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ABSTRACT

Animal models have shown that CD4+ T cells are required to achieve effective, long- 

lasting immunity to cancer. Less is known on the role and functional state in human 

disease of tumor antigen specific CD4+ T cells. These cells recognise epitopes from 

tumor antigens presented by MHC-II molecules on professional antigen presenting cells 

and also directly on tumor cells. MAGE-3 is a tumor specific antigen expressed in 

tumors of different histology but not healthy tissues and so is an ideal candidate for 

immunotherapeutic purposes. MAGE-3 CD4 naturally processed epitopes have been 

described.

The aims of the project were to analyse how processing influences the repertoire of 

MAGE-3 CD4 epitopes formed in different antigen expressing cell types and the role of 

MAGE-3 epitope specific CD4+ T cells in the natural response of advanced melanoma 

patients.

Formation of epitopes through the exogenous pathway was differently influenced by 

endosomal proteases. Indeed, depending on the epitope studied cysteine and aspartic 

proteases lead to epitope formation or destruction affecting the repertoire presented in 

vivo. No clear data were obtained to understand the processing pathways in tumor cells, 

as formation of the studied epitope was unaffected by cytosolic proteases and did not 

require autophagy.

Most patients had circulating MAGE-3 specific CD4+ T cells, mainly unpolarized or 

producing anti-inflammatory cytokines suggesting an impairment of the anti-MAGE-3 

CD4+ T cell response in advanced stages of disease. The repertoire of epitopes 

recognised confirmed the immunodominance of previously described epitopes and 

correlated well with the results of in vitro processing studies.
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Collectively, these experiments show that anti-MAGE-3 CD4+ T cell responses 

develop in vivo and that the repertoire of epitopes formed and recognised is influenced 

by endosomal proteases. Further studies are needed to investigate factors determining 

impairment of CD4+ T cell function in advanced stages and ways to overcome this 

dysfunction.
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1. INTRODUCTION

1.1. Anti-tumor immunity

T lymphocytes are major effectors cells in systemic antitumor immunity and recognise 

antigens displayed on the surface of body cells. Peptides are delivered to the cell surface 

through specialised host glycoproteins, the major histocompatibility complex (MHC), 

on tumor and antigen presenting cells (APCs). The peptides are produced after cleavage 

of antigens within the cells and are loaded onto MHC molecules; the events of this 

process will be described in greater detail in chapter 1.3. Two types of MHC, named 

MHC class I (MHC-I) and (MHC-II), exist. Each type has many alleles and will also be 

described in chapter 1.3. Recognition by T cells is triggered by interaction between the 

MHC complex and the T cell receptor (TCR). The TCR is associated with one of the 

two co-receptors that confers the ability to bind to MHC molecules. Through co

receptor CD8 the TCR interacts with MHC-I molecules while CD4 is required for 

interaction with MHC-II. The presence of the co-receptor divides T cells into two 

subsets that differ in role and cells they interact with.

As CD8+ T cells can directly recognise tumoral cells expressing MHC-I molecules it 

was assumed that the predominant tumoricidal effector mechanism would be killing by 

CD8+ cytotoxic lymphocytes (CTL). Experiments with animal models have indeed 

shown that adoptive transfer of tumor specific CD8+ T cells, stimulated in vitro, is able 

to mediate anti-tumor immunity in tumor-bearing hosts (reviewed in (1)).

Many tumors are MHC-II negative and, as CD4+ T cells require this complex to 

recognise cells, less attention was at first given to this class of lymphocytes. However,
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better understanding of their function in the immune response led to an interest in CD4+ 

T cells as key elements in the fight against cancer.

1.1.1. Role of CD4+ T cells in antitumor immunity.

CD4+ T cells are critical elements for priming CD8+ T cells (2, 3), for immunity during 

chronic infection (4), for generation of memory T cells (5, 6) and for antibody 

production (7). CD4+ T cells have been shown to play both a direct and an indirect role 

in antitumor immunity in animal models (Fig. 1).

CD4+ T cells as helper cells. One of the most important roles of CD4+ T cells is that of 

activating dendritic cells (DCs), for priming of cytotoxic CD8+ T cells. For full 

activation of CTL interaction between CD4+ T lymphocytes, CD8+ T lymphocytes and 

DCs is necessary but contemporary interaction between three types of migratory cells is 

unlikely. Immature DCs endocytose antigens - including those from dead or dying 

tumoral cells - and migrate to the the lymphnode. In the lymphnode they will be 

recognised by activated CD4+ T cells through interaction of MHC-II and CD80. This 

interaction stimulates up-regulation of CD40L on the T cell. Ligation of CD40L with 

CD40 on the DCs (8-11) confers enhanced antigen presentation and costimulatory 

activity to the DCs. The DCs are able to fully activate any specific CD8+ T cell without 

requiring contemporary presence of CD4+ T cells; these may detach and interact with 

another cell. ‘Licensing’ of DCs means also that a few CD4+ T cells can license many 

APCs and these, in turn, can activate a multitude of CTLs.
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Tumor antigens
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Figure 1. Immune response to tumors. Immature DCs that have endocytosed tumor 
antigens move to lymphnodes to mature and prime T cells. After the priming phase 
activated cells leave the lymphnode to begin the effector phase. Primed CD4+ T cells 
traffic to sites of tumor metastasis where they will stimulate eosinophils or 
macrophages, according to their Th phenotype; they could also interact directly with the 
cancerous cells. Shown are also suppressor CD4+ T reg cells.
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CD4+ T cells as mediators o f  tumor rejection. Based on the type of cytokine secreted 

CD4+ T cells are either considered type 1 (Thl) or type 2 (Th2) helper cells. The first 

type secrets cytokines such as interleukin (IL) 2 (IL-2), interferon-y (IFN-y), tumor 

necrosis factor (TNF) whereas the second produces IL-4, IL-5, IL-10 and IL-13. The 

two stimulate different types of cells (CTLs or B cells with antibody production) (12).

Thl CD4+ T cells, with their ability to induce CTL responses, are clearly important 

in tumor rejection. In animal models, adoptive transfer of tumor specific CD4+ T cells 

led to elimination of cancer. In a study by Nishimura et al., tumors showed cell necrosis 

and infiltration by neutrophils and eosinophils after transfer of tumor specific CD4+ T 

cells; necrosis was mediated by CD8+ T cells because in recipient mice depleted of 

CD8+ T cells no rejection was seen (13). In other models, tumor specific CD4+ T cells 

(induced by a modified tumor secreting granulocyte/monocyte colony stimulating 

factor, GM-CSF) showed both Thl and Th2 phenotype and both were required for 

tumor rejection. Cytokines produced by these cells activated eosinophils and 

macrophages, leading to production of superoxide and nitric oxide followed by tumoral 

cell death (14).

CD4+ T cells can promote tumor cell destruction in a CD8-independent manner. Th2 

CD4+ T cells regulated cytotoxic activity in experimental lung metastases through 

infiltrating eosinophils (15). Neutrophil action against tumors has also been shown to be 

mediated by CD4+ T cell activity (16). CD4+T cells, but not CD8+ T cells, are required 

for natural killer T (NKT)-dependent tumor rejection (17).

Direct cytotoxic activity has been shown for CD4+ T cells, mainly in vitro (18-20) 

but also in vivo in mice (21). The role of this activity may be relevant for 

haematological malignancies such as leukaemia in vivo. It is less clear in the case of 

solid tumors, as most are MHC-II negative (although expression may be induced in an 

inflammatory environment and direct recognition and destruction take place).
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CD4+ cells as suppressors o f tumor destruction. Increasing attention has been given to a 

subset of T cells, called T regulatory (Tregs), whose primary function is to regulate the 

peripheral immune system activity against foreign and self antigens (reviewed in (22, 

23)). These cells were first identified as suppressor cells because their removal caused 

the onset of a variety of autoimmune diseases. Tregs have been divided into subtypes 

and the best studied subtype expresses CD25 (the IL-2 receptor alpha chain), CTLA-4, 

Toll-like receptors, a glucocorticoid-induced TNF receptor (GITR) and Foxp3. They are 

known as CD4+ CD25+ Foxp3+ and represent approximately 5-10% of peripheral CD4+ 

T cells. Antibody-mediated removal of Tregs in mouse tumors resulted in improved 

specific anti-tumor immunity (24, 25). In a melanoma adoptive immunotherapy model 

transfer of CD4+CD25+ effectively prevented CD8+ T cell-mediated tumor destruction; 

transfer of CD4+CD25' cells did not have this effect (26). Taken together these data 

strongly support the idea that these cells interfere with tumor rejection. Recent studies 

have shown high levels of Tregs in the blood and/or the tumor environment of patients 

with melanoma, Hodgkin’s lymphoma, breast cancer and carcinoma of the lung, 

gastrointestinal tract, pancreas and ovary. Indeed, a large-scale study of ovarian 

carcinoma showed the accumulation in tumors of CD4+CD25+ T cells that suppressed 

tumor-specific T cell immunity. Notably there was a strong inverse correlation between 

the number of Tregs in the tumor biopsy and patient survival (27).

Studies on the Treg subtype Trl have only just begun but they too have been 

reported in association with cancer in animal models and in humans (28, 29). In 

melanoma patients Trl-like CD4+ T cells have been isolated and found to secrete IL-10 

in response to recognition of MHC-II restricted tumor antigens (30, 31). IL-10 acts by 

stopping up-regulation of MHC molecules and co-stimulatory molecules on APCs; it 

also blocks T cells by inhibiting their proliferation and cytokine production. Less 

characterised are Th3 Tregs (22). They are known to secrete tumor growth factor p
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(TGF-p) that inhibits T cell proliferation, cytokine production and cytotoxicity acting at 

all stages of T cell differentiation. TGF-p can also act on APCs by suppressing 

maturation, IFN-y production and MHC-II expression.

Activation of Tregs requires antigen specific stimulation through the TCR in the 

presence of IL-2 (32); once active the cells do not require antigen and are suppressive in 

a non specific manner, targeting both Thl and Th2 CD4+ T cells and also NKT cells 

(33-35).

1.1.2 Th profile of responding CD4+ T cells in spontaneous response to tumors.

An important issue in anti-tumor immunity is the Th profile of CD4+ T cells. A high 

level of Tregs, as discussed in 1.1.1, seems correlated to poor clinical outcome. Thl and 

Th2 responses also have different effects on tumor rejection. Although some Th2 CD4+ 

T cells are able to mediate tumor rejection, experiments in mice unable to mount a Th2 

response showed the animals to be far more resistant to cancer compared to their wild 

type counterparts (36). Immune responses skewed to a Thl phenotype and away from a 

Th2 are thought optimal for tumor rejection, a conclusion based on the efficient 

tumoricidal activity of CTLs and on many studies demonstrating that induction of Thl 

responses leads to tumor rejection, while Th2 responses are associated to tumor 

progression (37).

In the spontaneous immune response of humans to cancer expression of certain 

antigens appears associated to a Thl and/or Th2 response.

CD4+ T cells isolated from patients whose cancers expressed SSX-2 (product of one 

of the synovial sarcoma X breakpoint genes, a family of cancer -  testis antigens) were 

found to release IFN-y upon stimulation with the protein (38). In patients whose tumors
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expressed a related protein, SSX-4, CD4+ T cells also appeared to have a Thl phenotype 

(39).

NY-ESO-1 is a cancer-testis antigen expressed in different types of tumor but not 

healthy tissues. Spontaneous responses are found in 50% of patients with cancers 

expressing this antigen that elicits both humoral and cellular immunity. A survey on 

patients showed that the antibody response was correlated to the CD4+ T cell response 

and that the T cells had a strictly Thl phenotype (40) also confirmed by other studies 

(41). This antigen is however also capable of inducing mixed Thl/Th2 responses (42); 

indeed, in a study enrolling patients with ovarian epithelial carcinoma, Th2 responses 

were found only associated with Thl and never alone. The prognosis of patients with 

mixed response was no worse than that of patients with Thl; the Th2 CD4+ T cells 

could be considered productive collaborators of Thl CD4+ T cells in anti-tumor 

immunity (43).

On the contrary, a different pattern was observed in renal cell carcinoma and 

melanoma expressing the tumor antigen MAGE-6. This protein is also a cancer-testis 

antigen and belongs to the family of MAGE proteins (described in 1.4). Patients with 

progressive disease were found to have a Th2 response against MAGE-6, while patients 

with no evidence of disease had a Thl phenotype. Patients that had undergone surgery 

changed from a Th2 to a Thl phenotype, showing that, in the presence of the tumor, 

responses were clearly skewed towards a Th2 phenotype resulting in poorer prognosis 

(44). Little information is available about the response to the other members of this 

family; in the case of MAGE-3 a Thl response was seen but the studies performed were 

concentrated on checking vaccinated melanoma patients.

Viewed together, these data suggest that both types of response could be important 

and that Th2 response may not always be linked to progression of disease.
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1.2 Tumor associated antigens

Tumor associated antigens (TAA) have been identified in a number of tumors; 

expression of some is restricted almost entirely to tumors while others can be found in 

healthy tissue as well. These antigens have been divided into groups on the basis of 

their pattern of expression (reviewed in (45)).

Cancer/testis antigens. These antigens are encoded by genes activated in many 

histologically different tumors but not in normal tissues; prototypes of this group are the 

MAGE genes, expressed in placental trophoblasts and testicular germ cells; as these 

cells do not express MHC molecules (46, 47) the antigens can be safely defined as 

tumor-specific. MAGE proteins, and MAGE-3 in particular, will be described in detail 

in chapter 1.4. This group includes GAGE, BAGE, the SSX family and NY-ESO-1 

(mentioned in 1.1.2). Their pattern of expression and presence in many different types 

of tumor makes them ideal for immunotherapy.

Differentiation antigens. Antigens belonging to this group are tyrosinase, Melan- 

A/MART-1, gpl00/Pmell7, gp57/TRP-l and TRP-2; these antigens are also expressed 

in melanocytes. Patients experiencing tumor regression often have vitiligo, a local skin 

depigmentation caused by death of melanocytes. This type of cell is found in the eye so 

using these antigens for immunotherapy is not without risks.

Antigens from mutated ubiquitous proteins. These mutated proteins are probably 

involved in oncogenesis, as they have been found in independent tumors and influence 

activity of the proteins themselves. The mutated form of CDK4, for example, is unable 

to bind to its inhibitor and so alters the cell cycle (48). The mutated form of p-catenin is



more stable than the non mutated one and forms complexes with transcription factors; 

the complexes probably act on some other target enhancing proliferation or stopping 

apoptosis (49). CASP-8 is needed for FAS and TNF-1 mediated apoptosis; the mutated 

version is not as efficient as the wild type protein, allowing cells to grow indefinitely 

(50). Other genes belonging to this group include MUM-1 and the chimeric protein bcr- 

abl, found in some leukaemias.

Antigens from over-expressed genes. Some CTLs have been found to recognise antigens 

encoded by non-mutated genes expressed at different levels in normal and tumoral 

tissue. One of these genes is HER-2/neu, expressed at high levels in approximately 30% 

of breast and ovarian cancer (51); lymphocytes infiltrating some ovarian carcinomas 

were specific for an HER-2/neu peptide (52, 53). Another member of this group is p53, 

whose concentration is increased in many tumor cells because half-life of mutant forms 

is extended compared to wild type (51). A CTL clone, raised after in vitro priming, was 

able to lyse tumor cells over-expressing p53 (54). The carcinoembryonic antigen (CEA) 

is an oncofetal protein expressed in normal colon epithelium and in most gut 

carcinomas; it contains at least one epitope recognised by T cells from immunised 

patients (55).

Viral antigens. Certain families of viruses (such as herperviruses and papillomaviruses) 

can cause persistent infection and cancer. Cancer such as nasopharyngeal carcinoma and 

Hodgkin’s disease express the antigens Epstein-Barr nuclear antigen 1 (EBNA1) and 

latent membrane proteins (LMP) derived from the Epstein-Barr herpesvirus (56, 57). 

Cervical cancer is associated to infection by papillomaviruses with expression of 

immunogenic early proteins (58).
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1.3. Antigen processing

Processing of an antigen comprises all the events that, starting from a whole antigenic 

molecule, lead to the formation of peptides that can be loaded onto an MHC molecule. 

As mentioned in chapter 1, there are two types of MHC molecules, MHC-I and MHC- 

II, closely related in three-dimensional structure despite differences in subunit structure. 

The two differ from each other also in distribution, allowing them distinct functions in 

antigen presentation, binding of peptides from different intracellular sites and activation 

of different subsets of T cells.

MHC-I molecules, found on almost all nucleated cells, contain peptides derived from 

endogenously synthesized proteins. In MHC-II-peptide complexes, commonly found on 

professional APCs, the peptide usually derives from an exogenous antigen. However, as 

MHC-II molecules can be expressed by non professional APCs as well (see section 

1.3.1.3), peptides can also derive from an endogenously expressed protein.

1.3.1. MHC-II molecules.

MHC-II molecules are dimers made of an a  and a p subunit of slightly different 

molecular weight (34 kD and 29 kD respectively) that are not covalently bound 

(reviewed in (59)). Each chain has two extracellular domains, a l  and a2 in the a  chain 

and pi and p2 in the p chain. Each chain also has a transmembrane domain with a short 

intracellular tail, showing a different structure compared to MHC-I molecules, where 

the second subunit, p2-microglobulin, does not have a transmembrane domain, a l  and 

p i, the distal domains, form the peptide binding groove; a l  and p2, the proximal 

domains, resemble immunoglobulin constant domains both in 3-dimensional structure 

and aminoacid sequence. The p2 domain contains the site where the CD4 molecule 

binds through its D1 domain.
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The peptide binding groove of MHC-II molecules (formed by the a l  and pi 

domains) is made of two segmented a-helices (one from each domain) over 

antiparallelel p-strands. The groove is open at both ends and its depth is linked to the 

alleles expressed.

Peptides presented by MHC-II molecules are usually 13 to 17 aminoacids in length 

and lie in an extended conformation along the groove. They are kept in place in two 

ways: by peptide side chains that protrude into the MHC’s pocket and by binding of the 

peptide backbone with side chains of the conserved residues of MHC-II molecules that 

line the groove. Crystallisation studies suggest that a minimal class-II bound peptide is 

held in place by side chains at residues 1, 4, 6 and 9, called anchor residues (usually 

denoted as PI, P4, P6 or P9). As the groove is open the peptide lies in an extended 

conformation and binding restrictions are fewer compared to MHC-I molecules, where 

the closed structure restricts peptide length. In MHC-I molecules peptides are eight to 

ten aminoacids long and the small variations in length observed are due to peptide 

kinking and protruding above the binding groove. Binding is stabilised by interactions 

between the amino- and carboxy-terminals of the peptide and the helices (60-62).

Despite the fewer binding restrictions in MHC-II molecules compared to MHC-I 

molecules a pattern can generally be detected for MHC-II peptides. For example, anchor 

residue P4 binding the HLA-DR*03 molecule is a negatively charged aminoacid (such 

as aspartic and glutamic acid) whereas P9 holds a hydrophobic residue (such as 

phenylalanine, tyrosine, proline or leucine).

A representation of the two classes of MHC molecule is shown in Figure 2.
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A B

Figure 2. MHC-peptide complexes. Three-dimensional model of the peptide-binding 
region in MHC-I (A) and MHC-II (B) molecules; the peptide is red {taken from  
Immunobiology, Janeway et al., 5th edn, Elsevier Science Ltd/Garland Publishing, 
2001).

1.3.1.1. Assembly of MHC-II molecules. Nascent a  and p chains are directed into the 

endoplasmic reticulum (ER) by signal peptides. As they are synthesised they associate 

rapidly (within three minutes) with calnexin that stabilises them (63). Calnexin 

temporarily binds to the invariant chain molecule (referred to as ‘Ii’ from here on) as 

well, that is also produced inside the ER. The Ii forms trimers and each monomer binds 

to an immature a:P complex in the peptide binding region. This further stabilises the 

immature forms of the MHC-II and avoids their binding to peptides and or to any other 

protein present in the ER. Calnexin will dissociate from the nonameric complex as the 

last a:P dimer is added (63). Dissociation coincides with egress of the complex from the 

ER. The first eighty aminoacids of the Ii contain the signal for transport of this large 

nonameric complex to the Golgi apparatus and then on to the endosomal/lysosomal 

compartment, where peptides are formed. Cleavage of the Ii-nonameric complex is 

typically started in endosomes, where the action of asparagine endopeptidase (AEP) 

produces a 22 kD fragment (Iip22) in human cells (64). Proteases other than AEP (but 

like AEP not sensitive to the cysteine protease inhibitor leupeptin) may also cleave the 

Ii. The Iip22 fragment is then cleaved by cysteine cathepsins (generally cathepsins S or
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V, depending on cell type) to form a minimal class II associated Ii derived peptide 

(CLIP, residues 81-104) that is bound to the a: (5 dimer in the peptide binding groove.

Removal of CLIP is catalysed by HLA-DM. This molecular chaperone is encoded in 

MHC locus and its overall structure resembles that of MHC-II molecules. It is a 

heterodimer of an a  and chain that have the classic domains of MHC-II molecules 

(65). They do not form an open peptide-binding groove; indeed, crystallisation studies 

have shown that the groove is closed at the ends, with a central pocket. The pocket 

contains an aminoacid triad closely reminiscent of the active site of serine proteases. 

There is apparently no room for a peptide to bind however so whether this is a vestige 

of a catalytic site or a site able to bind some ligand is not known. The overall structure 

of HLA-DM is similar to that of HLA-DR molecules but it has a lateral surface with 

partially exposed tryptophan residues. This is consistent with the possible formation of a 

DM-DR dimer; the tryptophan residues, interacting with residues of the HLA-DR 

molecule will then trigger a conformational change leading to release of CLIP and 

binding of a peptide (65). HLA-DM works as a ‘peptide editor’ favouring the formation 

of complexes of highest stability and therefore playing a role in shaping the repertoire of 

MHC-II bound peptides (66, 67).

HLA-DM catalyses release of CLIP and loading of a suitable antigenic peptide in the 

late endosome/lysosome-like compartment, defined MHC class II compartments or 

MIICs (68). These vesicles, 200 to 400 nm in diameter, contain multiple internal 

membranes, remniscient of classical multivesicular lysosomes. They were first 

identified in B cells and contain some markers of lysosomes, such as the lysosome- 

associated membrane proteins (LAMPs) but were devoid of Ii-chain, MHC-I and 

markers of the receptor recycling pathway (such as transferrin). They are distinct from 

multivesicular class II compartments or CIIVs, that more closely resemble endosomes 

(68, 69); they are devoid of lysosomal markers and contain some markers of the
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recycling pathway. Loading of antigenic peptides can occur in either of these 

compartments (70).

There is evidence that loading of antigenic peptides can occur in an HLA-DM 

independent manner on recycling MHC-II molecules (71). On the whole there seems to 

be more than way to the formation of the MHC-II-peptide complex in its later stages.

The MHC-II-peptide complex can be produced in two ways (reviewed in (72)) that 

are equally possible and not mutually exclusive.

Peptide production and loading. In this model proteases work on the antigen cutting it 

into progressively smaller fragments. All these peptides can be loaded onto the MHC-II 

molecule: the ones with the highest affinity will bind first. The stable complex will then 

be sent to the cell surface. This was the first model proposed and was based mainly on 

analogies with MHC-I loading and is likely to occur in lysosomes, where most of the 

antigen has been well processed.

Protein fragment binding and trimming. As proteins unfold sites for attachment will be 

exposed to MHC-II molecules in search of a peptide. Presumably the competition 

between the MHC molecules will be won by the one with the highest affinity for an 

epitope in the exposed stretch. Binding could then expose or favour processing by other 

proteases; the regions flanking the sequence bound to the MHC would be trimmed by 

enzymes. If the first binding is stable enough the combination may be dominant in 

responsiveness for the whole antigen. This competition is known as ‘determinant 

capture’ because locally MHC molecules compete to capture a single pro-determinant. 

At the same time the large pro-determinant may contain more than one region ready to 

bind with MHC molecules. In this case the most available region with the highest 

affinity for the MHC molecule will predominate. In this type of competition, known as 

‘competitive capture’, where different determinants of the antigen compete for MHC 

molecules, both affinity and availability play a crucial role.
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On the whole the peptides that are actually loaded onto MHC-II molecules depend 

largely on a number of chance events, such as the shape of the antigen, the presence of a 

distinct set of proteases in the compartment they are in and competition between 

proteolytic enzymes and MHC molecules for binding to the processing site of the 

antigen.

The encounter with pro-determinants in more than one site (early and late endosomes, 

lysosomes) allows interaction with the antigen in all its forms (as long, partly processed 

fragment or as short, highly processed peptides). This maximises the chances of 

presentation of the highest and most varied yield of determinants to CD4+ T cells.

I.3.I.2. Genetic organisation of the MHC locus. In humans the genes encoding for 

MHC molecules are located on chromosome 6 and span 4xl06 bp; more than a hundred 

genes are included in this region. The gene for p2 microglobulin is in chromosome 15 

(reviewed in (59)).

MHC genes (also called HLA in humans, from ‘human leukocyte antigen’) are 

polygenic, as they encode proteins with different ranges of peptide binding specificity. 

They are also polymorphic, as there are multiple alleles for each gene; they are probably 

among the most polymorphic genes known.

The class I regions contains the genes for HLA-A, -B and -C. There are over a 

hundred known alleles and their distribution is often linked to race: the HLA-A 1 allele, 

for example, is common among Caucasians and HLA-A24 in Asians (73). The class III 

region has genes encoding for the complement proteins C4 (A and B), C2 and Factor B 

other than the genes TNF a  and p and for 21-hydroxylase, plus a number of other genes 

showing little polymorphism and whose function is not clear yet.

The class II region contains genes that encode for subunits of the proteasome and for 

the peptide transporters TAPI and TAP2. There are also the genes for the subunits of
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HLA-DM. The remaining genes encode for the proteins that make up MHC-II 

molecules, HLA-DP, HLA-DQ and HLA-DR. As each of these has an a  and a (3 subunit 

there are two genes per locus.

The locus for HLA-DR can contain an extra p gene that binds to the a  chain, 

increasing the variability of MHC-II molecules and therefore the peptides they can 

present. The two p genes differ, as one, HLA-DRpl, is highly polymorphic (over one 

hundred alleles are known and probably more exist) whereas there is little allelic 

diversity for the second HLA-DRP: only three alleles exist. From here on the HLA- 

DRpi chain will be referred to simply as ‘HLA-DR’ followed by the number; the extra 

p gene will be described as ‘ HLA-DRp ‘ and the number. The extra p chain is associated 

only with certain HLA-DR types: HLA-DR*04, *07 and *09 express HLA-DRp4, 

HLA-DR* 15 and HLA-DR* 16 express HLA-DRp5; HLA-DR*03, *11, *13 express 

HLA-DRP3 but HLA-DR*01, *08 and *10 are not associated with any extra p chain 

(73). The two p chains, bound to the a  chain, function as distinct restriction elements 

and exhibit different CD4+ T cell reactivity (74, 75). Their level of expression is 

different as HLA-DRpl molecules are expressed three to five times more than other 

HLA-DRp molecules (76).

The high number of MHC-II that can present antigens to the immune systems makes 

it extremely unlikely that any pathogen could mutate its structure enough to avoid 

presentation to the immune system by at least one of them.

I.3.I.3. Expression and regulation of MHC molecules. The distinct distribution

among cells of MHC-I and MHC-II molecules reflects the different effector functions of

the T cells that recognise them. Class I molecules are normally found on all nucleated

cells. The level of expression varies in different cell types (it is high on cells of the

immune system but lower on hepatocytes and kidney cells). Expression can be
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upregulated by cytokines, such IFN-a and IFN-p. Double-strand RNA (found in cells 

only during viral infection) is a strong stimulus to produce these interferons leading to 

upregulation of expression of MHC-I molecules, of TAP proteins and certain subunits 

of the proteasome (reviewed in (59)), increasing the chances of presenting a viral 

peptide to CD8+ T cells for destruction of the infected cell.

As the main function of CD4+ T cells is to activate other effector cells of the immune 

system MHC-II molecules are found only on cells of the immune system like DCs, B 

cells and macrophages (reviewed in (77)), or cells related to them (such as cells of brain 

microglia, derived from macrophages). Cells from other tissues can, however, be 

induced to express class II molecules after cytokine production and some cancerous 

cells have constitutive expression.

Upregulation of HLA-DR, -DP and -DQ is coordinated with upregulation of the Ii 

molecule and the HLA-DM chaperone. A common activation region is shared by all the 

genes for these proteins in the DNA upstream of the coding sequence. The activation 

motif is made of four regions, named W, X and Y boxes. These boxes are bound by 

transcription factors. The RFX factor, a heterodimer made of a 75 and a 36 kD chain, 

binds to the first half of the X box (XI). The second half of the box, X2, is bound by the 

X2BP factor. The two factors bind cooperatively, the interaction of the complex being 

much stronger than interaction of the proteins separately. The complex also interacts 

with the heterotrimeric factor NF-Y, known to bind to the minor groove of the DNA 

and distort it. As the NF-Y complex-Y box interaction is weaker compared to the RFX- 

X2BP-X box interaction it is likely that the latter is more important in the first 

interactions at class II promoters. RFX is also known to weakly bind the W box but this 

binding is greatly enhanced by NF-Y, suggesting that the whole class II regulatory 

region interacts with multiple RFX factors.
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The promoter regions among the MHC-II genes are very similar but not identical: for 

example, there are isotype-specific differences concerning the X and Y boxes in the 

promoters of HLA-DRpl genes and HLA-DRp3, p4 and P5. This results in the XI, X2 

and NF-Y factors having different affinity for the promoters of these genes, leading to 

different levels of expression of the p chains (78).

All these factors are ubiquitously expressed but their presence on the DNA does not 

trigger transcription. The last factor required for this is the Class II Transactivator 

(OITA), a large protein of 1130 aminoacids with an amino-terminal acidic domain, a 

proline-threonine-serine rich domain and a GTP binding domain. The protein itself does 

not bind the DNA and uses its acidic domain to interact with the RFX factors and 

activate transcription (79, 80). CIITA is present only in class II expressing cells and 

appearance of its mRNA was found to precede appearance of MHC-II molecules on the 

cell surface (81), so it may be the limiting factor in class II regulation.

Expression of MHC-II molecules may be increased after exposure to cells to IFN- 

y(82) and, in certain cell types, also by IL-4 and IL-13 (82, 83). IFN-y induces 

transcription of CIITA (81).

Expression may also be decreased by cytokines like IL-10 (83), TGF-p (84) and 

IFN-P (85), that works in a CIITA independent manner.

25



1.3.2. Processing of antigens through the endogenous pathway

Proteins -  antigens -  that reside in the cytosol or nucleus are considered ‘endogenous’ 

as they are produced and kept inside the cell, where they will be degraded at the end of 

their life. The events that lead to the formation of an MHC-peptide complex starting 

from an endogenous protein will be referred to as ‘processing through the endogenous 

pathway’: as the focus of this PhD project is the study of CD4 epitopes that MHC- 

peptide complex will be an MHC-II-peptide complex. This pathway is opposed to 

‘processing through the exogenous pathway’, a definition used to indicate all those 

events leading to the formation of MHC-II-peptide complexes starting from an 

exogenous antigen carried into the cell. As the final product -  an MHC-II-peptide 

complex -  is the same the two pathways connect and overlap at some stage. The 

possible points of interaction will be described later. The classical MHC-I peptide 

producing pathway is shown in Figure 3; some of the peptides (or precursor peptides) 

produced in this pathway could be delivered for loading onto MHC-II molecules.

All endogenous proteins are potential targets for the proteases present in the cytosol, 

regardless of the MHC complex their peptides will eventually be loaded onto. Short

lived proteins are typically targeted for destruction by the proteasome (86). Newly 

synthesized proteins that fail to reach their native state (due to mistranslations, 

truncations, improper folding, etc) are also targeted for destruction. This particular pool 

of proteins has been given the collective name of ‘defective ribosomal products’ 

(DRiPs) (reviewed in (87)). DRiPs from cytosolic proteins are cleaved into smaller 

peptides by the proteasome and other cytosolic proteases, then transported into the ER 

via TAP. Proteins directed into the ER may here fail to reach their proper conformation 

and will be dislocated from the ER to the cytosol for degradation by the proteasome. 

Transport of the proteins occurs through the Sec61 translocon (88). Improperly folded 

or defective glycoproteins are also dislocated to the cytosol. Removal of N-linked
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glycans from defective glycoproteins, mediated by peptide:N-glycanase (89), can 

proceed at either site of the ER membrane and depends on the glycoprotein substrate 

(90); the proteasome is capable of degrading glycoproteins without prior removal of 

their glycans (91). Peptide fragments from both glycosilated and non glycosilated 

proteins can therefore be presented to the immune system.

I.3.2.I. The standard proteasome. The largest multicatalytic proteolytic complex in 

eukaryotes is the proteasome; a 26S structure made of a regulatory 19S particle and a 

20S core (reviewed in (92)). The 19S regulatory particle caps the proteasome at one or 

both ends and modulates entry of substrates into the core; it is also needed for 

recognition of ubiquitin-tagged proteins and protein unfolding prior to entry. The 20S 

core is a hollow barrel-shaped structure made of four rings. The two outer rings are 

identical and made of seven a  subunits. The two inner rings are made of different p 

subunits; of these seven, three have catalytic activity, each with a distinct substrate 

specificity: tryptic (cleaving after basic aminoacids) catalysed by subunit P2, 

chimotryptic (cleaving after hydrophobic aminoacids), catalysed by subunit p5, and 

caspase-like (after acidic aminoacids), catalysed by subunit p i. The genes for all these 

subunits are in the MHC gene locus and are constitutively active.
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Figure 3. Processing through the endogenous pathway. Proteins are subjected to the 
proteolytic activity of cytosolic proteases and carried into the ER for loading onto 
MHC-I class molecules for presentation to CD8+ T cells. Some peptides from 
endogenous proteins will be loaded onto MHC-II molecules following a pathway not 
identified yet. PSA: puromycin sensitive aminopeptidase, TPP II: tripeptidyl peptidase 
II, BH: bleomycin hydrolase, TOP: thimet oligopeptidase, TAP: transporter associated 
with antigen processing (picture adapted from Nature Immunology, 2004, 5: 661).

Proteins are targeted to the proteasome by ubiquitination (93). This process involves 

attacking one or more ubiquitin molecules to the e-amino group of lysines in the 

protein; this is carried out by the El, E2 and E3 system. Substrates for the proteasome 

are typically short lived proteins (86).

Ubiquitination makes delivery to the cytosol quicker but in general any protein 

residing in the cytosol could be degraded by the proteasome. Proteins from viruses that 

replicate and assemble in the cytosol are also substrates for proteasomal activity. DCs
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retrotranslocate endocytosed proteins into the cytosol for processing by the proteasome 

(94); this allows them to prime CD8+ T cells for antigens they could find on the surface 

of cells infected by pathogens (reviewed in (95)).

Proteins will be cleaved by the proteasome into progressively smaller fragments. 

Some of these peptides will bind to TAP and be delivered inside the ER for loading 

onto MHC-I molecules. The complex will be then transported to the cell surface. The 

presence of a complex with a peptide of viral, bacterial or simply unexplained origin 

will lead to destruction of the presenting cell.

1.3.2.2. The immunoproteasome. Exposure of cells to certain cytokines, such as IFN- 

y, causes changes in the composition of proteasomal subunits: p i, p2 and p5 are 

replaced by their inducible counterparts pii, p2i, p5i (coded by genes LMP2, MECL1 

and LMP7 respectively) to form a new structure called ‘immunoproteasome’ (96). 

Compared to its standard counterpart the immunoproteasome has higher tryptic and 

chymotryptic activity but a much lower caspase-like activity; this is partly replaced by 

new specificity for branched-chain aminoacids, like leucine and isoleucine. 

Hydrophobic aminoacids are more favoured anchor residues, so production of more 

peptides with the right anchor residue should improve presentation. 

Immunoproteasomes are indeed expressed constitutively in APCs like DCs and B cells 

(96).

1.3.2.3. Differences in processing between the two proteasomes. As in mature DCs 

the main type of proteasome is the immunoproteasome CD8+ T cells can be primed 

preferentially for the peptides produced by this sort of complex, influencing the CD8 

epitope hierarchy (97). Experiments in immunoproteasome deficient mice confirm this 

(98). Lack of inducible subunits is not, however, incompatible with life, as cells
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negative for the immunoproteasome do not show any metabolic disorder or decrease in 

production of MHC-I-peptide complexes (99, 100). Indeed, some antigenic peptides are 

produced regardless of the type of proteasome in the cell (99); for example, presentation 

of the epitope NY-ESO-I157-165 (from tumor antigen NY-ESO-1) is not affected by the 

presence or absence of p li and p5i (101). For others there is difference, deriving from 

the different substrate specificity of the two complexes.

Some epitopes are produced preferentially in cells with a standard proteasome, such 

as epitope 26-35 of Melan-A, a protein from human melanocytes (97). The human 

MAGE-C2 protein has a class I epitope in the 336-344 region that is destroyed by the 

standard proteasome, perhaps because the aminoacid sequence is rich in acidic residues 

and so a good substrate for the caspase-like activity (102). The tumor antigen MAGE-3 

also contains an epitope that is sensitive to proteasomal activity. MAGE-3271-279 is 

produced efficiently in melanoma cells only when the proteasome is partly inhibited by 

the proteasomal inhibitor lactacystin (103).

The immunoproteasome was found to be essential for production of the HLA-B40 

restricted 114-122 epitope from the tumor antigen MAGE-3. Even more specifically, 

subunit P5i was required for formation of this epitope, as transfection of 293-EBNA 

lines with p5i alone was enough for production (104). The immunoproteasome has been 

shown to destroy epitopes from other TAAs, such as gpl00209-2i7 and tyrosinase369-377, 

as their hydrophobic-rich sequence is probably recognised and cleaved. These epitopes 

are therefore more likely to be found on the surface of cells expressing the standard 

proteasome (102).

I.3.2.4. Tripeptidyl-peptidase II (TPP II). A large, active cytosolic protease is TPP II 

(105). This rod-shaped complex, with a channel in the centre, is a serine-peptidase and 

removes tripeptides from the free amino-terminal of peptide fragments, with tryptic and
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chimotryptic specificity. It has been shown to be more active in murine cells with 

impaired proteasome function, although it cannot compensate for severe or total loss of 

proteasomal activity (106). It could play a role in production of class I epitopes. 

Peptides loaded onto HLA-A3 and HLA-A11, for example, generally have a lysine in 

the carboxyl terminal position and production of these peptides is not impaired even 

when the tryptic activity of the proteasome is inhibited (107). It was also essential for 

processing of the influenza virus nucleoprotein NP147.155 epitope (108). Other 

experiments, however, show that TTP II is not required for correct processing of other 

epitopes, such as OVA258-265, in murine cells (109).

Taken together, the data gathered so far suggest that TPP II plays a role in antigen 

processing but not one that is essential for generation of most of the presented epitopes.

I.3.2.5. Effects of other proteases. Proteasomes (both standard and not) will produce 

peptides of different length whose aminoacid in the carboxy-terminal is usually a 

suitable anchor residue for loading. Most ‘post proteasomal’ activity will be trimming 

of peptides in their amino-terminal region. Leucine aminopeptidase (LAP) is an IFN-y 

inducible cytosolic aminopeptidase (110). It was thought to be important in trimming of 

antigenic peptides but experiments with LAP null mice have shown that it is not 

essential (111) so its role is probably redundant. Other cytosolic proteases are known. 

Puromycin sensitive aminopeptidase (PSA) is a metalloprotease conserved in all species 

(112) with broad tissue specificity (113). Bleomycin hydrolase (BH), first identified for 

its capacity to inactivate the anticancer drug bleomycin, is also a well conserved 

cysteine protease found in many tissues (114). Both have been shown to be involved in 

correct processing of a viral epitope (VSV NP52-59) so their aminopeptidase activity 

could be important in antigen processing (115). Calpains are cytosolic (but also 

transmembrane) calcium-dependant cysteine proteases involved in modulation of signal
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transduction and transcription pathways (116) and have been implicated in autoimmune 

disorders such as arthritis and multiple sclerosis (117).

Not all proteolytic activity will favour production of antigenic peptides. The metallo- 

endoprotease thimet oligopeptidase (TOP), for example, has been shown to rapidly and 

efficiently degrade antigenic peptides both in vitro (118) and, most importantly, also in 

vivo (119). It could therefore be a significant factor limiting peptide presentation. On the 

whole, the extent of antigen presentation is closely related to the balance between the 

proteolytic activities that generate and destroy epitopes.

After transport inside the ER peptides can still be trimmed in their aminoterminal 

region. In human cells this is probably carried out by the metallo-proteinase 

endoplasmic reticulum aminopeptidase associated with antigen processing, ERAAP 

(reviewed in (120)). In humans there are two ERAAP-like proteins, ERAP1 and 

ERAP2. ERAP1 is a 930 aminoacid glycoprotein whose expression is ubiquitous but 

higher in spleen, thymus and liver, paralleling MHC-I expression. Its substrate 

specificity is for peptides nine to ten or more aminoacids in length. ERAP2 is a 

glycosilated protein whose pattern of expression is slightly more restricted than ERAP1, 

being found mainly in the thymus and in leukocytes; occasionally ERAP1 and ERAP2 

form heterodimeric complex for the digestion of particularly large peptides. Both 

proteins are upregulated upon IFN-y stimulation but their roles are not overlapping. The 

data obtained so far on the role of ERAPs in proteolysis of antigenic peptides is 

contradictory.

1.3.2.6. Proteasomal activity in the nucleus. Short lived transcription factors (such as 

the ones induced in response to a specific signal) must be inactivated and eliminated 

rapidly once the signal ceases. Coherently with this, proteasomes have been described 

inside the nucleus and seem to be located near the sites of most active transcription
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(121) and not in the nucleolus or the nuclear envelope; nuclear proteins are known to 

have MHC-I epitopes (48). The digested peptides are then transported into the 

cytoplasm; from here on the peptides will follow the fate of their cytosol-produced 

counterparts.

I.3.2.7. Effects of cytosolic proteases on MHC-II epitope processing. In DCs

endocytosed material is translocated into the cytosol for processing and cross

presentation of antigens on MHC-I molecules, so ‘exogenous’ antigens will feel the 

effects of the immunoproteasome and other proteases. The role in MHC-II epitope 

processing of cytosolic proteases is less characterised but well known. Two influenza 

epitopes, H A 3 0 2 - 3 1 3  and N A 7 9 .9 3 ,  were produced in a proteasome and TAP dependent 

manner in DCs but not in cells with less permeable endosomes, such as fibroblasts

(122). In human cells, proteasomal activity has been reported necessary for proper 

production of an immunodominant epitope of glutamate decarboxylase (GAD273-285) 

when this antigen is delivered endogenously in lymphoblastoid cell lines (LCLs). As 

these are B cells, the activity is probably that of the immunoproteasome (123). Calpains 

also appear required for this epitope (123) in the same cells.
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1.3.3. Processing through the exogenous pathway

The events that lead to the formation of an MHC-II-peptide complex from an antigen 

endocytosed from the external milieu are here referred to as ‘processing through the 

exogenous pathway. As antigens travel towards the lysosomal compartment where 

MHC-II molecules mature they encounter different enzymes and environmental 

conditions, starting from the near-neutral, mildly acidic early endosomes to the highly 

acidic lysosomes (see Figure 4). These organelles are rich in proteases that have 

different optimal activity pH: proteases cathepsin B and cathepsin D, for example, could 

start attacking an antigen in early endosomes and in acidic lysosomes respectively. 

Some compact, globular antigens could be particularly difficult to unfold and could 

require a cleavage by a specific protease (such as the tetanus toxoid C-terminal 

fragment, TTCF (124)). Even if an antigen proved particularly resistant to protease 

action and it would however begin unfolding in an acidic pH. GILT (y-IFN-inducible 

lysosomal thiol protease) is active at low pH and can catalyse reduction of disulfide 

bonds required for complete denaturation, making sites accessible to proteolysis (125). 

Once the peptides are produced and the MHC-II molecules loaded they will be 

delivered to the cell surface for recognition by CD4+ T cells (see Figure 4). Most 

mammalian proteases are cysteine proteases of the cathepsin family but some cathepsins 

are aspartic proteases; some are cysteine proteases but not cathepsins. Their expression 

and activity vary according to cell type and stimulus.
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Figure 4. Processing through the exogenous pathway. Endocytosed antigens are 
processed in endosomes and lysosomes and peptide fragments loaded onto MHC-II 
molecules for recognition by CD4+ T cells. Scissors represent proteases (picture 
adapted from Nature Immunology Reviews, 2003, 3:472).

1.3.3.1. Cathepsin S (catS). This protease plays a major role in late processing of the 

Ii-MHC-II molecule in all cells of the immune system (126) except for thymic cortical 

epithelial (TCE) cells, where its activity is not detectable. CatS null mice show a 

considerable impairment of antigen presentation and accumulation of incompletely 

processed MHC-II molecules in cells (127). It is unique among cathepsins as its 

expression is up-regulated by IFN-y (128).Other than a role in maturation of MHC-II 

molecule catS is also able to process antigens, as in murine systems it is required for 

specific subsets of antigens (129), including production of the H E L 3 0 - 4 4  epitope (130). 

CatS is currently regarded as a very promising target for the treatment of autoimmune 

diseases such as rheumatoid arthritis and bronchial asthma (131). CatS is able to 

degrade elements of the extra-cellular membrane such as elastin and collagen (132) and, 

unlike most other cathepsins, it is fully active even at neutral pH (133). It is therefore
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thought important in tissue remodelling other than playing an important role in cells of 

the immune system.

1.3.3.2. Cathepsin L (catL). In murine TCE cells transformation of Ii to CLIP is 

catalysed by catL (134); in human cells its role is taken by cathepsin V, which shares a 

high homology with catL (135, 136). This protease is not active in other cells of the 

immune system (such as B cells and DCs) although it is expressed (137, 138). It is 

active in cells not belonging to the immune system, where it is able to process antigens 

and influence presentation of subsets of some (129). Variation in catL activity is linked 

to some cancers including prostate (139) and colorectal cancers (140) and melanoma 

(141), where it can promote degradation of extracellular matrix and basement 

membrane that precedes tumor metastasis.

1.3.3.3. Cathepsin B (catB). This enzyme is abundant and active in lysosomes 

suggesting it functions primarily as a component of the protein degradation system. 

Some studies have shown that it is dispensable in antigen processing (142); indeed, catB 

negative mice show no defect in antigen processing, strongly suggesting that it plays no 

specific role in MHC-II maturation. Rather than not involved it is likely to simply be 

redundant. Extensive studies have shown changes of catB levels in human tumors 

suggesting a role in invasion and metastasis (140, 141, 143). Additionally, there is 

evidence of its involvement in rheumatoid arthritis (144).

1.3.3.4. Asparagine endopeptidase (AEP). This protease is a cysteine protease 

unrelated to cathepsin family but grouped with caspases, separases and some bacterial 

proteases (145). It is unique among cysteine proteases because it is not sensitive to 

inhibitors such as leupeptin or E64 (146) and among lysosomal proteases because its
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cleavage site (the carboxyl side of an asparagines residue) is very specific when 

compared to relatively non-specific sequences cleaved by cathepsins. It is required in 

the initial steps of the Ii-MHC-II complex maturation in B cells and DCs, where its 

activity is particularly high; its role in other cell types may be less important (64). It is 

involved in antigen processing, as it is required for the correct processing of TTCF 

(124,147) and its activity determines the amount of myelin basic protein (MBP) epitope 

MBP85-99 presented to CD4+ T cells in TCE cells (148). It therefore contributes to the 

formation of the MHC-II-peptide complex by affecting MHC-II molecule maturation 

and processing of antigen.

1.3.3.5. Cathepsin D (catD). This ubiquitous lysosomal enzyme contains an aspartic 

acid residue in its active site and plays an important role in protein degradation. Its role 

in antigen processing is redundant (as catD negative cells do not show impaired antigen 

presentation) (142) but it is specifically required to produce some epitopes (149-151). 

There is also evidence that aspartyl protease activity can destroy epitopes rather than 

produce them (152). Expression of catD is constitutive in almost all cells but can be 

regulated by molecules such as estrogen (153). CatD is recognised as a worthwhile 

therapeutic target for cancer research as this protease is involved in many tumor 

progression steps, including cancer cell proliferation, angiogenesis and apoptosis (154). 

Recently a novel apoptotic pathway has been demonstrated whereupon catD triggers 

Bax activation and consequently induces the selective release of mitochondrial 

apoptosis inducing factor (AIF) responsible for the early apoptotic pathway (155).

1.3.3.6. Cathepsin E (catE). An aspartic protease found in the perinuclear compartment 

in DCs (and therefore in the ER) (156) and, to a lesser extent, in some endosomal 

compartments (157), catE was found to be upregulated late in human B cell activation
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(158). It has been shown to be involved in processing of ovalbumin in murine B cells

(159) and in DCs (specifically, it was involved in production of the OVA323-339 peptide 

(157)) and could have a negative, destructive effect on processing of some epitopes 

(152), as was seen for catD. It was specifically required for generation of the OVA266-28I 

in murine microglia (but not for Ii processing) (160) but its exact role in processing in 

cells not of the immune system or not derived from those remains to be elucidated.

I.3.3.7. Other enzymes. Enzymes other than the ones mentioned above populate the 

endosomal lysosomal compartment (reviewed in (161)). Cathepsin H is known to be 

present and active in almost all cells; it is not involved in MHC-II maturation but 

probably in antigen processing. Its optimal pH is around 7, suggesting that this enzyme 

is most likely to be active in mildly acidic early endosomes. Its levels of activity have 

also been linked to prognosis of some types of cancer (141).

A number of other cathepsins have been described but their role in antigen processing 

is not fully understood yet. CatX, for example, has a structure similar to catB but its role 

in the immune response requires experimental confirmation. CatC is involved in 

maturation of progranzymes to their catalytically active form in natural killer cells and 

active CTLs rather than processing antigen in APCs (162). Cathepsin W is expressed 

mainly in NK cells and CD8+ lymphocytes, where it is probably localised in the ER. As 

its expression is low in the thymus and in CD4+ T cells it is thought to be involved in 

thymic selection of CD8+ T cells (163).
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1.3.4. Delivery of antigens to the MHC-II compartment

Antigens can be delivered to the MHC-II compartment in at least two ways, depending 

on their origin: if they are outside the cell they will enter through endocytosis and be 

directed into the lysosomal compartment; if they are endogenous antigens they will be 

most probably delivered to the MHC-II compartment via autophagy.

1.3.4.1. Endocytosis. Molecules from the outer milieu enter the cell in ways dependent 

on cell type and molecule size: for example, small molecules such as sugars, aminoacids 

and ions will cross the plasma membrane using specific channels. Larger molecules and 

particles are carried into the cell in membrane bound vesicles deriving from plasma 

membrane invagination. This process is called ‘endocytosis’ and can be divided into 

two broad categories: phagocytosis (the uptake of large particles) and pinocytosis 

(uptake of fluids and solutes).

1.3.4.1.1. Phagocytosis. This process is conducted mainly by specialised cells such as 

macrophages, monocytes and neutrophils and its main function is to eliminate large 

pathogens (such as bacteria or yeast) and large debris (dead cells, etc, reviewed in 

(164)). Specific cell surface receptors and signalling cascades (mediated by Rho-family 

GTPases) are involved in this highly regulated process (reviewed in (165)): in 

phagocytosis of bacteria, the Fc receptors of macrophages are activated by the 

antibodies bound to bacterial surface antigens. The resulting signal cascade will lead to 

Cdc 42 activating the protein Rac triggering actin assembly and formation of membrane 

extensions; these will engulf the antibody-coated pathogen, forming a phagosome, by 

‘zipping’ and membrane fusion. The signal cascade will also have activated the cell’s 

inflammatory response, so that once inside the phagosome the pathogens will be 

destroyed by bactericidal molecules (such as hydrolases, acids and free radicals).
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Phagocytosis is also used to eliminate apoptotic cells, especially by macrophages 

(reviewed in (166)). At least seven surface molecules are involved in recognition of 

apoptotic cells, including lectins, Sr-A, integrins, the receptor for phophatidyl serine 

(PSR) and the tyrosine kinase receptor MER. Inside the cell phagocytosis is mediated 

by the pl30-cas/CrkII/Dockl80 complex with Rac-I, that controlles downstream 

activation of tyrosine kinases and phosphaiidil-inositol-3 kinase (PI3K).

Triggering a signal cascade through these receptors does not activate the cell’s 

inflammatory response (166). Phagocytosis is carried out mainly by macrophages; other 

cells, such as DCs and fibroblasts, are less efficient (167).

I.3.4.I.2. Pinocytosis. This process allows entry of molecules of different sizes and 

occurs in at least four basic mechanisms: macropinocytosis, clathrin-mediated 

endocytosis, caveolae-mediated endocytosis and caveolae- and clathrin-independent 

endocytosis.

Macropinocytosis. Molecules over 1 pm can enter this way. It is more efficient way to 

absorb solutes compared to clathrin-mediated and caveolae-mediated endoytosis (168). 

Activation of DCs starts an intense and prolonged macropinocytotic activity, allowing 

these cells to sample large amounts of extracellular milieu and fulfil their role in 

immune surveillance (95). It is a process characterised by intense membrane ruffling, 

dependent on actin and activation of Rac (reviewed in (169)). Large circular ruffles, 

form and close off in a PI3K-dependent manner to form macropinosomes. These 

vesicles will shrink in size due to loss of water through aquaporins. The content of the 

micropinosome may then be delivered to the MHC-II loading compartment for 

degradation or released into the cytosol for processing by the proteasome.
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Clathrin mediated endocytosis. This process occurs constitutively in all mammalian 

cells and it is one of the better characterised types of endocytosis (reviewed in (170)). 

Clathrin forms a triskelion shaped structure, made of three heavy clathrin molecules and 

three light ones. The triskelions require ‘coat’ proteins for assembly into vesicles: the 

assembly proteins (APs) are divided into two classes, monomeric A PI80 and the 

heterotetrameric adaptor complexes. There are four structurally related adaptor protein 

complexes (API-4) but only AP2 is directly involved in clathrin coated vesicle 

formation. The coat proteins, clathrin, AP2 and A PI80 are able to select cargo and form 

a vesicle. The closing of the vesicle is probably catalysed by dynamin, a large GTPase 

with several domains, including a GTPase effector domain and activation domain. At 

later stages of coated vesicle formation dynamin is thought to assemble into a ring 

round the neck of the deeply invaginated coated pits. GTP-hydrolysis causes 

conformational changes that allow the protein to act.

Clathrin-mediated endocytosis is involved in the continuous uptake of essential 

nutrients and its role in delivering antigens is not clear.

Caveolae-mediated endocytosis. Caveolae are flask-shaped invaginations of the 

membrane than can contain particles up to 120 nm in size (reviewed in (170)). The main 

protein is caveolin, a dimeric protein that binds cholesterol; it inserts a loop into the 

inner layer of the plasma membrane to form a striated caveolin coat on the surface of 

the membrane invaginations. Caveolin null mice have a relatively mild phenotype, with 

some tissues showing a hyperproliferative response but normal development (171). This 

and other evidence led to supposing that caveolin might negatively regulate caveolae 

uptake rather than promote it (172). Caveolin is tyrosine phosphorilated by Src in vivo 

but it is not known if this triggers internalisation (173). As caveolae are slowly
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internalised in most cells and carry a small volume it is unlikely that this process plays a 

significant part in fluid-phase uptake and antigen entry.

Clathrin and caveolae independent endocytosis. This type of endocytosis has been 

observed in lymphocytes, neurons and neuroendocrine cells (reviewed in (170)). More 

studies are required to elucidate the functions and mechanisms of this process.

I.3.4.2. Autophagy. Metabolically active cells have two ways of eliminating proteins: 

through ubiquitination and destruction by the proteasome or via destruction in 

lysosomes. Proteasome degradation is generally used for short-lived proteins (such as 

activated forms of proteins involved in signal cascades). Degradation in lysosomes is 

usually for long-lived proteins; delivery to the lysosomal compartment occurs through 

autophagy, a normal metabolic event in all eukaryotic cells. Damaged organelles (such 

as mytochondria) and protein aggregates containing long-lived proteins are also targeted 

for autophagic destruction but the exact targeting signals have not been defined yet.

I.3.4.2.I. Regulation. In normal conditions autophagy is kept at a basic level and 

contributes to the general turnover of cellular components (reviewed in (174)). In 

starvation this process may be increased to produce aminoacids needed for building 

essential proteins. Hormone stimulation also affects autophagy: insulin inhibits the 

process while glucagons increase it. Knowledge on the molecular regulation of this 

complex multi-step process is fragmented and incomplete and more than one signalling 

pathway has been implicated in its regulation. A relatively well known pathway is the 

PI3K-AKT-mTOR pathway (reviewed in (175)). PI3K type I, in the absence of growth 

factors, promotes the formation of pre-autophagosomal factors. Growth factors lead to
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activation of PI3K that activates the serine kinase AKT3 that in turn activates the 

mammalian target of rapamycin (mTOR) kinase resulting in inhibition of autophagy; 

the cellular factors working downstream of mTOR have not been identified with 

certainty yet.

I.3.4.2.2. Mechanisms of autophagy. Three types of autophagy have been described: 

chaperone-mediated autophagy, microautophagy and macroautophagy.

In chaperone-mediated autophagy cytosolic proteins are delivered to lysosomes by 

LAMP-2A (176, 177) aided by cytosolic and lysosomal members of the Hsc70 family 

(178, 179). Signal peptides are required for sorting proteins to the lysosomes in this type 

of autophagy (180).

Microautophagy consists in uptake of cytoplasm on the lysosomal surface via 

budding into the lysosomal lumen; little else has been characterised.

In macroautophagy ‘isolation membranes’ (a single layer membrane) elongate and 

envelop a portion of cytoplasm with all its contents (see Figure 5).

Ly&osoms

AulolysosomesIsolation m em branes Autophagosome

cytoplasm & organelles

Figure 5. Macroautophagy. Isolation membranes close and merge with lysosomes for 
digestion of enveloped contents (taken from Biochemical Biophysical Research 
Communications, 2004, 313: 453).

Fusion on the membrane tips will lead to the formation of a double membrane 

structure called autophagosome (approximately 1 pm in diameter). The origin of the 

membrane is unknown; it is possible that it has different origin depending on cell type
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and on autophagy-inducing stimulus. Two ubiquitin-like systems are used in this type of 

autophagy. The first system is made of autophagy-related protein Atg5 that couples to 

Atgl2 (181). The complex then localises on the concave side of the elongation 

membrane and is probably involved in curving of the membrane itself. Upon closure 

this complex must be released, as it is not found in mature autophagosomes. The second 

system is the maturation of newly-synthesised Atg8 (better known as microtubule- 

associated protein 1-light-chain 3, MAP1-LC3) (182). Atg4 cleaves the C-terminal 22 

aminoacids to form an 18 kD protein (LC3-I) that is then modified by Atg3 and Atg7 to 

a 16 kD form, LC3-II. LC3-II is linked to phosphatidylethanolamine in the 

autophagosomal membrane (183). LC3-II remains in the autophagic vesicle and is 

degraded in lysosomes; it is, to date, the best autophagosome marker.

This short-lived organelle (half-life of eight minutes) will then merge with a 

lysosome and deliver its contents to the proteases within for digestion.

L3.4.2.3. Role of autophagy in class II antigen processing. Independently of how it 

occurs autophagy is a direct path for delivery of endogenous proteins to the MHC-II 

compartment. Cytoplasmic and nuclear antigens, such as complement C5 (184), EBNA- 

1 (185), tumor antigen mucin 1 (MUC-1) (186) and selection marker neomycin 

phosphotranferase II (neoR) (187) have been shown to localise to autophagic vesicles; 

production of an epitope from this last antigen is also sensitive to wortmannin, an 

inhibitor of autophagy. In LCLs two epitopes from LC3-II (188) and five from 

glyceraldehyde-3-phosphate-dehydrogenase (189) and many other endogenous proteins 

(such as actin, syntaxin 6, a-enolase and ubiquitin), have been eluted from HLA-DR 

molecules (188) clearly showing that not only does delivery through autophagy occur 

but also processing and loading onto MHC-II molecules.
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Most experiments have been carried out on professional APCs (DCs for MUC-1 and 

LCLs for the rest). As autophagy is a ubiquitous cellular process it is possible that non

professional APCs expressing MHC-II molecules (during inflammation or after 

exposure to IFN-y) could process and present endogenous protein epitopes to CD4+ T 

cells.

The role of autophagy in antigen presentation on MHC-II molecules on tumoral cells 

(especially solid tumors) is more difficult to define. In these cells basal autophagy 

appears decreased compared to normal cells; indeed, at least two gene products, the 

phosphate and tensin homologue, PTEN (190, 191), and BECN1 (192), that directly 

affect autophagy regulation have been found mutated in a number of solid tumors, 

causing a decrease in autophagy. This could be explained by the tumoral cell’s need, in 

the first stages, to undergo a higher level of protein synthesis rather than protein 

destruction. Tumoral and healthy cells show the same autophagy response under 

starvation conditions; this would help cells survive in the middle of large cancerous 

masses, where vascularisation and nutrient availability is limited. It is therefore possible 

that presentation of endogenous proteins (including TAAs) is low in the outer parts of a 

tumoral mass and high in the centre but where CD4+ T cells are less likely to be. 

However, tumoral cells from solid tumors can and do present endogenous proteins on 

MHC-II molecules in vitro at least (193, 194), so this path of delivery could play a role 

in formation and presentation of epitopes on the surface of cancer cells in vivo as well.

I.3.4.3. Other routes of delivery. Some experiments in mice with modified tumoral 

cells suggest that endogenous antigen peptides transported into the ER may be loaded 

onto MHC-II molecules and that this process is much more efficient if the Ii chain is not 

expressed; the antigen peptides they carried were from cytosolic but also nuclear 

antigens, probably loaded onto empty MHC-II dimers (195). These MHC-II-peptide
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molecules, lacking the Ii signal peptide, are presumably delivered to the cell surface 

after glycosilation. The Ii chain has a very high affinity for the MHC-II molecules but it 

is constant in its sequence. In each cell there is more than one MHC-II allele and the 

various molecules may have a higher or lower affinity for the Ii chain itself depending 

on the allele expressed. A peptide with a particularly high affinity for the groove may 

bind before the Ii chain; as happened in the murine system described above these 

complexes may find their way to the cell surface.

It is theoretically possible that some antigenic peptide may ‘drift’ towards the Golgi 

network and the MHC-II compartment having escaped loading onto MHC-I molecules 

or retrotranslocation from the ER and avoiding protease activity. There is no data so far 

to confirm (or disprove) the theory above.
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1.4. MAGE PROTEINS

MAGE (‘melanoma antigen’) genes are cancer-germline tumor specific antigens, silent 

in normal adult tissues but expressed in male germline cells. The antigens are strictly 

tumor specific, because the only normal cells that express them, germline cells and 

placental trophoblasts, do not express MHC class I molecules and are therefore 

incapable of presenting antigens to T cells (46, 47). The first member of the MAGE 

family of TAA, MAGE-1, was described over fifteen years ago (196). Since then, the 

number of MAGE genes has increased considerably. There are three families of MAGE 

genes, MAGE-A, MAGE-B and MAGE-C.

MAGE-A proteins (referred to as MAGE proteins from here onwards) form a 

multigenic family of proteins whose genes are clustered on the q28 locus of the X 

chromosome (197). The average gene structure, spanning on average 4.5 kb, is made of 

three exons, two shorter ones and the third containing the open reading frame in its 5’ 

region. MAGE-2 and MAGE-10 differ in gene structure compared to other MAGE-A 

gene because they contain an extra exon (198, 199). The activation of all these genes in 

cancer is usually the result of demethylation of their promoters, correlated to a general 

demethylation of the genome (200, 201).

MAGE proteins have a general weight of 40 to 50 kD. They do not have a 

localisation signal and are generally cytosolic proteins (202). MAGE-10 (199) and 

MAGE-11 (203) are nuclear proteins: MAGE-10 has a SV40 large T antigen type 

nuclear localisation signal but MAGE-11 does not and, to date, the exact nuclear 

localisation signal of these proteins has not been identified.
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1.4.1. MAGE-3.

The existence of a gene for this protein was first described in a melanoma cell line by 

van der Bruggen et al. (196) but the exact sequences of gene and protein were described 

only three years later (204). The MAGE-3 gene has the standard structure of MAGE-A 

genes, with two short exons and a longer one containing the open reading frame. The 

protein itself is 314 aminoacids in length with a molecular weight of 48 kD. It is devoid 

of any known localisation signal and has been shown to be in the cytoplasm (202, 205). 

Its function is currently unknown but as it is expressed during embryogenesis it is 

probably involved in development. It is not expressed in adult healthy tissues, with the 

exception of placenta and testis, both tissues that do not express MHC molecules (46, 

47). This protein is expressed in a number of solid tumors such as melanomas, 

carcinoma of the lung, bladder, oesophagus, head and neck (reviewed in (45)), thyroid 

(206), hepatocellular carcinoma (207) and gastro-intestinal cancer (208). Its pattern of 

expression makes it an ideal candidate for tumor immunotherapy.

I.4 .I.I. MHC-I restricted epitopes of MAGE-3. Interest in MAGE-3 also stemmed 

from the identification of epitopes from this protein found in MHC-I molecules on the 

surface of cancer cells recognised by CTLs; indeed, the first MAGE was actually 

identified starting from a CTL from a patient with the capacity to lyse cells transfected 

with cosmid libraries derived from the DNA of the patient’s own tumor (196). The first 

epitope characterised was MAGE-3 m -i76, recognised in association with HLA-A1 (204) 

and but also with HLA-B35 (209); the almost identical epitope MAGE-3i67-176 is 

presented in association with HLA-B18 and HLA-B44 (210). Other MHC-I epitopes 

have been identified since then (reviewed in (211)), some distinct, others, like MAGE- 

3112-120  (212), MAGE-3113-121 (208) and MAGE-3n4-i22 (104), partially overlapping and
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with different restrictions (HLA-A2, HLA-A24 and HLA-B40 respectively). A 

complete list of the MHC-I epitopes of MAGE-3 is in Table 1.

The fact that a same (or almost identical) epitope can be presented by more than one 

allele increases the number of patients eligible for immunotherapy, specifically for 

peptide-based immunotherapy.

Given the importance of CD4+ T cells in induction and maintenance of the immune 

response in anti-tumor immunity, addition of peptides containing MHC-II restricted 

epitopes could improve the efficacy of anti-tumor vaccination. This prompted a new 

search, the search for MHC-II restricted epitopes.

I.4.I.2. MHC-II restricted epitopes of MAGE-3. The first MHC-II epitopes of this 

protein to be described were identified following two different approaches. One was a 

‘classical’ approach, where CD4+ T cells were induced from a healthy donor by 

stimulation with autologous DCs and the whole recombinant protein (213). Responding 

clones were then checked for specificity by measuring reactivity to a panel of 

overlapping MAGE-3 peptides scanning the whole protein. This lead to the 

identification of two overlapping HLA-DR*13 restricted epitopes, MAGE-3114.127 and 

MAGE-3121-134, both naturally processed through the exogenous pathway, as the CD4+ 

T cells responded to DCs pulsed with the whole protein but did not recognise HLA-DR- 

matched, MAGE-3 expressing tumors.

The second approach used a novel technique. Like MHC-I peptides, that, for a given 

allele, have preferred residues at the anchoring position of the peptide-binding groove, 

MHC-II peptides also have consensus anchor residues (214). This knowledge allowed 

the production of an algorithm and the design of a software, TEPITOPE, able to predict 

which parts of a protein are most likely to contain an MHC-II epitope, among the 25 

alleles contained in its algorithm (215). This prediction was carried out for MAGE-3.
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HLA HLA frequency  

<%)

peptide position

A1 26 EVDPIGHLY 168-176 1

A2 44 FLWGPRALV 271-279 i

A2 44 KVAELVHFL 112-120

A24 20 TFPDLESEF 97-105

A24 20 VAELVHFLL 113-121 ;

B18 6 MEVDPIGHLY 167-176 ;

B35 20 EVDPIGHLY 168-176

B37 3 REPTVKAEML 127-136

B40 6 AELVHFLLL 114-122

B44 21 MEVDPIGHLY 167-176

B52 5 WQYFFPVIF 143-151

Cw7 41 EGDCAPEEK 212-220 ;

DP 4 75 KKLLTQHFVQENYLEY 243-258 '

DQ6 63 KKLLTQHFVQENYLEY 243-258 1

DR* 01 18 ACYEFLWGPRALVETS 267-282

DR* 04 24 FFFVIFSKASSSLQL 146-160 |

DR* 07 25 FFFVIFSKASSSLQL 146-160

DR* 11 25 GD N QIMP KA GLLIIV 191-205

DR* 11 25 TSYVKVLHHMVKISG 281-295

DR* 13 19 AELVHFLLLKYRAR 114-127

DR* 13 16 LLKYRAREPVTKAE 121-134

Table 1. Naturally processed epitopes of MAGE-3. The percentages of HLA 
frequencies are referred to Caucasians.
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and peptides corresponding to the predicted sequences were synthesized and used to 

stimulate CD4+ T cells from whole PBMCs. The CD4+ T cell line specific for MAGE- 

3281-295 obtained this way recognised autologous APCs pulsed with the whole 

recombinant protein, showing that the predicted epitope was naturally processed and 

presented. Furthermore the cell line exerted cytolytic activity against HLA-DR- 

matched, MAGE-3 expressing melanomas, meaning that it is also processed through the 

endogenous pathway (193).

The number of MAGE-3 MHC-II epitopes and the alleles they bind to has increased 

since these first experiments. The whole protein, ‘classical’ approach led to the 

identification of the HLA-DP4-restricted MAGE-3243-258 epitope (194) and to the HLA- 

DR1-restricted MAGE-3267-282 epitope (216).

Other MAGE-3 epitopes were identified using prediction software (TEPITOPE and 

others). MAGE-3146-160 was found to be contain naturally processed epitopes in 

association with HLA-DR*04 and HLA-DR*07 (19, 217). MAGE-3191.205 contains a 

naturally processed epitope in association with HLA-DR*11 (19). TEPITOPE had also 

predicted that MAGE-3 n  1-125 would bind to HLA-DR*01, HLA-DR*04 and HLA- 

DR*11 (19) and the MAGE-3111.125 peptide was able to activate HLA-DR* 11 restricted 

CD4+ T cells (19). This epitope closely overlaps the naturally processed MAGE-3114-127 

described by Chaux and co-workers (213), so it is possible that the epitopes recognised 

by the CD4+ T cells specific for the two peptides are the same. A list of MAGE-3 with 

all its naturally processed MHC-II epitopes and their restriction alleles is in Table 1.

It is worthy of notice that all the naturally processed epitopes found so far are 

produced through the exogenous pathway and most are also presented on the surface of 

melanoma cells. MAGE-3114.127 is the exception here, as it does not appear processed 

through the exogenous pathway. The MAGE-1282-292  epitope also displays similar 

behaviour (218) and so do some other tumor antigen epitopes unrelated to MAGE
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proteins (39, 219). The function of these epitopes in vivo is unclear, although it is 

reasonable to envisage a role both in induction of anti-MAGE-3 responses as well as 

helper and indirect effector functions.

TEPITOPE had also predicted that MAGE-3161-175 and MAGE-3i7m85 would be 

promiscuous; two CD4+ T cell lines specific for those regions were obtained from a 

melanoma patient (19). The epitopes within however did not appear to be naturally 

processed through either processing pathway and were described as ‘cryptic’. Other 

epitopes of this type have been described (39); their function, if any, has not been 

explained yet.

I.4.I.3. Natural and vaccine induced response to MAGE-3. Spontaneous response to 

melanomas may occur, although not very frequently (220). To determine the impact of 

antitumor immunity in spontaneous or vaccine induced tumor regression T cell 

precursor frequencies is evaluated. Few studies have addressed the spontaneous anti- 

MAGE-3 T cells response in healthy donors and patients. The number of CD8+ T cell 

precursors in healthy individuals was around 4x1 O'7 (221) and CD4+ T cell frequency 

was around 10'6 or lower (222), lower than the frequency for some other antigens such 

as NY-ESO-1 (223).

Different types of MAGE-3 vaccines have been used. In a peptide-based vaccine 

without adjuvants a CTL response was seen in only two of the seven responding 

patients, with CTL frequency reaching 5x1 O’6 and 4x1 O'5 (224, 225).

Another vaccination strategy used a recombinant canarypox virus, ALVAC, 

containing the sequence for the HLA-A1 restricted MAGE-3 epitope. Among the four 

patients with regression, CTL responses were seen in three (226, 227).

Both types of vaccination produced monoclonal responses, as seen by TCR Vp 

usage; all responses were stable, in some cases for months.
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Another strategy was to use monocyte-derived peptide-pulsed DCs (228); in this case 

a polyclonal response was seen in three patients showing regression, with frequencies 

ranging from 3x1 O'6 to 10'3. No response was seen in patients without regression (229). 

A CTL response to MAGE-3271-279 was induced also when peptide-pulsed CD34+ DCs 

were used (230). MHC-II peptides have been included in DC-peptide vaccines and have 

proven able to induce CD4+ T cell responses: MAGE-3243-258 specific cells reached a 

frequency of 7x 1 O'4 after vaccination (222, 231).

Adjuvants can improve the response to, as seen after vaccination with IL-12 for the 

response to MAGE-3271-279 (232). Vaccination using incomplete Freund’s adjuvant and 

GM-CSF gave a good response towards MAGE-1243-258 and MAGE-IO254-262 (233).

Use of adjuvants seems particularly important when trying to elicit a CD4+ T cell 

response. Using the adjuvant SBAS-2 with the whole recombinant protein in twenty- 

four patients all produced antibodies, whereas in the control group without adjuvant 

production was seen only in one individual (234). A CD4+ T cell response was observed 

after administration of whole recombinant protein alone and frequencies of specific 

cells in the blood reached 1,5x1 O'5 (235).

Summing all the trials described above the overall clinical response was low, 

between 5 and 10%, even taking into account the low number of patients involved. 

However, considering the number of patients with regression and those with T cell 

responses there appears a clear correlation, showing that the vaccines are able in a 

restricted number of patients to induce or increase the number of TAA specific T cells. 

Reasons responsible for the limited clinical success (i.e. immunsuppressive factors) are 

now being studied.
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2. AIMS OF THE RESEARCH PROJECT

CD4+ T cells are critical elements for priming CD8+ T cells, for immunity during 

chronic infection, for generation of memory T cells and for antibody production. 

Animal models have shown CD4+ T cells to play both a direct and an indirect role in 

antitumor immunity. Presentation of tumor antigens to CD4+ T cells in vivo occurs 

through cross-presentation on MHC-II molcules by DCs that have endocytosed necrotic 

or apoptotic tumoral cells. Some tumors express MHC-II molecules and are also able to 

present peptides from tumor antigens directly to CD4+ T cells.

The goal of my project was to study processing of tumor antigens within professional 

and non professional APCs and to evaluate how processing impact on the repertoire of 

epitope formed in vivo for presentation to CD4+ T lymphocytes in cancer patients.

The first of the project’s specific aims was to investigate the mechanisms leading to 

production of CD4 epitopes from MAGE-3, to study the factors that, from a whole 

intact protein, will allow the formation of stable MHC-II-peptide complexes carrying 

MAGE-3 peptides for presentation to CD4+ T cells. MAGE-3 has been chosen for its 

expression pattern and because has been already used for immunotherapeutic purposes. 

Presentation on professional (such as DCs and macrophages) and non professional 

(tumoral cells) APCs with different content of proteolytic enzymes has been evaluated.

The second of the project’s specific aims was to characterise the qualitative and 

quantitative response in the natural anti-MAGE-3 response of melanoma patients. 

Quantitative response analysis reveals how good priming for a given epitope is in vivo. 

Qualitative response analysis yields information on the effectors’ function, whether it is 

skewed towards productive or non productive antitumor immunity. Thl, Th2, Th3/Tr or 

nonpolarised responses have been associated with a different outcome of the disease as 

the cytokines released promote or inhibit tumoricidal activity.
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The whole project aimed at gathering as much information as possible on how 

epitopes from MAGE-3 are produced and their role in the anti-tumor response in 

patients. This information will possibly allow medical doctors to manipulate the 

immune response and shift the balance to a more favourable outcome of the disease.
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3. MATERIALS AND METHODS

3.1. Subjects and cells. HLA-DR types of LCLs, cancer cell lines, donors and patients 

were identified by molecular or serologic typing. The LCLs used were: BM21 (DR*11), 

HOM (DR*01), KT14 (DR*09), Mundula (DR* 13) kindly provided by K. Fleischhauer 

(Hospital San Raffaele, Milan, Italy); Pitout (DR*07), purchased from the European 

Collection of Cell Culture (Salisbury, UK); DAS (DR*04), kindly provided by J. 

Anholts (LUMC, Leiden, Netherlands). Melanoma cell line HT144 (DR*04, *07) was 

purchased from the ATCC (Rockville, MD, USA) while cell line MD TC (DR*04, *11) 

was obtained in our laboratory from a melanoma patient. The CD4+ T cell lines were 

induced from two healthy subjects (donor 1: DR*01, *07, donor 2: DR*11) and from a 

melanoma patient (Oil: DR* 10, *11). The HLA-DR types of all melanoma patients 

enrolled in this study were identified and are reported in table 2 (see Results).

The mediums used were IMDM for LCLs and RPMI 1640 (Gibco, Invitrogen, 

Carlsbad, CA) for melanoma cell line HT144, in both cases supplemented with heat- 

inactivated serum (10%), L-glutamine (2mM), penicillin (100 U/mL) and streptomycin 

(50 pg/mL; Biowhittaker, Walkersville, MD). Medium was supplemented with fetal calf 

serum (FCS) for LCLs and melanoma, with normal human serum (NHS) for CD4+ T 

cell lines. Both sera were from Biowhittaker. Unless specified, glutamine, penicillin and 

streptomycin at the above concentrations were used in mediums for all cells.

3.2. In vitro propagation of anti-MAGE-3 CD4+ T lines and clones from healthy 

donors and melanoma patients. 20x106 peripheral blood mononuclear cells (PBMCs) 

were cultured for 7 days in RPMI 1640, supplemented with heat-inactivated human 

serum (10%), containing MAGE-3 peptide pools (lpg/mL of each peptide). The 

reactive blasts were isolated on a Percoll gradient, expanded in IL-2-containing medium

56



(25 U/mL; Lymphocult, Biotest Diagnostic, Dreieich, Germany), and restimulated at 

weekly intervals with the same amount of peptides plus irradiated (3000 rad) autologous 

PBMCs as APCs. The peptides used contained the following sequences of MAGE-3: 

111-125, 141-155, 146-160, 156-170, 161-175, 171-185, 191-205, 281-295, 286-300. 

All these peptides had been used in the previous studies conducted in our laboratory. 

Peptides 21-35 and 251-265 were not included, as according to the TEPITOPE 

algorithm (215) they are predicted to have a lower binding affinity and had previously 

failed to elicit any response.

Once established the cell lines were cloned by limiting dilution: 100 pl/well 

containing 50,000 irradiated PBMCs from 2 allogenic donors and an average of 5, 1 or 

0.5 T cells were plated in 96/well plates in 10% NHS RPMI with 250 U/ml IL-2 and 1 

pg/ml phyto-hemoagglutinin A (PHA). Fresh medium containing only IL-2 was added 

after 1 week. Plates were screened daily and growing clones transferred to new wells. 

Three weeks from the first stimulation all wells were restimulated with 0.5 pg/ml PHA, 

PBMCs and IL-2. When resting, T cells were assayed for specificity.

The 12-residue peptides used to determine the minimum recognised sequence in the 

156-175 region of MAGE-3 contained the following sequences: 153-164, 154-165, 155- 

166, 156-167, 157-168, 158-169, 159-170, 160-171, 161-172, 162-173, 163-174, 164- 

175, 165-176,166-177, 167-178,168-179.

The CD4+ T cell line specific for MAGE-3281-300 was a gift from Dr Monica Moro 

(Experimental Unit, Cancer Immunotherapy and Gene Therapy Program, DIBIT 

directed by Drs. Giulia Casorati and Paolo Dellabona). Between 2xl05 and 106 cells 

were restimulated at two-three week intervals in 12-well plates with 3x106 irradiated 

allogenic PBMCs (a mixture of three donors) and 106 irradiated LG2 cells. The cells 

were grown in the same medium described above supplemented with the anti-CD3 

antibody OKT3 (Orthobiotech, Raritan, NJ) (30 ng/ml) and IL-2 (200 U/ml).
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3.3. TCR Vp usage. Cells were coloured with the IoMark beta test (Becton Dickinson, 

Sunnyvale, CA) solutions. Each solution contains a mixture of three antibodies against 

three vps; each antibody is either FITC-conjugated, PE-conjugated or FITC- and PE- 

conjugated. The eight mixtures recognise most of the vps; the missing ones were 

checked via PCR, according to published protocols (236). 100,000 cells were lysed in 

Trizol (Invitrogen, Carlsbad, CA) to extract the mRNA; cDNA was obtained by reverse 

transcription using Moloney’s murine leukaemia virus retranscriptase (Promega, 

Madison, WI) by incubating for one hour at 37° C in appropriate buffer followed by 

inactivation of the enzyme by heating to 65°C for ten minutes. Ten pg/reaction were 

amplified using forward primers specific for the vp genes and a Cp downstream- 

specific oligonucleotide. Amplification was carried out using TaqGold polymerase 

(Promega), in the appropriate buffer, in 35 cycles, with the following phases: melting 

(94°C, 30 minutes), annealing (61°C, 30 minutes) and extension (72°C, 30 minutes). 

PCR products (10 pi) were visualized on a 1.5% agarose gel.

3.4. Recombinant viruses and infection of LCLs and melanoma cells. The PG13 

packaging cells producing retroviral vectors LXASN-M3 or LXASN-IiM3 were a kind 

gift from Dr Catia Traversari. The retroviruses contain either the full length MAGE-3 

sequence under the control of the 5’ LTR promoter or a fusion between the first eighty 

aminoacids of the human Ii and MAGE-3 followed by the truncated form of the human 

low-affinity nerve growth factor receptor (ANGFr) under the control of the SV40 

promoter. For transduction, LCLs were co-cultivated with irradiated packaging cells 

producing vectors for 72 h in the presence of polybrene (0,8 mg/ml). Melanoma cells 

were incubated with supernatant from cells producing the Ii construct in the presence of 

polybrene (0,8 mg/ml). A pure population of transduced cells was obtained by 

immunoselection. Cells were incubated with supernatant from the anti-ALNGFr Mab
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20.4 (ATCC) for 20 minutes at 4°C, washed in PBS then incubated with sheep anti

mouse antibody conjugated to magnetic beads (Dynal Biotech, Oslo, Norway). Cell- 

containing tubes were passed on a magnet dividing cells as bound and unbound. Bound 

cells were expanded and ALNGFr expression checked by FACS.

3.5. Proliferation assays. CD4+ T cells and autologous irradiated PBMCs or HLA-DR- 

matched homozygous LCLs as APCs were diluted at a 1:10 or 1:5 ratio, respectively. 

The single peptides were added at a final concentration of 10 pg/ml, the recombinant 

MAGE-3 protein (kindly provided by Dr Pierre van der Bruggen, Ludwig Institute for 

Cancer Research, Brussels, Belgium) or the recombinant E6 protein from the human 

papilloma virus 18 (HPV 18), were added at a final concentration of 20 pg/mL. DCs 

were obtained from PBMC after monocyte separation via adherence and grown for a 

week in RPMI supplemented with 1% heat inactivated human serum, IL-4 (500 U/ml) 

and GM-CSF (800 U/ml). On day six, 2.5x104 cells were fed with 5x104 cells, either 

LCL or tumors that had been lysed by three cycles of freeze-thawing, and incubated 

overnight in the same medium with the addition of TNF-a (1 pg/ml). After removing 

old medium 5xl03 lymphocytes were added in RPMI supplemented with 10% heat 

inactivated human serum. Triplicate wells with CD4+ T cells alone and APCs alone 

were used as controls. Three wells with CD4+ T cells plus APCs did not receive any 

stimulus to determine the basal growth rate. After 48 h, the cultures were pulsed for 16 

h with [3H]TdR (1 mCi/well, 6.7 Ci/mol; Amersham Corp., Milan, Italy). The cells 

were collected with a FilterMate Universal Harvester (Packard, USA) in specific plates 

(Unifilter GF/C; Packard), and the thymidine incorporated was measured in a liquid 

scintillation counter (TopCount NXT; Packard).

All assays with cells from patients were carried out in X-VIVO 15 medium 

supplemented with 3% heat-inactivated NHS.
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To study the role of lysosomal and cytosolic enzymes in the presentation of MAGE- 

3 epitopes APCs were treated with specific inhibitors. For tumoral line HT144 (wild 

type or transduced) 1 confluent well (previously seeded with 100,000 cells) from a 48- 

well plate was used per condition; in the case of LCLs 500,000 cells were used per 

condition. The inhibitors used were: CA074, leupeptin, Z-FY(tBu)-DMK (hereon 

referred to as catL inhill), pepstatin A, leupeptin, lactacystin, MG 132, calpeptin, AAF- 

chloromethylketone (AA-CFK), wortmannin, 3-methyl-adenine (3MA) and bortezomib. 

Leupeptin, wortmannin and 3MA were purchased from Sigma (Highland, IL); all the 

rest were purchased from Calbiochem (Darmstadt, Germany). Inhibitors were 

resuspended in DMSO or water according to the manufacturer’s instructions. Velcade 

(bortezomib) was a kind gift from Dr Marco Bregni (Hospital San Raffaele, Milan, 

Italy); it had been resuspended in water.

All cells were incubated at 37°C for 18-20 hours before use in the proliferation 

assay. Vitality in treated cells was checked by Trypan Blue (Sigma) staining compared 

to untreated controls and the presence of HLA-DR molecules was tested by FACS 

analysis.

3.6. ELISA assays. For IFN-y and GM-CSF detection the Biosource kits were used 

(CHC1234 and CHC0904 respectively, Biosource Europe, SA, Nivelles, Belgium). 

ELISA plates (Maxisorp, Nunc, Wiesbaden, Germany) were coated overnight with 100 

pi of 4 pg/ml in PBS of anti-IFN-y and 1 pg/ml for anti-GM-CSF at 4°C; all other steps 

were carried out at room temperature. Plates were washed three times with washing 

solution (0.9% NaCl-0,1% Tween) and blocked with PBS/BSA 0,5% solution for 2 

hours. Plates were always washed before addition of new reagents. Samples were 

diluted in PBS/BSA 0.5%/Tween 0.1%; 100 pl/well of sample was added, together with 

50 pl/well and 0,4 pg/ml of biotinylated anti-cytokine antibody diluted in the same



buffer, for 2 hours. Plates were incubated with 100 pl/well streptavidin-HRP 

(horseradish peroxidase), diluted as suggested for 30 minutes before addition of 100 

pl/well TMB. Plates were read in a 680 Model reader (Biorad, Hercules, CA) at a 

wavelength of 622 nm. A standard curve was created by reading the absorbance of 

known quantities of cytokine (ranging from 2000 pg/ml to 32 pg/ml).

IL-5 was detected using the MabTech (Miltenyi Biotec, USA) kit. ELISA plates 

were coated with 2 pg/ml anti-IL-5 antibody in 100 pl/well PBS by overnight 

incubation at 4°C. All successive steps were carried out at room temperature and with 

100 pl/well (with the exception of plate blocking, where 200 pi were used). Washes 

were carried out between every incubation with PBS/Tween 0.05%. Plates were blocked 

for an hour in PBS/BSA 0.1%; this buffer was also used for all successive dilutions. 

Samples and standards were added and incubated for 2 hours; standards ranged from 

1000 pg/ml to 15 pg/ml. Plates were washed and biotinylated anti-IL-5 antibody at 1 

pg/ml added for an hour, followed by more washes and an hour incubation with 

streptavidin-HRP. TMB was used as substrate and absorbance read at a wavelength of 

622 nm in a 680 Model reader (Biorad).

3.7. Western blot 2xl05 cells (either wild type LCLs, transduced LCLs or tumors), 

were boiled in loading buffer and loaded onto 10% polyacrilamide gel before tranferring 

to a nitrocellulose membrane. The membrane was blocked by overnight incubation at 

4°C in a 5% milk, 0.5% Tween PBS solution. Three 10 minute washes were carried out 

at room temperature in a PBS/0.1% Tween solution between every incubation. The 

membrane was stained with the anti-MAGE antibody 57B (kindly provided by Dr G. 

Spagnoli, Basel, Switzerland and described in (202)) for two hours, followed by one 

hour’s incubation with a goat anti-mouse antibody conjugated to horseradish peroxidase
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(Southern Biotechnology Associates, USA) and developed using ECL (Amersham 

Biosciences, UK).

3.8. Flow cytometry. Cells were stained with specific antibodies and analysed within 

12 hours of staining. In the case of intracellular staining, cells were fixed in 4% 

paraformaldehyde for 20 minutes at 4° C, washed with PBS/FCS 2% and permeabilised 

for 20 minutes on ice with a PBS/BSA 0.1 %/saponin 0.5% solution, washed in the same 

solution and stained with appropriate antibodies. They were then washed twice with the 

same solution and twice in PBS-BSA 0.1%. Cytofluorimetric analyses were performed 

on a FACStarPlus (Becton Dickinson). ALNGFr was stained with supernatant from the 

ATCC Mab 20.4 then with FITC-goat antimouse immunoglobulin (SouthemBiotech, 

USA). All the following antibodies were purchased from Becton Dickinson: anti-CD4- 

FITC, anti-CD4-Cy5, anti-CD8-PE, anti-CD45RA-FITC, anti-CD45RO, anti-CD3- 

FITC, anti-IL5-PE, anti-IFNy-APC. Anti-CD4-QR was purchased from Sigma.

To separate cells expressing V pi4 from those expressing Vp6 the CD4+ T cells were 

stained for 30’ at 4°C with the solution containing the Ab specific for Vpi4. In the case 

of LCL-IiM3, LCLs were stained with the anti-ALNGFr Mab 20.4, followed by the 

FITC-conjugated anti-mouse Ab. The two fractions (positive and negative or high and 

low expression) were separated in a FACSVantage SE (Becton Dickinson) using the 

DIVA software.

3.9. Enzyme activity assays. Inhibitor treated LCLs or HT144 cells were washed once

in PBS, pelleted and lysed in Cytobuster (Calbiochem) for one hour on ice. Protein

concentration was determined in a standard BCA protein assay (Pierce. Rockford, IL).

The activities of cathepsins B, D and L were determined using the Calbiochem assay

kits (CBA 001, 002, 023 respectively), according to the manufacturer’s instructions. In

each test an internally quenched fluorogenic substrate (Z-Phe-Arg-AMC, Z-Arg-Arg-
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AMC and Mca-GKPILFFRLI-Lys(DNP)-D-Arg-NH2) was used. Upon cleavage by the 

enzyme the fluorogenic moiety containing a molecule of 7-amido-4-methyl-coumarin or 

the is released and its concentration measured as relative fluorescence units (RFU). 

Using the kit’s buffers samples were plated in a 96-well plate and incubated at room 

temperature for 30 minutes with gentle shaking. The fluorogenic substrate was then 

added and plates were incubated for an hour at 37°C before reading in a Victor 3 reader 

(Perkin Elmer, Waltham, MA) at an excitation wavelength of 360-380 nm and emission 

wavelength of 440-460 nm.

To determine activity of cathepsin B and L samples (diluted in the provided buffers) 

were plated in a 96-well plate and incubated at room temperature for 30’ with gentle 

shaking. The fluorogenic substrate was then added and plates were incubated for an 

hour at 37°C before reading.

In the case of cathepsin D fluorimetric plates coated with an anti-cathepsin D 

antibody were used. These plates were incubated for 30 minutes at room temperature 

with samples or with known concentration of active cathepsin D as standard. Plates 

were washed and the fluorogenic substrate added and incubated at 37°C for an hour 

before reading.

In all cases a calibration curve was generated by measuring the RFU produced by 

known concentrations of active enzyme. Activity in the samples was expressed as ng/ml 

active protein per mg/ml total protein. All samples were assayed in duplicate.

3.10. Confocal microscopy. Wild type and transduced HT144 cells were grown on 

coverslips to 70% confluence then fixed by incubating for 20 minutes in PBS/PFA 4% 

at 4°C. After washes with PBS they were permeabilised for an hour in a PBS/BSA 

1 %/saponin 0.2% solution at room temperature (as all successive steps). They were then 

washed in a PBS/BSA 1 %/saponin 0.1% solution; this solution was used for all
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successive washes and as diluent for all antibodies. Coverslips were incubated for 2 

hours with the following primary antibodies: mouse anti-MAGE-3 B57 antibody; rabbit 

anti-LAMPl (abCAM, Cambridge, UK), rabbit anti-calnexin (Sigma) or rabbit anti- 

calreticulin (Stressgen, Victoria, BC, Canada). After washes the following secondary 

antibodies were added for 1 h: anti-mouse Alexa 648 (Invitrogen), anti rabbit-FITC 

(abCAM). After three other washes coverslips were fixed on slides using Mobiol and 

read in a Leica microscope.

3.11. In vitro restimulation assays of CD4+ T cells from melanoma patients and 

cord bloods. PBMC from cord bloods were isolated from whole blood after 

centrifugation on a Ficoll gradient (Lympholite, Cedarlane, Hornby, Canada) and tested 

for CD45RA/RO expression. Samples from melanoma patients were obtained as 

apheresis. CD4+ T cells were separated from other cells by magnetic separation using 

Miltenyi reagents. Total PBMC were incubated with magnetically conjugated anti-CD4 

antibodies (80 pi of PBS/BSA 0.5%/EDTA 2mM and 20 pi antibody solution per every 

107 total cells) for 20 minutes at 4°C, washed with the PBS/BSA 0.5%/EDTA 2mM 

solution and resuspended in 0.5 ml of the same, before loading onto a previously wet 

MiniMACS column set in the magnet to elute CD4' cells. CD4+ T were eluted after 

magnet removal. Both fractions were washed and the CD4' fraction irradiated. Cells 

were resuspended in X-VIVO 15 medium supplemented with 3% inactivated NHS then 

plated in 96-well plates at a ratio of 1:3 CD4+/CD4', with 5xl04 CD4+ T cells/well. 

MAGE-3 peptides 111-125, 146-160, 161-175, 171-185, 191-205, 243-258, 281-300 

were added at a final concentration of 10 pg/ml. Controls contained only medium or 

PHA 10 pg/ml. Six wells were plated per condition. Half the medium was replaced after 

seven days with new medium containing IL-2 (final concentration of 25 U/ml). After 

other seven days medium was removed and tested for cytokine production. If positive,



new medium was added and cells grown for another week, then tested for specificity in 

a standard cytokine release/proliferation assay.
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4. RESULTS

4.1. ANTIGEN PROCESSING: TOOLS FOR THE STUDY

To study the events leading to the formation of MAGE-3 CD4 epitopes I first produced 

the necessary tools {i.e. MAGE-3 expressing APCs and MAGE-3 specific CD4+ T 

cells). Previous studies (19, 193, 194, 213, 217) have shown that MAGE-3 specific 

CD4+ T cells recognise MAGE-3 epitopes produced through both the endogenous 

and/or the exogenous pathways, depending on the epitope. Indeed, CD4+ T cells may be 

activated through MAGE-3 cross-presentation by DCs {i.e. professional APC) or 

directly by MAGE-3 and MHC-II expressing tumor cells {i.e. non-professional APC). 

As I was interested in studying production of MAGE-3 CD4 epitopes through both 

pathways for my studies I used APCs expressing MAGE-3 either in the cytoplasm or in 

the endosomal/lysosomal compartment and CD4+ T cells specific for MAGE-3 epitopes 

produced through either one or both pathways.

4.1.1. Production and characterization of the MAGE-3 expressing cells.

To study processing of MAGE-3 as an endogenous protein cells expressing MAGE-3 in 

the cytoplasm were used. I used either melanoma cells constitutively expressing 

MAGE-3 (HT144 and MD TC) or homozygous LCLs engineered to express MAGE-3 

in the cytoplasm. Homozygous LCLs allow the study of antigen processing in cells 

mainly expressing the proper MHC-II restricting allele, therefore reducing the 

interference of multiple alleles competing for binding of MAGE-3 peptides within the 

APC.

I engineered LCLs to express MAGE-3 by transduction with the retroviral vector 

containing the MAGE-3 gene. The retroviral vector, as explained in chapter 3, contains

66



the gene for MAGE-3 and for a truncated form of the nerve growth factor receptor 

(ANGFr). The sequence of the vector is shown in Figure 6A. After infection transduced 

cells express both foreign proteins. The ANGFr is a surface molecule and its expression 

can be monitored through FACS analysis. Selection of ANGFr expressing cells (through 

magnetic sorting via mouse anti-ANGFr antibody and magnetically labelled anti-mouse 

beads) allowed me to obtain a pure line of transduced cells starting from a mixed 

population (Fig. 6 C-D).

LCLs line DAS (DRpl*04, DRp4*01) and BM21 (D R pi* ll, DRp3*02) were 

engineered. MAGE-3 protein expression in the engineered LCLs was verified by 

Western blot analysis. Figure 7 shows that transduction of MAGE-3 negative wild type 

LCLs was successful, as a band of the appropriate length was present (Fig. 7A-B, 

middle lanes). Cells transduced with this construct will be referred to as LCL-M3 

hereon (DAS-M3 and BM21-M3). Two types of APCs (LCLs and melanoma cells) 

were therefore available to study processing through the endogenous pathway.

To study processing of MAGE-3 as an exogenous protein the best cells are DCs after 

processing and presentation of soluble MAGE-3 protein or necrotic or apoptotic 

MAGE-3 expressing cells. Indeed, I performed some experiments with these cells (see

4.1.2.1.3, 4.1.2.2, 4.2.1.4 and 4.2.2). In order to obtain unlimited number of cells needed 

for extensive testing I decided to mimic the physiological exogenous pathway by 

expressing MAGE-3 in the endosomal/lysosomal compartment of suitable cells.

To this aim I engineered the wild type LCLs and melanoma cells described above by 

using the retroviral vector containing the Ii construct (the structure of the construct is 

shown in Figure 6B). As described for LCL-M3, LCLs and melanoma cells expressing 

the IiM3 protein and melanoma were obtained by sorting ANGFr expressing cells. The 

presence of a band corresponding to the expected molecular weight for the MAGE-3 

invariant chain protein was verified by Western blot analysis (Fig. 7A-B-C, right lanes).
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These transduced cells will hereon be referred to as LCL-IiM3 (DAS-HM3, BM21-IiM3 

and HT144-IiM3). Western blot analysis also showed the amount of protein produced 

by the two constructs (M3 and IiM3) to be comparable.

To verify that MAGE-3 was correctly transported to the endosomal/lysosomal 

compartment I performed confocal microscopy analysis on transduced HT144 cells. 

Figure 8 shows a diffuse cytoplasmic distribution of MAGE-3, as expected for the 

constitutive expression, and in the lysosomal compartment, as shown by co-localisation 

with LAMP and as expected from the construct.
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Figure 6. Generation of MAGE-3 and Ii-MAGE-3 expressing cells. LCLs BM21 and 
DAS and melanoma FIT 144 were transduced with retroviral constructs containing wild 
type MAGE-3 or the fusion protein Ii-MAGE-3. Transduced cells were separated on the 
basis of ANGFr expression through magnetic bead separation. A: Vector containing full 
length MAGE-3. B: Vector containing fusion protein Ii-MAGE-3. C and D: ANGFr 
expression in cells before separation (C) and after (D). FACS curves are representative 
of all transduced cells. LTR: long terminal repeat; SV40p: simian virus 40 promoter; 
ANGFr, truncated nerve growth factor receptor.
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Figure 7. Western blots of transduced cells. Lysates from LCLs and melanoma cells 
(wild type and transduced) were run on a standard acrylamide gel then transferred to a 
nitrocellulose membrane for staining with the MAGE specific antibody B57. A: wild 
type and engineered DAS LCLs (left lane, wt; middle lane, DAS-M3; right lane, DAS- 
IiM3). B: wild type and engineered BM21 LCLs (left lane, wt; middle lane, BM21-M3; 
right lane, BM21-IiM3). C: wild type and engineered HT144 melanoma cells (left lane, 
wt; right lane HT144-HM3). The two proteins of the corresponding molecular weight 
for M3 and IiM3 are indicated. D: MAGE-3 expression in MD TC melanoma cells.
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Figure 8. Staining of HT144-IiM3. Semi-confluent HT144-HM3 slides were stained 
with mouse antibody 57B and rabbit anti-calreticulin or rabbit anti-LAMP followed by 
staining with PE-conjugated anti-mouse and FITC-conjugated anti-rabbit antibody. Co- 
localising antibodies appear yellow. Left column panels: MAGE-3 (red) and calreticulin 
(green). Right column panels: MAGE-3 (red) and LAMP (green).
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4.1.2. Establishment and characterization of CD4+ T cell lines and 

clones specific for MAGE-3 epitopes.

CD4+ T cells specific for MAGE-3 161-175 and MAGE-3289-300 were obtained from two 

healthy donors (Donor 1 and Donor 2); CD4+ T cells specific for MAGE-3 n 1.125 were 

obtained from a metastatic melanoma patient (Oil, Table 2).

4.I.2.I. MAGE-3i56-i75 specific CD4+ T cells. PBMCs from Donor 1 (DRpi*01, *07, 

DRp4*01) were stimulated in vitro with a pool of nine MAGE-3 peptides (MAGE-3 

pool) corresponding to sequences 111-125, 141-155, 146-160, 156-170, 161-175, 171- 

185, 191-205, 281-295 and 286-300, which were previously shown to be immunogenic 

(19, 193). PBMC were cultured for 7 days, activated cells were then enriched by a 

density gradient, expanded in the presence of IL-2 and weekly re-stimulated with 

irradiated MAGE-3 pool-pulsed autologous PBMCs. After 2 cycles of stimulation, I 

obtained a polyclonal line that comprised only CD4+ T cells (Fig. 9A).

The repertoire of epitopes recognised by polyclonal CD4+ T cells was determined by 

testing their reactivity to each peptide forming the pool in the presence of autologous 

LCLs as APCs. MAGE-3141-155 and MAGE-3191.205 were weakly (although significantly) 

recognised; a strong, specific response was found to overlapping sequences MAGE-3156- 

no and MAGE-3161-175 (Fig- 9B).
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Figure 9. Characterisation of the MAGE-3 peptide pool primed polyclonal CD4+ T 
cell line. A: FACS analysis of CD4+ T cells after two weeks of stimulation in vitro with 
the MAGE-3 peptides. B: epitope repertoire. CD4+ T cells were challenged with LCLs 
pulsed singularly with each peptide forming the pool and tested for IFN-y release. The 
blanks {i.e. the level of IFN-y release of CD4+ T cells in the presence of unpulsed LCLs) 
are expressed as bl+LCL. The data are means of triplicate determinations ± SD and are 
representative of several experiments. Responses significantly higher than the blanks 
are indicated as: ***p>0,001 (determined by unpaired, one-tailed Student’s / test).
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4.1.2.L1. Selection of CD4+ T cell clones specific MAGE-3i56-i75. To obtain CD4+ T 

cells with single specificity the polyclonal cell line was cloned by limiting dilution. I 

obtained seventeen oligoclonal cell lines; all recognized only the two overlapping 

MAGE-3156-170 and MAGE-3i6i-i75 sequences (Fig. 10). No line recognised only one of 

the two peptides, suggesting that the epitope recognised lies within the overlapping 

region.

To determine the degree of oligoclonality of the cells, the lines were tested for the 

VP expressed in their TCR by FACS and PCR analysis (Fig. 11 and Fig. 12A). All cell 

lines expressed predominantly the Vp6 chain; among others the most represented was 

the V pl4 with percentages ranging from 0.81% to 17.54% in six. Vp6 positive CD4+ T 

cells isolated via cell sorting exhibited the same recognition behaviour (Fig. 12B), while 

V pi4 positive cells were unspecific.
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Figure 10. Screening of oligoclonal cell lines obtained from cloning of the 
polyclonal CD4+ T cell line. CD4+ T cells were challenged with LCLs pulsed 
singularly with each peptide recognised by the polyclonal cell line and tested for IFN-y 
release. The blanks {i.e. the level of IFN-y release of CD4+ T cells in the presence of 
unpulsed LCLs) are expressed as bl+LCL. Responses significantly higher than the 
blanks are indicated as: ***p>0,001 (determined by unpaired, one-tailed Student’s t 
test). The reactivity shown for oligoclonal cell line 5 is representative of all lines tested.
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Figure 11. Vp expression in oligoclonal cell lines. Vp usage was determined by flow 
cytometric analysis using the Iotest Beta Mark kit, following manufacturer’s 
instructions. Representative results of oligoclonal cell 5 are shown.
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Figure 12. MAGE-3i6i-i75 specific CD4+T cells are Vp6 positive. A: PCR analysis for 
Vp usage using primers for specific the Vp 6, 10, 14, 15, 19 and 23 chains. B: Vp6 
expressing T cells were separated from Vpl4 expressing T cells via cell sorting and 
challenged with unpulsed LCLs or LCLs pulsed with MAGE-3161-175* Reactivity was 
measured as IFN-y release. Responses significantly higher than the blanks are indicated 
as; ***p>0,001 (determined by unpaired, one-tailed Student’s / test).
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4.I.2.I.2. Characterisation of oligoclonal MAGE-3i6i-i75 specific CD4+ T cells. To

identify the HLA-DR restricting allele for overlapping sequences MAGE-3156-170 and 

MAGE-3161-175? CD4+ T cells were challenged in proliferation and IFN-y release assays 

with LCLs, homozygous for each of the two HLA-DRpi (DR*01, DR*07) alleles 

expressed by the donor, pulsed with individual peptides. Presentation of the two 

sequences occurred in association with HLA-DR*07 (Fig. 13A). Since HLA-DR*07 is 

associated with HLA-DRp4, to discriminate between the two presenting molecules, I 

also tested reactivity of CD4+ T cells in the presence of LCLs HLA-DRP4 positive but 

bearing different HLA-DRpi molecules (Fig. 13B). CD4+ T cells recognised all 

peptide-pulsed HLA-DRP4 expressing cells but not HLA-DRp4 negative cells, thus 

demonstrating that HLA-DRp4 is the restricting allele.

To identify the epitope shared between M A G E - 3 156-170 and M A G E - 3 1 6 1 -1 7 5 ,1 first 

tested the functional avidity of CD4+ T cells for the two peptides by challenging the 

oligoclonal cell lines in the presence of LCLs with increasing concentrations of 

peptides. The concentration of peptide requested to reach the half maximal stimulation 

( E C 5 0 )  was as follows: M A G E - 3 i 56- i 70 (0,55 pg/ml), M A G E 1 6 1 - 1 7 5  (0,06 pg/ml) (Fig. 

14). This result strongly suggests that the antigenic epitope is better comprised within 

sequence M A G E - 3 161-175* Sixteen peptides were then synthesised, each 12-mer long 

overlapping of 11 residues and spanning region MAGE-3153.179 (Fig. 15), and 

recognition of them was tested as previously described. M A G E -3  peptides 161-172, 

162-173 and 164-175 were strongly recognized; M A G E -3  peptides 158-169, 159-170,

160-171 and 163-174 were reproducibly and significantly recognized, although to a 

much lower extent (Fig. 16). Dose-response curves for truncated peptides confirmed 

M A G E -3  peptides 161-172, 162-173 and 164-175 as the best binders with E C 5 0  ranging 

from 0,38 to 0,52 jag/ml; while CD4+ T cells showed very low functional avidity for the 

other recognized M A G E -3  peptides ( E C 5 0  ranging from 4 to 6 pg/ml)(Fig. 17). Several
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epitope frames within MAGE-3 i56-i70 and MAGE-3 i65-i76 were predicted by TEPITOPE 

(215) as promiscuous MHC class II binders. Predicted PI anchors for MAGE-3i56-i7o 

were Li58, L^o, Vi6i and Fi62; predicted PI anchors for MAGE-3161-175 were Vi6i, F162, 

Ii64, L166 and M167. Truncated peptide recognition experiments showed loss of 

recognition at peptide MAGE-3165-176, which does not contain Ii64. This result, along 

with the curve-response experiments, strongly support the possibility that Ii64 is the PI 

anchor for the epitope recognized. Indeed, CD4+ T cells showed the highest functional 

avidity for the original peptide MAGE-3161-175, followed by truncated peptides 161-172,

162-173 and 164-175; in all of these the epitope frame starting with PI anchor Ii64 is 

better accommodated in the HLA-DR groove with extended C- or both C- and N- 

termini sequences. The only exception was recognition of peptide 163-174, which 

consistently induced a lower level of IFN-y production by CD4+ T cells; data confirmed 

by the very low functional avidity of the cells for this peptide.
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Figure 13. H L A - D R  restriction of M A G E - 3 i 56- i 70/ i 6i - i 75 specific oligoclonal C D 4 + T 
cells. A: CD4+ T cells were challenged with peptides in the presence of LCLs 
homozygous for each of the HLA-DRpi alleles expressed by the donor. B: CD4+ T 
cells were challenged with the reactive peptide in the presence of HLA-DRp4*01 
positive or negative LCLs. The data are means of duplicate determinations ± SD and are 
representative of three experiments.
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Figure 14. Peptide titration curve. CD4+ T cells were challenged with titrated doses of 
the indicated peptides and IFN-y release measured. The blank (the basal level of IFN-y 
release of CD4+ T cells in the presence of the unpulsed LCLs) is expressed as ‘O’. The 
data are means of duplicate determination ± SD.
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Figure 15. Sequences of truncated MAGE-3 peptides. Original overlapping MAGE- 
3156-170 and MAGE-3i6i-i75 and truncated sequences spanning region 153-179 are 
reported. The aminoacids predicted by TEPITOPE as PI anchor residues are 
highlighted in red.
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Figure 16. Evaluation of the epitope frame recognized by CD4+ T cells specific for 
overlapping peptides MAGE-3i56-i70 and MAGE-3i6i-i75* CD4+ T cells were cultured 
in the presence of HLA-DRp4*01 positive LCLs and each single MAGE-3 peptide 
shown in Fig. 15 and tested for IFN-y release. The blanks (i.e. the basal level of IFN-y 
release of CD4+ T cells in the presence of unpulsed LCLs) are expressed as bl+LCL. 
The data are means of triplicate determinations and are representative of three 
experiments. Responses significantly higher than the blanks are indicated as: 
**0,001<p<0,05, ***p<0,001 (determined by unpaired, one-tailed Student’s t test).
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Figure 17. Peptide titration curves for truncated peptides recognized by CD4+ T 
cells specific for overlapping MAGE-3i56-i70 and MAGE-3i6i-i75 sequences. CD4+ T 
cells were challenged with titrated doses of the indicated peptides and IFN-y release 
measured. The basal level of IFN-y release of CD4+ T cells in the presence of the 
unpulsed LCLs) is expressed as ‘O’. The data are means of duplicate determination ± 
SD and are representative of three experiments.
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4.I.2.I.3. MAGE-3i6i-i75 contains a naturally processed epitope. To determine if 

overlapping sequences MAGE-3156-170 and MAGE-3161-175 contain a naturally processed 

epitope(s) I tested the reactivity, measured as IFN-y release or 3H-thymidine 

incorporation, of CD4+ T cells to different MAGE-3 expressing cells (i.e.; DRp4 

positive LCL-M3 or LCL-IiM3; wild type HT144 melanoma cells or HT144-HM3); 

PBMC pulsed with the whole recombinant protein and autologous DCs loaded with 

lysates from cells expressing MAGE-3 (LCL-M3) (Fig. 18).

CD4+ T cells showed a strong recognition of LCL-IiM3 and HT144-IiM3 whereas 

they failed to release IFN-y in the presence of LCL-M3 or wild type HT144 cells (Fig. 

18A-B). CD4+ T cells also specifically proliferated in the presence of autologous 

PBMCs pulsed with the whole recombinant MAGE-3 protein (Fig. 18C) and, although 

to a much lower extent, responded with IFN-y production to DCs pulsed with lysates 

from MAGE-3 expressing cells but not from wild type LCLs (Fig. 18D).

Collectively these experiments demonstrate that MAGE-3161-175 contains a naturally 

processed epitope formed through the exogenous pathway. Lack of recognition of LCL- 

M3 or wild type HT144 was not due to lack of antigen expression; indeed, western blot 

analysis showed that the amount of protein expressed in LCLs expressing MAGE-3 in 

the cytoplasm or in the endosomal/lysosomal compartment is comparable (Fig. 7A). 

HT144 melanoma cells appear to express a lower quantity of antigen but the CD4+ T 

cells failed to recognise any HLA-DRp4, MAGE-3 expressing tumor (data not shown), 

including MD TC, where there is strong expression of antigen (Fig. 7D). HT144 

melanoma cells constitutively express MHC class II molecules, as verified by FACS 

analysis (data not shown).
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Figure 18. Overlapping sequences MAGE-3i56-i7o and MAGE-3i6i-i75 contain a 
naturally processed epitope. CD4+ T cells were challenged with cells expressing 
MAGE-3 either in the cytoplasm or in the endosomal-lysosomal compartment and 
tested for IFN-y release or radioactive thymidine incorporation. The data are means 
of triplicate determinations ± SD and are representative of three experiments. 
Responses significantly higher than the blanks are indicated as: **0,001<p<0,05, 
***p<0,001 (determined by unpaired, one-tailed Student’s t test). A: Response to 
LCL-M3 and LCL-IiM3. Wild type LCLs were used as negative control. B: 
Response to wild type (HT144) and engineered HT144 melanoma cells (HT144- 
IiM3). Peptide-pulsed HT144 cells were used as positive control for presentation 
capability of HT144 cells. C: Response to PBMCs pulsed with recombinant protein 
MAGE-3. PBMC pulsed with HPV18 E6  or the peptide were used as negative and 
positive controls. Unpulsed PBMC as blanks. D: Response to DCs loaded with 
lysates from MAGE-3 expressing cells. DCs loaded with lysate from wild type LCLs 
or the MAGE-3161-175 peptide were added as negative and positive controls, 
respectively.
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4.I.2.I.4. Correlation between expression of MAGE-3 by APCs and intensity of 

recognition by MAGE-3i6i-i75 specific CD4+ T cells. A possible explanation for the 

different intensity of recognition of autologous DCs loaded with lysate from MAGE-3 

expressing cells compared to cells engineered to express the antigen in the endosomal- 

lysosomal compartment is that a different amount of protein is available for processing 

and presentation with MHC class II molecules. To test this hypothesis LCL-IiM3 were 

sorted on the basis of their surface expression of ANGFr (Fig. 19A). I next analysed

recognition of these sorted cells by MAGE-3161-175 specific CD4+ T cells. CD4+ T cells 

recognized cells with both low and high expression of ANGFr, but the intensity of 

recognition was considerably lower for low ANGFr expressing cells (Fig. 19B). MAGE- 

3 expression in high and low ANGFr expressing cells was verified by Western blot (Fig. 

19D). As expected, cells expressing high levels of ANGFr had a higher amount of 

MAGE-3, whereas low expression of ANGFr was associated with a lower expression of 

protein. These results strongly support that the amount of protein available for 

processing determines the intensity of recognition.
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Figure 19. The amount of MAGE-3 expressed by engineered LCLs determines 
the intensity of recognition by CD4+ T cells. A. LCL-IiM3 were sorted on the basis 
of high or low ALNGFr expression. B. CD4+ T cells were challenged with LCL-IiM3 
expressing low (B) or high (C) level of ALNGFr and MAGE-3 (D), and tested for 
IFN-y release. The basal level of IFN-y release of CD4+ T cells in the presence of the 
wild type LCLs) is expressed as bl+LCL. Positive controls were peptide-pulsed 
LCLs and LCL-IiM3 before sorting. The data are means of duplicate determinations 
± SD and are representative of two experiments. Responses significantly higher than 
the blanks are indicated as: **0,001<p<0,05, ***p<0,001 (determined by unpaired, 
one-tailed Student’s t  test). D. Western blot analysis for MAGE-3 of sorted cells.
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4.1.2.2. MAGE-3in.i25 specific CD4+ T cells. MAGE-3 m .125 specific CD4+ T cells 

were obtained from melanoma patient Oil (Table 2; DRpi*10, *11, DRp3*02) by 

stimulation of purified CD4+ T cells in the presence of autologous CD4+-depleted 

PBMCs as APCs plus 10 pg/ml peptide. Peptide specific recognition and HLA-DR 

restriction were tested after 3 cycles of stimulation. CD4+ T cells specifically produced 

IL-5 but not IFN-y in the presence of autologous LCLs pulsed with MAGE-3 m .125 (data 

not shown). To identify the HLA-DR restricting allele CD4+ T cells were challenged in 

IL-5 release assays with LCLs, homozygous for each of the HLA-DRpi (DR* 10, 

DR* 11) and HLA-DRp3*02 alleles expressed by the donor, pulsed with peptide. As 

shown in Figure 20A presentation of MAGE-3 m .125 occurred in association with HLA- 

DR* 11.

The 111-125 sequence overlaps the 114-127 sequence shown by Chaux et al. (213) to 

contain a naturally processed epitope produced through the exogenous pathway and 

presented in association with HLA-DR* 13. I therefore tested cross-recognition of 

MAGE-3114-127 by MAGE-3 m . 1 2 5  specific CD4+ T cells. Figure 20B shows that the two 

peptides share an epitope, as the CD4+ T cell line was able to recognise both peptides 

with similar intensity. MAGE-3 m .125 specific CD4+ T cells were then tested for 

recognition of the native epitope. I confirmed that the region contains an epitope 

naturally processed through the exogenous pathway, as the CD4+ T cells responded 

specifically to autologous DCs loaded with lysates from MAGE-3 expressing melanoma 

MD TC but not to the HLA-DR* 11-matched tumor MD TC (Fig. 21).
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Figure 20. HLA-DR retriction of MAGE-3n 1-125 specific CD4+ T cells. CD4+ T cells 
were challenged with peptide pulsed LCLs expressing each of the HLA-DRpi 
expressed by the donor or HLA-DRp3 matched and tested for IL-5 release (A). The 
blanks (i.e. the level of IL-5 produced in the presence of unpulsed LCLs) is expressed as 
bl+LCLs. B: cross-recognition by MAGE-3 m .125 specific CD4+ T cells of overlapping 
peptide MAGE-3114.127. Responses significantly higher than the blanks are indicated as: 
***p<0,001 (determined by unpaired, one-tailed Student’s  ̂test)
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Figure 21. MAGE-3m_i25 contains a naturally processed epitope through the 
exogenous pathway. CD4+ T cells were challenged with DCs loaded with lysates from 
MAGE-3 expressing melanoma MD TC and with MAGE-3 expressing tumor MD TC. 
DCs loaded with lysate from wild type LCLs or the peptide were added as negative and 
positive controls, respectively. IL-5 release was measured. The data are means of 
duplicate determinations ± SD and are representative of three experiments. Responses 
significantly higher than the blanks are indicated as: **0,001<p<0,05 (determined by 
unpaired, one-tailed Student’s t test).
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4.I.2.3. MAGE-3289-300 specific CD4+T cells. The HLA-DR* 11 restricted MAGE-3289- 

300 specific oligoclonal 6.22 cell line was a kind gift from Dr Monica Moro 

(Experimental Unit, Cancer Immunotherapy and Gene Therapy Program, DIBIT 

directed by Drs. Giulia Casorati and Paolo Dellabona).

The presence of CD4 naturally processed epitope(s) in the 281-300 region of 

MAGE-3 has been described previously (19, 193). TEPITOPE (215) analysis had 

predicted several potential epitope frames for HLA-DR* 11 within this sequence (Fig. 

22). To verify if this region contains more than one epitope Dr. Moro stimulated the 

PBMC from Donor 2 (D R pl*ll, DRp3*02) with peptides corresponding to 

overlapping sequences MAGE-3281-295 and MAGE-3286-3oo and obtained by limiting 

dilution of a polyclonal cell line several clones recognising either one of the peptides 

(MAGE-3281-295 and MAGE-3286-30o) or both.

Three clones (6.93, 2E5.53 and 6.22), representative for each type of behaviour, were 

further characterised. Overlapping truncated peptides spanning the 281-300 region were 

synthesized to identify the minimal recognized sequence(s) by the different clones (Fig. 

22). CD4+T cells were tested for IFN-y release in the presence of autologous LCLs and 

each truncated peptide. In agreement with TEPITOPE prediction, experiments shown in 

Figure 23 clearly demonstrate the presence of three different epitopes within MAGE- 

3281-300 (i.e- 282-294, 284-298 and 289-300). Each clone was then tested for recognition 

of the native epitope. Clone 6.93 did not recognise MAGE-3 when processed either 

through the endogenous (LCL-M3 and HLA-DR* 11 expressing melanoma MD TC) or 

the exogenous (LCL-HM3) pathways (Fig. 24, right panels). Clone 2E5.53 recognised 

only MAGE-3 processed through the exogenous pathway (LCL-HM3, Fig. 24, middle 

panels). Clone 6.22 recognised MAGE-3 when processed through both pathways (LCL- 

M3, LCL-HM3 and HLA-DR* 11 expressing MD TC) (Fig. 24, left panels).
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I decided to use clone 6.22 recognising MAGE-3289-300 for processing studies 

because it is a prototype for epitopes formed through both the endogenous and 

exogenous pathways. Before using it for further experiments I completed its 

characterisation. Peptide titration experiments with increasing concentration of the 

MAGE-3281-300 peptide showed that the concentration of peptide requested to reach the 

half maximal stimulation ( E C 5 0 )  was 0,2 pg/ml (Fig. 25), demonstrating an overall 

intermediate avidity. TCR Vp receptor usage analysis also verified that the clone was in 

fact an oligoclonal line with 85.43% expression of VP22 chain (Fig. 26).
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2 8 1 -3 0 0 TSYVKVLHHMVKISGGPHIS

2 7 7 - 2 8 8  A L V E T S Y V K V L H
2 7 8 - 2 8 9  LV E TS Y V K V LH H
2 7 9 - 2 9 0  VETSYVKVLHHM
2 8 0 - 2 9 1  ETSYVKVLHHMV
2 8 1 - 2  9 2  TSYVKVLHHMVK
2 8 2 - 2  9 3  SYVKVLHHMVKI
2 8 3 - 2 9 4  YV KV LHHMVKIS
2 8 4 - 2 9 5  VKVLH HM VKIS G
2 8 5 - 2 9 6  KVLHHMVKIS GG
2 8  6 - 2  9 7  VL HH MV KI SG GP
2 8 7 - 2 9 8  LHHMV KIS GGP H
2 8 8 - 2 9 9  H H M V K IS G G P H I
2 8  9 - 3 0 0  H M V K I S G G P H I S
2 9 0 - 3 0 1  M V K I S G G P H I S Y
2 9 1 - 3 0 2  V K I S G G P H I S Y P
2 9 2 - 3 0 3  K I S G G P H I S Y P P
2  9 3 - 3 0 4  I S G G P H I S Y P P L
2 9 4 - 3 0 5  S G G P H I S Y P P L H
2 9 5 - 3 0 6  G G P H I S Y P P L H E

Figure 22. Sequences of peptides spanning the 277-306 region of MAGE-3. The
aminoacids predicted by TEPITOPE as PI anchor residues for HLA-DR* 11 are 
highlighted in red.
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Clone 6 2 2 Clone 2E5.53 Clone 6 5 3

bl+LCL

2 8 1 - 3 0 0

2 7 7 - 2 8 8

2 7 8 - 2 8 9

2 7 9 - 2 9 0

2 8 0 - 2 9 1

2 8 1 - 2 9 2

2 8 2 - 2 9 3

2 8 3 - 2 9 4

HI **:)*:
2 8 5 - 2 9 6

H ***
2 8 6 - 2 9 7

2 8 7 - 2 9 8

2 8 8 - 2 9 9

2 8 9 - 3 0 0

2 9 0 - 3 0 1
4 * * *2 9 1 - 3 0 2

—I ***
2 9 2 - 3 0 3

2 9 3 - 3 0 4

2 9 4 - 3 0 5

2 9 5 - 3 0 6

7 5 0 0 7 5 0 0  0

IFN -y (pg/ml)

7 5 0 0 1 5 0 0 0

Figure 23. Identification of the epitopes in the 281-300 region of MAGE-3 
recognized by CD4+ T cells clones specific for MAGE-328i-3oo* CD4+ T cells were 
cultured in the presence of HLA-DR* 11 positive LCLs and each single MAGE-3 
peptide shown in Fig. 22 and tested for IFN-y release. The blanks (i.e. the basal level of 
IFN-y release of CD4+ T cells in the presence of unpulsed LCLs) are expressed as 
bl+LCL. The data are means of triplicate determinations and are representative of three 
experiments. N.T.: not tested.
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C lo n e  6 .22 C lo n e  2 E 5 .5 3 C lo n e  6 .93

bl+ LCL

281-300

LCL-M3

LCL-IiM3

i t  i i i i
0 3000 0 3000 0 3000 6000

IFN -y (pg/ml)

bl+ LCL '

281-300 “

M D  TC D R n e g  - 

M D  TC D R n e g + I F N - y .

M D  TC D R p o s  -

1 i i i i i i
0 3000 0 3000 0 3000 6000

IFN -y (p gfo l)

Figure 24. MAGE-328i-300 contains naturally processed and not naturally processed 
epitopes. MAGE-328i-300 specific clones were challenged with cells LCLs expressing 
MAGE-3 in the cytoplasm (LC-M3) or the endosomal/lysosomal compartment (LCL- 
IiM3) (upper panels) and MAGE-3 and HLA-DR expressing melanoma (MDTC) (lower 
panels) and tested for IFN-y release. The blanks (i.e. the basal level of IFN-y release of 
CD4+ T cells in the presence of unpulsed LCLs) are expressed as bl+LCL. Peptide- 
pulsed LCLCs or MDTC were used as positive controls. The data are means of triplicate 
determinations ± SD and are representative of at least three experiments.
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20001

0 ,5  0,1 0 ,0 5  0,01 0 ,0 0 5  0 ,0 0 1  05 110

p e p t id e  c o n c e n t r a t io n ( / i g / m l )

Figure 25. Peptide titration curve for MAGE-328i-3oo specific CD4+ T cell line 6.22.
CD4+ T cells were challenged with titrated doses of the indicated peptides and IFN-y 
release measured. The blank (i.e. the basal level of IFN-y release of CD4+ T cells in the 
presence of the unpulsed LCLs) is expressed as 0. The data are means of duplicate 
determination ± SD and are representative of at least three experiments.
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Figure 26. VP usage in MAGE-328i-3oo specific CD4+ T cell line 6.22. Vp usage was 
determined by flow cytometric analysis using the Iotest Beta Mark kit, following 
manufacturer’s instructions.
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4.2. STUDY OF PROCESSING THROUGH THE 

EXOGENOUS PATHWAY: EPITOPES MAGE-3161_175 and 

MAGE-3 in-125

To study processing through the exogenous pathway the enzymes involved in 

processing were inhibited in MAGE-3 expressing APCs and the reactivity of the 

MAGE-3 specific CD4 T cells to these treated APCs was measured. The enzymes were 

inhibited with inhibitors specific for one protease if possible or with generic inhibitors if 

not. Specific inhibitors were available for cathepsins B and L; the commercially 

available inhibitor for cathepsin S was very toxic and poorly soluble so it was not used. 

Generic inhibitors included leupeptin, that acts on cysteine cathepsins, and pepstatin A, 

specific for the family of aspartic proteases.

The two epitopes MAGE-3161-175 and MAGE-3111.125 described above (Sections 

4.1.2.1 and 4.1.2.2) were studied.

4.2.1. MAGE-3161.I75

4.2.1.1. Effect of cysteine proteases on MAGE-3i6i-i75 processing. LCLs and HT144 

cells expressing MAGE-3 in the endosomal/lysosomal compartment were incubated 

with non-toxic concentrations of inhibitors for 18-20 hours before being used as APCs 

for CD4+ T cells recognition in standard proliferation and IFN-y release assays. Treated 

and untreated wild type LCL and LCL-M3, wild type HT144 cells and peptide-pulsed 

cells were always included as controls. Upon treatment with leupeptin, a generic 

inhibitor of cysteine proteases, a considerable decrease of recognition was observed for 

both LCL-IiM3 (Fig. 27A) and HT144-HM3 (Fig. 27B), suggesting that at least one 

cysteine protease plays an important role in the correct formation of this epitope.
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Recognition of peptide-pulsed leupeptin-treated or untreated APCs was always 

comparable (not shown), suggesting that the treatment with the inhibitor did not affect 

the antigen presenting capability of inhibitor treated APCs.

When specific inhibitor CA074 of cathepsin B was used no significant decrease was 

seen in either LCLs (Fig. 28A) or HT144 melanoma cells (Fig. 28B), although the 

inhibitor was correctly working, especially at higher concentrations (Fig. 28C), 

suggesting that cathepsin B is not essential for correct formation of the epitope in either 

cell type.

A similar pattern of recognition was seen when inhibiting cathepsin L with catL inh 

III, a specific inhibitor of cathepsin L, in melanoma cells. This enzyme is probably also 

not required in processing of this epitope (Fig. 29A). Enzyme activity was measured in 

both melanoma cells and LCLs. Cathepsin L has been shown to be present but not 

active in human primary B cells and LCLs (137, 237). No activity was detected in LCLs 

using the fluorimetrc assay described in chapter 3, even using high concentrations of 

protein lysate, thus confirming what described by others using different methods (Fig. 

29B). As there was no active enzyme to influence processing no experiments were 

performed using LCLs as APCs.

As control for presentation capability I also evaluated if inhibitors could affect 

HLA-DR expression. FACS analysis, shown in Fig. 30, confirmed that this was not the 

case. Cathepsin B has not, in fact, been shown to be involved in processing of MHC-II 

molecules (142). In murine cells cathepsin L has been found necessary only in thymic 

epithelial cells; its role in other cells has not been identified exactly (134). Instead, the 

generic inhibitor leupeptin works on cathepsin S, that is involved in maturation of 

MHC-II molecules (126). However, with the concentrations used, the amount of MHC- 

II molecules on the cell surface appeared normal (Fig. 30A and C). Small variations 

were observed but were not reproducible or related to inhibitor dose.
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Figure 27. Effect of cysteine cathepsin inhibition on presentation of MAGE-3161-
175. APCs were treated with increasing concentrations of the cysteine cathepsin 
inhibitor leupeptin for 18-20 hours. MAGE-31 6 1 - 1 7 5  specific CD4+ T cells were then 
added and IFN-y release measured. The APCs used were LCL-IiM3 (A) and HT144- 
IiM3 (B). Treated wild type cells were used as negative control: the response towards 
both was identical (data not shown). The data are means of duplicate determination ± 
SD and are representative of at least three experiments.
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Figure 28. Effect of cathepsin B inhibition on presentation of MAGE-3i6i-i75.
APCs were treated with increasing concentrations of the cathepsin B inhibitor 
CA074 for 18-20 hours. MAGE-3i6i-i75 specific CD4+ T cellswere then added and 
IFN-y release measured. The APCs used were LCL-IiM3 (A) and HT144-HM3 (B). 
Treated wild type cells were used as negative controls. Peptide-pulsed treated or 
untreated cells were used as positive control: the response towards both was identical 
(data not shown). The data are means of duplicate determination ± SD and are 
representative of at least three experiments. C: After 18-20 hours incubation with 
CA074 cells were lysed and activity of cathepsin B measured as ng/ml active 
cathepsin B per mg/ml total protein.
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Figure 29. Effect of cathepsin L inhibition on presentation of MAGE-3i6i-i75. A:
HT144 cells were treated with increasing concentrations of the cathepsin L inhibitor 
catL inhlll for 18-20 hours. MAGE-3161-175 specific CD4+ T cells were then added 
and IFN-y release measured. Treated wild type cells were used as negative controls. 
Peptide-pulsed treated or untreated cells were used as positive control: the response 
towards both was identical (data not shown). The data are means of duplicate 
determination ± SD and are representative of at least three experiments. B: After 18- 
20 hours incubation with inhibitor cells were lysed and activity of cathepsin L 
measured as ng/ml active cathepsin L per mg/ml total protein.
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Figure 30. HLA-DR expression on inhibitor treated cells. FACS analysis was 
used to measure changes of F1LA-DR molecules on the cell surface. Full purple line: 
negative control; untreated cells: in green; pink, orange and blue: cells treated with 
increasing concentrations of inhibitor (5, 10 and 20 pM for cathepsin B inhibitor 
CA074 and cathepsin L specific inhibitor catL inhlll; 10, 20 and 50 pM for 
leupeptin). A: leupeptin treated LCLs. B: CA074 treated LCLs. C: leupeptin treated 
melanoma cells. D: CA074 treated melanoma cells. E: catL inhlll treated melanoma 
cells.
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4.2.1.2. Effect of aspartic proteases on MAGE-3i6i-i75 processing. LCLs and HT144 

melanoma cells (wild type and transduced) were treated with increasing concentrations 

of the generic aspartic protease inhibitor pepstatin A then used as APCs for recognition 

by CD4+ T cells. Variations in processing and presentation were measured as IFN-y 

release. Treatment of APCs with the generic inhibitor of aspartic proteases pepstatin A 

led to a dramatically improved recognition of LCL-IiM3 (Fig. 31 A) and HT144-IiM3 

(Fig. 3IB). This improved recognition was nonetheless associated to a decrease in 

cathepsin D activity, as shown by activity measurements (Fig. 32A) and it was not 

associated to variation in HLA-DR surface expression (Fig. 32B).

4.2.1.3. Combined inhibition of aspartic and cysteine proteases. Contemporary 

administration of leupeptin and pepstatin A to LCL-IiM3 (Fig. 3 3 A) and HT144-IiM3 

(Fig. 33B) was comparable to that of leupeptin alone, suggesting a predominant activity 

of leupeptin sensitive enzymes in MAGE-3161-175 formation. The inhibitory effect of 

leupeptin was evident after an 8-hour treatment in both types of APC used (Fig. 34A-B) 

whereas the epitope-presentation promoting effect of pepstain A was proportional to the 

incubation time with the inhibitor (Fig. 34C-D).

4.2.1.4. Effect of proteases on processing of MAGE-3i6i-i75 epitope in DCs. DCs

were loaded with lysates from MAGE-3 negative and MAGE-3 expressing cells. 

Leupeptin and pepstatin A were added and left for 18-20 hours before adding CD4+ T 

cells as described above. In agreement with results showed for LCL-IiM3 and HT144- 

IiM3 (Fig. 27 and Fig. 31), presentation was abolished when cells loaded with MAGE-3 

expressing lysates were treated with leupeptin but when cells were treated with 

pepstatin A presentation improved even more dramatically than what was seen using
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other APCs (Fig. 35). This finding is of particular relevance as DCs are the ones most 

likely to present the epitope in vivo.
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Figure 31. Effect of cathepsin D inhibition on presentation of MAGE-3i6i-i75* APCs 
were treated with increasing concentrations of the aspartic protease pepstatin A for 18- 
20 hours. MAGE-316M75 specific CD4+ T cells were then added and IFN-y release 
measured. The APCs used were LCL-IiM3 (A) and HT144-IiM3 (B). Treated wild type 
cells were used as negative controls. Peptide-pulsed treated or untreated cells were used 
as positive control: the response towards both was identical (data not shown). The data 
are means of duplicate determination ± SD and are representative of at least three 
experiments.
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Figure 32. Activity and HLA-DR expession of pepstatin A treated cells. A: After 18- 
20 hours incubation with aspartic protease pepstatin A cells were lysed and activity of 
catD measured as ng/ml active catD per mg/ml total protein. B: HLA-DR expression on 
LCL-IiM3. Untreated cells: green; pink: 10 pM, purple: 20 pM; blue: 50 pM inhibitor. 
The full line is the negative control. (C): HLA-DR expression on HI144-IiM3. 
Untreated cells: green; pink: 10 pM; orange: 20 pM; blue: 50 pM inhibitor. The full 
line is the negative control.
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Figure 34. Time dependence of MAGE-3i6i-i75 processing. CD4+ T cells were 
challenged with LCL-IiM3 and HT144-IiM3 treated with 50 pM leupeptin or pepstatin 
A for 8, 16 or 24 hours before the assay. A and B: IFN-y release after treatment with 
leupeptin. C and D: IFN-y release after treatment with pepstatin A. The data are means 
of duplicate determination ± SD and are representative of two experiments.
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Figure 35. Protease inhibition effects on MAGE-3i6i-i75 processing in DCs. MAGE- 
3 1 6 1 -175 specific CD4+ T cells were challenged with DCs loaded with lysates from 
MAGE-3 negative or MAGE-3 expressing cells and treated with protease inhibitors. A: 
IFN-y release after DC treatment with cysteine cathepsin inhibitor leupeptin. B: IFN-y 
release after DC treatment with aspartic protease inhibitor pepstatin A. The data are 
means of duplicate determination ± SD and are representative of two experiments.
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4.2.2. MAGE-3ni-i25

4.2.2.1  Effect of cysteine and aspartic proteases on processing of MAGE-3n 1.125.

Due to limited amount of MAGE-3 n 1.125 specific CD4+ T cells from patient 011,1 was 

not able to perform extensive experiments as I did for the MAGE-3161-175 epitope. 

Therefore for processing of MAGE-3111-125 I tested recognition of MAGE-3 loaded 

autologous DCs because the most relevant APCs in vivo. DCs from patient Oil were 

loaded with lysates from MAGE-3 negative and MAGE-3 expressing cells; inhibitors of 

cysteine cathepsins and aspartic proteases were added as described above (4.2.1.4). 

Treatment with 10 pM of leupeptin was enough to lead to abolishment of recognition 

(Fig. 36A). A cysteine protease is therefore required to correctly produce this epitope, as 

was seen for MAGE-3161-175, but in this case the amount of inhibitor required is much 

less. Inhibition of aspartic proteases with pepstatin A used caused (as with leupeptin) 

abolishment of recognition (Fig 36B), a very different effect compared to that seen for 

formation of MAGE-3161-175. These results suggest that formation of the MAGE-3 n 1.125 

epitope depends on both leupeptin- and pepstatin A-sensitive enzymes.

Collectively the experiments on antigen processing through the exogenous pathway 

show how two epitopes from the same antigen {i.e. MAGE-3) can be processed 

differently: whereas MAGE-3161-175 is produced by a cysteine protease and destroyed by 

an aspartic one MAGE-3 n 1.125 requires both types of enzyme to be produced.

112



A B
1000-1

Jl

2 5 0 -

0 10 20

10001

750 -

J)

1) 500 " C-,

250 -

0 10 20

fM leup eptin p ep statin A

Figure 36. Protease inhibition effects on MAGE-3m_i25 processing in DCs. MAGE- 
3111-125 specific CD4+ T cells challenged with DCs loaded with lysates from MAGE-3 
expressing cells and treated with protease inhibitors. DCs loaded with lysates of 
MAGE-3 negative cells and peptide-pulsed cells were used as negative and positive 
controls (data not shown). A: IL-5 release after DC treatment with cysteine cathepsin 
inhibitor leupeptin. B: IL-5 release after DC treatment with aspartic protease inhibitor 
pepstatin A. The data are means of duplicate determination ± SD and are representative 
of two experiments.
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4.3. STUDY OF PROCESSING THROUGH THE 

ENDOGENOUS PATHWAY: EPITOPE MAGE-3289-3oo

To study processing through the endogenous pathway I followed the same strategy used 

for the exogenous pathway. The enzymes involved in processing were inhibited in 

APCs and the reactivity of the CD4+ T cells to these treated APCs was measured. As 

the MAGE-3289-300 epitope (Fig. 24, left panels) is, in fact, produced through both 

processing pathways experiments were performed using both LCL-M3 and LCL-IiM3 

as APCs. The melanoma MD TC was not consistently recognised therefore I decided 

not to use it.

4.3.1. M A G E -3 2 8 9 -3 0 0

4.3.1.1. Effect of the proteasome on processing of MAGE-3289-3oo- Proteasomal 

activity was inhibited using three types of inhibitor: lactacystin, MG132 and 

bortezomib. These inhibitors affect both the standard proteasome and the 

immunoproteasome in different ways (238, 239). In these experiments, peptide-pulsed 

inhibitor treated cells were included as controls and in all cases were able to elicit the 

same response as peptide-pulsed untreated cells (data not shown).

Lactacystin is a well-known inhibitor that inhibits tryptic and chymotryptic activities 

(238). Treatment of LCL-M3 with non-toxic concentrations of lactacystin caused only a 

modest change in presentation (Fig. 37A).

MG132 (Cbz-leu-leu-leucinal) binds to the pi and p5 subunits of the standard 

proteasome and to their counterparts in the immunoproteasome (239). It also inhibits the 

tryptic activity of the immunoproteasome by completely blocking subunit P2i.
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Treatment of LCL-M3 with MG132 did not decrease presentation of the epitope (Fig. 

37B).

Bortezomib, the active principle in Velcade (used to treat refractory multiple 

myeloma), does not interfere with tryptic activity, but it binds and inhibits subunits P5, 

P5i and also p i, blocking chymotryptic activity and caspase-like activity (239). The 

epitope presenting capacity of bortezomib treated cells was significantly increased 

compared to their untreated counterparts, suggesting that chymotriptic activity destroys 

the epitope (Fig. 37C).

The effect on presentation of the epitope by treated LCL-IiM3 did not greatly differ 

from that seen for presentation by LCL-M3 (Fig. 37A-B-C).

4.3.I.2. Inhibition of TPP II and calpains. Tripeptidyl peptidase has been implied in 

antigen processing, as described in chapter 1.3.2.4, but reports on its exact function are 

contradictory (108, 109). LCL-M3 treated with non-toxic concentrations of the inhibitor 

AA-CMK did not show any significant change in antigen presenting capacity (Fig. 

3 8A). The cells, however, were very sensitive to this compound so extremely low 

concentrations had to be used; they may not have been enough to inhibit the enzyme 

completely.

The effect on presentation of the epitope by treated LCL-IiM3 closely resembled 

that seen for presentation by LCL-M3 (Fig. 38A).

Calpains may also be involved in antigen processing, as shown by Lich et al (123); 

LCL-M3 treated with a specific inhibitor did not elicit any change (Fig. 38B). These 

enzymes may therefore not be involved in processing of this epitope.

The effect on presentation of the epitope by treated LCL-HM3 was similar to that 

seen for presentation by LCL-M3 (Fig. 38B).
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Figure 37. Effects of proteasome inhibition on MAGE-3289-3oo processing. MAGE- 
3289-300 specific CD4+ T cells were challenged with cells expressing MAGE-3 either in 
the cytoplasm (LCL-M3) or in the endosomal-lysosomal compartment (LCL-IiM3) after 
treatment with proteasomal inhibitors. Peptide-pulsed cells were always added as 
positive controls (data not shown) and blanks (bl+LCL) as negative control. The data 
are means of duplicate determinations ± SD and are representative of three experiments. 
Responses significantly higher than the blanks are indicated as: **0,001 <p<0,05, 
(determined by unpaired, one-tailed Student’s t test). A: IFN-y release after treatment 
with lactacystin. B: IFN-y release after treatment with MG132. C: IFN-y release after 
treatment with bortezomib.
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Figure 38. Effects of cytosolic protease inhibition on MAGE-3289-300 processing.
MAGE-3289-300 specific CD4+ T cells were challenged with cells expressing MAGE-3 in 
the cytoplasm (LCL-M3) or in the endosomal-lysosomal compartment (LCL-IiM3) after 
treatment with inhibitors of cytosolic proteases. Peptide-pulsed cells were always added 
as positive controls (data not shown) and blanks (bl+LCL) as negative control. The data 
are means of duplicate determinations ± SD and are representative of two experiments. 
A: IFN-y release after treatment with AA-CFK, inhibitor of TPP II. B: IFN-y release 
after treatment with calpetin, an inhibitor of calpains
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4.3.1.3. Effect of autophagy inhibition on processing. Autophagy is a normal process 

occurring in all metabolically active cells. During the process single membrane 

structures (the ‘isolation’ membranes) envelop portions of cytoplasm and organelles 

(like mitochondria) and form autophagosomes. The contents of the autophagic vesicles 

are digested after fusion with lysosomes. Autophagy has been hypothesized to be 

involved in MHC class II processing of cytoplasmic tumor antigens (240). The two best 

known inhibitors of autophagy are wortmannin and 3-methyl-adenine. Experiments 

using LCL-M3 treated with these compounds showed a significant increase in 

recognition, suggesting that autophagy removes MAGE-3 from the pathway leading to 

the formation of the 289-300 epitope (Fig. 39A-B). No difference on presentation of the 

epitope by treated LCL-IiM3 was seen compared to presentation by LCL-M3 (Fig. 39A- 

B).

4.3.1.4. Inhibition of lysosomal enzymes. As mature MHC-II molecules are only 

found in the endosomal/lysosomal compartment endogenous MAGE-3 (or its partially 

processed products) will eventually encounter the enzymes present in this compartment. 

Therefore LCL-M3 cells were treated with inhibitors of cathepsin B, with leupeptin and 

with pepstatin A. Cathepsin B inhibition (data not shown) and inhibition of cysteine 

cathepsins with leupeptin caused an increase in recognition in both LCL-M3 and LCL- 

IiM3 (Fig. 40A).

Inhibition of aspartic proteases with pepstatin A had no effect in presentation in 

LCL-M3 but improved it in LCL-IiM3 (Fig. 40A-B). This suggests that aspartic 

proteases have different roles in processing of this epitope from the two pathways.
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Figure 39. Effects of autophagy inhibition on MAGE-3289-3oo processing. MAGE- 
3289-300 specific CD4+ T cells were challenged with cells expressing MAGE-3 in the 
cytoplasm (LCL-M3) or in the endosomal-lysosomal compartment (LCL-IiM3) after 
treatment with proteasomal inhibitors. Peptide-pulsed cells were always added as 
positive controls (data not shown) and blanks (bl+LCL) as negative control. The data 
are means of duplicate determinations ± SD and are representative of three experiments. 
Responses significantly higher than the blanks are indicated as: ***p<0,001 
(determined by unpaired, one-tailed Student’s t test). A: IFN-y release after treatment 
with 3-MA. B: IFN-y release after treatment with wortmannin.
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Figure 40. Effects of lysosomal protease inhibition on MAGE-3289-3oo processing.
MAGE-3289-300 specific CD4+ T cells were challenged with cells expressing MAGE-3 in 
the cytoplasm (LCL-M3) or in the endosomal-lysosomal compartment (LCL-IiM3) after 
treatment with inhibitors of lysosomal proteases. Peptide-pulsed cells were always 
added as positive controls (data not shown) and blanks (bl+LCL) as negative control. 
The data are means of duplicate determinations ± SD and are representative of three 
experiments. Responses significantly higher than the blanks are indicated as: 
***p<0,001 (determined by unpaired, one-tailed Student’s t test). A: IFN-y release after 
treatment with leupeptin. B: IFN-y release after treatment with pepstatin A.
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4.4. PATIENTS’ RESPONSE TO THE MAGE-3 EPITOPES

To study the role of the examined epitopes in the spontaneous anti-cancer response I 

tested the responses to MAGE-3 peptides in a panel of eleven advanced melanoma 

patients. Patients’ characteristics are described in Table 2. The MAGE-3 peptides used 

were 111-125, 146-160, 161-175, 191-205, 243-258, and 281-300 and corresponded to 

sequences previously identified by my laboratory (19,193), by others (194, 213, 217) or 

in the current study as containing naturally processed epitopes, plus peptide MAGE- 

3171-185 which apparently does not contain a natural epitope.

CD4+ T cells were cultured in the presence of CD4+-depleted PBMCs and each 

single peptide in several replicates. At day 7, low dose IL-2 was added in culture and 

the cells were cultured for another 7 days without further antigen stimulation. Naive 

CD4+ T cells from cord bloods were also tested to verify if the culture system induced 

in vitro priming. At day 14, the culture supernatant was removed for cytokine (GM- 

CSF, IL-5 and IFN-y) release assays and H-thymidine incorporation counted.

Naive CD4+ T cells from cord blood did not significantly proliferate (not shown) or 

produce cytokines in response to any peptide (Fig. 41).

CD4+ T cells from most of the patients were producing one or another cytokine in 

the presence or one or more peptides (not shown). To verify if cytokine production was 

specific CD4+ T cells were cultured as described above and then tested in the absence or 

presence of peptide and autologous PBMCs.

Of the eleven patients studied three (003, 013 and 015) showed no specific response 

while the remaining eight (002, 004, 008, 010, 011, 017, 022 and 026) responded in 

different ways, both as type and quantity of cytokine produced (Figs. 42 and 43). Most 

patients produced IL-5, suggesting a Th2 response or a mixed response, as in two cases 

(002 and 004) GM-CSF was also secreted. Three patients (017, 022 and 026) produced
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only GM-CSF and therefore probably had not developed a polarised response. Only one 

(008) showed a clear Thl response producing IFN-y only.

Table 3 summarises the patients’ responses. The peptide to elicit the highest number 

of specific responses was MAGE-3 n 1.125, followed by MAGE-3191.205 and MAGE-3281- 

300- One patient (008) responded to MAGE-3146-160, also known to contain a naturally 

processed epitope (19, 217). One response to MAGE-3ni_i85 was seen (patient 002). No 

response was seen to MAGE-3243-258 or to MAGE-3161-175.

For three patients (008, 017 and 022) it was possible to quantify by intracellular 

staining the enrichment of specific CD4+ T cells after three weeks in culture. In the case 

of cells specific for MAGE-3146-160 the percentage of peptide specific cells was 6.56% 

(Fig. 44A). Lower but sizeable percentages of MAGE-3191.205 (Fig. 44B) and MAGE- 

3281-300 (Fig. 44C) specific cells {i.e. 3,24% and 2,83%, respectively) were clearly 

detectable.

It is worthy of note that MAGE-3111.125, the epitope that requires both classes of 

protease for correct processing, was the one to elicit the highest number of specific 

responses. Equally noteworthy is that MAGE-3161-175 elicited no response at all, 

probably because aspartic proteases hinder correct processing of the epitope.
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Patient Stage Neoplastic lesions MHC-II typing
002 IV bone, hepatic, pulmonary, 

splenic, lymph nodes
HLA-DR* 04, *13

003 IV bone HLA-DR* 07, *12
004 IV head&neck, pulmonary, 

abdominal, arm, leg
HLA-DR*03, *07

008 IV pulmonary HLA-DR*01, *08
010 IV pulmonary HLA-DR*11, *16
O il IV skin HLA-DR* 10, *11
013 IV abdomen HLA-DR*01, *13
015 IV right lombar HLA-DR*01, *11
017 IV no evidence of disease HLA-DR*08, *15
022 IV lymph nodes HLA-DR* 07, *11
026 IV pulmonary, lymph nodes HLA-DR* 07, *11

Table 3. Patients’ characteristics.
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Figure 41. Response to MAGE-3 peptides of naive CD4+ T cells from cord blood.
CD4+ T cells were challenged with each single peptide in the presence of autologous 
APCs (CD4 depleted PBMCs). After 14 days of culture supernatants were tested for 
cytokine (GM-CSF, IFN-g and IL-5) release. The basal level is indicated as bl+APC.
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Figure 42. Patients’ response to MAGE-3 peptides. CD4+ T cells were purified from 
the patients’ PBMCs and cultured with each single MAGE-3 peptides. After 3 weeks in 
culture CD4+ T cells were washed and re-challenged with autologous PBMCs in the 
absence or presence of peptide. The data are means of duplicate determinations ± SD. 
The blanks (ie, the basal level of proliferation or cytokine release of CD4+ T cells in the 
presence of unpulsed APCs) have been subtracted from each culture. Responses 
significantly higher than the blanks are indicated as: *0,05<p, **0,001<p<0,05, 
***p<0,001 (determined by unpaired, one-tailed Student’s t test). The number by each 
graph identifies the patient.
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Figure 43. Patients’ response to MAGE-3 peptides. CD4+ T cells were purified from 
the patients’ PBMCs and cultured with each single MAGE-3 peptides. After 3 weeks in 
culture CD4+ T cells were washed and re-challenged with autologous PBMCs in the 
absence or presence of peptide. The data are means of duplicate determinations ± SD. 
The blanks (ie, the basal level of proliferation or cytokine release of CD4+ T cells in the 
presence of unpulsed APCs) have been subtracted from each culture. Responses 
significantly higher than the blanks are indicated as: *0,05<p, **0,001<p<0,05, 
***p<0,001 (determined by unpaired, one-tailed Student’s t test). The number by each 
graph identifies the patient.
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Figure 44. Quantification of the response to MAGE-3 peptides. Specific cytokine 
production of CD4+ T cells after three weeks’ culture. Cells were stimulated for 6 hours 
before fixing and staining. A: CD4+ T cells from 008 specific for MAGE-3 M6-16O (upper 
panel: unstimulated; lower panel: stimulated with peptide). B: CD4+ T cells from 017 
specific for MAGE-3191.205 (upper panel: unstimulated; lower panel: stimulated with 
peptide). C: CD4+ T cells from 022 specific for MAGE-3281-300 (upper panel: 
unstimulated; lower panel: stimulated with peptide).
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5. DISCUSSION

Processing for the formation of MHC-II epitopes has been studied for model antigens 

(such as ovalbumin) but very little is known about processing of tumor antigens, even 

the better characterised ones such as MAGE-3, for which many MHC-II epitopes have 

been described. MAGE-3 was a logical choice to study processing and formation of 

CD4 epitopes from a tumor antigen with the aim of using that knowledge to manipulate 

the patients’ immune response.

To address this issue three previously identified MAGE-3 regions known to contain 

epitopes (111-127, 161-175 and 281-300 (19, 193, 213)) were selected to study 

processing of this antigen through the endogenous and the exogenous pathways.

Earlier work in my laboratory had identified an immunodominant epitope in the 

111-125 region presented by HLA-DR*01, DR*04, and DR* 11 (19). In this study I 

showed that MAGE-3 n 1.125 is naturally processed only through the exogenous pathway, 

as lysate-loaded DCs, but not an HLA-DR expressing matched tumor, elicited a 

response. Similar behaviour among MAGE-3 epitopes has been reported for MAGE- 

31 14-127? presented in association with HLA-DR* 13 (213). The two overlapping regions 

(111-125 and 114-127) share a common epitope(s), as MAGE-3m-i25 specific CD4+ T 

cells recognised (with similar intensity) APCs pulsed with either of the two peptides 

(Fig. 20).

Characterisation of the epitope in the 161-175 region in the present work showed 

that it presented by HLA-DRP4. Previous work in my laboratory had identified an 

HLA-DR*04 restricted epitope in this same region that did not appear naturally 

processed. The HLA-DR p4 restricted epitope is produced only after loading of DCs 

with lysates of MAGE-3 containing cells or after processing of the whole recombinant
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protein. Specific CD4+ T cells also recognised cells engineered to express MAGE-3 in 

the endosomal/lysosomal compartment, meaning that the epitope is produced through 

the exogenous pathway. On the contrary HLA-DR p4 matched tumors and LCL-M3 

were not recognised.

Characterisation of region 281-300 with truncated peptides showed the presence of 

three distinct epitopes: 282-294, 284-298 and 289-300. As the previously described for 

the MAGE-3 a  M25 and MAGE-3161-175 epitopes, MAGE-3284-298 is also produced only 

through the exogenous pathway. Cells specific for MAGE-3289-300, instead, were able to 

recognise cells engineered to express MAGE-3 in the endosomal/lysosomal 

compartment but also MHC-II expressing tumors, showing that this epitope is naturally 

processed through both the endogenous and the exogenous pathway. Epitope 282-294 

was found not to recognize a naturally processed epitope as specific CD4+ T cells were 

able to recognise peptide-pulsed cells but not cells that had processed the whole antigen 

protein. It is possible that this epitope is produced in vivo but operated by APC not 

tested in the reported in vitro studies, therefore it might be considered cryptic. Epitopes 

with these characteristics have been described for other tumor antigens (like SSX-4 

(39)) as well and their role in tumor rejection remains to be elucidated.

The results reported for the MAGE-3161-175 stress the importance of using reliable 

tools when testing recognition of native epitopes by peptide specific CD4+ T cells. 

Indeed, MAGE-3161-175 specific CD4+ T cells poorly recognised lysate-loaded DCs but 

showed good response to B cells and tumoral cells expressing MAGE-3 in the 

endosomal/lysosomal compartment. The difference in recognition intensity could be 

due to competition among HLA-DR molecules for peptides inside the cell, to different 

amounts of protein available for processing and to different enzymes active in the 

intracellular compartments. The three causes are not mutually exclusive.
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Within a cell MHC molecules compete for loading of the peptide/protein fragment 

and as a result the molecules with the highest affinity will bind to the peptide (72). 

Competition among MHC molecules could account for lower recognition of lysate 

loaded DCs. It is interesting to note that MAGE-3161-175, besides several predicted MHC 

class II binding epitopes, contains the HLA-A1 (MAGE-3168-176) and HLA-B44 

(MAGE-3167-175) binding epitopes (204, 211). HT144 melanoma cells and autologous 

DCs express HLA-A1 and HLA-B44, respectively. Furthermore the three different 

APCs used in this study have HLA-DRp4 as common allele but express different HLA- 

DRpl alleles (DR*04 in LCLs, DR*04 and DR*07 in melanoma cells and DR*01 and 

DR*07 in autologous DCs). Therefore competition among several alleles with different 

binding affinity may have affected the repertoire of epitopes displayed by these cells.

The antigen available could also be relevant. DCs endocytose MAGE-3 from the 

extracellular environment so the amount of MAGE-3 actually available for uptake (and 

processing) by DCs from melanoma lysates in vitro (or after natural necrosis/apoptosis 

in vivo) could easily be less than that available in transduced cells. Sorting of transduced 

cells by expression of ANGFr allowed selection of two populations of cells with 

different expression of MAGE-3. The intensity of recognition was proportional to the 

amount of protein in the cell, strongly supporting the idea that lower recognition of DCs 

might be related to a lower amount of MAGE-3 to process.

The amount of protein available for processing, however, is not the only factor to 

determine the number of MHC-II-specific peptide complexes present on the cell 

surface. Processing is dependent on the environment of the intracellular compartments 

and this, in turn, is determined by cell type and external influences, such as stimulation 

by molecules that can affect activity and expression of certain proteases (128,153,241). 

Abundant and widely expressed lysosomal enzymes are cathepsins that can be divided
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into two large groups on the basis of the aminoacid in their active site (cysteine or 

aspartic acid).

Inhibition of cysteine cathepsins abolished presentation by DCs of MAGE-3111.125, 

revealing that at least one of these enzymes is essential for production of this epitope. 

Similarly, inhibition of cysteine cathepsins considerably reduced presentation of 

MAGE-3161-175* Decrease in presentation was seen in the three different types of APCs 

(LCL-IiM3, HT144-IiM3 and DCs loaded with lysates from MAGE-3 expressing cells) 

used. Specific inhibition of cysteine cathepsins B and L led only to a mild decrease in 

recognition. It is therefore likely that these enzymes are redundant or not involved in 

processing of this epitope.

I was not able to determine which enzyme is specifically required for processing of 

the 161-175 epitope. Cathepsin S, given its abundance and ubiquitous presence in 

different cell types, is a good candidate as ‘antigen processor’. Other cysteine cathepsins 

(such as cathepsin C and H), sensitive to leupeptin, could also be important. It is 

however likely, given the broad specificity of cleaved substrates, that any of these 

proteases leads to correct processing of the epitope; indeed, there are very few examples 

where epitopes from other antigens (such as lysozyme and TTCF (130, 147, 151)) have 

been shown to require specific proteases for proper processing.

While the effect of cysteine cathepsin inhibition for the two ‘exogenous’ epitopes 

was similar, causing decrease in production and presentation, inhibition of aspartic 

proteases had very different effects. Presentation of M A G E -3  n  1 .125 was abolished, 

meaning that an aspartic protease is required for correct production of the epitope, 

whereas presentation of M A G E -3  i 6i -175 was surprisingly improved, suggesting that one 

(or more) of these enzymes has a destructive effect. However, destructive activity of 

aspartic proteases was not responsible for the lack of recognition of wild type melanoma
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cells expressing MAGE-3 in the cytosol. Indeed, melanoma cells were never 

recognised, even after treatment with inhibitor.

Within the cell production of epitopes from a given antigen is the result of protein 

cleavage and destruction of an epitope may be necessary for the production of others. 

Negative effects of enzymes on epitope presentation have been described before (148, 

149, 152). The studied region of MAGE-3 is rich in hydrophobic residues and aspartic 

proteases such as cathepsins D and E exhibit a preference for cleaving such regions 

(149). Cathepsin D is a good candidate as the protease responsible for destruction of 

MAGE-316.1-175, as it is abundantly expressed in lysosomes whereas data about cathepsin 

E cellular distribution are contradictory (156, 157). Most importantly, the increase was 

highest in DCs, suggesting that the low intensity of recognition of these cells could be 

due to a higher aspartic protease activity (compared to the other APCs used) other than 

to a lower amount of protein available for processing. The relevance of a possible role 

in vivo of aspartic proteases in destruction of epitope MAGE-3161-175 was confirmed by 

the study of the repertoire of MAGE-3 epitopes recognised by melanoma patients where 

no MAGE-3161-175 specific CD4+ T cells were found.

Production of most MAGE-3 MHC-II epitopes, such as MAGE-3289-300> occurs also 

in cells expressing MAGE-3 as an endogenous protein. Being a cytosolic protein 

MAGE-3 is a target of the proteasome and of other cytosolic proteases (TPP II and 

calpains). However, processing does not seem required for production of MAGE-3289-300 

by the better characterised cytosolic proteases; indeed, blocking of proteasomal 

chymotryptic activity by the drug bortezomib improved presentation. Proteasomal 

activity has been shown to be important for correct production of some MHC-II 

epitopes (123) but not to hinder it.

Being processed also in the endosomal/lysosomal compartment (where loading of 

MHC-II molecules takes place), MAGE-3 is a substrate for cysteine and aspartic
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enzymes. The effects of these enzymes differ and depend on the route of delivery of the 

protein. Aspartic proteases do not hinder epitope production if MAGE-3 is an 

endogenously produced protein. If MAGE-3 is an exogenously delivered protein then 

both classes of enzyme will destroy the epitope. Nonetheless none of the proteases 

studied is required for the correct formation of the epitope.

Production of an MHC-II epitope from an endogenous protein could occur after 

delivery to the endosomal/lysosomal compartment through autophagy, as was seen with 

neoR (187). Instead, autophagy seems to subtract MAGE-3 from the intracellular 

compartment where production of the epitope or its precursor occurs.

A comprehensive explanation for the production of MAGE-3289-300 is to assume that, 

after processing by an unknown or not identified protease in the cytosol, the 

protein/fragment is carried into the lysosome not by autophagy but perhaps by direct 

import via TAP-L, a peptide importer present on the surface of lysosomes and directly 

linking the cytosol to the lysosomal compartment. Here it would be further processed by 

unidentified proteases and loaded onto MHC-II molecules and carried to the surface.

TAP-L (transporter associated with antigen processing like) is a large protein 

belonging to the ATP-binding cassette (ABC) transporter family and is related to TAPI 

and TAP2, the subunits of TAP (242, 243). Its peptide specificity is very broad, being 

able to transport peptides ranging from six to fifty-nine aminoacids, with a slight 

preference for peptides about twenty-three residues long. The fragment containing the 

289-300 epitope could be transported into a lysosome through this transporter. Proving 

this hypothesis is however difficult in the absence of TAP-L specific inhibitors.

The natural response to an antigen reveals how good presentation (and priming) of 

its epitopes is. The response to MAGE-3 peptides containing epitopes was analysed in a 

panel of eleven melanoma patients, all in stage IV of disease. Eight of the eleven 

patients tested showed a specific response to one or more peptides. Seven of the eight
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responding patients showed a specific response to MAGE-3 n 1.125, five to MAGE-3191. 

205, three to MAGE-3281-300, and one to MAGE-3146-160 and MAGE-3171-185, respectively. 

No response was seen to MAGE-3161-175 in any patient.

The predominant response to MAGE-3111.125 and the lack of responses to MAGE- 

3161-175 well reconcile the results that I obtained in vitro for processing and presentation 

of the two epitopes. Indeed MAGE-3 n 1.125 was produced by both aspartic and cysteine 

proteases. Conversely, the MAGE-3161-175 epitope was destroyed by an aspartic protease 

and this effect was particularly pronounced when processing in MAGE-3 loaded DCs 

was studied, suggesting the importance of the destructive phenomenon in vivo.

Experiments of anti-MAGE-3 response in vivo in patients also confirmed data 

obtained so far on naturally processed epitopes. CD4+ T cells specific for MAGE-3191. 

205 could recognise a native epitope produced through both the exogenous and the 

endogeous pathway (19). Peptide MAGE-328i-3oo also elicited a response in three 

patients. It was not possible to verify which of the three epitopes (282-294, 284-298, 

289-300) in the 281-300 region was the one to elicit a response, as the peptide used 

spanned the whole length of that region. Only one patient responded to MAGE-3146-160, 

another region known to contain a naturally processed epitope (19, 217). No patient 

responded to MAGE-3243-258, previously shown by Schultz et al. (194) to be naturally 

processed; one patient recognised MAGE-3171-185 apparently not naturally processed 

(19).

Taken together, all the experimental data regarding processing of epitopes and 

response of patients fit very well with previously obtained results and with the 

suggestion that the destructive effect of aspartic proteases would limit presentation of 

the MAGE-3161-175 epitope.

An interesting element of this study was characterisation of the natural response to 

MAGE-3 in terms of cytokine production, as previous studies have analysed the
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response only in vaccinated patients. GM-CSF, either alone or with IL-5, was secreted 

by six of the eight responsive patients tested. One patient produced both Thl and Th2 

cytokines; only one patient had a Thl response. Collectively, these data demonstrate 

that the spontaneous anti-MAGE-3 CD4+ T cells response in advanced melanoma 

patients is skewed towards an unpolarised or anti-inflammatory response.

Skewing of cancer response to a Th2 phenotype has been reported in melanoma and 

renal cell carcinoma (44, 244, 245) and it has been related to an escape mechanism 

adopted by the tumor itself (for example, by secretion of cytokines like TGF-p).

All patients in this study were in stage IV and the response seen may represent the 

response in advanced stages of disease. In earlier stages the anti-MAGE-3 CD4+ T cell 

response might differ both in the epitope recognised and in the cytokine produced. 

Further studies to investigate this issue are worthwhile.

A more comprehensive identification of the epitopes eliciting the highest number of 

responses will be obtained by increasing the total number of patients analysed; enrolling 

patients at different disease stages will enable determination of which epitopes are 

presented at each stage and of the quality of the response, possibly with correlation to 

the outcome of the disease. Discovering how every relevant epitope is processed might 

allow to devise strategies to favour or block its production.

All this information, jointly with the correct understanding of how to overcome tumor 

escape mechanisms and skewing towards an unfavourable Th type response, will allow 

manipulation of patients’ immune response by more effective vaccination strategies and 

possibly change of the disease outcome.

136



6. REFERENCES

1. Riddell, S. R., and P. D. Greenberg. 1995. Principles for adoptive T cell therapy 
of human viral diseases. Annu Rev Immunol 13:545-586.

2. Ostrand-Rosenberg, S., A. Thakur, and V. Clements. 1990. Rejection of mouse 
sarcoma cells after transfection of MHC class II genes. J  Immunol 144:4068- 
4071.

3. Wang, J. C., and A. M. Livingstone. 2003. Cutting edge: CD4+ T cell help can 
be essential for primary CD8+ T cell responses in vivo. J  Immunol 171:6339- 
6343.

4. Zajac, A. J., K. Murali-Krishna, J. N. Blattman, and R. Ahmed. 1998. 
Therapeutic vaccination against chronic viral infection: the importance of 
cooperation between CD4+ and CD8+ T cells. Curr Opin Immunol 10:444-449.

5. Janssen, E. M., E. E. Lemmens, T. Wolfe, U. Christen, M. G. von Herrath, and 
S. P. Schoenberger. 2003. CD4+ T cells are required for secondary expansion 
and memory in CD8+ T lymphocytes. Nature 421:852-856.

6. Shedlock, D. J., and H. Shen. 2003. Requirement for CD4 T cell help in 
generating functional CD8 T cell memory. Science 300:337-339.

7. Owens, T., and R. Zeine. 1989. The cell biology of T-dependent B cell 
activation. Biochem Cell Biol 67:481-489.

8. Bennett, S. R., F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. Miller, and W. 
R. Heath. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 
signalling. Nature 393:478-480.

9. Ridge, J. P., F. Di Rosa, and P. Matzinger. 1998. A conditioned dendritic cell 
can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 
393:474-478.

10. Schoenberger, S. P., R. E. Toes, E. I. van der Voort, R. Offringa, and C. J. 
Melief. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40- 
CD40L interactions. Nature 393:480-483.

11. Smith, C. M., N. S. Wilson, J. Waithman, J. A. Villadangos, F. R. Carbone, W. 
R. Heath, and G. T. Belz. 2004. Cognate CD4(+) T cell licensing of dendritic 
cells in CD8(+) T cell immunity. Nat Immunol 5:1143-1148.

12. Constant, S. L., and K. Bottomly. 1997. Induction of Thl and Th2 CD4+ T cell 
responses: the alternative approaches. Annu Rev Immunol 15:297-322.

13. Nishimura, T., K. Iwakabe, M. Sekimoto, Y. Ohmi, T. Yahata, M. Nakui, T. 
Sato, S. Habu, H. Tashiro, M. Sato, and A. Ohta. 1999. Distinct role of antigen- 
specific T helper type 1 (Thl) and Th2 cells in tumor eradication in vivo. J  Exp 
Med 190:617-627.

14. Hung, K., R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, and H. 
Levitsky. 1998. The central role of CD4(+) T cells in the antitumor immune 
response. J  Exp Med 188:2357-2368.

15. Mattes, J., M. Hulett, W. Xie, S. Hogan, M. E. Rothenberg, P. Foster, and C. 
Parish. 2003. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 
cells: an eotaxin and STAT6-dependent process. J  Exp Med 197:387-393.

16. Cavallo, F., M. Giovarelli, A. Gulino, A. Vacca, A. Stoppacciaro, A. Modesti, 
and G. Fomi. 1992. Role of neutrophils and CD4+ T lymphocytes in the primary 
and memory response to nonimmunogenic murine mammary adenocarcinoma 
made immunogenic by IL-2 gene. J  Immunol 149:3627-3635.

137



17. Hong, C., H. Lee, M. Oh, C. Y. Kang, S. Hong, and S. H. Park. 2006. CD4+ T 
cells in the absence of the CD8+ cytotoxic T cells are critical and sufficient for 
NKT cell-dependent tumor rejection. J  Immunol 177:6747-6757.

18. Hegde, N. R., C. Dunn, D. M. Lewinsohn, M. A. Jarvis, J. A. Nelson, and D. C. 
Johnson. 2005. Endogenous human cytomegalovirus gB is presented efficiently 
by MHC class II molecules to CD4+ CTL. J  Exp Med 202:1109-1119.

19. Consogno, G., S. Manici, V. Facchinetti, A. Bachi, J. Hammer, B. M. Conti- 
Fine, C. Rugarli, C. Traversari, and M. P. Protti. 2003. Identification of 
immunodominant regions among promiscuous HLA-DR-restricted CD4+ T-cell 
epitopes on the tumor antigen MAGE-3. Blood 101:1038-1044.

20. Mi, J. Q., O. Manches, J. Wang, P. Perron, S. Weisbuch, P. N. Marche, J. C.
Renversez, J. C. Bensa, J. J. Sotto, J. Y. Cahn, D. Leroux, and T. Bonnefoix.
2006. Development of autologous cytotoxic CD4+ T clones in a human model 
of B-cell non-Hodgkin follicular lymphoma. Br J  Haematol 135:324-335.

21. Jellison, E. R., S. K. Kim, and R. M. Welsh. 2005. Cutting edge: MHC class II-
restricted killing in vivo during viral infection. J  Immunol 174:614-618.

22. Ostrand-Rosenberg, S. 2005. CD4+ T lymphocytes: a critical component of
antitumor immunity. Cancer Invest 23:413-419.

23. Knutson, K. L., M. L. Disis, and L. G. Salazar. 2007. CD4 regulatory T cells in 
human cancer pathogenesis. Cancer Immunol Immunother 56:271-285.

24. Onizuka, S., I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama.
1999. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2
receptor alpha) monoclonal antibody. Cancer Res 59:3128-3133.

25. Shimizu, J., S. Yamazaki, and S. Sakaguchi. 1999. Induction of tumor immunity 
by removing CD25+CD4+ T cells: a common basis between tumor immunity 
and autoimmunity. J  Immunol 163:5211-5218.

26. Antony, P. A., C. A. Piccirillo, A. Akpinarli, S. E. Finkelstein, P. J. Speiss, D. R.
Surman, D. C. Palmer, C. C. Chan, C. A. Klebanoff, W. W. Overwijk, S. A.
Rosenberg, and N. P. Restifo. 2005. CD8+ T cell immunity against a tumor/self- 
antigen is augmented by CD4+ T helper cells and hindered by naturally 
occurring T regulatory cells. J  Immunol 174:2591-2601.

27. Curiel, T. J., G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. 
Evdemon-Hogan, J. R. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. 
Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M. L. Disis, K. L. 
Knutson, L. Chen, and W. Zou. 2004. Specific recruitment of regulatory T cells 
in ovarian carcinoma fosters immune privilege and predicts reduced survival. 
Nat Med 10:942-949.

28. Marshall, N. A., L. E. Christie, L. R. Munro, D. J. Culligan, P. W. Johnston, R. 
N. Barker, and M. A. Vickers. 2004. Immunosuppressive regulatory T cells are 
abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755- 
1762.

29. Seo, N., S. Hayakawa, M. Takigawa, and Y. Tokura. 2001. Interleukin-10 
expressed at early tumour sites induces subsequent generation of CD4(+) T- 
regulatory cells and systemic collapse of antitumour immunity. Immunology 
103:449-457.

30. Brady, M. S., D. D. Eckels, F. Lee, S. Y. Ree, and J. S. Lee. 1999. Cytokine 
production by CD4+ T-cells responding to antigen presentation by melanoma 
cells. Melanoma Res 9:173-180.

31. Chakraborty, N. G., L. Li, J. R. Spom, S. H. Kurtzman, M. T. Ergin, and B. 
Mukherji. 1999. Emergence of regulatory CD4+ T cell response to repetitive 
stimulation with antigen-presenting cells in vitro: implications in designing 
antigen-presenting cell-based tumor vaccines. J  Immunol 162:5576-5583.

138



32. Thornton, A. M., and E. M. Shevach. 1998. CD4+CD25+ immunoregulatory T 
cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 
production. J  Exp Med 188:287-296.

33. Azuma, T., T. Takahashi, A. Kunisato, T. Kitamura, and H. Hirai. 2003. Human 
CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 
63:4516-4520.

34. Suri-Payer, E., A. Z. Amar, R. McHugh, K. Natarajan, D. H. Margulies, and E. 
M. Shevach. 1999. Post-thymectomy autoimmune gastritis: fine specificity and 
pathogenicity of anti-H/K ATPase-reactive T cells. Eur J  Immunol 29:669-677.

35. Suri-Payer, E., A. Z. Amar, A. M. Thornton, and E. M. Shevach. 1998. 
CD4+CD25+ T cells inhibit both the induction and effector function of 
autoreactive T cells and represent a unique lineage of immunoregulatory cells. J  
Immunol 160:1212-1218.

36. Ostrand-Rosenberg, S., M. J. Grusby, and V. K. Clements. 2000. Cutting edge: 
STAT6-deficient mice have enhanced tumor immunity to primary and metastatic 
mammary carcinoma. J  Immunol 165:6015-6019.

37. Qin, Z., G. Richter, T. Schuler, S. Ibe, X. Cao, and T. Blankenstein. 1998. B 
cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4:627-630.

38. Ayyoub, M., A. Merlo, C. S. Hesdorffer, D. Speiser, D. Rimoldi, J. C. Cerottini,
G. Ritter, Y. T. Chen, L. J. Old, S. Stevanovic, and D. Valmori. 2005. Distinct 
but overlapping T helper epitopes in the 37-58 region of SSX-2. Clin Immunol 
114:70-78.

39. Ayyoub, M., A. Merlo, C. S. Hesdorffer, D. Rimoldi, D. Speiser, J. C. Cerottini, 
Y. T. Chen, L. J. Old, S. Stevanovic, and D. Valmori. 2005. CD4+ T cell 
responses to SSX-4 in melanoma patients. J  Immunol 174:5092-5099.

40. Gnjatic, S., D. Atanackovic, E. Jager, M. Matsuo, A. Selvakumar, N. K. Altorki, 
R. G. Maki, B. Dupont, G. Ritter, Y. T. Chen, A. Knuth, and L. J. Old. 2003. 
Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in 
cancer patients: correlation with antibody responses. Proc Natl Acad Sci U S A  
100:8862-8867.

41. Ayyoub, M., N. E. Souleimanian, E. Godefroy, L. Scotto, C. S. Hesdorffer, L. J. 
Old, and D. Valmori. 2006. A phenotype based approach for the immune 
monitoring of NY-ESO-1-specific CD4+ T cell responses in cancer patients. 
Clin Immunol 118:188-194.

42. Zarour, H. M., Maillere, B., Brusic, V., Coval, K., Williams, E., Pouvelle- 
Moratille, S., Castelli, F., Land, S., Bennouna, J., Logan, T., Kirkwood, J.M. 
2002. NY-ESO-1 119-143 is a promiscuous major histocompatibility complex 
class II T-helper epitope recognised by Thl - and Th2-type tumor-reactive CD4+ 
T cells. Cancer Res 63:213-218.

43. Qian, F., Gnjatic, S., Jager, E., Santiago, D., Jungbluth, A., Grande, C., 
Schneider, S., Keitz, B., Driscoll, D., Ritter, G., Shashikant, L., Sood, A., Old, 
L. J., Odunsi, K. 2004. Thl/th2 CD4+ T cell responses against NY-ESO-1 in 
HLA-DPB 1*0401/0402 patients with epithelial ovarian cancer. Cancer 
Immunity 4:12-20.

44. Tatsumi, T., L. S. Kierstead, E. Ranieri, L. Gesualdo, F. P. Schena, J. H. Finke, 
R. M. Bukowski, J. Mueller-Berghaus, J. M. Kirkwood, W. W. Kwok, and W. J. 
Storkus. 2002. Disease-associated bias in T helper type 1 (Thl)/Th2 CD4(+) T 
cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell 
carcinoma or melanoma. JExp Med 196:619-628.

45. Van den Eynde, B. J., and P. van der Bruggen. 1997. T cell defined tumor 
antigens. Curr Opin Immunol 9:684-693.

139



46. Hammer, A., H. Hutter, and G. Dohr. 1997. HLA class I expression on the 
matemo-fetal interface. Am JReprodImmunol 38:150-157.

47. Haas, G. G., Jr., O. J. D'Cruz, and L. E. De Bault. 1988. Distribution of human 
leukocyte antigen-ABC and -D/DR antigens in the unfixed human testis. Am J  
Reprod Immunol Microbiol 18:47-51.

48. Wolfel, T., M. Hauer, J. Schneider, M. Serrano, C. Wolfel, E. Klehmann-Hieb, 
E. De Plaen, T. Hankeln, K. H. Meyer zum Buschenfelde, and D. Beach. 1995. 
A pl6INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a 
human melanoma. Science 269:1281-1284.

49. Rubinfeld, B., P. Robbins, M. El-Gamil, I. Albert, E. Porfiri, and P. Polakis.
1997. Stabilization of beta-catenin by genetic defects in melanoma cell lines. 
Science 275:1790-1792.

50. Mandruzzato, S., F. Brasseur, G. Andry, T. Boon, and P. van der Bruggen. 1997. 
A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head 
and neck carcinoma. J  Exp Med 186:785-793.

51. Hesketh, R. 1997. ’The Oncogene and Tumor Suppressor Genes' Fact Book. 
Academic Press, London.

52. Fisk, B., T. L. Blevins, J. T. Wharton, and C. G. Ioannides. 1995. Identification 
of an immunodominant peptide of HER-2/neu protooncogene recognized by 
ovarian tumor-specific cytotoxic T lymphocyte lines. J  Exp Med 181:2109-2117.

53. Lustgarten, J., M. Theobald, C. Labadie, D. LaFace, P. Peterson, M. L. Disis, M.
A. Cheever, and L. A. Sherman. 1997. Identification of Her-2/Neu CTL epitopes 
using double transgenic mice expressing HLA-A2.1 and human CD.8. Hum 
Immunol 52:109-118.

54. Ropke, M., J. Hald, P. Guldberg, J. Zeuthen, L. Norgaard, L. Fugger, A. 
Svejgaard, S. Van der Burg, H. W. Nijman, C. J. Melief, and M. H. Claesson.
1996. Spontaneous human squamous cell carcinomas are killed by a human 
cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. 
Proc Natl Acad Sci U SA  93:14704-14707.

55. Tsang, K. Y., S. Zaremba, C. A. Nieroda, M. Z. Zhu, J. M. Hamilton, and J. 
Schlom. 1995. Generation of human cytotoxic T cells specific for human 
carcinoembryonic antigen epitopes from patients immunized with recombinant 
vaccinia-CEA vaccine. J  Natl Cancer Inst 87:982-990.

56. Andersson, J. 2006. Epstein-Barr virus and Hodgkin's lymphoma. Herpes 13:12-
16.

57. Demachi-Okamura, A., Y. Ito, Y. Akatsuka, K. Tsujimura, Y. Morishima, T. 
Takahashi, and K. Kuzushima. 2006. Epstein-Barr virus (EBV) latent membrane 
protein-1-specific cytotoxic T lymphocytes targeting EBV-carrying natural killer 
cell malignancies. Eur J  Immunol 36:593-602.

58. Dillon, S., T. Sasagawa, A. Crawford, J. Prestidge, M. K. Inder, J. Jerram, A. A. 
Mercer, and M. Hibma. 2007. Resolution of cervical dysplasia is associated with 
T-cell proliferative responses to human papillomavirus type 16 E2. J  Gen Virol 
88:803-813.

59. Janeway, C. J., Travers, P, Walport, M, Shlomchik, M. 2001. Immunobiology. 
Elsevier Science Ltd/Garland Publishing, New York and London.

60. Rammensee, H. G., T. Friede, and S. Stevanoviic. 1995. MHC ligands and 
peptide motifs: first listing. Immunogenetics 41:178-228.

61. Marsh SGE, P. P., Barber LD. 2000. The HLA Factsbook. Academic Press, 
London.

62. Rammensee, H. G., Bachmann J, Stevanovic S. 1997. MHC ligands and peptide 
motifs. Springer, New York.

140



63. Anderson, K. S., and P. Cresswell. 1994. A role for calnexin (IP90) in the 
assembly of class II MHC molecules. Embo J  13:675-682.

64. Manoury, B., D. Mazzeo, D. N. Li, J. Billson, K. Loak, P. Benaroch, and C. 
Watts. 2003. Asparagine endopeptidase can initiate the removal of the MHC 
class II invariant chain chaperone. Immunity 18:489-498.

65. Mosyak, L., D. M. Zaller, and D. C. Wiley. 1998. The structure of HLA-DM, 
the peptide exchange catalyst that loads antigen onto class II MHC molecules 
during antigen presentation. Immunity 9:377-383.

66. Katz, J. F., C. Stebbins, E. Appella, and A. J. Sant. 1996. Invariant chain and 
DM edit self-peptide presentation by major histocompatibility complex (MHC) 
class II molecules. J  Exp Med 184:1747-1753.

67. Kropshofer, H., A. B. Vogt, G. Moldenhauer, J. Hammer, J. S. Blum, and G. J.
Hammerling. 1996. Editing of the HLA-DR-peptide repertoire by HLA-DM.
Em boJ  15:6144-6154.

68. Amigorena, S., J. R. Drake, P. Webster, and I. Mellman. 1994. Transient 
accumulation of new class II MHC molecules in a novel endocytic compartment 
in B lymphocytes. Nature 369:113-120.

69. Drake, J. R., P. Webster, J. C. Cambier, and I. Mellman. 1997. Delivery of B 
cell receptor-internalized antigen to endosomes and class II vesicles. J  Exp Med 
186:1299-1306.

70. Drake, J. R., T. A. Lewis, K. B. Condon, R. N. Mitchell, and P. Webster. 1999.
Involvement of MUC-like late endosomes in B cell receptor-mediated antigen 
processing in murine B cells. J  Immunol 162:1150-1155.

71. Sinnathamby, G., and L. C. Eisenlohr. 2003. Presentation by recycling MHC
class II molecules of an influenza hemagglutinin-derived epitope that is revealed 
in the early endosome by acidification. J  Immunol 170:3504-3513.

72. Sercarz, E. E., and E. Maverakis. 2003. Mhc-guided processing: binding of large 
antigen fragments. Nat Rev Immunol 3:621-629.

73. Bodmer, J. G., S. G. Marsh, E. D. Albert, W. F. Bodmer, B. Dupont, H. A. 
Erlich, B. Mach, W. R. Mayr, P. Parham, T. Sasazuki, and et al. 1992. 
Nomenclature for factors of the HLA system, 1991. WHO Nomenclature 
Committee for factors of the HLA system. Tissue Antigens 39:161-173.

74. Irle, C., D. Jaques, J. M. Tiercy, S. V. Fuggle, J. Gorski, A. Termijtelen, M. 
Jeannet, and B. Mach. 1988. Functional polymorphism of each of the two HLA- 
DR beta chain loci demonstrated with antigen-specific DR3- and DRw52- 
restricted T cell clones. J  Exp Med 167:853-872.

75. Tassi, E., V. Facchinetti, S. Seresini, A. Borri, G. Dell'antonio, C. Garavaglia, G. 
Casorati, and M. P. Protti. 2006. Peptidome from renal cell carcinoma contains 
antigens recognized by CD4+ T cells and shared among tumors of different 
histology. Clin Cancer Res 12:4949-4957.

76. Berdoz, J., J. Gorski, A. M. Termijtelen, J. M. Dayer, C. Irle, D. Schendel, and
B. Mach. 1987. Constitutive and induced expression of the individual HLA-DR 
beta and alpha chain loci in different cell types. J  Immunol 139:1336-1341.

77. Boss, J. M. 1997. Regulation of transcription of MHC class II genes. Curr Opin 
Immunol 9:107-113.

78. Emery, P., B. Mach, and W. Reith. 1993. The different level of expression of 
HLA-DRB1 and -DRB3 genes is controlled by conserved isotypic differences in 
promoter sequence. Hum Immunol 38:137-147.

79. Riley, J. L., S. D. Westerheide, J. A. Price, J. A. Brown, and J. M. Boss. 1995. 
Activation of class II MHC genes requires both the X box region and the class II 
transactivator (OITA). Immunity 2:533-543.

141



80. Zhou, H., and L. H. Glimcher. 1995. Human MHC class II gene transcription 
directed by the carboxyl terminus of CUT A, one of the defective genes in type II 
MHC combined immune deficiency. Immunity 2:545-553.

81. Steimle, V., C. A. Siegrist, A. Mottet, B. Lisowska-Grospierre, and B. Mach. 
1994. Regulation of MHC class II expression by interferon-gamma mediated by 
the transactivator gene OITA. Science 265:106-109.

82. Collins, T., A. J. Korman, C. T. Wake, J. M. Boss, D. J. Kappes, W. Fiers, K. A. 
Ault, M. A. Gimbrone, Jr., J. L. Strominger, and J. S. Pober. 1984. Immune 
interferon activates multiple class II major histocompatibility complex genes and 
the associated invariant chain gene in human endothelial cells and dermal 
fibroblasts. Proc Natl Acad Sci U SA  81:4917-4921.

83. de Waal Malefyt, R., C. G. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett, 
J. Culpepper, W. Dang, G. Zurawski, and J. E. de Vries. 1993. Effects of IL-13 
on phenotype, cytokine production, and cytotoxic function of human monocytes. 
Comparison with IL-4 and modulation by IFN-gamma or IL-10. J  Immunol 
151:6370-6381.

84. Reimold, A. M., C. J. Kara, J. W. Rooney, and L. H. Glimcher. 1993. 
Transforming growth factor beta 1 repression of the HLA-DR alpha gene is 
mediated by conserved proximal promoter elements. J  Immunol 151:4173-4182.

85. Lu, H. T., J. L. Riley, G. T. Babcock, M. Huston, G. R. Stark, J. M. Boss, and R. 
M. Ransohoff. 1995. Interferon (IFN) beta acts downstream of IFN-gamma- 
induced class II transactivator messenger RNA accumulation to block major 
histocompatibility complex class II gene expression and requires the 48-kD 
DNA-binding protein, ISGF3-gamma. J  Exp Med 182:1517-1525.

86. Fuertes, G., A. Villarroya, and E. Knecht. 2003. Role of proteasomes in the 
degradation of short-lived proteins in human fibroblasts under various growth 
conditions. Int JBiochem Cell Biol 35:651-664.

87. Lehner, P. J., and P. Cresswell. 2004. Recent developments in MHC-class-I- 
mediated antigen presentation. Curr Opin Immunol 16:82-89.

88. Wilkinson, B. M., J. R. Tyson, P. J. Reid, and C. J. Stirling. 2000. Distinct 
domains within yeast Sec61p involved in post-translational translocation and 
protein dislocation. J  Biol Chem 275:521-529.

89. Joshi, S., S. Katiyar, and W. J. Lennarz. 2005. Misfolding of glycoproteins is a 
prerequisite for peptide: N-glycanase mediated deglycosylation. FEBS Lett 
579:823-826.

90. Katiyar, S., S. Joshi, and W. J. Lennarz. 2005. The retrotranslocation protein 
Derlin-1 binds peptide :N-glycanase to the endoplasmic reticulum. Mol Biol Cell 
16:4584-4594.

91. Kario, E., B. Tirosh, H. L. Ploegh, and A. Navon. 2007. N-linked glycosylation 
does not impair proteasomal degradation, but affects class I MHC presentation. J  
Biol Chem.

92. Rock, K. L., and A. L. Goldberg. 1999. Degradation of cell proteins and the 
generation of MHC class I-presented peptides. Annu Rev Immunol 17:739-779.

93. Glickman, M. H., and A. Ciechanover. 2002. The ubiquitin-proteasome 
proteolytic pathway: destruction for the sake of construction. Physiol Rev 
82:373-428.

94. Kovacsovics-Bankowski, M., and K. L. Rock. 1995. A phagosome-to-cytosol 
pathway for exogenous antigens presented on MHC class I molecules. Science 
267:243-246.

95. Mellman, I., and R. M. Steinman. 2001. Dendritic cells: specialized and 
regulated antigen processing machines. Cell 106:255-258.

142



96. Macagno, A., M. Gilliet, F. Sallusto, A. Lanzavecchia, F. O. Nestle, and M. 
Groettrup. 1999. Dendritic cells up-regulate immunoproteasomes and the 
proteasome regulator PA28 during maturation. Eur J  Immunol 29:4037-4042.

97. Morel, S., F. Levy, O. Burlet-Schiltz, F. Brasseur, M. Probst-Kepper, A. L. 
Peitrequin, B. Monsarrat, R. Van Velthoven, J. C. Cerottini, T. Boon, J. E. 
Gairin, and B. J. Van den Eynde. 2000. Processing of some antigens by the 
standard proteasome but not by the immunoproteasome results in poor 
presentation by dendritic cells. Immunity 12:107-117.

98. Chen, W., C. C. Norbury, Y. Cho, J. W. Yewdell, and J. R. Bennink. 2001. 
Immunoproteasomes shape immunodominance hierarchies of antiviral CD8(+) T 
cells at the levels of T cell repertoire and presentation of viral antigens. J  Exp 
Med 193:1319-1326.

99. Yewdell, J., C. Lapham, I. Bacik, T. Spies, and J. Bennink. 1994. MHC-encoded
proteasome subunits LMP2 and LMP7 are not required for efficient antigen 
presentation. J  Immunol 152:1163-1170.

100. Arnold, D., J. Driscoll, M. Androlewicz, E. Hughes, P. Cresswell, and T. Spies. 
1992. Proteasome subunits encoded in the MHC are not generally required for 
the processing of peptides bound by MHC class I molecules. Nature 360:171-
174.

101. Chen, J. L., P. R. Dunbar, U. Gileadi, E. Jager, S. Gnjatic, Y. Nagata, E.
Stockert, D. L. Panicali, Y. T. Chen, A. Knuth, L. J. Old, and V. Cerundolo.
2000. Identification of NY-ESO-1 peptide analogues capable of improved 
stimulation of tumor-reactive CTL. J  Immunol 165:948-955.

102. Chapiro, J., S. Claverol, F. Piette, W. Ma, V. Stroobant, B. Guillaume, J. E. 
Gairin, S. Morel, O. Burlet-Schiltz, B. Monsarrat, T. Boon, and B. J. Van den 
Eynde. 2006. Destructive cleavage of antigenic peptides either by the 
immunoproteasome or by the standard proteasome results in differential antigen 
presentation. J  Immunol 176:1053-1061.

103. Valmori, D., U. Gileadi, C. Servis, P. R. Dunbar, J. C. Cerottini, P. Romero, V. 
Cerundolo, and F. Levy. 1999. Modulation of proteasomal activity required for 
the generation of a cytotoxic T lymphocyte-defined peptide derived from the 
tumor antigen MAGE-3. J  Exp Med 189:895-906.

104. Schultz, E. S., J. Chapiro, C. Lurquin, S. Claverol, O. Burlet-Schiltz, G. 
Wamier, V. Russo, S. Morel, F. Levy, T. Boon, B. J. Van den Eynde, and P. van 
der Bruggen. 2002. The production of a new MAGE-3 peptide presented to 
cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J  Exp 
Med 195:391-399.

105. Geier, E., G. Pfeifer, M. Wilm, M. Lucchiari-Hartz, W. Baumeister, K. 
Eichmann, and G. Niedermann. 1999. A giant protease with potential to 
substitute for some functions of the proteasome. Science 283:978-981.

106. Glas, R., M. Bogyo, J. S. McMaster, M. Gaczynska, and H. L. Ploegh. 1998. A 
proteolytic system that compensates for loss of proteasome function. Nature 
392:618-622.

107. Benham, A. M., M. Gromme, and J. Neeijes. 1998. Allelic differences in the 
relationship between proteasome activity and MHC class I peptide loading. J  
Immunol 161:83-89.

108. Guil, S., M. Rodriguez-Castro, F. Aguilar, E. M. Villasevil, L. C. Anton, and M. 
Del Val. 2006. Need for tripeptidyl-peptidase II in major histocompatibility 
complex class I viral antigen processing when proteasomes are detrimental. J  
Biol Chem 281:39925-39934.

109. York, I. A., N. Bhutani, S. Zendzian, A. L. Goldberg, and K. L. Rock. 2006. 
Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic

143



precursors, but is not required for most MHC class I antigen presentation. J  
Immunol 177:1434-1443.

110. Harris, C. A., B. Hunte, M. R. Krauss, A. Taylor, and L. B. Epstein. 1992. 
Induction of leucine aminopeptidase by interferon-gamma. Identification by 
protein microsequencing after purification by preparative two-dimensional gel 
electrophoresis. J  Biol Chem 267:6865-6869.

111. Towne, C. F., I. A. York, J. Neijssen, M. L. Karow, A. J. Murphy, D. M. 
Valenzuela, G. D. Yancopoulos, J. J. Neefjes, and K. L. Rock. 2005. Leucine 
aminopeptidase is not essential for trimming peptides in the cytosol or 
generating epitopes for MHC class I antigen presentation. J  Immunol 175:6605- 
6614.

112. de Souza, A. N., J. A. Bruno, and K. M. Carvalho. 1991. An enkephalin 
degrading aminopeptidase of human brain preserved during the vertebrate 
phylogeny. Comp Biochem Physiol C 99:363-367.

113. McLellan, S., S. H. Dyer, G. Rodriguez, and L. B. Hersh. 1988. Studies on the 
tissue distribution of the puromycin-sensitive enkephalin-degrading 
aminopeptidases. JNeurochem 51:1552-1559.

114. Umezawa, H., S. Hori, T. Sawa, T. Yoshioka, and T. Takeuchi. 1974. A 
bleomycin-inactivating enzyme in mouse liver. JAntibiot (Tokyo) 27:419-424.

115. Stoltze, L., M. Schirle, G. Schwarz, C. Schroter, M. W. Thompson, L. B. Hersh,
H. Kalbacher, S. Stevanovic, H. G. Rammensee, and H. Schild. 2000. Two new 
proteases in the MHC class I processing pathway. Nat Immunol 1:413-418.

116. Sorimachi H., I. S., and Suzuki, K. 1997. Structure and physiological functions 
of calpains. Biochem J 328:721-732.

117. Wang, K. K., and P. W. Yuen. 1994. Calpain inhibition: an overview of its 
therapeutic potential. Trends Pharmacol Sci 15:412-419.

118. Saric, T., J. Beninga, C. I. Graef, T. N. Akopian, K. L. Rock, and A. L. 
Goldberg. 2001. Major histocompatibility complex class I-presented antigenic 
peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J  
Biol Chem 276:36474-36481.

119. York, I. A., A. X. Mo, K. Lemerise, W. Zeng, Y. Shen, C. R. Abraham, T. Saric, 
A. L. Goldberg, and K. L. Rock. 2003. The cytosolic endopeptidase, thimet 
oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I 
antigen presentation. Immunity 18:429-440.

120. Saveanu, L., O. Carroll, Y. Hassainya, and P. van Endert. 2005. Complexity, 
contradictions, and conundrums: studying post-proteasomal proteolysis in HLA 
class I antigen presentation. Immunol Rev 207:42-59.

121. Scharf, A., T. D. Rockel, and A. von Mikecz. 2007. Localization of proteasomes 
and proteasomal proteolysis in the mammalian interphase cell nucleus by 
systematic application of immunocytochemistry. Histochem Cell Biol.

122. Tewari, M. K., G. Sinnathamby, D. Rajagopal, and L. C. Eisenlohr. 2005. A 
cytosolic pathway for MHC class II-restricted antigen processing that is 
proteasome and TAP dependent. Nat Immunol 6:287-294.

123. Lich, J. D., J. F. Elliott, and J. S. Blum. 2000. Cytoplasmic processing is a 
prerequisite for presentation of an endogenous antigen by major 
histocompatibility complex class II proteins. J  Exp Med 191:1513-1524.

124. Manoury, B., E. W. Hewitt, N. Morrice, P. M. Dando, A. J. Barrett, and C. 
Watts. 1998. An asparaginyl endopeptidase processes a microbial antigen for 
class II MHC presentation. Nature 396:695-699.

125. Hastings, K. T., R. L. Lackman, and P. Cresswell. 2006. Functional 
requirements for the lysosomal thiol reductase GILT in MHC class II-restricted 
antigen processing. J  Immunol 177:8569-8577.

144



126. Riese, R. J., P. R. Wolf, D. Bromme, L. R. Natkin, J. A. Villadangos, H. L. 
Ploegh, and H. A. Chapman. 1996. Essential role for cathepsin S in MHC class 
II-associated invariant chain processing and peptide loading. Immunity 4:357- 
366.

127. Nakagawa, T. Y., W. H. Brissette, P. D. Lira, R. J. Griffiths, N. Petrushova, J. 
Stock, J. D. McNeish, S. E. Eastman, E. D. Howard, S. R. Clarke, E. F. 
Rosloniec, E. A. Elliott, and A. Y. Rudensky. 1999. Impaired invariant chain 
degradation and antigen presentation and diminished collagen-induced arthritis 
in cathepsin S null mice. Immunity 10:207-217.

128. Storm van's Gravesande, K., M. D. Layne, Q. Ye, L. Le, R. M. Baron, M. A. 
Perrella, L. Santambrogio, E. S. Silverman, and R. J. Riese. 2002. IFN 
regulatory factor-1 regulates IFN-gamma-dependent cathepsin S expression. J  
Immunol 168:4488-4494.

129. Hsieh, C. S., P. deRoos, K. Honey, C. Beers, and A. Y. Rudensky. 2002. A role 
for cathepsin L and cathepsin S in peptide generation for MHC class II 
presentation. J  Immunol 168:2618-2625.

130. Pluger, E. B., M. Boes, C. Alfonso, C. J. Schroter, H. Kalbacher, H. L. Ploegh, 
and C. Driessen. 2002. Specific role for cathepsin S in the generation of 
antigenic peptides in vivo. EurJImmunol 32:467-476.

131. Thurmond, R. L., S. Sun, L. Karlsson, and J. P. Edwards. 2005. Cathepsin S 
inhibitors as novel immunomodulators. Curr Opin Investig Drugs 6:473-482.

132. Yasuda, Y., J. Kaleta, and D. Bromme. 2005. The role of cathepsins in 
osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug 
Deliv Rev 57:973-993.

133. Turk, B., V. Stoka, J. Rozman-Pungercar, T. Cirman, G. Droga-Mazovec, K. 
Oresic, and V. Turk. 2002. Apoptotic pathways: involvement of lysosomal 
proteases. Biol Chem 383:1035-1044.

134. Nakagawa, T., W. Roth, P. Wong, A. Nelson, A. Farr, J. Deussing, J. A. 
Villadangos, H. Ploegh, C. Peters, and A. Y. Rudensky. 1998. Cathepsin L: 
critical role in Ii degradation and CD4 T cell selection in the thymus. Science 
280:450-453.

135. Bromme, D., Z. Li, M. Barnes, and E. Mehler. 1999. Human cathepsin V 
functional expression, tissue distribution, electrostatic surface potential, 
enzymatic characterization, and chromosomal localization. Biochemistry 
38:2377-2385.

136. Tolosa, E., W. Li, Y. Yasuda, W. Wienhold, L. K. Denzin, A. Lautwein, C. 
Driessen, P. Schnorrer, E. Weber, S. Stevanovic, R. Kurek, A. Melms, and D. 
Bromme. 2003. Cathepsin V is involved in the degradation of invariant chain in 
human thymus and is overexpressed in myasthenia gravis. J  Clin Invest 
112:517-526.

137. Lautwein A, K. M., Reich M, Burster T, Brandenburg J, Overkleeft HS, 
Scharwz G, Kammer W, Weber E, Kalbacher H, Nordheim A, Driessen C. .
2004. Human B lymphoblastoid cells contain distinct patterns of cathepsin 
activity in endocytic compartments and regulate MHC class II transport in a 
cathepsin S-independent manner.. JLeukBiol 74:84-855.

138. Honey, K., M. Duff, C. Beers, W. H. Brissette, E. A. Elliott, C. Peters, M. 
Marie, P. Cresswell, and A. Rudensky. 2001. Cathepsin S regulates the 
expression of cathepsin L and the turnover of gamma-interferon-inducible 
lysosomal thiol reductase in B lymphocytes. JB iol Chem 276:22573-22578.

139. Friedrich, B., K. Jung, M. Lein, I. Turk, B. Rudolph, G. Hampel, D. Schnorr, 
and S. A. Loening. 1999. Cathepsins B, H, L and cysteine protease inhibitors in

145



malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. 
Eur J  Cancer 35:138-144.

140. Troy, A. M., K. Sheahan, H. E. Mulcahy, M. J. Duffy, J. M. Hyland, and D. P. 
O'Donoghue. 2004. Expression of Cathepsin B and L antigen and activity is 
associated with early colorectal cancer progression. Eur J  Cancer 40:1610-1616.

141. Frohlich, E., B. Schlagenhauff, M. Mohrle, E. Weber, C. Klessen, and G. 
Rassner. 2001. Activity, expression, and transcription rate of the cathepsins B, 
D, H, and L in cutaneous malignant melanoma. Cancer 91:972-982.

142. Deussing, J., W. Roth, P. Saftig, C. Peters, H. L. Ploegh, and J. A. Villadangos.
1998. Cathepsins B and D are dispensable for major histocompatibility complex 
class II-mediated antigen presentation. Proc Natl Acad Sci U SA  95:4516-4521.

143. Szpaderska, A. M., and A. Frankfater. 2001. An intracellular form of cathepsin 
B contributes to invasiveness in cancer. Cancer Res 61:3493-3500.

144. Hashimoto, Y., H. Kakegawa, Y. Narita, Y. Hachiya, T. Hayakawa, J. Kos, V. 
Turk, and N. Katunuma. 2001. Significance of cathepsin B accumulation in 
synovial fluid of rheumatoid arthritis. Biochem Biophys Res Commun 283:334- 
339.

145. Chen, J. M., N. D. Rawlings, R. A. Stevens, and A. J. Barrett. 1998. 
Identification of the active site of legumain links it to caspases, clostripain and 
gingipains in a new clan of cysteine endopeptidases. FEBS Lett 441:361-365.

146. Chen, J. M., P. M. Dando, N. D. Rawlings, M. A. Brown, N. E. Young, R. A. 
Stevens, E. Hewitt, C. Watts, and A. J. Barrett. 1997. Cloning, isolation, and 
characterization of mammalian legumain, an asparaginyl endopeptidase. J  Biol 
Chem 272:8090-8098.

147. Antoniou, A. N., S. L. Blackwood, D. Mazzeo, and C. Watts. 2000. Control of 
antigen presentation by a single protease cleavage site. Immunity 12:391-398.

148. Manoury, B., D. Mazzeo, L. Fugger, N. Viner, M. Ponsford, H. Streeter, G. 
Mazza, D. C. Wraith, and C. Watts. 2002. Destructive processing by asparagine 
endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat 
Immunol 3:169-174.

149. Hewitt, E. W., A. Treumann, N. Morrice, P. J. Tatnell, J. Kay, and C. Watts.
1997. Natural processing sites for human cathepsin E and cathepsin D in tetanus 
toxin: implications for T cell epitope generation. J  Immunol 159:4693-4699.

150. Rodriguez, G. M., and S. Diment. 1992. Role of cathepsin D in antigen 
presentation of ovalbumin. J  Immunol 149:2894-2898.

151. van Noort, J. M., and M. J. Jacobs. 1994. Cathepsin D, but not cathepsin B, 
releases T cell stimulatory fragments from lysozyme that are functional in the 
context of multiple murine class II MHC molecules. Eur J  Immunol 24:2175- 
2180.

152. Moss, C. X., J. A. Villadangos, and C. Watts. 2005. Destructive potential of the 
aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur 
J  Immunol 35:3442-3451.

153. Cavailles, V., P. Augereau, and H. Rochefort. 1991. Cathepsin D gene of human 
MCF7 cells contains estrogen-responsive sequences in its 5' proximal flanking 
region. Biochem Biophys Res Commun 174:816-824.

154. Glondu, M., E. Liaudet-Coopman, D. Derocq, N. Platet, H. Rochefort, and M. 
Garcia. 2002. Down-regulation of cathepsin-D expression by antisense gene 
transfer inhibits tumor growth and experimental lung metastasis of human breast 
cancer cells. Oncogene 21:5127-5134.

155. Bidere, N., H. K. Lorenzo, S. Carmona, M. Laforge, F. Harper, C. Dumont, and 
A. Senik. 2003. Cathepsin D triggers Bax activation, resulting in selective

146



apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early 
commitment phase to apoptosis. JB iol Chem 278:31401-31411.

156. Finley, E. M., and S. Komfeld. 1994. Subcellular localization and targeting of 
cathepsin E. JB iol Chem 269:31259-31266.

157. Chain, B. M., P. Free, P. Medd, C. Swetman, A. B. Tabor, and N. Terrazzini.
2005. The expression and function of cathepsin E in dendritic cells. J  Immunol 
174:1791-1800.

158. Sealy, L., F. Mota, N. Rayment, P. Tatnell, J. Kay, and B. Chain. 1996.
Regulation of cathepsin E expression during human B cell differentiation in
vitro. Eur J  Immunol 26:1838-1843.

159. Bennett, K., T. Levine, J. S. Ellis, R. J. Peanasky, I. M. Samloff, J. Kay, and B. 
M. Chain. 1992. Antigen processing for presentation by class II major 
histocompatibility complex requires cleavage by cathepsin E. Eur J  Immunol 
22:1519-1524.

160. Nishioku, T., K. Hashimoto, K. Yamashita, S. Y. Liou, Y. Kagamiishi, H.
Maegawa, N. Katsube, C. Peters, K. von Figura, P. Saftig, N. Katunuma, K.
Yamamoto, and H. Nakanishi. 2002. Involvement of cathepsin E in exogenous 
antigen processing in primary cultured murine microglia. JB iol Chem 277:48lb- 
4822. ,

161. Zavasnik-Bergant, T., and B. Turk. 2006. Cysteine cathepsins in the immune 
response. Tissue Antigens 67:349-355.

162. Pham, C. T., and T. J. Ley. 1999. Dipeptidyl peptidase I is required for the 
processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S  
A 96:8627-8632.

163. Wex, T., F. Buhling, H. Wex, D. Gunther, P. Malfertheiner, E. Weber, and D. 
Bromme. 2001. Human cathepsin W, a cysteine protease predominantly 
expressed in NK cells, is mainly localized in the endoplasmic reticulum. J  
Immunol 167:2172-2178.

164. Aderem, A., and D. M. Underhill. 1999. Mechanisms of phagocytosis in 
macrophages. Annu Rev Immunol 17:593-623.

165. Hall, A., and C. D. Nobes. 2000. Rho GTPases: molecular switches that control 
the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc 
Lond B Biol Sci 355:965-970.

166. Fadok, V. A., and G. Chimini. 2001. The phagocytosis of apoptotic cells. Semin 
Immunol 13:365-372.

167. Pamaik, R., M. C. Raff, and J. Scholes. 2000. Differences between the clearance 
of apoptotic cells by professional and non-professional phagocytes. Curr Biol 
10:857-860.

168. Racoosin, E. L., and J. A. Swanson. 1989. Macrophage colony-stimulating 
factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J  
Exp Med 170:1635-1648.

169. Norbury, C. C. 2006. Drinking a lot is good for dendritic cells. Immunology
117:443-451.

170. Conner, S. D., and S. L. Schmid. 2003. Regulated portals of entry into the cell. 
Nature 422:37-44.

171. Razani, B., S. E. Woodman, and M. P. Lisanti. 2002. Caveolae: from cell 
biology to animal physiology. Pharmacol Rev 54:431-467.

172. Le, P. U., G. Guay, Y. Altschuler, and I. R. Nabi. 2002. Caveolin-1 is a negative 
regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J  Biol 
Chem 277:3371-3379.

173. Parton, R. G., B. Joggerst, and K. Simons. 1994. Regulated internalization of 
caveolae. J  Cell Biol 127:1199-1215.

147



174. Yoshimori, T. 2004. Autophagy: a regulated bulk degradation process inside 
cells. Biochem Biophys Res Commun 313:453-458.

175. Vivanco, I., and C. L. Sawyers. 2002. The phosphatidylinositol 3-Kinase AKT 
pathway in human cancer. Nat Rev Cancer 2:489-501.

176. Cuervo, A. M., and J. F. Dice. 1996. A receptor for the selective uptake and 
degradation of proteins by lysosomes. Science 273:501-503.

177. Cuervo, A. M., and J. F. Dice. 2000. Unique properties of lamp2a compared to 
other lamp2 isoforms. J  Cell Sci 113 Pt 24:4441-4450.

178. Chiang, H. L., S. R. Terlecky, C. P. Plant, and J. F. Dice. 1989. A role for a 70- 
kilodalton heat shock protein in lysosomal degradation of intracellular proteins. 
Science 246:382-385.

179. Agarraberes, F. A., S. R. Terlecky, and J. F. Dice. 1997. An intralysosomal 
hsp70 is required for a selective pathway of lysosomal protein degradation. J  
Cell Biol 137:825-834.

180. Agarraberes, F. A., and J. F. Dice. 2001. Protein translocation across 
membranes. Biochim Biophys Acta 1513:1 -24.

181. Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. 
Klionsky, M. Ohsumi, and Y. Ohsumi. 1998. A protein conjugation system 
essential for autophagy. Nature 395:395-398.

182. Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. 
Kominami, Y. Ohsumi, and T. Yoshimori. 2000. LC3, a mammalian homologue 
of yeast Apg8p, is localized in autophagosome membranes after processing. 
Embo J  19:5720-5728.

183. Ichimura, Y., T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N. 
Mizushima, I. Tanida, E. Kominami, M. Ohsumi, T. Noda, and Y. Ohsumi.
2000. A ubiquitin-like system mediates protein lipidation. Nature 408:488-492.

184. Brazil, M. I., S. Weiss, and B. Stockinger. 1997. Excessive degradation of 
intracellular protein in macrophages prevents presentation in the context of 
major histocompatibility complex class II molecules. Eur J  Immunol 27:1506- 
1514.

185. Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschl, and 
C. Munz. 2005. Endogenous MHC class II processing of a viral nuclear antigen 
after autophagy. Science 307:593-596.

186. Dorfel, D., S. Appel, F. Grunebach, M. M. Week, M. R. Muller, A. Heine, and 
P. Brossart. 2005. Processing and presentation of HLA class I and II epitopes by 
dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 
105:3199-3205.

187. Nimmerjahn, F., S. Milosevic, U. Behrends, E. M. Jaffee, D. M. Pardoll, G. W. 
Bomkamm, and J. Mautner. 2003. Major histocompatibility complex class II- 
restricted presentation of a cytosolic antigen by autophagy. Eur J  Immunol 
33:1250-1259.

188. Dengjel, J., O. Schoor, R. Fischer, M. Reich, M. Kraus, M. Muller, K. 
Kreymborg, F. Altenberend, J. Brandenburg, H. Kalbacher, R. Brock, C. 
Driessen, H. G. Rammensee, and S. Stevanovic. 2005. Autophagy promotes 
MHC class II presentation of peptides from intracellular source proteins. Proc 
Natl Acad Sci U SA  102:7922-7927.

189. Dongre, A. R., S. Kovats, P. deRoos, A. L. McCormack, T. Nakagawa, V. 
Paharkova-Vatchkova, J. Eng, H. Caldwell, J. R. Yates, 3rd, and A. Y. 
Rudensky. 2001. In vivo MHC class II presentation of cytosolic proteins 
revealed by rapid automated tandem mass spectrometry and functional analyses. 
Eur J  Immunol 31:1485-1494.

148



190. Arico, S., A. Petiot, C. Bauvy, P. F. Dubbelhuis, A. J. Meijer, P. Codogno, and 
E. Ogier-Denis. 2001. The tumor suppressor PTEN positively regulates 
macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B 
pathway. J  Biol Chern 276:35243-35246.

191. Steck, P. A., M. A. Pershouse, S. A. Jasser, W. K. Yung, H. Lin, A. H. Ligon, L. 
A. Langford, M. L. Baumgard, T. Hattier, T. Davis, C. Frye, R. Hu, B. 
Swedlund, D. H. Teng, and S. V. Tavtigian. 1997. Identification of a candidate 
tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in 
multiple advanced cancers. Nat Genet 15:356-362.

192. Liang, X. H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, 
and B. Levine. 1999. Induction of autophagy and inhibition of tumorigenesis by 
beclin 1. Nature 402:672-676.

193. Manici, S., T. Stumiolo, M. A. Imro, J. Hammer, F. Sinigaglia, C. Noppen, G. 
Spagnoli, B. Mazzi, M. Bellone, P. Dellabona, and M. P. Protti. 1999. 
Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in 
association with histocompatibility leukocyte antigen DR11. J  Exp Med 
189:871-876.

194. Schultz, E. S., B. Lethe, C. L. Cambiaso, J. Van Snick, P. Chaux, J. Corthals, C. 
Heirman, K. Thielemans, T. Boon, and P. van der Bruggen. 2000. A MAGE-A3 
peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic 
T lymphocytes. Cancer Res 60:6272-6275.

195. Qi, L., J. M. Rojas, and S. Ostrand-Rosenberg. 2000. Tumor cells present MHC 
class Il-restricted nuclear and mitochondrial antigens and are the predominant 
antigen presenting cells in vivo. J  Immunol 165:5451-5461.

196. van der Bruggen, P., C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van 
den Eynde, A. Knuth, and T. Boon. 1991. A gene encoding an antigen 
recognized by cytolytic T lymphocytes on a human melanoma. Science 
254:1643-1647.

197. Rogner, U. C., K. Wilke, E. Steck, B. Korn, and A. Poustka. 1995. The 
melanoma antigen gene (MAGE) family is clustered in the chromosomal band 
Xq28. Genomics 29:725-731.

198. De Plaen, E., K. Arden, C. Traversari, J. J. Gaforio, J. P. Szikora, C. De Smet, F. 
Brasseur, P. van der Bruggen, B. Lethe, C. Lurquin, and et al. 1994. Structure, 
chromosomal localization, and expression of 12 genes of the MAGE family. 
Immunogenetics 40:360-369.

199. Rimoldi, D., S. Salvi, D. Reed, P. Coulie, V. C. Jongeneel, E. De Plaen, F. 
Brasseur, A. M. Rodriguez, T. Boon, and J. C. Cerottini. 1999. cDNA and 
protein characterization of human MAGE-10. In tJ  Cancer 82:901-907.

200. De Smet, C., O. De Backer, I. Faraoni, C. Lurquin, F. Brasseur, and T. Boon. 
1996. The activation of human gene MAGE-1 in tumor cells is correlated with 
genome-wide demethylation. Proc Natl Acad Sci U S A  93:7149-7153.

201. Serrano, A., A. Garcia, E. Abril, F. Garrido, and F. Ruiz-Cabello. 1996. 
Methylated CpG points identified within MAGE-1 promoter are involved in 
gene repression. In tJ  Cancer 68:464-470.

202. Landry, C., F. Brasseur, G. C. Spagnoli, E. Marbaix, T. Boon, P. Coulie, and D. 
Godelaine. 2000. Monoclonal antibody 57B stains tumor tissues that express 
gene MAGE-A4. In tJ  Cancer 86:835-841.

203. Jurk, M., E. Kremmer, U. Schwarz, R. Forster, and E. L. Winnacker. 1998. 
MAGE-11 protein is highly conserved in higher organisms and located 
predominantly in the nucleus. In tJ  Cancer 75:762-766.

204. Gaugler, B., B. Van den Eynde, P. van der Bruggen, P. Romero, J. J. Gaforio, E. 
De Plaen, B. Lethe, F. Brasseur, and T. Boon. 1994. Human gene MAGE-3

149



codes for an antigen recognized on a melanoma by autologous cytolytic T 
lymphocytes. J  Exp Med 179:921-930.

205. Kocher, T., E. Schultz-Thater, F. Gudat, C. Schaefer, G. Casorati, A. Juretic, T. 
Willimann, F. Harder, M. Heberer, and G. C. Spagnoli. 1995. Identification and 
intracellular location of MAGE-3 gene product. Cancer Res 55:2236-2239.

206. Milkovic, M., B. Sarcevic, and E. Glavan. 2006. Expression of MAGE tumor- 
associated antigen in thyroid carcinomas. Endocr Pathol 17:45-52.

207. Zerbini, A., M. Pilli, P. Soliani, S. Ziegler, G. Pelosi, A. Orlandini, C. Cavallo, 
J. Uggeri, R. Scandroglio, P. Crafa, G. C. Spagnoli, C. Ferrari, and G. Missale. 
2004. Ex vivo characterization of tumor-derived melanoma antigen encoding 
gene-specific CD8+cells in patients with hepatocellular carcinoma. J  Hepatol 
40:102-109.

208. Miyagawa, N., K. Kono, K. Mimura, H. Omata, H. Sugai, and H. Fujii. 2006. A 
newly identified MAGE-3-derived, HLA-A24-restricted peptide is naturally 
processed and presented as a CTL epitope on MAGE-3-expressing 
gastrointestinal cancer cells. Oncology 70:54-62.

209. Schultz, E. S., Y. Zhang, R. Knowles, J. Tine, C. Traversari, T. Boon, and P. van 
der Bruggen. 2001. A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 
by cytolytic T lymphocytes. Tissue Antigens 57:103-109.

210. Herman, J., P. van der Bruggen, I. F. Luescher, S. Mandruzzato, P. Romero, J. 
Thonnard, K. Fleischhauer, T. Boon, and P. G. Coulie. 1996. A peptide encoded 
by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T 
lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 
43:377-383.

211. Van Der Bruggen, P., Y. Zhang, P. Chaux, V. Stroobant, C. Panichelli, E. S. 
Schultz, J. Chapiro, B. J. Van Den Eynde, F. Brasseur, and T. Boon. 2002. 
Tumor-specific shared antigenic peptides recognized by human T cells. Immunol 
Rev 188:51-64.

212. Kawashima, I., S. J. Hudson, V. Tsai, S. Southwood, K. Takesako, E. Appella, 
A. Sette, and E. Celis. 1998. The multi-epitope approach for immunotherapy for 
cancer: identification of several CTL epitopes from various tumor-associated 
antigens expressed on solid epithelial tumors. Hum Immunol 59:1-14.

213. Chaux, P., V. Vantomme, V. Stroobant, K. Thielemans, J. Corthals, R. Luiten, 
A. M. Eggermont, T. Boon, and P. van der Bruggen. 1999. Identification of 
MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes. 
J  Exp Med 189:767-778.

214. Hammer, J., P. Valsasnini, K. Tolba, D. Bolin, J. Higelin, B. Takacs, and F. 
Sinigaglia. 1993. Promiscuous and allele-specific anchors in HLA-DR-binding 
peptides. Cell 74:197-203.

215. Stumiolo, T., E. Bono, J. Ding, L. Raddrizzani, O. Tuereci, U. Sahin, M. 
Braxenthaler, F. Gallazzi, M. P. Protti, F. Sinigaglia, and J. Hammer. 1999. 
Generation of tissue-specific and promiscuous HLA ligand databases using 
DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555- 
561.

216. Zhang, Y., P. Chaux, V. Stroobant, A. M. Eggermont, J. Corthals, B. Maillere, 
K. Thielemans, M. Marchand, T. Boon, and P. Van Der Bruggen. 2003. A 
MAGE-3 peptide presented by HLA-DR1 to CD4+ T cells that were isolated 
from a melanoma patient vaccinated with a MAGE-3 protein. J  Immunol 
171:219-225.

217. Kobayashi, H., Y. Song, D. S. Hoon, E. Appella, and E. Celis. 2001. Tumor- 
reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope

150



presented by various major histocompatibility complex class II alleles. Cancer 
Res 61:4773-4778.

218. Chaux, P., B. Lethe, J. Van Snick, J. Corthals, E. S. Schultz, C. L. Cambiaso, T. 
Boon, and P. van der Bruggen. 2001. A MAGE-1 peptide recognized on HLA- 
DR15 by CD4(+) T cells. EurJImmunol 31:1910-1916.

219. Ayyoub, M., C. S. Hesdorffer, M. Montes, A. Merlo, D. Speiser, D. Rimoldi, J.
C. Cerottini, G. Ritter, M. Scanlan, L. J. Old, and D. Valmori. 2004. An 
immunodominant SSX-2-derived epitope recognized by CD4+ T cells in 
association with HLA-DR. J  Clin Invest 113:1225-1233.

220. Baldo, M., M. Schiavon, P. A. Cicogna, P. Boccato, and F. Mazzoleni. 1992. 
Spontaneous regression of subcutaneous metastasis of cutaneous melanoma. 
Plast Reconstr Surg 90:1073-1076.

221. Chaux, P., V. Vantomme, P. Coulie, T. Boon, and P. van der Bruggen. 1998. 
Estimation of the frequencies of anti-MAGE-3 cytolytic T-lymphocyte 
precursors in blood from individuals without cancer. In tJ  Cancer 77:538-542.

222. Zhang, Y., N. Renkvist, Z. Sun, B. Schuler-Thumer, N. Glaichenhaus, G.
Schuler, T. Boon, P. van der Bruggen, and D. Colau. 2005. A polyclonal anti
vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma 
patient vaccinated with MAGE-3 .DP4-peptide-pulsed dendritic cells. Eur J  
Immunol 35:1066-1075.

223. Jager, E., S. Gnjatic, Y. Nagata, E. Stockert, D. Jager, J. Karbach, A. Neumann, 
J. Rieckenberg, Y. T. Chen, G. Ritter, E. Hoffman, M. Arand, L. J. Old, and A. 
Knuth. 2000. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte 
and antibody responses in peptide-vaccinated patients with NY-ESO-1 + cancers. 
Proc Natl Acad Sci U SA  97:12198-12203.

224. Marchand, M., N. van Baren, P. Weynants, V. Brichard, B. Dreno, M. H.
Tessier, E. Rankin, G. Parmiani, F. Arienti, Y. Humblet, A. Bourlond, R.
Vanwijck, D. Lienard, M. Beauduin, P. Y. Dietrich, V. Russo, J. Kerger, G. 
Masucci, E. Jager, J. De Greve, J. Atzpodien, F. Brasseur, P. G. Coulie, P. van 
der Bruggen, and T. Boon. 1999. Tumor regressions observed in patients with 
metastatic melanoma treated with an antigenic peptide encoded by gene MAGE- 
3 and presented by HLA-A1. Int J  Cancer 80:219-230.

225. Coulie, P. G., V. Karanikas, D. Colau, C. Lurquin, C. Landry, M. Marchand, T.
Dorval, V. Brichard, and T. Boon. 2001. A monoclonal cytolytic T-lymphocyte 
response observed in a melanoma patient vaccinated with a tumor-specific 
antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A  
98:10290-10295.

226. Lonchay, C., P. van der Bruggen, T. Connerotte, T. Hanagiri, P. Coulie, D. 
Colau, S. Lucas, A. Van Pel, K. Thielemans, N. van Baren, and T. Boon. 2004. 
Correlation between tumor regression and T cell responses in melanoma patients 
vaccinated with a MAGE antigen. Proc Natl Acad Sci U S A  101 Suppl 2:14631- 
14638.

227. Karanikas, V., C. Lurquin, D. Colau, N. van Baren, C. De Smet, B. Lethe, T.
Connerotte, V. Corbiere, M. A. Demoitie, D. Lienard, B. Dreno, T. Velu, T.
Boon, and P. G. Coulie. 2003. Monoclonal anti-MAGE-3 CTL responses in
melanoma patients displaying tumor regression after vaccination with a
recombinant canarypox virus. J  Immunol 171:4898-4904.

228. Thumer, B., I. Haendle, C. Roder, D. Dieckmann, P. Keikavoussi, H. Jonuleit, 
A. Bender, C. Maczek, D. Schreiner, P. von den Driesch, E. B. Brocker, R. M. 
Steinman, A. Enk, E. Kampgen, and G. Schuler. 1999. Vaccination with mage- 
3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific

151



cytotoxic T cells and induces regression of some metastases in advanced stage 
IV melanoma. J  Exp Med 190:1669-1678.

229. Godelaine, D., J. Carrasco, S. Lucas, V. Karanikas, B. Schuler-Thumer, P. G. 
Coulie, G. Schuler, T. Boon, and A. Van Pel. 2003. Polyclonal CTL responses 
observed in melanoma patients vaccinated with dendritic cells pulsed with a 
MAGE-3.A1 peptide. J  Immunol 171:4893-4897.

230. Paczesny, S., J. Banchereau, K. M. Wittkowski, G. Saracino, J. Fay, and A. K. 
Palucka. 2004. Expansion of melanoma-specific cytolytic CD8+ T cell 
precursors in patients with metastatic melanoma vaccinated with CD34+ 
progenitor-derived dendritic cells. J  Exp Med 199:1503-1511.

231. Schuler-Thumer, B., E. S. Schultz, T. G. Berger, G. Weinlich, S. Ebner, P. 
Woerl, A. Bender, B. Feuerstein, P. O. Fritsch, N. Romani, and G. Schuler. 
2002. Rapid induction of tumor-specific type 1 T helper cells in metastatic 
melanoma patients by vaccination with mature, cryopreserved, peptide-loaded 
monocyte-derived dendritic cells. J  Exp Med 195:1279-1288.

232. Gajewski TF, F. F., Ashikari A, Sherman M. 2001. Immunization of HLA-A2+ 
melanoma patients with MAGE-3 or MelanA peptide-pulsed autologous 
peripheral blood mononuclear cells plus recombinant human interleukin 12. 
Clinical Cancer Research 7:S895-901.

233. Chianese-Bullock, K. A., J. Pressley, C. Garbee, S. Hibbitts, C. Murphy, G. 
Yamshchikov, G. R. Petroni, E. A. Bissonette, P. Y. Neese, W. W. Grosh, P. 
Merrill, R. Fink, E. M. Woodson, C. J. Wiemasz, J. W. Patterson, and C. L. 
Slingluff, Jr. 2005. MAGE-A1-, MAGE-A10-, and gplOO-derived peptides are 
immunogenic when combined with granulocyte-macrophage colony-stimulating 
factor and montanide ISA-51 adjuvant and administered as part of a 
multipeptide vaccine for melanoma. J  Immunol 174:3080-3086.

234. Marchand, M., C. J. Punt, S. Aamdal, B. Escudier, W. H. Kruit, U. Keilholz, L. 
Hakansson, N. van Baren, Y. Humblet, P. Mulders, M. F. Avril, A. M. 
Eggermont, C. Scheibenbogen, J. Uiters, J. Wanders, M. Delire, T. Boon, and G. 
Stoter. 2003. Immunisation of metastatic cancer patients with MAGE-3 protein 
combined with adjuvant SBAS-2: a clinical report. Eur J  Cancer 39:70-77.

235. Zhang, Y., Z. Sun, H. Nicolay, R. G. Meyer, N. Renkvist, V. Stroobant, J. 
Corthals, J. Carrasco, A. M. Eggermont, M. Marchand, K. Thielemans, T. 
Wolfel, T. Boon, and P. van der Bruggen. 2005. Monitoring of anti-vaccine CD4 
T cell frequencies in melanoma patients vaccinated with a MAGE-3 protein. J  
Immunol 174:2404-2411.

236. Wack, A., D. Montagna, P. Dellabona, and G. Casorati. 1996. An improved 
PCR-heteroduplex method permits high-sensitivity detection of clonal 
expansions in complex T cell populations. J  Immunol Methods 196:181-192.

237. Honey K, D. M., Beers C, Brissette WH, Elliott EA, Peters C, Marie M, 
Cresswell P, Rudensky A. . 2001. Cathepsin S regulates the expression of 
cathepsin L and the turnover of g-interferon-inducible lysosomal thiol reductase 
in B lymphocytes. J  Biol Chem 276:22573-22578.

238. Craiu, A., M. Gaczynska, T. Akopian, C. F. Gramm, G. Fenteany, A. L. 
Goldberg, and K. L. Rock. 1997. Lactacystin and clasto-lactacystin beta-lactone 
modify multiple proteasome beta-subunits and inhibit intracellular protein 
degradation and major histocompatibility complex class I antigen presentation. J  
Biol Chem 272:13437-13445.

239. Berkers, C. R., M. Verdoes, E. Lichtman, E. Fiebiger, B. M. Kessler, K. C. 
Anderson, H. L. Ploegh, H. Ovaa, and P. J. Galardy. 2005. Activity probe for in 
vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat 
Methods 2:357-362.

152



240. van der Bruggen, P., and B. J. Van den Eynde. 2006. Processing and
presentation of tumor antigens and vaccination strategies. Curr Opin Immunol
18:98-104.

241. Lautwein, A., M. Kraus, M. Reich, T. Burster, J. Brandenburg, H. S. Overkleeft,
G. Schwarz, W. Kammer, E. Weber, H. Kalbacher, A. Nordheim, and C. 
Driessen. 2004. Human B lymphoblastoid cells contain distinct patterns of 
cathepsin activity in endocytic compartments and regulate MHC class II 
transport in a cathepsin S-independent manner. JLeukoc Biol 75:844-855.

242. Zhang, F., W. Zhang, L. Liu, C. L. Fisher, D. Hui, S. Childs, K. Dorovini-Zis,
and V. Ling. 2000. Characterization of ABCB9, an ATP binding cassette protein 
associated with lysosomes. J  Biol Chem 275:23287-23294.

243. Wolters, J. C., R. Abele, and R. Tampe. 2005. Selective and ATP-dependent
translocation of peptides by the homodimeric ATP binding cassette transporter
TAP-like (ABCB9). J  Biol Chem 280:23631-23636.

244. Wong, R., R. Lau, J. Chang, T. Kuus-Reichel, V. Brichard, C. Bruck, and J.
Weber. 2004. Immune responses to a class II helper peptide epitope in patients 
with stage III/IV resected melanoma. Clin Cancer Res 10:5004-5013.

245. Kyte, J. A., G. Kvalheim, K. Lislerud, P. Thor Straten, S. Dueland, S. Aamdal,
and G. Gaudemack. 2007. T cell responses in melanoma patients after 
vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol 
Immunother 56:659-675.

153



This copy has been supplied on the understanding that it is copyright material and that 
no quotation from the thesis may be published without proper acknowledgement.

154


