp,u2p))

SubRefinementPO: THEOREM
FORALL (SO:[UO -> UO], S1:[U1 -> [II -> Ul]], S2:[U2 -> [12 -> U2]], 

uO:UO, Al,ul:U1, A2,u2:U2, il:Il, i2:I2, A2:fp_num):
((inv(Sl)(ul) & G(ul,u2) & inv(S2)(u2) & trm(S2)(u2,i2) & W(uO,Al,ul,A2,u2,il,i2))

=> (trm(Sl)(ul,il) & trm(S2)(u2,i2) & (trm(Sl)(ul,il) => (FORALL (u2p:U2):
prd(S2)(u2,i2,u2p) => (EXISTS (ulp:Ul): prd(Sl)(ul,il,ulp) & G(ulp,u2p))))))

ConcessionPO: THEOREM
FORALL (SO:[UO -> UO], S1:[U1 -> [II -> Ul]], S2:[U2 -> [12 -> U2]], 

uO:UO, Al,ul:Ul, A2,u2:U2, il:Il, 12:12, A2:fp_num):
((inv(Sl)(ul) & G(ul,u2) & inv(S2)(u2) & trm(S2)(u2,i2) & W(uO, Al,ul,A2,u2,il,i2)) 

=> (trm(Sl)(ul,il) & trm(S2)(u2,i2) & (trm(Sl)(ul,il) => (FORALL (u2p:U2):
prd(S2)(u2,i2,u2p) => (EXISTS (ulp:Ul):prd(Sl)(ul,il,ulp) & C(ulp,u2p,A2))))))

END DRPOs

No TCCs are generated.

Figure B.6: Data representation retrenchment proof obligations in PVS
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OAPOs: THEORY 
BEGIN

IMPORTING OASub

AlnitPO: THEOREM
FORALL (u0:U0,u2:U2, S2: [U2 -> [12 -> U2]]):
(init(uO) k init(u0,u2)) => inv(S2)(u2)

CInitPO: THEOREM
FORALL (u0:U0,u3:U3, S3:[U3 -> [13 -> [U3,03]]]):
(init(uO) k init(u0,u3)) => inv(S3)(u3)

AlnvPO: THEOREM
FORALL (uO:UO,Al,ul:Ul, A2:fp_num, u2:U2, 11:11,12:12, S2:[U2 -> [12 -> U2]3): 
((inv(S2)(u2) k trm(S2)(u2,i2) k W(uO,Al,ul,A2,u2,il,i2)) => (trm(S2)(u2,i2) k 
(FORALL (u2p:U2): (trm(S2)(u2,i2) k prd(S2)(u2,i2,u2p)) => inv(S2)(u2p))))

CInvPO: THEOREM
FORALL (uO:UO, Al,ul:Ul, A2:fp_num, u2:U2, A3:fp_num, u3:U3, il:Il, i2:I2,i3:I3,

S3: [U3 -> [13 -> [U3,03]]]): #/,(init(uO) k init(u0,u3)) =>
((inv(S3)(u3) k trm(S3)(u3,i3) k W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) =>
(tnn(S3)(u3,i3) k (FORALL (u3p:U3, o3:03):
(trm(S3)(u3,i3) k prd(S3)(u3,i3,u3p,o3)) => inv(S3)(u3p))))

RetlnitPO: THEOREM
FORALL (uO:UO, ul:Ul, u2:U2, u3:U3, il:Il, i2:I2, i3:I3, A1:U1, A2:fp_num, A3:fp_num, 

S2:[U2->[I2->U2]], S3:[U3->[13->[U3,03]]]):
FORALL (u3p:U3): (init(u0,u3p) k W(u0,Al,ul,A2,u2,A3,u3Jil,i2,i3)) =>
(EXISTS (u2p:U2): init(u0,u2p) k G(u2p,u3p))

SubRefinementPO: THEOREM 
FORALL (uO:UO, ul,Al:Ul, u2:U2, A2:fp_num, u3:U3, A3:fp_num, il:Il, i2:I2, i3:I3,
SO:[UO->UO], SI:[U1->[I1->U1]], S2:[U2->[I2->U2]], S3:[U3->[I3->[U3,03]]]):
((inv(S2)(u2) k G(u2,u3) k inv(S3)(u3) k trm(S3)(u3,i3) k 
W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) => (trm(S2)(u2,i2) k trm(S3)(u3,i3) k 
(trm(S2)(u2,i2) => (FORALL (u3p:U3,o3:03):prd(S3)(u3,i3,u3p,o3)

=> (EXISTS (u2p:U2):prd(S2)(u2,i2,u2p) k G(u2p,u3p))))))

ConcessionPO: THEOREM 
FORALL (uO:UO, ul,Al:Ul, u2:U2, A2:fp_num, u3:U3, A3:fp_num, il:II, i2:I2, i3:I3,
SO:[UO->UO], SI:[Ul->[I1->U1]], S2:[U2->[I2->U2]], S3:[U3->[I3->[U3,03]]]):
((inv(S2)(u2) k G(u2,u3) k inv(S3)(u3) k trm(S3)(u3,i3) k 
W(u0,Al,ul,A2,u2,A3,u3,il,i2,i3)) => (trm(S2)(u2,i2) & trm(S3)(u3,i3) k 
(trm(S2)(u2,i2) => (FORALL (u3p:U3,o3:03):prd(S3)(u3,i3,u3p,o3)

=> (EXISTS (u2p:U2): prd(S2)(u2,i2,u2p) k C(u2p,u3p,o3,A3))))))
END OAPOs

No TCCs are generated

Figure B.7: Output-architecture retrenchment proof obligations in PVS
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B.2 Evolving Retrenchment in PVS

D A d d E x a ct:  THEORY 
BEGIN

UO: TYPE = [ #  a O : r e a l , b O : r e a l  # ]
SO:VAR [U 0 -> U 0 ]

i n i t D e f ( u O : U O ) : U 0  =  ( #  a 0 : = l / 4 ,  b 0 : = l / 4  # )  

i n i t ( u O : U O ):b o o l  =  ( a 0 ( u 0 ) = l / 4  & b 0 ( u 0 ) = l / 4 )

S O D e f(u O :U O ):U 0  = ( #  a O := a O (u O )+ b O (u O ), b O := b O (u O ) # )  

i n v ( S O ) ( u O : U O ) : b o o l  = r e a l? ( a O ( u O ) )  & r e a l? ( b O ( u O ) )  

t r m ( S O ) ( u O : U O ) :b o o l  =  TRUE

p r d ( S O ) ( u 0 : U 0 , u 0 p : U 0 ) : b o o l  =  (a O (u O p )= a O (u O )+ b O (u O ) & b O (u O p )= b O (u O ))  
END D A d d E x a ct

I A A d d E x a c t :  THEORY ’/ .U s e s  t h e  i d e a  o f  m a x im a l ly  a b s t r a c t  r e t r e n c h m e n t s  
BEGIN

IMPORTING D A d d E x a ct  
U lrT Y P E  =  [ #  a l : r e a l  # ]
I 1 : TYPE =  [ #  b l : r e a l  # ]

S1:V A R  [U l  - >  [ I I  - >  U l ] ]  
u l :  U l

i n i t D e f ( u O : U O ,u l : U l ) : U 1  = ( #  a l := a O ( u O )  # )  

i n i t ( u O : U O , u l : U l ) : b o o l  =  ( a l ( u l ) = a O ( u O ) )

S I D e f ( u l : U l ) ( i l : I l ) : U l  =  ( #  a l : = a l ( u l ) + b l ( i l )  # )  

i n v ( S l ) ( u l : U l ) : b o o l  =  r e a l ? ( a l ( u l ) )  

t r m ( S l ) ( u l : U 1 , i l : I l ) :  b o o l  =  r e a l ? ( b l ( i l ) )

p r d ( S l ) ( u l : U l ,  i l : I l ,  u l p : U l ) :  b o o l  =  r e a l ? ( b l ( i l ) )  <=> a l ( u l p ) = a l ( u l ) + b l ( i l )  

G (u O : UO, u l : U l ) : b o o l  = ( a l ( u l )  =  a O (u O ))

W (uO:UO, A l , u l : U l ,  i l : I I ) : b o o l  =  b l ( i l ) = b O ( u O )  & i n i t ( u O )  & i n i t ( u O . u l )

C (u pO :U O , u p l : U l ,  A 1 : U 1 ):  b o o l  =  f a l s e  
END IA A d d E x a c t

No TCCs g e n e r a t e d

Figure B.8: DAddExact and IAAddExact in PVS
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D R A d d E x a ct: THEORY 
BEGIN

IMPORTING I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ] ,  IA A d d E x a c t  
U 2 : TYPE = [ #  a 2 : fp _ n u m  # ]
1 2 : TYPE = [ #  b 2 : fp _ n u m  # ]
S2:V A R  [U 2 - >  [ 1 2  - >  U 2 ] ]  
u 2 :  U2 
i 2 :  1 2

i n i t D e f ( u 0 : U 0 ,u 2 : U 2 ) : U 2  =  ( #  a 2 : = r e a l _ t o _ f p ( a O ( u O ) ) # )  

i n i t ( u 0 : U 0 , u 2 : U 2 ) : b o o l  = ( a 2 ( u 2 )  =  r e a l _ t o _ f p ( a O ( u O ) ) )

S 2 D e f ( u 2 : U 2 ) ( i 2 : 1 2 ) :  U 2 =  I F  (NOT o v e r _ u n d e r ? ( v a l u e ( f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) t t o _ n e a r e s t ) ) ) )  THEN 
( #  a 2 : = f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) ,  t o _ n e a r e s t )  # )  ELSE ( #  a 2 : = r e a l _ t o _ f p ( l / 3 2 )  # )  ENDIF

i n v ( S 2 ) ( u 2 : U 2 ) : b o o l  =  f i n i t e ? ( a 2 ( u 2 ) )

t r m ( S 2 ) ( u 2 : U 2 ,  i 2 : I 2 ) :  b o o l  =  f i n i t e ? ( b 2 ( i 2 ) )

p r d ( S 2 ) ( u 2 : U 2 ,  i 2 : I 2 ,  u 2 p : U 2 ) :  b o o l  =  f i n i t e ? ( b 2 ( i 2 ) )  =>
((N O T o v e r _ u n d e r ? ( v a l u e ( f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) ,  t o . n e a r e s t ) ) ) )  &

(u 2 p  = ( # a 2 : = f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) ,  t o _ n e a r e s t ) # ) ) )
OR ( ( o v e r _ u n d e r ? ( v a l u e ( f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) ,  t o _ n e a r e s t ) ) ) )  & (u 2 p  = ( # a 2 : = r e a l _ t o _ f p ( l / 3 2 ) # ) ) )

G ( u l : U l ,  u 2 : U 2 ) :  b o o l  =  (NOT o v e r _ u n d e r ? ( a l ( u l ) ) )  =>  ( R e l E r r o r ( v a l u e ( a 2 ( u 2 ) ) ,  a l ( u l ) )  <= 0 )

W (u 0 :U 0 , A 1 :U 1 , u l : U l ,  A 2 : fp _ n u m  , u 2 : U 2 ,  i l : I l ,  i 2 : I 2 )  : b o o l  =  i n i t ( u 0 , u 2 )  &
W ( u O , A l , u l , i l )  & ((N O T o v e r _ u n d e r ? ( b l ( i l ) ) )  = >  ( b 2 ( i 2 ) = r e a l _ t o _ f p ( b l ( i l ) ) ) )

C ( u l p : U l ,  u 2 p : U 2 ,  A 2 : f p _ n u m ):  b o o l  = f a l s e  
END D R A d d E xact

*/. A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]
' / .g e n e r a t e d  f r o m  a s s u m p t i o n  I E E E _ 8 5 4 .E x p o n e n t _ r a n g e  ' / .u n f in i s h e d  

IM P _IE E E _854_T C C 1: OBLIGATION ( 2  -  - 1 )  /  6  > 5 ;

'/. A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]
' / .g e n e r a t e d  f r o m  a s s u m p t i o n  IF.F.F._854. S i g n i f i c a n d _ s i z e  '/. u n f i n i s h e d  

IM P _IE E E _854_T C C 2: OBLIGATION 2  " ( 6  -  1 )  >= 1 0  “ 5 ;

'/. A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]
' / .g e n e r a t e d  f r o m  a s s u m p t i o n  IE E E _ 8 5 4 . E x p o n e n t  .A d j u s t m e n t  '/. u n f i n i s h e d  

IM P _IE E E _854_T C C 3: OBLIGATION a b s ( 6  -  ( 3  * ( 2  -  - 1 )  /  4 ) )  <= 6  & i n t e g e r ? ( 6  /  1 2 ) ;

'/. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  1 5 ,  c o lu m n  3 0 )  f o r  f p _ a d d ( a 2 ( u 2 ) , b 2 ( i 2 ) ,  t o . n e a r e s t ) :
' / .e x p e c t e d  t y p e  ( f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ] )  '/,u n f i n i s h e d  

S 2 D e f_ T C C l:  OBLIGATION
FORALL ( i 2 :  1 2 ,  u 2 :  U 2 ) : f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ]  ( f p _ a d d [ 2 ,  6 ,  6 ,  2 ,  - I ] ( u 2 ‘ a 2 ,  i 2 ‘ b 2 ,  t o . n e a r e s t ) ) ;

'/. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  3 2 ,  c o lu m n  4 9 )  f o r  a 2 ( u 2 ) :  e x p e c t e d  t y p e  ( f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ] )
'/, u n f i n i s h e d  

G .TC C 2: OBLIGATION
FORALL ( u l :  U l ,  u 2 :  U 2 ) : (NOT o v e r . u n d e r ? [ 2 ,  6 ,  6 ,  2 ,  - l ] ( u l ca l ) )  IM PLIES f i n i t e ? [ 2 ,  6 ,  2 ,  - I ] ( u 2 ‘ a 2 ) ;

'/, S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  3 5 ,  c o lu m n  2 2 )  f o r  b l ( i l ) :  e x p e c t e d  t y p e  r e a l  % p ro v ed  -  i n c o m p l e t e  
VLTCC1: OBLIGATION

FORALL ( A l ,  i l :  I I ,  uO : UO, u l :  U l ,  u 2 :  U 2 ) : W (uO, A l ,  u l ,  i l )  AND i n i t ( u O ,  u 2 )  IM PLIES r e a l _ p r e d ( i l ‘ b l ) ;

Figure B.9: DRAddExact in PVS
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O A A d d E x a ct: THEORY 
BEGIN

IMPORTING I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]  , D R A dd E xact '/,8 - b i t  a r c h i t e c t u r e  
R e sp o n s e :T Y P E  ■= -[o k , f a i l >
U 3:TY PE = [ #  a 3 : fp _ n u m  # ]
1 3 : TYPE = [ #  b 3 : fp _ n u m  # ]
0 3 : TYPE = [#  r e s p : R e s p o n s e  # ]
S 3 : VAR [U 3 - >  [1 3  - >  [U 3 , 0 3 ] ] ]  
u 3 :  U3 
i 3 :  13

i n i t D e f ( u 0 : U 0 ,u 3 : U 3 ) : U 3  =  ( #  a 3 : = r e a l _ t o _ f p ( a O ( u O ) )  # )  

i n i t ( u 0 : U 0 , u 3 : U 3 ) : b o o l  = ( a 3 ( u 3 )  =  r e a l _ t o _ f p ( a O ( u O ) ) )

S 3 D e f ( u 3 : U 3 ) ( i 3 : I 3 ) : [U 3 , 0 3 ]  = I F  (NOT o v e r _ u n d e r ? ( v a l u e ( f p _ a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) ,  t o _ n e a r e s t ) ) ) )  
THEN ( ( #  a 3 : = f p _ a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) ,  t o _ n e a r e s t )  # ) ,  ( #  r e s p : = o k  # ) )
ELSE ( ( #  a 3 : = r e a l _ t o _ f p ( M a c h E p s ( 2 , 5 ) )  # ) ,  ( #  r e s p : = f a i l  # ) )  ENDIF

i n v ( S 3 ) ( u 3 : U 3 ) : b o o l  =  f i n i t e ? ( a 3 ( u 3 ) )

t r m ( S 3 ) ( u 3 : U 3 ,  i 3 : I 3 ) :  b o o l  = f i n i t e ? ( b 3 ( i 3 ) )

p r d ( S 3 ) ( u 3 : U 3 ,  i 3 : I 3 ,  u 3 p : U 3 ,  o 3 : 0 3 ) :  b o o l  =  f i n i t e ? ( b 3 ( i 3 ) )  =>
((N O T o v e r _ u n d e r ? ( v a l u e ( f p . a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) ,  t o _ n e a r e s t ) ) ) )  &

( u 3 p  = ( # a 3 : = f p _ a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) , t o _ n e a r e s t ) # )  & r e s p ( o 3 ) = o k ) >
OR ( ( o v e r _ u n d e r ? ( v a l u e ( f p . a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) ,  t o _ n e a r e s t ) ) ) )  &

(u 3 p  =  ( # a 3 : = r e a l _ t o _ f p ( M a c h E p s ( 2 , 5 ) ) # )  & r e s p ( o 3 ) = f a i l ) )

G (u 2 : U 2 ,  u 3 : U 3 ) :  b o o l  =  (NOT o v e r _ u n d e r ? ( v a l u e ( a 2 ( u 2 ) ) ) )  =>
( R e l E r r o r ( v a l u e ( a 3 ( u 3 ) ) . v a l u e ( a 2 ( u 2 ) ) )  <= 0 )

W (u 0 :U 0 , A l , u l : U l ,  A 2 : fp _ n u m , u 2 : U 2 ,  A 3 : fp _ n u m , u 3 : U 3 ,  1 1 : 1 1 ,  i 2 : I 2 ,  i 3 : I 3 ) :  b o o l =  
i n i t ( u 0 , u 3 )  & W ( u O , A l , u l , A 2 , u 2 , i l , i 2 )  & f i n i t e ? ( b 2 ( i 2 ) )  &
((N O T o v e r _ u n d e r ? ( v a l u e ( b 2 ( i 2 ) ) ) )  =>  ( b 3 ( i 3 ) = b 2 ( i 2 ) ) )

C (u 2 p : U 2 ,  u 3 p : U 3 ,  o 3 : 0 3 ,  A 3 : f p _ n u m ) : b o o l  =  f a l s e
7,R e l E r r o r ( v a l u e ( a 3 ( u 3 p ) ) ,  v a l u e ( a 2 ( u 2 p ) ) ) < = 2 * M a c h E p s( 2 , 5 )

END O A A ddE xact

7. A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]  :
7 .g e n e r a t e d  f r o m  a s s u m p t i o n  IF .E F ._854. E x p o n e n t  . .r a n g e  ' / u n f i n i s h e d

IM P _IE E E _854_T C C 1: OBLIGATION ( 2  -  - 1 )  /  6  > 5 ;

'/, A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ]  :
' / .g e n e r a t e d  f r o m  a s s u m p t i o n  I E E E _ 8 5 4 .S i g n i f i c a n d _ s i z e  7 . u n f i n i s h e d

IM P _IE E E _854_T C C 2: OBLIGATION 2  ‘  ( 6  -  1 )  >=  1 0  “ 5 ;

'/, A s s u m in g  TCC g e n e r a t e d  ( a t  l i n e  3 ,  c o lu m n  1 2 )  f o r  I E E E _ 8 5 4 [ 2 ,  6 ,  6 ,  2 ,  - 1 ] :
' / .g e n e r a t e d  f r o m  a s s u m p t i o n  I E E E _ 8 5 4 .E x p o n e n t .A d j u s t m e n t  / . u n f i n i s h e d

IM P _IE E E _854_T C C 3: OBLIGATION a b s ( 6  -  ( 3  * ( 2  -  - 1 )  /  4 ) )  <=  6  & i n t e g e r ? ( 6  /  1 2 ) ;

7. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  1 7 ,  c o lu m n  3 0 )  f o r  f p _ a d d ( a 3 ( u 3 ) , b 3 ( i 3 ) ,  t o . n e a r e s t ) :
' / .e x p e c t e d  t y p e  ( f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ]  '/, u n f i n i s h e d

S 3 D e f_ T C C l:  OBLIGATION
FORALL ( i 3 :  1 3 ,  u 3 :  U 3 ) : f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ] ( f p _ a d d [ 2 ,  6 ,  6 ,  2 ,  - I ] ( u 3 ‘ a 3 ,  i 3 ‘ b 3 ,  t o . n e a r e s t ) ) ;

'/. S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  3 4 ,  c o lu m n  2 7 )  f o r  a 2 ( u 2 ) :  e x p e c t e d  t y p e  ( f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ] )
'/, u n f i n i s h e d

G .T C C 1: OBLIGATION FORALL ( u 2 :  U 2 ) : f i n i t e ? [ 2 ,  6 ,  2 ,  - I ] ( u 2 ‘ a 2 ) ;

'/, S u b ty p e  TCC g e n e r a t e d  ( a t  l i n e  3 5 ,  c o lu m n  2 0 )  f o r  a 3 ( u 3 ) :  e x p e c t e d  t y p e  ( f i n i t e ? [ 2 ,  6 ,  2 ,  - 1 ] )
'/. u n f i n i s h e d

G .TC C 2: OBLIGATION FORALL ( u 2 :  U 2 , u 3 :  U 3 ) : (NOT o v e r . u n d e r ? [ 2 ,  6 ,  6 ,  2 ,  - l ] ( v a l u e [ 2 ,  6 ,  2 ,  - I ] ( u 2 ‘ a 2 ) ) )
IM PLIES f i n i t e ? [ 2 ,  6 ,  2 ,  - I ] ( u 3 ‘ a 3 ) ;

Figure B. 10: OAAddExact in PVS


