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A b s t r a c t

The research project has focused on the structural and functional 

characterization of a gene denoted PtCPFl (Cryptochrome/Photolyase Family 1) 

that encodes a putative photoreceptor in the diatom Phaeodactylum tricomutum. 

Cryptochromes (cry) are blue light receptors that share sequence similarity with 

photo lyases, flavoproteins that catalyze the repair of UV light-damaged DNA.

In order to characterize the diatom PtCPFl gene, expression at both 

transcriptional and translational levels have been performed in time course 

experiments designed to study circadian rhythmicity and acute light induction 

responses. From this analysis PtCPFl was shown to be strongly induced under blue 

light and to be expressed diumally. In order to understand better the function of the 

gene product, the protein has been expressed and purified in E. coli. Spectral and 

biochemical analyses of the purified protein have shown that PtCPF 1 is a blue-light- 

absorbing protein with DNA repair activity. On the other hand, localization studies 

in diatom cells have evidenced the constitutive nuclear localization of the protein.

Interestingly, comparative analysis of the diatom PtCPFl protein has 

revealed it to be more similar to the animal cryptochromes than to plant 

counterparts. Since animal crys act as components of the circadian clock controlling 

daily physiological and behavioural rhythms and as photoreceptors that mediate 

entrainment of the circadian clock to light, it was important to elucidate the function 

of the PtCPFl protein both in a heterologous system and in an in vivo system. 

Remarkably, transcription assays developed in mammalian cells have evidenced a 

repressor activity of the PtCPFl protein within the clock machinery, mimicking the 

function of animal crys. Furthermore, gene expression studies of transgenic diatom



lines overexpressing PtCPFl have indicated that the protein acts as a blue light 

photoreceptor because it can modulate several blue light-dependent responses. 

Therefore, this research project has identified a novel protein that displays both blue 

light photoreceptor activity as well as DNA repair activity. This protein could, in 

fact, be considered the missing link in the evolutionary history of the 

Cryptochrome/Photolyase family.



Ch a pter  I - In t r o d u c t io n



1.1 Diatoms

1.1.1 General Characteristics

Oceanic primary productivity is a major effector of global biogeochemical 

cycles. In fact, the oceanic biota can respond and affect the natural climatic 

variability by feedback from primary productivity, which influences the 

geochemistry of the Earth profoundly (Falkowski P.G. et al., 1998). In some regions 

such as lakes or coastal oceans, phytoplankton blooms can fix approximately the 

same amount of carbon, a few grams per square meter per day, as a terrestrial forest 

(Smetacek V., 2001). Today, the oceans cover 70% of the Earth’s surface, and on a 

global scale they are thought to contribute approximately one half of the total 

primary productivity of the planet. In contemporary oceans marine phytoplankton is 

composed of photosynthetic bacteria such as prochlorophytes and cyanobacteria, and 

eukaryotic microalgae such as chromophytes (brown algae), rhodophytes (red algae), 

and chlorophytes (green algae).

Diatoms are Bacillariophyceae within the division Heterokontophyta, a group 

of unicellular chromophyte algae that colonize the oceans down to depths to which 

photosynthetically available radiation can penetrate. They are thought to be the most 

important group of eukaryotic phytoplankton such that their ecological relevance is 

very impressive. In fact, diatoms are responsible for approximately 40% of marine 

primary productivity and contribute close to one quarter of global carbon fixation. 

They are widely distributed and highly diverse. There are well over 250 genera with 

perhaps as many as 1 0 0 ,0 0 0  existing species with a wide variety of shapes and sizes 

(Norton T.A. et a l , 1996). Giant diatoms can reach 2-5 mm in size whereas the 

small-celled species are in a range of 5-50 pm. Diatoms can exist as planktonic 

forms, found in all open water masses, and benthic forms that can grow on



sediments, attached to rocks or macroalgae. Some species can also be found in soil. 

Curiously, diatoms constitute a large portion of the algae associated with sea ice in 

the Antarctic and Arctic, and can sometimes form symbioses with nitrogen-fixing 

bacteria and cyanobacteria in warm oligotrophic seas (Villareal T.A., 1989).

In spite of their ecological relevance, very little is known about the basic 

biology of diatoms (Falciatore A. & Bowler, C. 2002). The molecular secrets that 

are behind their success are not known. One possibility is that diatoms have an 

extraordinary capacity to adapt to different environments. Moreover, planktonic 

evolution seems to be ruled by protection and not competition. In fact, Smetacek has 

argued that the many different shapes and sizes of diatoms may reflect defence 

responses to specific attack systems (1999; 2001).

It has also been proposed that the major factor determining ecological 

success is the diatom siliceous cell wall. This is also their characteristic feature. For 

example, a recent study in the diatom Thalassiosira weissflogii reported an increase 

in cell wall silification induced by grazing pressure. Such observations corroborate 

the idea that plant-herbivore interactions, beyond grazing sensu stricto, contribute to 

drive ecosystem structures and biogeochemical cycles in the ocean (Pondaven P. et 

al, 2007).

The highly patterned siliceous external cell wall is composed of amorphous 

silica [(Si0 2 )n(H2 0 )], and is known as the frustule (Fig. 1A). It is constructed of two 

almost equal halves, with the smaller fitting into the larger like a Petri dish. The 

larger of the two halves is denoted the epitheca whereas the inner one is denoted the 

hypotheca. Typically each theca is composed of two parts: the valve (which 

constitutes the larger outer surface) and a girdle (circular bands of silica attached to 

the edge of the valve). Pattern design of the frustule is reproduced from generation 

to generation, implicating a strict genetic control of this unknown process. The three



dimensional structure of the silica cell wall is also being widely studied for 

nanotechnological applications (Gordon R. & Parkinson J., 2005).

Diatoms are generally classified into two major groups depending on the 

symmetry of their frustule (Van Den Hoeck C. et a l , 1997). Centric diatoms are 

radially symmetrical and mostly planktonic species, whereas pennate diatoms have 

bilateral symmetry and many genera possess an elongated slit in one or both 

frustules called the raphe. This latter group is prevalently benthic, and live attached 

to sediments or other surfaces and is able to glide along surfaces thanks to the 

presence of the raphe (Fig. 1A). Motility is thought to be based on an actin/myosin 

system (Poulsen N.C. et a l , 1999), and polysaccharides are actively secreted from 

the raphe. How this process occurs is not well understood.
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1.1.2 Cell Division and Cell Wall Biogenesis

Diatom cell division typically proceeds through asexual mitotic divisions to 

ensure the diploid vegetative state. As previously described, diatom cells are 

surrounded by a frustule which is a rigid siliceous cell wall composed of two valves. 

This shell precludes cell growth expansion; therefore the two daughter cells must 

generate inside the parent cell (Fig. IB). The epitheca of the parent cell is used as a 

guide to build a new hypotheca, whereas the other daughter cell uses the parental 

hypotheca to create an inner theca, such that the parental hypotheca becomes the 

epitheca of the daughter cell. The consequence of this process is a reduction in size 

during successive mitotic divisions in one of the two daughter cells. Regeneration of 

the original size typically occurs via sexual reproduction (see later).

The biogenesis of silica valves is poorly understood, but largely studied 

based on microscopical observations (Pickett-Heaps J. et al., 1990). Prior to cell 

division the cell elongates, pushing the epitheca away from the hypotheca, and 

nuclear division occurs by an “open” mitosis. The two daughter nuclei move slightly 

in opposite directions and a microtubule center positions itself between each nucleus 

and the plasma membrane regions where the new hypotheca will be generated. 

Remarkably, a specialized vesicle denoted silica deposition vesicle (SDV) forms in 

the central region that becomes the “pattern center”. The SDV expands from the 

center along the rims of the valves, spreading a precise silica lattice network that is 

then coated with an organic matrix to prevent its dissolution. Once the new valve is 

complete, the SDV membrane is fused to the plasma membrane, forming the 

silicalemma, and finally the entire structure is exocytosed (Zurzolo C. & Bowler C.,

2001).

As previously mentioned, gametogenesis occurs when cell size decreases to a 

species-specific critical size threshold: approximately 30-40% of the maximum size.



The resulting male and female gametes combine to create a diploid auxospore that is 

surrounded by a special organic or inorganic silica wall which allows expansion. 

Auxospore expansion is a well-controlled process (Mann D.G., 1993), during which 

the shape of the new enlarged cell is generated. In centric diatoms, sex is almost 

universally oogamous, with flagellated male gametes, whereas in the pennate 

diatoms there is more variability (anisogamy, isogamy, automixis). However, only 

fragmentary information is available because diatom sexuality is in fact limited to 

brief periods (minutes or hours) that may occur less than once a year in some species 

and that involve only a small number of vegetative cells within a population (Mann 

D.G., 1993).

1.1.3 Diatom Photosynthesis

Like in other photosynthetic eukaryotes, the photosynthetic apparatus of 

diatoms is organized within plastids inside the cell. However, a peculiar 

characteristic of diatom plastids is that they are enclosed within four membranes 

rather than two membranes as in land plants (see section 1.1.4). Diatom plastids 

have been denoted phaeoplasts to distinguish them from the rhodoplasts and 

chloroplasts of the red and green algae, respectively. In fact, diatoms are brown in 

color because the fucoxanthin, an accessory carotenoid pigment, is located together 

with chlorophyll a and c in their light-harvesting complexes. The thylakoid 

membranes display the typical structure of the Heterokontophyta, being grouped into 

stacks (lamellae) of three, all enclosed by a girdle lamella. Generally, centric 

diatoms have a large number of small discoid plastids, whereas pennate diatoms tend 

to have fewer plastids, sometimes only one, as is the case for the model species 

Phaeodactylum tricomutum.



Fucoxanthin and chlorophylls are bound within the light-harvesting antenna 

complexes by Fucoxanthin, Chlorophyll cr/c-binding Proteins (FCP). The FCP 

proteins are integral membrane proteins localized on the thylakoid membranes and 

their primary function is to target light energy to chlorophyll a within the 

photosynthetic reaction centers. In the pennate diatom P. tricomutum, previously 

studies have identified two gene clusters containing, respectively, four and two 

individual FCP genes (Bhaya D. & Grossman A.R., 1993). They show sequence 

similarity to the Chlorophyll a/Z>-binding protein genes (CAB) of plants and green 

algae and, like CAB proteins, diatom FCP proteins are encoded in the nucleus. 

However, after the sequencing of the P. tricomutum and Thalassiosira pseudonana 

genomes (see section 1.1.5) it is possible to talk of 36 FCP members in P. 

tricomutum and at least 30 genes in T. pseudonana, that appear to belong to 

different categories. In addition, FCP genes appear more scattered all over the 

genome than within a cluster distribution (Beverley Green, personal 

communication).

In Thalassiosira weissflogii, semi-quantitative RT-PCR analysis of FCP gene 

expression revealed that the transcript levels decrease during prolonged darkness and 

are highly induced following a subsequent shift to white light (Leblanc C. et al., 

1999). Recently, an accurate expression study of the P. tricomutum FCPB gene has 

been described from our laboratory. This quantitative real time PCR-based approach 

confirmed the diel regulation of the transcript. More specifically, FCPB mRNA 

levels increase throughout the light period, peaking in the early afternoon, and 

decrease dramatically during the dark period (Siaut M. et al., 2007).

Interestingly, C4 photosynthesis has recently been proposed in diatoms 

(Reinfelder J.R. et al., 2000). This specialized form of photosynthesis allows a more 

efficient utilization of available CO2 and is restricted to a few land plants, such as
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sugar cane and maize. In addition, the report of Reinfelder J.R. et al (2000), 

suggested that C4 carbon metabolism may be confined to the cytoplasm. If shown to 

be a universal feature of diatoms, C4 photosynthesis may help to explain the 

ecological success of diatoms in the world’s ocean. Unfortunately, the diatom whole 

genome sequences that have recently become available (see section 1.1.5) have not 

shed much light on this hypothesis.

1.1.4 Diatom Phylogeny

The plastids of all photosynthetic organisms are likely to be descendants of a 

primary endosymbiotic relationship in which a cyanobacterium was engulfed by (or 

invaded) a heterotrophic eukaryote, and eventually lost most of its genes by transfer 

to the host nucleus. This ancestral photosynthetic lineage diversified into all the 

modem groups with “primary” chloroplasts: the rhodophyte (red) algae, the 

glaucophytes, the green algae, and the higher plants. Current knowledge suggests 

that the initial endosymbiotic event occurred around 1.5 billion years ago and gave 

rise eventually to two major plastid lineages: chloroplasts and rhodoplasts. Green 

algae and their descendants, the higher plants, contain chloroplasts and use 

chlorophyll a and b in their light harvesting complexes, whereas red algae contain 

rhodoplasts and utilize chlorophyll a and phycobilisomes for the capture of light 

energy.

Subsequently, a secondary endosymbiotic event occurred. A non

photosynthetic eukaryotic host acquired a eukaryotic endosymbiont that already had 

a chloroplast, giving rise to the chromophyte algae (Gibbs S.P., 1981; Bhattacharya 

D. & Medlin L., 1995). Molecular phylogenetic studies and paleoclimatological 

reconstructions (Kooistra W.H.C.F. et al., 2003) have suggested that this event 

occurred at around the Permian-Triassic boundary (245 million years ago), which

- 11 -



was a period of intense global changes such as an extreme shortage of dissolved 

inorganic carbon in ocean surface layers and essentially anoxic deep water (Lee R.E. 

& Kugrens P., 2000). The endosymbiosis events may have conferred advantages in 

relation to carbon acquisition for photosynthesis at a time when CO2 was present at 

unprecedented low concentrations.

In fact, the chromophyte algae such as diatoms differ fundamentally from the 

majority of photosynthetic eukaryotes for the organization of their plastid 

membranes. The plastids of red and green algae and plants are normally surrounded 

by two membranes, whereas diatom plastids have four membranes. Thus, they 

required considerable adaptation at the cellular level in term of intracellular transport 

and the coordination of cellular activities (Cavalier-Smith T., 2000). In some 

chromophytes, it is possible to observe a second nucleus (the nucleomorph) between 

the outer and inner two membranes. The sequencing of the nucleomorph of 

Guillardia theta showed the lack of almost all genes for metabolism, which have 

been transferred to the nucleus of the secondary host, and the presence of many 

genes for plastid-localized proteins, explaining why the nucleomorph has persisted 

during evolution (Douglas S. et al., 2001). Comparison of plastid genomes strongly 

indicates that diatoms acquired their chloroplast from a red algal endosymbiont 

(Oudot-Le Secq M.P. et al., 2006). However, diatoms have not retained phycobilins 

for light harvesting and instead use chlorophyll a and c together with the brown 

carotenoid fucoxanthin.

The evolutionary history of diatoms can be reconstructed from the fossil 

record. Diatoms possess a marvelous paleontoligical record. The oldest diatom 

fossils were found in Lower Cretaceous sediments and they clearly represent centric 

species. On the contrary, pennate diatoms have never been observed in the Lower

- 12-



Cretaceous; they appear only around 90 million years ago (Koiistra W.H.C.F. et al, 

2003).

1.1.5 Diatom Genomics

In these last years a major focus of the marine phytoplankton community has 

centred on whole genome sequencing projects, with the hope of improving our 

understanding of the physiology and cell biology of these organisms. In particular, 

between 2003 and 2007, the complete nuclear, mitochondrial, and plastid genome 

sequences have become available for the diatoms Thalassiosira pseudonana 

(Armbrust E.V. et a l, 2004) and Phaeodactylum tricomutum (see Results section), 

the red alga Cyanidioschyzon merolae (Matsuzaki M. et a l, 2004), and the green 

algae Ostreococcus tauri (Derelle E. et a l, 2006), Ostreococcus lucimarinus 

(Palenik B. et al, 2007) and Chlamydomonas reinhardtii ('http://genome.igi-psf.org).

The laboratory in which this thesis was conducted has been directly involved 

in the development of genome sequencing projects of the two diatoms, T. 

pseudonana and P. tricomutum. Thanks to this information, it has been possible to 

reveal some molecular features of diatom biology. The T. pseudonana nuclear 

genome is 34.5 mega base pairs distributed in 24 chromosomes with a prediction of 

around 11,000 genes (Armbrust E.V. et al., 2004). The P. tricomutum genome is 

slightly smaller (27 mega base pairs), with approximately the same number of 

chromosomes and genes.

Interestingly, almost half of diatom proteins have similar alignment scores to 

their closest homologs in plant, red algal, and animal genomes, underscoring their 

evolutionarily history and, most notably, the diatom genomes encode multiple 

transporters for nitrate and ammonium, as well as a complete urea cycle, previously 

known only in animals. The role and degree of conservation of the urea cycle in
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marine diatoms is still unclear, although it is possible to suggest several important 

roles, such as signaling for defense or cell death, a way to produce intermediate 

molecules for silica precipitation, and as a mechanism to store energy (Allen A.E. et 

al., 2006).

The marine pennate diatom Phaeodactylum tricomutum was chosen as the 

second diatom for whole genome sequencing for several reasons. Primarily this 

species has been used in laboratory-based studies of diatom physiology for several 

decades. Furthermore, scientists have progressively established molecular tools 

aimed at using P. tricomutum as a model organism (Falciatore A. & Bowler C., 

2002). Unlike other diatoms, this species can exist in different morphotypes and the 

changes in cell shape can be stimulated by environmental conditions. Moreover it 

can grow in the absence of silicon because the biogenesis of silicified frustules is 

facultative. These features can be used to explore the molecular basis of cell shape 

control and morphogenesis, and the exploration of silica-based nanofabrication, by 

modulating gene expression by reverse genetic approaches.

Another interesting aspect is the availability of a large EST (expressed 

sequence tag) collection, generated by our laboratory in recent years. Around

120,000 ESTs have now been assembled and organized in the Diatom EST Database 

(Maheswari U. et al., 2005), and digital gene expression profiles from cells grown in 

14 different conditions can be readily accessed 

(http://www.biologie.ens.fr/diatomics/EST2).

http://www.biologie.ens.fr/diatomics/EST2


1.2 Light and Photoreceptors

1.2.1 General Introduction

Sunlight is a primary source of energy for life on Earth and is also a critical 

information carrier for most organisms. Plants and animals perceive the light 

environment to gain information about their external world (local surroundings, time 

of day, season of the year, etc...).

As a result of selection during evolution, organisms have optimised 

mechanisms for the perception of light signals from the natural environment by 

utilizing light-sensing proteins known as photoreceptors. A key feature of 

photoreceptors is the presence of a chromophore able to capture selective light 

wavelengths. On a spectral basis most biological responses can be confined solely or 

in concert to the red, blue, or near-UV region. The UV region of the spectrum is 

subdivided into UV-C (200-280 nm), UV-B (280-320 nm) and UV-A (320-400 nm) 

and the term “near-UV” typically describes the region above 300 nm. Many 

different photoreceptor proteins have now been described in the literature, although 

they can all be classified into a limited number of families, based on the chemical 

structure of the light-absorbing chromophores that are utilized.

Six photoreceptor families have been characterized to date: rhodopsins, 

phytochromes, xanthopsins, cryptochromes, phototropins, and BLUF proteins (Van 

Der Horst M.A. & Hellingwerf K.J., 2004, Falciatore A. & Bowler C., 2005). The 

primary photochemistry of activation of these photoreceptor proteins changes the 

configuration of their chromophore. This change in configuration then initiates 

formation of a signalling state of sufficient stability to communicate the process of 

photon absorption to a downstream signal transduction partner. The general 

characteristics of these photoreceptor classes are summarized in Table 1.1, but it is
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important to remember that the photobiology of many of these complex molecules 

remains to be clarified.

Rhodopsin photoreceptors are a family of membrane bound, heptahelical G- 

Protein-Coupled Receptors (GPCRs) characterized by their ability to covalently bind 

a retinaldehyde chromophore using a lysine residue located in the seventh 

transmembrane a-helix. Absorption of photons by the chromophore causes its 

isomerization, with a consequent conformational change in the molecule that allows 

the activation of the phototransduction cascade (Bellingham J. & Foster R.G., 2002).



Table 1.1

Photosensor Family Chromophores Key structural element

Phytochromes phytochromobilin N. J  
W ' T 1 

j r * \  w- (
rtj ib

\ /  1 1 
f f ,r H H

■sv

•o—f  ^—% p

Rhodopsins retinal

Xanthopsins coumaric acid
V -

Cryptochromes R

x i  XI
Q

Phototropins 

BLUF proteins

flavin

Table 1.1. Classes of Photosensor Families. For descriptions see text.
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This photoreceptor family includes the visual rhodopsins of Eukarya, those 

from Archaea and the ion-translocating prokaryotic rhodopsins. Interestingly, the 

family still continues to expand. New members have been discovered in 

Chlamydomonas (Sineshchekov O.A. et a l, 2002; Nagel G. et al., 2002), in 

Neurospora (Bieszke J.A. et a l, 1999), in proteobacteria (i.e., proteorhodopsin; Beja 

O. et al., 2000), in cyanobacteria (Jung K.H. et a l, 2003), and in the vertebrate 

retina (Provencio I. et a l, 1998).

A second photosensor family is made up of the phytochrome molecules, 

discovered as the receptors responsible for red/far-red light reversible responses in 

plants. They exist as dimers in the eukaryotic cytoplasm and translocate to the 

nucleus upon light activation (Sakamoto K. & Nagatani A., 1996). Their light- 

sensitive chromophore is a linear tetrapyrrole covalently attached to a cysteinyl 

residue of each apoprotein. Red light triggers a change in chromophore 

configuration, converting the phytochrome red light (R)-absorbing form (Pr) into the 

far-red light (FR)-absorbing form (Pfr). Subsequently, it slowly reverts back in the 

dark or almost instantaneously upon absorption of far-red light. During these 

transitions, structural changes take place in the protein, and the C-terminal region, 

through the histidine kinase domain, interacts with signalling partners (Quail P.H.,

2002).

Xanthopsins are a family of blue-light induced photoreceptors in which the 

chromophore is constituted by coumaric acid. The Photoactive Yellow Protein 

(PYP) has been isolated from the purple bacterium Ectothiorhodospira halophila 

and its crystallographic structure has been solved (Genick U.K. et a l, 1998). PYP is 

a water-soluble protein that displays a typical a/p fold, with a central five-stranded 

p-sheet and helical segments on either side. The PYP photoreceptor determines a 

blue-light-induced avoidance response (Sprenger W.W. et a l, 1993).
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The remaining three families of photoreceptors are blue light responsive and 

their photochemistry is based on the flavin chromophore. The cryptochrome family 

is widely distributed in bacteria and eukaryotes. Cryptochromes are involved in 

many processes ranging from synchronization of the circadian clock in animals and 

plants, to hypocotyl elongation, seed germination, and pigment accumulation in 

plants. Moreover, cryptochromes work together with phytochromes to regulate 

photomorphogenic responses, including the regulation of cell elongation and 

photoperiodic flowering. The following section 1.3 will explain this photoreceptor 

family in detail.

Phototropins use the flavin derivative flavin mononucleotide (FMN) as light- 

sensitive chromophore and mediate several light responses in plants (Christie J.M., 

2007), such as phototropism, chloroplast movement, stomatal opening, and the rapid 

inhibition of hypocotyl growth. The light sensitive domain that generates signaling 

in this photoreceptor family is referred to as the LOV domain (Light, Oxygen, 

Voltage). Actually, all known phototropins contain two of these domains, of which 

the second is the most important for their light-regulated serine/threonine kinase 

activity (see section 1.3.9).

The last photoreceptor family is called BLUF for “sensors of blue-light using 

FAD” (Gomelsky M. & Klug G., 2002). Members of this family are involved in 

photophobic responses in Euglena gracilis and in transcriptional regulation in 

Rhodobacter sphaeroides (see section 1.3.9). The BLUF domains bind FAD non 

covalently, as do the LOV domains with FMN, but the initial photochemistry and 

structural transitions remain to be resolved.
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1.2.2 Light signals underwater

Light is subjected to momentary, diurnal, seasonal and global changes both 

in irradiance and in spectral distribution. Under water, light irradiance and spectral 

composition can vary depending on: (1) the incident solar radiation (angular 

distribution), (2) the inherent optical properties of the water body (absorption and 

scattering processes), (3) the presence of dissolved organic matter (DOM), and (4) 

the depth of the water column (Kirk J.T.O., 1994).

Irradiance and light quality also change drastically with depth. Most of the 

visible light is absorbed within the first 10 metres of the water column, and almost 

none penetrates below 150 metres, even when the water is very clear. The longer 

wavelengths of the light spectrum (red, yellow, and orange) can penetrate to 

approximately 15, 30, and 50 meters, respectively, while shorter wavelengths 

(violet, blue, and green) can penetrate further, to the lower limits of the euphotic 

zone, generally considered to extend to a depth of 100 metres. More generally, the 

photic zone covers the oceans from surface level to 200 meters down. In oceanic 

water blue light predominates in deep-waters, whereas in coastal water the light is 

enriched in the green-orange region of the spectrum (see Fig. 2a from Levine J.S. & 

MacNichol JrE.F, 1982).

The oceans can be divided into several zones differentiated by depth or light 

regime (Fig. 2b). The two major parts of the marine environment are the benthic and 

the pelagic zone. The benthic zone is the part of the ocean associated with the 

bottom and the pelagic zone is the water column above the benthos. The benthic 

zone can be divided into several parts depending on depth. The littoral zone extends 

between the highest and lowest tidal levels. Part of this zone is periodically exposed 

to air, depending on position within the intertidal range. The sublittoral zone is 

situated beneath the littoral, from the low tide mark to the continental shelf edge,
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about 200 meters deep. Beneath the shelf edge down to about 2,000 meters, the 

bathyal zone is located. This area coincides with the continental slope. Deeper down 

the abyssal zone covers the abyssal plains between 4,000 and 6,000 meters. Lastly, 

the hadal zone includes the trenches, the deepest part of the sea floor, deeper than 

6,000 meters. The pelagic area is also divided into different zones. The neritic zone 

is the water column situated above the continental shelf, between the lowest tidal 

level to the shelf edge. It is often a region of high productivity because the sunlit 

surface layers of the water are not far removed from the regeneration of nutrients in 

the sediment below. Beyond the neritic zone, where the seafloor drops rapidly to 

great depths, the oceanic zone is situated. The productivity is usually restricted in 

this zone due to the low availability of nutrients. The mesopelagic is the uppermost 

region, with its lowermost boundary at the thermocline of 10°C, which in the tropics 

generally lies between 700 and 1,000 meters. After that is the bathypelagic zone 

lying between 10°C and 4°C, or between 700 or 1,000 m and 2,000 m or 4,000 m. 

Lying along the top of the abyssal plain is the abyssalpelagic, whose lower boundary 

lies at about 6,000 m. The final zone falls into the ocean trenches, and is known as 

the hadalpelagic. This lies between 6,000 m and 10,000 m and is the deepest oceanic 

zone.

The spatial, temporal and spectral variability of light experienced by marine 

phytoplankton differs significantly from that experienced by terrestrial plants, due to 

the attenuation of solar irradiance in the aquatic medium. Phytoplankton are also 

incapable of sustained directional movement and are therefore subjected to the 

environmental conditions in their parent body of water. Moreover, phytoplankton 

must adapt to relatively rapid changes in both the intensity and the spectral quality of 

light as they move vertically in a water column. Photosynthesis is responsive to 

changes in nutrient availability on short time scales and the complementary
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chromatic adaptation is a process that allows optimizing absorption of excitation 

energy thanks to the modulation of different pigments (Grossman A.R., 2003). 

Changes in pigment content are characteristic of the relatively slow response of 

“sun-shade” photoacclimation that occurs on timescales typical of mixing in the 

open ocean. In estuaries, the variations are much faster and subsequently induce 

rapid changes in the activity of different components of the photosynthetic 

apparatus. These components modulate light harvesting and Calvin cycle activity, or 

protect the pigments from excess light (i.e. energy) absorption. When protective 

capacity is exceeded, photoinhibition occurs (MacIntyre H.L. et a l , 2000).

There are several other responses regulated by light, such as vertical 

migration (Villareal T.A. & Carpenter E.J., 2003), phototaxis (Sineshchekov O. & 

Govorunova E.G., 2001), chloroplast movement and reorientation (Briggs W.R. & 

Christie J.M., 2002; Wada M. et a l , 2003), circadian rhythms (Rensing L. & Ruoff 

P., 2002), and the dynamics of phytoplankton blooms (Berger S.A. et a l , 2007). 

Furthermore, the spectral variation of light carries information about the time of day, 

the vertical position, and the presence of very close neighbours. This is consistent 

with the widespread occurrence of photoreceptors in marine algae, likely necessary 

to capture and to transform light signals into intracellular molecular signals. 

Genomic and functional studies of marine photoreceptors will provide novel 

information for the understanding of light perception and the mechanisms of light- 

adaptive responses in this largely unexplored environment.
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Fig. 2a. Light absorption in oceanic and coastal waters. The attenuation of incident sunlight is 
more pronounced in red light than blue light in oceanic water, in contrast with estuarine 
water, where blue light is attenuated more rapidly than red light (Levine J.S. & MacNichol Jr 
E.F., 1982).
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1.3 Blue light Perception and Signaling

1.3.1 Structure of the Cryptochrome/Photolyase Family

The blue region of the light spectrum lies between 350 and 500 nm. It was 

originally hypothesized that blue light receptors were flavoproteins because the 

action spectra of many blue light-mediated responses was found to be similar to the 

absorption spectrum of flavins (Galston A.W., 1950). However, because the nature 

of the photoreceptor remained unknown and controversial for many years, the 

cryptic blue light photoreceptor was denoted cryptochrome (Senger H., 1980).

Cryptochromes (cry) were first discovered following the characterization of 

plant mutants with altered responses to blue light. In particular, the first gene was 

identified from studies of the hy4 mutant of Arabidopsis thaliana, that showed an 

impaired inhibition of hypocotyl elongation under blue light (Ahmad M. & 

Cashmore A.R., 1993). The affected gene was subsequently denoted CRY1 and a 

second member (CRY2) was subsequently identified (Lin C. et al., 1996). More 

recently a third gene, denoted CRY3, has been identified that seems to cluster in the 

cry-DASH subclass (Kleine T. et a l, 2003; see section 1.3.5). Plant cryptochromes 

are now known to act as blue/UV-A light receptors which regulate several processes 

during plant development. Cryptochromes are also widely distributed in the animal 

kingdom playing an essential role in the regulation of the circadian clock (Lin C. & 

Todo T., 2005; see section 1.3.6).

In addition, these proteins share sequence similarity to DNA photolyases, a 

class of enzymes that catalyse blue/UV-A light-dependent repair of DNA damage 

following exposure to ultraviolet light. Two types of photolyases have been 

extensively characterized that selectively repair two different lesions: the CPD 

photolyases that repair the cyclobutane pyrimidine dimers (CPD) and the (6-4)
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photolyases that repair pyrimidine (6-4) pyrimidone photoproducts (Sancar A., 

2003).

On the contrary, cryptochromes from both plants and animals lack DNA 

repair activity. All members of the cryptochrome/photolyase family share similarity 

in the amino-terminal domain, generally known as the PHR domain for Photolyase 

Homology Region, that is responsible for light-absorption. The catalytic 

chromophore is the Flavin Adenine Dinucleotide (FAD) in both proteins, whereas a 

second cofactor can be either a pterin (methenyltetrahydrofolate, MTHF) or a 

deazaflavin (8-hydroxy-7,8-didemethyl-5-deaza-riboflavin, 8-HDF) in the majority 

of photolyases, whereas only a pterin has been found in the cry proteins 

characterized until now.

Another known difference between cryptochromes and photolyases is the 

presence of a so-called cry carboxy-terminal extension (CCT) that lies beyond the 

PHR domain, and which is absent in the photolyases (Chen M. et a l , 2004). 

However, little sequence similarity is observed in the CCT domain between different 

crys. Most plant crys contain a longer CCT extension than animal cryptochromes, 

while cry-DASH proteins lack this domain. It is therefore difficult to establish a 

general role for the cry carboxy-terminal domain in cryptochrome signaling. 

Nevertheless, in the carboxy-terminal extension of plant crys, it is possible to 

recognize three sequence motifs: (a) DQXVP at the N-terminus, (b) a region 

containing several acidic residues (E or D), and (c) STAES and GGXVP at the 

carboxy-terminus separated by a short non-conserved spacer. Collectively these 

motifs are referred to as the DAS domain (Lin C. & Shalitin D., 2003). A general 

scheme of the structure of cryptochrome/photolyase family members is represented 

in Fig. 3.
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1.3.2 Evolution of the Cryptochrome/Photolyase Family

Cryptochrome/Photolyase family (CPF) members have been found in all 

three kingdoms: archaebacteria, eubacteria, and eukaryotes. Notwithstanding, their 

distribution among species is not uniform. For example, CPD photolyase is found in 

Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, opossum, 

and some animal viruses (where it is incorporated in the virion), but it is absent from 

Bacillus subtilis, Schizosaccharomyces pombe, and placental mammals. Conversely, 

the (6-4) photolyase is present in D. melanogaster, Xenopus laevis, rattlesnake, 

zebrafish, and Arabidopsis thaliana, but not in Caenorhabditis elegans or humans 

and has not yet been found in eubacteria or archaea. In contrast, cryptochrome has 

been found in several eubacteria, including Vibrio cholerae (two members), A. 

thaliana (three members), zebrafish (six members), X  laevis (three members), D. 

melanogaster (one member), humans and mice (two members each), but not in 

archaea or in C. elegans. Thus, D. melanogaster contains all three members of the 

cry/photolyase family, C. elegans lacks all three, humans have cryptochrome but no 

photolyase, and E. coli has CPD photolyase but no (6-4) photolyase or 

cryptochrome.

Phylogenetic trees based on the hundreds of cry/photolyase sequences 

present in public databases have been constructed (Brudler R. et a l , 2003; Cashmore

A.R., 2003; Kleine T. et a l, 2003; Partch C.L. et a l, 2005). However one of the 

most intriguing aspects is to try to reconstruct the evolutionary relationships between 

these proteins and their acquisition of several functions in different organisms. 

Because cryptochromes were initially thought to be absent in bacteria, a central 

dogma up until recently was that a bacterial DNA photolyase was the common 

ancestor of plant and animal crys. In addition, because phylogenetic analysis 

revealed that animal crys were more similar to (6-4) photolyases, whereas plant crys

- 2 7 -



were more related to CPD photolyases, the common idea has been that animal and 

plant crys derived from two independent evolutionary events after the plant-animal 

divergence (Cashmore A.R. et al., 1999). Recently, the discovery of a cry-DASH in 

the cyanobacterium Synechocystis sp. PCC 6803 indicates that cryptochromes 

evolved before the origin of eukaryotic organisms (Brudler R. et al., 2003). However 

there is also the possibility of a convergent evolution within the cry family. The 

discovery of CRY3 in Arabidopsis led to speculation that plant crys have evolved 

from two independent horizontal transfer events, the Arabidopsis CRY1 and CRY2 

genes having originated from an endosymbiotic a-proteobacteria-like ancestry, 

while CRY3 originated from an endosymbiotic cyanobacteria-like ancestor (Kleine 

T. et a l, 2003), i.e., that CRY1 and CRY2 are derived from the mitochondrial 

ancestor and that CRY3 is derived from the ancestor of the chloroplast.

Although there is no consensus conclusion emerging from these analyses, the 

general view is that photolyase and cryptochrome have a single progenitor. A 

primordial organism may have employed a photosensory pigment to detect light and 

regulate its physiology with a 24 hour periodicity (circadian = about a day) of the 

geophysical light-dark cycle. The same pigment may have been used to repair DNA 

damage. Later mutation and selection, in some cases accompanied by gene 

duplication, could have produced enzymes that perform more specifically one 

function or the other, thus giving rise to the current dogma that photolyases repair 

DNA and that cryptochromes regulate the daily oscillations in organismal and/or 

cellular physiology.

Cryptochrome-like proteins have also been identified in two species of 

marine diatoms, the centric diatom T. pseudonana and the pennate diatom P. 

tricornutum (Falciatore A. & Bowler C., 2005). The identification of putative blue 

light receptors in these unicellular algae was not surprising because blue light is
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abundant in the ocean (see section 1.2.2). A complete phylogenetic analysis of the 

diatom Cryptochrome/Photolyase Family is provided in this thesis (see section 

3.2.2).
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1.3.3 Photolyases

1.3.3.1 Structures o f chromophores

Photolyases are monomeric proteins of 450-550 amino acids that utilize 

visible light as an energy source to cleave photoproducts in DNA. These proteins 

carry two non-covalently bound chromophore cofactors, a catalytic cofactor and a 

light-harvesting cofactor.

As previously mentioned, the catalytic cofactor is always FAD, whereas the 

second cofactor can be different. Two prosthetic groups are well known as light- 

harvesting cofactors: the MTHF for the photolyases classified into the folate class, 

which is found in the CPD photolyase from E. coli, and the 8-HDF for enzymes of 

the deazaflavin class, which is found in the CPD photolyase from Anacystis 

nidulans. Flowever, recent experimental evidence has shown the existence of other 

antenna chromophores. For example, flavin mononucleotide (FMN) has been found 

as a light-harvesting cofactor in photolyase from Thermos thermophilus HB8 (Ueda 

T. et al., 2005) and more surprisingly, the crystal structure of archaeal CPD 

photolyase from Sulfolobus tokodaii has shown another FAD molecule at the 

position of the light-harvesting cofactor (Fujihashi M. et al, 2007), making the 

classification more complex.

The flavin can be considered the most commonly used cofactor in nature and 

FAD is the most common form of flavin found in enzymes. The flavin can be 

reduced and oxidized by one- and two-electron-transfer reactions utilizing a redox 

switch between NADH and heme groups, which can carry out two- and one- 

electron-transfer reactions, respectively (Walsh C.T., 1986). For photolyase activity 

FAD is the essential chromophore both for specifically binding to damaged DNA 

and for catalysis. The active form of flavin is the two-electron-reduced form and
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deionized form, FADH- (Kim S.-T. et a l , 1993). This cofactor is bound non- 

covalently but very tightly to E. coli and A. nidulans CPD photolyases and can be 

released only after mild denaturation of the enzymes (Joms M.S. et a l, 1990). The 

purified CPD photolyase from E. coli contains the FAD at virtually 1:1 

stoichiometry with respect to the apoenzyme (Sancar A. & Sancar G.B., 1984). 

However, many cryptochrome/photolyase family proteins expressed in heterologous 

systems do not contain stoichiometric amounts of FAD. For example, Drosophila 

melanogaster (6-4) photolyase and cryptochrome proteins overproduced in E. coli 

contain only 1-5% FAD (Zhao X. et a l, 1997; Selby C.P. & Sancar A., 1999, 

respectively), as do human cryptochromes 1 and 2 (Hsu D.S., et a l, 1996; Zhao S. & 

Sancar A., 1997, respectively). Regarding the flavin cofactor of the photolyases, it is 

important to point out the redox status of the cofactor. FAD can be found in three 

redox states: oxidized (FAD0X), one-electron-reduced (neutral blue radical or anionic 

red radical, FADH-), and two-electron-reduced forms (neutral or anionic, FADH*). 

Under physiological conditions FAD is synthesized and incorporated into the 

appropriate apoenzymes in the FAD0X form. The catalytic cycle converts the 

oxidized form into one- and two-electron-reduced forms, but how this mechanism 

occurs for the photolyase flavin is unknown. In addition, at present there is no 

evidence for light-independent redox reactions carried out by photolyases.

The second chromophore present in the photolyases is not essential for 

activity, but may increase the rate of repair by 10-100 fold because they have a 

higher extinction coefficient than FADH- in the near-UV/blue region, thus they are 

responsible for absorbing > 90% of the photoreactivation photons in sunlight. The 

MTHF cofactor is the photoantenna most frequently found in photolyases. In 

contrast to flavin, the folate generally dissociates readily from the apoprotein. The 

purified E. coli CPD photolyase contains substoichiometry (20-30%) folate (Hamm-
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Alvarez S.F. et al., 1990). On the contrary, the 8-HDF cofactor was first discovered 

in anaerobic methanogenic bacteria and was considered as an ancient molecule 

because of its relative abundance in archaea. The binding to the apoenzyme is tight 

and 8-HDF is present in stoichiometic amounts in all well-characterized deazaflavin 

class enzymes.

1.3.3.2 Structure o f  photolyases

The major chemical lesion caused by UV light wavelengths in sunlight in 

DNA is a cyclobutane pyrimidine dimer formed by the cyclo-addition of two 

adjacent pyrimidine rings, generally between two thymine residues. This 

modification can be specifically repaired by CPD photolyases.

The amino acid sequences of about 50 CPD photo lyases are currently known. 

The sequences of these proteins reveal varying degrees of homology ranging from 

15% to more than 70% sequence identity. Several points of interest emerge from 

sequence alignments. The C-terminal 150 amino acids exhibit the highest degree of 

homology among the folate and the deazaflavin classes and this region was predicted 

to be the FAD binding domain. Second, plant and animal CPD photolyases show a 

limited degree of homology to microbial photolyases, and hence, CPD photolyase 

can be classified into class I (found mainly in microbes) and class II (found 

principally in animals and plants) on the basis of sequence similarity (Yasui A. et al., 

1994). However, more classes were proposed recently as a result of the growing 

number of available gene sequences.

The crystal structure of photolyases from four different organisms have been 

reported: E. coli (Park H.W. et al., 1995), A. nidulans (Tamada T. et al., 1997), 

Thermus thermophilus (Komori H. et al., 2001) and, more recently, Sulfolobus 

tokodaii (Fujihashi M. et al., 2007). Remarkably, although these enzymes show only



20-25% sequence identity, the traces of Ca backbone atoms are similar among all 

family members.

The E. coli CPD photolyase (class I) is composed of two domains: an N- 

terminal a/p  domain (residues 1-131) and a C-terminal a-helical domain (residues 

204-471). The two domains are connected by a long and structured interdomain loop 

of 72 residues. The light-harvesting cofactor MTHF binds in a cleft between the two 

domains, whereas the FAD adopts a U-shaped conformation between two helix 

clusters in the center of the helical domain and is accessible through a hole in the 

surface of this domain (Fig. 4A). Dimensions and polarity of the hole match those of 

a cyclobutane pyrimidine dimer, suggesting that the photoproduct “flips out” of the 

helix to fit into this hole, and that electron transfer between the flavin and the CPD 

occurs over van der Waaals contact distance (Park H.W. et al., 1995).

Site-specific mutagenesis studies of the positively charged residues show that 

the distorted DNA backbone is an important contributor to specificity. Mutations of 

either aromatic residues or polar residues lining the side walls of the hole drastically 

reduce the affinity of the enzyme for the cyclobutane pyrimidine dimer (Vande Berg

B.J. & Sancar G.B., 1998). In particular, mutation of Trp277 in E. coli CPD 

photolyase to a non-aromatic residue virtually eliminates specific binding, 

suggesting that Trp277 plays a crucial role in specific binding (Li Y.F. & Sancar A., 

1990).

The crystal structure of class I CPD photolyase from the cyanobacterium A. 

nidulans (also known as Synechococcus sp PCC6301) showed the typical backbone 

structure composed of an a/p domain and an a-helical domain but revealed a 

completely different binding site for the light-harvesting cofactor (Fig. 4B). In fact, 

the antenna cofactor, identified as 8-HDF in A. nidulans, is bound in the a/p domain 

at a quite different position compared to the corresponding MTHF cofactor in E. coli
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CPD photolyase, whereas the amino acid residues which interact with FAD are 

entirely conserved in the corresponding positions in both photolyases (Tamada T. et 

al, 1997).
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(Park H.W. eta l., 1995) (Tamada T. et al., 1997)
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Fig. 4. Crystal structures of CPD photolyases from E. coli (A), A. nidulans (B), T. thermophilus 
(C), S. tokodaii (D). Details are described in the text.
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The photolyase from T. thermophilus is a thermostable class I CPD 

photolyase. The crystal structure revealed the conserved topology: an a/p domain in 

the N-terminal region and an a-helical domain in the C-terminal region in which the 

FAD is located (Fig. 4C, Komori H. et al., 2001). At that time, the protein 

overproduced in E. coli did not contain the light-harvesting cofactor. Subsequently, 

Ueda T. et al. (2005) developed a method for the purification of this enzyme from E. 

coli that retained its second chromophore, and identified it as FMN. However, this 

does not rule out the possibility that the T. thermophilus CPD photolyase does not 

contain the FMN in vivo.

More recently, the crystal structure of the first archaeal photolyase from 

Sulfolobus tokodaii has been determined (Fujihashi M. et a l, 2007). The overall 

structure has the two domains found in the three known photolyases, and the two 

cofactors are found at essentially the same sites. Surprisingly, another FAD 

molecule is found at the position of the light-harvesting cofactor, well 

accommodated in the crystallographic structure, suggesting the existence of a 

different mechanism to recognize CPD dimers in genomic DNA (Fig. 4D). No 

crystal structures of (6-4) photolyases have been determined until now, but based on 

the high similarity to CPD enzymes, it is possible to envisage a common 

tridimensional structure.

1.3.3.3 Reaction Mechanism

Photolyases carry out catalysis by Michaelis-Menten kinetics. They bind S 

(substrate) to form ES (enzyme-substrate), which performs catalysis to yield EP 

(enzyme-product), and then P dissociates. However, the mechanism differs from 

classic Michaelis-Menten kinetics in one important aspect: the transition ES into EP
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is strictly light dependent (hv = light energy), as explained by the following reaction 

formula:

E + S ES E + P

Photolyase binds the photoproduct generated by UV-light in DNA independently of 

light, and flips the dimer out of the double helix into the active site cavity to make a 

stable ES complex.

CPD photolyases catalyze the repair of cyclobutane pyrimidine dimers 

(PyroPyr). The photochemical reaction (schematically represented in Fig. 5A) is 

initiated when the photoantenna chromophore (MTHF or 8-HDF) absorbs a near- 

UV/blue-light photon and transfers the excitation energy to the FADH" cofactor by 

Forster resonance energy transfer (via a dipole-dipole interaction). The excited 

singlet state flavin (FADH *) transfers an electron to the PyroPyr dimer to generate

FADH* neutral radical and P yroP yr"’ anionic radical. The cyclobutane ring of the

dimer radical then spontaneously rearranges to yield two canonical pyrimidines, and 

an electron is concomitantly transferred back to the nascently formed FADH* to 

generate the FADH" form. The repaired dinucleotide then flips out of the enzyme

and into the DNA duplex and the enzyme dissociates from the DNA.

The mechanism for (6-4) photolyases (Fig. 5B) is thought to be similar 

except that thermal conversion (kT) of the photoproduct to the oxetane intermediate 

occurs upon formation of the ES complex (Zhao X. et al., 1997). Examined overall, 

the reaction is a photon-powered cyclic electron transfer that does not result in a net 

gain or loss of an electron and hence it is not possible to define it as a redox reaction. 

Studies of the mechanism of photoactivation (light-induced reduction of the flavin 

adenine dinucleotide) of E. coli photolyase showed that three tryptophan residues are 

involved in the electron transfer chain from the protein surface to the FAD cofactor
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for its activation (Trp306, Trp359, Trp382; Aubert C. et al, 2000). Indeed, these 

residues are highly conserved within cryptochrome family members suggesting that 

the electron transfer chain is involved in the function of cryptochromes as well as 

photolyases.



A

MTHF MTHF
HN HN'

FADH*

e~XH

Cyclic electron transfer
O '

'NHHN'

B
(6*4) photoproduct

o
Light (3PQ-50Q nm)

MTHF MTHF
EscitaUcn energy 
V^trarusfer

FADH* FADH
FADH*

? .

ProductSubstrate
Cydic electron transfer hn

Fig. 5. Reaction mechanisms of pyrimidine dimer photolyases (A) and (6-4) photolyases 
(B). The antenna chromophores absorb a photon and transfer the excitation energy to 
FADH", producing 1(FADH*"). An electron is transferred from FADH*' to the dimer, 
initiating a cycloreversion reaction that restores both the pyrimidines to their original 
undamaged state. FADH" is regenerated by back electron transfer from the dimer. The 
mechanism for the (6-4) photolyases is thought to be similar except that thermal 
conversion (kT) of the photoproduct to the oxetane intermediate occurs upon formation 
of the ES complex. The oxetane intermediate is the substrate for the photochemical 
reaction (Sancar G.B. & Sancar A., 2006).
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1.3.4 Cryptochromes

1.3.4.1 Structures o f  cryptochromes

Although initially vague, the term Cryptochrome has now assumed a precise 

meaning: a photolyase sequence homologue with no DNA repair activity but with 

blue-light-activated enzymatic function (Sancar A., 2003). Most cryptochromes, 

with the exception of cry-DASH proteins, are composed of two domains, an amino- 

terminal photolyase-related (PHR) region and a carboxy-terminal domain of varying 

size. The PHR region of cryptochromes appears to bind two chromophores: the FAD 

and the 5,10-methenyltetrahydrofolate (denoted pterin or MTHF). As previously 

described, the carboxy-terminal domain of cryptochromes is generally less 

conserved than the PHR region. This extension in plant crys is long and contains the 

DAS domain (see section 1.3.1), animal crys have a shorter C-terminal extension, 

whereas cry-DASH proteins lack this domain.

Because there is strong similarity in cry/photolyase family members, at the 

amino acid level, it appears extremely important to determine the structure of 

different members in order to elucidate the unknown photochemical mechanism of 

the cryptochrome protein. Based on this consideration, several research groups have 

studied the tridimensional structures of cryptochrome family members.

In particular, crystal structures of two members of the cry-DASH subfamily 

have been determined: the cry-DASH protein from the cyanobacterium 

Synechocystis sp. PCC6803 (Brudler R. et ah, 2003) and the CRY3 protein from A. 

thaliana (Huang Y. et al., 2006; Klar T. et al., 2007). Both cryptochromes display a 

backbone structure similar to photolyases. The photolyase homology region (PHR) 

is constituted by an a/(3 domain and a helical domain, which are connected by a 

variable loop that wraps around the a/p domain. The FAD cofactor is located
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between the two lobes of the helical domain in a U-shaped conformation, with its 

adenine and isoalloxazine rings positioned at the bottom of the cavity (Fig. 6). The 

antenna cofactor in the cry-DASH protein from Synechocystis sp. PCC6803 has not 

been reported, whereas the crystal structure of A. thaliana CRY3 revealed MTHF as 

light-sensitive cofactor in addition to the catalytic cofactor FAD, both non- 

covalently bound. The residues responsible for binding MTHF are not conserved in 

E. coli CPD photolyase but are strongly conserved in the cry-DASH subfamily of 

cryptochromes (Huang Y. et a l , 2006). Interestingly, the crystal structure of A. 

thaliana CRY3 in a dimeric state with the antenna chromophore MTHF bound along 

a dimer interface has recently been reported (Klar T. et al., 2007).

The crystal structure of the photolyase-like domain of CRY1 (PHR-CRY1) 

from A. thaliana has also been determined (Brautigam C.A. et al., 2004). This 

structure revealed a fold very similar to photolyases with a single molecule of FAD 

non-covalently bound to the protein. It is possible to recognize the two typical 

domains: a/p N-terminal domain and a  C-terminal domain (Fig. 6D). Interestingly, 

despite the overall structural similarity, the PHR-CRY1 region has several structural 

characteristics that differ from photolyase and cry-DASH. Photolyase has a 

generally positively charged groove running through the FAD-access cavity, which 

is where the DNA interacts, whereas cry-DASH has a similar positive electrostatic 

potential on the surface around the cavity. Unlike cry-DASH, the surface of PHR- 

CRY 1 is predominantly negatively charged. Moreover, since experimental evidence 

has previously demonstrated that CRY 1 binds ATP in the presence of Mg 2+ (Bouly 

J.P. et al., 2003), Brautigam C.A. et al. (2004) succeeded to determine the crystal 

structure of the photolyase-like domain of CRY1 containing a single molecule of an 

ATP analog. They demonstrated that the location of this ATP-binding site is 

equivalent to the putative pyrimidine-dimer binding site in photolyases (Brautigam

- 4 2 -



C.A. et al., 2004), whereas neither photolyase nor cry-DASH have been reported to 

bind ATP.

1.3.5 Cryptochrome-DASH

Recently, phylogenetic analysis allowed the identification of a novel class of 

cryptochromes most closely related to the animal cryptochromes and (6-4) 

photolyases. Brudler, R. et al., 2003 decided to name this class “cryptochrome 

DASH”, to underscore the phylogenetic relationship of the first two cry-DASH 

members identified in Arabidopsis and Synechocystis with the animal 

cryptochromes, first identified in Drosophila and Homo sapiens (although cry- 

DASH itself is not found in Drosophila and humans). Cry-DASH proteins have now 

also been identified in marine bacteria, algae, fungi, and in other vertebrates and so 

the name is not entirely appropriate (Daiyasu H. et al., 2004).

A general function for this subfamily has not yet been clarified. Localization 

studies showed that Arabidopsis CRY3 is the only plant cry targeted to chloroplasts 

and mitochondria and is also distinct from the other plant crys because it has DNA- 

binding activity (Kleine T. et a l, 2003). Interestingly, binding to DNA in a 

sequence-independent fashion was also observed for Synechocystis cry-DASH 

(Brudler R. et a l, 2003) and mouse CRY1 (Kobayashi K. et a l, 1998). Recently, it 

has been demonstrated that cry-DASH proteins from bacterial (V cholerae CRY1), 

plant (A. thaliana CRY3), and animal sources (X. laevis cry-DASH) show 

photolyase activity with a high degree of specificity for cyclobutane pyrimidine 

dimers in single stranded DNA, suggesting the identification of a new class of 

photolyases (Selby C.P. & Sancar A., 2006).

On the other hand, comparison of microarray expression profiles between 

Synechocystis wild-type and cry-DASH knockout mutant strains was used as
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evidence to suggest that cry-DASH functions as a transcriptional repressor (Brudler 

R. et al, 2003). Therefore, the function of cry-DASH proteins is still an open 

question. Based on the localization of Arabidopsis CRY3, it is intriguing to 

speculate that the protein could function as a transcriptional regulator of chloroplast 

and mitochondrial-encoded genes, while Selby C.P. and Sancar A. (2006) suggested 

that the single strand DNA repair activity may contribute to protect ssDNA viruses.

1.3.6 Circadian rhythms

A circadian rhythm is defined as the oscillation of a physiological 

behavioural function with a periodicity of about 24 hours. The circadian system is 

presumed to confer a selective advantage because it allows organisms to anticipate 

the daily changes occurring in the environment that are a consequence of the Earth’s 

rotation around the sun. The rhythm is an innate property of the organism and the 

amplitude and the period length are typically maintained under constant 

environmental conditions for several days.

Schematically, the clock consists of three components: an input pathway that 

constitutes the external signal to entrain the process, a central oscillator that 

generates the oscillation, and an output pathway that couples the oscillator to 

circadian-regulated responses (Fig. 7). Generally, the regulation of the clock 

involves a transcription/translation feedback loop with positive or negative 

regulatory elements (Devlin P.F., 2002). In plants, some examples of this process are 

leaf movements, the opening and closing of stomatal pores, and flowering. In 

animals, examples include the control of body temperature and sleep-wake cycles 

(Millar A.J., 2004; Sancar A., 2004).

A central property of circadian rhythms is their ability to be synchronized with the 

environment by light. Even though heat and other environmental inputs can affect
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the phase, the amplitude and the period length of the rhythm, by far the most 

predominant and perhaps the only physiologically relevant environmental cue (or 

zeitgeber, from German zeit = time and geber = giver) is light.
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Fig. 6. A. Schematic representation of typical Cryptochrome/Photolyase superfamily 
proteins. B. Crystal structure of CRY-DASH from Synechocystis sp. PCC6803. C. Crystal 
structure of CRY3 from A. thaliana and (D) crystal structure of the PHR domain of A. 
thaliana CRY1 protein. Details are described in the text.
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Fig. 7. Circadian system allows an organism to anticipate the dark/light changes in its 
surrounding environment. The central oscillator maintains an endogenous 
approximately 24 h rhythm even under constant environmental conditions and this 
controls a series of overt rhythms within an organism via a series of output pathways. 
The central oscillator is entrained to the rhythmic cycle via input pathways by which 
environmental signals are transmitted to the oscillator.
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1.3.7 Animal Cryptochromes and the Circadian Clock

The first evidence of a cryptochrome-like protein in animals is derived from 

the discovery of a human gene encoding a protein related to the Drosophila (6-4) 

photolyase (Todo T. et al., 1996). Two putative blue-light photoreceptors, denoted 

hCRYl and hCRY2, were eventually identified in humans (Hsu D.S. et al., 1996). 

However, knowledge of cryptochrome function in animals derived from studies in 

Drosophila melanogaster.

1.3.7.1 Drosophila cryptochrome

Drosophila cryptochrome (dCRY) is a predominantly nuclear protein that 

acts as a photoreceptor for the entrainment of the circadian clock by physical 

interaction with central oscillator components. The central oscillator components of 

Drosophila include PER (period), TIM (timeless), CLK (clock) and CYC (cycle; 

called also BMAL or MOP3) (Dunlap J.C., 1999). CLK/CYC and TIM/PER are 

positive and negative regulators, respectively, for the transcription of clock genes 

such as PER, TIM and CRY (Fig. 8A). CLK and CYC are basic helix-loop-helix 

proteins that act together to activate transcription through binding to “E box” 

promoter elements of clock-regulated genes. The E-box (Enhancer-box: CACGTG) 

is the key component of the circadian clock because it seems to represent a specific 

binding site for positive regulators.

Moreover the transcription of clock genes is negatively controlled by their 

own gene products. PER and TIM form heterodimers in the cytosol and then enter 

the nucleus to suppress their own transcription. It was found that cryptochrome 

interacts with TIM in a light-dependent manner. The carboxy-terminal domain of 

Drosophila cry is important for protein stability, interaction with TIM, and 

sensitivity of the photoreceptor to circadian light signals (Busza A. et al., 2004). The
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dCRY-TIM interaction results in sequestration of TIM, which promotes 

ubiquitination and proteasome-dependent degradation of TIM with the consequent 

suppression of TIM-dependent inhibition of transcription (Ceriani M.F. et al., 1999) 

(see scheme in Fig. 8A).

A Drosophila cry mutant, cryb, was identified on the basis of its defect in 

regulating the circadian rhythm of activity of the PER promoter (Emery P., et a l , 

1998; Stanewsky R., et al., 1998). The cryb mutant abolished cycling of PER and 

TIM expression and abrogated the effect of constant illumination on circadian 

behaviour. Transgenic flies overexpressing cryptochrome showed increased 

circadian photosensitivity (Emery P. et a l , 2000). However, cryptochrome is 

apparently not the only photoreceptor that entrains the circadian clock in 

Drosophila, because the cryb mutant fly still displays an entrainment of behavioural 

rhythmicity in blue light unless signal transduction for the visual pigment is also 

eliminated (Stanewsky R. et a l, 1998). Therefore appears to be a functional 

redundancy between cryptochromes and other photoreceptor systems.

1.3.7.2 Mammalian cryptochromes

In mammals the circadian system is more complex due to the duality of the 

photosensory systems. The input component is represented by a 

photoreceptor/phototransducer pathway located in the eye. The master circadian 

clock is localized in the midbrain (hypothalamus) in a cluster of neurons called the 

suprachiasmatic nucleus (SCN) and the output system consists of neuropeptides 

released from the master circadian clock (Reppert S.M. & Weaver D.R., 2001). 

Thus, mammals have two photosensory systems that are divergent at the molecular 

and anatomical levels: the visual system for 3-D vision and the circadian 

photosensory system for sensing the fourth dimension, time. The two photosensory
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systems function more or less independently. For example, certain retinal 

degeneration diseases in humans and mice that destroy the outer retina and cause 

total visual blindness leave the circadian phototransduction system intact 

(Ronneberg T. & Foster R.G., 1997) and, conversely, mutations in the circadian 

photosensory pathway that seriously compromise the master circadian clock do not 

affect the animal’s vision (Suter B. et al., 1997).

In the last years several studies have been performed in order to understand 

the role of mammalian cryptochromes as photoreceptors entraining the circadian 

clock, but the nature of the receptor responsible for this process is still largely 

controversial (Lin C. & Todo T., 2005; Sancar A., 2004).

As in humans, two cryptochrome genes have been identified in mouse, 

denoted mCRYl and mCRY2. The mCRYl protein is localized in mitochondria 

whereas mCRY2 is found predominantly in the nucleus (Kobayashi K. et al., 1998). 

It was shown that mouse cryptochromes are expressed in many tissues and organs, 

including the front part of the retina. In particular, the expression of mCRY2 was 

relatively high in the retinal ganglion cells (Miyamoto Y. & Sancar A., 1998). 

Moreover, a subset of these retinal ganglion cells (RGCs), known to be the 

photosensitive cells required for entrainment of the circadian clock (Berson D.M. et 

a l, 2002), project to the SCN. Consistent with its function, the gene encoding 

mCRYl was found to be expressed at a high level in the SCN where its levels 

oscillate with a 24 h periodicity (Ronneberg T. & Foster R.G., 1997). Thus, 

cryptochromes appear to be produced in those cells and tissues required for 

entrainment and functioning of the master clock. As a consequence of this intimate 

involvement in clock function, animals lacking mCRYl have short periods, whereas 

those lacking mCRY2 have long periods. Remarkably, the knockout mice missing 

both mCRYl and mCRY2 retained near-normal behavioural rhythmicity in light/dark
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cycles, but showed an instantaneous and complete loss of rhythmicity in free- 

running conditions (van der Horst G.T. et al., 1999). These observations indicate that 

the cry proteins play an essential and light-independent function in the mammalian 

central oscillator, and that cryptochromes are not the only photoreceptors mediating 

light control of the clock. The fact that cryptochromes are integral parts of the mouse 

central oscillator makes it almost impossible to test directly their role in light 

entrainment of the clock.

Nevertheless, several observations demonstrate light-dependent roles of 

mammalian cry proteins. Knockout mice lacking one or both genes have a reduced 

or abolished ability to induce expression of genes such as PER and the 

protooncogene c-fos in response to light (Selby C.P. et al., 2000). Moreover, the 

pupils of mutant mice lacking both CRY genes have a reduced reflex response to 

light (Van Gelder R.N. et al., 2003). It has also been found somewhat analogous to 

the situation in the Drosophila cryb mutant, that the mouse crylcry2 double mutant 

retained its ability to mediate light input unless signal transduction from the visual 

pigments was also disrupted at the same time. Only triple-mutant mice carrying both 

cryptochrome mutations and a retinal degenerative mutation were nearly arrhythmic 

in light/dark cycles, with a marked reduction in light-induced gene expression 

(Vitatema M.H. et al., 1999). These results indicate that mammalian cry proteins are 

indeed involved in regulation of the circadian clock by light, but that their role is 

carried out redundantly with other photoreceptors.

It should be noted that the proposed photoreceptor function of cry in animals, 

particularly in mammals, is not universally accepted. Even though there is a 

consensus that the vitamin A (retinal)-based rhodopsins and color opsins located in 

rods and cones (outer retina) are not required for circadian photoreception, many 

investigators believe that another opsin that is expressed in the inner retina is
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responsible for circadian photoreception, rather than a cryptochrome. Indeed, a novel 

opsin called melanopsisn has been discovered in all vertebrates examined to date and 

this molecule is exclusively expressed in the inner retina in man and mouse 

(Provencio I. et al., 2000). In summary, it is consistent to define cryptochrome as a 

primary circadian photoreceptor in mammals, with redundant or complementary 

photoreception provided by classical opsins in rods and cones and melanopsin and 

perhaps yet-to-be-discovered minor opsins in the inner retina.

Like Drosophila cry, mammalian cryptochromes interact physically with 

clock proteins, including the promoter-binding transcriptional regulators PER, CLK, 

and BMAL1 (Brain and Muscle Amt-like protein) (Fig. 8B). However, differently 

from Drosophila cry, mammalian cryptochrome proteins are components of the 

negative-feedback loop of the circadian clock (Lin C. & Todo T., 2005). The 

CLK/BMAL1 positive regulator that binds the E-box promoter element of clock 

genes is inhibited by the PER/CRY heterodimer (Fig. 8B). The physical interaction 

of cryptochrome with other clock components can affect their activity, interaction, 

degradation, or nuclear trafficking, and consequently they also alter the 

transcriptional regulation of the clock genes (Reppert S.M. & Weaver D.R., 2002).

In yeast two-hybrid assays it has been found that human cryptochromes bind 

to human PERI, PER2, CLOCK, and TIM proteins independently of light (Griffin

E.A. Jr et al., 1999). However, these light-independent interactions suggest the 

involvement of a mechanism of photo-entrainment for the circadian clock, different 

from that found in Drosophila. In addition to the direct interaction with the 

promoter-binding transcription regulators, cryptochromes may also affect the 

circadian clock by participating in the regulation of histone modifications (Naruse Y. 

et al., 2004) but how this process works remains to be elucidated.
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Fig. 8. Regulation of the circadian clock by animal cryptochrome. A. In Drosophila, Cry 
binds Tim in a light-dependent manner with the consequent proteasome-dependent 
ubiquitin-mediated degradation of Tim (Ubq, ubiquitination) and thus inhibition of the 
action of the Per-Tim heterodimer. B. In mammals, cryptochromes are integral parts of 
the negative feedback loop. The Cry protein interacts with Per to repress the activity of 
the transcription factors Clk and Bmall and thus to repress transcription. 
Cryptochromes may also be involved in the photo-entrainment of the mammalian 
circadian clock, but it is not yet clear whether this involves cryptochrome (Lin C. & 
Todo T„ 2005).
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1.3.8 Function of Plant Cryptochromes

Cryptochromes have been identified in many photosynthetic organisms living 

in terrestrial and marine environments. The first member was identified in A. 

thaliana (Ahmad M. & Cashmore A.R., 1993) and in the same year the white 

mustard (Sinapis alba) PHR gene (SaPHR), which was initially thought to encode a 

DNA photolyase (Batschauer A., 1993), was later found to be a cryptochrome 

(Malhotra K. et al., 1995). Subsequently crys have been found in other dicots such 

as tomato (Ninu L. et a l, 1999), monocots (rice, barley, etc...), ferns (Adiantum 

capillus-veneris), mosses (.Physcomitrella patens), and green algae (Chlamydomonas 

reinhardtii) (Lin C., 2000).

As previously described, most plant cryptochromes contain a C-terminal 

extension in addition to the N-terminal PHR domain. However, the C-terminal 

domains of different plant crys vary significantly in length, from -380 amino acids 

in Chlamydomonas, -  190 amino acids and -  120 amino acids in Arabidopsis CRY1 

and CRY2, respectively, to almost no C-terminal extension in the SaPHR and 

cryptochrome 5 of Adiantum capillus-veneris (AcCRY5). The main feature of the 

plant cry C-terminal extension is the DAS domain consisting of three recognizable 

motifs: (a) DQXVP in the amino end of the CCT, (b) a region containing a short 

stretch of acid residues (E or D), and (c) STAES and GGXVP at the carboxyl end 

separated by a short non-conserved spacer. The presence of the DAS domain in crys 

from moss to angiosperm suggests that the evolutionary history of crys in plants is 

likely to span over 400 million years, dating back to before the widespread dispersal 

of vascular plants on the Earth (Kenrich P. & Crane P.R., 1997). Genetic studies 

indicate that the DAS domain is important for cellular localization, intermolecular 

interaction, and physiological functions of cryptochromes (see later). Plant 

cryptochromes have a clear role as blue light photoreceptors. They act concurrently
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with phytochromes to mediate photomorphogenic responses such as inhibition of 

stem elongation, stimulation of leaf expansion, control of photoperiodic flowering, 

entrainment of the circadian clock, and regulation of gene expression. The best 

characterized genes are Arabidopsis CRY1 and CRY2.

1.3.8.1 Arabidopsis cryptochromes

Arabidopsis CRY1 and CRY2 are both nuclear proteins but they exhibit 

different light-dependent localizations. CRY2 is more or less constitutively localized 

in the nucleus, whereas it was found that a GUS:CCT1 (CRY1 C-terminus) fusion 

protein was mostly located in the nucleus in root hair cells of dark-grown transgenic 

plants, but was mostly cytosolic in light-grown transgenic plants (Yang H.Q. et al., 

2001). A bipartite nuclear localization signal was found within the DAS domain of 

CRY2, although no apparent bipartite NLS is found in CRY1. Notwithstanding, the 

C-terminal extension has been shown to be sufficient for nuclear/cytoplasmic 

trafficking of CRY1. The highest CRY2 expression is observed in the root, where 

CRY1 mRNA is absent. On the contrary, CRY1 is highly expressed in the aerial parts 

of the plant (Chen M. et al., 2004).

The Arabidopsis CRY2 protein undergoes rapid blue light-induced 

degradation (Guo H. et al., 1999). Both the PHR domain and the C-terminal 

extension appear to be important for the blue light-induced degradation of CRY2. It 

is not clear whether ubiquitination is involved in CRY2 degradation, although 

application of proteasome inhibitors to Arabidopsis seedlings suppresses blue light- 

dependent CRY2 degradation in vivo (Lin C. & Shalitin D., 2003). It is important to 

point out that Drosophila cryptochrome has also been reported to undergo a light- 

induced and proteasome-dependent degradation mediated by a light-dependent 

conformational change in the molecule (Lin F.J. et al., 2001). Moreover Shalitin D.
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et al. (2002) have shown that CRY2 undergoes blue light-dependent 

phosphorylation. Phosphorylation of the CCT domain has been observed only under 

blue light, whereas in the dark the protein is mostly present in the unphosphorylated 

form. Whether this phosphorylation is required for signaling or simply modulates the 

activity or the level of CRY2 has not been established. In addition, it has been 

shown that CRY1 binds ATP (Bouly J.P. et al., 2003), and the site of this binding 

has been determined in the crystal structure reported by Brautigam C.A. et al. 

(2004). It is not known whether animal cryptochromes also bind to ATP, although it 

has been shown that mouse crys are phosphorylated (Eide E.J. et al., 2002).

1.3.8.2 Signaling Mechanism

Characterization of cryptochromes in Arabidopsis and other species has 

revealed at least two mechanisms by which crys may affect nuclear gene expression 

changes in response to light.

First, a cryptochrome molecule may interact with proteins associated with the 

transcriptional machinery to affect transcription directly. A CRY2 C-terminal 

extension fused to GFP has been shown to be chromatin associated (Cutler S.R. et 

al., 2 0 0 0 ), but it is unclear whether this interaction has a role in regulating gene 

expression. Furthermore, unlike the animal crys that have been shown to physically 

bind to promoter-binding transcriptional regulators, no such interaction has been 

reported for plant cryptochromes. An alternative model is that plant crys may 

interact with proteins exerting other cellular functions to regulate the stability, 

modification, or cellular trafficking of transcriptional regulators. For example, plant 

crys have been found to modulate protein degradation through interaction with the 

E3 ubiquitin ligase, Constitutive Photomorphogenesis 1 (COP1), (Yang H.Q. et al., 

2 0 0 1 ), a protein required for the degradation of several factors involved in light-
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regulated transcription (Jiao Y. et al., 2007). It is well known that in the dark COP1 

is associated with transcription factors that promote photomorphogenesis such as 

HY5 (Osterlund M.T. et al., 2000), and with the COP10/CSN complex, which 

promotes degradation of these factors by targeting them to the proteasome (Li L. & 

Deng X.W., 2003). The interaction o f Arabidopsis crys with COP1 in the light leads 

to inactivate the latter, resulting in the release of repression of gene expression in 

response to light. Consistent with this model, it has also been found that Arabidopsis 

crys mediate suppression by blue light of the proteasome-dependent degradation of 

an important floral regulator, CONSTANS (Valverde F. et al., 2004). Other cry 

signaling intermediates have also been described. For example, HFR1 (long 

Hypocotyl in Far-Red 1) is a basic helix-loop-helix transcription factor required for 

both phytochrome A-mediated far-red and cryptochrome 1-mediated blue light 

signaling (Duek P.D. & Fankhauser C., 2003). HFR1 physically interacts with 

COP1, which degrades the transcription factor to desensitize light signaling (Yang J. 

et al., 2005). Another component of cryptochrome signaling is the negative regulator 

of photomorphogenesis SUB1 (Short Under Blue Light 1), which is a calcium 

binding protein. It has been suggested that SUB1 plays an important role in 

photomorphogenesis responses resulting from light-induced changes in ion 

homeostasis (Guo H. et al., 2001). Cryptochromes suppress the activity of SUB1 to 

induce light responses, with the consequent accumulation of the HY5 protein. 

Genetic studies have shown that SUB 1 also acts as a modulator of phytochrome A 

signaling (Guo H. et al., 2001). Interestingly, a novel positive regulator involved in 

cryptochrome action has also been identified in plants: the Ser/Thr Protein 

Phosphate PP7. This protein is suggested to act in concert with cry in the nucleus to 

activate blue light signaling (Moller S.G. et al., 2003).
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The functional interaction observed between cryptochrome and phytochrome 

(Mas P. et a l, 2000) is also very intriguing, especially because several light 

responses are mediated by the coordinated action of these photoreceptors (e.g., 

seedling establishment, entrainment of the circadian clock, and flowering), although 

the molecular mechanisms are not known.

The catalytic mechanism of cryptochrome action has not been fully 

elucidated, but some clues can be found in the mechanism of CPD photolyases, 

based on their similarity. The PHR region that contains the chromophores is the 

most conserved part of the proteins and it has been shown to be required for the 

homodimerization of Arabidopsis CRY1, which is essential for photoreceptor 

activity (Sang Y. et al., 2005). However the carboxy-terminal domain has also been 

shown to have a role in the function and regulation of both animal and plant 

cryptochromes. Expression of the C-terminal domains of Arabidopsis crys, fused to 

the marker enzyme GUS confers a constitutive de-etiolated response in darkness 

(Yang H.Q. etal., 2000).

Possible models of the structural changes of plant cryptochromes in response 

to blue light consider phosphorylation as a key step for the regulation of binding of 

these molecules with several signaling partners. In plant cells, it is possible to 

imagine different scenarios, schematically represented in Fig. 9. The first model (a) 

considers the phosphorylation of the carboxy-terminal domain in response to light as 

the crucial step for the dissociation of the two domains that allows interaction with 

downstream partners. A second possible model is that phosphotransfer mediates the 

interaction of two cryptochromes encoded by the same gene (b) or, alternatively, that 

intermolecular phosphotransfer involves the interaction of different cryptochromes 

and leads to the formation of hetero-oligomers (c). Elucidation of the structure of
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holocryptochromes, including the carboxy-terminal domain, may help to understand 

their mechanism of action.



(a)
?Hiy \  ATP, Light 

I c X.Y. Z

Inactive CRY P hoeph crylated C RY Active C RY com plex

ATP Light 

 ►

X.Y. Z

Inactive CRY 
hom o-oligom er

Phosph cry lated CRY Active CRY com plex

ATP, Light X.Y. Z

Initiation of flowering 
Inhibition of elongation

Inactive CRY 
hetero-oligom er

Phosph cry lated CRY Active CRY com plex 
hetero-oligom er m

Fig. 9. Possible models of phosphorylation-dependent structural changes of plant 
cryptochromes, (a) Blue light induces the phosphorylation of the C-terminal domain 
leading to its dissociation from the N-terminal domain; (b) The CRY homo-oligomer is 
activated by phosphorylation; (c) Intermolecular phosphotransfer could involve the 
interaction between different cryptochromes (Lin C. & Todo T., 2005).

- 6 0 -



1.3.9 Other Flavin-Containing Blue Light Receptors

Flavin is the most common chromophore in nature for blue light perception. 

Several receptors that use flavin derivatives have been described in bacteria, algae, 

plants, and fungi but not in animal systems.

The phototropins (phot) were originally identified as a class of blue-light 

receptors involved in phototropism, the adaptive process that allows plants to grow 

in the direction of light to maximize light capture for photosynthesis (Huala E. et a l, 

1997).

Phototropins are composed of two distinct domains: an amino-terminal 

domain for light sensing and a carboxy-terminal Ser/Thr protein kinase domain. In 

the sensing domain it is possible to distinguish two repeats of approximately 110 

amino acids, denoted LOV1 and LOV2 (Briggs W.R. et al., 2007). The LOV sensor 

domains are referred to as Light, Oxygen, Voltage and share sequence homology to 

the PAS domain superfamily. The term PAS comes from the first letter of each of 

the three founding members of the family: PER, ARNT, SIM. The Period (PER) 

protein was discovered in Drosophila as a result of its involvement in the regulation 

of circadian rhythms (Reddy P. et a l, 1986); ARNT is the Nuclear Translocator of 

the Aryl Hydrocarbon Receptor (AHR), identified in humans as an essential factor 

for normal signal transduction by AHR (Hoffman E.C. et a l, 1991) and SIM is the 

product of the Drosophila Single-minded locus identified as a regulator of midline 

cell lineage (Nambu J.R. et a l, 1991). The PAS domain indicates a region of 

homology of 250-300 amino acids of these three members and contains a pair of 

highly degenerate 50 amino acid subdomains termed the A and B repeats. The PAS 

domain is a signature of proteins that play roles in the detection and adaptation to 

environmental changes (Gu Y.Z. et al, 2000).
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Phototropin receptors are the only members of the PAS superfamily that 

contain two LOV domains. It is now well known that the two Arabidopsis 

phototropins (PHOT1 and PHOT2) are also involved in the control of several 

processes, such as chloroplast relocation and stomatal opening (Briggs W.R. and 

Christie J.M., 2002; Wada M. et a l , 2003). Given the knowledge that phototropins 

and crys utilize flavins as primary chromophores, we might expect these two classes 

of blue light receptors to exhibit conserved photochemical properties. However, the 

photochemical properties are quite different, related to the fact that crys use FAD as 

primary chromophore, whereas phototropins use flavin mononucleotide (FMN) 

(Liscum E. et a l, 2003). Moreover the amino acid sequences of their flavin-binding 

domains are also distinct. These differences contribute dramatically to the 

production of two very different holoprotein structures that impart different 

photochemical properties to the two classes of chromoproteins (Sancar A., 2003).

It has been demonstrated that light activation of phototropins involves a 

photocycle in the LOV domains (Liscum E. et a l, 2003). In darkness, each phot 

LOV domain binds, non-covalently, one molecule of ground-state FMN. Absorption 

of blue light triggers a covalent binding between FMN and the Cys within the 

conserved GRNCRFLQ amino acid motif of the LOV domain (the cysteinyl-FMN 

adduct) with the subsequent activation of the protein kinase domain. This reaction is 

completely reversible in the dark. In addition, it is clear that the kinase activity is 

necessary for phototropin-mediated signal transduction and that the first event of this 

process involves an autophosphorylation of Ser residues (Salomon M. et a l, 2003). 

Importantly, the formation of this cysteinyl-flavin adduct in LOV2 is absolutely 

essential for the phototropic function of PHOT1 in Arabidopsis seedlings (Christie 

J.M. et a l, 2002). Curiously, PHOT1 function does not appear to require adduct 

formation in the LOV1 domain. Salomon M. et al (2004) identified LOV1 as a
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dimerization site, although there is no evidence that light had any effect on 

dimerization. To date, the exact role of LOV 1 remains unknown.

At present, the only substrate known for phot kinase activity is the phot itself, 

thus the signal transduction pathway that links this photoreceptor to downstream 

physiological responses remains largely unknown. The kinase domain of 

Arabidopsis PHOT2, expressed in bacteria, can phosphorylate the artificial substrate 

casein in vitro. The substrate phosphorylation occurs constitutively but becomes 

light dependent upon the addition of purified LOV2 (Matsouka D. & Tokutomi S., 

2005).

However, the regulation of ion channel activity by light has been proposed to 

play a central role in the general process of photomorphogenesis and, more 

specifically, in the responses mediated by phot (Spalding E.P., 2000). Baum G. et al. 

(1999) have shown a blue light-dependent transient increase in cytoplasmatic Ca2+ in 

wild-type seedlings that is dramatically attenuated in an Arabidopsis photl mutant.

Furthermore, one possible phototropin substrate may be NPH3, a plasma 

membrane protein that possesses BTB/POZ and coiled-coil protein-protein 

interaction domains. It has been demonstrated that NPH3 interacts with PHOT1 in 

yeast two hybrid experiments and pull-down assays (Motchoulski A. & Liscum E., 

1999). Another protein that seems to have a function in phototropin signaling is 

RPT2. This protein is similar to NPH3 because it contains a BTB/POZ domain at the 

N-terminus and a coiled-coil domain at the C-terminus and has been shown to 

interact with PHOT1 (Inada S. et al., 2004). A summary of phototropism mechanism 

is extensively described by Christie J.M. (2007).

In Arabidopsis, other proteins that contain a LOV domain and that display 

similar light-induced photochemistry as the phototropins have been recently 

characterized. Proteins such as ZTL (Zeitlupe), FKF1 (Flavin-binding kelch repeat
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F-boxl), and LKP2 (LOV kelch Protein 2) share, in addition to the LOV domain, an 

F-box region that might target proteins for degradation, as well as six terminal kelch 

repeats, which most probably mediate specific protein-protein interactions. 

Bacterially expressed LOV domains derived from each of these proteins exhibit 

photochemical properties analogous to those of the phototropin LOV domain 

(Imaizumi T. et al., 2003; Nakasako M. et al., 2005). So, ZTL, FKF1 and/or LKP2 

have been proposed as novel classes of circadian photoreceptors that regulate 

flowering by targeting clock components for degradation in a light-dependent 

manner (Yanovsky M.J. & Kay S.A., 2003).

Phototropins have also been identified in C. reinhardtii, and a completely 

novel function for phototropin has been demonstrated in this organism. In this alga, 

the blue light receptor has a critical role in controlling the blue light-dependent 

progression of the sexual life cycle, including pregamete to gamete conversion, up- 

regulation of gene expression during gametogenesis, maintenance of mating 

competence and zygote germination (Huang K. & Beck C.F., 2003), and changes in 

chemotaxis during the initial phase of the sexual cycle (Ermilova E.V. et al., 2004). 

It is interesting to note that this developmental role for phot is in contrast with what 

is found in higher plants, where the control of developmental responses is mainly 

associated with cry function (Huang K. & Beck C.F., 2003).

Another example of a peculiar blue light receptor is a small protein (186 

amino acids) named VIVID, characterized in the ascomycete Neurospora crassa 

(Schwerdtfeger C. & Linden H., 2003). This protein contains a LOV domain and 

seems to use either FAD or FMN as chromophore forming a covalent flavin- 

cysteinyl adduct under blue light. VIVID enables Neurospora to perceive and 

respond to the daily changes in light intensity, likely by protein-protein interactions.
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As a demonstration of the complexity of blue light photoperception in 

different organisms, a novel FAD-binding domain involved in sensory transduction 

has been identified in microorganisms, and is denoted BLUF, for “sensors of blue- 

light using FAD” (Gomelsky M. & Klug G., 2002). The N-terminal region of the 

AppA protein of the phototrophic proteobacterium Rhodobacter sphaeroides 

contains the BLUF domain and is involved in the blue light regulation of expression 

of photosynthesis gene clusters (Masuda S. & Bauer C.E., 2002). Most of these 

proteins are from two branches of Bacteria, Proteobacteria and Cyanobacteria. 

Bacterial genomes contain up to three BLUF domains per genome. No BLUF 

domains are encoded by the currently available genomes of archaea. A member of 

this family has been identified in Euglena gracilis, a unicellular flagellate that 

changes its swimming direction in response to changes in blue light intensity (Iseki 

M. et a l, 2002). The receptor responsible for this photophobic response is an 

adenylyl cyclase containing the flavin adenine dinucleotide chromophore, whose 

activity is regulated by blue light. Considering all this evidence together it is highly 

likely that other blue light photoreceptors with related structures will be described in 

the future.
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A im  o f  t h e s is  p r o je c t

The research project has focused mainly on two different aspects: the 

development of molecular tools in diatoms using Phaeodactylum tricornutum as 

model species and the structural and functional characterization of a gene denoted 

PtCPFl (Cryptochrome/Photolyase Family 1) that encodes a putative photoreceptor 

in the diatom P. tricornutum.

The first important goal for the development of molecular tools in P. 

tricornutum has been to determine the sequence of the whole genome providing an 

incredible amount of new information for comparative genomics analyses. In 

addition, a useful cloning system for the expression of diatom genes has been 

established. Based on the Gateway Technology (Walhout A.J. et al., 2000), diatom 

Destination vectors containing useful epitopes have been constructed offering a 

variety of specific purposes such as gene overexpression, protein localization, and 

tagged proteins for immunopurification, immunolocalization and fluorescent protein 

detection (Siaut M. et al., 2007).

In order to characterize the diatom PtCPFl gene, expression at both 

transcriptional and translational levels have been performed in time course 

experiments designed to study circadian rhythmicity and acute light induction 

responses. From this analysis PtCPFl was shown to be diumally expressed and 

strongly induced under blue light. In order to characterize the biochemical properties 

of the gene product, the protein was expressed and purified in E. coli. Spectral and 

biochemical analyses showed that PtCPFl is a blue-light-absorbing protein with 

DNA repair activity. On the other hand, localization studies in diatom cells have 

evidenced the constitutive nuclear localization of the protein.
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Interestingly, comparative analysis of the diatom PtCPFl protein has 

revealed it to be more similar to the animal cryptochromes than to plant 

counterparts. Since animal crys act as components of the circadian clock controlling 

daily physiological and behavioural rhythms and as photoreceptors that mediate 

entrainment of the circadian clock to light, it was important to elucidate the function 

of the PtCPFl protein both in a heterologous system and in an in vivo system. 

Remarkably, transcription assays developed in mammalian cells have evidenced a 

repressor activity of the PtCPFl protein within the clock machinery, mimicking the 

function of animal crys. Furthermore, gene expression studies of transgenic diatom 

lines overexpressing PtCPFl have indicated that the protein acts as a blue light 

photoreceptor because it can modulate several blue light-dependent responses.

Therefore, this research project has identified a novel protein that displays 

both blue light photoreceptor activity as well as DNA repair activity. In other words, 

this protein could be considered the missing link in the evolutionary history of the 

Cryptochrome/Photolyase family.
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Ch a pt e r  II - M a ter ials  a n d  M e t h o d s



2.1 Cell culture conditions for Phaeodactylum tricornutum (Pi)

Axenic Phaeodactylum tricornutum cells were obtained from the Provasoli- 

Guillard National Center for Culture of Marine Phytoplankton (strain CCMP632, 

originally isolated by Coughlan in 1956 off the coast of Blackpool, U.K.). In our 

laboratory this strain is known as Ptl (De Martino A. et al., 2007). Cultures were 

normally maintained at a temperature of 18 °C in a 12 hour photoperiod with white 

light at an intensity of approximately 180 pmol.m"2.s‘1in f/2 medium (Guillard R.R. 

L., 1975).

2.2 Contamination test

The presence of bacterial and fungal contaminants in diatom cultures was 

checked periodically by a contamination test. An aliquot (around 1 mL) of diatom 

cells was taken and grown in the dark in sterile glass tubes containing 10 mL of f/2 

medium enriched with 1 g/L peptone. The presence of bacteria or fungi was verified 

after approximately one week.

2.3 Extraction of high molecular weight DNA for genome sequencing

A monoclonal culture derived from Ptl of fusiform cells (known as Ptl 8.6 

and deposited as CCMP2561 in the Provasoli-Guillard National Center for Culture 

of Marine Phytoplankton) was grown at 18 °C in a 12 hour photoperiod at an 

illumination of approximately 180 pmol.m"2.s-1. Around 4 liters of diatom culture in 

exponential phase were centrifuged at 1800 g for 15 min at 4 °C. The cell pellet (wet 

weight around 20 g) was frozen in liquid nitrogen and resuspended in 40 mL of lysis 

buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 1% SDS, 10 mM DTT, 10 

pg/mL of proteinase K) and incubated at 50 °C for 45 minutes. Three classical 

phenol/chloroform extractions were performed to remove proteins, and a subsequent
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extraction with chloroform isoamyl alcohol (24:1) was made to eliminate completely 

the phenol residues. Genomic DNA was precipitated with 1/10 volume of 3 M 

sodium acetate pH 5.6 and two volumes of absolute ethanol at -20 °C overnight. 

After two washes with 70% ethanol, genomic DNA was dried at RT (room 

temperature) and resuspended in TE lx (10 mM Tris pH 8.0, 1 mM EDTA). DNA 

concentration was determined in a spectrophotometer at 260 nm and checked on 

agarose gels. After RNAse treatment at 37 °C for 30 minutes, genomic DNA was 

purified on cesium chloride gradients at 55,000 rpm, 20 °C for 18 hours using the 

vertical rotor VTi 65.2 (Beckman, USA). The genomic DNA band was removed 

using a 9 gauge needle. To remove the ethidium bromide from the DNA, several 

extractions with two volumes of isoamyl alcohol saturated with water were carried 

out. After dialysis against lx  TE, the DNA was precipitated overnight at -20 °C, 

washed with 70% ethanol, and resuspended in TE. DNA concentration was 

determined in a spectrophotometer at 260 nm and checked on a 0.8% agarose gel.

2.4 Construction of C-terminal Gateway Destination vectors for diatoms

To construct Gateway-compatible vectors for diatoms, pKS-FcpBpAt 

plasmid was created for use as parent vector in subsequent cloning steps. The 440 

base pair (bp) promoter region of the FCPB gene (FcpBp) and the 220-bp terminator 

sequence of the FCPA gene (FcpAt) were amplified from the pFCPBp-Sh ble vector 

(Bhaya & Grossman, 1993; Falciatore A. et al., 1999) by PCR using, respectively, 

the primer couple 5-FcpBp-SacII: 5'-

AGTCCGCGGAATCTCGCCTATTCATGGTG-3’ (SaclI site underlined) and 3- 

FcpBp-Not: 5 '-C ATGCGGCCGCTGGC AACCGTGAA ATATGC-3' (Notl site 

underlined) for the promoter, and 5-FcpAt-Eco-Xho: 5'-

GTAGAATTCTCGAGCTACCTCGACTTTGGCT-3' (EcoRI site underlined) and
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3-FcpAt-Kpn: 5'-CG AGGT ACCTGAAG ACGAGCTAGTGTT-3' (Kpnl site

underlined) for the terminator. The resulting FcpBp and FcpAt PCR products were 

cloned, respectively, into the SacII-Notl sites and the EcoRl-Kpnl sites of 

pBluescript KS + (Stratagene) to generate pKS-FcpBpAt.

The EYFP tag was amplified from vector pEYFP-Nl (Clontech) using as 

forward primer EyfpRVSma: 5’-

TCCCCCGGGGGAGATATCC47UGTGAGCAAGGGCGAG-3 ’ (Smal site

underlined, start codon in italic) and as reverse primer EyfpBamRI: 5’- 

ATTGGATCCGCGAATTC77MCTTGTACAGCTCGTCC- 3’ (EcoRl site

underlined; stop codon in italic). The resulting 734 bp PCR product was cloned in 

pKS-FcpBpAt into the Smal-EcoRl sites to obtain the intermediate vector denoted 

pKS-FcpBpAt-C-eyfp. It should be noted that in the selected clone pKS-FcpBpAt- 

C-eyfp the Smal site was lost during transformation in E. coli cells, as verified by 

sequencing.

In order to generate the final C-terminal EYFP Gateway vector (pDEST-C- 

EYFP), the pKS-FcpBpAt-C-eyfp vector was digested by EcoRV to insert the 

Gateway cloning cassette, the Reading Frame Cassette A (RfA- Invitrogen, 

Carlsbad, USA), following the Invitrogen protocol.

To build the Gateway vector containing the HA tag (HemAglutinin Influenza 

virus epitope), 3 repeats of HA (3HA) were amplified from pKS-3HA vector (Vaistij

F.E. et a l , 2000) using, as forward primer, HARVSma: 5’-

TCCCCCGGGGGAGATATCCCGATACCCCTACGACG-3 ’ (Smal site 

underlined) and as reverse primer HABamRI: 5’-

ATTGGATCCGCGAATTC7X4AGCGGCGTAGTCGGGC-3’ (EcoRl underlined; 

stop codon in italic). The obtained 119-bp PCR product was cloned in pKS-FcpBpAt 

into Smal-EcoRl sites to obtain the intermediate vector named pKS-FcpBpAt-C-



3HA. A second cloning step was to digest the pKS-FcpBpAt-3HA by EcoKV to 

insert the blunt fragment RfA in order to generate the final C-terminal HA Gateway 

vector (pDEST-C-HA).

It is important to underline that the RfA cassette contains the F plasmid- 

encoded ccdB gene, that inhibits growth of E. coli (Miki T. et al., 1992; Bernard P. 

& Couturier M., 1992) so it is necessary to use the ccdB-resistant E. coli strain 

DB3.1 (chemically competent cells -  Invitrogen) for the propagation and 

maintenance of pDEST vectors.

2.5 Identification and cloning of PtCPFl gene

In order to identify members of the Cryptochrome/Photolyase gene family in 

diatoms, a bioinformatic analysis was first performed searching by BLAST (Basic 

Local Alignment Search Tool) for cryptochrome-like sequences in a Phaeodactylum 

tricornutum EST collection (Expressed Sequence Tag) generated by our laboratory 

(Scala S. et al., 2002). Using specific primers on diatom cDNA, a 200 bp fragment 

was amplified and subsequently cloned in TOPO vector (Invitrogen). This fragment 

was used as probe to screen a cDNA library using standard procedures (Sambrook J. 

et al., 1989), which allowed the isolation of a clone containing the start codon of the 

mRNA but lacking the C-terminal extremity.

The full length mRNA was obtained by 3’RACE (3’ Rapid Amplification of 

cDNA Ends) using two forward internal primers (C2FW: 5’-

CCAAGTATATCTACGAACCT-3’, C3 F W: 5 ’ -GGTG ATTGTCGGTG A AA ACT - 

3’) and the universal oligonucleotide complementary to the 3’ extremity of mRNAs 

(AUAP primer, Abridged Universal Amplification Primer). Instructions of the kit 

from Life Technologies were followed.
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To amplify the full length mRNA from diatom cDNA and the gene from 

genomic DNA the external primers 5’CFW: 5’-

GGATCC47UGCTAAATCGGAAGAG -3’ (BamHl site underlined; start codon in 

italics) and 3’CRW: 5’- GAATTCTG7X4GTTGCGACG -3’ (EcoRl site underlined; 

stop codon in italics) were designed. The nucleotide sequence was confirmed by 

sequence analysis on two independent amplifications.

2.6 Phylogenetic analysis

To investigate the evolutionary relationships of the Cryptochrome/Photolyase 

Family members, representative sequences were selected and a multiple alignment 

was constructed with the alignment software CLUSTAL W (Thompson J.D. et al, 

1994). The alignment of a conserved core of around 400 amino acids was used for 

the phylogenetic analysis by the Neighbour Joining (NJ) method (Saitou N. & Nei 

M., 1987). The genetic distance between every pair of aligned sequences was 

calculated using the JTT model (Jones D.T. et a l, 1992) for the amino acid 

substitutions. The statistical significance of the tree topology was evaluated by a 

bootstrap analysis (Felsenstein J., 1985) with one thousand iterative tree re

constructions.

2.7 Construction of pGEX-2TK-PtCPFl vector

In order to express in E. coli the diatom PtCPFl protein fused to GST 

(Glutathione S-transferase), the 5’CFW and 3’CRW oligonucleotides described 

previously were used to amplify the PtCPFl coding region and to clone it in pGEX- 

2TK vector (Amersham Pharmacia Biotech) into BamRl-EcoRS sites, creating 

pGEX-2TK-PtCPFl. Sequence analysis confirmed the nucleotide region 

corresponding to the amino terminal fusion.
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2.8 Expression in E. coli and purification of GST fusion

In order to express and purify the PtCPFl protein it was necessary to use the 

photolyase-deficient SY2 E. coli strain as host (provided by Prof. Takeshi Todo). 

pGEX-2TK-PtCPFl vector was transformed in SY2 strain and different induction 

conditions were tested in order to generate as much protein in the soluble fraction as 

possible. Bacterial cells were grown at 37 °C until 0.5 OD before performing the 

induction at 16 °C for 21 hours using 0.1 mM IPTG. The cell pellet was centrifuged 

at 1200 g  for 15 min at 4 °C and immediately frozen in liquid nitrogen. A freeze and 

thaw procedure was applied three times to lyse the cells before resuspending the 

broken cells in IX PBS containing a complete protease inhibitor cocktail (Roche). 

The bacteria were then sonicated using three cycles of 30 seconds, with 20 seconds 

pause in between and the soluble fraction was separated from the pellet by 

centrifuging at 20000 g  at 4 °C for 1 hour. The majority of recombinant 

GSTrPtCPFl protein was found to be insoluble, although western blotting using the 

a-PtCPFl antibody revealed the presence of the diatom protein in the soluble 

fraction. The purification procedure was performed essentially according to the 

instructions of the GST Gene Fusion System (Amersham Biosciences). More 

precisely, the binding to glutathione resin was perfomed in batch, overnight at 4 °C 

in IX PBS (protease inhibitors added). After three washes with a large volume of IX 

PBS, the resin was transferred to a column to perform the elution step. One bed 

volume of elution buffer (50 mM Tris-HCl pH 8.0, 10 mM glutathione) was used for 

each elution which was collected for 15 min at room temperature. This procedure 

was repeated until 12-15 elution fractions were collected that were subsequently 

pooled and dialyzed against 50 mM Tris-HCl pH 7.5 to eliminate the glutathione. 

Finally the recombinant protein was concentrated using Centricon filters (cut off 30 

kDa, Amicon) and immediately stored at -80 °C in the final buffer 50 mM Tris-HCl

- 7 4 -



pH 7.5, 20% glycerol. All steps were checked by SDS-PAGE analysis and the 

protein concentration was estimated by loading fixed amounts of BSA (bovine 

serum albumin) protein as reference on acrylammide gel.

2.9 Spectroscopic analysis

The absorption and fluorescence spectra of PtCPFl were recorded with a 

BECKMAN DU-640 spectrophotometer and a Shimadzu RF-5300PC 

spectrofluorometer, respectively, in the laboratory of Prof. Takeshi Todo. To 

identify the flavin adenine dinucleotide cofactor, the partially purified GST:PtCPFl 

protein, together with the GST protein used as negative control, were heated at 95 °C 

for 5 min in buffer containing 50 mM Tris-HCl pH 7.5. The precipitated proteins 

were removed by centrifugation and the absorption spectrum was recorded.

2.10 Determination of nucleic acid content

In order to determine the nature of nucleic acids bound to the recombinant 

purified PtCPFl protein, the sample was subjected to phenol/chloroform extractions. 

Nucleic acids, recovered by ethanol precipitation, were treated with either RNase 

(DNase-free, Roche) or DNase I Amplification Grade (RNase-free, Invitrogen) 

following the respective instructions, and analyzed by electrophoresis on 2 % agarose 

gels. Diatom ribosomal RNA and a 200 bp fragment of plasmid DNA were used as 

controls to check the specificity of the enzymes.

2.11 Detection of DNA photolyase activity in vitro

A gel shift binding experiment and a DNA repair assay were performed using 

as substrate a double stranded DNA probe of 49 bp containing a single UV 

photoproduct (either a CPD, a (6-4)photoproduct or a DEWAR isomer) at the MseI

- 75 -



restriction site (prepared as described in Hitomi K. et al., 1997). The substrate 

sequence is as follows:

d(AGCTACCATGCCTGCACGAATTAAGCAATTCGTAATCATGGTCATAGC 

T), and the thymine dimer of the damaged strand is underlined. The oligonucleotide 

was labelled with [y-32P]ATP (3000 Ci/mmol) by T4 polynucleotide kinase and was 

annealed with the complementary strand by heating at 75 °C for 10 min and cooling 

to room temperature for 2-3 hours. The labelled duplex DNA, containing a single 

photoproduct, was purified by agarose gel electrophoresis and used as substrate for 

both assays.

For the gel shift binding assay, 3 pg of purified recombinant proteins were 

incubated with 1 nM of 32P-labelled DNA substrate and subsequently analyzed by 

electrophoresis on a non-denaturing acrylamide gel. The in vitro repair assay was 

done using 37 pg of purified GST fusion proteins mixed with 10 nM of 32P-labelled 

DNA substrate that were illuminated for 2 hours by daylight fluorescent lamps in 

100 mM Tris-HCl pH 8.0, 1 mM DTT buffer. After phenol/chloroform extractions, 

the DNA substrate was recovered by ethanol precipitation, subjected to MseI 

digestion and finally analyzed by electrophoresis on a denaturating acrylamide gel.

2.12 Detection of DNA photolyase activity in vivo

The SY32 E. coli strain has been engineered to test for (6-4)photolyase 

activity in a functional complementation assay. These bacterial cells are deficient in 

DNA repair mechanisms, but they carry a plasmid pRT2 (tetracycline resistant) 

encoding the E. coli CPD photolyase gene (phr). The complete genotype is recA' 

uvrA' phr+ (Todo T. et al., 1996). Vectors pGEX-4T-2-z(6-4)PHR, encoding 

zebrafish (6-4)photolyase, and pGEX-4T-2-zCRY2a, encoding zebrafish
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cryptochrome 2 a, were used, respectively, as positive and negative controls and were 

transformed in SY32 cells, in parallel with pGEX-2TK-PtCPFl vector.

Bacterial cells were grown in Luria-Bertani (LB) medium (Sambrook J. et 

al, 1989), containing 100 pg/mL ampicillin and 10 pg/mL tetracycline, at 37 °C 

until 0.5 OD. Cells were then transformed with pGEX-z(6-4)phr and pGEX- 

zCRY2a vectors and grown at 26 °C for 21 hours with 0.1 mM IPTG, whereas cells 

transformed with pGEX-2TK-PtCRY were grown at 16 °C for 21 hours in the 

presence of 0.1 mM IPTG to induce more soluble protein. Bacterial cell pellets were 

resuspended in IX PBS to a concentration of 10,000 cells/mL. Cells were then 

exposed to a UV-C lamp for different times (0, 3, 4, 5, 6 , 8 , 10 seconds). The 

subsequent photoreactivation reaction was performed by irradiating the cells with a 

white fluorescent lamp for 1 h using a 5mm thick glass as a screen to eliminate UV 

wavelengths contained in the white light. Bacterial cells were spread on ampicillin- 

tetracycline LB plates and grown at 37 °C overnight in the dark. The next day 

survival rate was calculated by counting the numbers of colonies.

2.13 Construction of pEYFP:PtCPFl vector

In order to study the cellular distribution of PtCPFl in Pt, the pEYFP:PtCPFl 

vector was constructed. The EYFP sequence (enhanced yellow-green variant of 

Aequorea victoria green fluorescent protein) was amplified from the pEYFP-Nl 

vector (Clontech) using the following primers: N5-YFP-Not 5'-

ATCGCGGCCGC4rGGTGAGCAAGGGCG-3' (Notl site underlined; start codon 

italicized) and N3-YFP-Bam 5'-TACGGATCCCTTGTACAGCTCGTCCATG-3' 

(BamHl site underlined). The resulting 720 bp PCR product was cloned in the pKS- 

FcpBpAt plasmid, previously described, into the Notl-BamHI sites to generate the 

pKS-FcpBpAt-N-EYFP vector. The nucleotide region encoding PtCPFl was
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digested from pGEX-2TK-PtCPFl (previously described) using BamRl-EcoRl and 

cloned into the BamHl-EcoRl sites of pKS-FcpBpAt-N-EYFP in order to generate 

pEYFP:PtCPFl.

2.14 Transformation of P. tricornutum and selection of resistant clones

The protocol to transform Pt has been previously described (Falciatore A. et 

al., 1999). Approximately 5 x 107 cells are spread on agar plates (1% w/v) 

containing 50% f/2 medium. Plasmid DNA is coated onto M l7 tungsten particles of

1.1 pm diameter (BioRad) as described in the manual of the Biolistic PDS-1000/He 

Particle Delivery System (BioRad) used to bombard the cells.

Agar plates containing diatom cells are positioned at level 2 in the chamber 

(around 6 cm from the stopping screen) to be bombarded using a pressure of 1,550 

psi. After bombardment the diatom cells are maintained for 48 hours in the diatom 

culture room and are then spread on plates containing 50% f/2 medium and 100 

pg/mL phleomycin (InvivoGen, San Diego, CA, USA). The pFCPFp-Sh ble vector 

(Falciatore A. et a l, 1999) was used to confer resistance to phleomycin. Resistant 

colonies were obtained after three weeks of incubation at 18 °C in a normal 12 hour 

light-dark photoperiod. Individual resistant colonies were restreaked on 50% f/2 

medium supplemented with 80 pg/mL zeocin (InvivoGen) for further analyses.

2.15 Co-transformation of P. tricornutum and PCR screening

For overexpression of PtCPFl another Pt accession was used, denoted Pt8 

(CCMP2560) (De Martino A. et a l, 2007), because it was more likely to reveal 

phototactic phenotypes.

Exponential phase Pt8 cells were bombarded with pFCPFp-Sh ble 

(expressing phleomycin resistance) and pKS-PtCPFl vectors. Putative
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cotransformants, grown under selection, were analyzed for the presence of the gene 

of interest (PtCPFl) by PCR screening using the following protocol. A diatom cell 

pellet (corresponding to ~10 mL of culture) was resuspended in 50 pL of lysis buffer 

(1% NP40, 10 mM Tris-HCl pH 7.5, 0.14 M NaCl, 5 mM KC1), placed on ice for 2 

min to induce cell lysis, and centrifuged at 20,000 g  for 5 min. The cell pellet was 

then resuspended in 30 pL of distilled water (DW) and 13 pL were used for each 

PCR reaction in 50 pi final volume containing as final concentrations lx  PCR buffer 

(Roche), 0.2 mM dNTP (deoxyribonucleotide triphosphate), 0.2 pM of each primer, 

0.2 units Taq polymerase (Roche). To check for the presence of the PtCPFl gene in 

transgenic diatoms, the following PCR conditions were used: 95 °C/ 5 min; step 2 at 

94 °C/ 1 min; 55 °C/ 1 min; 72 °C/ 1 min returning to step 2 for 34 cycles; 72 °C/ 10 

min. PCR products were analyzed on 1% agarose gels.

2.16 Microscope analysis

Cells were observed and photographed using a Zeiss LSM 510 meta laser- 

scanning confocal fluorescent microscope equipped with a Zeiss plan apochromat 

100x/1.40 oil objective, in collaboration with Dr. Fabio Formiggini at the CEINGE 

Institute (Naples). In order to stain the genomic DNA in P. tricornutum cells 

expressing the fluorescent protein EYFP:PtCPFl, exponentially growing cells were 

incubated at room temperature for 1 hour in the dark with 200 pg/mL of 4’,6 '- 

diamidino-2-phenylindole hydrochloride (DAPI) (Molecular Probes). EYFP and 

chlorophyll were excited at 514 nm and 543 nm, respectively, whereas DAPI was 

excited at 405 nm. The emitted fluorescence was detected using filters with a 

bandwidth of 530-595 nm for EYFP, 420-480 nm for DAPI, and > 560 nm for 

chorophyll. Images were captured and processed with the Zeiss LSM confocal 

software.
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2.17 Expression in E. coli and purification of inclusion bodies

In an attempt to produce an antibody against diatom protein PtCPFl, the 

pGEX-2TK-PtCPFl vector was transformed in E. coli strain BL21. Cells were 

grown until OD 1.0 at 37 °C, and then induced at 25 °C for 3 hours using 0.1 mM 

IPTG (isopropyl-p-D-thiogalactopyranoside). Because the diatom protein was not 

present in the soluble fraction it was necessary to proceed with purification from 

inclusion bodies. A bacterial pellet, previously frozen in liquid nitrogen, was thawed 

in cold water and resuspended in lysis buffer (50 mM Tris-HCl pH 7.5, 5 mM 

EDTA, 5 mM DTT, 100 mM NaCl) containing 10 mg/mL of lysozyme. After 20 

min of lysis at room temperature the pellet was sonicated on ice, treated with 1% 

Triton X-100 for 30 min at 4 °C and washed three times with a large volume of wash 

buffer (50 mM Tris-HCl pH 7.5, 5 mM EDTA, 5 mM DTT, 100 mM NaCl, 2% 

Triton X-100) containing 2 M urea in the second wash. At this point the cell pellet 

was homogenized in urea buffer (8  M urea, 50 mM Tris-HCl pH 7.5, 5 mM EDTA, 

5 mM DTT) and resuspended thoroughly for 1 h at 4 °C to solubilize inclusion 

bodies. The concentration of GST:PtCPFl purified protein was measured by BioRad 

Protein Assay and checked by SDS-PAGE analysis. All buffers used for the 

purification of inclusion bodies contained 1 mM PMSF (phenylmethylsulfonyl 

fluoride), 1 pg/mL aprotinin, leupeptin and pepstatin as protease inhibitors. The 

GST:PtCPFl protein was sent to the Biopat company (Caserta, Italy) for the 

generation of antibodies using rabbit as host.

2.18 Antibody Purification

In order to purify the specific antibody from the rabbit serum, 80 pg of 

diatom recombinant protein (purified from inclusion bodies as described) were 

resolved on 8% gel by SDS-PAGE and transferred to a nitrocellulose membrane.
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The membrane was stained by Ponceau red for 5 min and washed 1 min with 

distilled water to visualize and to cut out the PtCPFl band. The membrane was 

blocked in IX phosphate buffer saline (PBS), 0.1% Tween 20, 9% milk for 2 h at 

room temperature before incubating it with rabbit serum in IX PBS, 0.1% Tween 

20, 5% milk overnight at 4 °C (1:5 dilution). After three washes of 20 min each at 

room temperature with IX PBS, 0.1% Tween 20, the membrane was treated with 1.5 

mL of stripping solution (0.2 M HC1, 0.2% gelatin, pH 2.8 final) for 2 min at room 

temperature to release the purified antibody. To reach pH 2.8 in the stripping 

solution 2 M glycine was used in a 0.2% gelatin solution with a final pH of 4.0. 

Subsequentely, 0.5 mL 1 M Tris base (pH 11) plus 20 pL 20% Triton X-100 were 

added to neutralize the solution. The purified antibody, denoted a-PtCPFl, was 

quantified by BioRad Protein Assay and stored at 4 °C.

2.19 Cell culture conditions for time course experiments in P. tricornutum

To study the expression of the diatom PtCPFl gene, time course experiments 

were performed, using diatom cells collected every three hours for two days. Cells 

were either grown in a 12 h photoperiod with white light at approximately 180 

pmol.m^.s'1, in continuous light, or in continuous dark. For acute light induction 

time courses the cells were first adapted in the dark for 48 hours and then exposed 

either to continuous white light (175 pmol.m^.s"1), blue light or red light (25 

pmol.m^.s'1), collecting samples at different times (1, 3, 5, 8 and 12 hours) after 

exposure. For each time point we collected 108 cells grown in exponential phase at a 

concentration of 2 x 106 cells.mL-1 and, after washing in IX PBS, the samples were 

immediately frozen in liquid nitrogen and then stored at -80 °C.

In order to characterize PtCPFl overexpressing lines, a gene expression 

analysis was performed. Wild-type cells together with two selected PtCPFl
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overexpressing lines (denoted c4 and c l5) were grown with an air bubbling system 

under a normal light-dark photoperiod until exponential phase. Cells were adapted in 

darkness for 60 hours and then exposed either to a pulse of blue (0.2; 3.3; 25 

pmol.m^.s'1) or red light (3.3; 25 pmol.m'2.s_1) for 5 minutes. Cultures were 

subsequently readapted in the dark and aliquots containing 108 cells were collected 

after 15 and 30 minutes. Blue light was generated using lamps with a broad band 

(380-450 nm), whereas a band width of 620-720 nm with peak intensity of 670 nm 

was used as red light.

2.20 RNA extraction and cDNA synthesis

RNA extraction was performed using the TriPure Isolation Reagent (Roche 

Applied Science, IN, USA) according to the manufacturer’s instructions. We used

1.5 mL of reagent for approximately 108 diatom cells. RNA concentration was 

determined by spectrophotometry at 260 nm and estimated by agarose gel 

electrophoresis. Genomic DNA was removed from the RNA sample by DNase 

treatment by incubating 1 pg of RNA with Amplification Grade DNase I 

(Invitrogen) and following the suggested protocol. cDNA was generated from the 

treated RNA by RT-PCR (Reverse Translation-Polymerase Chain Reaction) using 

random hexamer primers following the protocol of the Superscript™ First-Strand 

cDNA Synthesis System (Invitrogen).

2.21 Quantitative Real Time-PCR (qRT-PCR) analyses

For the circadian analysis and acute light response studies in wild-type 

diatom cells, the conditions used in qRT-PCR reactions were 1 pL of template 

cDNA, corresponding to around 16 ng, 200 nM forward and reverse primers and 

FastStart SYBR Green Master mix (Roche). The PCR reactions were performed in
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an Opticon Chromo4 MJ Research Thermal Cycler (BioRad, Hercules, CA, USA) in 

Low-Profile 0.2 mL PCR 8 -Tube white Strips (BioRad). The PCR conditions 

comprised 10 min polymerase activation at 95 °C and 40 cycles at 95 °C for 15 sec 

and 60 °C for 60 sec. The reaction was ended by 5 minutes of final elongation at 72 

°C. Amplicon dissociation curves, i.e., melting curves, were recorded after cycle 40 

by heating from 60 °C to 95 °C with a ramp speed of 0.5 °C every second. The 

results obtained in the Chromo4 Sequence Detector were exported as tab-delimited 

text files and imported into Microsoft Excel for further analyses. Histone H4 and 

30S ribosomal protein subunit (RPS) genes were used as internal controls, because 

they were considered almost stable as described in Siaut, M. et al. (2007). Relative 

mRNA levels were calculated using the 2'AACT method where AACj = (C t,target -

Ct,control gene)lim e x — (C t,target ~  ^■'Tjcontrol gene)lim e 0 (Livak K.J. & Schmittgen T.D., 

2001). For the time course experiments, the reference point used (time 0) was the 

average of all the 16 time points collected during a diel cycle, whereas for the light 

induction experiments, time 0 was the point taken after 48 hours (or 60 hours) of 

dark and before light exposure. All primers utilized in the qRT-PCR experiments 

were designed using the Primer3 software program (http://frodo.wi.mit.edu/cgi- 

bin/primer3/primer3 www.cgiL selecting a primer length of 20-23 nucleotides, a 

melting temperature of 62 +/- 2 °C and a PCR resulting fragment of 150-180 bp. All 

primers were tested by RT-PCR to verify single amplification products of the 

expected size. The primer pair efficiency was determined according to Pfaff M.W., 

2001, and the primer pairs with an efficiency >1.8 were selected for this study. The 

sequences of each primer are indicated in Table 2.1.
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Table 2.1

Gene name primer name PCR product (bp) Primer sequence

H4 Q-H4.FW 151 5’- AGGTCCTTCGCGACAATATC -3’

H4 Q-H4.Rev 5’- ACGGAATCACGAATGACGTT -3’

CPF1 CPF1.FW 176 5’- CCAATTGTTGACCACAAGTTGG -3’

CPF1 CPFI.Rev 5’- CGATT CTTT GCACTTT CT GTTAG -3’

RPS RPS.FW 166 5 - CGAAGTCAACCAGGAAACCAA -3'

RPS RPS.Rev 5’- GTG C AAG AG ACCG G AC AT AC C -3'

FCPB FcpB.FW 177 5’- GCCGATATCCCCAATGGATTT -3’

FCPB FcpB.Rev 5’- CTTGGTCGAAGGAGTCCCATC -3’

PSY PSY.Fw 150 5’- CACGAAGAGGTGTATTCATGCTG -3’

PSY PSY.Rev 5’- ACAGCTTTTCCCACTTATCCACA -3’

PDS PDS.FW 168 5’- TCTCATGAACCAGAAAATGCTCA -3’

PDS PDS.Rev 5’- AAGACTTCTTCGTTGATGCGTTC -3’

CPF25 CPF25.FW 169 5’- CCAACATGCCCGATACCTTT-3’

CPF25 CPF25.Rev 5’- TCCGTGTACCCCAGCTCTTT-3’

CYC CYC.FW 157 5’- AAACAGCAACATTCCCAGCAAG -3'

CYC CYC.Rev 5'- CGCACGCTTCAACCACATAC -3'

Table 2.1. Primer sequences utilized in the qRT-PCR experiments. The length of 
amplified PCR products is indicated.
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2.22 Western blotting

Cell pellets from around 30 mL of diatom cultures in exponential phase were 

resuspended for 30 minutes in lysis buffer (50 mM Tris-HCl pH 6 .8 , 2% SDS) at 

room temperature. Cells were then centrifuged at 4°C for 30 minutes and protein 

extracts quantified following instructions from the BCA™ Protein Assay Kit 

(Pierce). Diatom proteins were analyzed by SDS-PAGE, transferred to PVDF 

membranes (polyvinylidene fluoride, Millipore) and visualized with Ponceau red. 

Membranes were incubated for the blocking reaction in 5% milk, 0.1% Tween 20, 

PBS IX for 2 hours at RT, and overnight at 4 °C with purified a-PtCPFl antibody 

using 1:200 dilution in 5% milk, 0.1% Tween 20, IX PBS. After 1 h incubation at 

room temperature with the secondary antibody (1:10,000 dilution) in 5% milk, 0.1% 

Tween 20, IX PBS, the signal was visualized using the enhanced 

chemiluminescence kit (ECL kit, Amersham Bioscience).

2.23 Construction of vectors for expression of PtCPFl in diatoms and in 

mammalian cells

In order to generate overexpressing P. tricornutum lines, the backbone vector 

pUC-PtCPFl was constructed. The full length cDNA of PtCPFl was recovered from 

pGEX-2TK-PtCPFl by BamWl-EcoRl digestion and cloned into the BamRl-EcoRl 

sites of pUC19 (Amersham).

A second cloning step was to recover the full length cDNA from pUC- 

PtCPFl and to clone it downstream of the FCPB promoter region in plasmid pKS- 

FcpBpAt previously used for creating the final vector for overexpression in diatom 

cells denoted pKS-FcpBpAt-PtCPFl.

The full length PtCPFl cDNA, recovered from pGEX-2TK-PtCPFl vector, 

was also cloned into BamHl-EcoRl sites of pENTRY™ 3C vector (Invitrogen) to
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obtain the pENTRY3C-PtCPFl plasmid that could be used for Gateway cloning. 

Through the LR (Left-Right) recombination reaction the PtCPFl cDNA was thus 

transferred into the pDEST™ 12.2 (Invitrogen) vector and the resulting pDEST12.2- 

PtCPFl vector was used to express the diatom protein in COS7 (monkey kidney 

cells) and BRF41 (zebrafish fibroblast cells) cells for the transcription repressor 

assays.

2.24 Determination of transcriptional repressor activity

Luciferase reporter gene assays in COS7 and BRF41 cells were performed in 

collaboration with the laboratory of Prof. Takeshi Todo. The reporter construct 

(described in Kobayashi Y. et a l, 2000) was made using a 3,700 bp segment of the 

5’ flanking region of the zcry3 gene cloned in the pGL3-Basic vector (Promega), 

generating plasmid pzcry3-luc. To express the diatom protein in mammalian cells, 

the pDEST12.2-PtCPFl vector, previously described, was used. Cells (1.5 x 105) 

were seeded in 12-well plates and transfected the next day with Lipofectamine-Plus 

(Invitrogen). For transfection in COS7 cells the following vectors were used: 

pcDNA-mCRYl, pcDNA-mCLOCK, pcDNA-mBMAL 1, pDEST12.2-PtCPFl. For 

transfection in BRF41 cells, pcDNA-zCRYla, pcDNA-zCLOCKl, pcDNA- 

zBMAL3, and pDEST12.2-PtCPFl were used. In each transfection experiment the 

reporter plasmid pzcry3-luc and the pRL vector (Promega) were added. The total 

DNA per well was adjusted to 1 pg by adding pcDNA3.1 vector (Invitrogen) as 

carrier. Forty-eight hours after transfection cells were harvested, and their firefly and 

Renilla luciferase activities determined by luminometry. The reporter luciferase 

activity was normalized for each sample by determining the firefly:Renilla luciferase 

activity ratios. All experiments were repeated three times.
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2.25 Experimental design for microarray experiment

Three independent cultures of wild-type and the PtCPFl overexpressing line 

(c l5) were grown with an air bubbling system under a normal light-dark photoperiod 

to exponential phase. Cells were then dark-adapted for 60 hours and subsequently 

exposed to a pulse of blue light (3.3 pmol.m^.s'1) for 5 minutes. Cultures were then 

replaced in the dark and aliquots containing 108 cells were collected after 15 

minutes. Blue light was provided using lamps with a broad band (380-450 nm) light 

source.

2.26 RNA extraction for microarray experiment

RNA extraction was performed as described in section 2.20, but an additional 

purification step was required. Fixed amounts of total RNA (30 pg) were loaded on 

columns following the RNA Cleanup Protocol from the RNeasy Plant Mini kit 

(Qiagen). On-column DNase digestion was performed as suggested in the optional 

step. RNA samples were eluted using nuclease-free water and RNA concentration 

was determined by spectrophotometry at 260 nm and estimated by agarose gel 

electrophoresis.

2.27 Microarray design and hybridization

A whole-genome expression array was designed and generated by the RZPD 

German Resource Center for Genome Research (Berlin, Germany). On average, five 

different primers of 60 nucleotides in length were designed for each gene. In total 

43,860 oligos were spotted on the array, derived from the 10,364 predicted genes in 

the P. tricornutum genome. 4 X 44k custom arrays were generated following eArray 

instructions from Agilent, available on the internet 

(http://earrav.chem.agilent.com/earrav/login.dol. Agilent default negative control
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features were used to check the hybridization performance and quality control. 

Quality control of RNA samples was performed using a 2100 Bioanalyzer (Agilent 

Technologies). 0.1 pg of total RNA from each replicate sample was labelled using 

Cyanine 3-CTP following the instructions for “One color Microarray-Based Gene 

Expression Analysis”. The protocol (from Agilent Technologies) is schematically 

represented below.

Scan

W a s h

Tem plate Total or poly A + RNA w ith  Spike-ln

17-hour hybridization (65°CJ

Feature extraction

cR NA purification

cDNA synthesis

cRNA synthesis and am plification

Preparation of hybridization sample

Scanning, feature extraction and normalization were performed using Agilent’s Scan 

Control software and Feature Extraction software.



Ch a pter  III - R esults



3.1 Development of molecular tools for Phaeodactylum tricornutum

3.1.1 Extraction of DNA for Sequencing of the P. tricornutum genome

The ecological relevance and evolutionary importance of diatoms motivated 

the whole genome sequencing of the centric diatom Thalassiosira pseudonana (Tp) 

by the US Department of Energy (DOE) (Armbrust E.V. et a l , 2004). The 

laboratory in which this thesis was developed, in collaboration with several other 

research groups, was actively involved in this international project. Genome 

assembly and annotation allowed identifying key components of several interesting 

or peculiar molecular pathways of diatoms (Montsant A. et al, 2007).

Following this first project, a second genome sequencing project was funded 

by DOE for the pennate diatom P. tricornutum (Pt), and our laboratory was chosen 

to coordinate the project. Strain Ptl (denoted CCMP632 in the Provasoli-Guillard 

National Center for Culture of Marine Phytoplankton) was chosen for the 

sequencing project.

In order to obtain homogeneous starting material, it was first necessary to 

extract genomic DNA from a clonal culture produced by repeated mitotic divisions 

of a single diploid founder cell. This culture was isolated by Alessandra De Martino 

in May 2003 and is now denoted clone CCAP 1055/1 in the Culture Collection of 

Algae and Protozoa (CCAP). Diatom cells were grown at 18 °C under standard 

conditions in a 12 hour photoperiod at approximately 180 pmol.m^.s'1. Before 

collecting the cells, the culture was checked for contamination using standard 

methodologies (see Materials and Methods).

Genomic DNA was extracted following a standard protocol, but to ensure 

high purity it was necessary to perform ultracentrifugation in a cesium chloride 

gradient. The procedure is schematically represented in Fig. 10. From 4 liters of
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monoclonal culture in exponential phase {wet weight around 2 0  g), around 2 0 0  pg of 

genomic DNA was obtained at a concentration of 2.0 pg/pL, as shown in Fig. 10. In 

order to confirm the high molecular weight nature of the DNA, three different 

molecular weight markers were loaded with it on a 0 .8% agarose gel: lambda 

HindiII, lambda Hindlll-EcoRl and lkb ladder (Fermentas Life Sciences), in which 

the highest bands are 23 kb, 21 kb and 10 kb, respectively. Lane 3 of Fig. 10B shows 

1 pL of diatom genomic DNA, whereas lanes 4 and 5 contain, respectively, 1/10 and 

1 /100  dilutions and the migration on the gel indeed confirmed the high molecular 

weight nature of the DNA. The material was therefore sent to the Joint Genome 

Institute (JGI, Walnut Creek, CA, USA), who generated three different libraries, of 3 

kb, 8 kb and 35 kb. In order to sequence the diatom DNA, a whole-genome shotgun 

approach was used and a completed genome sequence is now available at: 

http://genome.igi-psf.org/Phatr2/Phatr2.home.html. The nuclear genome sequence is 

27 mega base pairs organized in approximately 19 chromosomes. However, an 

accurate study is soon to be published and will provide the basis for comparative 

genomics studies of diatoms with other eukaryotes and a foundation for interpreting 

the ecological success of these organisms.
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A

A
Pt1 monoclonal cell line 8.6 Exponential cell culture

4_______  Genomic DNA extraction

Ultracentrifugation

1 2 3 4 5 6

Fig. 10. A. Schematic protocol of the purification of P. tricornutum  (P tl strain) genomic 
DNA. B. Lane 1: lambda Hmdlll marker (upper band 23 kb); Lane2: lambda H indlll- 
EcoRl marker (upper band 21 kb); Lane 3: lpL of P. tricornutum  genomic DNA; Lane 4: 
1/10 dilution of Pt genomic DNA; Lane 5: 1/100 dilution of Pt genomic DNA; Lane 6: 
1 kb marker (upper band 10 Kb).
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3.1.2 Gateway cloning technology for P. tricornutum

The Gateway Technology is a universal cloning method designed by 

Invitrogen (Carlsbad, USA) (Walhout A.J. et al., 2000). This technology is based on 

the conservative and site-specific recombination machinery used by phage X to 

integrate and excise into and out of the E. coli chromosome. Recombination 

components have been improved for optimum efficiency and specificity of the 

recombination process in order to provide a rapid and highly efficient way to move a 

gene of interest into multiple vector systems. To date, Invitrogen offers state-of the- 

art Gateway® destination vectors for expression of native or tagged proteins in E. 

coli, insect, yeast or mammalian cells, providing extensive possibilities for 

functional studies (see scheme in Fig. 11), and a common objective of our laboratory 

has been to generate Gateway-based diatom vectors.

The first step of the procedure consists in the cloning of a gene of interest 

into the vector denoted pENTRY such that the lambda recombination sites are 

located to the left (5’) and to the right (3’) of the gene of interest (attLl-attL2, 

respectively), replacing the position of the toxic ccdB gene. Moreover, in this first 

step it is extremely important to clone the transcript of interest in the appropriate 

pENTRY vector such that the gene of interest will be in frame in the derived fusion 

proteins. Once a gene of interest has been inserted into a pENTRY plasmid by the 

LR (Left-Right) recombination reaction it can be transferred into different 

Destination vectors (pDESTs).

In this reaction the bacteriophage X Integrase (Int), together with the 

Excisionase (Xis) and the E. coli Integration Host Factor (IHF) proteins, replace the 

pDEST cassette carrying the ccdB gene and the cat gene (for chloramphenicol 

resistance) with the sequence present between the attLl-attL2 sites of the pENTRY 

vector, as schematically presented in Fig. 11. The non-recombined vectors harboring
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the toxic ccdB gene are eliminated after transformation in E. coli TOP 10 strain and 

selection on the appropiate antibiotic (ampicilllin).

Based on this technology, we decided to establish a cloning system for the 

expression of diatom genes by constructing diatom Destination vectors with useful 

epitopes (Siaut M. et al, 2007). As a strong promoter the upstream region of the 

FCPB gene (Fucoxanthin Chlorophyll Binding Protein B, FcpBp) was chosen and 

the terminator was derived from the FCPA gene (Fucoxanthin Chlorophyll Binding 

Protein A, FcpAt). In total, seven Destination vectors were designed for a variety of 

specific purposes including gene overexpression, protein localization, and 

production of tagged proteins for immunopurification, immunolocalization and 

protein detection. The first vector was made to overexpress a gene product in diatom 

cells in order to get information about its function (Fig. 12A). Four vectors were 

constructed for the analysis of subcellular localization, thanks to the feasibility to 

fuse a gene of interest at the amino- and carboxy-terminal extremity with sequences 

encoding enhanced yellow fluorescent protein (EYFP) or enhanced cyan fluorescent 

protein (ECFP), two variants of the Aequorea victoria green fluorescent protein 

(Ormo M. et al., 1996; Heim R. & Tsien R.Y., 1996 respectively). Two other vectors 

were designed to produce proteins tagged at amino- or carboxy-terminal extremities 

with the HA (HemAglutinin Influenza virus) epitope (Fig. 12). In order to validate 

this powerful cloning system all diatom Gateway-compatible Destination vectors 

were tested.

My contribution to this work was to create the diatom Gateway Destination 

vector pDEST-C-EYFP and the diatom Gateway Destination vector pDEST-C-HA. 

Cloning strategies have been described in details in the Materials and Methods 

section. It is interesting to show two examples, made by my colleagues, that confirm 

the power of this cloning system for the diatom scientific community. The coding
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region of the protein SEC4, a member of the small GTPase family of membrane 

traffic regulators, was isolated from P. tricornutum and cloned in a pENTRY vector. 

Through the recombination reaction the cDNA was transferred to the pDEST-C- 

EYFP vector. Transgenic diatom cells overexpressing the resulting fusion protein 

were generated and microscope analysis showed a subcellular localization associated 

with a complex network of membranes. PtSEC4 appeared localized in small vesicles 

arranged longitudinally on the plasma membrane (Fig. 13 A), in agreement with the 

know function of SEC4 in polarized secretion in yeast (Goud B. et al., 1988).

As a second example, the coding region of a putative phytochrome gene 

isolated from P. tricornutum (denoted PtPHY) was transferred from a pENTRY 

vector to the pDEST-C-HA destination vector. The final construct was shot into 

diatom cells and positive transgenic cells were screened. Western blotting analysis 

using a monoclonal HA antibody confirmed expression of the fusion protein at the 

expected molecular weight (Fig. 13B).



A

Subcloning an Entry Clone into Multiple 
Destination Vectors

Gene

TagsGene Gene
Your VectorIn Vitro

GeneGene Gene
Viral SystemE. coli Entry Clone

GeneGene

Yeast Gene

Invitrogen

B

—  pENTR vector

LR reaction

pDEST vectors

Fig. 11. A. The Gateway cloning techonology allows transfer of a gene of interest 
simultaneously into a range of Destination vectors. B. The recombination reaction (LR 
reaction) replaces the pDEST cassette (Cmr, choramphenicol resistance; ccdB gene) with 
the gene cloned in pENTR vector using site specific recombination sites attLl-attL2, 
attRl-attR2.

gene of interest attL2

attR1 ccdB attR2
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A. Over-expression

FcpBp attR1 Cmr ccdB attR2 FcpAt pDEST-OX

B. N-term tags

— FcpBp - EYFP attR1 Cmr ccdB attR2 FcpAt

— FcpBp - ECFP attR1 Cmr ccdB attR2 FcpAt

— FcpBp HA | - attR1 - Cmr ccdB attR2 FcpAt

pDEST-N-EYFP

pDEST-N-ECFP

C. C-term tags

FcpBp attrn Cmr ccdB attR2 - EYFP FcpAt pDEST-C-EYFP

FcpBp |-  attR1 - Cmr - ccdB attR2 - ECFP - FcpAt —  pDEST-C-ECFP

FcpBp - attR1 I -  Cmr -  ccdB attR2 —  HA -  FcpAt — pDEST-C-HA

Fig. 12. Diagrams illustrate diatom Gateway Destination vectors for protein 
overexpression (A), amino-terminal protein tagging (B) and carboxy-terminal protein
ta g g in g  (Q -
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A

FcpBp attR1 P tS ec4 attR2 EYFP FcpAt

pDEST-PtSec4:EYFP

B

1 2 3 4 5 6 7 8 9

FcpBp attR1 PtPHY attR2 HA FcpAt

pDEST-PtPHY:HA

Fig. 1 3 . A . Confocal microscope images of diatom transgenic cells overexpressing the 
PtSEC4:EYFP construct (left and right panels show the frontal and lateral vision, 
respectively). The EYFP signal corresponds to the subcellular localization of SEC4 
protein. A diagram of the diatom gateway Destination vector is illustrated. B. Western 
blotting using a-HA antibody. Protein samples were extracted from wild type diatom 
cells (lane 9) and diatom transgenic cells overexpressing the PtPHY:HA construct (lanes 
1-8). A diagram of the diatom gateway Destination vector is illustrated.
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3.2 Identification of a putative blue light photoreceptor PtCPFl

3.2.1 Identification and cloning of the PtCPFl gene

Prior to sequencing of the P. tricornutum genome, the laboratory generated 

several EST (Expressed Sequence Tag) collections (Scala S. et. a l, 2002; 

Maheswari U. et al., 2005). Searches of these databases by BLAST (Basic Local 

Alignment Search Tool) for photoreceptor genes revealed a fragment of 200 base 

pairs (bp) that showed high similarity with members of the 

Cryptochrome/Photolyase gene family. This fragment was amplified by PCR and 

subsequently used as a probe to screen a P. tricornutum cDNA library in an attempt 

to identify a full length clone. The result of this analysis was the isolation of a clone 

containing the ATG start codon but lacking the C-terminal extremity. To obtain the 

3’ region of the transcript it was necessary to use 3’RACE (Rapid Amplification of 

cDNA Ends, see Materials and Methods).

The complete sequence from start to stop codon consists of 1,653 bp in 

length and contains an open reading frame encoding a predicted protein of 550 

amino acids with a calculated mass of 63 kDa. Subsequent sequencing of the 

corresponding genomic sequence revealed a length of 2,006 bp containing four 

introns of around 90 bp each. Because it was not possible from the genomic analysis 

to assign the gene as encoding a cryptochrome or a photolyase, we decided to name 

this gene PtCPFl, for P. tricornutum Cryptochrome/Photolyase Family 1.

3.2.2 Phylogenetic analysis

Following the subsequent availability of genomic sequences from two 

diatoms {Pt and Tp) we searched the respective gene models for 

Cryptochrome/Photolyase genes. We identified four sequences in Tp (.TpCPFl-4)
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and three putative members in Pt (denoted PtCPFl, PtCPF25 and PtCPF4). To 

establish the phylogenetic relationships between these amino acid sequences, five 

representative members of each Cryptochrome/Photolyase subfamily were selected. 

The class II CPD photolyases were not included in this study because of their 

ancient divergence (Kanai S. et a l , 1997). On the contrary, it was important to add 

(6-4) photolyase sequences from different organisms, in which the amino acid 

composition is more similar to the animal cryptochromes, as well as class I CPD 

photolyases that cluster with the plant cryptochromes. A multiple alignment of the 

selected sequences was then made and a phylogenetic tree was constructed, by the 

Neighbour Joining (NJ) method (Saitou N. & Nei M., 1987), using a conserved 

region of around 400 amino acids (Fig. 14).

Surprisingly, none of the diatom sequences clustered with plant 

cryptochromes. In particular PtCPFl and TpCPFl clustered in the animal cry/(6 - 

4)photolyase clade, whereas the other CPF members were more related to a novel 

class of cryptochromes recently identified and denoted cry-DASH (Brudler R. et a l, 

2003) whose function has not yet been clarified. Tree topology was conserved using 

the alignment of full length protein sequences (data not shown).

-100 -



53

52

89

100

1 8 1 6 4 3 9  Mus musculus C R Y 1  (V )

1 3 0 4 1 0 7  Homo sapiens C R Y 1  (V )

1 5 3 4 1 1 9 4  Xenopus laevis C R Y 2 b  (V )

  8 6 9 8 5 9 2  Danio rerio C R Y 3  (V )

1 3 0 4 0 6 2  Drosophila melanogaster (6 - 4 )P H R  (I) 
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Animal Cry / 
(6-4) photolyasi

------------- 3 9 8 6 2 9 8  Drosophila melanogaster C R Y  (I)

Thalassiosira pseudonana C P F 1

Phaeodactylum  tricornutum  CPF1

100 { 1
Thalassiosira pseudonana C P F 2  

Thalassiosira pseudonana C P F 3

--------------------- Phaeodactylum tricornutum C P F 2 5

2 8 9 7 1 6 0 9  Arabidopsis thaliana C R Y -D A S H  (P ) 

2 8 3 7 4 0 8 5  Synechocystis S p . P c c 6 8 0 3  C R Y -D A S H  (B )

A B 1 2 0 7 5 9  Danio rerio C R Y -D A S H  (V )

A B 1 2 0 7 6 0  Xenopus laevis C R Y -D A S H  (V )  

-----------------------------------  1 1 3 5 4 8 6 6  Vibrio cholerae C R Y -D A S H  (B )

Phaeodactylum tricornutum C P F 4  

-  Thalassiosira pseudonana C P F 4

1 8 2 7 9 1 6  Escherichia coli C P D  (B )

52

CRY-DASH

2 9 1 4 6 0 4  Synechococcus s p .  P C C  6301 C P D  (B )

1 3 6 1 9 4 7  Chlamydomonas reinhardtii C P H 1  (A )

  6 5 9 4 2 9 8  Adiantum capillus veneris C R Y  1 (P )

2 4 9 9 5 5 3  Arabidopsis thaliana C R Y 1  (P )

5 5 2 4 2 0 1  Lvcoversicon esculentum C R Y 1  (P ) 

--------------------------------------------------------------------  1 6 4 4 4 9 5 7  Oryza sativa C R Y 1  (P )

Plant CRY I 
Class I CPD 
photolyase

Fig. 14. An unrooted Neighbour-Joining phylogenetic tree of the 
Cryptochrome/Photolyase Family. Each sequence is indicated by the GI number from 
NCBI, except for diatom sequences. The source name is shown and a capital letter after 
each name indicates the taxonomic category of the source. (V) vertebrates, (P) plants, (I) 
insects, (B) eubacteria, (A) algae. Bootstrap probability (of 1,000 replicates) is written 
near the node. Diatom sequences are colored in red and the sequence characterized in 
this thesis is underlined.
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3.2.3 Domain analysis

A domain analysis of the PtCPFl protein sequence was performed in order to 

check if crucial domains and key residues were conserved (Fig. 15). Cryptochrome 

proteins have two domains, an N-terminal conserved domain, the “photolyase 

related” domain, and a carboxy-terminal “tail” that is intrinsically unstructured and 

varies considerably in length and primary amino acid sequences (Sancar A., 2003; 

Green C.B., 2004; Partch C.L. et a l , 2005). Both domains are important for the 

ability of mammalian CRY to inhibit CLOCK/BMAL driven transcription (see 

section 1.3.7.2). Hirayama J. et al (2003) previously generated chimeras between 

the transcription repressing zCRYla and the non-repressing zCRY3 proteins of 

zebrafish and identified three regions in zCRYla (RD2a, RD1, and RD-2b), together 

with a putative nuclear localization signal (NLS) within the RD-2b region. RD2a (aa 

126-196) or RD1 (aa 197-263) are required for the interaction with the CLOCK- 

BMAL1 heterodimer, and either RD1 or RD-2b (aa 264-293) is required for nuclear 

translocation of the protein. In particular, the NLS-like sequence is identified 

between 265-282 amino acids of the RD-2b region. Moreover, the functional nuclear 

localization signal identified in the RD-2b region is well conserved among 

repressor-type, including mCRYl (aa 265-282). Mutations in the NLS of mCRYl 

reduce the extent of its nuclear localization (Hirayama J. et al 2003).

Surprisingly, study of the primary structure of the PtCPFl protein showed 

that the overall similarity between the diatom protein and mammalian-type CRY 

includes these three functional domains (40% identity, 60% similarity) that, on the 

contrary, are poorly conserved in plant cryptochromes (note AtCRYl in the 

alignment of Fig. 15). The functional NLS of the RD-2b region is almost conserved 

in PtCPFl. Moreover, Sanada K. et al (2004) identified a key residue for the 

phosphorylation of mCRYs (Ser247 in mCRYl, corresponding to Ser265 in
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mCRY2). This post-translational modification is an essential step for the circadian 

time-keeping mechanism. This residue is also conserved in PtCPFl and corresponds 

to Ser276. In addition, the highly conserved flavin-binding residue D410 of 

Drosophila CRY, that has been shown to be essential for circadian photoreceptor 

function (Stanewsky R. et al., 1998), is conserved in the PtCPFl sequence and 

corresponds to the aspartic acid at position 418.

Much more variation in the light-dependent cry functions between 

Drosophila, mammals, and plants is attributed to the C-terminal. In particular, 

further studies have shown that the C-terminal extension of mCRYl harbors an 

additional nuclear localization signal (aa 578-606) and a putative coiled-coil domain 

(aa 471-493) that drive nuclear localization via two independent mechanisms 

(Chaves I. et a l , 2006). Importantly, Arabidopsis (6-4)PHR is able to confer 

CLOCKrBMALl transcription-inhibitory activity when is fused to the last 100 

amino acids of the mCRYl core and its C terminus (aa 371-606) (Chaves I. et a l, 

2006).

PtCPFl contains a short C-terminal extension comprised of 28 amino acids, 

comparable to that described in Drosophila of 26 amino acids. The NLS present in 

the C-terminal domain of mCRYs, characterized also in Xenopus CRY2b (Zhu H. et 

al, 2003), is absent in the diatom sequence, whereas it is important to note that a 

potential coiled-coil domain is predicted by the COILS program 

('http://www.ch.embnet.org/sofiware/COILS form.html) at the C-terminal extension 

of PtCPFl (aa 502-524).

Finally, the typical feature of the C-terminal extension of plant CRYs, 

referred as the DAS domain (see section 1.3.1), is absent in PtCPFl sequence as is 

the NC80 motif. The latter has recently been described in AtCRY2 as a critical motif 

for photoactivation (Yu X. et a l, 2007). In summary, these analyses show that the
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diatom sequence appears more similar to the mammalian-type CRY proteins than 

the plant members.
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Fig. 15. Amino acid sequence alignment of PtCPFl with representative 
Cryptochrome/Photolyase sequences. The sequences were aligned using ClustalW. Black- 
boxed and gray-boxed letters represent identical or similar residues, respectively. Yellow, 
cyan and green boxes indicate RD2a, RD1 and RD-2b domains, respectively. The red box 
shows the coiled-coil domain. The DAS domain is underlined. Yellow asterisk indicates the 
conserved Ser residue for the phosphorylation of mCRYs. Green asterisk indicates the 
conserved flavin-binding residue identified in the Drosophila cryb mutant, and red asterisk 
indicates the last amino acid of the putative short PtCPFl protein. For descriptions see text.
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3.3 Biochemical and Functional Characterization of PtCPFl

3.3.1 Expression and Purification of GST:PtCPFl in E. coli

An important objective was to develop a protocol for the purification of 

recombinant PtCPFl that could be used to perform biochemical and functional 

studies, which could help to characterize its potential photolyase and/or 

photoreceptor activities. This was attempted using an E. <%>//-based expression 

system to overexpress the PtCPFl protein fused to a GST (Glutathione S- 

Transferase) tag. Because cryptochromes are thought to be derived from photolyases 

and because some cryptochromes also display some photolyase activity, it was 

considered important to express the protein in a photolyase-deficient E. coli host. 

Such an E. coli strain, denoted SY2, was obtained from Prof. Takeshi Todo (Kyoto 

University, Japan). Initial attempts to purify the protein were hampered by the fact 

that the majority of recombinant GST:PtCPFl was found to be insoluble and to be 

present in inclusion bodies. An expression protocol was therefore optimized in 

which induction was performed with 0.1 mM IPTG at 16 °C for 21 hours, in order to 

generate as much protein in the soluble fraction as possible. Using this protocol, it 

was possible to detect approximately 5% of the protein in the soluble fraction by 

western blotting using the a-PtCPFl antibody that was considered sufficient to 

begin to purify the protein to near-homogeneity. The purification procedure, 

schematically represented in Fig. 16, consists of binding to glutathione resin in batch 

overnight at 4 °C, followed by an elution step using a column, dialysis in 50 mM 

Tris-HCl pH 7.5, and concentration on Centricon filters (for details see Materials 

and Methods section). The GST:PtCPFl protein, purified to near homogeneity, 

displayed a pale yellow colour, suggesting the presence of the flavin chromophore. 

From 3 litres of bacterial culture it was possible to generate approximately 1
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milligram of purified soluble recombinant protein. Fig. 16B shows the profile of the 

purified protein. Two major bands could be observed: the full length GST:PtCPFl 

protein of around 90 kDa and a major degradation product that could correspond to 

the PtCPFl protein of 63 kDa without the GST tag.
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Fig. 16. A. Schematic protocol for PtCPFl protein purification. Coomassie Blue stained 
SDS-PAGE gel (10% polyacrylamide) of not induced (-) and induced (+) extracts of E. 
coli transformed whit pGEX-2TK-PtCPFl. B. Coomassie Blue stained SDS-PAGE gel 
(10% polyacrylamide) of purified PtCPFl (1 pL and 3pL, respectively, loaded in lanes 7, 
8). Fixed amounts of BSA protein were loaded to estimate the purified GST:PtCPFl (1, 
2,4, 6,10 pg, respectively, loaded in lanes 1-5). Molecular weight marker (lane 6).
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3.3.2 Absorption Spectra and Fluorescence Studies

All Cryptochrome/Photolyase Family proteins characterized to date contain 

FAD (Flavin Adenine Dinucleotide) as an essential chromophore. In addition these 

proteins often contain a second chromophore, which in the majority of organisms is 

(N5,N\0)-methenyl-5,6,7,8-tetrahydrofolate (MTHF) and in a limited number of 

species is 8-hydroxy-7,8-didemethyl-5-deaza-riboflavin (8 -HDF) (Cashmore A.R. et 

al., 1999; Sancar A., 2003). The folate or deazaflavin class enzymes exhibit a major 

absorption peak at 375-410 nm or at 440 nm caused by each second chromophore, 

respectively. Moreover, both classes of enzymes and either an additional peak at 440 

nm caused by fully oxidized FAD (FAD0X) or several peaks at 480, 580 and 625 nm, 

caused by the flavin blue neutral radical, FADH0.

Thanks to the optimized purification protocol, it was possible to elucidate the 

spectroscopic properties of the PtCPFl protein. Absorption and fluorescence spectra 

of PtCPFl were performed in collaboration with the laboratory of Prof. Takeshi 

Todo (Kyoto University). As shown in Fig. 17, the absorption profile does not 

exhibit any peak at 375-410 nm, indicating that the protein sample does not contain 

the second chromophore. On the contrary, by examining the profile of the denatured 

protein, it was possible to observe two peaks at 350 and 450 nm, indicating the 

presence of the FAD chromophore (absorption spectrum, profile c). Moreover it is 

important to notice the presence of a large peak at 260 nm of the PtCPFl absorption 

spectrum that could suggest the presence of nucleic acids co-purified with the 

diatom protein (see later). The denatured GST protein, used as a negative control, 

did not show any peak at 260 nm (Fig. 17B).

To obtain further evidence that the diatom protein contained the FAD 

chromophore, the fluorescence spectrum was determined. Typically, the flavin 

molecule has an emission maximum at 502-520 nm with excitation maxima at 370
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and 440 nm. Unfortunately, the classical fluorescence spectrum showed the same 

pattern for both proteins, the GST:PtCPFl and the negative control, probably 

because only a limited amount of purified protein carried the FAD cofactor (Fig. 

18).

It was therefore necessary to confirm the presence of the chromophore by 

releasing it from the protein. The diatom protein and the negative control were heat- 

denatured at neutral pH and, following removal of precipitated material by 

centrifugation, the absorption spectra were recorded. For the diatom protein the 

fluorescence emission was pH dependent, showing a 2.5 fold-higher fluorescence at 

pH 3.0 than at pH 7.5. This pH dependency of fluorescence emission is typical of the 

flavin molecule (Weber G., 1959), thus confirming the presence of FAD in PtCPFl. 

Moreover, the excitation at 450 nm resulted in fluorescence emission with a 

maximum at 530 nm, indicating that the FAD molecule is in a reduced state (Fig. 

18C). By contrast, the denatured GST protein did not display any fluorescence 

emission.
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Fig. 17. A. Absorption spectra of PtCPFl (profile a), of heat-denatured PtCPFl (profile b). 
The inset (profile c) shows an expanded scale of the absorption spectrum in the 300-560 
nm range of heat-denatured PtCPFl. B. Absorption spectra of GST (profile a), and of 
heat-denatured GST (profile b).
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Fig. 18. Fluorescence spectra of PtCPFl (A) and GST (B). Flavin fluorescence using 470 
nm excitation for the emission spectrum and 520 nm emission for the excitation 
spectrum. C. Fluorescence spectra of heat-denatured PtCPFl and GST proteins at 
neutral pH. Fluorescence emission of the diatom protein is pH dependent.

-  1 1 2 -



3.3.3 Determination of composition of nucleic acids extracted from the purified 

protein

Remarkably, as anticipated previously, the purified recombinant 

PtCPFl protein always exhibited a 260 nm absorbing peak in the near UV, 

suggesting the presence of nucleic acids in the sample preparation. Although the 

nucleic acids bound to the protein cannot be the native ones because the protein is 

expressed and purified in E. coli, we nonetheless considered it interesting to 

determine the nature of this nucleic acid.

In order to answer this question, nucleic acids were extracted from the 

protein sample by phenol/chloroform and recovered by ethanol precipitation. They 

were then treated with either RNase (DNase-free) or DNase (RNase-free) and 

analyzed by electrophoresis on 2% agarose gels. Diatom ribosomal RNA and a 200 

bp fragment of plasmid DNA were used as controls to check the specificity of the 

enzymes. The result of this analysis showed that the PtCPFl-associated nucleic acid 

was digested by RNase but not by DNase and therefore can be identified as RNA 

(Fig. 19). From the molecular weight markers used as reference, it appears that the 

RNA sample is less than 100 nucleotides, in reasonable agreement with the estimate 

made from the absorption spectra. It is interesting to note that the Vibrio cholerae 

cryptochrome 1, purified from E. coli by amylose affinity chromatography, has also 

been shown to be associated with RNA (Worthington E.N. et al, 2003). Further 

analyses, such as protein purification directly from diatom cultures, will clarify the 

nature of this unknown RNA and its biological role.
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Fig. 19. Nucleic acids extracted from the purified PtCPFl protein (1) were treated with 
DNase or RNase enzymes. A 200-bp DNA fragment (2) and ribosomal diatom RNA (3) 
were used to check the specificity of the enzymes. Nucleic acids associated with PtCPFl 
protein are indicated by red arraow. Last lane shows molecular weight marker.
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3.3.4 DNA Binding and Repair assay - In vitro assays -

Because the PtCPFl protein is a member of the Cryptochrome/Photolyase 

Family, it was fundamental to test its photolyase activity using established in vitro 

experiments. In collaboration with the laboratory of Prof. Takeshi Todo, two 

important experiments were performed: a gel mobility shift to assess binding to 

DNA and an in vitro DNA repair assay. For the binding experiment, the purified 

protein was incubated with a 49 bp DNA fragment which contains a single UV 

photoproduct (either a CPD, a (6-4) photoproduct, or a DEWAR isomer) at the MseI 

restriction site, as is schematically shown in Fig. 20. Dewar isomer is a photoproduct 

derived from the irradiation of (6-4)photoproducts at 313 nm (Taylor J.-S. & Cohrs 

M.P., 1987). The (6-4)photolyase enzyme binds DNA contaning the Dewar 

photoproduct, albeit its repair is extremely slow (Zhao X. et al., 1997).

The principle of this experiment is to test if the diatom protein is able to 

recognize UV-induced DNA damage and bind the specific DNA sequence in order 

to repair it. The result of this experiment shows that the diatom protein can 

specifically bind only the sequence containing the (6-4)photoproduct and the Dewar 

isomer, not the CPD photoproduct (Fig. 20B). E. coli CPD photolyase and A. 

thaliana (6-4) photolyase were used as controls.

The next step was to test the repair activity of the purified diatom protein. 

The same DNA probe of 49 bp can be digested by Mse I only if the UV photoproduct 

has been efficiently repaired by the specific enzyme. In our experiments the 

presence of a 21-mer, due to repair of the UV-induced photoproduct, was detected 

only with the (6-4) photoproduct DNA probe after treatment with PtCPFl, 

demonstrating that the diatom protein has a specific (6-4) photolyase activity (Fig. 

21B).
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Fig. 20. A. Schematic of DNA gel shift binding experiment. PtCPFl protein is incubated 
with the 49 bp DNA probe containing a single UV photoproduct at the M seI restriction 
enzyme. B. Gel retardation analysis by electrophoresis in a non denaturing gel. Sample 
1: £. coli CPD photolyase, sample 2: A. thaliana (6-4) photolyase, sample 3: PtCPFl, 
sample 4: GST, sample 5: without protein. PtCPFl shows specific binding to (6-4) 
photoproducts.
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Fig. 21. A. Schematic of DNA photorepair assay. PtCPFl protein is incubated with the 
49 bp DNA probe containing a single UV photoproduct at the Mse I restriction site. 
Following photoreactivation the DNA is digested with Msel. B. Electrophoresis in a 10% 
polyacrylamide gel. Sample 1: E. coli CPD photolyase, sample 2: A. thaliana (6-4) 
photolyase, sample 3: PtCPFl, sample 4: GST, sample 5: without protein. PtCPFl 
protein shows specific (6~4)photolyase activity.
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3.3.5 Photoreactivation of UV-damage in the repair-defective SY32 strain - In vivo 

assay -

To confirm the functional role of DNA repair of the PtCPFl protein it was 

important to use an in vivo assay. E. coli cells normally do not photoreactivate (6-4) 

photoproducts (Todo T. et al., 1993), but the SY32 E. coli strain, kindly provided by 

Prof. Takeshi Todo, has been engineered to test for (6-4) photolyase activity in a 

functional complementation assay. These bacterial cells are deficient for DNA repair 

mechanisms, but they carry a plasmid encoding the E. coli CPD photolyase gene 

(phr). The complete genotype is recA' uvrA' phr+ (Todo T. et al., 1996). In these 

cells, CPD photoproducts are repaired efficiently by the CPD enzyme so the extent 

of repair of (6-4) photoproducts determines the sensitivity of the cells to UV light.

The SY32 strain was transformed with an inducible vector encoding the 

diatom protein (pGEX-2TK-PtCPFl), as well as plasmids encoding zebrafish 

photolyase (pGEX-4T-2-z(6-4)PHR) and zebrafish cryptochrome 2a (pGEX-4T-2- 

zCRY2a), to be used as positive and negative controls, respectively. E. coli cells 

were induced by IPTG in order to express the proteins, then treated under UV light 

and subjected to a photoreactivation reaction using fluorescent white light for one 

hour. The next day, the survival rate of bacteria was measured. The result of this 

assay clearly demonstrated that the diatom protein displays (6-4) photolyase activity 

in vivo similar to a bona fide (6-4) photolyase from zebrafish (Fig. 22).
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Fig. 22. A. In vivo DNA photolyase assay. Effect of photoreactivation on the survival of 
UV-irradiated E. coli SY32 cells carrying the pGEX-2TK-PtCPFl vector (square), pGEX- 
4T-2-z(6-4)PHR vector (diamond) and pGEX-4T-2-zCRY2a (triangle). The bars indicate 
standard error of three independent experiments. B. Coomassie Blue stained SDS-PAGE 
gel (10% polyacrylamide). Lane 1: molecular weight marker. Not induced (-) and 
induced (+) extracts of E. coli transformed whit pGEX-4T-2-z(6-4)PHR (lanes 2-3), pGEX- 
4T-2-zCRY2a (lanes 4-5) and pGEX-2TK-PtCPFl (lanes 6-7). Induced proteins are 
indicated by red asterisks.
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3.3.6 Subcellular localization of PtCPFl in transgenic diatoms

In order to identify the cellular localisation of PtCPFl, a construct was 

generated containing EYFP fused to PtCPFl at the N-terminus, denoted 

pEYFP:PtCPFl (see Materials and Methods). EYFP is an enhanced yellow variant 

of the Aequorea victoria green fluorescent protein (Ormo M. et al., 1996) that shows 

a yellow fluorescence clearly distinguishable next to the red chlorophyll 

fluorescence. Transgenic diatoms overexpressing this resulting protein were 

generated by shooting the plasmid DNA in the cells by helium-accelerated particle 

bombardment at high pressure, as described in Materials and Methods. The presence 

of the EYFPrPtCPFl fusion protein of the correct molecular weight in transgenic 

diatom lines was confirmed by western blotting experiments using both the a- 

PtCPFl and the a-GFP antibodies (data not shown). Confocal fluorescence 

microscopy on positive EYFP clones showed that PtCPFl is localised in the nucleus 

(Fig. 23). Interestingly, the yellow fluorescence signal of EYFP:PtCPFl appears to 

be localized specifically in the euchromatic nuclear region, suggesting that the 

fusion protein is correctly localized and probably active (Fig. 23C). Further 

localization analyses were performed in order to understand whether the protein 

changed its localization under different light treatments, as is known for plant 

cryptochromes (Yang H.Q. et a l, 2000). Transgenic diatom cells were observed in 

the morning, during the night period and in free running dark conditions for 48 or 60 

hours. It was found that the protein of interest was constitutively nuclear localized, 

independent of the light regime (data not shown). Moreover, the diatom Gateway 

Destination vector pDEST-C-EYFP was utilized to fuse the fluorescent protein to 

the C-terminal extremity of PtCPFl. Positive transgenic lines containing the 

PtCPFl:EYFP construct were subject to microscope analysis, but no signal was 

detected (data not shown) suggesting that this protein was not functional and was
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degraded. As a control, diatom lines overexpressing the EYFP gene alone were 

generated and microscopic analysis revealed a diffuse signal, present in both the 

nucleus and the cytoplasm (data not shown).
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Fig. 23. Confocal microscopy of P. tricornutiim  cells expressing EYFP:PtCPFl fusion 
protein. The blue signal represents DAPI staining, the green signal shows EYFP, and the 
merge is represented in the right panels. Scan zoom levels are lx  (A), 5x (B), 12x (C). 
EYFP:PtCPFl is nuclear localized and present within the euchromatic space, whereas 
DAPI localized principally to heterochromatin.
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3. 4 Expression Analysis of PtCPFl

3.4.1 Generation of an antibody against PtCPFl

To understand the function of a gene it is important to be able to follow the 

corresponding endogenous protein in its in vivo context. Based on this consideration 

effort was invested to produce a specific antibody against the diatom PtCPF 1 

protein.

The expression vector pGEX-2TK-PtCPFl encoding the GSTrPtCPFl fusion 

protein (see section 3.3.1) was transfected in the E. coli strain BL21 in order to find 

good induction conditions for production of the diatom protein. In all conditions 

tested, GSTrPtCPFl was never found in the soluble fraction but always accumulated 

in inclusion bodies. When the intent is to produce a protein for the generation of 

antibody it is possible to purify E. coli inclusion bodies using denaturing reagents. 

The advantage of this is that, after purification, the protein of interest is almost pure, 

albeit no longer active.

For purification of inclusion bodies containing the recombinant PtCPFl 

protein a lysis buffer containing 8 M urea was utilized (details described in the 

Materials and Methods section). The purified protein sample was then sent to the 

Biopat company (Caserta, Italy) to be injected in a rabbit. After three injections, 

necessary to stimulate the antigenic response, the rabbit serum was recovered and 

tested by western blotting on diatom protein extracts. A band of the expected size 

was revealed but with high crossreactivity (Fig. 24B, right panel). Because the 

serum is a mixture of proteins containing the specific immunoglobulins against the 

injected protein as well as a rich pool of different molecules, that may be responsible 

for the high background, the antibody was purified from the serum. Recombinant 

GSTrPtCPFl was therefore resolved by SDS-PAGE and transferred to nitrocellulose

-123-



membrane in order to isolate the antigen band. The membrane was then incubated 

with the rabbit serum overnight at 4 °C to permit binding of the specific antibody. A 

final step was to strip the diatom antibody by treating the membrane with a solution 

at acid pH. The purified antibody, denoted a-PtCPFl, revealed a specific band that 

corresponded to the PtCPFl protein in diatom protein extracts (Fig. 24B, left panel).
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Fig. 24. A. Schematic of the pGEX-2TK-PtCPFl vector. Coomassie Blue stained SDS- 
PAGE gel (10% polyacrylamide) showing 1 pg, 2 pg and lOpg of BSA protein (lanes 1 to 
3 respectively) and 1.2 pg, 3.6 pg and 6 pg of purified GST:PtCPFl protein (lanes 4 to 6 
respectively). B. Western blotting using purified a-PtCPFl antibody (left panel) and the 
rabbit serum (right panel). Same exposure time for both filters (1 minute). Protein 
extracts of wild type diatom cells (lane 1) and two diatom transgenic lines 
overexpressing PtCPFl (lanes 2,3).
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3.4.2 Studies of expression of P tC P F l: circadian analysis and acute light response

To characterize PtCPFl gene expression, time course experiments were 

performed aimed at following PtCPFl mRNA abundance during a diurnal cycle. 

First of all, semi-quantitative RT-PCR analysis was performed on RNA samples 

extracted from diatom cells that had been collected every four hours for 36 hours in 

a normal diurnal cycle with a 12 hour photoperiod. For these experiments, two sets 

of primers annealing in the 5’ and in the 3’ region of the mRNA were used together 

with primers for the FCPB gene that is known to be strongly expressed during the 

light period and almost absent during the night, as shown in Fig. 25. The results of 

this analysis were rather interesting because amplification of the 5’ region of 

PtCPFl resulted in a single fragment, whose concentration was essentially stable 

throughout the time course (Fig. 25B), whereas amplification of the 3’ region 

resulted in the amplification of several DNA fragments, some of which appeared to 

oscillate during the time course (Fig. 25C). The lower band corresponded to the size 

of the mature transcript. The other bands appeared most likely to represent unspliced 

transcripts because introns are present in this region.

By sequence analysis, the presence of at least three different mRNA species 

was detected. As expected, the lowest band corresponded to the mature fully 

processed mRNA and was more abundant in the light period. The uppermost band 

corresponded to the immature mRNA, containing all four introns, and is 

predominant during the night, whereas a third transcript, that is always present, 

corresponds to an incompletely spliced mRNA that in the majority of cases 

contained the last intron, number 4. It should be noted that the last intron contains an 

in-frame stop codon, so we can speculate the existence of two proteins during the 

diurnal cycle or the existence of a mechanism of splicing regulation. These 

possibilities are further discussed in the Discussion section.
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To further explore these observations, we repeated the time course 

experiment and collected cells every three hours for two days through the normal 

light-dark period. The RT-PCR was repeated using only the 3’ primer pair, and this 

more accurate analysis revealed at least 5 intermediate mRNAs, confirming 

oscillation of the mature mRNA during the diurnal cycle (Fig. 25D).

The next experiment was to understand if PtCPFl mRNA levels oscillated in 

circadian time. To clarify this point it is necessary to analyse the expression pattern 

of the gene of interest in cells grown in a normal diel cycle and in free-running 

conditions. The rhythmic expression of a circadian regulated gene should persist 

under constant conditions (Mas P., 2005).

A pilot time course experiment was performed using diatom cell cultures 

adapted to a normal 12 hour photoperiod and then shifted to continuous white light 

or continuous darkness for two days, collecting samples every three hours. In order 

to perform a more quantitative study a more precise approach based on quantitative 

real time PCR (qRT-PCR) was used. In parallel the levels of the endogenous PtCPFl 

protein was examined by western blotting, using the specific polyclonal antibody a- 

PtCPFl.

During a normal diurnal cycle the PtCPFl transcript displays maximal levels 

at 4PM in the afternoon and a minimum at around 1AM during the night. During the 

night we also observe a slow increase in abundance suggesting an anticipation of the 

approaching light period (Fig. 26A). In free running light conditions, we did not 

observe these expression patterns and mRNA levels no longer appeared to be 

responsive to light (Fig. 26B). In free-running darkness, on the other hand, the 

expression pattern was similar to that seen during a normal diel cycle. During the 

first 24 hours mRNA levels increase during the subjective day and then decrease 

during the subjective dark period, and this profile, albeit less strong, was conserved
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through the second subjective day (Fig. 26C). This circadian control in darkness 

implies that light inputs are not necessary for rhythmicity in PtCPFl mRNA levels, 

suggesting regulation by a light-independent pathway.

Western blotting analysis using the a-PtCPFl antibody shows a faint 

oscillation of the protein between the light and dark period. However, this oscillation 

is not strongly conserved under constant conditions (neither continuous light nor 

continuous dark), indicating the presence of only a weak circadian regulation or the 

existence of a post-translational regulation that is undetectable by western blotting 

(Fig. 27).

In order to understand whether PtCPFl is regulated by acute light signals 

and to examine light quality dependence, diatom cells were adapted for two days in 

the dark and then exposed to white, blue or red light. After dark adaptation for 48 

hours, blue light was clearly seen to induce the expression of PtCPFl, with a 

maximum at 5 hours, whereas white light and red light had no effect on its 

expression (Fig. 28A). PtCPFl protein levels were similarly modulated by blue light, 

and also to some extent by red light. Finally, although mRNA levels were not altered 

in response to white light, the PtCPFl protein showed a clear increase in these 

conditions (Fig. 28B).
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Fig. 25. Semi-quantitative RT-PCR analysis on RNA samples from diatom cells grown 
in a normal light-dark cycle, collected every four hours. (A) FcpB transcript, (B) 5' 
region of PtCPFl transcript, (C) 3' region of PtCPFl transcript, (D) Semi-quantitative 
RT-PCR analysis on RNA samples from diatom cells grown in a normal light-dark 
cycle, collected every three hours, 3' region of PtCPFl transcript.
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Fig. 26. Quantitative real time PCR on RNA samples extracted from diatom cells grown 
in a normal light-dark cycle (A), in continuous light (B), or in continuous dark (C), 
collected every three hours. The bars indicate standard errors of two independent 
measurements. Data are averages of triplicate measurements of 2 independent cDNAs 
(A, B) and of 1 cDNA (C). The error bars indicate the standard deviation.
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Fig. 27. Western blotting experiments using a-PtCPFl on protein samples extracted 
from diatom cells grown in a normal light-dark cycle (A), in continuous light (B), or in 
continuous dark (C), collected every three hours.
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subsequently exposed to white, blue, and red light. The bars in panel A indicate 
standard errors of two independent measurements.



3. 5 Functional characterization of PtCPFl

3.5.1 Detection of transcriptional repressor activity

As previously discussed in the Introduction (section 1.3.7.2), mammalian 

cryptochromes are components of the negative-feedback loop of the circadian clock 

and their critical role is the inhibition of CLOCK:BMALl-mediated transcription 

(Kume K. et al., 1999). To examine this function, a luciferase reporter gene assay in 

mammalian cells is generally used. The reporter construct utilizes the promoter 

region of a clock regulated gene that carries a CACGTG E box enhancer. CLOCK 

and BMAL1 molecules together bind this sequence in target promoters and activate 

expression. In the presence of the CLOCK:BMALl repressors luciferase expression 

is thereby abolished.

Based on this knowledge, we decided to perform an ambitious experiment. 

The idea was to test if the diatom PtCPFl protein could play a functional role similar 

to the mammalian cryptochromes in a heterologous system (see scheme shown in 

Fig. 29). We tested PtCPFl protein function in two different mammalian cells, the 

monkey cell line COS7 and the BRF41 zebrafish cell line. In both experiments the 

reporter construct was made by cloning a 3,700 bp fragment of the 5’ flanking 

region of the zcry3 gene upstream of a modified coding region of firefly luciferase, 

generating the pzcry3-luc vector. Moreover, for the COS7 cells the CLOCK- 

BMAL1 molecules from mouse (mCLOCK, mBMALl) were used, together with the 

mouse cryptochrome 1 (mCRYl) as a positive control for repressor activity, whereas 

for the BRF41 cells the CLOCK and BMAL genes were from zebrafish (zCLOCKl 

and BMAL3), with the zebrafish cryptochrome la as a positive control (zCRYla).

The results of these experiments were exciting. Surprisingly, the diatom 

protein strongly repressed CLOCK:BMALl-mediated transcription to the same level
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as mCRYl in C0S7 cells (Fig. 29). In zebrafish cells, PtCPFl protein also shows 

repressor activity, albeit weaker than that of zCRYla used as the positive control 

(Fig. 30). Based on these results, it could be hypothesized that the diatom protein 

acts as a general repressor in BRF41 cells. In conclusion, these results suggested that 

we have identified a new member of the Cryptochrome/Photolyase Family, a 

molecule that has double functions: a specific DNA repair activity and a 

transcriptional repressor regulation activity.
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Fig. 29. A. Scheme illustrating the inhibition of CLOCK:BMALl-mediated transcription. 
B. Transcriptional repressor activity of PtCPFl, determined by the luciferase reporter 
gene assay. Monkey COS7 cells were transfected with the pzcry3-luc reporter plasmid 
(50 ng) and the expression vectors shown (200 ng each). Transactivations of the reporter 
plasmid were examined. Values are mean ± S.E. of three independent experiments. In 
each experiment, the luciferase activity of the mCLOCK:mBMALl-containing sample 
was taken as 100% ( =  Increasing amount).
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Fig. 30. A. Scheme illustrating the inhibition of CLOCK:BMALl-mediated transcription. 
B. Transcriptional repressor activity of PtCPFl, determined by the luciferase reporter 
gene assay. Zebrafish BRF41 cells were transfected with the pzcry3-luc reporter plasmid 
(50 ng) and the expression vectors shown (200 ng each). Transactivations of the reporter 
plasmid were examined. Values are mean ± S.E. of three independent experiments. In 
each experiment, the luciferase activity of the zCLOCK:zBMAL3-containing sample was 
taken as 100% (-^ ^  = Increasing amount).
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3.5.2 Generation of diatom lines overexpressing PtCPFl

In order to study the role of PtCPFl in diatoms, transgenic lines were 

generated using the pKS-FcpBpAt-PtCPFl construct (described in the Materials and 

Methods section) to overexpress PtCPFl from the strong FcpB promoter. 

Independent clones were selected by Western blotting (Fig. 31 A) and further studies 

were performed on three clones denoted c2, c4 and c l5 (c = overexpressing CPF1). 

In cultures adapted to 48 hours of dark and then exposed to 1 hour of white light 

(200 pmol.m'2.s_1), the PtCPFl protein levels were estimated to be 33.8, 28.3 and 

35.4 fold higher in c2, c4 and c l5, respectively, as compared to wild-type cells (Fig. 

3IB). Analysis of PtCPFl content in cells subjected to various light treatments 

showed that the protein levels remained relatively constant over time and light 

regime indicating that the PtCPFl protein is somewhat stable (data not shown).
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Fig. 31. A. Western blotting using a-PtCPFl antibody on diatom cell extracts. Wild-type 
(lane 1) and diatom transgenic lines overepressing PtCPFl were quantified by cell 
numbers. B. Western blotting using a-PtCPFl antibody on protein extracts. The content 
of PtCPFl in the three selected transgenic lines was quantified (see text).
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3.5.3 Transcriptional regulation of light-induced genes in PtCPFl overexpressing 

lines

Cryptochromes in animals and in plants are known to function as 

photoreceptors and or as regulators in the entrainment of the circadian clock by light. 

These proteins must play a pleiotropic role modulating several pathways, as is 

expected for a gene integrated in the light signalling. Based on these considerations 

and on our previous results in which the PtCPFl protein was found to be able to 

mimic the cryptochrome animal-type photoreceptor by repressing CLOCK:BMALl- 

mediated transcription (section 3.5.1), we decided to look for transcriptional 

regulation of target genes in diatoms using the overexpressing lines.

A crucial step was to define the light conditions in which to perform the 

analysis, in order to select for specific and rapid responses. We decided to focus 

attention on acute light responses to eliminate possible redox effects or feedback 

from photosynthesis. Wild-type diatom cells together with two selected 

overexpressing lines (c4 and c l5), grown until exponential phase in a normal diel 

cycle, were adapted in dark for 60 hours, and were then exposed to a pulse of 5 

minutes of blue light, and, immediately after, placed back in darkness. Diatom cells 

were collected after 15 and 30 minutes of the dark period subsequent to the light 

pulse. In addition, in order to design a fluence rate curve, the experiment was 

repeated with three increasing light intensities: 0.02, 3.3, and 25 pmol.m"2.s'1.

A second step was to choose genes putatively targeted by PtCPFl in order to 

check if their expression was altered in the selected overexpressing lines. It is known 

that the general role of a photoreceptor is to regulate several pathways. In particular, 

plant CRY overexpressors show a high-pigment phenotype, resulting in 

overproduction of anthocyanins and chlorophyll in leaves and of flavonoids and 

lycopene in fruits (Giliberto L. et a l , 2005; Lin C. & Shalitin D., 2003).
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Furthermore, a parallel analysis performed in our laboratory has shown an altered 

pigment content of PtCPFl overexpressing lines and an increased photoprotection 

response (data not shown). We therefore decided to focus on the carotenoid 

biosynthesis pathway. The first two enzymes specifically committed to the 

carotenoid biosynthetic pathway are phytoene synthase (Psy) and phytoene 

desaturase (Pds) which convert two geranylgeranyl diphosphate (GGDP) molecules 

into phytoene and desaturate the latter into ^-carotene, respectively. Psy and Pds are 

under transcriptional control in response to environmental stimuli and are considered 

to play key roles in the regulation of carotenogenesis in higher plants (Steinbrenner 

J. & Linden H., 2003; Chew A.G. & Bryant D.A., 2007).

In parallel, a putative cry-DASH member of the Cryptochrome/Photolyase 

Family, PtCPF25, was analyzed because previous experiments have shown a strong 

induction of this gene upon blue light exposure (data not shown). In addition, the 

FcpB gene was selected because it is well studied in P. tricornutum. The transcript 

shows a strong induction in a diel cycle (Siaut M. et a l, 2007) and upon one hour 

treatment of continuous blue light at 25 pmol.m"2.s_1 (data not shown). Finally, since 

the cell cycle is regulated by light in diatoms (Vaulot D., 1986), a putative Cyclin 

gene (CYC), that is thought to encode a key component of the Gl/S checkpoint, was 

tested in order to look for differences between the wild-type and overexpressing 

lines.

Quantitative real time PCR (qRT-PCR) experiments were performed in order 

to compare gene expression in wild-type cells against the two overexpressing lines. 

In every quantitative PCR experiment, the RPS (30S Ribosomal Protein Subunit) 

transcript was used as endogenous and constitutive reference gene (details in the 

Materials and Methods section).
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As can be seen in Fig. 32, the Psy and the Pds transcripts are rapidly induced 

by the acute blue light treatment, showing the strongest increase at 15 and 30 

minutes, respectively, after exposure to 3.3 pmol.m^.s'1, in both wild-type and 

overexpressors. In the two PtCPFl overexpressing lines the level of induction was 

significantly dampened, suggesting a negative regulation mediated by PtCPFl. Psy 

transcript levels were around two-fold less induced in the c4 and cl5 clones, and the 

same trend, albeit less strong, was observed for the Pds transcript (panels A, B). 

Surprisingly FcpB, that is known to be strongly upregulated upon continuous blue 

light treatment, was only very weakly induced by exposure to a blue light pulse and 

was unaffected in the PtCPFl overexpressing lines, suggesting that the 

photosynthetic redox state controls FcpB gene expression more than blue-light 

photoreceptors (panel C).

The cryptochrome DASH PtCPF25 showed an enormous induction after the 

blue light pulses, and followed a fluence rate dependent response, with induction 

being proportional to the light intensity (note the scale on y axis). More interesting, 

the overxpression of PtCPFl resulted in a hyper-responsiveness of PtCPF25 to blue 

light (panel D). Finally, CYC transcript levels were rapidly induced at low fluence 

rate (0.2 pmol.m"2.s"1) and repressed by increasing fluence intensity. The level of 

fluence-dependent repression was less strong in the overexpressing lines compared 

to wild-type (panel E), suggesting that PtCPFl could be also involved in the light- 

regulated cell cycle progression in P. tricornutum.

The remarkable conclusion of this analysis was that PtCPFl is likely 

involved in the regulation of several responses in diatoms, specifically mediated by 

blue light. Based on this consideration, it was interesting to look at gene expression 

in cells treated with a red light pulse. Wild-type and overexpressing lines were 

adapted in dark, as previously described, and exposed to a pulse of 5 minutes of red
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light at 3.3 and 25 pmol.m^.s'1. In this case, overexpression of PtCPFl did not 

result in hypersensitivity of gene expression to red light for any of the genes 

analyzed, as can be seen in the right inset present in every panel. These results 

motivated us to perform a high-throughput approach to study the effect of PtCPFl 

overexpression on the full P. tricornutum transcriptome.
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Fig. 32. The effect of blue and red light pulses on P SY  (A), PDS  (B), FcpB (C), CPF25 (D), 
and CYC  (E) transcript levels in wild type and two PtCPFl overexpressing lines using 
RPS as a reference. The values were normalized to the gene expression levels in dark. 
Data are averages of triplicate measurements of 2 independent cDNAs. The error bars 
indicate the standard deviation. For further descriptions see text.
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3.5.4 Microarray Experiment

As a global approach to identify genes specifically modulated by PtCPFl, 

the strongest overexpressing line (cl5, see section 3.5.2) was selected for microarray 

analysis. To identify genes responsive to an acute blue-light response and to avoid 

photosynthesis effects, we decided to utilize an intermediate fluence of 3.3 pmol.m" 

2.s' 1 (in medio stat virtus) together with the shortest time (15 minutes), based on the 

results from qRT-PCR analysis (see section 3.5.3). Three independent diatom 

cultures of both wild-type and the cl 5 overexpressing line were exposed to the blue 

pulse for 5 minutes and then placed back in the dark as described in section 3.5.3. 

Cells were also collected after 60 hours of darkness in order to compare the gene 

expression profile of wild-type cells against that of the overexpressing line. This 

condition was denoted “dark time point”. On the other hand, cells collected after the 

blue pulse were referred to as “light time point”, although cells were placed back in 

darkness for 15 minutes after the light pulse.

Thanks to the availability of the annotated P. tricornutum genome sequence, 

a whole-genome expression array was designed and printed by the RZPD German 

Resource Center for Genome Research (Berlin, Germany). On average, five 

different primers of 60 nucleotides in length were designed for each gene. In total 

43,860 oligos were spotted on the array that corresponded to 10,364 genes, covering 

thus the full P. tricornutum transcriptome. To minimize the inherent variability of 

the microarray assay (Lee M.L. et al., 2000) and to ensure the reliability of the 

results, total RNA was extracted from three independent biological replicas for both 

conditions, corresponding to a total number of 12 samples (see Materials and 

Methods). Subsequentely, the “One-Colour Microarray-Based Gene Expression 

Analysis” was performed because it is generally considered to be more accurate and 

flexible. In this methodology only one dye (Cyanine 3-CTP) is used to label the
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messenger RNA, thus avoiding problems related to the utilization of two different 

fluorescent dyes (dye-related differences in efficiency of labelling, different laser 

settings, etc...). Moreover, the one-colour microarray expression analysis allows 

comparing fluorescence signals from different experiments in an independent 

manner. In the designed experiment there are two variables: the genetic 

characteristic (wild-type versus c l5) and the treatment (dark versus light). The one- 

colour microarray expression analysis allowed all possible comparisons to be made.

3.5.5 Preliminary Analysis

In order to find genes differentially expressed in the dark to light transition, 

dark mRNA levels were used as base line and a fold change threshold of 2.0 was 

selected together with an error rate of 1%. Wild-type cells displayed 3,057 genes 

that changed their expression level. In particular 1,466 genes were upregulated in 

response to the light pulse, whereas 1,591 genes were downregulated. The same 

comparison in the PtCPFl overepressing line displayed similar numbers: 2,801 

genes were differentially expressed, of which 1,220 were upregulated and 1,581 

were downregulated. To identify genes differentially expressed between wild-type 

and the PtCPFl overexpressing line in the dark to light transition, the two gene lists 

were compared and from the list of genes in common a group of 61 genes was 

identified that showed a significant difference in fold increase or decrease between 

the two genotypes. In particular, 37 genes were upregulated in the overexpressing 

line (Table 3.1), while 24 genes were downregulated (Table 3.2). A schematic 

representation of these comparisons is indicated in Fig. 33.

Moreover, comparison of the dark time point between wild-type and the 

overexpressing line revealed 142 differentially expressed genes, of which 78 were 

upregulated (Table 3.3) and 64 were downregulated (Table 3.4). Finally, direct
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comparison of the light time point showed that just one gene was differentially 

expressed between the two genotypes. This low number was probably a consequence 

of the reduced statistical reliability of the three biological replicates from the light 

treated sample from c l5 (data not shown).

To obtain an independent confirmation of the microarray results, several 

interesting genes that appeared to be differentially expressed from different 

comparisons were analyzed by qRT-PCR. Table 3.5 summarizes the selected genes 

together with their relative fold change in different conditions. From the “dark 

versus light” comparison the Phatr_48732 gene encoding a putative hydroxylase 

appeared to be more upregulated in the cl5 line with a difference of three fold 

compared to expression in wild-type cells (Fig. 34). The same tendency, albeit less 

pronounced, was observed for Phatr_51703, encoding a violaxanthin de-epoxidase 

enzyme, suggesting regulation by PtCFPl of pigment synthesis and photoprotection, 

already supported by physiological data in overexpressing lines (data not shown).

The Phart_18180 gene, encoding a putative chlorophyll binding protein, 

displayed a strong induction of 70 fold following the blue light pulse in wild-type 

cells. In the c l5 overexpressing line the level of induction was significantly 

dampened, in agreement with the microarray data.

Furthermore, analysis of the genes that showed differential expression in the 

dark could be useful to understand how the basal metabolism is affected in the 

overexpressing line. The Phatr_51916 gene, encoding a DNA mismatch repair 

protein, was less expressed in the PtCPFl overexpressing line, whereas two heat- 

shock transcription factors, Phatr_49594 and Phatr_49596, displayed higher 

transcript levels (see relative levels in Fig. 33). Again, these results were consistent 

with the microarray results.
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To summarize, the qRT-PCR data generally confirmed the microarray 

results, which will encourage us to perform a more accurate analysis in the future 

aimed at identifying signal transduction pathways specifically modulated by PtCPFl 

in order to better elucidate the role of this protein in vivo in diatoms.
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c

61 genes = 37 upregulated, 24 downregulated

Fig. 33. A. Schematic representation showing the number of genes differentially expressed 
from the dark (D) to light (L) transition in wild-type cells and in the PtCPFl overexpressing 
line (cl5). B. Venn diagram comparing the gene lists shown in panel A. C. Analysis of the 
common gene set in the Venn diagram in B. 2,125 genes showed similar expression levels, 
whereas 37 genes were upregulated in cl5, and 24 genes were downregulated in c l5. Details 
are described in the text and the gene lists are provided in Table 3.1 and 3.2.
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Table 3.1

Target ID Ratio in WT Ratio in c15 Ratio C15/WT Description
Pathr2_48732 10.78 83.65 7.76 Prolyl 4-hydroxylase

Pathr2_44340 3.69 26.38 7.15 unknown function

Pathr2_10872 32.40 203.85 6.29 unknown function

Pathr2_35311 8.35 48.91 5.86 Nucleoporin

Pathr2_39274 11.18 51.85 4.64 Potassium transporter

Pathr2_12106 5.64 21.87 3.88 Ku70-binding family protein

Pathr2_48545 5.10 19.57 3.84 unknown function

Pathr2_9255 5.45 20.27 3.72 Fatty acyl-CoA elongase

Pathr2_46588 3.98 13.78 3.46 Vacuolar protein sorting

Pathr2_30770 7.84 26.35 3.36 Microsomal cytochrome b5

Pathr2_31423 3.12 10.49 3.36 Beclin-1 -like protein

Pathr2_44961 3.30 10.44 3.17 unknown function

Pathr2_25956 11.25 35.21 3.13 Phosphoadenosine-reductase

Pathr2_51703 31.03 95.45 3.08 Violaxanthin de-epoxidase

Pathr2_35009 4.82 14.48 3.00 unknown function

Pathr2_37652 36.59 109.44 2.99 Malonyl transacylase

Pathr2_43259 5.43 15.88 2.92 SNARE protein Syntaxin

Pathr2_11230 29.75 84.79 2.85 Stress-induced protein UVI31 +

Pathr2_44864 0.08 0.23 2.78 unknown function

Pathr2_13034 29.03 79.81 2.75 Sideroflexin 5

Pathr2_47593 40.90 111.01 2.71 Putative glossyl protein

Pathr2_10208 845.27 2196.91 2.60 Phosphoribulokinase

Pathr2_10896 7.43 18.64 2.51 Solute carrier protein

Pathr2_14688 2.65 6.56 2.47 Protein Kinase-like

Pathr2_16803 3.63 8.97 2.47 Protein Kinase-like

Pathr2_49354 7.92 19.38 2.45 Centromere autoantigen C

Pathr2_14403 7.62 18.34 2.41 Sodium/proton exchanger 8

Pathr2_32339 0.10 0.24 2.40 Putative transposase

Pathr2_48145 9.97 23.83 2.39 unknown function

Pathr2_45503 2.42 5.55 2.30 Transmembrane protein

Pathr2_48656 7.15 16.33 2.28 Similar to zinc finger

Pathr2_26948 0.10 0.23 2.28 Tripeptidyl peptidase II

Pathr2_48160 14.43 32.03 2.22 WD40 repeat protein

Pathr2_49956 5.02 11.04 2.20 Dystonin

Pathr2_49339 0.16 0.34 2.07 Pyruvate carboxylase

Pathr2_44153 3.06 6.22 2.04 Esterase/lipase/thioesterase

Pathr2 46862 5.05 10.15 2.01 unknown function

Table 3.1. Gene lists obtained from the dark to light transition between wild-type and 
the PtCPFl overexpressing line (cl5) were compared. The table shows the 37 most 
upregulated genes in cl5 compared to wild-type in the common list. Target IDs 
indicated in blue were analyzed by qRT-PCR.
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Table 3.2

Target ID Ratio in WT Ratio in c15 Ratio C15/WT Description
Phatr2_10068 103.68 23.46 0.23 Enoyl-acyl carrier reductase
Phatr2_34672 19.74 4.65 0.24 Hydroxyacid dehydrogenase
Phatr2_14090 7.74 2.55 0.33 unknown function
Phatr2_51708 9.87 3.42 0.35 Flavin amine oxidase
Phatr2_36970 10.70 3.78 0.35 FOG: PPR repeat
Phatr2_44438 9.36 3.58 0.38 unknown function
Phatr2_41092 17.15 6.70 0.39 Mitochondrial carrier protein
Phatr2_5142 16.67 6.71 0.40 Mitochondrial carrier protein
Phatr2_45959 10.54 4.28 0.41 Phosphatase
Phatr2_42018 31.06 12.70 0.41 Ferredoxin reductase
Phatr2_48524 11.95 5.03 0.42 unknown function
Phatr2_48534 11.36 4.87 0.43 Nuclear mRNA export factor
Phatr2_43963 12.77 5.49 0.43 unknown function
Phatr2_6834 8.40 3.65 0.43 Phosphoribosyltransferase
Phatr2_36420 30.27 13.49 0.45 LSU ribosomal protein L9P
Phatr2_51092 188.06 87.01 0.46 glutamine synthetase
Phatr2_44320 7.43 3.46 0.47 unknown function
Phatr2_18180 79.25 37.16 0.47 light harvesting protein
Phatr2_47408 86.86 41.83 0.48 unknown function
Phatr2_43120 11.52 5.57 0.48 Phosphatase
Phatr2_4014 12.93 6.27 0.49 NT02FT1074 Peptidase
Phatr2_39615 12.10 5.95 0.49 unknown function
Phatr2_12813 47.88 23.89 0.50 NADP/FAD oxidoreductase
Phatr2 41878 7.43 3.89 0.52 Squalene/phytoene synthase

Table 3.2. Gene lists obtained from the dark to light transition between wild-type and 
the PtCPFl overexpressing line (cl5) were compared. The table shows the 24 most 
downregulated genes in cl5 compared to wild-type in the common list. Target ID 
indicated in blue was analyzed by qRT-PCR.
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Table 3.3

Target ID____________ Ratio C15/WT
Phatr2_50585 74.25
Phatr2_32513 6.25
Phatr2_49631 5.84
Phatr2_44525 5.79
Phatr2_18049 5.54
Phatr2_49612 4.99

Phatr2_49699 4.64

Phatr2_49594 4.14

Phatr2_49556 4.09

Phatr2_9180 3.97

Phatr2_55070 3.97

Phatr2_54168 3.72

Phatr2_49680 3.51

Phatr2_39253 3.43

Phatr2_12322 3.28

Phatr2_16157 3.12

Phatr2_22901 3.03

Phatr2_3351 2.97

Phatr2_33896 2.83

Phatr2_40322 2.79

Phatr2_40744 2.74

Phatr2_18096 2.71

Phatr2_50431 2.66

Phatr2_49564 2.65

Phatr2_36175 2.65

Phatr2_27709 2.63

Phatr2_30519 2.63

Phatr2_44027 2.63

Phatr2_47766 2.57

Phatr2_47300 2.56

Phatr2_49989 2.46

Phatr2_48731 2.45

Phatr2_49038 2.44

Phatr2_44092 2.40

Phatr2_34884 2.36

Phatr2_49589 2.36

Phatr2_16120 2.36

Phatr2_47400 2.35

Phatr2_49557 2.34

Phatr2_49608 2.34

Phatr2_10102 2.34

Phatr2_12896 2.32

Phatr2 48279 2.31

Description_____________________
unknown function 
unknown function
Carbohydrate transport and metabolism
unknown function
Fucoxanthin, chlorophyll protein
unknown function

unknown function

Heat shock transcription factor

unknown function

ATPase:ABC transporter

unknown function

Galactosyl transferase

unknown function

unknown function

hypothetical protein exoribonucleases 

Hydrolase, NUDIX family 

Cathepsin A

Chloroplast dimethyladenosine synthase

Homeodomain transcription factor

unknown function

Putative Peptidase

DNAJ domain protein

unknown function

unknown function

Msx-2 interacting nuclear target protein

unknown (protein for MGC:69147)

unknown function

hypothetical protein DDB0215059

20G-Fe(ll) oxygenase superfamily

unknown function

unknown function

Metalloendopeptidase family

unknown function

unknown function

Hydrolase

Kinesin (SMY1 subfamily)

hypothetical protein DDBDRAFT_0188074

unknown function

Heat shock transcription factor

FeS assembly protein SufD

RNA-binding region RNP-1

Prolyl 4-hydroxylase

Glycosyl transferase, family 2
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Phatr2_45677 2.31

Phatr2_49610 2.30

Phatr2_49651 2.30

Phatr2_49227 2.30

Phatr2_9312 2.29

Phatr2_45342 2.29

Phatr2_43956 2.28

Phatr2_42635 2.27

Phatr2_49668 2.27

Phatr2_47142 2.25

Phatr2_49596 2.25

Phatr2_46603 2.23

Phatr2_45185 2.23

Phatr2_48287 2.22

Phatr2_40956 2.22

Phatr2_36970 2.22

Phatr2_49626 2.19

Phatr2_49223 2.18

Phatr2_49657 2.18

Phatr2_14373 2.15

Phatr2_26970 2.15

Phatr2_48329 2.15

Phatr2_54405 2.14

C80045-79650 2.12

Phatr2_49595 2.11

Phatr2_10068 2.10

Phatr2_42949 2.09

Phatr2_54952 2.09

Phatr2_33757 2.05

Phatr2_50605 2.04

Phatr2_23467 2.04

Phatr2_48891 2.03

Phatr2_47200 2.01

Phatr2_40831 2.00

Pt1 bottom 35003 2.00

Putative serine/threonine protein kinase 

Exo-1,3-beta-glucosidase, putative 

unknown function 

unknown function 
RNA polymerase sigma factor

unknown function 

unknown protein

Putative oxidoreductase /thioredoxin

unknown function

unknown function

Heat shock transcription factor

unknown function

hypothetical protein CPS_0799

Glycosyl transferase, family 2

Chaperonin complex component

Protein with PPR repeat

unknown function

Putative Peptidase

unknown function

Predicted small membrane protein

NADH dehydrogenase (ubiquinone)

unknown function

unknown function

unknown function

E3 ubiquitin protein ligase

enoyl-acyl carrier reductase

unknown function

Pyridoxamine 5'-phosphate oxidase-related 

Galactosyl transferase 

hypothetical protein

Methylmalonate-semialdhyde dehydrogenase 

20G-Fe(ll) oxygenase 

unknown function 

F38A5.2a

unknown function ________

Table 3.3. Gene list obtained by comparing the dark time point between wild-type and 
the PtCPFl overexpressing line (cl5). The table shows the 78 genes upregulated in cl5. 
Target IDs indicated in blue were analyzed by qRT-PCR.
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Table 3.4

Target ID_____________ Ratio c15/WT______Description
Phatr2_40650 0.49 Aminotransferase
Phatr2_45417 0.49 RNA-directed RNA polymerase
Phatr2_47761 0.49 Potential chitinase or glucoamylase
Phatr2_43029 0.49 Transcription elongation factor
Phatr2_3131 0.48 Predicted GTP-binding protein
Phatr2_50562 0.48 Splicing coactivator
Phatr2_50470 0.48 Zn-finger, MYND type
Phatr2_50445 0.48 phosphotransferases/phosphoglucomutase
Phatr2_33844 0.48 unknown function
Phatr2_50527 0.47 Nucleolar GTPase/ATPase p130
Phatr2_43234 0.47 hypothetical protein FjohDRAFT_0858
Phatr2_27976 0.47 Phosphoenolpyruvate carboxylase
Phatr2_46746 0.46 unknown function
Phatr2_48756 0.46 Pseudouridine synthase
Phatr2_43339 0.46 unknown function
Phatr2_48218 0.46 unknown function
Phatr2_34321 0.45 Prolyl 4-hydroxylase alpha subunit
Phatr2_34413 0.45 glucose-methanol-choline oxidoreductase
Phatr2_49088 0.44 unknown function
Phatr2_50492 0.44 unknown function
Phatr2_44864 0.44 unknown function
Phatr2_50451 0.44 unknown function
Phatr2_4937 0.44 AAA ATPase
Phatr2_44076 0.44 Putative tyrosine kinase
Phatr2_46543 0.44 Decapping enzyme Dcp2
Phatr2_43046 0.44 G2/Mitotic-specific cyclin A
Phatr2_16991 0.43 Xanthine/uracil transporters
Phatr2_44974 0.43 unknown function
Phatr2_55200 0.42 proton-transporting ATPase
Phatr2_11441 0.42 RNA polymerase II
Phatr2_48011 0.42 unknown function
Phatr2_49133 0.42 Serine/threonine protein kinase
Phatr2_16963 0.42 Glutaminyl-tRNA synthetase
Phatr2_18665 0.41 Serine hydroxymethyltransferase
Phatr2_50456 0.41 Polyadenylate-binding protein
Phatr2_45803 0.41 Nucleolar GTPase/ATPase p130
Phatr2_49308 0.40 unknown function
Phatr2_50153 0.40 hypothetical protein DDBDRAFT_0205657
Phatr2_54265 0.38 calcium/calmodulin-dependent protein kinase
Phatr2_30471 0.38 5,10-methylenetetrahydrofolate reductase
Phatr2_10896 0.38 Mitochondrial carrier protein PET8
Phatr2_55046 0.38 putative DNA binding protein
Phatr2_41478 0.36 hypothetical protein Syncc9902_0102
Phatr2_44310 0.36 Predicted mechanosensitive ion channel
Phatr2_44153 0.35 Esterase/lipase/thioesterase
Phatr2_45475 0.35 20S proteasome, A and B subunits
Phatr2_49343 0.35 unknown function
Phatr2_11230 0.34 unknown function
Phatr2_46703 0.34 unknown function
Phatr2_11740 0.33 synthase/orotate phosphoribosyltransferase
Phatr2_46793 0.32 leucine-rich-repeat protein
Phatr2_43307 0.32 unknown function

-153-



Phatr2_12239 0.31
Phatr2_48055 0.30
Phatr2_42398 0.29
Phatr2_54901 0.28
Phatr2_49908 0.27
Phatr2_51916 0.27
Phatr2_39421 0.27
Phatr2_40317 0.26
Phatr2_43293 0.25
Phatr2_47352 0.16
Phatr2_43917 0.12
Phatr2 41413 0.11

putative adenylate kinase
Nuclear protein SET
Malate dehydrogenase
RabGAP/TBC domain protein
Molecular chaperone (DnaJ superfamily)
DNA mismatch repair protein
Cl- channel, voltage gated
unknown function
unknown function
Protein of unknown function DUF6
Inositol polyphosphate 5-phosphatase
Putative NADP-dependent oxidoreductase

Table 3.4. Gene list obtained by comparing the dark time point between wild-type and 
the PtCPFl overexpressing line (cl5). The table shows the 64 genes downregulated in 
cl5. Target ID indicated in blue was analyzed by qRT-PCR.
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Fig. 34. The effect of a blue light pulse on Phatr_48732 (A), Phatr_51703 (B), Phatr_18180 
(C), Phatr_51916 (D), Phatr_49594 (E), Phatr_49596 (F) transcript levels in wild-type and 
the PtCPFl overexpressing line using RPS as a reference. The values were normalized 
to gene expression levels in the dark in panels A , B, C. Data are averages of triplicate 
measurements of cDNA. The error bars indicate standard deviation.
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Ch a pt e r  IV  - D is c u s s io n



4.1 New Tools for Reverse Genetics in Diatoms

A first step in this thesis project involved the extraction of high molecular 

weight DNA to be used for sequencing the P. tricornutum genome (Fig. 10). The 

subsequent availability of the whole genome sequence has greatly facilitated the 

development of reverse genetics in diatoms, and a vast amount of new information 

has enriched the scientific community. For example, comparisons of pathway-related 

genes allowed the identification of particular features of diatom cell biology, such as 

the presence of a urea cycle (see sections 1.1.5). Moreover, comparison of the 

chloroplast genomes of P. tricornutum and T. pseudonana compared with other 

plastid genomes have confirmed that diatoms likely acquired their chloroplast from a 

red algal endosymbiont (Oudot-Le Secq M.P. et al., 2006). However, these examples 

represent just the tip of the iceberg compared to what is likely to be discovered in the 

future. Indeed, at present genomics is a field in continuous expansion, and has now 

progressed from sequencing single genomes to “community genomics” or 

“environmental genomics”, aimed at identifying all community members and genes 

in a specific environment, in order to understand an ecological system in all its 

complexity. Several metagenomic approaches have been applied to marine 

ecosystems, such as the Sargasso Sea (Venter J.C. et a l , 2004) and deep sea 

sediments (Hallam S.J. et al., 2004). In the near future knowledge derived from 

diatom genomes will be linked to these metagenomic data from organisms living in 

the same habitat, offering the possibility to study their biology in its true complexity.

As a complement to the whole genome sequence, we considered it essential 

to develop molecular tools for the diatom community. The Gateway cloning strategy 

has thus been optimized for P. tricornutum, generating several Destination vectors 

useful for different purposes (Fig. 12). The Destination vector for overexpression is 

useful to study the function of a gene of interest. For example, overaccumulation of
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a gene product might generate a dominant negative mutant phenotype. On the other 

hand, enhanced or deregulated responses might help to understand the function of 

the encoded protein, as has been the case reported here for PtCPFl. The availability 

of this vector is all the more important considering that knockout technology is still 

missing in diatoms. In addition, diatom Destination vectors containing several 

epitopes were generated. EYFP or ECFP epitopes are useful for subcellular 

localization, whereas Destination vectors carrying an HA tag allow 

immunopurification and other immunodetection-based methods. Moreover, the 

utility of the Gateway system is that different fusion proteins can easily be obtained 

with one step cloning. Analysis of a gene product can also be performed using 

fusions at both extremities, in the case that insufficient information on putative 

function is available. These new molecular tools will also improve collaboration and 

dialogue between scientists with different knowledge, such as oceanographers or 

ecologists that typically consider molecular biology as a too specialized field.

4.2 PtCPFl is a novel Cryptochrome/Photolyase Family member

As part of this thesis project, a novel protein of the cryptochrome/photolyase 

family has been identified that displays a dual function. PtCPFl appears to be a blue 

light photoreceptor, modulating several blue-light-dependent responses, and has a 

specific DNA repair activity.

4.2.1 Phylogeny of diatom CPFs

Phylogenetic analysis shows that PtCPFl is more similar to animal 

cryptochromes than to plant cryptochromes (Fig. 14). The presence of animal-type 

cryptochromes in diatoms can be explained by the evolutionary history of this group 

of organisms (see section 1.1.4). Differently from green and red algae and terrestrial
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plants that are derived from a primary endosymbiotic event in which a non

photosynthetic eukaryote acquired a chloroplast by engulfing a cyanobacterium, 

diatoms likely arose after a secondary endosymbiotic event, whereby a eukaryotic 

algae was engulfed by a second eukaryotic heterotroph (Armbrust E.V. et al., 2004). 

This second endosymbiotic event likely generated a new and unusual combination of 

genes. In fact, analysis of diatom genomes indicates that almost 50% of diatom 

proteins are more similar to animal than to plant counterparts (Armbrust E.V. et a l , 

2004). Remarkably, phylogenetic analysis of the diatom cry/photolyase members 

showed another interesting feature, namely that more than one CRY-DASH protein 

is present in the two diatoms, because only one CRY-DASH member has been 

identified in other organisms such as Xenopus, Arabidopsis, zebrafish (Daiyasu H. et 

a l , 2004). Such diversity of putative cryptochromes in marine phytoplankton could 

find an explanation considering the important role of blue light signals in the water. 

Blue light has probably played a particularly important role as a driving force in 

evolution because it is the only component of the sun’s spectrum that penetrates to 

significant depths in aquatic environments (see section 1.2 .2 ) such as those in which 

life began on earth (Gehring W. & Rosbash M., 2003; Ragni M. & Ribera d’Alcala 

M., 2004). It is therefore reasonable to expect a complex variability of blue-light 

photoreceptor molecules in marine organisms strictly linked to changes in light 

intensity and quality.

4.2.2 Cryptochrome/Photolyase Chromophores

In this thesis project, a preliminary biochemical characterization of PtCPFl 

protein has been performed. The full length protein purified from E. coli was found 

to be suitable for spectroscopic and enzymatic analyses. All 

cryptochrome/photolyase family members characterized to date contain FAD as
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essential chromophore. In addition, these proteins contain a second chromophore, 

which in the majority of organisms is methenyltetrahydrofolate (MTHF). Spectral 

analyses of GST:PtCPFl revealed the presence of a non-covalently bound FAD 

chromophore in the reduced state (Fig. 17, 18). The presence of the flavin cofactor in 

the reduced state is of interest because in the majority of cryptochromes isolated 

(e.g., A. thaliana (Lin C. et a l , 1995; Malhotra K. et a l, 1995), humans (Hsu D.S. et 

al, 1996), and cyanobacteria (Hitomi K. et a l, 2000)), the flavin is in the two- 

electron oxidized form, whereas the active form of flavin in photolyase is the two- 

electron reduced form (Hitomi K. et a l, 1997; Payne G. et al, 1987). To date, only a 

few cryptochromes have been purified with the flavin active state, such as V. 

cholerae CRY1 (Worthington E.N. et a l, 2003) or CRY3 from A. thaliana. In this 

latter case, spectroscopic studies showed that the dark-adapted state of AtCRY3 

contained several FAD forms, such as 40% neutral oxidized FAD (FADox), 55% 

reduced FAD (FADH2) and 5% neutral FAD semiquinone (FADH'). Photo

excitation reduced the FAD0X and FADH’ to the reduced FADH2 that is the active 

form (Song S.H. et a l, 2006). Therefore, our finding that PtCPFl contains the flavin 

in the two-electron reduced form provides further evidence that all other native 

cryptochromes also contain the flavin in this form, suggesting that cryptochrome 

functions in a manner similar to photolyase, by photoinduced electron transfer to a 

substrate. On the other hand, the recombinant diatom protein did not display a clear 

absorption peak at 375-410 nm that is typical of the MTHF cofactor, indicating that 

the two cofactors are not present in stoichiometric amounts. However, MTHF is not 

essential for photolyase function, as was also demonstrated by the in vitro enzymatic 

assay (Fig. 21). Significant amounts of the second cofactor were probably lost 

during the purification procedure, although we cannot rule out the possibility that 

PtCPFl contains a deazaflavin cofactor, which is not synthesized in E. coli, as has
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been observed for one member of the cryptochrome/photolyase family in 

cyanobacteria. In fact, Synechocystis sp. PCC6803 contains two members of the 

cryptochrome/photolyase family, PhrA and PhrB genes. Their products expressed 

and purified from E. coli did not contain the second cofactor (Hitomi H. et a l, 2000) 

but further studies revealed that PhrA encodes a cyclobutane photolyase that 

contains deazaflavin as a second chromophore when purified from its native source 

(Ng W.O. et a l, 2000), whereas the crystal structure of the PhrB gene product, that 

is also known as a CRY-DASH protein, contained FAD but no second chromophore 

(Brudler R. et a l, 2003). The protein used for crystallography was made in E. coli, 

so it is possible that the native protein contains deazaflavin as a second chromophore 

or that the second chromophore may be distinct from folate and deazaflavin or even 

absent altogether. The same problems may also apply to PtCPFl and so it will be 

important to purify the native protein from diatom cells.

4.2.3 RNA is associated with PtCPFl

A peculiar aspect that was highlighted thanks to the characterization of 

purified GST:PtCPFl was the presence of nucleic acids associated with the protein, 

which were subsequently identified as RNA (Fig. 19). Worthington E.N. et a l 

(2003) observed the same phenomenon when they purified the VcCRYl, a CRY- 

DASH protein, using a different epitope tag. In addition, these authors have 

commented that of the 13 recombinant cryptochrome/photolyase family members 

purified in their laboratory, only VcCRYl was found to be associated with RNA. 

We can now conclude that RNA-association is not a CRY-DASH specific feature 

because it has also been observed for PtCPFl, which is an animal-type 

cryprochrome. Moreover, a colleague working in the laboratory on two 

Ostreococcus CPF members, an animal-type and a CRY-DASH, has also observed
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the presence of nucleic acids associated with both proteins (personal 

communication). Further characterization of the RNA is clearly needed but a major 

effort must be to purify PtCPFl from its native host to determine whether the protein 

still associates with RNA. At present, diatom overexpressing lines containing 

STREP:PtCPFl are available in our laboratory. Strep (Streptavidin) epitope tag is 

commonly used for protein purification, and preliminary experiments on these 

clones showed an encouraging binding of the STREP:PtCPFl protein to the resin. In 

the near future, a more detailed characterization of the native PtCPFl protein should 

therefore be possible.

4.2.4 Photolyase activity in vitro and in vivo

Recombinant PtCPFl showed a specific binding to (6-4)photoproducts as 

well as specific (6-4)photorepair activity in in vitro experiments (Fig. 20, 21, 

respectively), demonstrating that the purified protein not only contains the FAD 

cofactor attached correctly, but is also able to activate cyclic electron transfer 

between the catalytic flavin adenine dinucleotide cofactor and the damaged DNA. 

The absence of a detectable portion of the antenna cofactor in the purified protein 

did not impair the function of photorepair activity in the in vitro assay, as previously 

discussed. PtCPFl also displayed (6-4)photolyase activity in an E. coli in vivo repair 

assay (Fig. 22). After UV treatment, a comparable survival rate was observed in 

bacteria expressing either the PtCPFl protein or the (6-4)photolyase from Danio 

rerio, which was used as a positive control.

4.2.5 Regulation of PtCPFl by light

A thorough analysis of PtCPFl transcriptional regulation has been 

performed, leading to intriguing conclusions. Semi-quantitative RT-PCR
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experiments aimed at studying gene expression during a diurnal cycle revealed the 

presence of a population of transcripts. Each individual mRNA appears to oscillate 

during the diel cycle (Fig. 25). Subsequent, sequence analysis showed that different 

intermediate mRNAs are expressed at different times. The most abundant 

intermediate transcript is a full length mRNA containing the last intron (number 4). 

Remarkably, the intron sequence contains an in-frame stop codon, which generates a 

transcript of 1,368 bp from start to stop codon encoding a short protein of 455 amino 

acids with a molecular weight of 52 kDa. At present, we do not have any proof for 

the existence of a short protein, although domain analysis illustrated the 

characteristics of different domains and indicated that the short protein, lacking its 

C-terminal domain, should it exist, could play a regulatory role (section 3.2.3).

Many examples in the literature have shown the relevant role of alternative 

splicing for proteomic complexity (Kim E. et a l , 2007). Remarkably, in humans this 

process affects 60% of genes, and thus should be considered more the rule than the 

exception (Komblihtt A.R., 2005). To mention one recent example, the different 

biological function of two human cyclin proteins has been demonstrated, generated 

by alternative splicing, denoted cyclin D la and cyclin Dlb. The long form (Dla) has 

a molecular weight of 36 kDa, while the short form (30-31 kDa) lacks the C-terminal 

moiety required for protein stability and sub-cellular localization (Leveque C. et a l, 

2007). The number of alternatively spliced genes reported in plants is currently 

much smaller than in mammals. Interestingly, a relational database named the Plant 

Alternative Splicing Database (PASD) has been developed in order to collect and 

analyze genes subjected to this mechanism (Zhou Y. et a l, 2003). Further studies of 

the transcriptional regulation of PtCPFl will be required to clarity the biological 

role of the intermediate mRNAs. Moreover, qRT-PCR analysis revealed a diurnal 

oscillation, suggesting that alternative splicing may be necessary to modulate the
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pool of PtCPFl during the normal light-dark cycle, leading to an increase during the 

day and a decrease in the night (Fig. 26). Concerning the circadian regulation of 

PtCPFl, we might conclude that a light-independent control of transcript levels is 

present, as demonstrated by its pattern observed in free-running dark conditions. 

Nevertheless, this control seems to be absent in free-running light conditions, 

suggesting that a pleiotropic regulation occurs in the light (Fig. 26). On the other 

hand, the PtCPFl protein profile showed a faint oscillation between the light and the 

dark period, that was not strongly conserved under constant conditions (Fig. 27). 

However, a light-dependent post-transcriptional regulation may be involved in the 

shift from an inactive to an active protein. Finally, studies of the acute light response 

showed a specific induction of PtCPFl upon blue light, whereas protein levels were 

induced both by blue light and white light (Fig. 28). The different behaviour of 

transcript and protein is a further indication that post-transcriptional regulatory 

mechanisms modulate PtCPFl function.

4.2.6 PtCPFl as a potential regulator of the negative feedback loop of the circadian 

clock

Circadian clocks are endogenous time-keeping devices that regulate daily 

changes in many aspects of physiology and behaviour. Organisms ranging from 

bacteria to humans have a clock and many general properties of their function are 

conserved. Surprisingly, diatom PtCPFl is able to inhibit CLOCK:BMALl- 

mediated transcription in animal cells, suggested that it is able to function in the 

negative feedback loop of the mammalian circadian clock (Fig. 29, 30). At present, 

we do not have molecular evidence to explain how the diatom protein mediates this 

function, but we can speculate on some models.

-165-



Cryptochrome proteins have two domains, a core region similar to the 

photolyases, and a carboxy-terminal tail that varies considerably in length and 

sequence composition (Green C.B., 2004). Plant and animal cryptochromes possess 

30-250 amino acid carboxy-terminal extensions beyond the photolyase-homology 

region (PHR), which is approximately 500 amino acids. Importantly, these C- 

terminal domains have been shown to mediate phototransduction by both 

Arabidopsis and Drosophila cryptochromes.

In Arabidopisis, the carboxy-terminal tail is responsible for transducing the 

light signal detected by the core PHR domain, by direct interaction and inhibition of 

its effector protein COP1 upon light activation. The light-dependent inhibition of the 

COP1 E3 ubiquitin ligase allows accumulation of a set of transcription factors that 

initiate the photomorphogenic response. Overexpression of the C-terminal domains 

of either AtCRYl or AtCRY2 results in a constitutive photomorphogenic phenotype 

(Yang H.Q. et al., 2000). Therefore, in Arabidopsis the core domain acts as a 

regulator of the carboxy-terminal domain, inhibiting its activity in the dark and/or 

promoting its activity in the light.

In Drosophila, dCRY is a circadian photoreceptor that, when activated by 

light, interacts with the central clock proteins Timeless (TIM) and Period (PER) 

(Ceriani M.F. et a l, 1999; Rosato E. et a l, 2001) and leading to their degradation, 

which is thought to reset the clock. The C-terminal domain of dCRY is essential for 

maintaining these light dependent interactions. In fact, a mutant form of Drosophila 

CRY lacking the carboxy-terminal tail interacts in a constitutive, light-independent 

manner with PER in yeast (Rosato E. et a l, 2001). Moreover, overexpression of the 

truncated CRY in Drosophila results in several effects that mimic constant light 

exposure, including behavioural rhythms with periods longer than 24 hours, altered 

TIM and PER kinetics and intracellular localization, and changes in dCRY stability
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(Busza A. et a l, 2004). These results indicate that the core (PHR) domain of 

Drosophila CRY is capable of carrying out its phototransduction functions and that 

the carboxy-terminal tail must play a regulatory role, normally preventing dCRY 

from being active in the dark.

In vertebrates, the CRY carboxy-terminal tail has yet a different role, and 

there is also a high variability between different species, leading to the conclusion 

that the C-terminal tail is the most creative domain of the molecule. In fact, in 

Xenopus CRYs, the role of the carboxy-terminal tail is to transport the CRY protein 

into the nucleus, which is required for its transcriptional repressor function. CRY 

molecules lacking the carboxy-terminal tail are localized in the cytoplasm and do not 

repress transcription (Zhu H. et a l, 2003). Addition of a heterologous nuclear 

localization signal to the truncated CRY completely restores both repressor activity 

and nuclear localization, indicating that the core photolyase-like domain is sufficient 

for repressive activity as long as the protein can make it to the nucleus. It is not 

known whether this nuclear targeting function of the carboxy terminus is regulated, 

but it does not appear to be light-dependent. On the contrary, domain analysis of 

cryptochrome la from zebrafish demonstrated that a nuclear localization signal 

(NLS) is present in the core domain of the protein in a region denoted RD2b. The 

NLS sequence, that is well conserved among repressor-type CRYs, has also been 

demonstrated to be functional in mCRYl (Hirayama J. et a l, 2003). Thus, in both 

Xenopus and zebrafish, nuclear localization of CRYs is essential for the interaction 

with the CLOCK:BMAL heterodimer, but only in Xenopus is it mediated by the C- 

terminal tail, suggesting that that domain plays a different role in zebrafish and as a 

consequence probably also in mouse.

PtCPFl constitutes an interesting model to define the function of this domain 

because it can be considered the missing link in the evolutionary history of the



cryptochrome/photolyase family. An accurate domain analysis (see section 3.2.3) 

showed that the core domain of PtCPFl is similar to the animal CRYs, while the 

protein contains a short C-terminal extension similar to the Drosophila 

cryptochrome. We can speculate that PtCPFl is derived from a typical (6 - 

4)photolyase that under evolutionary pressure acquired a repressor function 

necessary for the regulation of the circadian clock. The protein core containing the 

PHR domain is necessary to repair the (6-4)photoproducts, and could also be 

sufficient for inhibition of the negative feedback loop, as has been shown for 

vertebrate cryptochromes. Moreover, since the protein appears to be constitutively 

nuclear localized, the C-terminal domain might play a regulatory role in switching 

the two functions, dependent on the input perceived from the environment.

Ishikawa T. et al. (2002) showed that zebrafish CRY la  neither disrupts the 

association between zfCLOCK and zfBMAL nor inhibits binding of the zfCLOCK- 

zfBMALl heterodimer to an E-box-bearing DNA fragment. Instead it binds to the 

heterodimer to form a stable zCRYla-zfCLOCK-zfBMALl-E-box complex, in 

order to inhibit transcriptional activity of the heterodimer. Results of the 

transcription assays performed in COS7 and zebrafish cells led to the conclusion that 

PtCPFl is able to bind CLOCK and BMAL1 proteins, perhaps forming a stable 

complex as efficiently as zCRYla. Although a preliminary analysis to look for 

CLOCK and BMAL orthologues in the P. tricornutum genome did not reveal similar 

transcription factors, it is possible that molecules with a similar secondary or 

tridimensional structure are conserved in diatoms, explaining how PtCPFl can 

recognize the heterodimer conformation and play a similar role to that of zCRYla. 

However, basic helix-loop-helix PAS superfamily domain-containing proteins are 

y encoded in the P. tricornutum genome, so in the future it could be possible to 

identify positive regulators in diatoms that are not orthologous but analogous to
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CLOCK and BMAL. Another interesting consideration is that PtCPFl acts as a 

general repressor in the negative feedback loop of the mammalian circadian clock. In 

fact, the protein inhibits CLOCK:BMAL-mediated transcription in two different 

cellular systems, suggesting also that the action mechanism is light independent. 

Further studies should clarify this aspect.

Finally, it is important to bear in mind that expression studies of the PtCPFl 

transcript have revealed the presence of intermediate mRNA transcripts during the 

diel cycle. In particular, an intermediate mRNA containing the last intron was 

always observed (Fig. 25). This intermediate transcript encodes a short PtCPFl 

protein, lacking the C-terminal domain (see red asterisk in Fig. 15). It will be 

extremely interesting to understand whether this intermediate is just a splicing 

intermediate, or, on the contrary, whether it encodes a short functional PtCPFl 

protein. At present, we have no evidence for the existence of a second form of 

PtCPFl, because only a single band of 63 kDa, corresponding to the full length 

protein, is detected by western blotting using the specific CPF1 antibody on diatom 

cells grown under different light conditions. Moreover, transgenic lines expressing 

the truncated version of PtCPFl fused to EYFP at the C-terminal extremity did not 

reveal a fluorescent signal (data not shown), although negative results were also 

obtained when using the full length PtCPFl protein with EYFP at the carboxyl- 

extremity, suggesting that the EYFP epitope at the C-terminal position might 

interfere with the correct folding of the protein, leading to degradation. Further 

characterization of the putatively functional short protein will also elucidate the role 

of separate domains in the diatom photoreceptor. In fact, the short PtCPFl form 

lacks the predicted coiled-coil domain in the C-terminal region (aa 502-524). At 

present, we propose a model in which the core domain of PtCPFl contains the 

nuclear localization signal and might play both functions, the repair activity and the
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transcriptional repression. The C-terminal tail of PtCPFl might play a regulatory 

role in switching the two functions, or it could be essential for protein stability. The 

latter consideration could also explain why we did not observe the short PtCPFl 

that, lacking the C-terminal domain, is unstable. In conclusion, it seems extremely 

important to identify the role of separate domains in PtCPFl to better understand the 

key changes that have occurred in the protein during evolution.

4.2.7 Transcriptional regulation of genes by PtCPFl

Photoreceptors modulate output pathways in a fluence rate dependent manner 

that depends on the quantity of light perceived. Gene expression studies of acute 

light responses in which wild-type cells were compared with PtCPFl 

overexpressing lines confirmed this correlation and suggested a possible role of 

PtCPFl in the blue light photoreceptor response (Fig. 32).

Psy and Pds gene expression were fluence-modulated, showing the strongest 

induction at 3.3 pmol.m^.s' 1 and a partial inhibition at a higher intensity, indicating 

a threshold-response. Overexpressing lines showed a significant repression of Psy 

and Pds gene expression, in agreement with the role of PtCPFl as a negative 

regulator demonstrated in the transcriptional assays in animal cells (Fig. 29, 30). On 

the contrary, the expression of FcpB was almost unaffected by fluence rate and no 

differences were observed between wild-type and overexpressing lines. Previously, 

studies on FcpB gene expression showed a strong induction after a 3 hours treatment 

with continuous blue light of 25 pmol.m"2.s' 1 (maximum increase >5,000 fold). Data 

from acute light responses might therefore suggest that FcpB gene expression is 

more likely to be controlled by the photosynthetic redox state of the cells than by 

blue light photoreceptors. In addition, the fact that there are no differences in the 

FcpB gene expression pattern between wild-type and overexpressing lines might

-170-



represent an indirect control that suggests a role for PtCPFl principally in blue-light 

photoreceptor responses.

Finally, the strongest acute responses were observed for PtCPF25 and CYC 

gene expression. In both cases, a sensitive response to fluence rate was observed 

although the two genes behaved oppositely to each other. PtCPF25 showed a typical 

positive fluence response, whereas CYC showed a typical negative fluence response, 

demonstrating that the control of their expression is under blue light control. 

Overexpressing lines showed altered responses, indicating that PtCPFl is involved 

in upstream controls of both genes. Moreover, cryptochromes in animals and in 

plants are key-components of the biological clock, so it will be interesting to 

investigate the influence of CPF1 overexpression on the cell cycle in P. tricornutum.
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C o n c l u d in g  R e m a r k s

Studies of light perception and signaling is a fascinating field because light is 

a key factor for all living organisms. Diatoms are an intriguing model organism for 

light-perception studies because of the complexity of light signals underwater. 

Spectral quality varies with depth due to the absorption properties of the water, with 

blue light prevailing with increasing depth. It is possible to hypothesize that 

successful marine algae such as diatoms must have developed sophisticated 

strategies for responding to variations in light quality and quantity.

In this thesis project a structural and functional characterization of a 

Cryptochrome/Photolyase Family member (CPF1), isolated from the pennate diatom 

P. tricornutum, has been performed. PtCPFl is a highly novel and interesting 

member of this family because it displays a dual activity: a (6-4)photolyase activity, 

likely of functional relevance for cell survival following UV irradiation, and a 

photoreceptor activity, controlling gene expression, pigment synthesis and possibly 

circadian regulated processes in response to blue light. This has been an exciting 

discovery because no protein with dual function had previously been discovered, and 

so the sea has provided us with the missing link in the evolution of the 

Cryptochrome/Photolyase protein family. In addition, the dual activity of the diatom 

protein opens the way to molecular evolution studies to see how catalytic activity 

evolved from a photolyase to a photoreceptor. Further characterization of CP FI and 

other members of the Cryptochrome/Photolyase Family identified in P. tricornutum 

and other diatoms will likely provide novel insights for dissecting the molecular 

secrets underlying the success of diatoms in contemporary oceans.

- 172-



Ch a pt e r  V  - B ibl io g r a ph y



1. Ahm ad M. & Cashmore A.R. (1993). HY4 gene of A. thaliana encodes a 

protein w ith characteristics of a blue-light photoreceptor. Nature, 366: 

162-166.

2. Allen A.E., Vardi A. & Bowler C. (2006). An ecological and evolutionary 

context for integrated nitrogen metabolism and related signaling 

pathways in marine diatoms. Curr Opin Plant Biol, 9: 264-73.

3. Arm brust E.V., Berges J.B., Bowler C., Green B.R., Martinez D., Putnam  

N.H., Zhou S., Allen A.E., A pt K.E., Bechner M., Brzezinski M.A., Chaal 

B.K., Chiovitti A., Davis A.K., Demarest M.S., Detter J.C., Glavina T., 

Goodstein D., Hadi M.Z., Hellsten U., H ildebrand M., Jenkins B.D., Jurka 

J., Kapitonov V.V., Kroger N., Lau V.V.Y., Lane T.W., Larimer F.W., 

Lippmeier J.C., Lucas S., Medina M., M ontsant A., Obornik M., 

Schnitzler-Parker M., Palenik B., Pazour G.J., Richardson P.M., 

Rynearson T.A., Saito M.A., Schwartz D.C., Thamatrakoln K., Valentin 

K., Vardi A., Wilkerson F.P. & Rokhsar D.S. (2004). The genome of the 

diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. 

Science, 306: 79-86.

4. Aubert C., Vos M.H., Mathis P., Eker A.P. & Brettel K. (2000). 

Intraprotein radical transfer during photoactivation of DNA photolyase. 

Nature, 405: 586-90.

5. Batschauer A. (1993). A plant gene for photolyase: an enzyme catalyzing 

the repair of UV-light-induced DNA damage. Plant J, 4: 705-9.

- 174-



6 . Baum G., Long J.C., Jenkins G.I. & Trewavas A.J. (1999). Stimulation of 

the blue tight phototropic receptor NPH1 causes a transient increase in 

cytosolic Ca2+. Proc Natl Acad Sci USA, 96:13554-9.

7. Beja O., Aravind L., Koonin E.V., Suzuki M.T., H add A., Nguyen L.P., 

Jovanovich S.B., Gates C.M., Feldman R.A., Spudich J.L., Spudich E.N. & 

DeLong E.F. (2000). Bacterial rhodopsin: evidence for a new  type of 

phototrophy in the sea. Science, 289:1902-6.

8 . Bellingham J. & Foster R.G. (2002). Opsins and mammalian 

photoentrainment. Cell Tissue Res, 309: 57-71.

9. Berger S.A., Diehl S., Stibor H., Trammer G., Ruhenstroth M., Wild A., 

Weigert A., Jager C.G. & Striebel M. (2007). W ater tem perature and 

mixing depth affect timing and m agnitude of events during spring 

succession of the plankton. Oecologia, 150: 643-54.

10. Bernard P. & Couturier M. (1992). Cell kilting by the F plasm id CcdB 

protein involves poisoning of DNA-topoisomerase II complexes. J Mol 

Biol, 226: 735-45.

11. Berson D.M., Dunn F.A. & Takao M. (2002). Phototransduction by retinal 

ganglion cells that set the circadian clock. Science, 295:1070-3.

12. Bhattacharya D. & Medtin L. (1995). Targeting proteins to diatom  

plastids involves transport through an endoplasmic reticulum. J Phycol, 

31: 489-98.

- 175-



13. Bhaya D. & Grossman A.R. (1993). Characterization of gene clusters 

encoding the fucoxanthin chlorophyll proteins of the diatom 

Phaeodactylum tricornutum. Nucleic Acids Res, 21: 4458-66.

14. Bieszke J.A., Spudich E.N., Scott K.L., Borkovich K.A. & Spudich J.L. 

(1999). A eukaryotic protein, NOP-1, binds retinal to form  an archaeal 

rhodopsin-like photochemically reactive pigment. Biochemistry, 38: 

14138-45.

15. Bouly J.P., Giovani B., Djamei A., Meuller M., Zeugner A., Dudkin E.A., 

Baschauer A. & Ahmad M. (2003). Novel ATP-binding and 

autophosphorylation activity associated w ith Arabidopsis and hum an 

cryptochrome-I. Eur J Biochem, 270: 2921-2928.

16. Brautigam C.A., Smith B.S., Ma Z., Palnitkar M., Tomchick D.R., Machius 

M. & Deisenhofer J. (2004). Structure of the photolyase-like dom ain of 

cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101: 

12142-7.

17. Briggs W.R. & Christie J.M. (2002). Phototropins 1 and 2: versatile plant 

blue-light receptors. Trends Plant Sci, 7: 204-10.

18. Briggs W.R., Tseng T.-S., Cho H.-Y., Swartz T.E., Sullivan S., Bogomolni 

R.A., Kaiserli E. & Christie J.M. (2007). Phototropins and Their LOV 

Domains: Versatile Plant Blue-Light Receptors. J Integr Plant Biol, 49:1-4

19. Brudler R., Hitomi K., Daiyasu H., Toh H., Kucho K., Ishiura M., 

Kanehisa M., Roberts V.A., Todo T., Tainer J.A. & Getzoff E.D. (2003).

- 176-



Identification of a new cryptochrome class. Structure, function, and 

evolution. Mol Cell, 11: 59-67.

20. Busza A., Emery-Le M., Rosbash M. & Emery P. (2004). Roles of the two 

Drosophila CRYPTOCHROME structural domains in circadian 

photoreception. Science, 304:1503-6.

21. Cashmore A.R. (2003). Cryptochromes: enabling plants and animals to 

determine circadian time. Cell, 114: 537-43.

22. Cashmore A.R., Jarillo J.A., W u Y.J. & Liu D. (1999). Cryptochromes: blue 

light receptors for plants and animals. Science, 284: 760-5.

23. Cavalier-Smith T. (2000). M embrane heredity and early chloroplast 

evolution. Trends Plant Sci, 5:174-82.

24. Ceriani M.F., Darlington T.K., Staknis D., Mas P., Petti A.A., Weitz C.J. & 

Kay S.A. (1999). Light-dependent sequestration of timeless by 

cryptochrome. Science, 285: 553-6.

25. Chaves I., Yagita K., Barnhoom S., Okam ura H., van der H orst G.T. & 

Tamanini F. (2006). Functional evolution of the 

photolyase/cryptochrom e protein family: importance of the C term inus 

of mammalian CRY1 for circadian core oscillator performance. Mol Cell 

Biol, 26:1743-53.

26. Chen M., Chory J. & Fankhauser C. (2004). Light signal transduction in 

higher plants. Annu Rev Genet, 38: 87-117.

- 177-



27. Chew A.G. & Bryant D.A. (2007). Bacteriochlorophyll and Carotenoid 

Biosynthesis. Annu Rev Microbiol, in press.

28. Christie J.M., Swartz T.E., Bogomolni R.A. & Briggs W.R. (2002). 

Phototropin LOV domains exhibit distinct roles in regulating 

photoreceptor function. Plant J, 32: 205-19.

29. Christie J.M. (2007). Phototropin blue-light receptors. Annu Rev Plant 

Biol, 58: 21-45.

30. Cutler S.R., Ehrhardt D.W., Griffitts J.S. & Somerville C.R. (2000). 

Random GFP::cDNA fusions enable visualization of subcellular 

structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci 

USA, 97: 3718-23.

31. Daiyasu H., Ishikawa T., Kuma K., Iwai S., Todo T. & Toh H. (2004). 

Identification of cryptochrome DASH from vertebrates. Genes Cells, 9: 

479-95.

32. De Martino A., Meichenin A., Shi J., Pan K. & Bowler C. (2007). Genetic 

and Phenotypic Characterisation of Phaeodactylum tricornutum 

(Bacillariophyceae) Accessions. J Phycol, in press.

33. Derelle E., Ferraz C., Rombauts S., Rouze P., W orden A.Z., Robbens S., 

Partensky F., Degroeve S., Echeynie S., Cooke R., Saeys Y., W uyts J., 

Jabbari K., Bowler C., Panaud O., Piegu B., Ball S.G., Ral J.P., Bouget F.Y., 

Piganeau G., De Baets B., Picard A., Delseny M., Demaille J., Van de Peer 

Y. & Moreau H. (2006). Genome analysis of the smallest free-living

- 178-



eukaryote Ostreococcus tauri unveils many unique features. Proc Natl 

Acad Sci USA, 103:11647-52.

34. Devlin P.F. (2002). Signs of the time: environmental input to the circadian 

clock. J Exp Bot, 53:1535-50.

35. Douglas S., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L.T., W u 

X., Reith M., Cavalier-Smith T. & Maier U.G. (2001). The highly reduced 

genome of an enslaved algal nucleus. Nature, 410:1091-6.

36. Duek P.D. & Fankhauser C. (2003). HFR1, a putative bHLH transcription 

factor, mediates both phytochrome A and cryptochrome signalling. Plant 

J, 34: 827-36.

37. Dunlap J.C. (1999). Molecular bases for circadian clocks. Cell, 96: 271-90.

38. Eide E.J., Vielhaber E.L., Hinz W.A. & Virshup D.M. (2002). The

circadian regulatory proteins BMAL1 and cryptochromes are substrates 

of casein kinase Ie. J Biol Chem, 277: 17248-54.

39. Emery P., So W.V., Kaneko M., Hall J.C. & Rosbash M. (1998). CRY, a 

Drosophila clock and light-regulated cryptochrome, is a major contributor 

to circadian rhythm  resetting and photosensitivity. Cell, 95: 669-79.

40. Emery P., Stanewsky R., Helfrich-Forster C., Emery-Le M., Hall J.C. &

Rosbash M. (2000). Drosophila CRY is a deep brain circadian

photoreceptor. Neuron, 26: 493-504.

41. Ermilova E.V., Zalutskaya Z.M., H uang K. & Beck C.F. (2004).

Phototropin plays a crucial role in  controlling changes in chemotaxis

- 179-



during the initial phase of the sexual life cycle in Chlamydomonas. Planta, 

219: 420-7.

42. Falciatore A. & Bowler C. (2002). Revealing the molecular secrets of 

marine diatoms. Annu Rev Plant Biol, 53:109-30.

43. Falciatore A. & Bowler C. (2005). The evolution and function of blue and 

red light photoreceptors. Curr Top Dev Biol, 6 8 : 317-50.

44. Falciatore A., Casotti R., Leblanc C., Abrescia C. & Bowler C. (1999). 

Transformation of nonselectable reporter genes in m arine diatoms. 

Marine Biotechnology, 1: 239-251.

45. Falkowski P.G., Barber R.T. & Smetacek V.V. (1998). Biogeochemical 

Controls and Feedbacks on Ocean Primary Production. Science, 281: 200-

7.

46. Felsenstein J. (1985). Confidence limits on phylogenies: an approach 

using the bootstrap. Evolution, 39: 783-791.

47. Fujihashi M., Numoto N., Kobayashi Y., Mizushima A., Tsujimura M., 

Nakam ura A., Kawarabayasi Y. & Miki K. (2007). Crystal structure of 

archaeal photolyase from Sulfolobus tokadaii w ith two FAD molecules: 

implication of a novel light-haversting cofactor. J Mol Biol, 365: 903-910.

48. Galston A.W. (1950). Riboflavin, light, and the growth of plants. Science, 

111: 619-24.

49. Gehring W. & Rosbash M. (2003). The coevolution of blue-light 

photoreception and circadian rhythms. J Mol Evol, 57: S286-9.

- 180-



50. Genick U.K., Soltis S.M., Kuhn P., Canestrelli I.L. & Getzoff E.D. (1998).

o
Structure at 0.85 A resolution of an early protein photocycle 

intermediate. Nature, 392: 206-9.

51. Gibbs S.P. (1981). The chloroplasts of some algal groups may have 

evolved from endosymbiotic eukaryotic algae. Ann N  Y  Acad Sci, 361: 

193-208.

52. Giliberto L., Perrotta G., Pallara P., Weller J.L., Fraser P.D., Bramley P.M., 

Fiore A., Tavazza M. & Giuliano G. (2005). M anipulation of the blue light 

photoreceptor cryptochrome 2  in tomato affects vegetative developm ent, 

flowering time, and fruit antioxidant content. Plant Physiol, 137:199-208.

53. Gomelsky M. & Klug G. (2002). BLUF: a novel FAD-binding dom ain 

involved in sensory transduction in microorganisms. Trends Biochem Sci, 

27: 497-500.

54. Gordon R. & Parkinson J. (2005). Potential roles for diatomists in 

nanotechnology. J Nanosci Nanotechnol, 5: 35-40.

55. Goud B., Salminen A., W alworth N.C. & Novick P.J. (1988). A Gtp- 

Binding Protein Required for Secretion Rapidly Associates w ith 

Secretory Vesicles and the Plasma-Membrane in Yeast. Cell, 53: 753-768.

56. Green C.B. (2004). Cryptochromes: tail-ored for distinct functions. Curr 

Biol, 14: R847-9.

57. Griffin E.A. Jr, Staknis D. & Weitz C.J. (1999). Light-independent role of 

CRY1 and CRY2 in the mammalian circadian clock. Science, 286: 768-71.

- 181 -



58. Grossman A.R. (2003). A molecular understanding of complementary 

chromatic adaptation. Photosynth Res, 76: 207-15.

59. Gu Y.Z., Hogenesch J.B. & Bradfield C.A. (2000). The PAS superfamily: 

sensors of environmental and developmental signals. Annu Rev 

Pharmacol Toxicol, 40: 519-61.

60. Guillard R.R.L. (1975). Culture of phytoplankton for feeding marine 

invertebrates. In: Smith, W.L. and Chanley, M.H. (Eds), Culture of 

Marine Invertebrates Animals. Plenum  Press, New York, USA, 26-60.

61. Guo H., Duong H., Ma N. & Lin C. (1999). The Arabidopsis blue light 

receptor cryptochrome 2  is a nuclear protein regulated by a blue light- 

dependent post-transcriptional mechanism. Plant J, 19: 279-87.

62. Guo H., Mockler T., Duong H. & Lin C. (2001). SUB1, an Arabidopsis Ca2+- 

binding protein involved in cryptochrome and phytochrome coaction. 

Science, 291: 487-90.

63. Hallam S.J., Putnam  N., Preston C.M., Detter J.C., Rokhsar D., 

Richardson P.M. & DeLong EF. (2004). Reverse methanogenesis: testing 

the hypothesis w ith environmental genomics. Science, 305:1457-62.

64. Hamm-Alvarez S.F., Sancar A., Rajagopalan K.V. (1990). The presence 

and distribution of reduced folates in Escherichia coli dihydrofolate 

reductase mutants. J Biol Chem, 265: 9850-6.

65. Heim R. & Tsien R.Y. (1996). Engineering green fluorescent protein for 

improved brightness, longer wavelengths and fluorescence resonance 

energy transfer. Curr Biol, 6:178-82.

- 182-



6 6 . Hirayama J., Nakam ura H., Ishikawa T., Kobayashi Y. & Todo T. (2003). 

Functional and structural analyses of cryptochrome. Vertebrate CRY 

regions responsible for interaction w ith the CLOCKiBMALl heterodimer 

and its nuclear localization. J Biol Chem, 278: 35620-8.

67. Hitomi K., Kim S.T., Iwai S., Harima N., Otoshi E., Ikenaga M. & Todo T. 

(1997). Binding and catalytic properties of Xenopus (6-4) photolyase. J 

Biol Chem, 272: 32591-8.

6 8 . Hitomi K., Okamoto K., Daiyasu H., Miyashita H., Iwai S., Toh H., 

Ishiura M. & Todo T. (2000). Bacterial cryptochrome and photolyase: 

characterization of two photolyase-like genes of Synechocystis sp. 

PCC6803. Nucl Acids Res, 28: 2353-2362.

69. Hoffman E.C., Reyes H., Chu F.F., Sander F., Conley L.H., Brooks B.A. & 

Hankinson O. (1991). Cloning of a factor required for activity of the Ah 

(dioxin) receptor. Science, 252: 954-8.

70. H su D.S., Zhao X., Zhao S., Kazantsev A., W ang R.P., Todo T., Wei Y.F. & 

Sancar A. (1996). Putative hum an blue-light photoreceptors hCRYl and 

hCRY2 are flavoproteins. Biochemistry, 35:13871-7.

71. Huala E., Oeller P.W., Liscum E., H an I.S., Larsen E. & Briggs W.R. 

(1997). Arabidopsis NPH1: a protein kinase w ith a putative redox-sensing 

domain. Science, 278: 2120-3.

72. H uang K. & Beck C.F. (2003). Phototropin is the blue-light receptor that 

controls multiple steps in the sexual life cycle of the green alga 

Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 100: 6269-74.

- 183-



73. H uang Y., Baxter R., Smith B.S., Partch C.L., Colbert C.L. & Deisenhofer 

J. (2006). Crystal structure of cryptochrome 3 from Arabidopsis thaliana 

and its implications for photolyase activity. Proc Natl Acad Sci USA, 103: 

17701-6.

74. Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R. & Kay S.A. (2003). 

FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. 

Nature, 426: 302-6.

75. Inada S., Ohgishi M., Mayama T., Okada K. & Sakai T. (2004). RPT2 is a 

signal transducer involved in phototropic response and stomatal 

opening by association w ith phototropin 1 in Arabidopsis thaliana. Plant 

Cell, 16: 887-96.

76. Iseki M., M atsunaga S., M urakami A., Ohno K., Shiga K., Yoshida K., 

Sugai M., Takahashi T., Hori T. & Watanabe M. (2002). A blue-light- 

activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. 

Nature, 415:1047-51.

77. Ishikawa T., Hirayama J., Kobayashi Y. & Todo T. (2002). Zebrafish CRY 

represses transcription m ediated by CLOCK-BMAL heterodim er w ithout 

inhibiting its binding to DNA. Genes Cells, 7:1073-86.

78. Jiao Y., Lau O.S. & Deng X.W. (2007). Light-regulated transcriptional 

networks in higher plants. Nat Rev Genet, 8 : 217-30.

79. Jones D.T., Taylor W.R. & Thornton J.M. (1992). The rapid generation of 

m utation data matrices from protein sequences. Comput Appl Biosci, 8 : 

275-82.

- 184-



80. Jorns M.S., W ang B.Y., Jordan S.P. & Chanderkar L.P. (1990). 

Chromophore function and interaction in Escherichia coli DNA 

photolyase: reconstitution of the apoenzyme w ith pterin a n d /o r  flavin 

derivatives. Biochemistry, 29: 552-61.

81. Jung K.H., Trivedi V.D. & Spudich J.L. (2003). Demonstration of a 

sensory rhodopsin in eubacteria. Mol Microbiol, 47:1513-22.

82. Kanai S., Kikuno R., Toh H., Ryo H. & Todo T. (1997). Molecular 

evolution of the photolyase-blue-light photoreceptor family. J Mol Evol, 

45: 535-48.

83. Kenrick P. & Crane P.R. (1997). The origin and early evolution of plants 

on land. Nature, 389: 33-39.

84. Kim E., Magen A. & Ast G. (2007). Different levels of alternative splicing 

among eukaryotes. Nucleic Acids Res, 35:125-31.

85. Kim S.-T., Sancar A., Essenmacher C. & Babcock G.T. (1993). Time- 

resolved EPR studies w ith DNA photolyase: excited-state FADH0 

abstracts an electron form Trp-306 to generate FADH-, the catalytically 

active form of the cofactor. Proc Natl Acad Sci USA, 90: 8023-8027.

8 6 . Kirk J.T.O. (1994). Light and photosynthesis in aquatic ecosystems. 

Second ed. Cambridge University Press, New York, N.Y.

87. Klar T., Pokorny R., M oldt J., Batschauer A. & Essen L.O. (2007). 

Cryptochrome 3 from Arabidopsis thaliana: structural and functional 

analysis of its complex with a folate light antenna. J Mol Biol, 366: 954-64.

- 185-



8 8 . Kleine T., Lockhart P. & Batschauer A. (2003). An Arabidopsis protein 

closely related to Synechocystis cryptochrome is targeted to organelles. 

Plant J, 35: 93-103.

89. Kobayashi K., Kanno S., Smit B., van der H orst G.T., Takao M. & Yasui 

A. (1998). Characterization of photolyase/blue-light receptor homologs 

in mouse and hum an cells. Nucleic Acids Res, 26: 5086-5092.

90. Kobayashi Y., Ishikawa T., Hirayama J., Daiyasu H., Kanai S., Toh H.,

Fukuda I., Tsujimura T., Terada N., Kamei Y., Yuba S., Iwai S. & Todo T. 

(2000). Molecular analysis of zebrafish photolyase/cryptochrom e family: 

two types of cryptochromes present in zebrafish. Genes Cells, 5: 725-38.

91. Komori H., M asui R., Kuramitsu S., Yokoyama S., Shibata T., Inoue Y. & 

Miki K. (2001). Crystal structure of thermostable DNA photolyase: 

pyrim idine-dimer recognition mechanism. Proc Natl Acad Sci USA, 98: 

13560-5.

92. Kooistra W.H.C.F., De Stefano M., M ann D.G. & Medlin L.K. (2003). The 

phylogeny of the diatoms. Prog Mol Subcell Biol, 33: 59-97.

93. Kom blihtt A.R. (2005). Promoter usage and alternative splicing. Curr 

Opin Cell Biol, 17: 262-8.

94. Kume K., Zylka M.J., Sriram S., Shearman L.P., W eaver D.R., Jin X.,

Maywood E.S., Hastings M.H. & Reppert S.M. (1999). mCRYl and

mCRY2 are essential components of the negative limb of the circadian 

clock feedback loop. Cell, 98:193-205.

- 186-



95. Leblanc C., Falciatore A., W atanabe M. & Bowler C. (1999). Semi- 

quantitative RT-PCR analysis of photoregulated gene expression in 

m arine diatoms. Plant Mol Biol, 40:1031-44.

96. Lee M.L., Kuo F.C., Whitmore G.A. & Sklar J. (2000). Importance of 

replication in microarray gene expression studies: statistical methods 

and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci 

USA, 97: 9834-9.

97. Lee R.E. & Kugrens P. (2000). Commentary: ancient atmospheric CO2 

and the timing of evolution of secondary endosymbioses. Phycologia, 39: 

167-172.

98. Leveque C., M arsaud V., Renoir J.M. & Sola B. (2007). Alternative cyclin 

D1 forms a and b have different biological functions in the cell cycle of B 

lymphocytes. Exp Cell Res, Apr 24; [Epub ahead of print].

99. Levine J.S. & MacNichol Jr E.F. (1982). Color vision in fishes. Scientific 

American, 246:140-149.

100. Li L. & Deng X.W. (2003). The COP9 signalosome: an alternative lid for 

the 26S proteasome? Trends Cell Biol, 13: 507-509.

101. Li Y.F. & Sancar A. (1990). Active site of Escherichia coli DNA photolyase: 

mutations at Trp277 alter the selectivity of the enzyme w ithout affecting 

the quantum  yield of photorepair. Biochemistry, 29: 5698-706.

102. Lin C. (2000). Plant blue-light receptors. Trends Plant Sci, 8 : 337-42.

- 187-



103. Lin C., Robertson D.E., Ahmad M., Raibekas A.A., Joms M.S., Dutton 

P.L. & Cashmore A.R. (1995). Association of flavin adenine dinucleotide 

w ith the Arabidopsis blue light receptor CRY1. Science, 269: 968-70.

104. Lin C., Ahmad M., Chan J. & Cashmore A.R. (1996). CRY2: a second 

member of the Arabidopsis cryptochrome gene family. Plant Physiol, 110: 

1047-1048.

105. Lin C. & Shalitin D. (2003). Cryptochrome Structure and Signal 

Transduction. Annual Review o f Plant Biology, 54: 469-496.

106. Lin C. & Todo T. (2005). The cryptochromes. Genome Biol, 6 : 220.

107. Lin F.J., Song W., Meyer-Bemstein E., Naidoo N. & Sehgal A. (2001). 

Photic signaling by cryptochrome in the Drosophila circadian system. Mol 

Cell Biol, 2 1 : 7287-94.

108. Liscum E., Hodgson D.W. & Campbell T.J. (2003). Blue light signaling 

through the cryptochromes and phototropins. So that's w hat the blues is 

all about. Plant Physiol, 133:1429-36.

109. MacIntyre H.L., Kana T.M. & Geider R.J. (2000). The effect of water 

motion on short-term rates of photosynthesis by marine phytoplankton. 

Trends Plant Sci, 5:12-7.

110. M aheswari U., M ontsant A., Goll J., Krishnasamy S., Rajyashri K.R., 

Patell V.M. & Bowler C. (2005). The Diatom EST Database. Nucleic Acids 

Res, 33: D344-7.

- 188-



111. M alhotra K., Kim S.T., Batschauer A., Dawut L. & Sancar A. (1995). 

Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis 

alba w ith a high degree of sequence homology to DNA photolyase 

contain the two photolyase cofactors bu t lack DNA repair activity. 

Biochemistry, 34: 6892-9.

112. M ann D.G. (1993). Patterns of sexual reproduction in diatoms. 

Hydrobiologia, 269-270:11-20.

113. Mas P. (2005). Circadian clock signaling in Arabidopsis thaliana: from gene 

expression to physiology and development. Int J Dev Biol, 49: 491-500.

114. Mas P., Devlin P.F., Panda S. & Kay S.A. (2000). Functional interaction of 

phytochrome B and cryptochrome 2. Nature, 408: 207-11.

115. M asuda S. & Bauer C.E. (2002). AppA is a blue light photoreceptor that 

antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. 

Cell, 110: 613-23.

116. M atsuoka D. & Tokutomi S. (2005). Blue light-regulated molecular 

switch of Ser/T hr kinase in phototropin. Proc Natl Acad Sci USA, 1 0 2 : 

13337-42.

117. M atsuzaki M., Misumi O., Shin-I T., M aruyama S., Takahara M., 

Miyagishima S.Y., Mori T., Nishida K., Yagisawa F., Yoshida Y., 

Nishim ura Y., Nakao S., Kobayashi T., Momoyama Y., Higashiyam a T., 

M inoda A., Sano M., Nomoto H., Oishi K., Hayashi H., Ohta F., 

Nishizaka S., Haga S., M iura S., Morishita T., Kabeya Y., Terasawa K., 

Suzuki Y., Ishii Y., Asakawa S., Takano H., Ohta N., Kuroiwa H., Tanaka

- 189-



K., Shimizu N., Sugano S., Sato N., Nozaki H., Ogasawara N., Kohara Y., 

& Kuroiwa T. (2004). Genome sequence of the ultrasmall unicellular red 

alga Cyanidioschyzon merolae 10D. Nature, 428: 653-7.

118. Miki T., Park J.A., Nagao K., M urayama N. & Horiuchi T. (1992). Control 

of segregation of chromosomal DNA by sex factor F in  Escherichia coli. 

M utants of DNA gyrase subunit A suppress letD (ccdB) product growth 

inhibition. J Mol Biol. 225: 39-52.

119. Millar A.J. (2004). Input signals to the plant circadian clock. /  Exp Bot, 55: 

277-83.

120. Miyamoto Y. & Sancar A. (1998). Vitamin B2-based blue-light 

photoreceptors in the retinohypothalamic tract as the photoactive 

pigments for setting the circadian clock in mammals. Proc Natl Acad Sci 

USA, 95: 6097-102.

121. Moller S.G., Kim Y.S., Kunkel T. & Chua N.H. (2003). PP7 is a positive 

regulator of blue light signaling in Arabidopsis. Plant Cell, 15:1111-9.

122. M ontsant A., Allen A.E., Coesel S., De Martino A., Falciatore A., Heijde 

M., Jabbari K., Maheswari U., M angogna M., Rayko E., Siaut M., Vardi 

A., A pt K.E., Berges J.B., Chiovitti A., Davis A.K., H adi M.Z., Lane T.W., 

Lippmeier J.C., Martinez D., Schnitzler-Parker M., Pazour G.J., Saito 

M.A., Thamatrakoln K., Rokhsar D.S., Arm brust E.V. & Bowler, C. 

(2007). Identification and comparative genomic analysis of signaling and 

regulatory components in the diatom Thalassiosira pseudonana. J of 

Phycology, 43: 585-604.

- 190-



123. Motchoulski A. & Liscum E. (1999). Ambidopsis NPH3: A NPH1 

photoreceptor-interacting protein essential for phototropism. Science, 

286: 961-4.

124. Nagel G., Ollig D., Fuhrm ann M., Kateriya S., Musti A.M., Bamberg E. & 

Hegemann P. (2002). Channelrhodopsin-1: a light-gated proton channel 

in  green algae. Science, 296: 2395-8.

125. Nakasako M., M atsuoka D., Zikihara K. & Tokutomi S. (2005). 

Q uaternary structure of LOV-domain containing polypeptide of 

Ambidopsis FKF1 protein. FEBS Lett, 579:1067-71.

126. Nam bu J.R., Lewis J.O., W harton K.A. Jr & Crews S.T. (1991). The 

Drosophila single-minded gene encodes a helix-loop-helix protein that 

acts as a master regulator of CNS midline development. Cell, 67:1157-67.

127. Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H. & Tanaka M.

(2004). Circadian and light-induced transcription of clock gene P erl 

depends on histone acetylation and deacetylation. Mol Cell Biol, 24: 6278-

87.

128. Ng W.O., Zentella R., W ang Y., Taylor J.S. & Pakrasi H.B. (2000). PhrA, 

the major photoreactivating factor in the cyanobacterium Synechocystis 

sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific 

DNA photolyase. Arch Microbiol, 173: 412-7.

129. N inu L., Ahmad M., Miarelli C., Cashmore A.R. & Giuliano G. (1999). 

Cryptochrome 1 controls tomato developm ent in response to blue light. 

Plant J, 18: 551-556.

- 191 -



130. N orton T.A., Melkonian M. & Andersen R.A. (1996). Algal biodiversity. 

Phycologia, 35: 308-26.

131. Ormo M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y. & Remington S.J. 

(1996). Crystal structure of the Aequorea victoria green fluorescent protein. 

Science, 273:1392-5.

132. Osterlund M.T., Hardtke C.S., Wei N. & Deng X.W. (2000). Targeted 

destabilization of HY5 during light-regulated developm ent of 

Ambidopsis. Nature, 405: 462-6.

133. Oudot-Le Secq M.P., Loiseaux-de Goer S., Stam W.T. & Olsen J.L. (2006). 

Complete mitochondrial genomes of the three brow n algae 

(Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and 

Desmarestia viridis. Curr Genet, 49: 47-58.

134. Palenik B., Grimwood J., Aerts A., Rouze P., Salamov A., Putnam  N., 

D upont C., Jorgensen R., Derelle E., Rombauts S., Zhou K., Otillar R., 

M erchant S.S., Podell S., Gaasterland T., Napoli C., Gendler K., Manuell 

A., Tai V., Vallon O., Piganeau G., Jancek S., Heijde M., Jabbari K., 

Bowler C., Lohr M., Robbens S., W erner G., Dubchak I., Pazour G.J., Ren 

Q., Paulsen I., Delwiche C., Schmutz J., Rokhsar D., Van de Peer Y., 

Moreau H. & Grigoriev I.V. (2007). The tiny eukaryote Ostreococcus 

provides genomic insights into the paradox of plankton speciation. Proc 

Natl Acad Sci USA, 104: 7705-10.

135. Park H.W., Kim S.T., Sancar A. & Deisenhofer J. (1995). Crystal structure 

of DNA photolyase from Escherichia coli. Science, 268:1866-72.

- 192-



136. Partch C.L., Clarkson M.W., Ozgur S., Lee A.L. & Sancar A. (2005). Role 

of structural plasticity in signal transduction by the cryptochrome blue- 

light photoreceptor. Biochemistry, 44: 3795-805.

137. Payne G., Heelis P.F., Rohrs B.R. & Sancar A. (1987). The active form of 

Escherichia coli DNA photolyase contains a fully reduced flavin and not a 

flavin radical, both in vivo and in vitro. Biochemistry, 26: 7121-7.

138. Pickett-Heaps J., Schmid A.M. & Edgar L.A. (1990). The cell biology of 

diatom  valve formation. In: Progress in Phycological Research, Vol . 7. 

Round F.E. & Chapm an D.J. (Eds). Biopress Ltd., Bristol, UK, pp. 1-168.

139. Pondaven P., Gallinari M., Chollet S., Bucciarelli E., Sarthou G., Schultes 

S. & Jean F. (2007). Grazing-induced changes in cell wall silicification in a 

marine diatom. Protist, 158: 21-8.

140. Poulsen N.C., Spector I., Spurck T.P., Schultz T.F. & Wetherbee R. (1999). 

Diatom gliding is the result of an actin-myosin motility system. Cell Motil 

Cytoskeleton, 44: 23-33.

141. Provencio I., Jiang G., De Grip W.J., Hayes W.P. & Rollag M.D. (1998). 

Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad 

Sci USA, 95: 340-5.

142. Provencio I., Rodriguez I.R., Jiang G., Hayes W.P., Moreira E.F. & Rollag 

M.D. (2000). A novel hum an opsin in the inner retina. J Neurosci, 20: 600- 

5.

143. Quail P.H. (2002). Phytochrome photosensory signalling networks. Nat 

Rev Mol Cell Biol, 3: 85-93.

- 193 -



144. Ragni M. & Ribera d'Alcala M. (2004). Light as an information carrier 

underwater. J Plankton Res, 26: 433-443.

145. Reddy P., Jacquier A.C., Abovich N., Petersen G. & Rosbash M. (1986). 

The period clock locus of D. melanogaster codes for a proteoglycan. Cell, 

46: 53-61.

146. Reinfelder J.R., Kraepiel A.M. & Morel F.M. (2000). Unicellular C4 

photosynthesis in a m arine diatom. Nature, 407: 996-9.

147. Rensing L. & Ruoff P. (2002). Temperature effect on entrainment, phase 

shifting, and amplitude of circadian clocks and its molecular bases. 

Chronobiol Int, 19: 807-64.

148. Reppert S.M. & Weaver D.R. (2001). Molecular analysis of mammalian 

circadian rhythms. Annu Rev Physiol, 63: 647-76.

149. Reppert S.M. & Weaver D.R. (2002). Coordination of circadian timing in 

mammals. Nature, 418: 935-41.

150. Ronneberg T. & Foster R.G. (1997). Twilight times: light and the circadian 

system. Photochem Photobiol, 66: 549-61.

151. Rosato E., Codd V., Mazzotta G., Piccin A., Zordan M., Costa R. & 

Kyriacou C.P. (2001). Light-dependent interaction between Drosophila 

CRY and the clock protein PER m ediated by the carboxy term inus of 

CRY. Curr Biol, 11: 909-17.

152. Saitou N. & Nei M. (1987). The neighbor-joining method: a new  m ethod 

for reconstructing phylogenetic trees. Mol Biol Evol, 4: 406-25.

- 194-



153. Sakamoto K. & Nagatani A. (1996). Nuclear localization activity of 

phytochrome B. Plant J, 10: 859-68.

154. Salomon M., Knieb E., von Zeppelin T. & Rudiger W. (2003). M apping of 

low- and high-fluence autophosphorylation sites in photo tropin 1. 

Biochemistry, 42: 4217-4225.

155. Salomon M., Lempert U. & Rudiger W. (2004). Dimerization of the plant

photoreceptor phototropin is probably m ediated by the LOV1 domain.

FEBS Lett, 572: 8-10.

156. Sambrook J., Fritsch E.F. & Maniatis T. (1989). Molecular cloning: a

Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor 

Laboratory Press.

157. Sanada K., Harada Y., Sakai M., Todo T. & Fukada Y. (2004). Serine 

phosphorylation of mCRYl and mCRY2 by mitogen-activated protein 

kinase. Genes Cells, 9: 697-708.

158. Sancar A. (2003). Structure and function of DNA photolyase and 

cryptochrome blue-light photoreceptors. Chem Rev, 103: 2203-37.

159. Sancar A. (2004). Photolyase and cryptochrome blue-light 

photoreceptors. Adv Protein Chem, 69: 73-100.

160. Sancar A. & Sancar G.B. (1984). Escherichia coli DNA photolyase is a 

flavoprotein. J Mol Biol, 172: 223-7.

161. Sancar G.B. & Sancar A. (2006). Purification and characterization of DNA 

photolyases. Methods Enzymol, 408:121-56.

- 195-



162. Sang Y., Li Q.H., Rubio V., Zhang Y.C., Mao J., Deng X.W. & Yang H.Q.

(2005). N-terminal domain-mediated homodimerization is required for 

photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell, 

17:1569-84.

163. Scala S., Carets N., Falciatore A., Chiusano M.L. & Bowler C. (2002). 

Genome Properties of the Diatom Phaeodactylum tricomutum. Plant 

Physiol, 129: 993-1002.

164. Schwerdtfeger C. & Linden H. (2003). VIVID is a flavoprotein and serves 

as a fungal blue light photoreceptor for photoadaptation. EMBO J, 22: 

4846-55.

165. Selby C.P. & Sancar A. (1999). A third member of the photolyase/blue-

light photoreceptor family in Drosophila: a putative circadian

photoreceptor. Photochem Photobiol, 69:105-7.

166. Selby C.P. & Sancar A. (2006). A cryptochrom e/photolyase class of 

enzymes w ith single-stranded DNA-specific photolyase activity. Proc 

Natl Acad Sci USA, 103:17696-700.

167. Selby C.P., Thompson C., Schmitz T.M., Van Gelder R.N. & Sancar A. 

(2000). Functional redundancy of cryptochromes and classical 

photoreceptors for nonvisual ocular photoreception in mice. Proc Natl 

Acad Sci USA, 97:14697-702.

168. Senger H. (1980). The Blue Light Syndrome. Springer-Verlag, Berlin.

- 196-



169. Shalitin D., Yang H., Mockler T.C., M aymon M., Guo H., Whitelam G.C. 

& Lin C. (2002). Regulation of Ambidopsis cryptochrome 2 by blue-light- 

dependent phosphorylation. Nature, 417: 763-7.

170. Siaut M., Heijde M., M angonga M., M ontsant A., Coesel S., Allen A., 

Falciatore A. & Bowler C. (2007). Molecular toolbox for studying diatom 

biology in Phaeodactylum tricornutum. Gene, in press.

171. Sineshchekov O.A. & Govorunova E.G. (2001). Rhodopsin receptors of 

phototaxis in green flagellate algae. Biochemistry (Mosc), 66:1300-10.

172. Sineshchekov O.A., Jung K.H. & Spudich J.L. (2002). Two rhodopsins 

mediate phototaxis to low- and high-intensity light in Chlamydomonas 

reinhardtii. Proc Natl Acad Sci USA, 99: 8689-94.

173. Smetacek V. (1999). Diatoms and the ocean carbon cycle. Protist, 150: 25- 

32.

174. Smetacek V. (2001). A w atery arms race. Nature, 411: 745.

175. Song S.H., Dick B., Penzkofer A., Pokorny R., Batschauer A. & Essen L.O.

(2006). Absorption and fluorescence spectroscopic characterization of 

cryptochrome 3 from Ambidopsis thaliana. J Photochem Photobiol B, 85:1-16.

176. Spalding E.P. (2000). Ion channels and the transduction of light signals. 

Plant Cell Environ, 23: 665-74.

177. Sprenger W.W., Hoff W.D., Armitage J.P. & Hellingwerf K.J. (1993). The 

eubacterium Ectothiorhodospira halophila is negatively phototactic, w ith a

- 197-



wavelength dependence that fits the absorption spectrum  of the 

photoactive yellow protein. J Bacteriol, 175: 3096-104.

178. Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay 

S.A., Rosbash M. & Hall J.C. (1998). The cryb m utation identifies 

cryptochrome as a circadian photoreceptor in Drosophila. Cell, 95: 681-92.

179. Steinbrenner J. & Linden H. (2003). Light induction of carotenoid 

biosynthesis genes in the green alga Haematococcus pluvialis: regulation 

by photosynthetic redox control. Plant Mol Biol, 52: 343-356.

180. Suter B., Livingstone-Zatchej M. & Thoma F. (1997). Chromatin structure 

m odulates DNA repair by photolyase in vivo. EMBO J, 16: 2150-60.

181. Tamada T., Kitadokoro K., Higuchi Y., Inaka K., Yasui A., de Ruiter P.E., 

Eker A.P. & Miki K. (1997). Crystal structure of DNA photolyase from 

Anacystis nidulans. Nat Struct Biol, 4: 887-91.

182. Taylor J.-S. & Cohrs M.P. (1987). DNA, light and Dewar pyrimidinones: 

the structure and biological significance of TpT3. J Am Chem Soc, 109: 

2834-2835.

183. Thompson J.D., Higgins D.G. & Gibson T.J. (1994). CLUSTAL W: 

improving the sensitivity of progressive multiple sequence alignm ent 

through sequence weighting, position-specific gap penalties and weight 

matrix choice. Nucleic Acids Res, 22: 4673-80.

184. Todo T., Takemori H., Ryo H., Ihara M., M atsunaga T., Nikaido O., Sato 

K. & Nom ura T. (1993). A new  photoreactivating enzyme that

- 198-



specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature, 

361: 371-4.

185. Todo T., Ryo H., Yamamoto K., Toh H., Inui T., Ayaki H., Nom ura T. & 

Ikenaga M. (1996). Similarity among the Drosophila (6-4)photolyase, a 

hum an photolyase homolog, and the DNA photolyase-blue-light 

photoreceptor family. Science, 272:109-12.

186. Ueda T., Kato A., Kuramitsu S., Terasawa H. & Shimada I. (2005). 

Identification and characterization of a second chromophore of DNA 

photolyase from Thermus thermophilus HB27. J Biol Chem, 280: 36237- 

36243.

187. Vaistij F.E., Boudreau E., Lemaire S.D., Goldschmidt-Clermont M. & 

Rochaix J.D. (2000). Characterization of M bbl, a nucleus-encoded 

tetratricopeptide-like repeat protein required for expression of the 

chloroplast psbB/psbT/psbH gene cluster in  Chlamydomonas reinhardtii. Proc 

Natl Acad Sci USA, 97:14813-8.

188. Valverde F., M ouradov A., Soppe W., Ravenscroft D., Samach A. & 

Coupland G. (2004). Photoreceptor Regulation of CONSTANS Protein in 

Photoperiodic Flowering. Science, 303:1003-1006.

189. Van Den Hoeck C., M ann D.G. & Johns H.M. (1997). Algae. An 

Introduction to Phycology. Cambridge, UK: Cambridge Univ. Press.

190. van der Horst G.T., Muijtjens M., Kobayashi K., Takano R., Kanno S., 

Takao M., de Wit J., Verkerk A., Eker A.P., van Leenen D., Buijs R., 

Bootsma D., Hoeijmakers J.H. & Yasui A. (1999). M amm alian C ry l and

- 199-



Cry2 are essential for maintenance of circadian rhythms. Nature, 398: 627- 

30.

191. van der Horst M.A. & Hellingwerf K.J. (2004). Photoreceptor proteins, 

"star actors of m odern times": a review of the functional dynamics in the 

structure of representative members of six different photoreceptor 

families. Acc Chem Res, 37:13-20.

192. Van Gelder R.N., Wee R., Lee J.A. & Tu D.C. (2003). Reduced pupillary 

light responses in mice lacking cryptochromes. Science, 299: 222.

193. Vande Berg B.J. & Sancar G.B. (1998). Evidence for dinucleotide flipping 

by DNA photolyase. J Biol Chem, 273: 20276-84.

194. Vaulot D., Olson R.J. & Chisholm S.W. (1986). Light and dark control of 

the cell cycle in two marine phytoplankton species. Exp Cell Res, 167: 38-

52.

195. Venter J.C., Remington K., Heidelberg J.F., H alpern A.L., Rusch D., Eisen 

J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E., Levy S., 

Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., 

Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.H. & Smith H.O. 

(2004). Environmental genome shotgun sequencing of the Sargasso Sea. 

Science, 304: 66-74.

196. Villareal T.A. (1989). Division cycles in the nitrogen-fixing Rhizozlenia 

(Bacillariophyceae)-Rzc/ze/za (Nostocaceae) symbiosis. Br Phycol J, 24: 357-

65.

-200-



197. Villareal T.A. & Carpenter E.J. (2003). Buoyancy regulation and the 

potential for vertical migration in  the oceanic cyanobacterium 

trichodesmium. Microb Ecol, 45:1-10.

198. Vitaterna M.H., Selby C.P., Todo T., Niwa H., Thompson C., Fruechte 

E.M., Hitomi K., Thresher R.J., Ishikawa T., Miyazaki J., Takahashi J.S. & 

Sancar A. (1999). Differential regulation of mammalian period genes and 

circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA, 

96:12114-9.

199. W ada M., Kagawa T. & Sato Y. (2003). Chloroplast movement. Annu Rev 

Plant Biol, 54: 455-68.

200. W alhout A.J., Temple G.F., Brasch M.A., Hartley J.L., Lorson M.A., van 

den Heuvel S. & Vidal M. (2000). GATEWAY recombinational cloning: 

application to the cloning of large num bers of open reading frames or 

ORFeomes. Methods Enzymol, 328: 575-92.

201. Walsh C.T. (1986). Naturally occurring 5-deazaflavin coenzymes: 

biological redox roles. Acc Chem Res, 19: 216-221.

202. Weber G. (1959). Fluorescence of riboflavin and flavin adenine 

dinucleotide. Biochem J, 47:114-121

203. W orthington E.N., Kavakli I.H., Berrocal-Tito G., Bondo B.E. & Sancar A. 

(2003). Purification and characterization of three members of the 

photolyase/cryptochrom e family glue-light photoreceptors from Vibrio 

cholerae. J Biol Chem, 278:39143-54.

-201 -



204. Yang H.Q., Wu Y.J., Tang R.H., Liu D., Liu Y. & Cashmore A.R. (2000). 

The C termini of Ambidopsis cryptochromes mediate a constitutive light 

response. Cell, 103: 815-27.

205. Yang H.Q., Tang R.H. & Cashmore A.R. (2001). The signaling mechanism 

of Arabidopsis CRY1 involves direct interaction w ith COP1. Plant Cell, 

13: 2573-87.

206. Yang J., Lin R., Sullivan J., Hoecker U., Liu B., Xu L., Deng X.W. & W ang 

H. (2005). Light regulates COPl-m ediated degradation of HFR1, a 

transcription factor essential for light signaling in Arabidopsis. Plant Cell, 

17: 804-21.

207. Yanovsky M.J. & Kay S.A. (2003). Living by the calendar: how  plants 

know w hen to flower. Nat Rev Mol Cell Biol, 4: 265-75.

208. Yasui A., Eker A.P., Yasuhira S., Yajima H., Kobayashi T., Takao M. & 

Oikawa A. (1994). A new class of DNA photolyases present in  various 

organisms including aplacental mammals. EMBO J, 13: 6143-51.

209. Yu X., Shalitin D., Liu X., Maymon M., Klejnot J., Yang H., Lopez J., Zhao 

X., Bendehakkalu K.T. & Lin C. (2007). Derepression of the NC80 m otif is 

critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci 

USA, 104: 7289-94.

210. Zhao S. & Sancar A. (1997). H um an blue-light photoreceptor hCRY2 

specifically interacts w ith protein serine/threonine phosphatase 5 and 

modulates its activity. Photochem Photobiol, 66: 727-31.

-202-



211. Zhao X., Liu J., H su D.S., Zhao S., Taylor J.S. & Sancar A. (1997). Reaction 

mechanism of (6-4) photolyase. } Biol Chem, 272: 32580-90.

212. Zhou Y., Zhou C., Ye L., Dong J., Xu H., Cai L., Zhang L. & Wei L. (2003). 

Database and analyses of known alternatively spliced genes in  plants. 

Genomics, 82: 584-95.

213. Zhu H., Conte F. & Green C.B. (2003). Nuclear localization and 

transcriptional repression are confined to separable domains in the 

circadian protein CRYPTOCHROME. Curr Biol, 13:1653-8.

214. Zurzolo C. & Bowler C. (2001). Exploring bioinorganic pattern  formation 

in diatoms. A story of polarized trafficking. Plant Physiol, 127:1339-45.

-203-


