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Abstract

Gene therapy is an approach to treating diseases in which an exogenous gene is introduced 

to correct for a defective or missing protein or to affect a biochemical pathway. Few 

successes have been reported in humans (0), as several technical issues limit its broader 

application.

One question is how to deliver DNA to the appropriate cells. Nature provides one solution 

in the form of viruses, which are in essence protected gene delivery packages with native 

ability to introduce their genomes into cells.

Once the desired gene is delivered to target cells, another issue that arises is the fate of the 

DNA.

Some strategies rely on long-term expression from extra-chromosomal DNA, but there are 

cases, such as dividing cells, where it would be highly beneficial to permanently insert the 

gene into chromosomes.

Certain viral genomes can be integrated into host DNA by non-homologous recombination 

or, in the case of retroviruses, by virally encoded integrases. While integration seems to be 

not dependent on target sequence, in vivo, retroviruses, such as HIV and murine leukemia 

virus, integrate preferentially into active genes (1, 2), introducing the possibility of 

insertional mutagenesis.

The theoretical danger inherent in retrovirus-based gene therapy has been concretely 

demonstrated in a recent clinical trial in which the modified retrovirus integrated into the 

LM02 locus, causing leukemia in three of the patients (4).

A powerful system to circumvent this critical issue could be to develop a system to site- 

specific integrate the exogenous gene into a safety zone into the genome.

To date, only one animal virus, the adenoassociated virus (AAV), has been identified that 

integrates its genome into a particular location into human chromosomal DNA. When cells 

are infected in the absence of helper virus, AAV establishes a latent infection in which the



AAV genome integrates into a locus known as AAVS1 on the q arm of chromosome 19 

(4). Recombinant AAV (rAAV) vectors too have a series of limitations as gene therapy 

vectors: they can accommodate only small genes and moreover eliminating most of wild- 

type AAV (wt AAV) sequences they have lost almost all the site-specific integration 

capability.

On the basis of AAV site-specific integration machinery a series of effort to re-introduce 

wt AAV’s integration efficiency have been done. Different viruses have been engineered 

using the AAV’s integration machinery to transform them to target and integrate site- 

specifically large genes into the chr 19.

Development of a maximized integrating, large capacity DNA viral vector is still an unmet 

goal of gene transfer technology.

The initial aim of this project was to characterize the combination of the attributes of both 

the AAV and adenovirus (Ad) gene therapy vectors to develop an Ad/AAV hybrid virus 

system able to target site-specifically a large fragment of DNA into the host cell genome.

In executing our experimental strategy, we found that, in addition to the known 

incompatibility of Rep expression and Ad growth, an equally large obstacle was presented 

by the inefficiency of the integration event when using traditional rAAV integrating 

elements. The finding that traditional rAAV plasmid vectors lack integration potency 

compared to wt AAV plasmid constructs led recently to the discovery of an AAV 

integration enhancer sequence element which functions in cis to an AAV inverted terminal 

repeat-flanked target gene. This study has addressed both of these problems.

Moreover the project aimed also the capability of such vectors to target a large integrating 

cassette and the differences in the system integration efficiency compairing the dimension 

of the integrating cassettes.

We demonstrated that an Ad can be generated that expresses Rep proteins and that Rep- 

mediated AAV persistence can occur in the presence of Ad vectors.
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We exploited the size limit capability introducing a large integrating cassette (12 kb) into 

the Ad/AAV vector and we obtained a good level of integration into the human genome. 

Specifically we succeeded in integrating it without any recombination event and in a site- 

specific fashion at good level.

The model we extensively tested in human cell lines was also used successfully into human 

primary cells where we obtained site-specific integration into human chromosome 19 as 

expected.

Another problem analysed was the flexibility of Ad vector system.

Adenoviral vectors maintain the cellular specificity of adenoviruses from which they 

derive. A good gene therapy vector should have a broad tropism to ensure a good 

transduction efficiency, and moreover should be able to transduce cells of interest, such as 

CD34+ cells and other primary cells.

We tried to expand Ad tropism engineering the commonly used Ad 5 vector (not able to 

transduce very well CD34+ and hematopoietic cells), transforming it to an Ad 5/35 

modified vector. This approach permitted us to have better CD34+ cell transduction and a 

very good efficiency with hematopoietic cell lines.
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Chapter 1

Introduction



1.1 Gene therapy: an overview.

Gene transfer in somatic cells has without any doubt a big potential to treat a number of 

genetic and acquired diseases. Among the several delivery systems developed for gene 

therapy purposes, viral vectors derived from retroviruses, moreover murine retroviruses, 

are the most widely used.

Retroviruses are distinguished from other viruses by two characteristic steps in their life 

cycle: reverse transcription, resulting in a double strand DNA copy of the viral RNA 

genome, and integration, leading to the covalent attachment of the viral DNA to host cell 

DNA.

Integration process is an unequalled, and often indispensable tool to obtain high efficiency1 

and stable gene transfer.

Up to now retroviral and lentiviral vectors are the only available tools to integrate foreign 

genes into human cells at reasonable efficiency. However their use involves some 

important problems and limitations:

1. Retroviral vectors (both gammaretroviral and lentiviral) can generally integrate only 

transgenes with a size limit of 5-7 kb.

2. Independent regulation of multiple transcription units is difficult in a retroviral vector 

context.

3. Integration of retroviral vectors into the target cell genome occurs randomly, 

preferentially into active genes. In the last years to this phenomenon has been 

associated an important risk of insertional mutagenesis and oncogenesis due to the 

deregulation of gene/s near the genomic region in which the provirus integrates (0, 1 , 

2, 3).

Alternative to retroviruses are present but at the moment not well studied and developed.



1.2 Adeno-Associated Viruses.

Adeno-Associated viruses (AAV), a single-stranded DNA virus of the family 

Parvoviridae, genus Dependovirus, is among the smallest known viruses. The serotype 2 

virus (AAV-2) has a genome of 4,680 bases contained in an icosahedral capsid of ~24 nm 

(20) (Fig. 1.1).

10 nm

Fig. 1.1 Schematic representation of an AAV particle.

The defining characteristic of this class of viruses is their dependence on co-infection with 

a helper virus (or certain perturbed cellular states) to provide the functions necessary for 

productive infection (21).

Although virus infection appears to be widespread, with over 80% of humans testing 

seropositive, AAV causes no known pathology (21). The infectivity, moderate 

immunogenicity, and apparent lack of pathogenicity have made AAV a promising 

candidate as a vector for human gene therapy (22).

Recently, random integration and subsequent activation of cellular genes have created 

safety concerns about retrovirus vectors (23), and recombinant AAV vectors have also 

been shown to disrupt cellular genes (24, 25). Randomly integrating recombinant AAV 

vectors are severely compromised in integration efficiency (26) and site-specific
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integration, as mediated by wt AAV, may have both safety and efficiency advantages in 

certain gene therapy applications.

AAV is unique among animal viruses in that its latent state involves insertion into the host 

genome at a preferred site (4, 5). This site, referred to as AAVS1, is found at chromosome 

19ql3.4qter and has been mapped to the first exon of myosin binding subunit 85 of protein 

phosphatase 1 (28) (Fig. 1.2).

D i s t a n c e  f r o m  

1 9 p t » !  (M b )

Centrom ere and 
Pericentr’ic repeats

1
p « . l

m

3
<11.3

Fig. 1.2 Schematic representation of human chromosome 19. AAVS1 locus is located in chromosome 

19ql3.4qter.

Integration has been associated with gross disruptions in the AAVS1 locus, including both 

duplications and deletions (29). Disruption of a nearby gene has also been reported in only 

one case (30).

1.2.1 Viral DNA.

The viral DNA contains two open reading frames (ORFs), rep and cap, encoding the 

regulatory (Rep78, Rep68, Rep52, and Rep40) and structural (VP1, VP2, and VP3) 

proteins, respectively (Fig. 1.3).

19



The genome is flanked by two inverted terminal repeats (ITRs) (31). The ITRs are 145 

nucleotides including the D element and are considered to be the only cis elements 

required for replication and site-specific integration of the AAV genome.

In addition to the ITR elements, the rep gene is necessary in trans to target the integration 

event to the AAVS1 site (19, 16, 14). The rep ORF encodes four non-structural proteins: 

Rep40, Rep52, Rep68, and Rep78, which are involved in the replication of the AAV 

genome (20). Rep68 and Rep78 are gene products of alternatively spliced mRNA 

transcribed from the AAV p5 promoter. A structural difference between Rep78 and Rep68 

is that Rep78 possesses a zinc finger-like motif at its carboxyl terminus.

|>5 |)19 |)40
n ____ c :_______c _

Rep proteins

..........  t i---1
 ► Re|>78

 ► Rep68

■■■------------- ► Rep 52

1=3------------- ► Re|>40

Cap proteins
,[-  ------------ -I „ VPI

 -  — 1 * VP 2

   1 *■ VP 3

Fig. 1.3 Schematic representation of AAV genome structure and transcripts. Rep68 is the spliced form 

of Rep78 generated from the p5 promoter. Rep40 is the spliced form of Rep52 generated from the p i9 

promoter. The structural proteins (VPI, 2 and 3) are under the control of p40 promoter.

Both Rep proteins share essentially the same functions: strand-specific DNA binding (6), 

site-specific nicking and ATP-dependent helicase activity (7). Either Rep protein alone is 

sufficient for replication of the AAV genome (32) and for AAVS1-specific integration 

(14). The multifunctional Rep proteins inhibit cellular transformation by heterologous 

genes (33) and suppress heterologous promoters, including the c-fos, c-myc, H-ras and 

LTR of human immunodeficiency virus type 1 (HIV-1) (34, 35, 36). The Rep proteins also
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modulate cell cycle-regulating proteins (37). These results indicate that over-expression of 

Rep proteins has negative effects on cells and is, on occasion, lethal to cells.

1.2.2 AAV-2 DNA replication.

The current model for AAV-2 DNA replication predicts that viral DNA replicates by a 

self-priming displacement mechanism that is initiated from the ITR and requires cellular 

polymerases, helper virus-derived factors and AAV-2 Rep proteins (38, 39). In particular, 

two AAV-2 regulatory proteins, Rep78 and Rep68, are essential for the replication process. 

Transcription from the p i9 promoter generates Rep52 and Rep40 (Fig. 1.3); Rep52 is 

known to have helicase and ATPase activities but not DNA binding or endonuclease 

activity (16). Rep68 and Rep78 down-regulate the p5 and p l9  promoters (40), and this 

stringent control of Rep expression helps to minimize cell death caused by the cytotoxicity 

of the Rep proteins (41).

Although the precise molecular mechanisms of AAV site-specific integration are not well 

understood, it appears that Rep68 or Rep78 are critical. They were shown to bind the ITRs 

at a specific site, called the Rep binding site (RBS), and to cleave it at the terminal 

resolution site (trs) between two thymidine residues (34, 42, 43). This process is essential 

for the completion of the synthesis of a double-stranded monomer form, which is then used 

as the template for the reinitiation of DNA synthesis (38). Through poorly understood 

interactions, the Rep protein/AAV-DNA complex localizes to AAVS1 site, and a non- 

homologous deletion-insertion recombination event occurs, resulting in integration of the 

AAV genome (44, 45). The endonuclease activity of the two larger Rep proteins allows 

them to nick at the trs, which is positioned 8 or 11 bp away from the Rep Binding 

Elements (RBEs) in AAV and AAVS1 respectively. There then follows an interaction 

between Rep molecules that are bound to the AAV genome and those that are bound to the 

AAVS1 site, a non homologous recombination event occurs, resulting in integration of the 

AAV genome (45). It has been shown previously that head-to-tail concatamers of the wt
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AAV genome are able to site-specifically integrate in this manner (29). Preferred AAV 

recombination junction sites have been localized to both left and right AAV ITR elements 

as well as the p5-rep promoter region of the AAV genome (26, 47). Different studies have 

demonstrated that efficient nicking at the trs required, besides the Rep-binding site, the 

contact of Rep with a five-base sequence called RBE', present at the tip of one of the ITR 

anns (48, 49, 50). In addition, the sequence surrounding the trs was shown to be important 

for the formation of a stem-loop structure that exposed the trs on the single-stranded loop 

(51). Recent crystallographic data have confirmed that the N-terminal domain of Rep 

interacted with RBE' and suggested that this interaction was implicated in the orientation of 

the Rep molecules bound at the ITR as well as in the stimulation of the extrusion of the trs 

by the Rep helicase activity. Two of these elements, the RBS and the trs, are also present 

within the chromosome 19 AAVS1 locus, where wild-type AAV-2 was shown to site- 

specifically integrate (45, 5).

1.2.3 The role of Rep.

AAV vectors lacking the rep gene fail to integrate into AAVS1, showing an apparent 

random integration into the host chromosomal DNA (51). A non-viral plasmid-based 

system capable of integrating a transgene specifically into AAVS1 has been described; this 

was achieved by transferring the transgene flanked by the ITRs with transient expression of 

Rep78 or Rep68 (19, 16, 14). Thus, this system is potentially safer than integrating 

retrovirus and AAV vectors. A strategy utilizing two plasmids, one harbouring the 

transgene cassette between the ITR sequences and the other for Rep expression, allows 

only the transgene plasmid to integrate into the AAVS1 locus (14). This method 

successfully introduced the transgene into AAVS1 in haematopoietic K562 cells (53).

The frequency of AAVS1-specific integration by the plasmid-based methods has differed 

among studies.
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Shelling & Smith (18) reported that 9 of 12 cell clones (75%) obtained by transfecting 

HeLa or 293 cells with an AAV vector plasmid on which the Neo gene was placed under 

the control of the p40 promoter, the original promoter for Cap proteins, had rearranged 

AAVS1 and mentioned that approximately 50% of the rearranged bands also hybridized to 

an AAV probe.

Another strategy using one plasmid on which both a Rep cassette and an ITR-flanked 

transgene cassette were placed has targeted the transgene to AAVS1 in 6 of 21 (29%) 293 

cell clones (19). Similar methods applied to other cell lines, HeLa and Huh-7 cells, have 

been able to insert the transgene to AAVS1 in up to 20% of clones (16).

All the studies mentioned used a one plasmid system and the p5 promoter for Rep 

expression.

These results indicated that a high-level expression of the Rep proteins increased the 

frequency of AAVS1 rearrangement and rather decreased the frequency of AAVS1- 

specific integration of the transgene.

1.2.4 AAV nuclear transport.

Helper virus has been shown to potentially influence the biology of AAV by facilitating 

virus transport to the nucleus (54) and by enhancing conversion of the single-stranded 

AAV genome into a transcriptionally active duplex DNA substrate.

In the absence of helper virus, AAV is dependent on interaction with the cell for 

internalization and genome transport to the nucleus.

What are the steps that lead to AAV integration into AAVS1?

Studies in dividing cells demonstrate that AAV uptake is efficient, and virions localize to 

the perinuclear region within two hours post-internalization (54).

The efficiency of capsid uncoating and transport of viral DNA to the nucleus is a potential 

rate-limiting step that may be influenced by viral MOL The model presented in Fig. 1.4 

indicates a proposed sequence of events that occur during the process of AAV integration.
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Fig. 1.4 Proposed model for Rep-mediated AAVS1 disruption and AAV site-specific integration. (A)

Representation of the AAV genome with the inverted terminal repeats hairpinned. (A.l), minimum p5 

integration element including Rep binding sites (RBS), the transcription factor YY1, and the TATA box. (B) 

Representation of AAVS1, including the RBS and the nicking site for Rep endonuclease activity (trs). Panels 

(B .l) to (B.3) diagram Rep binding and replication initiated with host polymerase. Note that Rep is 

covalently attached to the 5' end of the nick site. Rep may reinitiate this process several times, perhaps 

accounting for amplification of AAVS1 (C.2). For integration to occur, a Rep-mediated recombination event 

between AAVS1 (B.3) and p5 (A.2) results in AAV sequence in the disrupted chromosome 19 locus (C.l). J 

Virol. 2004 August; 78(15): 7874-7882.

Following localization to the nucleus, cellular replication and/or DNA repair mechanisms 

are essential for second-strand synthesis of the AAV genome. Alternatively, in the absence 

of efficient second-strand synthesis, a second pathway for production of transcriptionally 

active duplex AAV genome would be through plus- and minus-strand hybridization. 

Subsequent to the formation of duplex genome production, the p5 promoter is activated to 

transcribe Rep (Fig. 1.4). Transcription from the p5 promoter and translation of Rep 

mRNA yield the multifunctional Rep proteins (the focus will be on Rep68 and 78 because 

they are able to mediate integration in the absence of the smaller Rep proteins) (20).
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Production of the duplex genome is a necessary prerequisite for p5 transcription of the rep 

gene and is a likely substrate target DNA for integration, as duplex plasmid DNA 

integrates with high efficiency. It is not possible to distinguish between duplex formation 

or Rep expression levels as a specific rate-limiting entity.

A limitation may simply be template copy number at low MOI. In a latent infection, Rep 

expression levels are presumably very low. Following Rep protein expression, there are 

three biologically active target DNAs that Rep can bind relevant to integration:

- Rep binds to the AAVS1 site on chromosome 19;

- Rep binds to the p5 Rep binding site of AAV;

- Rep binds to the inverted terminal repeat Rep binding site.

Data obtained through transfection of plasmid DNA corroborate previous studies which 

show that the inverted terminal repeat elements are not required for efficient integration; 

therefore, the role of the inverted terminal repeats is essential for maintaining the fidelity 

of the integrating genome and for rescue from latency but not as playing a role in 

mediating a Rep-dependent integration event.

Integration efficiency is defined by Rep interaction with the AAVS1 site (Fig. 1.4) and by 

Rep interaction with the p5 promoter (Fig. 1.4). Rep functions as a hexameric complex, but 

this has not been confirmed to be the complex that is acting on the AAVS1 site or on p5. 

Rep expression in the absence of helper virus or in the absence of integration substrate 

mediates a rearrangement of the AAVS1 site. The AAVS1 site rearrangements are 

consistent with a local amplification event (Fig. 1.4). When an integration substrate (Fig. 

1.4) is present in sufficient quantities, localization of the p5 promoter (p5IEE) integration 

substrate to the AAVS1 integration site takes place, and integration occurs through what is 

predicted to be a strand switch mechanism or perhaps ligation between cellular and viral 

DNA mediated by Rep (55).

One important level of autonomous regulation of AAV integration is through regulation of 

Rep expression. Rep binding to the p5IEE has been shown to bring about a stringent block
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to Rep transcription (40). The repression of rep transcription therefore implies that there is 

a narrow window of opportunity for Rep-mediated site-specific integration to occur. 

Consistent with this hypothesis, Huser et al. demonstrated that maximal integration of 

AAV into chromosome 19 occurs within the first 4 days post-infection. Studies by Giraud 

et al. demonstrated that targeting to plasmid-based AAVS1 targets occurred by 24 hours 

post-infection (56).

Because increasing the dose of virus does not yield an increase in the occurrence of 

integrants, it is possible to argue that there is an inherent limit to the number of discernible 

recombination events that can occur when a cell is infected, regardless of the number of 

available integration substrate targets. In this model, activation of AAVS1 establishes the 

kinetics of integration. Presentation of an integration substrate during the time of AAVS1 

rearrangement creates the opportunity for a copy choice mechanism to integrate the AAV 

substrate DNA.

1.3 ITR-Rep mediated integration.

In current AAV-based transgene systems, rep is deleted since the small viral capsid does 

not have space for an exogenous gene; retaining rep would result in a genome too large to 

be packaged (17). Thus, rep~ AAV-based vectors, which retain other inherent advantages 

of AAV, either do not integrate or integrate inefficiently in a nontargeted manner, a 

process that has been reported to occur preferentially into active genes (25). Promising 

alternatives are hybrid vectors that combine AAV ITRs and rep with a second virus with 

larger transgene capacity, such as adenovirus (57), herpes simplex virus (58), or 

baculovirus (59).
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1.3.1 Rep acts on AAV ITRs.

The varied activities of Rep are needed for reactions on unique DNA structures known as 

inverted terminal repeats (ITRs) found at the ends of the single-stranded viral genome that 

serve as the viral origins of replication (Fig. 1.5).
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Fig. 1.5 Sequence and Folded Structure of the AAV Inverted Terminal Repeat (A) One arm o f the

AAV-5 ITR contains the terminal resolution site (trs), at which Rep introduces a strand- and sequence- 

specific nick, and the Rep binding site (RBS), which contains a series of tetranucleotide repeats (shown in 

boxes; Chiorini et al., 1999). The other two arms of the three-way DNA junction consist o f short hairpins. 

The helicase activity of Rep generates an alternate structure around the trs in which the cleavage site is single 

stranded. The four shaded boxes correspond to stem loops tested for Rep binding. (B) Sequence of the AAV- 

2 ITR. The box indicates the 22 bp binding element identified by Ryan et al. (1996); dotted lines demark 

tetranucleotide repeats. The circled tip of one of the hairpin arms is designated RBE' (Brister and Muzyczka, 

2000). Molecular Cell Volume 13, Issue 3 , 13  February 2004, Pages 403-414

Each ITR contains interrupted palindromic sequences that allow the formation of a three- 

way DNA junction with two short (-.9 bp) hairpin arms. Within the ITRs are two 

sequences required for replication: a Rep binding site (RBS) consisting of several direct 

repeats of a 5'-GCTC-3' motif and a terminal resolution site, trs. Viral replication requires 

Rep binding at the RBS and subsequent cleavage of the top strand at the trs to generate the
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3'-0H group so that the viral ends can be converted into linear duplex DNA. Cleavage at 

the trs is strongly stimulated by the presence in cis of one of the ITR hairpin arms (49, 50, 

51), an effect attributed to a five base sequence known as the RBE', a Rep binding element, 

at the tip of the hairpin. The endonuclease domain recognizes its trs substrate in the context 

of ssDNA or a stem loop generated by the Rep helicase activity (7, 42). Two of the 

important DNA sequences within the ITR, the RBS and the trs, also occur at AAVS1, 

suggesting that the same Rep-mediated DNA recognition and cleavage occur during 

integration. The 33 bp region within AAVS1 that encompass these two sequences are 

necessary and sufficient for targeted integration.

Methylation interference experiments and DNasel protection assays indicate that AAV-2 

Rep preferentially contacts one of the two hairpin arms of the ITR and that this arm 

corresponds to the one furthest away from the trs, whether the ITR is in the flip or the flop 

orientation (6). Ryan et al. (49) showed that five bases, 5'-CTTTG-3', at the tip of one of 

the hairpin arms particularly contribute to Rep binding. The low efficiency of trs cleavage 

on linear duplex substrates compared to that on substrates with intact ITRs is unaffected by 

the addition of the hairpin arms in trans, suggesting that the Rep/RBE' interaction 

stimulates cleavage by imposing a geometric constraint on Rep assembled on the RBS. It is 

possible that this stimulation is indirect and that the Rep/RBE' interaction is important 

primarily to generate a single-stranded substrate rather than to stimulate the chemical steps 

of DNA cleavage (51). This is consistent with the idea that this structure, which shows that 

stem-loop binding does not induce any conformational changes at the enzyme active site. 

The fine tuning of the cleavage activity by the RBE' plays an important role in Rep’s ability 

to discriminate between fully replicated dsDNA viral genomes, which still possess RBS 

and trs sequences, and genomes whose terminal hairpin arms identify them as unreplicated. 

Nevertheless, the Rep/RBE' interaction must be modulatory rather than essential; 

otherwise, Rep would not be able to cleave the trs sequence present at the chromosomal 

AAVS1 site and the virus would be unable to integrate.
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1.4 Rearrangement of the AAVS1 site.

‘Abortive’ integration into AAVS1, i.e. rearrangement of AAVS1 without foreign gene 

insertion, has been described in 293 or HeLa cells (19 18, 14). A similar disruption of 

AAVS1 has been detected in cell lines latently infected with wild-type AAV (4). This 

phenomenon may be explained in three ways.

First, the integrated transgene or AAV genome is disrupted during or after an integration 

event such that Southern blot analysis cannot detect it.

Second, recombination between the AAVS1 region and other sites may cause 

rearrangement of AAVS1 without integration of the transgene at AAVS1.

Third, the Rep protein may excise the integrated plasmid DNA or AAV genome, resulting 

in the loss of the pre-integrated sequences.

Lamartina et al. (15) reported no apparent difference between Rep78 and Rep68 in the 

ability to deliver foreign DNA to AAVS1 in HeLa cells. Some other studies have reported 

the functional differences between Rep78 and Rep68. Rep68 seems to be efficient in 

processing dimers to monomer duplex DNA and possesses a stronger nicking activity (39), 

while the helicase activity of Rep78 is stronger.

The differential effects of Rep78 and Rep68 on the p5, p i9 and p40 promoters were 

described (61). In addition, Rep78 inhibits CREB-dependent transcription by interacting 

with protein kinase (62, 63). None of these findings explains why Rep78 appears to cause 

more abortive integration. Rep68 may be more suitable for the AAVS1 -targeted integration 

system. To confirm the usefulness of Rep68 in the AAVS1-targeted integration system, 

further analysis of a larger population of cell clones would be required. Also, the exact 

functions of the Rep protein in AAVS1-specific integration should be elucidated.
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1.5 The role of Rep Binding Elements (RBE) in Rep mediated 

integration.

The number of RBE sequences in the human genome, how Rep discriminates between 

these and the ch-19 target locus RBE sequence, and how Rep interacts with all sites and 

still facilitates targeted integration within a fixed time frame become of significant 

importance. Using a filter-binding assay and a highly purified source of Rep68 protein, it 

was established that genomic DNA will compete efficiently against a ch-19 target 

sequence. In this assay, a minimum Rep binding site of 8-bp in the context of large DNA 

fragments demonstrated competition, suggesting that as many as 200,000 potential binding 

sites may exist in the human genome.

Filter-binding analysis of genomic DNA successfully retained ch-19 target sequences, as 

well as a cellular RBE identified by BLAST analysis (69), corroborating the competition 

results.

Electron microscopy (EM) analysis was utilized to distinguish possible differences 

between Rep protein DNA interaction with ch-19 RBE compared to a minimum 8-bp RBE 

sequence. Identical multimeric Rep protein DNA complexes, which spanned about 60 bp, 

assembled on ch-19 target DNA, as well as a minimum RBE site, were observed, but never 

on heterologous DNA lacking these sequences.

Analysis of Rep expression in non-virus-infected cells demonstrated DNA rearrangement 

of the ch-19 target sequence, suggesting that this locus is a hot spot for Rep-induced DNA 

amplification and rearrangement that most likely influences AAV targeted integration. 

Although higher affinity for ch-19 RBE sequences (2.7-fold) than for heterologous DNA 

carrying identical elements using this assay, the difference appears to be insufficient to 

explain AAV targeting. In fact, these experimental conditions didn’t identify any features 

that would make the ch-19 locus a preferred site for Rep binding.
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For example, EM analysis of Rep-DNA complexes demonstrated highly uniform 

multimeric complexes on both ch-19 and non-ch-19 RBE sequences. These protein 

structures covered about 60 bp of DNA and appeared to be indistinguishable for ch-19, 

non-ch-19, and AAV ITR RBE sites. Rep binding to control DNA was never observed 

with substrates lacking the RBE site.

These results imply that Rep may interact with numerous RBE sites distributed across the 

human genome as part of the integration mechanism.

Rep levels in a latent infection. The amount of Rep in a latent infection could be 

considered as a rate-limiting step for AAV site-specific integration. For this reason, the 

amount of Rep expressed in the first 24 hours of a non-lytic infection was determined. 

Analysis suggested that 1 to 4,000 copies of Rep78 and Rep68 are available for facilitating 

targeted integration. At present, the rate association constant for Rep and cellular RBE

sites have not been determined. Other DNA-binding proteins (e.g., Drosophila doublesex

6 8and Lambda Cro) typically have rate association constants on the order of 10 (71) and 10 

(72), respectively. Extrapolating from other known DNA association constants and the 

time observed for AAV integration (24 hours) (73), this would suggest that the level of 

Rep78 and Rep68 present in a non-productive infection (1 to 4,000 molecules) should be 

sufficient to interact with all 200,000 potential RBE sites. Even if Rep is inefficient at 

binding, it is important to note that, in vivo, it is unlikely that all 200,000 sites are 

accessible to Rep binding due to their chromatin structure. In fact, a recent study has 

shown that the ch-19 site is DNase hypersensitive (74), implying a chromatin structure that 

is accessible for protein interactions. This observation implies that ch-19 is always 

available for Rep interaction, whereas other sites may be subject to local chromatin 

environment during the cell cycle. These factors strengthen the notion that 1,000 to 4,000 

molecules of Rep could be sufficient for targeting the viral genome in the absence of any 

other features.
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Rep protein complexes. Characterization of purified Rep-DNA complexes by EM 

analysis represented the first visual identification of a multimeric-protein complex 

interacting with the Rep binding site. The fact that Rep complexes were multimeric is not 

surprising since it has been reported that Rep forms multiple protein-DNA complexes and 

may potentially bind as a hexamer (60). The observation that Rep can span a region of 

DNA of about 60 bp, however, does provide an explanation as to why Rep does not bind 

efficiently to small oligonucleotides. It is possible that the RBE DNA induces 

multimerization of the Rep protein since the Rep protein concentration used in the EM 

experiments (16nM) was significantly lower than that for Rep when it exists as a monomer 

in solution (380nM or 25ng/pl). It is interesting to note that previous studies have 

suggested Rep-Rep interactions when there is binding to the DNA RBE motif. 

Observations clearly establish that Rep complexes interacting with either AAV ITR, ch-19 

RBE, or minimum RBE element derived from plasmid DNA form identical protein 

structures (Fig. 1.6).

w fe m

Fig. 1.6 EM analysis of Rep-DNA complexes at protein/DNA mass ratios of 1:1. (A) Rep68H6 protein 

bound to the center RBE of the 2.7 kb ch-19 integration fragment. (B) Rep68H6 protein bound to the 

asymmetric RBE of the 1.7 kb DNA fragment. (C) A 953-bp DNA fragment devoid of any RBE sequence 

and to which Rep68H6 did not bind. J Virol. 2000 May; 74(9): 3953-3966.
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The presence of a strong RBE increases the local concentration of Rep enough to allow 

interaction with low-affinity sites on the same DNA strand. This may be a factor that is 

important in vivo, where competition for Rep (RBE sites) and the initiation for site-specific 

recombination may be influenced by the local concentration of Rep molecules (Rep-Rep 

interactions). Regardless, as previously indicated by gel shift assays, EM analysis also 

revealed a higher affinity of Rep for the ITR when it was compared to either ch-19 or 

analogous RBE sequences. Based on this observation it was hypothesized that Rep levels 

in a newly infected cell will allow constant occupation of the AAV ITR sequences 

compared to transient binding to cellular RBE elements other than ch-19. This would 

imply that a preformed AAV ITR-Rep complex is a separate substrate that may interact 

with chromosomal RBE sites or chromosomal Rep-RBE complexes. If the ITR-Rep 

complex interacts with a Rep-chromosome complex as a separate entity, then the formation 

of the appropriate Rep-chromosome RBE complex would become the rate-limiting 

determinant for targeted recombination.

Cellular factors. All of binding analyses were performed with purified Rep only. Recent 

evidence has demonstrated a role for high-mobility group (HMG) proteins in NS1 nicking 

of the MVM genome (75). This protein has also enhanced Rep binding and nicking activity 

on the AAV ITR and has enhanced in vitro targeting of AAV substrates (76). HMG 

proteins have been implicated in bending DNA and making it more flexible (79). 

Therefore, observations with purified Rep would likely be enhanced in the presence of 

HMG. Cellular proteins could clearly impact the efficiency of Rep-mediated integration. 

Rep-dependent ch-19 replication. The ability to amplify ch-19 in the absence of viral 

integration substrates strongly suggest that Rep-mediated replication is a primary step for 

AAV targeting. These observations support studies by Urcelay et al. (46) that described an 

in vitro Rep-dependent replication of ch-19 DNA carrying the RBE-/ra site. From these 

observations, it appears that a critical step in the AAV integration process involves Rep- 

dependent nicking of the ch-19 substrate. Cellular amplification in the absence of viral
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targeting sequences, suggesting that Rep initiates a replication event on ch-19 that results 

in amplification and rearrangement. These observations aiso suggest the possibility that the 

head-to-tail configuration of viral integrants appears as a by-product of this replication 

event. Pro viral structures for AAV vectors devoided of Rep result in identical head-to-tail 

concatemers, albeit at random sites in the genome (4, 73). In addition, recent analysis of 

simian virus 40 integration has documented identical head-to-tail proviral structures, 

implying that this may be an universal cellular mechanism for “amplified” integration (77). 

These data imply that host machinery is responsible for the head-to-tail amplification and 

that the role of Rep is to direct the recombination event through initiation of replication on 

a virus-like origin (RBE-fr^) located on ch-19. These observations also provide an 

explanation as to why latent proviral structures (head to tail) generated by host enzymes do 

not resemble the Rep-dependent viral replication intermediates (head to head) seen in a 

lytic infection. EM data suggest that the Rep complex may be associated with the viral 

Terminal Repeats (TR) sequences prior to initiating replication on ch-19.

It is still undetermined whether the viral Rep-TR complex requires nicking in order to 

recombine with the ch-19 target sequence. While rescue of proviral AAV genomes 

requires functional terminal repeats for replication and packaging, the precise role in 

integration is still undefined. These data suggest that if Rep independently forms a 

complex on ch-19 and initiates replication, this may be a hot spot for Rep-Rep DNA 

complexes to assemble, in a manner similar to that of the punctate replication centers 

described by Hunter et al. (55), for wt AAV lytic infection.

At present, 1% of AAV infecting viral genomes integrate with approximately 70 to 90% of 

these pro viruses targeted to ch-19 (78). Though this is an efficient reaction for targeting, 

the overall integration frequency is marginal at best. Five successive steps can be identified 

that would impact AAV targeted integration after infection:

• Conversion of single-stranded to double-stranded DNA, providing a template 

competent for mRNA expression;

34



• Expression of Rep proteins;

• Rep interaction and complex formation with viral ITR and/or chromosomal RBEs;

• Rep-dependent replication of the ch-19 locus;

• Rep-ITR complexes interacting with Rep-ch-19 replicated substrates, facilitating 

targeted recombination and resulting in head-to-tail proviral structures via host 

enzymes.

1.6 The role of the nicking sites (trs) recognition in Rep mediated 

integration.

Multiple evidence suggests that both binding and nicking of AAVS1 by Rep68/78 are 

required for preferential integration (46, 69). This has led to the current hypothesis that 

AAVS1 is the preferred integration locus for AAV-2 because it contains the best Rep68/78 

nicking site within the human genome.

Analysis of the trs region has been problematic because nicking site recognition appears to 

require that the DNA strands be separated in the region of the trs (9, 55 42). Rep68/78 

have two nucleoside triphosphate-dependent DNA helicase activities.

One helicase activity is non specific with regard to DNA sequence but requires a 3' single­

stranded tail (7, 50).

The second activity can unwind a blunt-ended fragment but requires an RBS.

The current model for nicking suggests that Rep68/78 first binds at the RBS and begins to 

separate bi-directionally the two strands (9, 42). Once the region of the trs is separated 

from its complementary strand, the ^-containing strand is hypothesized to fold into a 

stable secondary structure. Rep68 or Rep78 can then nick at a site that it recognizes by a 

combination of its base sequence and its secondary structural context (55). A putative
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stem-loop structure has been identified in the region of the trs for AAV serotypes 1 

through 6. Fig. 1.7 shows that a 5- to 7-bp stem could be formed by standard Watson-Crick 

base pairing (i.e. A-T and G-C) (69). Individual mutation of several of the bases within the 

putative stem of the AAV-2 trs region resulted in a reduction in the ability of the site to be 

nicked (69).

Comparison of the AAVS1 trs region with that of AAV-2 shows several regions of base 

identity (Fig. 1.7); the 5-GT TGG-3' core motif immediately flanking the trs (the gap 

represents the primary cut site), 2 of the 6 bases 5' of the core motif, and 3 of the 11 bases 

3' of the core motif. Most of the bases believed to be involved in the AAV-2 trs stem 

structure are not conserved in AA VS1 (46).

S I --18
12 . ; fj

A A V Sl 5 1-GGCGGCGGT TGGGGCTCGGCGCT-3 1
1 1 H M l 4 H

AAV-2 5 ' -TGATGGAGT TGGCCACTCCCTCT-3 '

AAV-1 5 *-TGATGGAGT TGCCCACTCCCTCT-3'

AAV-3 5 ' -TGATGGAGT TGGCCACTCCCTCT-3 '

AAV-4 5 ' -TGATGGAGT TGGCCACTCCCTCT-3 ’

A A V -6 5 *-TGATGGAGT TGCCCACTCCCTCT-3*

S l / A A V l - 4 / 6 -G — G— GT TG---------------- C-CT

AAV-5 5 ’ -TGAGAGTGT GGCACTCTCCCCCC-3'

5 1 /A A V 1 -6 -G ----------GT -G ---------------- C -C -

Fig. 1.7 Underlined bases have the potential to form a stem by Watson-Crick base pairing. Bases conserved 

between all sequences (S1/AAV1-6) and between all sequences except AAV-5 (S1/AAV1-4/6) are indicated. 

The double-pointed arrows indicate bases conserved between AAVS1 and the AAV-2-ITR. The 18-base 

segment of AAVSJ that is the focus of the present study (Sl-18) is bracketed. Bases C3, C6, T9, G12, C15, 

and G18 of Sl-18 are numbered. J Virol. 2005 March; 79(6): 3544-3556.

Furthermore, no stem-loop similar to those proposed for the AAV sequences could be 

formed in AA VS1 by using Watson-Crick base pairing. In spite of this, previous works 

showed only about a twofold difference in the ability of Rep78 to nick the linear form of 

the AAV-2 ITR trs/KBS versus the AAVS1 fr's/RBS. Maybe a stable secondary structure 

based, at least in part, on non-Watson-Crick base pairing, in the AAVS1 trs region is
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present. Elements of this secondary structure may also contribute to the ability of AA VS1 to 

be nicked by Rep68/78

1.7 p5 integration enhancer element.

Rep-mediated integration of recombinant AAV plasmids is extremely inefficient, with 

between 0,1 and 1% of transduced cells demonstrating rAAV genome persistence after 6 

weeks (26). In contrast, plasmids that carry the entire AAV genome integrate at 

efficiencies of greater than 10%. This difference led several groups to postulate the 

presence within the AAV-2 genome of an additional cw-acting replication element, besides 

the ITRs, and to demonstrate its presence within the 5' portion of the rep gene (64).

A 350-bp sequence (previously named CARE) encompassing the p5 promoter and the 5' 

portion of the rep ORF (nucleotides 190 to 540 of wild-type AAV-2) was able to promote 

Rep-dependent replication of a plasmid containing the ITR-deleted rep-cap genome and 

the encapsidation of these sequences during recombinant AAV production (64). This 

element contained the binding sites for transcription factors such as YY1, and the major 

late transcription factor, a TATA box, a Rep-binding site, and a /rs-like motif (66, 67). 

Binding of Rep78 and Rep68 to the p5 Rep-binding site was previously shown to mediate 

the transcriptional repression of the p5 promoter observed in both the absence and presence 

of adenovirus (68). The p5 /rs-like motif was identified because it enabled Rep-dependent 

AAV-2 replication in the absence of the left ITR (67). In addition to its ability to behave as 

a c/s-acting replication origin, the p5 region (nucleotides 151 to 289 of wild-type AAV-2) 

was recently shown to enhance Rep-mediated site-specific integration of plasmid DNA into 

the human chromosome 19 AAVS1 site (26, 27).

Replication assays performed in transfected cells (in vivo) indicated that a minimal 

functional p5 element was composed of a 55-bp region (nucleotides 250 to 304 of wild-
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type AAV-2) containing the TATA box, the Rep-binding site, the trs present at the 

transcription initiation site (tos+1), and a downstream 17-bp region that could potentially 

form a hairpin structure localizing the trs+] at the top of the loop. Interestingly, the TATA 

box was seen to be absolutely required for in vivo but dispensable for in vitro, i.e. cell-free, 

replication. Finally, there was the demonstration that Rep binding and nicking at the trs+x 

was enhanced in the presence of cellular TATA binding protein (TBP), and that the over­

expression of this cellular factor increased the in vivo replication of the minimal p5 

element. Together, these studies characterized the minimal AAV replication origin present 

within the p5 promoter region and demonstrated for the first time the involvement of the 

TATA box, in cis, and of the TBP, in trans, for the Rep-dependent replication of this 

element.

Philpot and co-workers (27) identified the p5 sequence investigating the hypothesis that an 

Ad vector could be adapted to utilize the integration mechanism of AAV and generate 

chimeric constructs that could bring closer to a system able to fulfil a long-term gene 

expression. An important finding emerged: traditional rAAV vectors are lacking an 

important integration efficiency element. In the presence of a p5-rep integration efficiency 

element, the vast majority of AAV integrants (over 90%) occurred in a site-specific 

manner.

Recchia and co-workers generated a helper-dependent Ad-Rep vector and tested its ability 

to mediate site-specific integration by co-infecting it with an Ad that contained ITR- 

flanked GFP and hygromycin resistance transgenes (57). In agreement with Philpott, 

Recchia et al. found a relatively low efficiency of persistently hygromycin-resistant cell 

lines (estimated at 0.3%). In their studies, a third of the selected cell lines contained GFP 

localized to chromosome 19, as indicated by fluorescent in situ hybridization analysis.

Using a vector containing p5-rep sequence (including the intact rep ORF) in cis but outside 

GFP-flanked ITRs, Balague and co-workers found that such a vector persisted in nine fold- 

more cell lines than did an equivalent plasmid without p5-rep sequence (19). In addition,
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the p5-rep sequence mediated site-specific integration at a level comparable to the 12% 

targeted integration efficiency observed.

In another study, Pieroni et al. used similar plasmid vectors consisting of neomycin 

resistance and GFP transgenes between ITRs with and without p5-rep sequence (again 

expressing the full rep ORF) outside the ITR elements (16). Despite using antibiotic 

selection, they found that the p5-rep sequence was critical for site-specific integration of 

transgenes in HeLa cells. Both of these studies came to the conclusion that Rep is 

necessary in trans for targeted AAV integration. A new series of papers claim that Rep in 

trans is necessary but not sufficient for efficient site-specific integration to occur. These 

authors showed that co-transfection of Rep-expressing plasmids with an ITR-flanked 

transgene does not result in efficient integration. It seems that the Balague and Pieroni 

systems supplied two distinct elements, the Rep protein in trans and an AAV integration 

efficiency element in cis. Interestingly, based on the constructs used in their studies, the cis 

integration element can be located inside or outside the ITR-flanked transgene, indicating 

functional flexibility in position and orientation of the integration element.

Importantly, the results characterizing integration by the rAAV construct pGFPCap 

indicate that the entire rep ORF is not required in cis for efficient integration. This 

construct contains the dispensable cap sequence element but lacks the majority of the Rep 

coding region. The pGFPCap construct also includes 526 bp of DNA containing the entire 

p5 promoter, which flanks the left AAV ITR. Analysis of clonal cell lines isolated from 

transfections of pGFPCap with Rep supplied in trans pAAV/Ad showed that 5% were 

positive for GFP and AAVS1 disruptions. Although the level of integration was below that 

seen with wt AAV or pRepGFP, this is the first construct that separates the p5-rep 

promoter element from Rep expression and maintains a high level of site-specific 

integration. Several factors may be contributing to the reduction in integration efficiency 

seen with pGFPCap, including the presence of additional sequence elements or the
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proximity of neighboring transcription units (CMV-GFP), and this is currently being 

investigated.

Involvement of the p5-rep promoter region in the wt AAV integration event has precedent. 

Studies by Giraud et al. (29) and Samulski et al. (5) demonstrated that junction fragments 

of wt AAV integrants into episomal AAVS1 plasmids or chromosomal regions occur 

predominantly within two AAV sequence elements, the ITRs and the p5 promoter region. 

More recently, Tsunoda and coworkers used HeLa cells subjected to lipofection to study 

junctions between the AAV plasmid and the AAVS1 site that formed during site-specific 

integration. Using a plasmid containing p5-rep and Neor genes flanked by AAV ITRs, they 

found that most junctions occurred within the p5 promoter region of the plasmid DNA. 

These studies suggest that the p5 promoter that contains an RBE might be a hot spot for 

targeted AAV integration. In addition, Tullis and Shenk (65) showed that a p5-rep 

sequence functions in cis to increase the efficiency of AAV replication. Finally, using an in 

vitro replication system Nony and co-workers recently published a study which suggested 

that a p5-rep sequence between nucleotides 190 and 540 of the wt AAV-2 genome 

promoted efficient replication of rAAV plasmid vectors (64, 65). Since the p5-rep 

sequence identified by Nony et al. is present in the pGFPCap and pRepGFP constructs, we 

propose that this cis-acting replication element is also functioning as an enhancer of 

integration.

Further studies will be required to fully understand the relationship between the newly 

identified enhancer element and the RBE-terminal resolution site of the ITR with respect to 

the mechanism of integration. It is also likely that the delicate balance of regulated rep gene 

expression that occurs during the life cycle of AAV contributes significantly to the overall 

efficiency of integration. Vectors that regulate Rep expression in a manner that optimizes 

integration and yet minimizes unwanted chromosomal disruptions are a critical area that 

has not been developed. Incorporating these new insights into a variety of gene transfer 

strategies, including the Ad-AAV chimeric strategy that initiated these studies, should



make a significant contribution toward achieving the long-term goal of site-specific 

integration of a therapeutic gene.

1.8 Rep Toxicity.

1.8.1 Rep can inhibit PKA and PrKx.

Viral interference is a frequent consequence following infection of an animal cell with 

more than one related or unrelated virus. Characterization of this interaction during 

influenza infection led to the discovery of the interferons and their role in viral interference 

(80).

Classically, viral interference can be either direct or indirect (interferon mediated).

Direct interference occurs when a viral protein or a viral-induced protein disrupts the 

replication of another virus.

Indirect interference takes place when a virus induces secretion of interferon and other 

cytokines that protect cells from subsequent infection.

While the molecular mechanisms of interferon-mediated interference are well known (81), 

mechanisms of direct interference have not been as extensively characterized.

Examples of direct interference include the inhibition of vaccinia (a poxvirus) and 

vescicular stomatitis virus (VSV) by poliovirus and vaccinia by Frog virus 3 (an iridovirus) 

(82, 83, 84). Recently, non-interferon-mediated interference was described in patients 

infected with HIV and the non-lytic virus hepatitis G (85).

A hallmark of the adeno-associated virus serotype 2 (AAV-2) life cycle is its interaction 

and inhibition of replication of other viruses.

AAV-2 is a dependent virus and requires the presence of a helper virus for productive 

replication. Helper viruses include adenovirus (Ad) (86), cytomegalovirus (87),
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herpesvirus (88), EpsteinBarr virus, varicella virus (89), pseudorabies virus (90), vaccinia 

virus (91) and papillomavirus (92).

However, during a co-infection, AAV can inhibit both Ad and simian virus 40 (SV40) 

propagation (93), while expression of AAV Rep proteins is sufficient to inhibit the DNA 

replication of HSV (94), BPV (95), HPV (96) and HIV (97). In addition to inhibiting 

helper virus replication, AAV co-infection can also suppress transformation by a number 

of viruses and viral oncoproteins (98).

In the absence of a helper virus, AAV-2 is able to establish a latent infection by integrating 

in a locus specific manner on the Q arm of human chromosome 19 (4). The four related 

viral non-structural Rep proteins (Rep78, 68, 52 and 40) are essential for both aspects of 

the AAV-2 life cycle.

It was described that a stable interaction takes place between the unspliced Rep proteins, 

Rep78 and Rep52, and the cAMP-dependent protein kinase A (PKA) and its novel 

homolog PrKX (62, 63). This interaction resulted in the inhibition of PKA kinase activity. 

No interaction was detected with the spliced Rep proteins, Rep68 and Rep40. A biological 

effect of Rep78 inhibition of PKA and PrKX activity is the decreased expression of cAMP 

responsive genes in Rep78-transfected cells (62). The interaction between Rep78/52 and 

PKA was found to have a physiologically relevant dissociation constant of 320 nM (62) 

and additional studies using steady state kinetic analysis and mutagenesis of Rep78 

demonstrated it could act as a competitive inhibitor with respect to a peptide kinase 

substrate (41).

In addition to its role in cellular signal transduction, the PKA pathway also has a role in 

viral infection. cAMP-responsive elements (CRE) regulate the expression of numerous 

viral genes. Recently, Ad has been shown to require cAMP-dependent protein kinase 

activation to facilitate its transport to the nucleus (99). In addition, the El a, E3 and E4 

promoters of Ad contain CREs and are PKA responsive (100).
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Thus, like their cellular homologs, viral genes also may be affected by Rep78 inhibition of 

PKA and PrKX activity. It was hypothesized that during an AAV-2/Ad coinfection, Rep78 

inhibition of cellular PKA and PrKX activities could result in both the down-regulation of 

specific Ad genes and an inhibition of Ad replication.

AAV-2 Rep78/52 proteins contain an inhibitory domain similar to that of the heat-stable 

PKA inhibitor PKI (101). This domain, while not directly necessary for AAV replication 

and packaging, is necessary for AAV-2 Rep78/52 inhibition of PKA and PrKX. 

Furthermore, mutated AAV-2 genomes lacking this region fail to inhibit Ad replication, 

suggesting that modulation of PKA activity is a mechanism by which AAV-2 interferes 

with helper virus replication. Finally, AAV-2's ability to inhibit Ad replication via 

modulation of PKA activity is necessary to preserve its replication fitness during an Ad co- 

infection.

1.8.2 Other causes of Rep-mediated cell death.

Apoptosis, or programmed cell death, is a highly regulated cellular suicide process. It is 

involved in normal tissue development as well as in the response of the cell to stress, 

growth factor deprivation, and DNA damage. Morphological changes typical for apoptotic 

cells include nuclear and cytoplasmatic condensation, which is followed by the 

fragmentation of the cell into apoptotic bodies. In vivo, these cell fragments are consumed 

by macrophages without the elicitation of an inflammatory response (102, 103). 

Biochemical characteristics include fragmentation of DNA, partial loss of plasma 

membrane asymmetry, and reduction of the mitochondrial transmembrane potential. 

Apoptosis can be triggered by external or cellular signals. Stimuli from both pathways are 

integrated and amplified by a family of cysteine proteases with aspartate specificity, 

referred to as caspases. Caspases are expressed as zymogens, inactive proenzymes which 

are proteolytically activated during the transduction of death signals. Caspases by 

proteolytically cleaving vital cellular proteins, are also involved in the execution of cell
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death. Among the caspase targets are actin, lamins, and poly(ADP-ribose) polymerase (4, 

104).

The majority of experiments analyzing the cytotoxicity of Rep78 have been done with 

inducible stable cell lines which either require a toxic heavy metal for induction of 

expression (105, 106) or have shown low-level expression (32).

The observed effects of Rep78 on cell survival and cell cycle progression in this transient 

system differ from the data obtained with stable Rep-inducible cell lines. Holscher et al. 

(32) described a stable HeLa cell line expressing Rep under the control of the 

glucocorticoid-responsive mouse mammary tumor virus promoter. Upon induction, no 

cytotoxic or antiproliferative effect of Rep was detected. Yang et al. (105) described 293- 

based cell lines that express the AAV Rep proteins under the control of an inducible mouse 

metallothionein transcription promoter. Upon induction with heavy metals, an 

accumulation of Rep-expressing cells in S phase was observed, but no toxicity was 

reported. However, Rep enhanced the toxicity of UV irradiation and incubation with 

cadmium (106). These differences in the effect of Rep on the cell may be due to the cell 

types used for the studies, expression efficiencies of the rep gene, and adaptation of the 

cell lines to background levels of Rep expression or alterations in the genomic rep gene. 

293 cells contain a colinear segment from human adenovirus type 5, from nt 1 to 4344, 

which is integrated into chromosome 19 (19ql3.2) (107). This segment contains the E1A- 

E1B region of the adenovirus genome.

The El A gene products bind to key elements such as members of the pRB family, inducing 

unscheduled cell cycle progression.

The E1B-55K protein was shown to bind and inhibit p53, while E1B-19K acts as a Bcl-2 

homolog in inhibiting apoptosis (82).

HeLa cells are a cervical-carcinoma-derived cell line containing multiple copies of 

integrated human papillomavirus (HPV) type 18 DNA. HPV type 18 encodes regulators of 

cell cycle progression and apoptosis which act similarly to the adenovirus-encoded El
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proteins (108). The viral gene products of both cell lines are likely to modulate the effect 

of Rep on the cell cycle and apoptosis and may explain the differences observed in the 

different systems.

In addition, an effect of the inducers of the stable Rep-expressing cell lines on cell growth 

and death is possible. Yang et al. used zinc and cadmium to induce Rep expression. 

Cadmium is a highly toxic heavy metal that has been shown to induce distortion of the cell 

cycle (109) and apoptosis by causing oxidative stress and DNA damage (110); zinc, in 

contrast, is efficient at inhibiting apoptosis (111). Interesting analogy between the effects 

of AAV-2 Rep78 and the nonstructural protein (NS-1) of the autonomous parvoviruses on 

the cell. Both proteins possess cytostatic and cytotoxic potential. Cell death caused by NS- 

1 expression was induced by apoptosis (112) which was mediated by and dependent on 

caspase-3. The cytostatic potential of NS-1 correlated with an accumulation of cells in G2 

and a block in cellular DNA replication which was proposed to be a consequence of NS-1- 

induced DNA damage (113).

1.9 Adenoviruses.

1.9.1 Structure.

Vectors based on different viruses have been developed to embrace a wide range of 

strategies for the gene therapy of a variety of diseases. Evaluation of many of these 

approaches has revealed a number of fundamental problems. These limitations are driving 

vector technology efforts toward a further evolution of the present systems and the 

generation of new classes of vectors that combine the best features of different viruses 

(114,59).

The modification of Ad vectors is an example of vector engineering directed to solving 

problems identified by preclinical studies. Ad is considered an attractive vehicle for several
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reasons. The viral life cycle is well characterized, its genome is easy to manipulate, and the 

resulting vector can be grown to high titers (115).

All Adenovirus particles are similar: non-enveloped, 60-90nm diameter. They have 

icosahedral symmetry easily visible in the electron microscope by negative staining and are 

composed of 252 capsomers: 240 "hexons" + 12 "pentons" at vertices of icosahedron.

The hexons consist of a trimer of polypeptide II with a central pore; VI, VIII and IX are 

minor polypeptides also associated with the hexon, thought to be involved in stabilization 

and/or assembly of the particle. The pentons are more complex; the base consists of a 

pentamer of peptide III, 5 molecules of Ilia are also associated with the penton base.

The pentons have a toxin-like activity.

A trimeric fibre protein extends from each of the 12 vertices (attached to the penton base 

proteins) and is responsible for recognition and binding to the cellular receptor. A globular 

domain at the end of the adenovirus fiber is responsible for recognition of the cellular 

receptor. (Fig. 1.8)
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Fig. 1.8 Schematic representation of Ad structure.

While there are over 51 serotype strains of adenovirus, most of which cause benign

respiratory tract infections in humans, subgroup C serotypes 2 or 5 are predominantly used

as vectors. The life cycle does not normally involve integration into the host genome,

46



rather they replicate as episomal elements in the nucleus of the host cell and consequently 

there is no risk of insertional mutagenesis.

1.9.2 Ad genome.

Adenoviruses are non-enveloped viruses containing a linear double stranded DNA 

genome.

The wild-type adenovirus genome is a linear, non-segmented, d/s DNA, 30-38 kbp (size 

varies from group to group) which has the theoretical capacity to encode 30-40 genes. The 

terminal sequences of each strand are inverted repeats, hence the denatured single strands 

can form "panhandle" structures (100-140 bp). There is a 55 kDa protein covalently 

attached to the 5' end of each strand. Of the approximately 35 kb viral genomic DNA up to 

30 kb can be replaced with foreign DNA (116). The adenovirus particle limits the amount 

of DNA that can be packaged to -105% of the genome, only -1.8 kb more that the wild- 

type virus genome.

There are four early transcriptional units (El, E2, E3 and E4), which have regulatory 

functions, and a late transcript, which codes for structural proteins.

1.9.3 Genome transcription.

The adenovirus genome is transcribed in both directions and alternative splicing allows 

multiple transcripts to be generated from the same sequence. Any manipulation of the virus 

genome therefore requires the coding capacity of both DNA strands to be considered.

The E3 gene region is dispensable for adenovirus replication in vitro and can be deleted 

from both replication-competent and replication-deficient vectors to permit larger inserts. 

Adenovirus vectors may be either replication-competent or replication-deficient.

In replication-competent adenovirus recombinants, transgenes are usually inserted in the 

E3 region and very high levels of expression can be achieved with transcription driven by 

the late promoter. Replication-deficient adenovirus vectors are usually based on adenovirus
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E1-E3 deletion mutants. Deletion of the El gene region (both El A and E1B) permits 

vectors to accommodate significantly larger inserts, removes a region of the genome 

associated with cellular transformation and generates a vector that is not only replication- 

deficient but also cannot activate early phase gene expression. This defect in early phase 

gene expression generates a vector which can promote efficient transgene delivery and 

expression in the absence of significant vector gene expression. However, breakthrough to 

early and late phase gene expression can occur, particularly following infection at high 

MOI or if the target cell expresses an endogenous "ElA-like" function. Breakthrough 

expression from the vector genome has been associated with the induction of an immune 

response following in vivo gene delivery. Replication-deficient adenovirus vectors 

incorporating additional mutations or deletions have been generated to address this 

problem. The deletion of additional sequences from the vectors also permits the insertion 

of larger transgenes.

1.9.4 Ad vectors.

Ad genome was modified to obtain recombinant viral vectors (Fig 1.9).

• Progenitor vectors have either the El or E3 gene inactivated, with the missing gene 

being supplied in trans either by a helper virus, plasmid or integrated into a helper cell 

genome (human fetal kidney cells, line 293) (118).

• Second generation vectors additionally use an E2a temperature sensitive mutant (119) 

or an E4 deletion (120).

• The most recent "gutless" vectors contain only the inverted terminal repeats (ITRs) and 

a packaging sequence around the transgene, all the necessary viral genes being 

provided in trans by a helper virus (121).
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Fig. 1.9 Schematic representation of Ad wt and vector structure.

From the viewpoint of safety, size of transgene insertion and absence of vector gene 

expression, these so-called 'gutless' adenovirus vectors are attractive. They contain the 

inverted terminal repeats (ITRs) and adjacent sequences essential for replicating the 

adenovirus genome, including the cis-acting signal sequence (psi) which directs packaging 

of adenovirus DNA into virus particles. The gutless vectors require virtually all adenovirus 

gene functions to be provided for vector propagation and, since this cannot yet be achieved 

using a packaging cell line, they must be provided using a helper cell. Although their 

potential is enormous, current gutless vectors are complex and technically difficult to use. 

However, there are dangers associated with the use of adenovirus vectors, and a few deaths 

have occurred in clinical trials.

1.9.4.1 Adenoviral vectors of the first generation.

The genome of adenoviruses consists of 30-38 kb of double-stranded linear DNA with 

inverted terminal repeat (ITR) sequences at each end. Expression of genes occurs in two 

phases, early and late, defined by the onset of DNA replication (127).
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Early genes are encoded by four distinct transcription units, E1-E4, whereas the late gene 

products are generated from a single promoter. Importantly, proteins encoded by El region 

are indispensable for further viral gene expression and DNA replication (128).

Vector of the first generation is prepared by substitution of a transgene in the place of El 

(or El and E3) genes (Fig. 1.9). The resulting construct has a cloning capacity up to 9 kb. 

An El-deficient (AE1) vector is replication-defective and must be propagated in a 

permissive cell line, engineered to provide El functions in trans (129). Substitution for the 

E3 genes is not necessary, as they are involved in inhibition of host immune antiviral 

response, not in the replication of the adenoviral genome.

Among the 51 human adenovirus serotypes discovered to date, Ad5 and Ad2 are most 

commonly used for generation of vectors (128). Adenoviral vectors give the most efficient 

gene transfer in comparison with other systems (130). Moreover, they can transduce both 

dividing and post-mitotic cells of nearly all human tissues -  including skin, muscle, blood 

vessel, bone, nerve, and liver (127, 130). They can be also effective in delivering genes 

into some leukocytes (231). Following delivery, transgene expression is at a very high 

level. Unfortunately, it decreases rapidly after several days, being low or undetectable after 

several weeks (130).

Many studies have clearly demonstrated that adenoviral vectors of first generation induce 

innate and adaptive immune responses in vivo against viral capsids and transduced cells 

(11). Despite the deficiency in the El region, the vectors are, in fact, not completely 

replication defective (132). They deliver the transgene along with the residual viral genes 

and indeed synthesize some viral proteins. Even low level expression of these leads to 

activation of CTL and results in destruction of expressing cells, being the major cause of 

transgene silencing (130).
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1.9.4.2 Helper-dependent adenoviral vectors (HdAd).

Helper-dependent adenoviral vector (HdAd), called also “gutless” or “gutted” vector, is 

created by removing all viral genes and leaving only the ITRs necessary for vector 

propagation, and the sequence required for packaging (Fig. 1.9) (12). Any unused space 

is occupied by a transgene or by noncoding “stuffer” DNA sequence, to build the vector to 

a size suitable for packaging (Fig. 1.9). This strategy completely eliminates the production 

of viral proteins in infected cells. Therefore, HdAd elicits only minute or negligible CTL 

response and is capable of producing long-term gene expression (133). Additional 

advantage of HdAd is a high cloning capacity, extended up to 37 kb (12). The nature of the 

DNA backbone can have important effects on the functioning of the HdAd virus, which 

must be taken into account in the design of vectors. The most commonly used stuffer DNA 

originates from human hypoxanthine-guanine phosphoribosyltransferase (HPRT). The first 

step in generation of HdAd constructs is based on ligation of the expression cassette into 

large plasmids containing the viral ITRs flanking stuffer DNA. This process, although 

commonly applied, is generally very inefficient. It has been shown, however, that similarly 

as in the case of the AE1 adenoviral vectors, plasmids for generation of HdAd constructs 

can be obtained by homologous recombination in Escherichia coli, which potentially can 

facilitate the production (134).

A number of systems have been also developed for rescuing HdAd. The most common 

method for propagation and purification of HdAd utilizes two elements: i) a helper virus 

(AE1/AE3) with T  sequence flanked by loxP sites (Fig. 1.10), ii) a modified 293Cre cell 

line expressing Cre recombinase which catalyzes recombination between loxP sequences, 

excising the packaging site from helper DNA. Such a deletion renders the helper genome 

un-packagable but leaves all other viral functions intact, retaining the ability to replicate 

and provide helper functions.
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Fig. 1.10 Schematic representation of Hd-Ad virus production.

The efficacy of this technology is sufficient for experimental gene therapy, but is not 

suitable for production and purification of HdAd vectors at a scale necessary for clinical 

use (135).

To increase the efficiency of the system, both improved helper viruses and alternative 

gutless vector producer cell lines are necessary. One of the promising modifications is 

establishing the cells adapted to serum-free suspension culture, which can allow obtaining 

high-titer gutless vector preparations by using bioreactor technology (135).

An additional problem to be solved is contamination with helper AE1 virus, which may 

have substantial unwanted effects. Unfortunately, a helper virus, even lacking a packaging 

signal, still can be packaged, although at a low frequency (about 0.1%) (135). It seems that 

this level of impurity cannot be further decreased using the Cre/loxP system, as Cre 

recombinase in 293Cre cells permits some helper viruses to escape packaging signal 

excision and propagate (136). Thus, the resulting viral stocks must be additionally purified 

by ultracentrifugation in CsCl, which can produce HdAd stocks with very low (less than 

0.01%) helper contamination (Fig. 1.11). This separation step hinders, however, large scale 

production of clinical-grade HdAd virus.
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Fig. 1.11 Schematic representation of Ad purification by CsCI gradient.

One of the possible solutions is using a more efficient recombinase, e.g. modified FLP 

(FLPe), to remove T  from the helper virus in the producer cells. FLP has been shown to 

mediate maximum levels of excision close to 100% compared to 80% for Cre. Thus, it has 

been postulated that the FLPe-based system may yield HdAd with very low levels of 

helper virus contamination without the need for ultracentrifugation, which should allow 

large-scale generation of gutless vectors by means of column chromatography (137). 

Finally, the safety of the HdAd vectors can be further optimized by using double-deleted 

AE1 AE2a helper virus.

Gutless adenoviruses can infect a wide range of mammalian tissues, independent of the 

replicative state of the cells. Like AE1 particles, intravenously injected HdAd vectors 

transport the transgene preferentially to the liver, where infection efficacy may reach 

almost 100%.

Nevertheless, certain serotypes of adenoviruses have diverse tissue tropisms in vivo, and in 

some tissues, e.g. in skeletal muscles, the efficacy of adenoviral vectors is relatively low. 

Particularly resistant are some lymphoid cells (138). This is in contrast to the effects of 

AE1 vectors, secretion of pro-inflammatory cytokines was minimal after HdAd vector 

injection, resulting in reduced numbers of activated microglial cells, astrocytes, and 

infiltrating macrophages in brain tissue. These findings indicate that HdAd vehicles should 

provide a safe and effective means to transfer therapeutic genes into the brain (139).
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1.9.5 Immunogenicity.

Adenoviral vectors are very efficient at transducing target cells in vitro and in vivo, and can 

be produced at high titres (>10n/ml). Transgene expression in vivo from progenitor 

vectors tends to be transient (117). Following intravenous injection, 90% of the 

administered vector is degraded in the liver by a non-immune mediated mechanism (122). 

Thereafter, an MHC class I restricted immune response occurs, using CD8+ CTLs to 

eliminate virus infected cells and CD4+ cells to secrete IFN-alpha which results in anti- 

adenoviral antibodies (123). Alteration of the adenoviral vector can remove some CTL 

epitopes, however the epitopes recognised differ with the host MHC haplotype (124). The 

remaining vectors, in those cells that are not destroyed, have their promoter inactivated 

(120) and persisting antibody prevents subsequent administration of the vector.

Approaches to avoid the immune response involving transient immunosupressive therapies 

have been successful in prolonging transgene expression and achieving secondary gene 

transfer. A less interventionist method has been to induce oral tolerance by feeding the host 

UV inactivated vector (125). However, it is desirable to manipulate the vector rather than 

the host. Although only replication deficient vectors are used, viral proteins are expressed 

at a very low level which are presented to the immune system. The development of vectors 

containing fewer genes, culminating in the "gutless" vectors which contain no viral coding 

sequences, has resulted in prolonged in vivo transgene expression in liver tissue (13). The 

initial delivery of large amounts of DNA packaged within adenovirus proteins, the 

majority of which will be degraded and presented to the immune system may still cause 

problems for clinical trials. Moreover the human population is heterogeneous with respect 

to MHC haplotype and a proportion of the population will have been already exposed to 

the adenoviral strain (126).

Adenovirus genome is relatively easily manipulated in vitro and the genes coupled to the 

late promoter are efficiently expressed in large amounts.
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1.10 Ad Serotypes.

Human adenoviruses (Ads) are associated with a wide range of tropisms. They have been 

classified into six distinct subgroups A to F, with at least 51 serotypes (140), on the basis 

of their genetic variability, oncogenic potential, and G+C content of their DNA (140). A 

further sub-classification of subgroups B (BI and BII) and D (DI, DII, and Dili) has been 

made on the basis of differential hemagglutination patterns (141, 142). Ads have the ability 

to infect a wide range of different tissues and have been identified as causative agents of 

widely different diseases (140, 143). For example, serotypes Ad 2 and Ad 5 (subgroup C) 

are associated with upper-airway infections, as is serotype Ad 3 (subgroup B), although the 

latter appears to infect an anatomically distinct region of the airway (143). Serotypes Ad 8 

and Ad 9 (subgroup D) are associated with epidemic keratoconjunctivitis, Ad 4 (subgroup 

E) is associated with pneumonia, Ad 12 (subgroup A) is associated with cryptic enteric 

infection, and Ad 40 and Ad 41 (subgroup F) are associated with gastroenteritis (143). 

Detailed phylogenetic analysis of diverse Ad serotypes has yielded two phenotypic 

clusters; the gastrointestinal cluster, with subgroups A and F, and the respiratory cluster, 

with subgroups B, C, and E (144).

It has been suggested that the apparent tropism of different serotypes in different tissues 

results from virus interactions with distinct cellular receptors. Indeed, it has been shown 

convincingly that the Ad 2/5 and Ad 3 fiber proteins recognize different cellular receptor 

proteins (156, 148).

Attachment and uptake into cells of subgroup C Ads occur by separate but cooperative 

events that result from the interaction of the fiber protein with a receptor for attachment 

and the penton base protein with a receptor for internalization (Fig. 1.12). The 46-kDa 

coxsackievirus-adenovirus receptor (CAR) protein mediates fiber-dependent attachment of 

subgroup C Ad 2 and Ad 5 (145). The C-terminal knob of the fiber protein confers the 

specificity of the cellular receptor recognition (146, 147, 148). Analysis of the fiber 5 knob
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by X-ray crystallography has yielded a model for the structure of this protein and has 

identified several exposed amino acid residues and structural loops that have been 

theorized to be involved in cellular receptor recognition (149). Next, in a process that has 

been shown to be independent of fiber-cell recognition (150, 147), the viral penton base 

protein binds to cellular av-integrins through the RGD loop, a tripeptide motif that 

protrudes out of the tertiary peptide structure of the penton base, resulting in rapid 

internalization of the virus particle (151). Through cross-competition experiments, it has 

been shown that the fibers of Ad 2, Ad 5, and Ad 9, despite their distinct tropisms and 

classification into the different subgroups C and D (140), recognize the same cellular fiber 

receptor (148). Ad vectors based on serotype 5 (Ad 5) for an efficient infection with 

adenovirus requires the presence of coxsackievirus-adenovirus receptors (CAR) and a v 

integrins on cells (152).

A d tr to v iru l

^ • n l o n  I U m  *■ Sw« KtWftR&tefjfw I 
'CAKfttftn* _  
Yirwi

2

Vin<«

Fig. 1.12 Ad5 uptake and internalization mechanism.

Due to the lack of corresponding primary and/or secondary receptors, Ad 5 gene transfer is 

inefficient to a number of tissues, such as endothelia (153), smooth muscle (154), 

differentiated airway epithelia (155), brain tissue (156), and peripheral blood cells. 

Recently, group B Adenovirus derivates have gained interest as attractive gene therapy 

vectors because they can transduce target tissue, such hematopoietic stem cells, dendritic 

cells and malignant tumor cells, that are refractory to infection by commonly used
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adenoviral vectors. Since the cell types that can be infected with Ad 5 vectors are restricted 

by the presence of CAR and av integrins, attempts were made to broaden the tropism of Ad 

vectors. These approaches included complexing Ad with lipids or polycations (157), using 

bi-specific antibodies directed against Ad fiber and an internalizing cellular receptor (157), 

and engineering peptide ligands into the fiber (158), hexon (159), or penton (160). Most of 

these approaches did not abrogate CAR tropism. The most commonly used method to 

retarget Ad tropism is by swapping part or all of the fiber from one serotype to another 

(156, 147, 153). The various serotypes of human Ad show differences in tissue tropism and 

cause different pathologies mostly localized to the gastrointestinal tract, respiratory tract, 

genitourinary tract, or conjunctiva and cornea (161). Since the nucleotide and amino acid 

sequences of fibers differ significantly among different Ad serotypes, it has been suggested 

that they can recognize different receptors (144). This implies that fiber substitution would 

be sufficient to change virus tropism and has been convincingly shown for Ad 5-Ad 3 

chimeras (153), Ad 5-Ad 7 chimeras (162), and Ad 5-Ad 17 fiber chimeras (156). It was 

shown that it is possible to genetically substitute by heterologous sequences derived from 

the other serotype the Ad 5 fiber or fiber knob was. Whereas, as told before, may Ad infect 

cells through the coxsackievirus and adenovirus receptor (CAR), group B adenoviruses use 

an alternate, attachement receptor. Human CD46 seems to be a cellular receptor for most 

group B adenoviruses. Serotype 35 emerged as the variant with the highest tropism for 

CD34+ cells. A chimeric vector (Ad 5/35) which contained the short-shafted Ad 35 fiber 

incorporated into an Ad 5 capsid was generated. This substitution was sufficient to 

transplant all infection properties from Ad 35 to the chimeric vector. The retargeted, 

chimeric vector attached to a receptor different from CAR and entered cells by an a v 

integrin-independent pathway (163).
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1.11 Collagen VII.

The collagens comprise a family of closely related, yet genetically distinct, 

macromolecules.

At least 14 different vertebrate collagens have been identified (Fig. 1.13). All collagen 

molecules consist of three subunit polypeptides, called chains, and there are as many as 25 

different genes within the human genome that code for these subunits (164, 165).
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Fig. 1.13 Schematic representation of some proteins of the collagen’s family.

The genetically distinct collagens have characteristic tissue distributions. The more 

abundant collagens, as exemplified by types I and III collagens, have a rather widespread 

distribution, while some minor collagens have a limited anatomical location. For example, 

type VII collagen appears to be restricted to the basement membrane zone beneath 

stratified squamous epithelia. Within the cutaneous basement membrane zone, type VII 

collagen localizes to the lamina densa and sub-lamina densa areas in the upper papillary 

dermis (166). More precisely, immuno-localization studies have demonstrated that type 

VII collagen is the major collagenous component of anchoring fibrils, morphologically 

distinct structures that extend from the lamina densa and project perpendicularly into the 

upper papillary dermis (167).
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Anchoring fibrils attach the epidermal basement membrane of the skin to the underlying 

dermal connective tissue (164, 165). As visualized by electron microscopy, anchoring 

fibrils appear as centro-symmetrically banded elements displaying variable diameters and 

degrees of curvature.

Anchoring fibrils are seen along the basement membrane, where they appear to originate at 

the lamina densa and to extend into the stroma where they terminate in anchoring plaques. 

The anchoring plaques are basement membrane-like, electron-dense regions that contain 

type IV collagen and perhaps other intrinsic basement membrane proteins. Additional 

anchoring fibrils originate in the anchoring plaques and then extend further into the stroma, 

terminating in other anchoring plaques. Anchoring fibrils also originate in the lamina 

densa, extend into the stroma, and appear to arch back to reinsert into the lamina densa. 

Collagen VII is a large homo-trimeric protein with a central triple helix and flanking 

amino- and carboxyl-terminal globular domains.

Comparisons of the banding patterns of segment-longspacing crystallites of type VII 

collagen with those of anchoring fibrils indicate that the portion of the anchoring fibril not 

contained within the basement membrane or the anchoring plaques represents the triple­

helical domain.

Type VII collagen (Burgeson, 1987) is a gene located on the p arm of the chromosome 3 

(3p21.3) and is constituted by 118 exons translated in a 9 kb c-DNA. Collagen VII is 

synthesized and secreted as a precursor, thought to be a homopolymer of three pro-a(VII) 

chains, M.W. 350,000. The aminoacid sequence is very abundant in Gly-Pro-Y motifs 

(Fig. 1.14).
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Fig 1.14 Schematic representation of aminoacid distribution in collagen VII.

Approximately one out of every 3 residues is a glycine and the proline content is also high. 

Stretches of the collagen polypeptide sequence are repeats of Gly-X-Y (X and Y 

frequently proline and hydroxyproline). In the triple helix, every third aminoacid contacts 

the center of the structure. This area is so small that only a glycine can fit, which explains 

why every third amino acid in collagen’s structure is a glycine residue (Fig. 1.14). 

Hydrogen bonding involving hydroxyproline can occur, which further stabilizes the 

proteins structure.

The N-terminal sequence of al(VII) contains two vWF-A, ten Fnlll repeats, and one 

sequence of aminoacid homologue to the proteins in the cartilage matrix. This region is 

folded separately in separates 36 nm arms.

The pro-collagen molecule contains three distinct domains: NC-2, the small amino- 

terminal non-triple-helical domain (M.W. 95,000); the triple-helical domain (M.W.

510.000); and NC-1, the complex, trident-like carboxyl-terminal globular domain (M.W.

450.000).

The triple-helical domain contains a major discontinuity in that conformation near the 

center of the domain as detected by sensitivity to pepsin and trypsin digestion (176) which 

generates the fragments PI and P2. Additional discontinuities are detected by digestion
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under more severe conditions. These triplex pro-collagen molecules further dimerize 

through an association of the amino termini such that the triple-helical domains overlap by 

60 nm. This overlap may be specified by an interaction of the NC-2 domains with the triple 

helix and is subsequently stabilized by two or more intermolecular disulfide bonds. The 

NC-2 domains are then removed, and the dimers assemble into anchoring fibrils by 

unstaggered lateral associations (177).

After secretion, pro-collagen VII undergoes proteolytic trimming to collagen VII and 

assembles to polymers (Fig. 1.15) (164).
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Fig. 1.15 Schematic representation of maturation and secretion of collagen VII. The triplex pro-collagen 

molecules dimerize through an association of the amino termini such that the triple-helical domains overlap 

by 60 nm. This overlap may be specified by an interaction of the NC-2 domains with the triple helix and is 

subsequently stabilized by two or more intermolecular disulfide bonds. The NC-2 domains are then removed, 

and the dimers assemble into anchoring fibrils by unstaggered lateral associations. After secretion, pro­

collagen VII undergoes proteolytic trimming to collagen VII and assembles to polymers.

61



This is a multistep process during which collagen VII monomers first form di- 

sulfidebonded antiparallel dimers and then laterally aggregate into anchoring fibrils, which 

interact with laminin 5 to secure the dermo-epidermal adhesion (164, 166). Further 

stabilization of anchoring fibrils and presumably of intermolecular aggregates is achieved 

through cross-linking by transglutaminase-2.

The structure of type VII collagen must account for the apparent flexibility of the 

anchoring fibrils and for their contact with the lamina densa and the anchoring plaques.

The tortuous shapes of the fibrils seen ultra-structurally are assumed to result from the 

discontinuities within the triple-helical domain. This assumption is supported by studies of 

type IV collagen, in which flexible sites correlate well with disruptions in the triple-helical 

structure known from the primary structure of the type IV chains (Fig. 1.16) (178).
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Fig. 1.16 Schematic representation of anchoring plaques.

Anchoring fibrils are functionally deficient in hereditary dystrophic epidermolysis bullosa 

(DEB) a heterogeneous group of bullous skin disorders (167) with mechanically induced 

blistering and scarring of the skin. In the most severe forms of the disease, both collagen
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VII protein and anchoring fibrils are absent from the skin (168), whereas in milder forms, 

collagen VII is expressed, but the morphology of the anchoring fibrils may be altered 

(169).

Mutations in COL7A1 encoding collagen VII have been disclosed in both recessive and 

dominant DEB subtypes (170, 171, 172).

In recessive subtypes, homozygous or compound heterozygous mutations leading to 

premature termination codons underlie very severe skin blistering and scarring (173), 

whereas homozygous or compound heterozygous missense mutations cause milder 

phenotypic manifestations.

In dominant DEB (DDEB), only about a dozen mutations have been identified, most of 

them causing substitution of a glycine in the triple helical domain of collagen VII (172). 

However, despite a growing number of known collagen VII mutations, the biological 

consequences of these mutations and the pathogenic pathways from the gene defect to 

dermo-epidermal tissue separation in the skin have remained elusive.

Glycine substitution mutations in other collagen genes underlie heritable connective tissue 

diseases, such as osteogenesis imperfecta, chondrodysplasias, certain subtypes of Ehlers- 

Danlos syndrome, or Alport’s syndrome (174, 175). These mutations cause pathologic 

phenotypes through dominant-negative interference. Therefore, the prediction was that 

glycine substitution mutations in COL7A1 had similar effects. Surprisingly, however, 

molecular genetic analyses of a number of DEB families disclosed several compound 

heterozygous glycine substitution mutations in COL7A1 that did not cause a pathologic 

phenotype in obligate carriers.
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Chapter 2

Materials and methods



2.1 Reagents suppliers

2.1.1 Chemicals.

All chemicals were obtained from FLUKA, Sigma Chemicals Co. or Roche. 

Others chemicals used during the study were obtained from the following sources:

Agarose for gel electrophoresis SeaKem LE Agarose Cambrex BioScience Rocland

DNA markers
1 kb Gene Ruler DNA Ladder Fermentas 

lOObp Ladder Invitrogen

Protein markers Biorad Rainbow

X-Ray film Kodak and Amersham

Hydrolysed milk powder Merck

Nitrocellulose for Western Blot Protran BA85 Cellulose Nitrate Scheleicher & Schuell

Nylon for Southern/Northern Blot Stratagene or Hybond

Acrylamide Applichem

2.1.2 Radiochemicals.

a 32P dCTP (Amersham)

2.1.3 Enzymes.

All DNA modification enzymes and buffers were received from either Roche and New 

England Biololabs (NEB).

2.1.4 Restriction enzymes and buffers.

All restriction enzymes and buffers were obtained from either Roche and New England 

Biololabs (NEB).
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2.1.5 Bacterial strains and growth.

The DH5a strain (F \ hsdR17,rk-mk+, recAl, endAl) was used for all transformations, and 

growth both in Luria Bertani (L.B) or Terrific Broth (T.B) media prepared within the 

institute.

TOPIO strain (F'mcrA A(mrr-hsdRMS-mcrBC) c|)801acZAM15 AlacX74 recAl araD139 

A(ara-leu)7697 galU galK rpsL (StrR) endAl nupG) was used for all transformation of 

TOPO-TA cloning vector following manufacturers instructions.

2.1.6 Plasmids.

Creation of other plasmids are described below (Section 2.5.1). The following were 

provided by the laboratory of Professor Mavilio.

Human Collagen containing plasmid was provided by Professor Meneguzzi G. INSERM 

U634, Faculty of Medicine, Nice, France

2.1.7 Solutions and Buffers.

Buffer for flow cytometric analysis (FACS) PBS 0.1% (w/v) BSA

50x TAE for Agarose gel (1 litre)

242 g Tris base 

57.1 ml Glacial Acetic Acid 

100 ml 0.5M EDTA, pH 8.0 

Water to final volume (1 litre)

Tris-HCl
Trizma Base to the molarity required 

and HC1 to the required pH

lOOx TBE for Agarose gel (1 litre)

108 g Trizma base 

55 g Boric Acid 

40 ml EDTA 0.5 M pH 8.0
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10% SDS (1 litre)
100 g SDS powder 

Water to final volume (1 litre)

5 M NaCl (1 litre)
292.2 g

Water to final volume (1 litre)

TE Buffer lOx (200ml)

10 ml Tris-HCl pH 7.9 2M (10 mM final) 

4 ml EDTA 0.5 M (1 mM final) 

Water to 200 ml

IONNaOH (100ml)
40 g NaOH 

Water to final volume

2.2 Tissue culture reagents.

2.2.1 Plastic ware.

All standard tissue culture ware (tissue culture flasks, tissue culture plates, tubes etc..) was 

obtained from Coming Costar and Falcon.

2.2.2 Media.

X-VIVO 10 Bio whittaker

DMEM Cambrex

IMDM Cambrex

RPMI Cambrex

2.2.3 Sera, Supplements and antibiotics.

Fetal Bovine Semm Hyclone
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Trypsin Cambrex

L-Glutamine Cambrex

Penicillin/Streptomycin Biological Industries

HEPES SIGMA

Doxycicline SIGMA

2.2.4 Growth factors.

Recombinant human Stem cell factor (SCF)
R&D Systems, and Pepro Tech, 

England

Recombinant human Flt-3 Ligand (Flt3-L) Pepro Tech, England

Recombinant human interleukin-3 (rhIL-3) Pepro Tech, England

Recombinant human interleukin-6 (rhIL-6) R&D Systems

2.2.5 Other.

Phosphate buffered Saline (PBS) was obtained from Cambrex.

FICOLL was obtained from Limphoprep Fresenius Kabi Norge AS.

Fugene 6 was obtained from Roche.

Effectene Transfection reagent was obtained from Qiagen.

2.3 Antibodies and antisera.

Anti human NGF antibody was obtained from BD (Primary and R-PE conjugated).

Goat Anti mouse IgG (FITC. R-PE conjugated) was obtained from Southern 

Biotechnology Associates, Inc.
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Anti human CD38, R-PE, FITC. or Tricolor conjugated was obtained from Caltag 

laboratories, U.S.A

Anti human CD34, R-PE, FITC. or Tricolor conjugated was obtained from Caltag 

laboratories, U.S.A

Anti human Collagen VII Ab-1 (LH7.2) was obtained from Neomarkers.

Anti mouse HRPO was obtained from SIGMA

2.4 Cells.

2.4.1 Stable cell lines:

HeLa Human carcinoma From ATCC

293Cre4 Human Kidney
From laboratory of 

Professor Mavilio

NIH3T3 Murine Fibroblasts
From laboratory of 

Professor Mavilio

293T Human Kidney From ATCC

K562
Human Chronic 

Myelogenous Leukemia
From ATCC

HEL Human Herythroleukemia From ATCC
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2.4.2 Primary cells.

Human CD34+ cells.

Were most kindly purified and prepared from umbilical cord blood (UCB) source by 

myself, by FICOLL density separation followed by magnetic selection based on the 

Miltenyi MACS kit for cell separation, following the manufacturers recommended 

protocol. Samples were either used fresh or frozen in FCS containing 10% DMSO, and 

stored in liquid Nitrogen until required for use.

Keratinocvtes

Most of the keratinocytes experiments were done by Dr. Stefano Ferrari (Epithelial Stem 

Cell Research Centre, Veneto Eye Bank Foundation, Venice, Italy).

2.5 Methods

Methods are divided into 3 sections:

2.5.1 Molecular methods

2.5.2 Tissue culture methods

2.5.3 Gene transfer methods

2.5.1 Molecular Methods

2.5.1.1 Transformation of competent bacteria and small scale bacteria preparations.

DNA to be transformed was mixed with 100 ul of competent DH5a cells prepared 

specifically for the heat shock mediated transformation method (Maniatis et al. 1982). The 

mix was incubated 20 minutes on ice, then 1 minutes in watherbath at 42°C, and then 

returned to ice for further 2 minutes. The mix was then added to 1 ml of SOC media and
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incubated at 37°C with agitation for 1 hour. The mix was the plated onto agar plates 

supplemented with the required antibiotic and placed overnight in a 37°C bacterial 

incubator. The following day, colonies were picked up and placed into 2 ml of LB media 

containing antibiotic, and grown overnight with agitation at 37°C. The small bacterial 

preparations were subjected to small or large scale DNA preparation as required.

2.5.1.2 Small scale (miniprep) preparation of plasmid DNA from bacteria.

Small amounts of plasmid DNA were purified from bacteria, for restriction analysis, 

following the alkaline lysis method for DNA (Maniatis et al. 1982).

2.5.1.3 Large scale (maxiprep) preparation of plasmid DNA from bacteria.

This method is a scaled up method of the alkaline lysis method, using identical solutions 

unless stated. Typically 500 ml of an overnight growth of DH5a bacteria in antibiotic 

containing TB media was used per preparation. The bacteria were pelleted at 6000 rpm for 

10 minutes in a Sorvall centrifuge. The residual media was discarded and the centrifuge 

tube inverted to drain as much media as possible away from the pellet. 20 ml of 

resuspension solution (Solution I) containing Lysozyme at the final volume of 12.5 ug/ml 

was added to the pellet, and the pellet was resuspended pipetting and vortexing. The 

bacterial mix was left at room temperature for 10 minutes. 40 ml of alkaline lysis solution 

2 was added, the sample mixed and returned at room temperature for further 10 minutes. 

30 ml of ice cold solution 3 was added, the sample again thoroughly mixed, and put on ice 

for 10 minutes.

The tube was centrifuged at 4500 rpm for 45 minutes, the lysate filtered through medical 

gauze into 200 ml Falcon tubes (the residual pellet was discarded) and the same volume of 

isopropanol alcohol was added to precipitate the nucleic acid. The sample was left 10-20 

minutes on ice and then the tube was centrifuged at 4500 rpm for 45’ minutes at 4°C. The 

liquid was discarded and the pellet properly drained was resuspended in 10 ml of TE
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buffer. Beckman quick seal tubes were prepared as follows. 11 g of Caesium Chloride 

(CsCl) were measured into 50 ml Falcon tubes to which was added 10ml of resuspended 

pellet and 300 ml of ethidium bromide (10 mg/ml stock). After CsCl had dissolved, the 

solution was centrifuged for 30 minutes to 4500 rpm to pellet all the debris. The solution 

was taken up with a 10 ml syringe and injected into the Beckman quick seal tube, the tubes 

balanced and then sealed using the Beckman heat sealing device.

Samples were centrifuged in a Beckman NVT 65 rotor at 50000 rpm for at least 14 hours. 

The tubes were gently removed from the rotor, a hole punched in the top of the tube using 

a large gauged needle, and a syringe with the needle attached was inserted just below the 

DNA band which was clearly distinguished from the rest of the gradient due to the intense 

red colour following the ethidium bromide intercalation. The DNA band was gently 

removed and injected into 15 ml Falcon tube. 10 ml of butanol CsCl saturated in water was 

added to the tube, the tube shacked, left to settle and the upper phase discarded (clearly 

red-pink coloured). This process was repeated several times until no pink colour was 

visible. The process was then repeated one more time after this to be sure of ethidium 

bromide removal. Then the samples were loaded into dialysis membrane (MWCO 10000) 

and dialysed overnight in 4 litres of lx TE Buffer. The day after dialysed samples were 

precipitated. Water was added to the tubes to a final volume of 5 ml, 250 ul of 3 M Sodium 

acetate added, and a further 10 ml absolute ethanol added on top. Tubes were mixed and 

placed at -20°C for 30 minutes. The tubes were centrifuged 45’ 4500 rpm. The pellet 

obtained was washed twice with 70% ethanol. Purified DNA was resuspended in water and 

quantified using the standard 260/280 nm absorbance method on a spectrophotometer. 

DNA was stored at 4°C if required immediately or stored at -20°C for longer use and 

storage.

18.2 g Glucose (50 mM final)

GTE (2 litres) Solution I. 50 ml 1 M Tris-HCl pH 7.5 (25 mM final)

0.5 M EDTA pH 8.0 (10 mM final)
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Water to final volume

Lysis Solution (40 ml). Solution III.

0.8 ml NaOH 10 N (0.2 M final) 

4 ml 10% SDS (1% final)

Water to final volume

Neutralisation Solution (2 litres). Solution III.

588.84 g Potassium Acetate 

230 ml Acetic Acid 

Water to final volume

Butanol CsCl saturated
Butanol and water 1:1 (v/v) and CsCl 

to saturation

lxT E 1:10 (v/v) from 1 Ox TE

3 M Sodium acetate NaAc in water to the final volume

2.5.1.4 Southern Blot analysis.

Extraction of genomic DNA from cells:

1-I0xl06 cells were lysed in 3 ml of the following buffer:

50 mM Tris HC1 pH 8.0 

100 mM EDTA 

400 mM NaCl 

1% w/v SDS

25 ul of proteinase K (10 mg/ml stock) was added and the mix incubated overnight at 37°C 

or 6 hours at 55°C.

An equal volume of phenol was added to the solution and mixed vigorously. The sample 

was then centrifuged for 5’ at 14000 rpm. The aqueous phase was recovered and an equal 

volume of phenol/chloroform added. The above step was performed, the aqueous phase 

taken and an equal volume of chloroform added, the samples mixed and centrifuged as 

above, the aqueous phase taken and nucleic acid precipitated by the addition of an equal
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volume of absolute ethanol 0,3 M Sodium acetate. A glass Pasteur pipette was blunted by 

inserting it into Bunsen flame and precipitated DNA extracted by dipping the Pasteur and 

gently pulling. The genomic DNA was clearly visible, it was allowed to air dry briefly, and 

then the inserted into 300 ul of 70% ethanol, dried and the DNA resuspended in 200 ul of 

water. It was allowed the DNA to dissolve overnight at room temperature. Nucleic acid 

concentration was determined using 260/280 nm absorbance measurements on a 

sp ectrophotometer.

Probes isolation:

Plasmid DNAs were digested with the opportune enzyme to release the probe fragment. 

After running in 0.8-1% w/v agarose gel in TAE or TBE buffer, the band corresponding to 

the required DNA was excised using a scalpel, and the DNA fragment purified using the 

“crash” method. Concentration was measured running 1 ul sample on 0.8% agarose gel.

“Crash” method for DNA gel extraction:

All the DNA fragment used in this work were purified using this technique. Digested DNA 

were loaded on agarose gel and run to separate the bands. The band corresponding to the 

required DNA was excised using a scalpel and the obtained agarose-DNA was crashed 

using a 1 ml syringe. The gel-DNA mixture was loaded on a glass wool cushion placed 

into a 1.5 ml eppendorf tube pierced on the bottom. The eppendorf placed over another 2 

ml eppendorf tube was centrifuged 30 minutes at the top speed. To the obtained liquid 

phase was added the same volume of phenol, centrifuged again 2’ and traited with phenol 

and phenol/chloroform. The cleaned aqueous phase was precipitated adding the same 

volume of absolute ethanol and 1/10 v/v 3 M Sodium Acetate. After precipitation at -20°C 

for 30’ the DNA was centrifuged, the pellet washed twice with ethanol 70% and 

resuspended in water.
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Digestion of genomic DNA and gel electrophoresis:

10-20 ug of genomic DNA was digested with the opportune enzyme (10 U/ug genomic 

DNA). The digestion generally was performed overnight. The digested DNA was loaded 

and run on a 0.8-1% agarose gel in TAE or TBE buffer ethidium bromide containing 

overnight at 40 volts. The gel was photographed.

Southern blotting:

The DNA was denatured by incubating gel in 0.2 M NaOH, 0.6 M NaCl with addiction of 

thimol blue for 1 hour shacking with one exchange of denaturating buffer. The gel was 

then neutralised by incubating the gel for 1 hour with 1.0 M TrisHCl pH 7.5, 1.5 M NaCl 

shacking. Southern blot assembly performed as described (Maniatis et al. 1982) using 

Duralon-UV Membranes (Stratagene) pre-soaked in distilled water and lOx SSC. Blot was 

performed overnight in lOx SSC. After blotting the filter was rinsed in 6x SSC and UV 

crosslinked using Stratalinker.

Hybridisation:

The filter was washed with O.lx SSC, 0.5% w/v SDS at 65°C for 30 minutes (2 incubation 

of 15 minutes each) shacking. Followed by 4-6 hours of incubation in pre-hybridisation 

solution at 42°C rolling.

The prehybridisation solution was removed and replaced with hybridisation solution 

containing the radioactive labelled probe. The filter was incubated overnight at 42°C 

followed by 30 minutes room temperature wash shaking in 2x SSC, 0.1% SDS (one change 

after 15 minutes) and 1 hour wash at 52°C shaking with O.lx SSC, 0.1% SDS (1 change 

every 20 minutes). The filter was blot dried and exposed to Kodak autograph film, for 

various times and the films developed.
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Radioactive labelling of probe:

Radioactive labelling was performed using Roche Random primed DNA labelling kit and 

the quick spin columns, following the manufactures instructions.

lOOx Denhardt

1 g FICOLL400 

1 g Polyvinylpyrrolidone (PVP) 

1 g BSA (fraction V)

Up to 50 ml with water

20x SSC (2 1)

350.6 g NaCl

176.5 g Citric Acid (trisodium salt) 

Distilled water up to 2 litres

20x SSCP (1 1)

88.2 g Sodium Citrate (trisodium salt) 

140.3 g NaCl

43.7 gNa2HP04

12.7 gN a2HP0 4 ’H20  

Distilled water up to 1 litres

S256 (lOx)

16 mg PolyA

16 mg PolyC

400 mg yeast t-RNA

100 mg Salmon Sperm DNA

9 mg E.coli DNA

Water to 200 ml

Pre-hybridisation solution 

(for 20 ml)

5 ml 20x SSCP 

1 ml lOOx Denhart 

10 ml Deionised Formamide 

Water to 20 ml

Hybridisation Solution 

(for 20 ml)

6 ml 20x SSC

0.2 ml lOOx Denhardt’s

10 ml deionised formamide

1 ml 10% w/v SDS

2 g Dextran Sulphate

1 ml S256 + Radioactive labelled 

probe*
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* Note: The radioactive probe is mixed with S256 boiled for 10 minutes and quenched on ice, prior to adding 

to hybridisation solution. This is to ensure the probe is denatured.

2.5.1.5 Polyacrylamide gel electrophoresis (PAGE) and western blotting.

Different polyacrylamide gel concentrations were made following the published 

instructions (Maniatis et al. 1982), and assembled on the Biorad miniprotean II gel 

apparatus following the manufacturers instructions. 

l-5xl06 cell sample were first lysed in 200 ul of protein lysis buffer.

150 mM NaCl

1% v/v Nonidet P-40

Lysis Buffer 0.5% w/v DOC

0.1% w/v SDS

50 mM Tris HC1 pH 8.0

The protein samples were mixed with 4x loading buffer p-Mercaptoethanol containing, and 

loaded into the well of the PAGE using a Hamilton syringe.

1 ml 1 M Tris-HCl pH 6.8

1 ml P-Mercaptoethanol

4x Loading Buffer (Laemli Buffer) 0.4 g SDS

for 5 ml 0.02 g Bromo Phenol Blue

2 ml Glycerol

Water to 5 ml

Resolving 7.5% 10% 12.5% Stack 3.8%

Acr-Bis 1.25 ml 1.6 ml 2 ml 158 ul

Resolving Buff. 625 ul 625 ul 625 ul 312.5 ul Stacking Buffer

SDS 10% 50 ul 50 ul 50 ul 50 ul

H20 Up to 5 ml Up to 5 ml Up to 5 ml Up to 5 ml
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APS 10% 37.3 ul 37.3 ul 37.3 ul 9.3 ul

TEMED 4.15 ul 4.15 ul 4.15 ul 0.9 ul

The gel was run in Tris-Glycine Buffer (27.9 g glycine, 6 g Trizma base, dissolved in 1 

litre of water), containing 0.1% v/v SDS, at 55 mA, until the Bromo Phenol Blue dye had 

run out of the gel. As a molecular weight marker, 4 ul of Rainbow marker (Biorad) was 

used.

Blotting:

Nitrocellulose membrane cut to the same size as the PAGE gel were pre-soaked in transfer 

buffer:

3 g Trizma Base 

14.4 g Glycine 

200 ml Methanol 

800 ml Water

Tranfer Buffer (1 Litre)

Blotting was performed using the Biorad western blotting apparatus and assembled 

following the manufacturers instructions. Upon assembly the inside of the apparatus was 

filled up with transfer buffer, and run per 1 hour at 200 volts.

Antibodies staining:

After transfer of the proteins had been performed, the membrane was blocked in PBS 

containing milk (2.5% v/w) for 1 hour. The primary and secondary antibodies were 

incubated in PBS 0.1% Tween-100 for 1 hour each. Between one incubation and the other 

3 wash were performed in the same PBS 0.1% Tween-100 shaking. After the incubation 

with the secondary antibodies 2 wash in PBS 0.1% Tween-100 was performed and another 

in PBS alone before developing with ECL kit (Amersham) following the manufacturers 

instructions.
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Dot blot analysis:

Dot blot analysis was performed for a fast screen of clones human collagen VII producing. 

Nitrocellulose membrane cut to the same size as vacuum plates apparatus were pre-soaked 

in PBS. Samples were prepared diluting collagen enriched medium (serum free medium 

with ascorbic acid used to cultivate cells for 24-48 hours) in PBS to a final volume of 500 

ul. Vacuum was not switched off until all the samples were dried. Nitrocellulose was 

Poinceau stained washed twice in PBS-0.1% Tween-20 and blocked in 5% milk PBS-0.1% 

Tween for one hour following classical Western blot protocol. All the following steps are 

the same of western blot.

2.5.1.6 Polymerase Chain Reaction Methods:

2.5.1.6.1 Nested PCR for AAVS1/ITR junctions.

Primers specific for ITR and AAVS1 locus site were obtained from PRIMM, Italy.

Right AAV ITR: 16s 5 ’-GTAGCATGGCGGGTTAATCA-3 ’

17s 5 ’-TTAACTACAAGGAACCCCTAGTGATGG-3 ’.

AAVS1 region: a 5’-GCCCCACTGCCGCAGCTGCTCCC-3’ 

b 5 ’-CCGCACAGGCCGCCAGGAACTCG-3 ’ 

c 5 ’-GCGCGQCAGAAGCCAGTAGAGC-3 ’ 

d 5 ’ CTGGCTCAGGTTCAGGAGAGG-3 ’ 

e 5 ’-CGCTCAGAGGACATCACGTG-3 ’ 

f  5 ’-GGGACACAGGATCCCTGGAQGG-3 ’.

All the primers had a melting temperature of 60°C. I round PCR enables amplification of 

integrated 3’ integrated cassette.
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dNTPs were obtained from Roche, water was injection grade, while the Taq was the 

AmpliTaq Gold polymerase (Applied Biosystems, Roche, NJ, USA).

Genomic DNA was extracted following protocols (See Materials and Methods 2.5.1.5).

I Round of PCR mix was obtained as follows:

I Round For primer (3 uM) 5 ul

I Round Rev primer (3 uM) 5 ul

1 Ox Taq buffer 5 ul

Taq polymerase (5 U/ul) 0.5 ul (2.5U)

dNTPs (10 mM) 1 ul

DNA 500 ng

Water To 50 ul

MgCl2 7 ul

II Round of PCR mix was obtained as follows:

II Round For primer (3 uM) 5 ul

II Round Rev primer (3 uM) 5 ul

1 Ox Taq buffer 5 ul

Taq polymerase 0.5 ul

dNTPs (10 mM) 1 ul

Template 1:100 from I Round PCR 5 ul

Water To 50 ul

MgCl2 7 ul
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The mix was placed in 200 ul Perkin Elmer PCR tubes, and PCR was performed in a 

Perkin Elmer GeneAmp 9700 termal cycler following the programme below (both for I 

and II Round):

Denaturation step of 10’ 95°C 

35 cycles:

Denaturation step of 30” 94°C 

Annealing step of 30” 60°C 

Extension step of 1 ’ 72°C 

A final step:

Extension step of 5’ 72°C

At the end of II Round amplification PCR samples were mixed with DNA loading dye and 

run 1.5% w/v agarose gel in TBE buffer, containing ethidium bromide, and visualised on a 

UV lamp.

Negative control for PCR reaction was water alone.

2.5.1.6.2 PCR for p5 element amplification.

Primers specific for 5’ and 3’ of p5 element were obtained from PRIMM, Italy in SDS- 

PAGE purified grade and had the following sequences:

P5ATATAfor:GCTCTAGAGCCGACATTTTGCGACACCATGTGGTCACGCTGG

GAAAAAAAGCCCGAGTGA

P5ATATArev:CGCAAGGCCTTCCCCTAGGGCGGCTGCGCGTTCAAACCTCC 

GCTTC AAAAT GGAGACCCT GCT C ACTCGGGC 

The primers had a melting temperature of 40°C. PCR enables amplification of not 

overlapping sequence to obtain full length p5 mutated sequence.
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dNTPs were obtained from Roche, water was injection grade, while the Taq enzyme was 

the Amplitaq Gold (Applied Biosystems, Roche, NJ, USA).

In this protocol no template DNA was used, overlapping primers were sufficient to ensure 

amplification.

PCR mix was obtained as follows:

For primer 5 ul

Rev primer 5 ul

1 Ox Taq buffer 5 ul

Taq polymerase 0.5 ul

dNTPs (10 mM) 2 ul

Water To 50 ul

MgCl2 5 ul

The mix was placed in 200 ul Perkin Elmer PCR tubes, and PCR was performed in a 

Perkin Elmer GeneAmp 9700 termal cycler following the programme below:

Denaturation step of 10’ 95°C 

5 cycles:

Denaturation step of 1 ’ 95°C 

Annealing step of 45” 40°C 

Extension step of 1’ 55°C 

35 cycles:

Denaturation step of 1 ’ 95°C 

Annealing step of 45” 40°C (+0.8°C/cycle)

Extension step of 1* 55°C (+0.5°C/cycle)

A final step:

Extension step of 10’ 72°C
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PCR samples were mixed with DNA loading dye and run 2.5% w/v agarose gel in TBE 

buffer, containing ethidium bromide, and visualised on a UV lamp.

Negative control for PCR reaction was water alone.

2.5.1.7 TOPO-TA cloning method.

Cloning of PCR products into TOPO TA vector (invitrogen) were obtained following 

manufactures instruction.

2.5.2 Tissue culture methods.

2.5.2.1 Maintenance of cell lines.

HeLa, 293 Cre4, 293T, NIH3T3 were maintained in DMEM media supplemented with 

10% FCS with penicillin/streptomycin at 25 U/ml, and L-Glutamine at 2 mM. Cells were 

typically splitted twice a week by washing once in PBS, adding Trypsin solution 

incubating 5 minutes and then resuspending in fresh media.

All the cells we used were maintained at 37°C in a humidified incubator with 5% CO2 .

Hel, K562 were maintained in RPMI-1640 with 10% FCS with penicillin/streptomycin at 

25 U/ml, and L-Glutamine at 2 mM.

All these cells were splitted 1:10 twice a week depending on the experimental 

requirements.

2.5.3 Gene transfer methods.

2.5.3.1 Generation of Adenoviral stocks.

Viral stocks were prepared by transfecting 293Cre4 cells and co-infecting with helper 

virus.
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DNA tranfection using Calcium Phosphate precipitation method:

1. Seed and incubate 5xl06 293Cre cells in 10 cm dish, approximately 24 hours before 

transfection in DMEM, 10% FCS, penicillin (25 U/ml), Streptomycin (25 U/ml).

2. Change medium 4 hours before transfection.

3. The plasmid DNA mix is prepared by adding DNA and water to a final volume of 450 ul 

per dish in a 15 ml Falcon tube. Finally add 50 ul 2.5M CaCl2.

4. The precipitates are formed by adding dropwise of 500 ul of DNA-water-CaC12 mixture 

to 500 ul 2xHBS vortexing at full speed. The precipitate should be added immediately to 

cells. High magnification microscopy of cells should reveal a very small granular 

precipitate initially above the cells monolayer and after incubation in 37°C incubator 

overnight, on the bottom of the plate in the space between the cells.

5. The precipitated plasmid DNA should be allowed to stay on the cells for 14-16 hours, 

after which the media should be replaced with fresh media.

2x HBS (for 50 ml)

5 ml Hepes pH 7.1 (100 mM final) 

2.8 ml NaCl (280 mM final)

150 ul Na2HP04 (1.5 mM final) 

pH 7.1 with HC1

2.5 MCaCl2 (for 100ml)
36.8 g

Water to 100 ml

Helper virus co-infection:

Cells after transfection should be infected with helper virus for Adeno production.

Media must be removed and cells washed twice in PBS.

After second wash helper virus at the suitable MOI can be added in PBS and dishes can be 

incubated for 1 hour in 37°C incubator. After incubation without removing PBS freshly 

media can be added and cells can be incubated in 37°C incubator.
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2.5.3.2 Viral harvest and concentration.

Rescue and amplification of the HD-Ad viruses were carried out by transfection of 

293Cre4 and infection with AdH14 first-generation helper virus (Merck, West Point, PA, 

USA), as previously described (179)

2.5.3.3 Titration of Adenoviral vectors.

1. Plate 5xl04 cells per well the day before in a 6-well plate (the day after you will have 

approximately 105 cells/well).

2. The following day, prepare serial ten-fold dilutions of viral stocks in PBS.

3. Titrating the viral stock you should have 500 ul-1 ml of the PBS dilute viral stock per 

each well.

4. Incubate the Hela cells with PBS dilute virus for 1 hour at 37°C 5% CO2 incubator.

5. Add fresh medium to 3-4 ml.

6. Incubate 36-48 hours at 37°C 5% CO2 incubator.

7. Wash well with 2 ml PBS.

8. Add 500 ul of Trypsin to each well. Wait until cells are detached from plates (5’ 37°C).

9. Add 2 ml PBS to each well and harvest cells in FACS tubes.

10. FACS samples and calculate the titer.

Notes:

The MOI (multiplicity of infection): TU/ml/n. cells to be infected for the following ranges: 

10'3 ul-1 ul infection. Efficiency is primarily controlled by vector concentration (TU/ml). 

MOI should be considered only for certain ranges of concentration of cells (>104 cells/ml) 

and vector (>106 TU/ml)
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2.5.3.4 CD34+ stem/progenitor cells purification and transduction.

1. Human CD34+ stem/progenitor cells were purified from the FICOLL mononuclear cell 

fraction of umbilical cord blood by positive selection using the CD34 magnetic cell 

isolation kit.

2. CD34+ cells were infected with viral stocks at a MOI of 50-300 in serum-free IMDM 

20% BIT serum substitute containing, supplemented with 20 ng/ml rhIL-6, 20 ng/ml 

rhTPO, 100 ng/ml Stem Cell Factor and Flt3-L for 24 hours.

3. Transduced CD34+ cells were washed in IMDM with 10% Fetal Bovine Serum, plated at 

a density of 1,000 cells/ml in methylcellulose medium containing 4 U/ml rhEpo, 10 ng/ml 

GM-CSF, 10 ng/ml rhIL-3, 50 ng/ml rhSCF, and scored by light fluorescent microscopy 10 

to 14 days after plating.

4. Transduced CD34+ cells were grown in liquid culture in the same medium used for 

transduction to maintain an undifferentiated phenotype.

2.5.3.5 Transfection techniques.

Stable cell lines were generally transfected using Calcium Phosphate precipitation (See

2.5.3.1 Generation of Adenoviral vectors for details).

HeLa cells were also tranfected with other techniques to obtain higher levels of positivity 

of bulk population.

FUGENE transfection:

1. Seed and incubate 3xl05 HeLa cells in 6 cm dish, approximately 24 hours before 

transfection in DMEM, 10% FCS, penicillin (25 U/ml), Streptomycin (25 U/ml).

2. Change medium 4 hours before transfection.

3. The plasmid DNA mix is prepared in 1.5 ml eppendorf tubes by adding not 

supplemented media (100 ul/ug DNA) to the plasmid DNA.
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4. The precipitates are formed by adding dropwise 30 ul/ug DNA of FUGENE reagent 

following the manufacturers instructions. JBubbling_was_performed using p200 pipette 

pipetting 4-5 times in the bottom of eppendorf tube. High magnification microscopy of 

cells should reveal a very small granular precipitate. After precipitate addition cells must 

be incubated in 37°C incubator overnight.

5. The precipitated plasmid DNA should be allowed to stay on the cells for 14-16 hours, 

after which the media should be replaced with fresh media.

Effectene transfection:

1. Seed and incubate 3xl05 HeLa cells in 6 cm dish, approximately 24 hours before 

transfection in DMEM, 10% FCS, penicillin (25 U/ml), Streptomycin (25 U/ml).

2. Incubate the cells under their normal growth conditions.

3. Dilute 1 ug DNA dissolved in TE buffer, pH 7.0 to 8.0 with the DNA condensation 

buffer, Buffer EC, to a total volume of 150 ul. Add 8 ul Enhancer and mix by vortexing for 

1” .

4. Incubate to room temperature for 2-5’ then spin down the mixture to remove drops.

5. Add 25 ul Effectene Transfection Reagent. Mix by pipetting up and down 5 times or by 

vortexing 10” .

6. Incubate the samples for 5-10’ at room temperature to allow transfection-complex 

formation.

7. Aspirate medium from cells and wash once with PBS.

8. Add 1 ml growth medium to the tube containing the transfection complexes. Mix by 

pipetting up and down twice, and immediately add the transfection complexes drop-wise 

onto the cells in the 60 mm dishes. Swirl the dish to ensure uniform distribution of the 

transfection complexes.

87



For 6 cm dishes

DNA ug: 1 --------------------------------------

Enhancer ul: 3.2

Final Volume DNA in EC Buffer ul: 100 

Volume of Effectene ul: 10 

Volume of medium to add to cells ul: 1600 

Volume of medium to add to complexes: 600

2.5.3.6 Stable cell lines.

1. HeLa cells were maintained in DMEM supplemented with 10% FCS, and 

transfected/transduced in 6-10 cm Petri dishes as indicated.

2. Cells were kept in culture to lose not integrated plasmids/viruses.

3. Cells were FACS sorted and the enriched bulks were limited diluted. 0.3 cells per well 

(in 96 wells plates) were plated.

4. Isolated clones were subsequent grow up and expanded in bigger plates, till 10 cm 

plates.
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Chapter 3

Aim of the work



Rationale.

Gene transfer in somatic cells has without any doubt a big potential to treat a number of 

genetic and acquired diseases. Among the several delivery systems developed, viral 

vectors derived from retroviruses, moreover murine retroviruses, are the most widely used. 

Retroviruses are peculiar in respect to other viruses by two characteristic steps in their life 

cycle: reverse transcription, resulting in a double strand DNA copy of the viral RNA 

genome, and integration, leading to the covalent attachment of the viral DNA to host cell 

DNA.

Integration process is an unequalled, and often indispensable tool to obtain high efficiency 

and stable gene transfer.

Up to now retroviral and lentiviral vectors are the only available tools to integrate foreign 

genes into human cells at reasonable efficiency. However their use involves some 

important problems and limitations:

1. Retroviral vectors (both gammaretroviral and lentiviral) can generally integrate only 

transgenes with a size limit of 5-7 kb.

2. Independent regulation of multiple transcription units is difficult in a retroviral vector 

context.

3. Integration of retroviral vectors into the target cell genome occurs randomly, 

preferentially into active genes. In the last years to this phenomenon has been 

associated an important risk of insertional mutagenesis and oncogenesis due to the 

deregulation of gene/s near the genomic region in which the pro virus integrates (0).

Alternative to retroviruses are present but at the moment not well studied and developed. 

Due to these limitations we decided to explore other viral systems to achieve high 

efficiency and stable gene transfer. In particular our aims were to obtain a good system to 

achieve site-specific integration and a vector without stringent limitation in cassette 

accommodation.
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We explored the possibility of other viral systems using a large cassette and trying to target 

it in a site-specific way.

Due to the know how of our laboratory, we choose to use a new kind of vectors, the 

Ad/AAV hybrid vectors. In fact they theoretically possess all the requisition we need: large 

capacity and site-specific integration machinery.

The wild-type AAV genome is a linear, single-stranded DNA filament of 4.7 kb, which 

contains at both ends a 145-base inverted terminal repeat (ITR) sequence, encoding the 

origin of replication and the packaging signals, and two AAV-specific genes, rep and cap 

(31). Rep gene encodes four overlapping proteins of 78, 68, 52, and 40 kDa, generated by 

alternative splicing of transcripts from two alternative promoters. The ITRs and either 

Rep78 or Rep68 are sufficient for replication of the AAV genome and mediating its 

integration into a specific site (AAVS1) on human chromosome 19ql3.3-qter (45, 5).

Due to the very limited packaging size of wt AAV particles, recombinant AAV vectors are 

deleted of all viral genes and have therefore lost the Rep-mediated, site-specific integration 

property of the wt viruses.

The recombinant AAV vectors maintain only a residual capacity for ITR-mediated 

integration in some target cells (e.g. liver), although at low efficiency and with virtually no 

site-specificity (26).

The AAV ITRs and Rep functions have been previously incorporated into hybrid, large- 

capacity viral vectors, such as baculoviral and HSV-1 amplicon vectors (57, 59), or into a 

split Ad/AAV vector system, in which an AAV ITR-flanked integration cassette and a 

Rep78/68 expression cassette were carried by two different HD-Ad vectors (57) (Fig. 3.1).
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Fig. 3.1 Schematic representation of Ad/AAV integration machinery in a split vector design. In this 

vector design the integration cassette is contained between the AAV ITRs and subcloned inside the Ad ITRs 

to be packaged. The Rep78 integration protein is supplied in trans using a non integrating Ad vector. Rep act 

on AAV ITR and AAVS1 sequences permitting the cassette integration into human Chrl9.

In these systems the inhibitory effect of Rep on viral replication prevented or significantly 

affected the production of Ad and HSV-1 vectors incorporating all the elements of the 

AAV integration machinery.

Background

Recently in this laboratory it was described the development of a single hybrid Ad/AAV 

vector (an alternative to the split Ad/AAV system) carrying a double reporter gene 

integration cassette flanked by AAV ITRs and, outside to the AAV ITRs (into the non 

integrating region) a tightly regulated, drug-inducible Rep expression cassette (Fig. 3.2). 

This hybrid vectors were successfully packaged and purified at a titer of 109 transducing 

units/ml. Upon infection at low multiplicity of susceptible human primary cells and cell 

lines, Rep-dependent, AAVS1-specific integration of the ITR-flanked cassettes of intact 

size and function was obtained in the absence of any cell selection.
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Fig. 3.2 Schematic representation of Ad/AAV integration machinery in a single vector design. In this 

vector design the integration cassette is always contained between the AAV ITRs and subcloned inside the 

Ad ITRs to be packaged. Rep78 gene is subcloned in the same vector outside the integrating AAV region.

The Ad/AAV vector system posses two interesting and powerful characteristics that justify 

our interest on this system:

1. The possibility to integrate in a site-specific way different types of gene expressing 

cassettes.

2. The possibility to package and target into the target cell a very large DNA fragment (up 

to 30-35 kb) eventually together with regulatory sequences/elements.

Specific goals.

In this work I tried to explore, characterise and improve all the characteristic of the ITRs- 

Rep mediated integration of Ad/AAV hybrid vector system in a large cassette contest.

In the hybrid Ad/AAV system the elements responsible for the site-specific integration 

derive from the AAV virus: ITRs and Rep protein.

The integrating cassette is flanked by the two AAV ITRs and subcloned inside to the Ad 

vector that pennits the accommodation of a very large cassette (Fig. 3.3). A limitation, that 

we want here to explore was the capacity of AAV integration machinery to integrate such a 

large gene in respect to its wt genome.
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Fig. 3.3 Schematic representation of Ad/AAV vector. The integrating region limited by the AAV ITRs is 

inserted in the space where was the Adeno genome. In this way there is the possibility to insert very large 

genes.

Concerning Rep, there are two possibilities to express this protein: subcloning a tightly 

regulated Rep expressing gene into the non integrating region of Ad/AAV vector (16) (Fig.

3.4 upper panel), or co-transducing cells with both the ITRs flanking cassette and an Ad 

non integrating vector expressing Rep in a tightly regulated way. (Fig. 3.4 lower panel).
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Fig. 3.4 Schematic representation of Rep expression alternatives. Rep can be both administered 

subcloning it in the non integrating region of an Ad/AAV vector (upper panel) or co-transducing target cells 

with an Adeno non integrating vector expressing the Rep cDNA (lower panel). The second option can 

circumvent most of the problems linked to the packaging of the vector in which there is a residual Rep 

expression.
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The development of an efficient integrating, large-capacity viral vector is still an unmet 

goal of gene transfer technology. The design of helper-dependent (HD), fully deleted Ad 

vectors has significantly reduced the limitations associated with the first-generation Ad 

vectors system (e.g. acute toxicity, inflammatory and cytotoxic immune response against 

the viral proteins) and offers an interesting opportunity to investigate the possibility to 

transform an Ad non integrating vector into an Ad/AAV hybrid integrating vector.

95



Chapters 4-7

Results



Chapter 4.

Construction of a large capacity Ad/AAV



4.1 Ad/AAV hybrid vector.

In this first part of my thesis project I decided to design a large capacity Ad/AAV vector to 

explore the possibility to obtain a high titer virus stock production and compare the 

efficiency and abilities of the Ad/AAV hybrid vector system in targeting site-specifically 

an integrating cassette in respect to its size.

In particular I decided to compare the published data regarding the Ad/AAV expressing an 

integrating cassette constituted by two reporter genes GFP and NGFR (around 4 kb) with a 

new designed larger ITR-ITR cassette containing the human collagen VII cDNA and the 

GFP reporter gene (12 kb).

4.1.1 Vector design.

To test the efficiency of Ad/AAV hybrid system as a gene transfer system able to target 

and integrate efficiently a large expressing cassette into human genome I decided to 

produce an Ad/AAV viral stock using a Helper Dependent (HD) system.

This system consists of one plasmid expressing the fully deleted Ad vector genome in 

which we introduced the transgene flanked by the AAV region responsible for integration 

into the human genome (ITRs).

I decided to subclone inside this kind of vector a constitutively expressed human cDNA 

collagen VII gene with a second gene, the GPF (Green Fluorescent Protein) as a marker. 

Collagen VII-GFP represents a very large cassette to be targeted and integrated into a host 

cell in respect to smaller previously tested vectors (Fig. 4.1 e 4.11).

It is unknown if this system (AAV-ITR + Rep), designed for a genome that is 1/3 of the 

cassette I tested, was able to integrate such as large transgene, and to do it efficiently and 

in a site-specific fashion.
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Integrating cassette (ITR-ITR)

Fig. 4.1 Schematic representation of large integrating vector. The integrating cassette, flanked by AAV 

ITRs is composed by a large expressing gene (hCol7) under the control of CMV promoter and by a selective 

marker (GFP) under the control of PGK promoter. In this case Rep is expressed in trans by a non integrating 

HD-Ad vector.

4.1.2 Large cassette construction.

Cassette was mounted following numerous passages into a pBS SK- plasmid.

First of all the human collagen VII cDNA (from Prof. Meneguzzi G. INSERM U634, 

Faculty of Medicine, Nice, France) was subcloned as an EcoRJ fragment into the EcoRI 

site of pBS SK- in reverse orientation (pBShcol7REV).

The CMV promoter was recovered as a NruI-EcoRV fragment from the pIRESneo plasmid 

and subcloned into the EcoRV site of pBS SK- containing human collagen VII 

(pBSCMVhcol7). The bovine Growth Hormone poly A signal (bGHpolyA) was added to 

the construct digesting it Xbal and blunting the site. bGHpolyA was obtained from 

pIRESneo cutting Xhol and Xbal and blunting them.

The cassette was completed (pBSCMVhCOL7pAPGKGFP) introducing to the 3’ of 

CMVhColVIIpolyA the PGKGFPsv40polyA obtained by digesting with EcoRV from 

pBSPGKGFP. The subcloning was obtained into the EagI blunted site of 

pBSCMVHCol7PolyA. The two expression cassettes were cloned in the same orientation. 

The complete large cassette was then extracted by EcoRV digestion from the 

pBSCMVhCOL7pAPGKGFP vector and subcloned between AAV ITRs. The two ITRs 

were obtained depriving pBSAAV2 of the whole AAV genome cutting it out with Xbal 

and filling with klenow to obtain blunt ends.
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The ITRs flanking cassette was then cut Notl-Clal to extract the ITR-flanked cassette and 

subcloned into the Xbal blunted site of a pBGshuttle vector to perform homologous 

recombination with the final Ad vector (pA28short) (Fig 4.2).

pD28shortITRCGL7GFP
3215a b p

HF'F'T Stiff*!

region ot homology 
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eiiion ot I K-mology

sv-topdyA 

poly4

Fig. 4.2 Schematic representation of the large integrating vector.

4.1.3 Homologous recombination.

The final Ad vector was obtained by homologous recombination between the pBG shuttle 

vector and the pA28 vector. The pBGshuttle vector was linearised using the PacI site (Fig. 

4.3) to offer free homology regions.
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Fig. 4.3 Schematic representation of pD28 vector and pBGshuttle. In the figure the homology regions 

responsible for the homology recombination event are indicated. On the right panel the Xbal and Xhol 

cloning site are indicated.
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4.2 Vector expression.

Prior to packaging, the Ad/AAV virus vector functionality was tested by transient 

transfection in 293T and HeLa cells to check for GFP and human collagen VII expression. 

293T transfection was done using calcium phosphate method in 10 cm plates. HeLa cells 

transfection was done using the FUGENE method in 6 cm plates.

Transfection was done with a GFP (pEGFPC3) as a positive control for GFP expression 

and tranfection efficiency.

Two series of cited cell plates were prepared: one series was analysed by FACS for GFP 

expression and one series was analysed for human collagen VII expression.

GFP expression:

The day after transfection the cells were washed three times in PBS and 10 ml of fresh 

medium was added. 24 hours after medium changing cells were detached and analysed by 

FACS for GFP expressions. Cells were washed twice in PBS and detached with Trypsin. 

5x105 cells were resuspended in PBS 1% BSA and analysed by FACS (Fig. 4.4).

10 to  10 10 10
FL1-HeightSSC-Height

Region % Gated XMaan
R1 100.00 171,99
R2 60.49 254.98

Fig. 4.4 FACS analysis for GFP expression. 293T cells were analysed for GFP expression. R1 gated the 

living cell population. R2 gated the GFP positive celle population in which there is a FL1 shift. All the 

transfection demonstrated the correct and efficient expression of GFP by the large capacity Ad/AAV vector.

The vector was able to express correctly GFP.
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Human Collagen VII expression:

The day after transfection cells were washed three times in PBS and 5 ml (for 10 cm 

plates) or 2 ml (for 6 cm plates) of freshly serum free medium containing 50 mg/ml of 

ascorbic acid. 24-48 hours after medium changing the conditioned medium was harvested 

and 0.45 um filtered to eliminate debris. 1 ml of the conditioned medium harvested from 

negative control and hColVII-GFP tranfected cells was dot blotted onto a nitrocellulose 

membrane. The membrane was treated following a Western blot protocol (See materials 

and methods) and probed for human collagen VII expression with a monoclonal antibody 

for human collagen VII (See Materials and Methods) (Fig. 4.5).

Negative Control HeLa cells 

Keratinocytes 

Transfected HeLa cells

Fig. 4.5 Dot blot analysis for human collagen VII expression and secretion. HeLa cells were analysed for 

human collagen expression. 1 ml of supernatant from transfected cells was loaded onto nitrocellulose 

membrane connected to a dotblot apparatus. The samples from transfected cells demonstrated the correct 

human collagen VII secretion into the medium. Negative control is supernatant from HeLa cells mock 

transfected. Supernatant from keratinocytesis were used as positive control for human collagen VII 

expression.

The vector was able to drive correctly synthesis and secretion of human collagen VII into 

the culture medium.

4.3 Large capacity vector packaging.

Certain of the vector functionality we passed to the HD-Ad virus production.

Ad/AAV virus stock was produced by transfection/infection of the 293Cre4 cell line, as 

previously described (24).
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293Cre4 cells were transfected in 6 cm Petri dishes with pD28shortITRCOL7GFP using 

calcium phosphate method. The day after cells were washed three times in PBS and 5 ml 

of fresh medium added. 36-48 hours after transfection cells were co-infected with the 

helper virus for virus stock production and amplification (as illustrated in Fig. 4.6). 1 ml of 

PBS containing the helper virus (M.O.I 1) was added to the cells and incubated 30-45’ in 

5% CO2 37°C incubator.

All the scale up passages were monitored for GFP expression. Following the increase of 

GFP positive cells during the scale up passages other helper virus (MOI 1) was added to 

ensure the constant increase in GFP positive cell number (indicative of Adeno containing 

transgene amplification). For the scale up process we started from 6 cm dish to end up to 

30 15 cm dishes. Cells and supernatants were harvested and processed (See Materials and 

Methods).

□ ID E  I
1 1

loxP 
Helper virus 
E1 deleted

Adeno
ITR

¥

Vector

transgene

Adeno
ITR

loxP

293 Cre

Adeno helper E1 
deleted

Helper dependent 
Adenovirus

Fig. 4.6 Schematic representation of Adeno Helper Dependent production. Vector plasmid containing 

transgene is transfected into 293Cre cells. Cells are co-transduced with the helper virus expressing in trans 

all the accessory genes needed for the virus packaging (in our case we utilised MOI 1). The Helper virus has 

the \|/ packaging signal between the two lox p sequences. In presence of Cre recombinase expressed in 293 

Cre cells Helper virus can’t be efficiently packaged. It is possible to reduce in this way the Helper virus 

contamination.
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4.4 Control of Rep78 expression.

Rep interferes with Ad packaging and is a toxic protein for the host cell, and it is therefore 

necessary to tightly control its expression (25-27). We decided to use a tet-on control 

expressing system to administer Rep in a turning on/off system (Fig 4.7).

- dox

TATA- Rep78

+ dox 

S—S

[ ]---- TATA [Rep78|

Fig. 4.7 Schematic representation of Tet regulating Rep expression. To overcome or limit the toxic effect 

in Rep expression we used a tet-on system to switch on/off the Rep production. Rep is expressed in a non 

integrating Ad and the production was switched on for few days after Ad/AAV transduction adding 

doxicyclin into the medium.

We tested two kind of vectors for Rep production: CMVRepTS and TKRepTS. The first 

one containing the transcriptional silencer (tTS) gene expressed under the control of a 

CMV promoter, while in the TKRepTS vector the Rep78 gene was under the control of the 

minimal promoter (-81) of the HSV-1 thymidine kinase gene (TK) linked to the tetO 

element (tetOTK) (Fig. 4.8).

A d e n o  
iTR v

A d e n o  
ITR .

Fig. 4.8 Schematic representation of vector structures. Expression cassettes were inserted into the 

pSTK120 (25.8 kb) or pSTK119 (23.3 kb) The CMVRep vector contains an AAV Rep78 ORF under the 

control of the CMV immediate-early enhancer/promoter (-675). In the other vectors an inducible Rep 

expression cassette is constituted in which the Rep78 ORF is driven by a minimal CMV (-53) or TK (-81) 

promoter controlled by a bacterial tet operator (tetO) sequence CMVRepTS and TKRepTS.
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A control vector, CMVRep, containing only a Rep78 expression cassette driven by the 

CMV promoter/enhancer in the STK-120 backbone was used to measure the Rep 

expression level.

Basal Rep78 expression was very well controlled and induced by Dox 48 hours post­

transfection at levels comparable to those obtained by an unmodified CMV promoter (Fig. 

4.9).

in
i f ) Q_CL

Dox

Rep 78

HMG1

Fig. 4.9 Western blot analysis of Rep expression in 293T cells. The CMVRep vector contains an AAV 

Rep78 ORF under the control of the CMV immediate-early enhancer/promoter (-675). In the other vectors an 

inducible Rep expression cassette is constituted in which the Rep78 ORF is driven by a minimal CMV (-53) 

or TK (-81) promoter controlled by a bacterial tet operator (tetO) sequence CMVRepTS and TKRepTS. 50 

ug of protein extract was loaded after measurement by the Bradford method. This Western blot show clearly 

the possibility to induce Rep in presence of Dox, limiting the Rep expression and cellular toxicity. HMG1 

was utilysed as loading control.

To express Rep78 protein we chose to use the CMVRepTS vector.

4.5 Packaging of the Rep78 expressing vectors.

We produced the HD-Ad expressing Rep (CMVRepTS) vector by transfection/infection of 

the 293Cre4 cell line, as previously described (12 and Fig. 4.6).

The approach in viral amplification in this case, without a marker gene, was different. 

After five serial passages of viral amplification, the integrity of the episomal Ad vectors
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was controlled by Southern blot analysis of Hirt DNA extracted from crude lysates of the 

packaging cells. Both the CMVRepTS and TKRepTS viruses yielded the predicted 

restriction fragments when grown in the absence of Dox, while they rearranged when 

grown in the presence of Dox (results not shown). This data confirmed the known 

problems of Rep interference with Ad packaging.

Rep production:

6 cm Petri dishes transfected with CMVRepTS and TKRepTS were analysed for Dox Rep 

induction. After precipitate were washed out one plate per vector type was cultivated in 

presence of Dox and the other one without. Cells were harvested 24 or 48 hours. Nuclear 

extracts were analysed by Western blotting using a rabbit anti-Rep polyclonal antiserum. 

Basal expression level of Rep78 (without Dox) was low from the tetO-CMV promoter and 

virtually undetectable from the tetO-TK promoter (Fig. 4.10).

Rep 78

HMG1

Fig. 4.10 Western blot analysis of Rep expression in 293Cre cells. Cells in which were transfected the two 

constructs were monitored for Rep expression during virus growth. + and -  stand for dox or not dox added. 

50 ug of protein extract was loaded after measurement by the Bradford method. HMG1 was utilysed as 

loading control to normalize the expression of Rep.

4.6 Description of Ad/AAV control vector.

The prototype of integrating vector contained an AAV ITR-flanked integration cassette 

with two different reporter genes, the green fluorescent protein (GFP) and a truncated
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version of the p75 low-affinity nerve growth factor receptor (ALNGFR) under the control 

of the phosphoglycerokinase (PGK) and the SV40 early promoter, respectively, cloned into 

the STK-120 HD-Ad backbone (Fig. 4.11). In respect to the described large capacity vector 

this vector possesses the Rep expressing cassette in the non integrating region of the virus. 

The ITRGNCMVRepTS vector contained only the tTS gene under the control of a CMV 

promoter, while in the ITRGNTKRepTS vector the Rep78 gene was under the control of 

the minimal promoter (-81) of the HSV-1 thymidine kinase gene (TK) linked to the tetO 

element (tetOTK) (Fig. 4.11). The control vector, CMVRep, contained only a Rep78 

expression cassette driven by the CMV promoter/enhancer in the STK-120 backbone (Fig. 

4.11).

Adeno
m*v

Adeno
■TR „

 I v

IT R G N  d --------- PG K GFP j 'S V 401 NGF-R j 0

ITR  ^  ITR

CMVRep78

TetOCMVRepTS < ^ TetOCMVRep78j -------|PGt{  GFP ]— [sV4of NGF-R j —m
ITR  ITR

TetOTKRepTS ------ jgcw j g f p  ■— |s v 4o [  NGF-R 3 — a
AAV

ITR

Fig. 4.11 Schematic representation of splitted and single vectors ITR-ITR integrating cassette. In the

single vector model Rep is in the non integrating region.

4.7 Viral titration.

Titration to determine the number of transducing units (TU)/ml in the viral vector stock

consists of testing serial dilutions on appropriate target cells. The method and time it takes

to determine the titer depends on the particular marker gene encoded in the transfer vector

and, of course, on the type of transcriptional regulation of the marker gene. For example,

vectors with GFP or luciferase markers, under transcriptional control of a constitutive
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promoter, can be harvested about 2-3 days post-infection, while for vectors with drug 

resistant markers it takes approximately two weeks for drug-resistance colony formation. 

For vectors in which the marker gene is regulated in a cell-lineage specific fashion, the use 

of the appropriate cell target is needed. For example, viral titers of vectors with erythroid- 

specific expression of the marker gene should be calculated by transduction of an 

erythroblastic cell line.

However, under normal conditions, the most common target cells used to determine viral 

titers are HeLa and 293T cells.

In our case, viral supernatant titers were determined by transduction of HeLa cells. A fixed 

number, generally lx l0 5, of HeLa cells were transduced with serial dilutions of the viral 

stock preparations. Dilutions of viral supernatant started from 10'1 up to 10’3. HeLa cells 

were transduced with diluted supernatant in PBS for one hour in 37°C 5% CO2 incubator 

(See materials and methods).

Transduction efficiency was determined by FACS analysis for GFP expression. Viral titers 

are usually calculated at that dilution where there is a linear regression of GFP expression 

and are expressed as transducing units per ml (TU/ml) of viral stock. This is a conventional 

unit calculated by dividing the number of GFP-expressing cells to the dilution of viral 

preparation used to transduce cells.

4.8 Large cassette expression after keratinocytes transduction.

Immortalised collagen VII deficient human keratinocytes were transduced at different MOI 

to test Ad stock proteins production.

Cells were transduced in serum free DMEM for 5 hours in 37°C 5% CO2 incubator. 10%

FCS (final concentration) was supplemented and cells were incubated for 72 hours in 37°C

5% CO2 incubator prior to gene transfer analysis. 3 MOI were tested 50, 100 and 200.
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Control for GFP expression was obtained transducing at MOI 200 with Ad GFP human 

keratinocytes in the same conditions.

GFP expression:

72 hours after transduction cells were monitored for GFP expression by FACS analysis. 

Cells were washed twice in PBS and harvested with trypsin. 5xl05 cells were resuspended 

in PBS 1% BSA and FACS analysed (Fig. 4.12)

□ GFP

o 50

70 -

60

30

50 Collagen VII 100 Collagen VII 200 Collagen VII

MOI
100 GFP

Fig. 4.12 Graphic representation of GFP positive keratinocyte 72 hours after transduction.

Keratinocytes were FACS analysed 72 hours after transduction with Ad/AAV expressing human collagen 

VII and GFP. 3 MOI were tested for Ad/AAV and one (MOI 100) for GFP control to see the expressions of 

the entire cassette.

Good levels of GFP expression were obtained with GFP control and AdCol7GFP. Raising 

MOI did not increase the percentage of GFP positive cells, but not toxic effect was 

observed.

Human collagen VII expression:

72 hours after transduction cells were washed three times in PBS and 10 ml of freshly 

serum free medium supplemented with 50 mg/ml of ascorbic acid added.

48 hours after medium changing the conditioned medium was harvested and 0.45 um 

filtered to eliminate debris. All the medium harvested from control GFP and AdCOL7GFP
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transduced cells was concentrated by centrifugation in 100 MWCO Amicon columns. 

Concentrated supernatant was measured by the Bradford method in the spectrophotometer 

and 30 ug of proteins were loaded on SDS PAGE gel (Fig. 4.13). Western blot was 

performed following a standard protocol (see Materials and Methods).

H u m a n  ColVII -

2 5 0 k D a  -

Fig. 4.13 Western blot on transduced keratinocytes concentrated supernatant. Transduced keratinocytes 

collagen VII deficient were cultived in FCS free medium with 50 mg/ml of ascorbic acid. After 48 hours 

medium was harvested and concentrated on Amicon 100 MWCO colums. 30 ug of proteins (measured by 

Bradford method) were loaded on SDS PAGE gel and revealed with anti human collagen VII antibody. K71 

and K100 are keratinocytes collagen VII deficient from two different donors. The positive control was 

represented by HeLa cells transfected with the vector expressing collagen VII.

The vector was able to express correctly human full length collagen VII at very good 

levels.
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Chapter 5

Analysis of Ad/AAV vector integration.



5.1 HeLa cell clones generation.

To compare the efficiency of transgene integration between large capacity 

(AdITRCOL7GFP) and control (ITRGNRep) vectors we analysed what happened at single 

cell level.

HeLa cells were transduced with AdITRCOL7GFP and co-transduced with CMVRepTS at 

MOI 20 for both viruses.

HeLa cell bulk cultures were kept in the presence and absence of Dox to monitor the effect 

of Rep on overall and site-specific integration.

Bulk culture were monitored for one month for GFP and human collagen VII expression 

respectively by FACS and dot blot analysis (data not shown).

1.5-2.0% of the cells cultured in presence of Dox, maintained reporter gene expression, 

while cells cultured without Dox, scored negative already 3 weeks after infection. HeLa 

cells kept in the presence of Dox maintained GFP expression after one month. After this 

period HeLa cells were sorted for GFP positivity, and subcloned in 96 well plates at 0.2- 

0.3 cells/well cell density by limiting dilution (Fig. 5.1).

Cell 
sorting s

<=3 ■
Cloning

~~ by limiting
I n  n  r g g jg w w w g  ) dilution

Fig. 5.1 Experimental scheme of clones isolation. HeLa cell clones were transduced with both Rep and 

collagen + GFP expressing vector. Cells cultured for about a month in presence of Dox were sorted. Sorted 

HeLa clones were isolated by sorting from the sorted bulk. R1 gated the viable population and R2 gated the 

GFP population in which there was a shift on X axis.
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Single clones were isolated after two weeks of culture and grown for up to one month for 

further analysis.

More than 50 clones were scored for GFP expression by microscope and FACS analysis 

(data not shown) and for human collagen VII expression by dot blot (Fig. 5.2). Since the 

sorted bulk culture was virtually 100% transduced, the vast majority of clones analysed co­

expressed GFP and human collagen VII. The presence of GFP and human collagen VII 

expression was very important because represented a first clue of correct cassette 

integration.

N.C. P.C.

Fig. 5.2 Dot blot analysis for human collagen VII expression and secretion. HeLa cell clones were 

analysed for human collagen VII expression and secretion. 1 ml of supernatant from transduced cells was dot 

blotted onto nitrocellulose membrane and recognised following a Western blot procedure with a monoclonal 

antibody detecting human collagn VII. N.C. is the negative control, 1 ml of supernatant from HeLa cells 

mock transduced. P.C. is the positive control, 1 ml of supernatant from HeLa cells human collagen VII 

transfected. Each spot represent a single cell clone.

5.2 Integrity analysis of the integrated ITR-flanked Col7-GFP in HeLa 

cells.

28 clones were further expanded and genomic Southern blot analysis was performed to 

determine the integrity of the integrated cassette for each clone. The integrity of the 

cassette was determined by digestion of genomic DNA with Ncol. Ncol cut twice into the 

vector releasing a 10 kb fragment encompassing most of the human collagen VII and GFP 

cDNAs (Fig. 5.3).

113



______

Ncol Probe

Fig. 5.3 Schematic representation of integrated large cassette. Genomic DNA was digested Ncol to cut 

the entire cassette from the whole host genomic DNA. Ncol enzyme cut inside CMV promoter and 3’ ITR 

region. Using a human collagen VII specific probe is possible to see a 10 kb band.

This 10 kb DNA fragment can be probed using a human collagen VII specific probe (Fig. 

5.3). In all the analysed clones, Southern blot showed no evidence of cassette 

rearrangement, all the Ncol fragments were of the expected size. This is a very important 

result. Genome stability of such a large integration cassette was in fact unpredictable, also 

considering the peculiar nature of its cDNA content. The human collagen VII cDNA 

sequence has a very repetitive structure, potentially leading to instability and 

recombination.

MW pi. 1 2  3 4 5 6 7 8 9 10 11 12 1314 N.C 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Endogenous 
collagen VII

Fig. 5.4 Southern blot analysis of HeLa clones Ncol digested for integrated cassette integrity, pi. stands 

for plasmid and represent the AdHD plasmid digested with Ncol, N.C. is genomic DNA from Hela cells 

mock transduced with the virus. 1 28 are different HeLa clones. All the 28 HeLa clones showed a 10 kb

band corresponding to the correct size of the integrated cassette.

114



5.3 Human collagen VII expression.

Each positive cell clone was tested by dot blot analysis for human collagen VII secretion 

(data not shown). 5x10s HeLa cell clones were plated in 6 well plates. The day after plating 

cells were washed twice in PBS and cells were maintained 24 hours in 2 ml serum free 

medium with 50 mg/ml of ascorbic acid. 1 ml of the conditioned medium harvested from 

cells was dot blotted onto a nitrocellulose membrane and probed following the Western 

blot analysis standard protocol. All the clones analysed expressed human collagen VII. The 

level of expression was different depending on the clone analysed.

To ensure that what we had seen in dot blot analysis was a correct size protein, we tested 

by Western blot the clone supernatants.

5xl06 cells of each HeLa clone were plated onto 10 cm Petri dishes. The day after growth 

cells were washed twice in PBS. 10 ml/plate of serum free medium with 50 mg/ml of 

ascorbic acid was added and cells were cultivated 24-48 hours in 5% CO2 37°C incubator. 

The conditioned samples were collected and 0.45 um filtered to eliminate debris. 

Supernatants were concentrated with Amicon 100 MWCO columns by centrifugation. 

Protein-enriched supernatants were measured by the Bradford method and 30 ug of 

proteins loaded on SDS-PAGE gel. Western blot analysis was performed following 

standard methods.

HeLa MW 5 6 14 15 21 24 28

human collagen VII- 
220kDa -

Fig. 4.5 Western blot analysis of concentrated supernatant from HeLa clones. HeLa are wt cells mock 

transduced, representing the negative control for collagen expression. 5, 6, 14, 15, 21, 24, 28 are 

AdColVIIGFP transduced HeLa clones selected for analysis. Cells were kept 24 hours in DMEM serum free 

50 mg/ml ascorbic acid supplemented. 10 cm plates were incubated 24 hours after transfection with 5 ml 

media and after incubation time all the medium was 0.45 urn filtered and concentrated. 30 ug of total protein 

sample was run on SDS-PAGE gel. The band under 220kDa is a degraded form of collagen VII.
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Western blot analysis confirmed that what we had seen with dot blot screening was 

effectively a correct human collagen production. Monoclonal antibody we used correctly 

recognized a band migrating around 300 kDa as expected in all the clones we analysed.

5.4 Site-specific integration of the AAV ITR-ITR large cassette in HeLa 

cells.

Previously extracted DNA from each HeLa clone was analysed by Southern blotting after 

restriction with EcoRI, which releases a 9 kb fragment encompassing part of the 

chromosome 19 AAVS1 site and part of the integrated ITR-ITR cassette (Fig. 5.6). 

Hybridization with an AAVS1-specific probe and followed by a GFP specific probe 

showed co-localization in 6 of 23 independent HeLa clones (5 clones after Southern blot 

analysis revealed the same restriction fragment profile), indicating rearrangement of the 

AAVS1 region in at least one chromosome 19, in which we obtained site-specific 

integration (26%).

AAV
ITR

AAV
ITR

w liy iv j  hCOL7 I PolvA PGK GFP PolvAl
1

EcoRI EcoRI
1

EcoRI

h -

i

EcoRI

A round  9 kb

Fig. 5.6 Schematic representation of restriction mapping profile of AAVS1 region with large cassette 

integration. In the case of AAVS1 site specific integration the vector introduces 2 new EcoRI sites. Co- 

hybridising Southern blot membrane with both GFP and AAVS1 specific probes is possible to isolate clones 

with site specific integration.

The same DNA was also digested with AccI which releases a 3.1 kb fragment 

encompassing most of the chromosome 19 AAVS1. AAVS1 probe showed a size shift of 

the 3.1 kb band in 16 of 23 independent HeLa clones (70%), indicating rearrangement of
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the AAVS1 region in at least one chromosome 19. The rearranged bands hybridized also to 

a GFP-specific probe in 6 of the 23 clones (26%), indicating the integration of the AAV 

ITR-flanked cassette in the AAVS1 region.

In 10 clones (43%), the AAVS1 site showed a rearranged band that did not hybridize to the 

GFP probe, indicating Rep-mediated disruption of the AAVS1 region in the absence of 

integration. Conversely, 8 of 23 clones showed bands corresponding to intact AAV ITR- 

flanked cassettes integrated elsewhere in the genome (34%) (Fig. 5.7).

HW CN  Rl 1 2 3 4 5 27 MW CN Rl 1 2 3 4 5 27

EcoRI Probe AAVS1
17 16 15 14 13 12 1Kb 17 16 15 14 13 12 1Kb

•M

EcoRI Probe AAVS1 EcoRI Probe GFP

Clone AAVS1 Rearrangement Integration

1=2,4,5 Not Present Random

2=1,4,5 Not Present Random

3 PRESENT CHR19

4=5,1,2 Not Present Random

5=1,2,4 Not Present Random

6 Present Random

7 Present Random

8=11 Not Present Random

9 Present Random
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10 Present Random

11=8 Not Present Random

12 Not Present Random

13 Present Random

14 Present Random

15 Present Random

16 Present Random

12 PRESENT CHR19

18 Not Present Random

19 PRESENT CHR19

20 Not Present Random

21 Not Present Random

22 PRESENT CHR19

23 Not Present Random

25 PRESENT CHR19

26 Present Random

27 PRESENT CHR19

28 Present Random

Fig. 5.7 Summarising scheme for large cassette integration. Genomic DNA from HeLa clones was 

digested both with AccI and EcoRI to study the integration of the large cassette into the host genome. In the 

first panel 2 Soutem blot on the left are hybridised with the AAVS1 probe. Southern blot on the right are the 

same filters stripped and re-probed with the GFP probe. Site-specific integration was determined when co­

hybridisation with AAVS1 probe and GFP probe was present. MW stands for molecular DNA weight, Rl is 

the Adeno plasmid digested with EcoRI, the numbers are single HeLa clones.

5.5 Site-specific integration into human keratinocytes with small cassette 

vector.

K71 deficient collagen VII keratinocytes were infected with the single vector expressing 

ITRGN (non integrating vector) alone and with TKRep (expressing the Rep protein able to
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integrate the previous vector) at an MOI of 100 and 200. Transduced cells were grown for

5 days in the presence o f Dox for Rep expression.

GFP expression:

We tested for GFP expression by FACS analysis 5 days after infection (Fig. 5.8). Cells 

were washed twice in PBS and harvested with trypsin. 5x105 cells were resuspended in 

PBS 1% BSA and FACS analysed.

GFP expression
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£  30 S2
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ITRGN 100 TKRep 100 TKRep 200

Fig. 5.8 K71 keratinocytes (collagen VII deficient) were transduced with the small cassette vector.

ITRGN is the vector without Rep expressing cassette. Two different MOIs were tested. Cells were cultived in 

presence of Dox for Rep expression where it was present.

Keratinocytes were efficiently transduced with the viruses.

Integrations:

High molecular-weight DNA was extracted from these cells and analyzed it by nested-set 

PCR with AAVS1- and AAV ITR-specific primers (See Material and Methods).

DNA bands were amplified from keratinocytes transduced by the single vector expressing 

the ITRGN and TKRep in the presence of Dox.

No signal was detected in cells transduced by the control ITRGN non integrating vector. 

We analyzed the distribution of integrants throughout the AAVS1 region by nested PCR 

using two forward primers on the AAV ITR and three couples of reverse nested primers 

annealing to different positions within AAVS1 (a and b at nt 526-615, c and d at nt 1175— 

1349, and e and f  at nt 1612-2089, see Fig. 5.9).
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Fig. 5.9 Schematic representation of AAVS1 and AAV 3’ ITR nested primers, a-f are 6 primers Rev 

spanning the AAVS1 region. The For primers are located on the 3’ AAV ITR.

Specific DNA bands (200 to 700 bp long) were amplified from all cells only by the c + d 

and e + f  sets of primers (not shown).

To further characterize the integrations, we cloned and sequenced PCR-amplified bands. 

Analysis of the integration junctions showed that the insertions clustered within a 1 kb 

region of the AAVS1 (nucleotides 1068 to 2000), downstream of the Rep-binding site 

(RBS; nucleotides 398-413) (Fig. 5.10).

A A V S1 1 9 9 9i i
C C A G G G G T C C G A G A G C T C A G C T A G T C T T C T T C C T C C

A A V S1 1 0 6 8

C AT C GG AA G  A G G G G  AAG T C G A G G G  A G G G  AT G G T  AAG G  AG

ITR A A V S1 1 8 8 0i i
G A C A C C C C G T T C T C C T G T G G A T T C G G G T C A C C T C T C A C T C C T T T C A T T T G G G C  

A A V S1 1 9 9 9  TRi i
G A A G A C T  A G C T G A G C T C T C G G A C C C C T  G G

Fig. 5.10 Summarising scheme for cassette site specific integration. Site specific integration was 

investigated by nested PCR approach and the amplified junctions were sequenced. A clustered insertion point 

was found within a 1 kb region. Each line represents a different insertion site.

5.6 Site-specific integration into human keratinocytes with the large 

cassette vector.

K71 deficient collagen VII keratinocytes were infected with the single vector expressing 

the human collagen VII and GFP alone (non integrating vector) and with TKRep
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(expressing the Rep protein able to integrate the previous vector) at an MOI o f 100 and

200. Transduced cells were grew for 5 days in the presence of Dox for Rep expression.

GFP expression:

We tested for GFP expression by FACS analysis 5 days after infection (data not shown). 

Cells were washed twice in PBS and harvested with trypsin. 5xl05 cells were resuspended 

in PBS 1% BSA and FACS analysed (data not shown).

Integrations:

High molecular-weight DNA was extracted from these cells and analyzed it by nested-set 

PCR with AAVS1- and AAV ITR-specific primers (See Material and Methods).

DNA bands were amplified from keratinocytes transduced by the single vector expressing 

the human collagen VII and TKRep in the presence of Dox.

No signal was detected in cells transduced by the control ITRCol7GFP non integrating 

vector.

We analyzed the distribution of integrants throughout the AAVS1 region by nested PCR 

using two forward primers on the AAV ITR and three couples of reverse nested primers 

annealing to different positions within AAVS1 (a and b at nt 526-615, c and d at nt 1175— 

1349, and e and f  at nt 1612-2089, see Fig. 5.9).

Specific DNA bands (200 to 700 bp long) were amplified from all cells only by the c + d 

and e + f  sets of primers (not shown).

To further characterize the integrations, we cloned and sequenced PCR-amplified bands. 

Analysis of the integration junctions showed that the insertions clustered within a 1 kb 

region of the AAVS1 (nucleotides 1054 to 1900), downstream of the Rep-binding site 

(RBS; nucleotides 398-413) (Fig. 5.11).
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A A V S 1 1 0 5 4
GGCCTCCAGGGATCCTGTGTCCC

A A V S 1 1 9 0 0i •
CTGCCCTTCCTTGACGAAAAC ACACAGCATAACCTCATTCTGCAAAGAA1 

    ______________________________

Fig. 5.11 Summarising scheme for cassette site specific integration. Site specific integration was 

investigated by nested PCR approach and the amplified junctions were sequenced. A clustered insertion point 

was find within a 1 kb region. Each line represents a different insertion site.
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Chapter 6

Optimisation of vector integration.



6.1 p5 element an enhancer on overall and site specific integration?

As we already know Rep mediated integration is extremely inefficient. This inefficiency is 

worst in a large cassette model.

In my work I tried to find out a system to improve this situation. Two ways were possible 

to improve the integration efficiency: to act on the integration system, and enhance the 

transduction efficiency to have more cells with the vectors inside.

Rep-mediated integration of rAAV plasmids is extremely inefficient, with between 0,1 and 

1% of transduced cells demonstrating rAAV genome persistence after 6 weeks (48).

In contrast, plasmids that carry the entire AAV genome integrate at efficiencies of greater 

than 10%. This difference between rAAV plasmids and wt AAV plasmids led to the 

discovery of a previously unknown cis sequence domain in the left end of the AAV 

genome that enhances integration efficiency (48). The p5 trs-like motif was identified 

because it enabled Rep-dependent AAV-2 replication in the absence of the left ITR (132). 

In addition to its ability to behave as a cis-acting replication origin, the p5 region 

(nucleotides 151 to 289 of wild-type AAV-2) was recently shown to enhance Rep- 

mediated site-specific integration of plasmid DNA into the human chromosome 19 AAVS1 

site (48,49).

To test the effect of this element in our system we wanted to test a new vector 

structure/design on overall and site-specific integration percentage re-integrating a mutated 

form of p5 promoter sequence (p5ATATA) into its viral wild-type position, flanking the 5’ 

AAV ITR (Fig. 6.1).
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GC ^G C C C  GCGACACCATGTGGTCACGCTGGG ^GCCCGAGTGAGCACGC
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Around 4 Kb

Fig. 6.1 Schematic representation p5 modified sequence. p5 sequence was modified to abolish TATA box 

by mutating its sequence. The obtained p5ATATA was subcloned near the 5’ ITR and the ITRp5ATATA-ITR 

was used to flank a two reporter 4 kb integrating cassette.

6.2 ITRp5ATATA containing plasmids.

p5ATATA promoter sequence was synthesised amplifying two partially overlapping 

primers into the TATA box mutated region (See Material and Methods). The obtained PCR 

product was subcloned into a TOPO TA cloning vector. The p5ATATA sequence was cut 

Sall-Avrll blunted and subcloned to the 3’ region of 5’ AAV ITR into the pBSAAV vector 

cut Xbal and blunted to obtain pBSAAVp5 (Fig. 6.1).

The 5’ unmodified ITR was cut Spe-Xbal and subcloned into a TOPOp5 vector to obtain 

TOPOp5ATATAITR.

The construct pBSITRp5ATATAGFPNGFR was obtained digesting the vector 

pBSITRgfppoliAngfrpoliAinv Sail blunted and Xbal to cut off the 5’ITR and introduce the 

ITRp5ATATA cut Drall blunt and Spel.

pBSITRp5ATATAGFPNGFR was utilised to test the difference in respect to the original 

construct pBSITRGFPNGFR by transient transfection in HeLa cells co-transduced with the 

non integrating Ad expressing Rep78 protein. Tranfection experiments were performed in 

presence and in absence of Dox to switching on/off the Rep production.
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5xl06 Hela cells were seeded on 10 cm Petri dishes the day before transfection.

The same amount of the two plasmids (10 ug) was transfected using Calcium Phosphate 

protocol. HeLa control cells were transfected with a plasmid containing GFPANGFR but 

without ITRs. After an over night incubation of HeLa cells in presence of precipitates cells 

were washed twice with PBS and fresh medium added for 6 hours and kept at 37°C 5% 

CO2. Cells were washed twice with PBS and trasduced with TetRep in PBS (1 ml per 10 

cm Petri dish) and incubated for 1 hour at 37°C 5% CO2. After transduction time 10 ml of 

fresh medium Dox supplemented was added to PBS containing virus. Transfected 

transduced HeLa cells were kept in culture one month in presence of Dox to ensure the 

elimination of non integrated DNA and monitored for GFP expression (data not shown). 

After this period the GFP positive cells (around 1,5% in the case of wild type ITR and 

2,5% for p5ATATA) were FACS sorted.

6.3 HeLa cell clones generation.

Cell bulks after FACS sorting were subcloned at 0.2-0.3 cells/well by limiting dilution. 

Single clones were isolated after two weeks of culture and grown for up to one month for 

further analysis.

More than 50 clones were scored for GFP expression by FACS analysis (not shown). Since 

the-sorted bulk culture was virtually 100% transduced, the vast majority of clones analysed 

were GFP positives.
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6.4 Site-Specific Integration of the AAV ITR-Flanked Cassette in HeLa 

cells.

25 clones for pBSITRp5ATATAGFPNGFR transfected HeLa and 25 for 

pBSITRGFPNGFR were further expanded and genomic Southern blot analysis was 

performed to determine the genome integration of the ITR flaked cassettes for each clone. 

The site-specific integration of the cassette was determined by digestion of genomic DNA 

with Accl. AccI cut releases a 3.1 kb fragment encompassing most of the chromosome 19 

AAVS1 site.

Southern blot were probed with an AAVS1 and a GFP specific probes.

Unmodified ITR:

In the case of clones obtained from unmodified ITR AAVS1, the probe showed a size shift 

of the 3.1 kb band in 23 of 25 independent HeLa clones (92%), indicating rearrangement 

of the AAVS1 region in at least one chromosome 19. The rearranged bands hybridized also 

to a GFP-specific probe in 16 of the 25 clones (64%), indicating the integration of the 

AAV ITR-flanked cassette in the AAVS1 region. Further restriction analysis indicated that 

the AAV ITR-flanked cassette had integrated as a monomer or a dimer in the AAVS1 site 

and conserved an intact structure in all cases (not shown).

In 7 clones (28%), the AAVS1 site showed a rearranged band that did not hybridize to the 

GFP probe, indicating Rep-mediated disruption of the AAVS1 region in the absence of 

integration. Conversely, 2 of 25 clones showed bands corresponding to intact AAV ITR- 

flanked cassettes integrated elsewhere in the genome (8%). 7 out 25 clones (28%) showed 

both AAVS1-specific and non-specific integrants (Fig. 6.2).
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Fig. 6.2 Southern blot analysis of clones obtained from unmodified ITR.

HeLa were transfected with pBSITRGFPNGFR plasmid and transduced with TetRep Ad non integrating 

vector. 25clones (1A -> 25A) were co-hybridised with AAVS1 and GFP specific probes to analyse 

integrations. Southern blot on the right are the same filters stripped and re-probed with the GFP probe.

P5ATATA modified ITR:

In the case of clones obtained from p5 ATATA modified ITR AAVS1 probe showed a size 

shift of the 3.1 kb band in 21 of 25 independent HeLa clones (88%), indicating 

rearrangement of the AAVS1 region in at least one chromosome 19. The rearranged bands 

hybridized also to a GFP-specific probe in 13 of the 25 clones (52%), indicating the
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integration of the AAV ITR-flanked cassette in the AAVS1 region. In 6 clones (24%), the 

AAVS1 site showed a rearranged band that did not hybridize to the GFP probe, indicating 

Rep-mediated disruption of the AAVS1 region in the absence of integration. Conversely, 4 

out 25 clones showed bands corresponding to intact AAV ITR-flanked cassettes integrated 

elsewhere in the genome (16%). One clone showed both AAVS1-specific and non-specific 

integrants (4%).
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AAVS1 p r o b e

Fig. 6.3 Southern blot analysis of clones obtained from p5ATATA modified ITR.

HeLa were transfected with pBSITRp5ATATAGFPNGFR plasmid and transduced with TetRep Ad non 

integrating vector. 25 clones (1 -> 25) were co-hybridased with AAVS1 and GFP specific probes to analyse 

integrations. Southern blot on the right are the same filters stripped and re-probed with the GFP probe.

Analysing the size of the AAVS1 integrated cassette we noticed a big increase in the size 

of integrated cassette when the cassette is surrounded by the ITRp5ATATA. This 

phenomen is probably due to the integration of multimers of the integration cassette in the 

AAVS1 locus (Fig. 6.3 and 6.4).

N.C.1A N.C. MW 2A 3A 4A 5A 6A 7A 8A MW 1

1 0 k b  le v e l

GFP probeUnmodified ITR GFP probe Modified ITR

Fig. 6.4 Comparison of integrated size between non modified and modified ITR vectors.

The two vectors are very different in respect to size of the integrated cassette. ITR not modified vector 

display a classical monomer-dimer integrant, ITR modified vector display a different integration in which are 

very abundant multimers.

Using this version of the integration enhancer we did not obtaine any important effect on 

the percentage of overall or site specific integration, but a considerable effect on the copy 

number in the AAVS1 site. Notably another effect we noticed using ITRp5 is the almost
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complete absence of mixed phenomenon (AAVS1 integrants + elsewhere integration) (Fig 

6.5).

ITR ITRp5ATATA

Recombinated AAVS1
24

(96%)

16

(64%)

Site-specific integrations
16

(64%)

9

(36%)

Elsewhere integrations
9

(36%)

16

(64%)

AAVS1 + elsewhere
8

(32%)

1

(4%)

AAVS1 disrupted w/o 8 7

site-specific integration (32%) (28%)

Fig. 6.5 Summarizing scheme of ITR and ITRp5DTATA integration analysis.

6.5 p5 without ITR which effect?

It seems that a minimal functional p5 element was composed of a 55 bp region 

(nucleotides 250 to 304 of wild-type AAV-2) containing the TATA box, the Rep-binding 

site, the trs present at the transcription initiation site (frs+l), and a downstream 17 bp 

region that could potentially form a hairpin structure localizing the trs+\ at the top of the 

loop.

Interestingly, the TATA box was absolutely required for in vivo but dispensable for in 

vitro, i.e., cell-free, replication (180).
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Rep binding and nicking at the trs+\ was enhanced in the presence of cellular TATA 

binding protein (TBP), and that the over-expression of this cellular factor increased the in 

vivo replication of the minimal p5 element (180).

Using a series of serials constructs spanning different regions of the p5 region (Fig. 6.6) we 

wanted to define the minimal elements within the p5 region required for Rep-dependent 

replication. This aspect could be very important to clarify if the integration phenomenon is 

dependent on replication of the integrating cassette or if it is possible to obtain site-specific 

integration independently of this aspect.

Four constructs were generated containing the four p5 regions subcloning this region to the 

5’ of a double expressing marker construct pBSGFPANGFR.

n t 190

p5wt

YY1-60 RBS
nt. 353

p5ATATA

p5D10

+22 +35

p5p12

Fig. 6.6 Graphic representation of p5 region mapping. Four different constructs were built to isolate the 

key region in the p5 element responsible for integration.
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Fig. 6.7 Graphic representation of four constructs used for p5 region mapping. p5 regions were 

subloned to the 5’ of the GFPANGFR cassette.

6.5.1 HeLa cell clone generation.

The p5 deleted region constructs were tested in transient transfection in HeLa cells.

HeLa transfection was done using Effectene transfection reagent in 6 cm plates.

The day before transfection 3xl05 HeLa cells were seeded on 6 cm Petri dishes. 1 ug of 

plasmid DNA/dish was transfected.

After over night incubation cells were washed and fresh medium added for 4 hours and 

kept at 37°C 5% CO2. Cells were washed twice with PBS and transduced with TetRep 

MOI 10 in PBS (1 ml per 10 cm Petri dish) and incubated for 1 hour at 37°C 5% CO2. 

After transduction time fresh medium Dox supplemented was added to PBS containing 

virus. Transfected and transduced HeLa cells were kept in culture one month in presence 

of Dox and monitored for GFP expression.
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The same kind of experiment was done co-transfecting 0.2 ug of Rep expression plasmid 

with the p5 plasmids to study the difference between the two approaches.

Bulk culture were monitored for two weeks for GFP and ANGF-R expression by FACS 

(data not shown).

Bulk cell population was NGF-R selected.

6.6 HeLa cell clones selection.

After another week of culture cell bulks were subcloned at 0.2-0.3 cells/well by limiting 

dilution. Single clones were isolated after two weeks of culture and grown for up to one 

month for further analysis.

More than 50 clones for each construct were scored for GFP expression by FACS analysis. 

Since the sorted bulk culture was virtually 100% transduced, the vast majority of clones 

analysed expressed GFP.

6.7 Integration analysis in HeLa cells of different p5 region fragments.

25 clones for each p5 fragment plasmids were further expanded and genomic Southern blot 

analysis was performed to determine the genome integration of the p5 flanked cassettes for 

each clone. The site-specific integration of the cassette was determined by digestion of 

genomic DNA with Accl. AccI cut releases a 3.1 kb fragment encompassing most of the 

chromosome 19 AAVS1 site.

Southern blot were probed with an AAVS1 and GFP specific probes.
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Full length n5:

In the case of clones obtained from the plasmid containing the full length wild-type p5 

AAVS1 probe showed a size shift of the 3.1 kb band in 23 of 25 independent HeLa clones 

(92%), indicating rearrangement of the AAVS1 region in at least one chromosome 19. The 

rearranged bands hybridized also to a GFP-specific probe in 13 of the 25 clones (52%), 

indicating the integration of the p5-flanked cassette in the AAVS1 region. Further 

restriction analysis indicated that the p5-flanked cassette had integrated as a monomer or a 

dimer in the AAVS1 site and conserved an intact structure in all cases (not shown).

In 7 clones (28%), the AAVS1 site showed a rearranged band that did not hybridize to the 

GFP probe, indicating Rep-mediated disruption of the AAVS1 region in the absence of 

integration. Conversely, 3 of 25 clones showed bands corresponding to intact p5-flanked 

cassettes integrated elsewhere in the genome (12%). 3 out 25 clones (12%) showed both 

AAVS1-specific and non-specific integrants (Fig. 6.3).

P5ATATA:

In the case of clones obtained from the plasmid containing the p5ATATA sequence 

AAVS1 probe showed a size shift of the 3.1 kb band in 21 of 25 independent HeLa clones 

(84%), indicating rearrangement of the AAVS1 region in at least one chromosome 19. The 

rearranged bands hybridized also to a GFP-specific probe in 10 of the 25 clones (40%), 

indicating the integration of the p5-flanked cassette in the AAVS1 region. In 6 clones 

(24%), the AAVS1 site showed a rearranged band that did not hybridize to the GFP probe, 

indicating Rep-mediated disruption of the AAVS1 region in the absence of integration. 

Conversely, 5 out 25 clones showed bands corresponding to intact p5-flanked cassettes 

integrated elsewhere in the genome (20%). No clone showed both AAVS1-specific and 

non-specific integrants.
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In the case of clones obtained from the plasmid containing the p5D10 sequence AAVS1 

probe showed a size shift of the 3.1 kb band in 22 of 25 independent HeLa clones (84%), 

indicating rearrangement of the AAVS1 region in at least one chromosome 19. The 

rearranged bands hybridized also to a GFP-specific probe in 13 of the 25 clones (52%), 

indicating the integration of the p5-flanked cassette in the AAVS1 region. In 7 clones 

(28%), the AAVS1 site showed a rearranged band that did not hybridize to the GFP probe, 

indicating Rep-mediated disruption of the AAVS1 region in the absence of integration. 

Conversely, 3 out 25 clones showed bands corresponding to intact p5-flanked cassettes 

integrated elsewhere in the genome (12%). One clone showed both AAVS1-specific and 

non-specific integrants (4%).

P5D12:

In the case of clones obtained from the plasmid containing the p5D12 sequence AAVS1 

probe showed a size shift of the 3.1 kb band in 18 of 25 independent HeLa clones (72%), 

indicating rearrangement of the AAVS1 region i$ at least one chromosome 19. The 

rearranged bands hybridized also to a GFP-specific probe in 9 of the 25 clones (36%), 

indicating the integration of the p5-flanked cassette in the AAVS1 region. In 6 clones 

(24%), the AAVS1 site showed a rearranged band that did not hybridize to the GFP probe, 

indicating Rep-mediated disruption of the AAVS1 region in the absence of integration. 

Conversely, 3 out 25 clones showed bands corresponding to intact p5-flanked cassettes 

integrated elsewhere in the genome (12%). No clone showed both AAVS1-specific and 

non-specific integrants.
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Fig. 6.7 Summarizing scheme of integration ability of different p5 constructs.

6.8 Replication analysis in HeLa cells of different p5 region fragments.

The p5 deleted region constructs were transfected in HeLa and 293T cells.

Both transfections was done using Effectene transfection reagent in 6 cm plates.

The day before transfection 3xl05 HeLa cells were seeded on 6 cm Petri dishes. 1 ug of 

plasmid DNA/dish was transfected.

After over night incubation cells were washed and fresh medium added for 4 hours and 

kept at 37°C 5% CO2. Cells were washed twice with PBS and transduced with TetRep 

MOI 10 in PBS (1 ml per 10 cm Petri dish) and incubated for 1 hour at 37°C 5% CO2. 

After transduction time fresh medium Dox supplemented was added to PBS containing 

virus. Transfected and transduced HeLa cells were kept in culture 36-48 hours after 

medium change in presence of Dox.

The same kind of experiment was done co-transfecting 0.5 ug of Rep expression plasmid 

with the p5 plasmids to study the difference between the two approaches.

36-48 hours after tranfection cell bulk population was recovered and HIRT DNA 

extraction was performed.
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The DNA recovered from HIRT extraction was digested with Dpnl and Mbol separately to 

clarify the replication role (Fig. 6.8). The presence of bands in the Mbol digestion is 

representative of DNA Rep mediated replication.

Southern blot analysis was performed to determine the DNA presence and status of the p5 

flanked cassettes for each bulk. Southern blot were probed with a GFP specific probe.

P5DTATA p 5  DI O D 1 2  ITR 

1 2 3  1 2 3  1 2 3  1 2 3 1 2 3

518 bp

!
#  *

p5DTATA p 5  DIO  D 1 2  

1 2 3 1 2 3 1 2  3 1 2 3

148 bp
#  *

Fig. 6.8. Identification of a minimal p5 element able to replicate in Rep-expressing cells. In vivo 

replication assay of the p5-containing plasmids. Total DNA extracted 48 h post transfection o f HELA and 

293T cells cotrasfected or transduced with Rep expressing plasmid or virus (left panel), was undigested (1) 

digested with either Dpnl (2) or Mbol (3) and analyzed by Southern blot using a GFP probe. On the right 

panel the same experiment without Rep. The two expected Dpnl digestion products (518 and 148 bp) 

hybridizing to the GFP probe are indicated by an arrow and are present also in the Mbol digestion if 

replicatio has occurred. The upper bands visible in the Mbol-digested samples represent input plasmid DNA. 

(see Materials and Methods).

With this analysis it is possible to conclude that replication we seen in the case of 

ITRp5ATATA was due to the presence of ITR. In fact p5ATATA alone is not able to 

replicate. The minimal element able to replicate is p5D10, the same construct but without 

TATA box is not able to replicate. The longer element, p5ATATA, in which the TATA 

box was mutagenised is not able to replicate. It is possible to argue that the TATA box is 

important for element replication and integration (Fig. 6.9).
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Fig. 6.9 Graphic representation of p5 region mapping and summarizing scheme of p5 replication 

capacity. Four different constructs were built to isolate the key region in the p5 element responsible for 

integration and tested for their replication capacity in vivo.
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Chapter 7

Expansion of vector tropism.



To obtain a new and flexible vector system it was necessary to expand the vector tropism, 

to have the possibility to transduce a high number of different kind of cells, and moreover 

cells relevant for gene therapy.

Efficient infection with Ad vectors based on serotype 5 (Ad 5) requires the presence on 

cells surface of coxsackievirus-adenovirus receptors (CAR) and av integrins (Fig.7.1) (145- 

154).

Adenovirus

P o n to n  B ane
------------ U b e r
 K nob

Receptor 1 
"CAR P ro fe 'n ' —  
Virus AKachmen*

Receptor 2 
"ft, In legnnj"
Vi 'u s  iMornolnofion

Fig. 7.1 Schematic representation of Adeno 5 serotype mechanism of internalisation. Adeno 5 virus 

serotype interact with cells via both CAR receptor and a v integrin co-receptor. The cellular internalization is 

via endosomes. The endosomal membrane is then lysed in a process mediated by penton base and the content 

of virions is released in the cytoplasm. Virions partially encoated and DNA are tranported to the nucleus.

The paucity of these cellular receptors is thought to be the limiting factor for Ad gene 

transfer into different cell types e.g. hematopoietic stem cells.

We screened two different Ad serotypes for interaction with non-cycling human CD34+ 

cells, HEL and K562 cells on the basis of the level of transduction and transgene stability. 

A chimeric vector (Ad 5/35) which contained the short-shafted Ad 35 fiber incorporated 

into an Ad 5 capsid was generated. This substitution was seen to be sufficient to transfer all 

infection properties from Adeno 35 (Ad 35) to the chimeric vector. The retargeted, 

chimeric vector attached to a receptor different from CAR and entered cells by an av 

integrin-independent pathway (Fig. 7.2) (163).
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Fig. 7.2 Schematic representation of Adeno 5/35 hybrid serotype generation. The internalisation 

mechanism differs because Ad 5/35 serotype utilise an alternative internalisation pathway independent from 

CAR and a 5 integrin co-receptor. The short-shafted Ad 35 fiber was inserted into an Ad 5 capsid to generate 

a new Ad 5/35 serotype.

Our aim was to test if this was enough to overcome the Ad 5 limited cellular tropism, in 

particular cells poorly transduced from Ad 5 (like hematopoietic stem cells and 

hematopoietic derived cell lines).

7.1 CD34+ transduction with Ad 5 serotype.

Human CD34+ stem/progenitor cells were isolated from umbilical cord blood-derived 

mononuclear cells by immunomagnetic selection of positive cells, using a magnetic beads- 

conjugated anti-human CD34 (see Materials and Methods).

Cord blood-derived CD34+ cells were cultured for 24 hours in serum free medium 

containing 20% BIT 9500 serum-substitute in presence of cytokines and transduced with 

the Ad 5 single vector expressing ITRGN and Rep at different MOI to test the influence of 

MOI on transduction efficiency.

In particular we used MOI 300. This means that, theoretically 300 TU were used to infect 

one CD34+ cell.

24 hours post infection cells were analysed by flow cytometry for CD34, CD38 and GFP 

expression (Fig. 7.3). Under these conditions, more than 98% of cells retain CD34+
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phenotype (Fig. 7.3), while about 94% of CD34+ cells were also CD38‘, the more 

immature phenotype of the human HSCs (Fig. 7.3 middle panel). About 12% of total 

CD34 * cells were transduced as measured by the expression of GFP driven by the internal 

PGK promoter.

A comparison of the transduction efficiency between CD34+/CD38' and CD34+/CD38+ 

cells, also shows that the more immature CD38' subpopulation had a lower transduction 

efficiency in respect to the double positive subpopulation (11% vs 1%, Fig. 7.3 bottom 

panel).

q  ®

GFP CD34

11.54

GFP

4.72 3.55 53.39

GFP

CD34

Fig. 7.3 FACS analysis of CD34+ cells transduced with Ad 5. FACS analysis was performed 24 hours after 

transduction. Cells were labelled with anti CD34 and CD38 and followed for GFP. In the UR region of the 

second panel is indicated the percentage of CD34+ cells transduced (red oval, around 11%). In the LR region 

of the third panel is indicated the percentage of CD38' cells tranduced (blue oval, around 10%). In the LR 

region of the last panel is indicated the percentage of CD34+ CD38' cells, the more immature phenotype 

(green oval, around 94%).
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To analyse transgene expression at the level of single colonies, CD34+ transduced cells 

were plated in methylcellulose to perform the colony forming cell in vitro (CFC or CFU) 

assay. MOI 300, 500 e 1000 in presence of Dox were utilised. Between 10 and 14 days 

after plating, methylcellulose clonal culture were scored for GFP expression by 

fluorescence microscopy. No colonies were scored for each group.

In summary, these results shown that high titer Ad/AAV viral stocks were generated using 

a HD system and the Ad 5 serotype is able to infect quiescent HSCs at a very low 

efficiency and no colonies were identified.

7.2 CD34+ transduction with Ad 5/35 serotype.

Human CD34+ stem/progenitor cells were isolated from umbilical cord-blood-derived 

mononuclear cells by immunomagnetic selection of positive cells, using a magnetic beads- 

conjugated anti-human CD34 (see Materials and Methods). Cord blood-derived CD34+ 

cells were cultured for 24 hours in serum free medium containing 20% BIT 9500 serum- 

substitute in presence of cytokines and transduced with the ITRGN vector at different 

multiplicity of infection (MOI) to test the influence of MOI on transduction efficiency. In 

particular we used MOI 300.

After 24 hours post infection cells were analysed by flow cytometry for CD34, CD38 and

GFP expression (Fig. 7.4). Under these conditions, about 98% cells retain CD34+

phenotype (Fig. 7.4), while about 86% of CD34+ cells were also CD38*, the more

immature phenotype of the human HSCs (Fig. 7.4). About 28% of total CD34+ cells were

transduced as measured by the expression of GFP driven by the internal PGK promoter.

A comparison of the transduction efficiency between CD34+/CD38* and CD34+/CD38+

cells, also shows that the more immature CD38* subpopulation had a higher transduction

efficiency in respect to the double positive subpopulation (26% vs 2%, Fig. 7.4). This
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observation suggests that Ad/AAV vectors are able to transduce quiescent human HSCs at 

a high efficiency, even more than cycling progenitor cells.

To analyse transgene expression at the level of single colonies, CD341 transduced cells, 

were plated in methylcellulose to perform the colony forming cell in vitro (CFC or CFU) 

assay. MOI 300, 500 and 1000 in presence of Dox were utilised. Between 10 and 14 days 

after plating, methylcellulose clonal culture were scored for GFP expression by 

fluorescence microscopy. Again no colonies were scored for each group.

In summary, these results shown that high titer Ad/AAV viral stocks were generated using 

a HD system and the Ad 5/35 serotype is able to infect quiescent HSCs at a good 

efficiency in respect to Ad 5 serotype but again no colonies were identified.
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Fig. 7.4 FACS analysis of CD34+ cells transduced with Ad 5/35. FACS analysis was performed 24h after 

transduction. Cells were labelled with anti CD34 and CD38 and followed for GFP. In the UR region o f the 

second panel is indicated the percentage of CD34+ cells transduced (red oval, around 28%). In the LR region 

of the third panel is indicated the percentage of CD38' cells tranduced (blue oval, around 25%). In the LR 

region of the last panel is indicated the percentage of CD34+ CD38" cells, the more immature phenotype 

(green oval, around 86%).
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7.3 Hematopoietic derived cell lines transduction with Ad 5 and Ad 5/35 

serotypes.

K562 and HEL cells were transduced with ITRGN Ad 5 serotype virus and with Ad 5/35 

version of ITRGN without Rep. Cells were transduced at different MOI 50, 100, 300, 500 

and 1000 to investigate the role of virus particles in transduction efficiency. The day before 

transduction 5x105 cells/well were plated in 6 wells plates and incubated all night in RPMI 

10% FCS antibiotic and L-Glutamine supplemented.

The day of the transduction media was sucked off and transductions were managed in 500 

ul serum free RPMI diluted viruses. Cells were incubated one hour at 37°C 5% CO2 

incubator. After transduction 10% serum (final concentration) was added to RPMI 

containing virus. Cell bulks were monitored 24 hours post transduction for one month for 

GFP expression by FACS analysis every three-four days (Fig. 7.5).

Cells harvested for GFP FACS scoring were also stained with trypan blue to investigate if  

MOI had influences in cell viability (data not shown). No evidence was seen regarding 

MOI/cell viability.
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Fig. 7.5 Graphic representation of HEL cells transduction with both Ad 5 and Ad 5/35 serotypes.

HEL were transduced with Ad non integrating vector ITRGN of two serotypes (Classical Ad 5 and Ad 5/35 

hybrid serotype) at various MOI and followed for one months for GFP expression and cell death. Plotted data 

showed that at lower MOI Ad 5/35 is the best transducing serotype in respect to Ad 5. Raising MOI a trend 

more similar between Ad5 and Ad 5/35 was obtained. Ad 5 seems to be more stable, there are more cells 

maintaining GFP expression along the time in the middle phase of transduction. Ad 5/35 shows a precocious 

pick at the beginning of infection in correspondence of which a higher number of cells were transduced with 

GFP but this pick dropped down in the middle phase following a constant reduction along the time. This 

phenomenon was not influenced by the cell death. The experiments were reproducted 3 times.
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Fig. 7.6 Graphic representation of K562 cells transduction with both Ad 5 and Ad 5/35 serotypes.

K562 were transduced with Ad non integrating vector ITRGN of two serotypes (Classical Ad 5 and Ad 5/35 

hybrid serotype) at various MOI and followed for one months for GFP expression and cell death. Plotted data 

showed that at lower MOI Ad 5/35 is the best transducing serotype in respect to Ad 5. Raising MOI a trend 

more similar between Ad 5 and Ad 5/35 was obtained. Ad 5 seems to be more stable, there are more cells 

maintaining GFP expression along the time in the middle phase of transduction. Ad 5/35 shows a precocious 

pick at the beginning of infection in correspondence of which a higher number of cells were transduced with 

GFP but this pick dropped down in the middle phase following a constant reduction along the time. This 

phenomenon was not influenced by the cell death. The experiments were reproducted 3 times.

Plotted data demonstrated that at lower MOI Ad5/35 is the best transducing serotype in 

respect to Ad5. In my hands it was possible to obtain a 2-3 fold increase of GFP transduced 

cells using Ad5/35 in respect to what I obtained with the same virus in a Ad 5 context. 

Raising MOI we obtained a trend more similar between Ad 5 and Ad 5/35 both in HEL 

and K562. In all cell lines we tested in particular at low MOI Ad 5 seems to be more 

stable, there are more cells maintaining GFP expression along the time in the middle phase 

of transduction. Ad 5/35 shows a precocious pick at the beginning of infection in
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correspondence of which a high number of cells were transduced with GFP but this pick 

dropped down in the middle phase following a constant reduction along the time. This 

phenomenon was not influenced by the cell death. The number of dead cells was 

practically the same between Ad 5 and 5/35. This phenomenon can be explained with a 

different internalisation mechanism. It seems that Ad 5/35 can transduce more cells at the 

beginning, but the internalisation system seems to influence DNA stability. For our 

purpose this doesn’t seem a great problem. For our model it is important to have a great 

amount of virus in the nucleus in the few hours after transduction.

Both virus serotypes stop to be expressed/present around twenty days after transduction.
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Chapter 8

Discussion



Gene targeting and homologous recombination technology underwent spectacular 

development in the last couple of decades, leading to the routine generation of transgenic 

animals with precise gene modifications by genetic manipulation of embryonic stem cells. 

However, the efficiency of this technology is still exceedingly low for clinical gene 

transfer, which almost invariably involves substantial numbers of rare and poorly 

cultivable cells (e.g., somatic stem cells). For clinical applications, the only available 

options are either extra-chromosomal expression or uncontrolled genomic insertion of 

therapeutic genes by means of a virus-derived gene transfer vector. Integrating vectors 

derived from murine oncoretroviruses (e.g., the Moloney murine leukemia virus, or MLV) 

have been used in hundreds of gene therapy trials since 1991 (197). Despite the known 

oncogenic potential of the parental viruses (198), retroviral vectors were considered 

relatively safe until lymphoproliferative disorders were reported in three patients treated 

with retrovirally-transduced hematopoietic progenitor cells for X-linked severe combined 

immunodeficiency (X-SCID). In all three patients, the vector inserted into, and activated, 

the T-cell proto-oncogene LMO-2, thereby contributing to the establishment and/or 

progression of the malignancies (199). These events indicated that insertional oncogenesis 

is an actual “genotoxic” risk associated to the use of retroviral vectors, which may severely 

limit a wider application of this type of technology. Another problem of these kind of 

vectors is the relatively small cassette size they can contain. Both retroviral and lentiviral 

vectors have an insert size limitation of 7-8 kb and moreover this kind of vectors do not 

easily accommodate introns or complex regulatory elements.

There are several possible solutions to the genotoxicity problem, which range from 

improving the current retroviral vector design to developing entirely new technology.

An ideal gene transfer vector should be capable of inserting a therapeutic transgene at a 

precise location into human DNA, where it can be efficiently expressed without perturbing 

the homeostasis of the rest of the genome and should be so versatile to target also big 

inserts in a safe way.
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For gene therapy applications, the development of vectors that target transgene integration 

to specific sites in the host genome is a major focus.

Indeed a virus that posses these properties does exist, and that is the wild type AAV (4, 5). 

AAV genome is a linear, single-stranded DNA filament which contains at both ends a 145- 

base inverted terminal repeat (ITR) encoding the origin of replication and the packaging 

signal (31), and two AAV-specific genes, rep and cap. The ITRs and the Rep protein are 

sufficient for replication of the AAV genome in the presence of Ad or herpes simplex virus 

(HSV) helper functions (AAV is incapable of completing its life cycle without a helper 

virus) (21). In the absence of helper functions, the same elements are sufficient to mediate 

the integration of the AAV genome into a 3-kb specific site on human chromosome 

19ql3.4qter (21). This site, called AAVS1, has been mapped to the first exon of myosin 

binding subunit 85 of protein phosphatase 1 (28). The AAVS1 site appears to be in an open 

chromatin conformation in the cell lines tested (74), which is thought to help AAV 

integration and viral gene expression. Integration into this site is mediated by the large 

AAV Rep proteins Rep68 or Rep78. Rep68/78 demonstrate sequence-specific 

endonuclease activity and ATP-dependent helicase activity, and can mediate 

rescue/excision of DNA flanked by AAV ITRs in the presence of Ad super-infection (21). 

Rep mediated rescue requires the presence of both a Rep binding site (RBS) and a terminal 

resolution site (trs) within the virus AAV ITR and genomic AAVS1 site, whereby the 

secondary structure of these sites appears to be crucial for Rep68/78-mediated DNA 

nicking. Rep-mediated rescue of a cassette flanked by AAV ITRs from ds DNA substrates 

and nicking within the AAVS1 site creates free DNA ends which allow for virus 

integration via non-homologous end-joining (NHEJ). It is therefore thought that rescue 

from incoming ds DNA is a prerequisite for integration (45, 48, 49, 50).

The ability of Rep68/78 to mediate integration into AAVS1 has been harnessed for site- 

specific integration of transgenes from co-transfected ds DNA plasmids. The frequency of 

AAVS1-specific integration by these plasmid-based methods has differed among studies
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from 20 to 50%, whereby integration frequency was measured upon drug selection (19, 16, 

14, 53, 18). However, plasmid transfection is not an efficient method for gene transfer. The 

production of Rep-expressing viral gene transfer vectors (based on adenovirus or HSV-1) 

is also problematic, because expression of Rep in packaging cells has been shown to 

severely reduce vector production (189). The vector yield could be increased by placing 

the rep gene under the control of promoters with low activity in packaging cells or by 

using tet or Cre/lox inducible gene expression systems (190).

There are a series of limitations in using Rep-based hybrid vectors.

Retroviral vectors, particularly the last generations derived from HIV, have a large 

tropism, and transduce >50% of their target cells (hematopoietic stem/progenitor cells, 

keratinocytes, neurons, hepatocytes) with negligible toxicity. High efficiency is mandatory 

for clinical application.

Rep-based hybrid vectors transduce relatively efficiently stable cell lines (10 to 20%) but 

much less primary cells, either in culture or in vivo (1-5%). Most of the papers published 

on the issue did not even try to address the issue of gene transfer in targets of clinical 

relevance.

Increasing Rep-mediated gene transfer efficiency appears very difficult. The wild-type 

AAV uses Rep to replicate as well as integrate, and 15% integration efficiency is probably 

the best compromise evolution has found between propagation and latency. Improving 

nature is going to be a tough task, and will probably require some serious protein 

engineering.

A second hurdle is the proportion of site-specific versus non-specific integration. Getting 

rid of non-specific integration is the reason why we are trying to use Rep or other 

sequence-specific integrases in the first place (191, 192). If 30-50% of the integrations are 

still random, the genotoxic risk for the target cells would diminish only by a factor of two 

or three compared to retroviral vectors, not really enough to make a difference in the real 

world -  hundreds of millions to billions of cells are transduced and administered in a
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typical gene therapy protocol. This is true unless the non-specific integrations have a 

substantially better safety profile compared to those of retroviral vectors, which prefer to 

integrate into active genes and around transcription start sites (193). Data on this point, 

however, are scattered and inconsistent. Some authors reported that AAV vectors tends to 

integrate into active genes (194), while others showed that non-specific, Rep-mediated 

integration of AAV-based cassettes targets essentially intergenic regions (195). Overall, 

there is not enough data to reach a conclusive answer on this crucial point. Paradoxically, 

in a system with only 50% site specificity, the nature of the non-specific events is going to 

be more important than site specificity itself.

Finally, there is an issue of integration-independent genotoxicity. Significant progress has 

been made also with other types of proteins, such as transposases or bacteriophage-derived 

integrases (191, 196). Integrases and transposases introduce, at variable extent, single and 

double-strand breaks into mammalian genomes. These breaks are potentially 

recombinogenic, and could cause mutations or genomic rearrangements as dangerous, if 

not more dangerous, than those caused by random vector insertion. The genotoxicity of 

recombinases, including that of Rep, has not been studied thoroughly enough to make 

reliable predictions about the safety of their use in humans. Appropriate regulation of their 

expression is clearly a crucial variable, but may not be the only one.

Large capacity Ad/AAV.

In this study we showed that a helper-dependent Ad 5 vector expressing Rep78 under the 

control of a doxicyclin-inducible system for site-specific transgene integration can be used 

to integrate a large expressing cassette flanked by AAV ITR expressed by another vector 

into the human genome in a site-specific way. Moreover we speculate that clones with high 

level Rep78 expression died off due to Rep-mediated toxicity. This is supported by the fact
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that the total number of clones that developed was 2 to 3 fold lower for Ad-Rep78 infected 

cells than in settings with AdhCol7 alone. Furthermore, the percentage of GFP expressing 

cells in all surviving clones was constant over time, underscoring that these cells did not 

have a proliferative disadvantage.

This study is a proof of principle that targeted integration of a 12-kb transgene can be 

achieved at high frequency. Though the inaccuracy of integration and genomic 

rearrangements are a concern, epidemiological studies show widespread wt AAV infection 

(80% of humans are AAV seropositive), while no known pathologies, including neoplastic 

malignancies, have been reported (21).

In my thesis work I studied a new generation of hybrid DNA vectors that combine the 

large capacity and infectivity of adenoviral vectors with the ability of the AAV Rep protein 

to direct the integration of AAV ITR-flanked sequences at specific sites into the human 

genome. In particular I focused my attention on testing the ability of Rep protein to 

integrate very large transgenes in respect to AAV genome size, on test new methods to 

improve this system both in transduction efficiency and in integration capacity. Because 

transduction of primary cells, particularly primary hematopoietic stem cells, with first- 

generation E1/E3 deleted recombinant Ad vectors is associated with toxicity due to viral 

gene expression (118), we used in our studies a helper-dependent (HD) Ad vectors, which 

are devoid of all viral genes (121).

A major difficulty in building viral vectors containing Rep expression cassettes is the 

negative effect of Rep on viral replication (23), which prevents packaging or reduces titers 

to values unacceptably low for practical use. To overcome these problems, I used a system 

developed in my lab in which a tight, drug-inducible transcriptional regulation system 

based on a minimal promoter under the control of the tetO element and a constitutively 

expressed tTS suppressor. This combination allowed efficient packaging of a HD-Ad 

vector containing Rep. Drug-induced activation of Rep allowed a good protein production 

control.
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The vector I developed was three times bigger than those previously developed in the 

laboratory, and the first concern was to understand whether this system was able to work in 

this situation. In particular, whether the Rep protein was able to integrate intact copies of 

the ITR-flanked cassette into the AAVS1 site in stable cell lines without recombination, in 

the absence of selective pressure and possibly with a good efficiency.

In all GFP expressing clones that were used for integration studies we did not detected 

Rep78 expression by western blot.

The efficiency of AAVS1-specific integration was a bit lower that what we obtained with 

the smaller cassette.

With this dual vector system, hCol7-GFP transgene integration into AAVS1 was seen in 

30% of analyzed integration sites, whereby transgenes integrated into AAVS1 expressed 

GFP at high and stable levels. In our study we obtained ~43% of stably transduced HeLa 

clones in which the AAVS1 locus is rearranged even in the absence of an integrated 

cassette. This is probably due to the ability of Rep to bind to the RBS in AAVS1, induce 

nicking at the nearby trs, and start unscheduled DNA replication before binding to, 

replicating, and eventually integrating an ITR-containing genome. The higher percentage 

obtained with respect to previous studies using a smaller cassette could be due to the 

cassette dimension, maybe due to abortive events and probably to the use of CMV 

promoter to ensure a higher Rep expression.

In the presence of exceedingly high or prolonged synthesis of Rep, the AAVS1 site could 

become a hot spot of chromosome fragility or genetic recombination in transduced cells, an 

obviously undesirable side effect of a Rep-based integration system. Drug-controlled Rep 

expression is expected to reduce these potential genotoxic effects, an additional safety 

characteristic of our hybrid vectors. Expression of Rep, a likely immunogenic protein, 

could potentially elicit a cytotoxic immune response against cells transduced in vivo by a 

Rep-expressing vector. The drug-controlled expression system is expected to reduce the 

immunogenicity of Rep to a minimum, although it introduces an additional immunogenic

156



factor, the constitutively expressed Tet repressor protein. The immunogenic potential of 

the Tet repressor is a controversial issue, although it is conceivable that in cells or tissues 

in which episomal Ad vectors persist for long time (liver, for example) this might 

eventually turn out to be a problem. Anti-Rep and anti-Tet immune responses therefore 

need to be addressed in specific animal models for each vector delivery route. 

Adenovirus-based integrating vectors could find practical application in both ex vivo and in 

vivo gene transfer protocols. We demonstrated that the large capacity of the Ad vector 

backbone allows the incorporation of large genes and eventually a complex regulatory 

systems into the vectors, a current limitation of retroviral vector technology. A high 

proportion of site-specific integration and a general preference for nontranscribed regions 

would reduce both the risk of insertional oncogenesis and the problem of position- 

dependent variability or silencing of transgene expression (195).

In my hands it was not possible to obtain any clone from keratinocyte primary cells. In all 

the experiments I made transducing keratinocytes both with the small integrating cassette 

(GFP-ANGFR) and with the large integrating virus (hCol7 + GFP) it was impossible to 

expand clones derived from the transduction of keratinocyte stem cells. This could be due 

to different events:

- Ad 5 serotype is not able to transduce the more immature keratinocytes.

Rep78 is more toxic for these kind of cells.

The population of more immature keratinocytes could be so small that we weren’t able 

to clone enough cells to isolate any epidermal stem cell.

- Repopulating keratinocytes could silenciate the integrated cassete.

As discussed in my thesis the Ad 5 serotype need on the cell surface the presence of two 

receptor to transduce cells: CAR and the a v integrin. It is so possible that the epidermal 

stem cell population is lacking on one or both receptors. Transduction experiments with 

other serotypes could be an alternative and the solution to this problem.
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Rep 78 is a well known toxic protein, and maybe in the epidermal stem cell contest is too 

much toxic, giving the death of all the repopulating keratinocyte population. At the 

moment this problem can’t be by-passed, Rep is needed to obtain integration.

Different limiting dilution experiments were done to clone a repopulating stem cell stable 

transduced with our integrating cassette. From different transduced populations of 

keratinocytes, thousand of cells were cloned, but no one of this single cells arised a 

repopulating clone. This could be due to the impossibility to clone a so low abbundant 

population and a more extensive effort is needed.

Repopulating cells are very active cells and methylation or other chromatin modification 

during differentiation or duplication could give raise to integrated cassette silencing. In this 

case maybe we were able to integrate our cassettes into the genome of a repopulating 

epidermal stem cell, but we neglected that clone who wasn’t able to express the integrating 

cassette.

Optimisation of vector integration.

Previous reports demonstrated that the AAV-2 p5 promoter region contained a 

multifunctional element that was involved in rep gene expression, Rep-dependent 

replication, and site-specific integration (64, 27, 26). The aim of last part of my study was 

to isolate a minimal region of p5 able to integrate and investigate if the integration process 

is dependent on replication in the presence of Rep78 protein. In particular the main aim 

was to clarify the role of Rep mediated replication in AAV integration and if the presence 

of a p5 region flanking ITR in its wt position can improve the site specific integration 

frequency.

The minimal p5 element demonstrated functional in vivo replication assays was composed 

of a 55-bp region that included the TATA box, the Rep-binding site, the trs-1, and a

158



potential hairpin structure surrounding the trs. The Rep-binding site, the trs-1, and the 

hairpin structure were absolutely required for replication assays, whereas the TATA box 

was seen to be dispensable for in vitro replication (180).

A critical step for the characterization of the minimal p5 element consisted in the 

identification of the Rep nicking sites within the p5 region. Indeed, a previous study by 

Wang et al. (67) had indicated the presence of a cryptic trs at the transcription initiation 

site, without indicating the strand that was cleaved. The subsequent finding by Wu et al. 

(50) of no detectable nicking near the p5 Rep-binding site further put in question the 

presence of this trs. Using nicking assays, Franqois et al. (180) confirmed the presence of a 

major trs at the transcription initiation site and localized it on the lower AAV’s DNA 

strand between nucleotides 287 and 288. In addition, they showed that at least four other 

minor trs sites could be detected within the p5 region. Most of these nicking sites were not 

required for p5 replication and the minimal element characterized in Franqois study 

(p5D10) contained only two trs sites, trs-1 and trs-12. The requirement for the former trs 

was demonstrated by the direct mutation of this site (p5ntfrs). The role of the second trs 

(trs-12) is presently unknown and difficult to evaluate since it localized within the Rep- 

binding site. Cleavage at this site could be explained by a nicking reaction occurring in 

trans by Rep protein bound on a DNA substrate, nicking a second DNA template. In both 

the viral ITR and the chromosome 19 AAVS1 region, the Rep proteins have been shown to 

cleave the DNA between two thymidine residues, resulting in the covalent attachment of 

Rep to the nicking site through a phosphotyrosyl linkage (7, 43, 46). It is interesting that 

none of the trs sites identified in the p5 resembled those found in the ITR or the AAVS1 

region except for the presence of a thymidine residue to the nicking site. Also, great 

variability was observed in the spacer sequence separating the Rep-binding site from each 

trs within the p5, further distinguishing this substrate from the AAVS1 locus and the ITR. 

These observations, together with the experimental evidence demonstrating that most of 

these nicking sites, beside the trs-1, were not required for p5 replication, raise questions
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about their biological relevance. Interestingly, an additional trs site was recently described 

within the ITR (181). In that study, nicking was observed only using a partially purified 

Rep preparation, further suggesting that a cellular factor was involved in this cleavage. 

Nevertheless, it remains possible that these cleavage sites, even if Rep dependent, 

represent artificial reaction products due to the conditions under which the nicking assay is 

performed. The sequence surrounding the major trs-1 was also important for replication of 

the p5 element. This domain can potentially form a hairpin structure that localizes the trs-1 

on the extruded loop. Previous analyses on the viral ITR demonstrated that a potential 

stem-loop was present at the trs and that the extrusion of this structure was mediated by the 

ATPdependent helicase activity of Rep (51). A secondary structure was also recently 

described near the trs within the AAVS1 locus (52). It was demonstrated (180) that 

deletion of the nucleotides forming the stem of the hairpin impaired p5 replication. This 

result strongly supports the existence of secondary structure at the trs-1 and also suggests 

that cleavage at this site required the separation of the DNA strands through the helicase 

activity of Rep. Interestingly, in the case of the p5, the hairpin and the trs-1 localize within 

the YY1 recognition site, and binding of this factor to this site was previously shown to 

mediate TBP-independent initiation of transcription in vitro and DNA strand separation. It 

is tempting to speculate that formation of the hairpin structure at the p5 trs-1 is also 

favored by YY1 binding, further putting into question the relationships between replication 

and transcription initiation. Additional mutations affecting the YY1 binding site but not the 

trs-I or the hairpin structure should help define the role of this cellular factor for Rep- 

dependent replication of the p5.

It was previously reported that TBP could bind to Rep78 in vitro and in vivo without, 

however, demonstrating any biological effect associated with this interaction (182). 

Franqois results (180) indicated that the TATA box was absolutely required for in vivo 

replication of a minimal or a wild-type p5 element. In addition, they demonstrated that 

when the TATA box was present, TBP stimulated Rep binding at the Rep-binding site and
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nicking at the trs-1. The biological relevance of these observations was further supported 

by enhancement of p5 replication observed in cells over-expressing TBP. On the basis of 

these findings and of previous observations concerning the Rep-ITR interactions, the 

following model can be proposed for the p5 element. In vivo, i.e., in live cells, in the 

absence of the TATA box, Rep proteins may not be able to bind the p5 Rep-binding site. If 

Rep binding occurs, it must not be very efficient and in any case, not sufficient to induce 

cleavage at the trs-1 since no replicative activity of the TATA-less p5 element was 

observed. In the presence of the TATA box, TBP increases the efficiency of Rep binding at 

the Rep-binding site, and also nicking at the trs-1, thus stimulating replication of the p5 

element. Recent studies on the ITR have suggested that the interaction of Rep with the 

RBE induced a change in DNA conformation that resulted in the stimulation of the 

extrusion of the trs by Rep helicase activity (51). Similarly, in the case of the p5, an 

attractive hypothesis is that the interaction of Rep with TBP induces a conformational 

change that enhances Rep recognition of the Rep-binding site and favors the extrusion of 

the trs. Indeed, TBP is known to bend DNA once bound to the TATA box. This hypothesis 

is also supported by previous studies demonstrating that nicking at the AAVS1 trs by Rep 

was dependent upon topological constraints (183). Finally, an additional argument comes 

from the observation that high mobility group chromosomal protein 1 (HMG-1) increased 

Rep binding and nicking at the trs in the ITR. This protein, which influences DNA 

flexibility, also interacts directly with Rep (184). A similar effect on Rep activities was 

also demonstrated with some viral and cellular single-stranded DNA binding proteins 

(185). Several additional experiments should be performed to validate this hypothesis. 

Also, it is worth noting that the model presented does not take into account the complex 

interaction between TBP and the other factors that constitute the transcription initiation 

complex or the observation that Rep can form multimeric complexes upon binding its 

recognition site (181). It is interesting that the TATA box was completely dispensable for 

in vitro replication of the p5 element. This observation points out a different requirement



for cellular factors between in vivo and in vitro replication assays and further strengthens 

the hypothesis according to which the conformation of DNA is an essential parameter. 

Indeed, the template for in vivo replication is supercoiled plasmid DNA eventually 

wrapped by cellular histones, whereas in vitro replication is performed using naked linear 

double-stranded DNA molecules. The TBP was previously shown to interact with 

numerous cellular and viral proteins that are transcriptional regulators (186, 187). 

However, only a few reports describe an effect of TBP on the replication of viral origins. 

In particular, TBP was shown to inhibit the replication of viruses such as simian virus 40 

and human papillomavirus by interacting with viral regulatory proteins or by preventing 

their binding to the origin of replication (14, 15). Franqois results (180) demonstrated a 

positive effect of TBP on the replication of a viral element. Interestingly, it was previously 

reported that TBP could enhance eukaryotic DNA replication by binding to the replication 

origin in an Saccharomyces cerevisiae model (188).

In conclusion, these studies have contributed to the definition of a minimal replication- 

competent p5 region. It remained to be defined whether this minimal p5 element is also 

able to direct site-specific integration of plasmid DNA as previously demonstrated with a 

wild-type p5 region (26, 27) and to determine if p5 replication is required for this effect. 

Indeed, previous studies have shown that replication of the viral ITR was not required for 

site-specific integration. And more importantly, it remained to address the question of the 

role of this element in the context of the ITRs. It is possible, as previously suggested by 

Tullis et al. (65), that this element is required for optimal DNA replication.

We tried to answer to all the open questions starting to investigate the possible role of p5 

element in an ITR contest. It remained to be defined if the minimal p5 element, alone, was 

able to direct a site-specific integration of plasmid DNA as previously demonstrated with a 

wt p5 region and if p5 replication is required for integration.

In our study using a different construct in respect to which Franqois used and we 

confirmed the importance of TATA box in the p5 sequence. In our construct in fact it is
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present the sequence containing the TATA box, but we abolished its function 

mutagenizing the TATA sequence to abolish the p5 promoter function.

The plasmid containing the p5ATATA sequence was able to integrate to a percentage 

similar to DIO plasmid, but in HIRT assay we showed that our construct was not replicated 

in presence of Rep protein.

Using the four constructs spanning different region of p5 region and using similar 

construct in except for the presence of TATA box region we obtained a series of 

interesting data.

First of all with a transfection approach we isolate a series of different clones. All the 

clones we then analysed showed the same percentage of integration, showing no difference 

in respect to the p5 region utilised.

We started our study modifying the 5’ ITR putting in the wt position a p5ATATA element. 

From our data analysing 50 clones, 25 for the wt ITR and 25 for the mutated one we didn’t 

see any dramatic effect on site-specific or overall integration. What we noticed was a very 

interesting and dramatic effect on vector copy number integrated in a site-specific way. In 

particular in the ITRp5ATATA contest we noticed a higher percentage of integration of 

multiple copies of the integrating cassette. The ITR wt was able to integrate only 1 or 2 

copies of the cassette into the AAVS1 locus, while the ITRp5ATATA was seen to be able 

to integrate more than 2-3 copies into the AAVS1 locus.

What also we noticed was the ability of both the plasmids (the first one with the ITR wt 

and the second one with the ITRp5ATATA) to replicate the integrating cassette in presence 

of Rep. Whether the integration boost in presence of the p5 region was due to replication 

increase of the cassette, or the integration was independent from cassette replication, 

remains an open question.

Our replication assay using four different region spanning the p5 region and containing or 

not the TATA box have clarified this aspect.

In my hands from these four regions I obtained data very similar to Franqois ones (180).
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In particular I confirmed the importance of TATA box on the replication efficiency. Both 

D12 and p5ATATA were unable to replicate in presence of Rep, but able to integrate in 

these conditions. It is possible to conclude that replication of ITRp5ATATA we observed 

was due to the presence of ITR and the integration boost was not due to a more abundant 

replication of the integrating cassette.

Our data regarding the insertion of a p5 element following the ITR leave open a series of 

interesting approaches to improve the Rep mediated integration.

Expansion of vector tropism.

During our study we also asked to ourselves how to improve the transduction potential in 

human cell lines and also primary cells that are generally poorly transducible with Ad 5 

serotype. We showed that HD-vectors containing B-group serotype 35 fiber knob domains 

(HD-Ad 5/35) efficiently transduced human leukemia cells and primary CD34+ cells. 

Another concern we wanted to face with was the relatively low transduction capacity of Ad 

5 virus to transduce certain cell types, in particular the hematopoietic derived cell lines, 

primary cells and CD34+ cells.

Currently existing adenovirus, rAAV, and onco-retrovirus vectors do not allow for 

efficient and stable transduction of human hematopoietic stem cells (HSCs). I used a 

capsid-modified adenovirus vector devoid of all viral genes for transient expression of 

GFP-DNGFr in hematopoietic derived stable cell lines and CD34.1 wanted to test if using 

two different fiber knob domain in the same capsid type there were differences in 

transduction efficiency.

In the first step I decide to test the difference in transduction capacity of these two viruses.

Without any doubt Ad 5/35 demonstrated to be able to transducer more efficiently

hematopoietic derived cell lines and a lower MOI. But Ad 5/35 along the time
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demonstrated a faster clearance from cells. Gene expression was lost faster than genes 

inserted with Ad 5. Our hypothesis was that maybe virus entrance was responsible for this 

phenomenon.

To evaluate our hypothesis that the primary attachment receptor largely determines the 

selection of intracellular trafficking routes by wild-type or capsid-modified Ads, we used 

Ad vectors with identical capsids except for the fiber knob domain, which is the capsid 

moiety responsible for high-affinity virus attachment to cell surface receptors. Anuj 

Gaggar et al. (163) demonstrate that the major difference in the trafficking of Ad 5 and Ad 

5/35 was that Ad 5/35 virus particles were readily found in late endosomes/lysosomes for 

up to 4 hours after infection, whereas Ad 5 virus escaped rapidly to the cytosol and never 

co-localized with late endosomal/lysosomal markers. EM analyses showed that at 2 hours 

after virus infection, the majority (more than 80%) of Ad 5 virus particles could be found 

as free particles in the cytoplasm and in the perinuclear space and only 3% were found in 

the endosomes. However, at the same time point, more than 60% of Ad 5/35 virions were 

found within endosomes. This is in agreement with observations made for wild-type 

subgroup B and C viruses as well as with studies performed with chimeric Ad 5/7 vectors 

(162). Shayakhmetov et al. (152) argue that the ability of the fiber knob to interact with 

different attachment receptors accounts for the different trafficking pathways observed for 

Ad 5 and Ad 5/35 vectors independently of the length of the fiber shaft domain. CAR 

appears to be required only to hold the virus particle in a suitable position in order to allow 

a v integrins to interact with the penton base. This interaction has been found to initiate the 

signaling allowing for virus internalization and endosome release. For the unknown Ad 35 

receptor this signaling might be absent or different, resulting in a different trafficking route 

for the incoming virus. Notably, Ad 5/35 and Ad 5 vectors have identical capsids except 

for the fiber knob domain. This implies that both of these vectors have the same net charge 

of the capsid. This is important, considering that the net charge of the capsid may affect the 

pathway and efficiency of Ad internalization.

165



In my experiment I noticed that Ad 5/35 ensure a faster GFP expression in all cells we 

used but this not translate into a higher efficiency of gene transfer or level of transgene 

expression. My data indicate that this is at least in part due to a sort of genetic instability of 

viruses that passes from the endosomal/lysosomal cellular compartments. It seems that a 

earlier gene expression from that viruses do not correspond to a longer or constant gene 

expression. In general, molecules that enter cells via receptor-mediated endocytosis can 

follow one of two major routes: (i) the endocytic recycling pathway, in which membrane 

proteins and membrane-bound proteins are collected in a tubulovesicular compartment, 

termed the endocytic recycling compartment, prior to trafficking back to the cell surface; 

or (ii) the lysosomal pathway, in which a select set of membrane proteins, ligands that have 

dissociated from their receptors, and soluble materials occupy a compartment termed the 

sorting endosome, which later matures and acidifies to become a late endosome and finally 

a lysosome. It appears that trafficking of Ad 5/35 particles involves both pathways. Ad 

5/35 particles achieve proximity to the nucleus by remaining inside late 

endosomes/lysosomes. It appears also that some of the Ad 5/35 particles enter the 

endocytic recycling pathway and are released from the cell. Finally, in comparison to the 

Ad 5-CAR interaction, the binding of Ad 5/35 particles to the receptor may lead to more 

destructive changes in structures that determine the infectivity of Ad particles. Other 

factors that may influence Ad 5/35 trafficking remain to be investigated, including whether 

fiber release occurs during internalization and which signaling pathways are activated. The 

development of Ad vectors that interact with receptors different from CAR requires a 

better understanding of events that follow the internalization of viral particles.

As I wrote before it could be of interest to test the capability of this new hybrid serotype to 

transduce the keratinocyte repopulating stem cell population. No stem cell keratinocyte 

marker is known, so is not possible to select this population as it is possible in a CD34+ 

cell contest. The only proof of principle available in this case is transduce the total
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keratinocyte population and see if it is possible to isolate a clone with the integrated 

cassette.
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