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A bstract

Optima is an Oxford-based longitudinal study of people with dementia, and non­
demented elderly. The results of cognitive tests of 123 Optima patients with dementia 
(age at first visit 44 - 89 years, mean 72.2; 76 females, 47 males; 2 - 2 1  visits, mean 7.9) 
are analysed. The test used was the cognitive component of the Cambridge Mental 
Disorders of the Elderly Examination (Camdex). The rate of decline varies markedly 
between patients; in their first year a few patients show an increased score; the mean 
decline is 14 Camcog points, and the maximum 61.

The decline of individual patients is modelled by fitting the test scores with the 
binomial or logistic variant of the general logistic model (as shown in figure 1.1), gen­
erally giving a good fit to the data. A method of centering the individual curves about 
the midpoint of the cognitive scale is developed, which puts patients on a common 
time-scale and allows all the data to be incorporated into a single fixed-effects model. 
This m ethod has the power to look at many possible covariates and identify those which 
apparently have significant effects.

A random-effects model is then adopted (theoretically more plausible) to carry out 
a more rigorous analysis which confirms these results. Both models show the rate of 
decline is strongly affected by:

• Age at Camcog midpoint

• Initial homocysteine level

• APOE genotype

• Anti-cholinesterase drugs

In order to show the relative effects of these covariates the idea of the dec line  
ra tio , similar to the odds-ratio, is introduced. Its purpose is to quantify the effect 
of one variable on the progress of the disease, all other things being equal. Younger 
patients, those with the APOE44 allele and those without the APOE44 allele but with 
an initially high level of homocysteine, are more likely to have a rapidly progressing 
illness. Patients who take anticholinesterase drugs in the early stages of their illness 
are likely to show a slower decline.



Chapter 1

Introduction

Alzheimer’s disease is the best-known of a group of degenerative illnesses which affect 
functioning of the brain, causing a progressive loss of cognitive ability. There are many 
such illnesses, which have at present no known cause and no cure, and they initially 
affect different parts of the brain: people with Alzheimer’s disease have difficulties 
with short-term memory, but other illnesses can affect speech or reading and writing. 
However, they have in common their progressive nature, and that more than one part 
of the brain is affected. Together they are known as the dementing illnesses; they are 
more common in the elderly, but can occur in younger people, though they are rare.

All the illnesses are progressive but the rate of progression can vary a great deal. 
Initially people with the illness can function normally in society; working, driving, 
socialising and caring for themselves in the way we all consider normal. Eventually 
they may end up as helpless as a baby. This change can occur in a few years, or be 
spread over a decade or more. Hitherto there has been no way of predicting whether the 
disease will progress slowly or quickly; whether it depends on the age of the patient, 
their gender, or other factors. There are known risk factors which are associated 
epidemiologically with a higher incidence of disease; it would be interesting to see if 
these factors are associated with a different rate of progression.

I try  to model the rate of decline using data from the OPTIMA project. Although 
people with dementia do not enter the study until their illness has progressed sufficiently 
to cause problems with activities of daily living, until their illness all were individuals 
managing their own affairs, and living a normal life. It is therefore reasonable to assume 
that they would score close to full-scale on cognitive tests, as do the Optima controls. 
At the end of their illness, their score is 0, or would be if the interviewer persisted with 
the test. When their score is about mid-scale, the decline is approximately linear. So 
we know a model of the decline must look like figure 1.1. Obviously there are no data 
about the onset of the illness, because the illness is only apparent when symptoms are 
sufficiently severe to cause problems in daily life; data from the end stage indicates that 
the decline slows towards the bottom end of the scale and certainly people can survive 
for some years with very little cognitive ability remaining. Hence it seems reasonable 
to model the data with the simple inverse S-shaped curve of a logistic function.

The covariates which I would like to consider as possibly affecting the course of the 
illness are:

1
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Theoretical picture of decline
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Figure 1.1: Theoretical picture of the decline

• Diagnosis [50];

• APOE genotype [58];

• Age at midpoint of the illness;

• Age at which symptoms were first noticed;

• Levels of certain chemicals in blood and cerebrospinal fluid [52];

• Cardiovascular status [27];

• Gender [2].

Having such a model of the decline has more than theoretical interest. These are real 
illnesses affecting real people, who initially often have insight into and understanding of 
their condition. Knowing the likely speed of progression of their illness helps them, their 
families and the professionals looking after them plan the help tha t may be needed. It 
is also im portant to understand and be able to predict the speed of decline, in order to 
test if the drugs which are now available do reduce the speed of degeneration.
Any prediction that could be made at an early stage, preferably at the first visit to 
a specialist, would be very useful. Of course, individuals with the illness, and their 
families, do not have to know the prediction if they wish not to. Information available 
at first visit or shortly afterwards includes:
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• Current age;

• Age at which symptoms were first noticed;

• Gender;

•  Cardiovascular status;

• Current cognitive ability;

• Levels of chemicals in blood and cerebrospinal fluid;

• APOE genotype.

In chapter 2 of this dissertation I give an overview of the dementing illnesses, 
considering their history, diagnosis, prevalence, the difficulty of measuring the 
progression of these illnesses and the current state of research into the rate of 
decline. In chapter 3 I look at the data collected by the Optima project, which I 
have used as the basis for the rest of the dissertation. In chapter 4 I consider the 
individual patients, and try to model the decline of each with a logistic model. 
Encouraged by the success of this model, in chapter 5 I consider variations be­
tween patients, and develop a method of comparing data  from such a disparate 
population. In chapter 6 I develop a fixed-effects model incorporating the amalga­
m ated data from all the patients. In chapter 7 I use two different random-effects 
models to look for commonalties in the data. These models are theoretically 
preferable, as they treat each patient as an individual, but look for patterns in 
the covariates. Chapter 7 gives a critical evaluation of the methodologies. In 
chapter 8 I develop ideas of what the results of the models mean in terms of how 
the decline of an individual patient is affected by the covariates. In chapter 9 I 
use the results of the models to calculate a correction to each individual cogni­
tive score, and produce a plot of the corrected Camcog values which allows me to 
assess the effectiveness of the model. In the final chapter I draw conclusions from 
what I have shown earlier.



Chapter 2

Background

2.1 D em entia

The WHO International Classification of diseases declares:
Dementia is a syndrome due to disease of the brain, usually o f a chronic or pro­

gressive nature, in which there is a disturbance of multiple higher cortical functions, 
including memory, thinking, orientation, comprehension, calculation, learning capac­
ity, language and judgement. Consciousness is not clouded. Impairments of cognitive 
function are commonly accompanied, and occasionally preceded by deterioration in emo­
tional control, social behaviour or motivation. [45]

2.2 H istory

Alois Alzheimer observed a patient, Auguste D., a 51-year-old woman, in 1901 [1]. She 
was suffering from cognitive and language deficits, auditory hallucinations, delusions, 
paranoia and aggressive behaviour. When she died in 1906 Alzheimer examined her 
brain, and described pathological changes in the tissue, particularly amyloid plaques 
(depositions of an insoluble protein) and neurofibrillary tangles. It was known at the 
time tha t similar changes occur in the brains of elderly people, but not to such a marked 
extent, and Alzheimer’s disease (AD) was recognised to be distinct from the changes 
in cognition that occur normally in the elderly. The patient Alzheimer described was 
young; some decades later [65] it was realised tha t similar symptoms occurred in more 
elderly patients, and that ‘senile dementia’ was in most cases AD. Nonetheless, Jobst 
et al in 1994 [33] and Mitnitski et al in 1999 [41] felt obliged to point out the differences 
both clinically and pathologically between Alzheimer’s disease and normal aging.

A few years earlier in 1892, Arnold Pick described an illness causing atrophy in the 
frontal and temporal lobes of the brain, Alzheimer studied brain tissue from such pa­
tients, and described ‘ballooned’ neurons and argentophilic globes (Pick cells and Pick 
bodies). This illness was named Pick’s disease by Onari and Spatz in 1926 [44]. Gradu­
ally it was realised tha t illnesses with similar symptoms, but none of these pathological 
changes, were much more common, and clinical and pathological diagnostic criteria 
for Fronto-temporal dementia (FTD) were described [7]. To confuse m atters further, 
FTD is split into three conditions: frontal lobe degeneration (FLD), Pick’s disease, and

4
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motor-neuron disease (MND). FTD is also known as dementia of the frontal lobes or 
FLD.

In 1923 Friedrich Lewy described a type of dementia associated with Parkinson’s 
disease, again with specific changes in cortical tissue now known as Lewy bodies. This 
illness is now known as dementia with Lewy Bodies (DLB).

Vascular dementia was originally thought to be a type of dementia caused by many 
small strokes, and it was also known as ‘multi-infarct dementia’. Recently it has been 
realised that few patients with dementia have only vascular symptoms. Many elderly 
patients with AD also have cerebrovascular disease and the usefulness of ‘vascular 
dementia’ as a diagnosis is now being questioned [63].

Other types of dementia, e.g. Korsakoff ’s syndrome, kuru or Creuzfeldt-Jakob dis­
ease (CJD), cortico-basal dementia, dementia associated with Huntington’s disease 
and HIV/AIDS dementia were all described over the course of the 1900s. All are also 
described by patterns of clinical symptoms in life, and specific pathological changes ob­
served in the brain tissue after death. W ith the exception of a very few rarer dementias 
(in particular Korsakoff’s syndrome, which is due to chronic alcohol abuse) and CJD 
(which is due to contact with a malformed protein or prion) dementias generally have 
no known cause. There is a very small group of people with young-onset Alzheimer’s 
disease which is known to be linked to a specific genotype [20], However, even in this 
group, where it is possible to predict who will develop the illness and who will not, 
there is no possibility of a cure. Drugs to slow the progression of the illness have only 
just been developed, are suitable only for AD and DLB, and are not effective in all 
patients.

Young-onset dementia (also referred to as early-onset dementia) is defined as de­
mentia which occurs before the patient is 65 years old. There is no particular medical 
reason for this distinction; it is more a social and political definition linked to the usual 
age of retirement. It is nevertheless a useful distinction.

2.3 D iagnosis

The first thing to notice is that dementia itself is not an illness; it is a syndrome or 
collection of symptoms. According to Harvey, there are more then 200 neurological 
diseases which can be associated with dementia [22]. There are also other conditions 
which can cause similar symptoms (e.g. depression, brain tumours, some thyroid dis­
orders), some of which are treatable. During the diagnosis, it is therefore extremely 
im portant to check for and, if necessary, treat these conditions.

The diagnostic process starts with interviews with the person suspected of having 
dementia, and their partner if possible, to take a recent history of the problems which 
led them to seek medical assistance. Various neuro-psychological tests will follow, 
some of which are similar to intelligence tests. These tests are designed to pick out any 
changes in normal brain function, e.g. memory deficits, difficulties with word-finding or 
manipulating numbers, problems with understanding simple instructions, personality 
changes, and to establish that more than one area is affected, and that the person is
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not delirious or otherwise of impaired consciousness. Scans (MRI, CT and SPECT) 
are also useful in showing any abnormality in the brain.

Dementia can only be considered as a diagnosis once it has been established that 
there are deficits in multiple domains, and tha t these have been present for some 
months. The treatable conditions which can mimic these symptoms should be tested 
for, and treated if present.

There is still no absolute test for dementia; a diagnosis comes after excluding all 
other possibilities, and by considering the pattern  of symptoms.

To summarise: the dementias are

• neurological diseases causing a loss of cognitive abilities in multiple areas;

• often progressive, but always irreversible;

• only diagnosed with certainty by examining brain tissue;

• differing by orders of magnitude from loss of abilities caused by normal aging.

All the dementias described have typical patterns of symptoms. The early stages 
of Alzheimer’s disease are normally marked by a deficit in short-term  memory, though 
long-term memory is often preserved until later in the illness. The frontal lobe demen­
tias are marked by a loss of language ability, or by a change in character and the ability 
to see the effects of one’s actions. CJD progresses much more rapidly than  is typical for 
other dementias, and also affects the balance and muscle control. Visual hallucinations 
often occur in Lewy-body dementia, and the loss in abilities can vary noticeably over 
a few hours. In almost all cases, the illness creeps on slowly and insidiously over a few 
years, and may be difficult to recognise and diagnose.

Although all the dementias are eventually totally disabling illnesses, they are not 
usually fatal. In patients with dementia, death is often due to an infection (most 
commonly pneumonia) or accident, and the death certificate will show the infection or 
accident without recording the underlying dementia.

2.4 Prevalence

Although the dementias can affect people from teenage years upwards, they are ex­
tremely rare at this age. Harvey [23] has estimated the prevalence of dementia in 
people under 65 at 54.0 per 100,000 (0.054%) (95% Cl 45.1 to 64.1 per In
people over 65 it is progressively more common. Alzheimer’s disease is the most com­
mon cause of dementia at all ages, but it is much more common in the elderly, and other 
dementias are proportionately more common in younger people. A graph showing the 
prevalence at ages over 60 is shown in Figure 2.1, using data from the World Health 
Organisation ([45]).

The dementias are eventually totally disabling illnesses, and people with dementia 
need a lot of individual care in the later stages. As the world population ages, the 
number of people with dementia is likely to increase, and their need for care will be

^
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Prevalence of dementia by age in W Europe
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Figure 2.1: Prevalence of dementia by age

very high. The same WHO report has estimated the total number of cases of dementia, 
both in Western Europe, and worldwide, over the next 40 years, and the numbers they 
predict are shown in Figure 2.2.

Despite the nature of the illness, and the serious economic burden patients place on 
society, dementia has been a neglected field compared with, say cancer. In 2006, the 
UK Clinical Research Collaboration (UKCRC) analysed the spending on research by 
disease category [67]. Their study found that approximately 16% of all UK research 
funding was spent on neurological disorders (dementia, Parkinson’s, epilepsy and MS) 
compared with 27% on cancer.

2.5 E pidem iology

While it is not yet possible to predict who will develop dementia and who will not, 
there are known risk factors which increase the probability tha t a person will develop 
the syndrome, and factors which are known to have a protective effect. The biggest 
risk factor is described in the section above, and is age. This has such a strong effect 
on the chance of an individual developing dementia tha t it tends to confound other 
studies (e.g. smoking). Other known or suspect factors are described below.

2.5 .1  Fam ily h istory  o f  dem entia

First-degree relatives of people with AD have an increased risk of developing the disease 
[68]. This risk is around 1.03 times the population risk, and is a stronger effect for 
relatives of young-onset AD patients. There are also a few very rare families with an 
autosomal dominant mutation where the risk is much higher.
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Figure 2.2: Projection of cases of dementia

2.5 .2  A P O E  gen otyp e

The APOE gene has 3 alleles: APOE2, APOE3 and APOE4. The APOE3 allele is the 
most common. Caucasians with 2 copies of the APOE4 allele have a 15 times higher 
risk of developing AD compared with people with two copies of the APOE3 allele. 
Those with one APOE4 and one APOE3 have a three times higher risk [17]. The 
risk seems to be lower in non-Caucasians. The presence of the APOE4 allele is not 
sufficient to cause AD.

2 .5 .3  D o w n ’s syndrom e

The genetic m utation associated with Down’s syndrome causes a greatly increased 
risk of AD. By the age of 40, virtually all people with Down’s syndrome show the 
neuropathological changes of AD [73], and by the age of 60 approximately 40% have 
developed AD [24]. It can be difficult to diagnose dementia in adults with learning 
disabilities, as the standard cognitive tests cannot be used and different tests are needed.

2 .5 .4  H ead  injury

Early studies found that a history of head injury with loss of consciousness was 80% 
more common in AD patients than in controls [42]. However, this was a retrospective 
study which relied on relatives providing information about the patient history. This 
may have been a source of recollection bias, as a head injury followed by the onset of 
dementia may be more memorable than one not followed by dementia. More recent 
studies which used medical records have not always found an association [6], [57].
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2.5 .5  H orm one R ep lacem ent T herapy

Yaffe et al in 1998 found that oestrogen replacement therapy reduced the risk of AD by 
around 30% [72]. Unfortunately the result must be treated with some caution, as the 
groups of women using HRT, and those not using HRT are not necessarily otherwise 
equivalent, particularly in level of education. A recent trial of oestrogen treatment 
for those with mild to moderate AD showed no difference between the treated and 
untreated group [43].

2.5 .6  N on -stero id a l anti-in flam m atory drugs (N S A ID s)

People with rheumatoid arthritis who take NSAIDs as a treatm ent for arthritis, have 
a reduced risk of developing AD [40]. Unfortunately randomised clinical trials to show 
if this protective effect is real are difficult, because of the side-effects of the drugs.

2 .5 .7  A lu m in iu m

High levels of aluminium in the diet have long been associated with an increased risk 
of AD. Early studies which showed this association were poorly designed, but a more 
recent study [53] has shown that there may be such a link. An unintended experi­
ment was started when, in 1988, an accident at a water treatm ent plant resulted in 
approximately 20,000 people being exposed to very high levels of aluminium sulphate 
in their drinking water. In 2004, one of these people died of young-onset dementia, 
and a post-mortem study of her brain showed AD-type depositions, and high levels of 
deposited aluminium [16]. Interestingly, the patient’s genotype was APOE4/4.

2 .5 .8  Sm oking

Graves et al in 1991 found a 20% reduction in AD in smokers [21]. In 1998, O tt et al 
found the opposite effect, with smokers at twice the risk of developing AD [47]. Given 
its other effects, smoking is probably best avoided.

2 .5 .9  N eu rocogn itive  reserve

In 1996, Snowdon et al published a study comparing verbal ability in early life with 
AD pathology post-mortem [59]. He studied a group of nuns, who had written autobi­
ographies as young adults, and many years later donated their brains. All those with 
confirmed AD had low verbal ability, compared with none in the group without AD. 
Other studies have shown that people with a lower level of education have a higher rate 
of AD [61] [71]. This may be confounded by the tests used to measure cognitive capac­
ity (less well-educated people tend to achieve lower scores than the highly-educated), 
but has led to the theory that better-educated people are better able to compensate 
for any disease impairment.

j
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2.5 .10  D ie t

It has been known for some time that AD patients tend to have lower levels of B12, 
and higher levels of serum folate [11]. Optima has just embarked on a 2-year double­
blind randomised clinical trial, treating patients diagnosed as having MCI with either 
a placebo or a combination of B-vitamins and folic acid, to see if the vitamins do offer 
some protection against further cognitive decline.

2.6 M easuring the progress o f th e illness

There is considerable variability in the pattern, progress and outcome of all the demen­
tias. Time between diagnosis and death varies from 1 year to 16 years for AD patients, 
with a mean of 5-6 years [66]. The time from initial approach to GP to diagnosis can 
also vary markedly; in the Optima patients it can be as short as a few months or as 
long as several years. There is also a time when the symptoms are gradually worsening, 
before the patient seeks medical help. There are two common approaches to trying 
to measure the rate  of decline of people with dementia; using some kind of cognitive 
measurement or using a global rating scale which attem pts to measure how well the 
patient functions within society.

Typical cognitive scales are the Mini-mental state exam (MMSE) [19], the cog­
nitive component (Camcog) of the Cambridge Disorders of the Elderly Examination 
(Camdex) [55], and the cognitive subscale of the Alzheimer’s Disease Assessment Scale 
- (ADAS-Cog) [54], The MMSE scale is 0-30, the Camdex 0-107 and the ADAS-Cog 
0-70. For the Camcog and MMSE, a higher score means greater cognitive abilities; for 
the ADAS-Cog scale a lower score means greater ability. The MMSE is in fact a subset 
of the Camdex, and is most frequently used because it is very quick to administer. It 
is even possible to administer a similar test over the telephone - the TICS-M test [13]. 
These cognitive tests are relatively simple to administer, and provide a good objective 
assessment of the cognitive abilities of the person, but this does not necessarily bear 
much relationship to how well a person can function in caring for themselves, and in 
society. Changes in these cognitive scales can be apparent after only a few months. 
The rate of change is always quoted in ‘points per year’, and the assumption is tha t the 
rate of change is linear across the range of the test. Typical decline rates are quoted 
as 2.5 MMSE points, 12 Camdex points and 8-9 ADAS-Cog points per year [66]. The 
same reference a little later says 1 individual rates of decline are non-linear, being slower 
at the milder stage, but accelerating as the dementia progresses Yet the quoted rates 
of decline are not given any range of scores for which they are valid.

There is a multiplicity of scales designed to measure how well the person with de­
mentia can function within society. Such scales are the activities of daily living (ADL) 
scale [35], the Blessed Dementia scale [4], the instrumental activities of daily living 
(IADL) scale [37] and the functional assessment questionnaire (FAQ) [48]. The Barthel 
scale [39], is used in some early papers, although this scale is designed to measure phys­
ical abilities. Changes in these scales can take longer to become apparent, and the tests 
are not as easy to score. The tester frequently has to rely on information given by the
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person with dementia, and this information cannot always be relied on: “The patient 
may say, ’I  go out shopping every day...my memory is fine ...I have no difficulty with 
my m oney...I am making really good meals...I don’t know why my daughter worries so 
much about me. ’ In reality, the patient may be crippled, living up four flights of stairs, 
with no food in the larder, and the gas cut off for non-payment of bills, while money 
is found under blankets and mattresses. ” [3J. If the information comes from either a 
questionnaire filled out by the partner of the person with dementia, or a structured 
interview with the partner, what is being measured is the partner’s perception and not 
necessarily the real abilities of the person with dementia. Despite these limitations, 
these tests assess how well the person with dementia can function, which is of more 
interest to the patient and their family. Although in this dissertation I have concen­
trated  on modelling the cognitive scores, it would be very interesting subsequently to 
compare the data  on activities of daily living which Optima collected at the same time 
as the cognitive tests.

The most common overall assessment scale is the Clinical Dementia Rating Scale 
(CDR) [29], which measures cognitive and functional abilities, and rates a person with 
dementia on a 5-point scale from “not impaired” to “severely impaired” .

2.7 Com paring rates o f decline

A search of PubM ed in May 2007 for the words ‘ra te’, ‘decline’ and ‘dementia’ offered 
530 relevant papers; the oldest dating back to 1978. A search for ‘ra te ’, ‘progression’ 
and ‘dementia’ found a similar number. I have considered abstracts of 159, of which 
66 are relevant to the study of decline rates in dementia.

In 1982, Rabins and Folstein compared survival rates for people with dementia 
against those with delirium on admission to hospital [49], and in 1987 Rosen et al 
compared rates of cognitive decline for people with dementia against people with other 
Parkinson’s disease. The paper “Measuring the course of Alzheimer’s disease. A lon­
gitudinal study of neuro-psychological function and changes in P3 event-related po­
tential” by St Clair et al [10] sounds promising, but in fact takes two measurements 
of cognitive ability one year apart and draws conclusions about rate of decline from 
those. Ortof and Crystal [46] in 1990 again study AD patients with “at least” 3 cog­
nitive measurements over “at least” one year, and assume a linear rate of decline over 
the course of the illness; none of these papers makes any mention of the stage of the 
illness, or the actual score of the patients they have considered.

The first paper to describe the course of AD over the course of the illness that I have 
found is Stern et al in 1994 [60]. He used the ADAS-Cog scale to measure the cognitive 
skills of people with dementia and a similar control group without dementia; taking 
the measurements every 6 months for up to 90 months. He found no decline in the 
control group (in fact, a slight increase, presumably due to the learning effect), and a 
variable rate  of decline in the demented group, with decline being fastest in the middle 
part of the scale, and slower for both mildly and severely demented patients. The same 
author two year later [62] used an inverse growth curve to model the cognitive decline
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and ADL scores of 236 patients with probable AD, measured every 6-months over 5 
years. They found an inverse S-shaped curve was appropriate for the cognitive decline, 
with a more linear decline in the ADL scores. They make no attem pt to consider any 
factors which may affect the rate of decline; they are more interested in comparing the 
differing scales.

In 1994 Jacobs et al [30] followed a group of patients with probable AD for 2 years. 
The group was split into young-onset and older-onset patients, with a dividing line at 65 
years. The groups were comparable in cognitive scores at the beginning: after 2 years 
the young-onset group showed a greater decline than the older group. The analysis 
controlled for symptom duration, gender, family history of dementia, and baseline 
cognitive scores, but not for other possible confounding variables (e.g. APOE status 
or initial homocysteine level, both of which may affect the rate of progression). Their 
findings were confirmed by Teri at al in 1995 [64], who also found faster rates of decline 
in young-onset patients. They also found a faster decline as the illness progressed: they 
followed patients for up to 5 years. If their patients were moderately demented at the 
start of their study, at least a few must have been severely demented after 5 years, and 
so out of the stages of dementia where the rate of decline does approximate to linear, 
yet there is no comment on the final cognitive score of their patients.

In 2003 Holzer at al [26] studied a group of probable AD patients over 5 years, and 
reached the hardly surprising conclusion that a faster rate of decline of MMSE score in 
the first year was related to a higher rate of dependency levels in later years. Holmes 
et al [25], Carcaillon at al [8], Kleiman et al [36] and Chuu et al [9] all take two or 
three measurements of a cognitive scale, and use them  to calculate a rate of decline 
which is assumed to be linear, and then test whether this rate of decline is correlated 
with other variables. This is only a valid approach if the initial cognitive scores of all 
patients are similar, and this point is never mentioned.

This is a pattern  which is replicated time after time: most of the 66 relevant papers 
take measurements of the decline rate in dementia as “X points of Y scale per year” , 
irrespective of the point on the scale at which the decline occurs; or the timescale for 
the measured decline. There is a tacit assumption tha t a decline from (e.g.) 30 MMSE 
points to 29 in 6 months is equivalent to 20 to 18 in 1 year, or 10 to 6 in two years. 
This despite the fact that it was recognised from early on that the decline is not linear, 
especially in the early and later stages of the illness, and that treating the decline as 
linear can give misleading results [34]. W ith the current emphasis of research on people 
who may be at the early stages of dementia (those with Mild Cognitive Impairment or 
MCI), it is especially important to recognise that decline across the whole scale is not 
linear, and that a ‘fast’ rate of decline of 3 MMSE points per year in the mid-stages 
of dementia (MMSE 10-20) is not necessarily equivalent to a decrease from 29 to 26 
MMSE points over a year.
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Change from baseline in Alzheimer's Disease Assessment Scale-11-item cognitive subscale 
(ADAS-cog/11) scores of patients treated with galantamine hydrobromide for 36 months
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Figure 2.3: Results of trial with Rivastigmine

2.8 M easuring the efficacy o f drugs

There are now several drugs which are recommended for treatm ent of Alzheimer’s 
disease in early to moderate stages. It was observed tha t the brains of AD patients were 
low in the neurotransm itter acetylcholine [5] Drugs were developed which can reduce 
the rate at which this chemical is destroyed in the brain: these are the cholinesterase 
inhibitors donepezil, rivastigmine and galantamine . The papers which test the clinical 
efficacy of these drugs mostly do not mention the “rate of decline” . Instead, they select 
a group of patients in the relevant stages of the dementia; allocate them at random to 
a treated group or a placebo group, and monitor their progress over a few months - 
typically 6. This is a valid approach, and the results produced are impressive, though 
unfortunately only for some patients [51]. However, once the 6-month trial is completed 
and the results are known, it is no longer ethical to keep some patients on placebo, 
when the treated patients show at least a slower decline. If the trial is continued, all 
patients are now given the drug, and there is no placebo group to compare. In this 
case, the researchers invariably show a “predicted decline” , which continues at the same 
rate as the group on the placebo, as shown in Figure 2.3. This is, of course, a valid 
approach during the middle stages of the illness. However, the drugs have now been 
licensed for use for 10 years, by which time many AD patients will have reached the 
‘floor’ of any cognitive scale. It is important at tha t stage to allow for the non-linear 
decline.



Chapter 3

The data

The Optima project is a longitudinal study of people suffering from some sort of de­
menting illness. It has been running since 1988, and has recruited 780 people (to 
December 2006), of whom about 500 suffer from a progressive degenerative neurolog­
ical illness which affects their cognitive abilities. Ethics approval was granted by the 
Oxford Ethics Committee, and the project has Corec number 1656.

At the initial visit, patients are given a full physical exam, a series of cognitive 
tests, and an interview exploring family history and current problems of everyday liv­
ing. Blood is taken for various tests, and, if the patient is willing,a lumbar puncture 
is performed to take a sample of cerebrospinal fluid (CSF).Various scans such as mag­
netic resonance imaging(MRI), computer tomography (CT), single photon emission 
computed tomography (SPECT) my be carried out. The patients genotype will be 
checked for a few alleles which are known to affect the incidence of AD. At the same 
time, the patien t’s partner will be interviewed about problems faced by the patient 
and themselves as a result of the dementia, and the partner may be given advice about 
available help. Subsequently patients are seen at approximately 6-monthly intervals, 
and at each visit various cognitive tests are performed, the patient is interviewed and 
so is a close relative or friend who knows the patient well. The majority of the Optima 
patients live within the Oxford area, and were referred to Optima because they were 
diagnosed at Oxford, or came under the care of an interested GP within Oxfordshire. 
Not all patients who were referred agreed to join the project; hence this cannot be 
considered a random sample.

The demographics of the cohort is described in table 3.l.I t  can be seen tha t the 
cohort is evenly split between males and females, and that the mean ages at first 
visit are surprisingly similar, especially since there was no selection process involved. 
Unfortunately Optima did not collect sufficient data  to ascertain the socio-economic 
class of the individuals concerned, but information on educational level was collected. 
This is a population where the school leaving age has changed several times, and 
although people were asked how many years they spent in further education, no record 
was made of whether this was full-time or part-tim e Hence the table shows the number 
of participants who have spent any time in further education It can be seen tha t this 
population has a higher educational level than average In view of the theories about 
educational level and cognitive reserve, caution should be exercised in applying the

14
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results to the general population.

N u m b e r
M e a n  age a t  firs t v isit 
T im e  in  F u r th e r  E d u c a tio n

M ale  Fem ale
62 61
72.1 yrs 72.3 yrs 
22 (35%) 19 (31%)

Table 3.1: Demographics of Optima patients with dementia

Optima has also recruited a group of about 400 controls (389 June 07) who are 
interviewed on family history, given a similar physical examination and scans at the 
initial visit. They are given the same cognitive test as patients, but may also be asked 
to do more extensive neuropsychological testing. They are subsequently seen every 1 
or 2 years to repeat the cognitive tests.

The principal diagnostic test used is the Camdex -  the Cambridge Mental Disorders 
of the Elderly Examination [55]. The complete Camdex has three main sections: a 
structured interview with the person under review to obtain systematic information 
about the present state, past history and family history; a range of cognitive tests which 
constitute a mini-neuropsychological battery; and a structured interview with a partner 
or other informant to obtain independent information about the person’s present state, 
past history and family history. The cognitive test is usually referred to as the Camcog. 
It is used to identify cognitive deficits, so normal healthy people are expected to achieve 
a score close to full-scale of 107. Someone incapable of understanding or responding 
to questions would achieve a score of 0. Those suffering from Alzheimer’s disease or 
similar neurodegenerative illnesses will show a fairly steady decline; those suffering from 
different illnesses often show a more step-wise decline, when some traum a will produce 
a sudden decline, with maybe a slight increase or a steady state between events.

Optima has a wealth of data apart from the cognitive test. The partner question­
naire has approximately 150 questions designed to establish how well the person with 
dementia can function within society and in caring for themselves; to see if there is 
a family history of this or other illnesses. At the first visit the patients is given a 
detailed physical examination, blood and cerebrospinal fluid (CSF) are collected and 
tested for many common components. Whole blood, plasma and CSF are also stored 
for subsequent study. If possible, CT, SPECT and MRI scans of the brain are taken.

I have chosen to concentrate my analysis on the cognitive score, and a few covariates 
that are known to affect the prevalence of the disease, and may affect the rate of decline. 
I have adopted this approach because the cognitive test is the best measured - the 
activities of daily living reported by patients and partners are subjective measurements, 
and there are often differences in reports between patient and partner. It is also the 
approach used in most other research into the decline rates of dementia. However, once 
the model has been validated, it would be very interesting to compare the cognitive 
scales with other measures of how well the patient can function.

There is an obvious problem with the data, in tha t there are currently no data at 
the start of the illness. W ithout embarking on a very large prospective study, it is 
impossible to collect such data. Fortunately, even in the very elderly population, these 
illnesses do not affect the majority of people. For those aged 45-64 years, the prevalence
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is 98.1 per 100000 (95% Cl 81.1 to 118.0 per 100,000) [23]. It is, however, reasonable 
to assume that people with dementia were, before their illness, typical members of the 
general population. Recently a few of the Optima controls have been diagnosed with 
possible AD, so a future study may be able to study the full course of the illness.

Patients do not enter Optima until they have already received a diagnosis of demen­
tia from a hospital consultant. The illness has already caused them  sufficient problems 
in normal living to drive them to see a GP. The GP has referred them  to a consultant, 
and the consultant has made a diagnosis. This may be a protracted process, especially 
for the younger people, for whom these illnesses are comparatively rare. Hence the 
delay before presentation can be 2-3 years or more.

Some typical individual plots of the Camcog score of an individual patient over time 
are shown in Figure 3.1. In order that the graphs can easily be compared, I have plotted 
the time scale so all graphs show a 10-year period, with the midpoint approximately 
at the midpoint of the assessments, and the Camcog axis shows the full Camcog scale. 
Patients are identified by their Optima ID. One plot for a control subject (optima ID 
248) is included to show the expected continuation at close to full scale.

Initially I considered all the Optima patients with a diagnosis of some form of 
dementia whose Camcog scores included values both above and below the midpoint of 
the scale. There are 154 such patients: Boxplots of the age at which these patients were 
first assessed by Optima, and the number of visits per patients, are shown in Figures
3.2 and 3.3.
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Figure 3.1: Some sample individual Camcog scores over time
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Figure 3.2: Age at First Visit
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Figure 3.3: Number of visits per patient



Chapter 4

F itting individual patients

The approach of many people is to model the decline as linear[25]. This model seems 
to describe the central part of the data quite well, but has some obvious problems. 
The real Camcog scale has upper and lower limits; and therefore can never be fitted 
sensibly with a straight line, nor is it an appropriate form for fitting the interesting 
area of the low Camcog scores.

We know from the data that, assuming the patient is sufficiently well to remain in 
the study, the Camcog score eventually levels out at or close to zero. It can also be 
assumed that prior to the illness, the patient would have had a score close to 107. The 
mean of the scores from the Optima controls is 99. Unfortunately there are no data for 
any of these patients for the early part of the illness, because they only enter the study 
once a dementing illness has been diagnosed. One of the criteria for such a diagnosis is 
a Camcog score < 80. Optima is currently working with patients in the earlier stages 
of what might prove to be a dementing illness, but these data  are not yet available.

A curve which has the appropriate S-shape is the binomial, or logistic curve. This 
is often used to model a binomial proportion, but it can be adapted to model the 
Camcog, if the Camcog is regarded as a proportion of the full-scale value. Using this 
family of curves means making an assumption that the curve is symmetrical about the 
midpoint. There is certainly no reason to doubt this model, and there is no evidence 
for asymmetry.
In order to fit a generalised linear model with a binomial proportion response, the 
Camcog values were transformed by dividing by the possible full-scale value:

Camcog /  (TotalQuestions Asked  — Camcog)

This value is a measure of how cognitively impaired the person answering the Camdex 
is; someone who answers 100 question correctly will achieve 14.29; someone who an­
swers no questions correctly will achieve 0. This value will be referred to as as the 
im p a irm e n t index .

The value “Total Questions Asked” is normally 107 (the maximum Camcog score). 
A casual conversation with one of the nurses who conducted Camcog questionnaires 
revealed that, if the patients were relatively impaired (eventual score likely to be < 
50%), she did not complete the questionnaire. This was against the training she had 
been given, but I could not contact all the nurses Optima has employed to find out

19
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Figure 4.1: Some sample logistic regression models

what their practice had been. I did look at the recorded interviewer, to see if there 
was any correlation between interviewer and number of incomplete questionnaires, but 
there was no such correlation. However, in any case the interviewer records which 
questions were not asked, so that the maximum attainable score is also known.

The model was fitted using the binomial variant of the R generalised linear model 
function, as described in section 1.1. A series of plots for 4 individual patients is shown 
in Figure 4.1 below. Again, the plots are all drawn to the same scale; the raw data are 
plotted as points, and the model as a curved line. The plots also show a vertical line 
close to the point where the Camcog decline begins. When patients first visit Optima, 
they are asked at what time previously they first became aware of problems. This line 
is drawn at tha t age.

As shown above, the model gives quite a good fit for patients when considered 
individually. It is clear, though, that the curves vary considerably from one person to 
another, both in the age at which the illness occurs, and the rate of decline. This is not 
surprising, as all the patients are different, with differing types of illness, gender, general
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health, genotype, etc. It is known that some of these factors affect the likelihood that 
an individual will develop dementia; maybe they also affect the rate of progression. 
Further modelling is required to see if there is any consistency or predictability for 
these differences.



Chapter 5

D eterm ining a tim e scale

The rate of decline can vary markedly from patient to patient; some will lose 50 Camcog 
points per year, and others only 5. Patients typically are only referred to Optima when 
their illness has already affected their cognitive abilities, so the typical initial score is 80 
-  90. Patients and relatives are asked when they were last “normal” , but this measure 
is extremely subjective. So there is no common start point for the measurements 
taken. The end point is equally uncertain; both patients and testers can find the test 
distressing during the later stages of the illness, hence no measurement is taken; some 
patients no longer wish to continue participating, and some unfortunately die. The 
illness can affect people at different ages; hence absolute age cannot be used as a scale. 
Patients were recruited throughout the duration of the project, so some measurements 
date back to 1988, and some only start in 2004. Hence finding a single time scale to 
allow patients to be compared is a non-trivial exercise.
This problem was solved successfully by using the approximate linearity of decline 
around the middle part of the progression of the disease to estimate the age at which 
each patient would have achieved a Camcog score of 53.5 (mid-scale), calling this 
AdjAgeo, and then using it to calibrate each patien t’s age measurements. Thus the 
statistical analysis uses Age - AdjAgeo as its measurement scale for age.

The mid-scale point was chosen because:

• The Camcog measurements for most patients cover values tha t range above and 
below the midpoint score of 53.5

• The Camcog decline is not linear, but it approximates to linear in mid-scale.

I used the R statistical package (version 2.4.1) to analyse the data.

5.1 Theory behind the linear m odel

The Camcog score and age for one Optima patient are plotted shown in Figure 5.1 
below. I have only shown the central part of the data, i.e. Camcog scores > = 2 5  and 
< =  75.

The assumption is that there is an underlying linear relationship here. i.e.

C — a  +  (3.Age

22
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NOptNo = 7

o

Figure 5.1: Central part of the decline for one patient

but with a random error on each point i :

C{ — ex +  fi.Agei +  ê

where the errors e* are independent of each other, and distributed normally with mean 
0 and standard deviation a. More generally, the model is

Yi = a + p.Xi + £i i = 1, 2, . . . ,  n

where Yi, Y2,. . . Yn are observed random variables, xi,  X2 , . . ., x n are specified and

£1 , £2 ,. • •, £n are non-observable random variables.
X{ is the explanatory variable (corresponding in my data to Age);
Y{ is the response (corresponding in my data to Camcog);
£i is a residual.
Since each £i has distribution N(0,cr2), then

E[Yi] = a  + V [ Y i ]  = a2, i =  l ,2,  . . . , n  

Rewriting equation (1) in m atrix notation gives

Y  =  X 0 +  e

where

Y =
/ * \

\YnJ

X  =

[ \  £ l \

y l  Xn J \ £nJ
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E (Y )  = XO, V (Y )  = a 21

, where I  is the identity matrix

f l  0 ••• 0\
0 1 ••• 0

Vo 0 ... \ )

The likelihood function of a,/3,cr2 has the form 

L(a,/3,(T2]y) = (27rcr2) - n/2exp (n 2)~n/2= (27rcr ' exp 1 T  
20-2 £ £

Maximising L, which gives the most likely fit to the estimates of a,(3,cr2, corresponds 

to minimising
T  £ £

i = 1

hence this is known as the method of least squares. Least squares is only equivalent to 
maximum likelihood if the underlying distribution of £{ is normal.

£T£ =  (Y  -  X 0)T(Y -  X0).

For this to be a minimum,

Hence

d(eTe)
d0 =  0 .

2Xr (Y -  X 9 )  = 0,

so the maximum likelihood estimate 6 of 6 is given by

X TX 0  = X t Y. 

Provided X TX  is non-singular, this is

9 = (X t X )_ 1X t Y. 

Using the data  from the patient ID no 7 above,

a  = 633, p  = -8 .01

The data  with the fitted line are shown in Figure 5.2.
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Figure 5.2: Central decline with linear model 

5 .1 .1  A s s u m p tio n s  o f  t h e  m o d e l

To reiterate, the assumptions on which the above calculation is based are:

• the variance of the response is constant;

• the data are well described by the linear equation;

• the distribution of the response is normal.

The first assumption can be assessed by looking at a plot of the residuals of the 
model against the fitted values. The plot for these data is shown in Figure 5.3: the 
points seem randomly scattered, indicating that the assumption is valid.

The plot of raw data against fitted model above shows that the basic assumption 
that the data  can be fitted by the given equation seems good The plot of fitted against 
residuals shows tha t the second assumption is also good, in tha t the points seem to be 
spread randomly.

The third assumption is checked by looking at a qq plot of the residuals, which 
should be approximately a straight line. The plot for these data is shown in Figure 
5.4: the data does approximate to a straight line.

It is necessary to know the confidence limits of this estimated midpoint, age before 
it can be used in further calculations. Since a ratio of estimators is involved, Feiller’s 
theorem[18] was used to calculate the confidence intervals for the midpoint age.
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Patient ID 7 Linear Fit
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Figure 5.3: Deviance residuals-fitted values for Patient ID 007
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Figure 5.4: QQ plot for linear model
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The true value of the midpoint age is given by

(Cm &)
P  ’

where Cm is the midpoint of the Camcog scale (i.e. 53.5) and a , (5 are the true 
values of the intercept and slope of the model.

The model gives estimates a,0  of intercept and slope, V(a), V(fi) which are their 
estimated variances and the estimated covariance C .

Consider

z — d +  7 P - C m  

E ( Z )  =  0, V  (Z) = V  (a )+  ' fV ( P )  + 2'yC

If m  is the 0.975 cut-off value for Student’s t-distribution with n  — 2 degrees of 
freedom, where n  is the number of sample points used, then, using the estimated 
variance of Z ,

P  ( —m < • ■ < m ) =  0.95v V v m  )
Thus for the limiting values

2 &  
771 =

V (Z )
and substituting for Z  gives

2 (d + 7)0 -  Cm)2
771 =

Solving for 7  gives

V{a) + ' ? V $ )  + 2 i C ( a , $ }  

—b ±  \/52 — 4ac
7 — 2a

where a = {3 — m 2V(P ), b = 2(3(a — Cm) — 2m 2C ^ d , ^  , c = (d — Cm)2 — m 2V(a).
A few typical plots of this fitted model, with error bars on the estimated midpoint 

age are shown in Figure 5.5. Initial examination of these errors showed 3 outliers, where 
the confidence interval was markedly larger than others. Examination of the data for 
these patients showed in all cases that the highest Camcog score was only just above 
the midpoint of the scale. These data were therefore removed from further analysis. 
The boxplot of confidence intervals, without these outliers, is shown in Figure 5.6. The 
boxplot of the width of the confidence intervals is skewed; this is to be expected, as the 
width of a confidence interval calculated from normally distributed data is distributed 
according to the square root of a %2 random variable. It is clear that in many cases the 
confidence interval is extremely small, of the order of 1 year compared with a typical 
course of the illness of 10 years, and a typical age range of all patients of 40 - 100 years. 
Where the confidence interval is bigger than this, it is because there are few data points.
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Figure 5.5: Sample linear models from four patients
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Chapter 6

A fixed-effects M odel

Once there is a common scale for the age during the course of the decline, it is possible 
to try  and fit all the data points in a common fixed-effects model.

6.1 Theory behind a fixed-effects m odel using the bino­

m ial or logistic curve

The assumption for all patients with a dementing disease is that the patient is “normal” 
before the onset of the illness: there is a period of decline, and then a period where the 
score on the cognitive test is around zero. Although controls show a very slight decline 
of Camcog score with age, it is not marked. Hence the decline looks like Figure 1.1. A 
function similar to this is the logistic or binomial function

l°g = a  + /3x

This function is more normally used to model the probability of an event happening 
or not, but can be used to model the Camcog decline, considering the Camcog score as 
a proportion of the full-scale score, as long as the assumptions of the model are met. 
The binomial model is a particular example of a generalised linear model. This family 
of models is used to describe a set of independent random variables y i , . . . , y n whose 
distribution is of the exponential family, the canonical form of which is

= exp{yiQi -  k(6i))m(yi)

where the 6i are parameters, m is some function of yi, and the scale parameter has 
been set to 1, as is usual for a binomial model. For the generalised linear model there 
is a smaller set of parameters /3 i , . .. ,/3p, where p < n  and a linear combination of the 
ftps some function of E(Yi). If fa = E(Yi), then

Vi = 9{Vi) = Xi/3

where x* is a 1 x p row vector of explanatory variables, and /3 is a p x 1 column vector 
of parameters. The function g is the link function, and allows different types of model

30
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Figure 6.1: Complete Camcog scores over time 

to be fitted in the same way, by varying the link function. For the binomial model,

9(P)  =  log

To make things clearer, look at a subset of the data, considering only one patient, and 
one explanatory variable: the patient’s age at the time the Camcog is completed. A 
graphical representation of the data is shown in Figure 6.1.

Using the well-known result

E d(l og(/(y»0t))
dQi

=  0

dlog i f j y A ) )
dQi

= y i ~ k  (0i)

K  = E(Yi) = k (0i)

The canonical link function was used in the analysis, this being g = k' 1 
The model

los ( r ^ : ) )  =  ^
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cannot be fitted with a straightforward linear model, as described above, because one 
of the main assumptions of that model is that the variance is constant, which is not 
the case. The data  have a binomial distribution, ,i.e. Y  ~  B (n ,p ) ,  and hence the 
expectation of Y{ , E ( Y ) = np and the variance of Y ,  V (Y )  = np( 1 —p).

It should be possible to fit a model by iterative weighted least squares, using esti­
mates of pi to calculate the weights. Consider a function iJj of the ith  Camcog score. 
The best estimate of pi is the expectation E . Taylor expansion about pi gives

But

and

so that

Tp(Pi)

But

and differentiating gives

and

The aim is to fit

which means, using
Vi
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and therefore minimising m
y j (zi -  x i^ )2 m pi( l  -  pi)
i= 1

Pi is not known, but an initial estimate of

. ViPii = — 
rti

and the weights are
Vijrii -  yj)

Tli
These values can be used to calculate (3, and hence a more accurate set of pi , and an
iterative process will soon lead to an acceptable level of accuracy.

6.2 C onsidering the covariates

The factors I would like to consider as fixed-effects are:

• midpoint age, i.e. the age calculated earlier as the midpoint of the cognitive 
decline;

• Age at onset -  at the first visit to Optima, the partner of the patient is asked for 
his/her best estimate of the onset of cognitive problems. This is a very subjective 
measure, probably influenced by later happenings, and requiring the partner to 
remember and analyse events sometimes several years in the past. It is perforce 
very imprecise; nonetheless in the absence of a large pre-emptive study, it is the 
best available measure;

• Gender;

• Homocysteine The blood chemical homocysteine is already known to be as­
sociated epidemiologically with the risk of developing both dementia and heart 
disease. A higher homocysteine level is linked with a higher level of heart disease 
and of dementia. A higher homocysteine level is associated with a lower intake 
of vitamin B12;

• APOE4 genotype. The chemicals coded by the APOE genes are known to be in­
volved in the metabolism of homocysteine The APOE gene has 3 alleles: APOE2, 
APOE3 and APOE4. Patients with 2 copies of the APOE4 allele have a higher 
risk of developing heart disease and dementia;

• Diagnosis - Alzheimer’s disease or other type of dementia;

• Heart arrhythmia;

• Drugs. In recent years drugs have become available to treat the symptoms of 
Alzheimer’s Disease. They have no effect on the underlying disease process, but 
instead boost the level of a brain chemical (cholinesterase), which is depleted in 
Alzheimer’s patients. Anecdotally, these drugs slow the initial rate of decline, 
but eventually the patient suffers a much more precipitous decline;
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Boxplot of Mid-point ages

Figure 6.2: Boxplot of Mid-point ages

• Age at first visit;

• Correction to Camcog for first visit. When the person is first seen, it is the first 
time they are exposed to the Camcog questionnaire. On all subsequent visits, they 
may have a memory of the questions, and hence have an enhanced score because 
they had learned some of the answers - this type of correction is commonly called 
a learning correction. As patients with dementia typically have a poor memory, 
this factor may not prove to be significant, but it should be included.

Continuous explanatory variables, or some suitable transformation of them, need 
to be fairly evenly spread out. Let us look at the distribution of each of these factors 
in turn.

6.2 .1  m id p o in t age

Minimum 44.4
1st quartile 67.6
Median 74.7
Mean 73.9
3rd quartile 81.5
Maximum 89.6

Table 6.1: Summary of midpoint ages

As is to be expected, these data are skewed towards the upper age range -  few 
people develop dementia in their 30s and 40s. The skewness is -0.51. The data  need
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Figure 6.3: Boxplot of transformed mid-point ages

to be transformed so that the older values are compressed, and the younger values 
stretched. A suitable transformation turns out to be:

/  MidptAge  \
11 \  100 — M idptAge)

The distribution of the transformed values is shown in Figure 6.3

The transformed data have skewness —0.03. The transformed data are as unskewed 
as can be expected. Therefore this transformation will be used in the model.

6 .2 .2  A g e  at onset

The Age at onset obviously bears some relationship to the midpoint age, as the illness 
typically progresses over 5-15 years. Hence the onset of first symptoms is unlikely to 
be less than 10 years before the midpoint, or more than 1 year before the midpoint. 
It seems reasonable to consider the difference between the two ages as an independent 
variable:

CorrAgeOnset = AgeOnset — M idpoint Age 

It was not found necessary to transform the corrected age at onset.

6 .2 .3  A ge at ep isod e 1, C orrection  for ep isod e 1

Patients come to Optima at very different stages in their illness; some come quite early 
and some when the decline in their cognitive ability is already very apparent to an
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outside observer. I therefore included two factors in the model to allow for this. I 
included a value for the age at episode 1, again taking a corrected value relative to the 
age at midpoint. I also included a factor which was only included for the first episode, 
to allow for any learning effect.

6 .2 .4  H om o cy ste in e  (H ey)

Homocysteine is a chemical found in the blood, and is related to the levels of vitamin 
B12. The higher the homocysteine, the lower the uptake of B12. It has been found in 
epidemiological studies to be related to the incidence of dementia, in that people with 
a high level of homocysteine are more likely to suffer from dementia then those with a 
low level.
Because levels of homocysteine are known to vary with age, and do show considerable 
variation over the course of the patient’s illness; the only measure used was tha t taken at 
the first episode, and these values were classified as “normal” , or “high” . Homocysteine 
values above 15 nm ol/li tre  were taken as high[28].

6 .2 .5  G en otyp e

There is a gene known as the APOE gene, which is known to affect the way the body 
processes homocysteine, and is known epidemiologically to influence the prevalence of 
dementia and cardiovascular disease. The APOE gene has 3 alleles, known as APOE2, 
APOE3 and APOE4. People with two copies of the APOE4 gene process homocysteine 
differently. I therefore classified my patients as having the APOE44 allele or not , and 
I also looked for an interaction between this and homocysteine level.

6 .2 .6  D iagnosis

Not all Optima patients have Alzheimer’s Disease; there are many other, rarer types 
of dementia which do occur, particularly in younger patients. Because there are so few 
patients with rarer dementias, I have classified the dementias into those of Alzheimer’s 
type, and others.

6 .2 .7  H eart arrhythm ias

There is some evidence[27] that the brains of some Alzheimer’s patients may be short 
of oxygen because of heart failure. When patients are first examined, a record is made 
of the steadiness of their heartbeat. In the absence of other measurements, it would 
be interesting to see if this is a significant covariate. Some people are fitted with 
pacemakers, and I initially included the presence/absence of a pacemaker as a possible 
covariate. Unfortunately there are only a very few such people in this study, and one 
at least is atypical, being much younger than average, and with a diagnosis of “other 
dementia” . Although this is in itself very interesting, it precludes doing an analysis on 
the significance of pacemakers.
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6 .2 .8  D rugs

The anticholinesterase drugs which have become available recently are reputed to slow 
or stop the steady decline of cognitive skills, at least for a while[15]. It would be 
interesting to see if this effect can be detected. Patients on the drugs are again reputed 
eventually to suffer a much more catastrophic decline after a few years, but there are 
not enough data  in the Optima study to see this effect, as the drugs had not been 
available long enough for this effect to be observable.

6.3 F ittin g  th e m odel

I used the glm model[14][69] from R, to model the cognitive decline as a logistic curve, 
just as already used for individual patients. I used the entire data  set, and included 
various factors as covariates within the model. There are many possible covariates, 
and I found it necessary to run many versions of the model, with differing sets of 
covariates, to find the eventual best model. To avoid over-parameterising the model, 
I only included interactions between covariates if I had some reason to suspect an 
interaction existed, and where it might be possible to interpret the results. I used the 
R functions addl and dropl to see the effect of dropping single factors, and looked at 
model diagnostics, and the deviance residuals to check which was the best model: 

Consider two models: 
model 1 has residual deviance RD1 on DF1 degrees of freedom,
model 2 has residual deviance RD2 on DF2 degrees of freedom, where model 1 has 
fewer covariates and so DF2 > DF1.
A p-value for a test of the null hypothesis that the om itted covariates are significant is 
obtained by using the result that RD2  — R D 1 has an approximate chi-squared distri­
bution with DF2  — D F 1 degrees of freedom.

The model that eventually emerged as the best had the following covariates:

• midpoint age;

• Adjusted age at episode 1, Correction for episode 1;

• First episode;

• Anti-cholinesterase drugs;

• Initial homocysteine level;

• APOE genotype;

• Initial homocysteine level interacting with APOE genotype;

• Gender interacting with midpoint age.

The other covariates were not found to have a significant effect.

A table of the results of the final model is shown below:
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Estimate Std Error z value P r(> |z |)
AdjAge -0.490 0.031 -12.49 < 2e-16 ***
midpoint age 0.165 0.0052 -94.90 1.16e-14 ***
Age at onset 0.006 0.0021 7.72 0.014 *
Age first seen 0.029 0.0057 4.99 5.98E-e-07 ***
Drugs yes 0.28 0.028 10.14 < 2e-16 ***
Gender M -0.016 0.036 -0.45 0.65
Hey normal 0.215 0.016 13.23 < 2e-16 ***
APOE 44 0.242 0.029 8.33 < 2e-16 ***
First visit 0.162 0.023 6.95 3.6e-12 ***
Hey N:APOE 44 -0.211 0.049 -4.34 1.2e-05 ***
GenderM:midpoint age -0.069 0.031 -2.24 0.025 *

Table 6.2: Results of the fixed effects model

The original model included 973 data points. W hen I looked at the Cook’s distances 
for this model, one point had an extremely large Cook’s distance (see Figure 6.4). When 
I reran the model without this point, the model was not significantly different, but the 
Cook’s plot showed no other single points with such high influence. Consequently all 
the other models have been run without this point. Diagnostic plots for this model are 
shown in Figures 6.5 and 6.6.Note the initially somewhat puzzling line of points at the 
bottom  left of the plot of fitted values against residuals (Figure 6.5): these points are 
those where the Camcog score is zero. Such an appearance is typical of the type of 
model; a binary regression (i.e. 0/1  response) would show two roughly parallel lines of 
points, and this kind of diagnostic plot would then have no meaning. [12]. The qq plot 
(Figure 6.6) should approximate to a straight line.

6.4 Effect o f a lower in itial C am cog

The mean Camcog score of the Optima controls is 97. I therefore reran the fixed-effects 
model using this as the initial Camcog score, rather than  the full-scale value of 107. 
The result was a very slight change in the parameters of the order of a few percent. A 
comparison of the models is shown graphically in Figure 6.7, and numerically in Table 
6.3.
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Figure 6.6: Diagnostic plots for the final fixed effects model
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Figure 6.7: Comparison of models with differing initial Camcog scores
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Initial Camcog 107 Initial Camcog 97
Intercept -0.385 -0.329
Adjusted age -0.490 -0.525
Midpoint age 0.165 0.117
Age at onset 0.00605 0.00723
Age of first visit 0.0285 0.038
First visit 0.162 0.163
Gender M -0.0161 -0.085
Normal Hey 0.215 0.225
APOE4 0.243 0.207
Drugs 0.278 0.323
Normal Hcy:APOE4 -0.211 -0.119

Table 6.3: Comparison of models with differing initial Camcog scores



Chapter 7

Random -effects m odels

As explained in section 7.1, a random-effects model uses all the data, but grouped by 
individual Optima ID. The packages allow for random effects to be applied to individu­
als, but nevertheless check whether there is any pattern  within the data, showing fixed 
effects of the various covariates.

I have used two software packages to model random effects: glmmPQL[70] and 
nlme[38][31]; both of these run within R.

7.1 Theory behind the random -effects m odels

I have already described using a linear equation to model the middle part of the curve 
for each individual patient. A similar process can be used to model the whole curve 
for each patient: a non-linear random-effects model. I need a non-linear equation to 
model the curve, and a logistic regression provides the correct shape.

Y = log ( j o £ c ) =X/3 +  €
For the individual patient i

Yj = Xi/3 + €{

The random-effects model is

Y  i = X^/3 +  Z^b +  6 i 

where b is the unknown vector of random effects such that

b ~ N ( 0 , S t)

i.e. b is normally distributed with mean vector 0 and variance/covariance m atrix £&.

The columns of Z are a subset of X  , i.e. values of a subset of the explanatory 
variables, acting on each patient separately.

e is the vector of residuals and is generally of the form e rsj N (  0 ,cr2I).
Random effects b* and residuals €{ are assumed to be independent.
Two R functions are available for fitting these models.

42
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• The function nlme uses the restricted maximum likelihood (REML) to calculate 
the maximum likelihood;

• the function glmmPQL uses Penalized Quasi-Likelihood.

7.2 M odelling random  effects w ith  glm m PQ L

The glmmPQL function can be used in a very similar way to the generalised linear 
model function, glm, using the same data set and the same formula definition. I used 
this function because it can be used to fit the exact model I have already used for 
individuals. However, as the function calculates several param eters for each individual, 
and then looks for fixed effects within these parameters, it can only be used for those 
individuals with a sufficient number of data points, so th a t over-parameterisation does 
not occur. In fact, to give less random variation I only included individuals with at 
least seven data points, to reduce the errors on the individual parameters. There are 58 
such people within the dataset, comprising 671 of the 972 to tal data points available.

I specified that the model should fit a within-group random effect on the intercept.

7.2.1 R esu lts  o f  fittin g  th e  data  w ith  glm m P Q L

The fitted model had an intercept of —0.505 ±  0.145, and the random effect within 
groups had a value of 0.200. Hence it can be seen tha t the random variation from 
one individual to another is actually not very large in comparison with other effects. 
Diagnostics for this fit are shown in Figures 7.2 and 7.1. The Shapiro-Wilk statistic 
[56] for the qq plot is W =  0.9455.
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Figure 7.2: Diagnostics for the final random effects model
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7.2 .2  F ixed  effects w ith  glm m PQ L

I looked for fixed effects on the variables which had already been observed to be sig­
nificant in the fixed-effects model described in chapter 6. Some effects were not longer 
significant in this random-effects model: the covariates which were significant are shown 
in table 7.1.

Value p-value
midpoint age 0.242 0.0247
Normal Hey 0.312 0.0006
APOE 0.442 0.0053
Hcy*APOE -0.449 0.0729
Drugs 0.417 0.0002

Table 7.1: Significant covariates from glmmPQL model 

The significance of the values of these covariates will be discussed further in chapter
9.

7.2 .3  C om parison  w ith  fixed-effects m od el

The values given to the effects of the covariates with the glmmPQL random-effects 
model and the fixed-effects model discussed earlier are very similar. A comparison of 
the models is shown graphically in Figure 7.3, and numerically in Table 7.2.

Note th a t the models run on different data sets: the fixed-effects model includes 
individuals where there are only a few data points.

7.3 M odelling random  effects w ith  nlm e

Recently Optima has been working with people who do not have a diagnosis of demen­
tia, but instead are classified as MCI (Mild Cognitive Impairment).

Such people were originally assumed to be in the early stages of dementia, and 
indeed some people proceed to develop dementia, but further study has shown that some 
people with MCI can revert to cognitive normality, and some people switch between 
MCI and normal more than once. This work is quite new, and we have not yet had the

random-effects model 
parameter p-value

fixed-effects model 
param eter p-value

midpoint age 0.24 0.0006 0.17 < 2e-16
Age onset 0.0057 0.69 0.0061 0.014
Age at first visit 0.043 0.13 0.029 5e-07
First visit -0.041 0.66 0.16 3e-12
Gender M 0.028 0.88 -0.16 0.65
Normal Hey 0.31 0.0006 0.21 2e-16
APOE4 0.44 0.0053 0.25 2e-16
Drugs 0.42 0.0002 0.28 2e-16
Normal Hcy:APOE4 -0.45 0.073 -0.21 4e-05
midpoint age:Gender -0.10 0.56 -0.069 0.025

Table 7.2: Comparison of fixed effects and random effects models
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opportunity to see if everyone who at one stage had a diagnosis of MCI will eventually 
develop dementia. However, it does raise the interesting possibility tha t some of the 
Optima patients with dementia may not in fact have started their illness at a Camcog 
score close to full-scale, but instead had hovered for some time at a lower Camcog 
value.

I chose to use the three-parameter logistic function, which gives the same inverse 
S-shaped curve I have used in the previous chapter[32]. The major difference between 
this model and the previous two-parameter model is tha t this also allows the asymptote 
of the curve to vary from individual to individual. I therefore used the three-parameter 
model to estimate this asymptote. A model of the decline, with the significance of the 
three parameters is shown in Figure 7.4. Note tha t this model will always have the 
param eter seal < 0. The function modelled is

A sym  
Uamcog = ----------

1 +  exp

For the initial model, I allowed a random effect on all three parameters, Asym, 
xmid and scale. This function can only be used to model the decline where there at 
least 4 measurements of a patient’s cognitive abilities, and I also had to remove all 
measurements where the Camcog score was zero in order to get the model to converge. 
Even so the model did not converge, until I removed the data  for one patient who 
showed an exceptionally slow decline compared with most other patients. I used 520 
data points from 53 individuals.

W ith these limitations, the model converged, and produced data  on the random

(  x m id —age A 
I seal J

Fixed effects model 
Random effects model

-10 ■5 0 5 10

adjusted age
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Figure 7.4: Theoretical model of 3-parameter nlme

AIC BIC Loglik
Asym+xmid+scal -1428 -1385 724
Asym+xmid -1283 -1253 648
Asym+scal -1370 -1340 692
xmid+scal -1416 -1386 715

Table 7.3: Comparison of nlme models with varying random effects

effects on all three parameters. The pairs plot of the ensuing model
(Figure 7.5) indicates that there is a strong correlation between the random effects 

on xmid and scale, suggesting perhaps that one of these random effects can be dropped. 
Although I ran models with random effects on Asym and xmid, on Asym and seal, and 
on xmid and seal, the results show clearly that the model with random effects on all 
three parameters is the best (see Table 7.3).

The diagnostics for the model with no covariates but random effects on all three 
parameters are shown in Figures 7.6 and 7.7.

Although I would have liked to use the model to look at all the covariates, when I 
ran nlme with random effects on three parameters and fixed effects on all the covariates, 
the model did not converge. Instead I looked at the more significant covariates from the 
fixed-effects model, and from glmmPQL, and ran the model with a subset of covariates. 
The covariates I used were

• Homocysteine

• APOE allele
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Figure 7.7: Diagnostics for nlme model with random effects on all parameters

Value SD of random effect
Asym 0.789 0.033
xmid 0.752 0.346
seal -1.170 0.486

Table 7.4: Parameters calculated by nlme

• Anti-cholinesterase drugs

• Age at midpoint

This model was not significantly better tha t the model with no covariates (p-value 
of 0.76).

The values calculated by this model for the various parameters and graphs of the 
varying parameters are shown in Figures 7.10 to 7.4
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Predicted decline from nlme
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Figure 7.8: Predicted decline from nlme at limits of Asym
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Figure 7.9: Predicted decline from nlme at limits of seal
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Predicted decline from nlme
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Figure 7.10: Predicted decline from nlme at limits of xmid



Chapter 8

Comparing the m odels

The models I have used in this dissertation are:

• generalised logistics model using the binomial function;

•  linear model to calculate midpoint age for each individual;

•  fixed-effects model to develop a possible model of the decline and the effects of 
covariates on the rate of decline;

• random-effects model using glmmPQL to confirm the results of the fixed-effects 
model in a theoretically more applicable fashion;

• random-effects model using nlme to see if the initial Camcog score is likely to 
vary much from full-scale.

The binomial function was used to model the Camcog score separately for each 
individual. The model apparently gave a good fit to the data for all individuals, and the 
diagnostics indicated tha t this was a valid approach. Fitting a model to each patient 
individually does not allow any inference to be made about covariates, but does give 
confidence tha t the model is a reasonable one to use.

A linear least-squares model is used to fit the central part of the decline. The results 
show th a t in the central part of the Camcog scale (20-80 points) this model fits the 
data  well, giving a small standard deviation for the age at midpoint for all individuals. 
A boxplot of Standard Deviations was shown earlier (Figure 5.6), but is repeated here 
for convenience - Figure 8.1.

This shows tha t the midpoint age estimated from the linear model has a fair ac­
curacy, and can be used to fit a single model to all the data; using the covariates to 
account for the individual difference between patients, and ignoring for the time being 
any effect tha t is purely random. The diagnostics for this model show th a t this is 
a reasonable assumption, and the smaller error on the param eters calculated for the 
covariates allows many different models to be tested, to find the best combination of 
influential covariates, and not overparameterise the final model. A sample of the model 
testing is shown in appendix A.

Although it appears in this case that the random variation between patients is small 
compared with the effect of the covariates, the fixed-effects model is not theoretically

52
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Figure 8 .1: 95 percent Cl of errors on mid-point ages

a good one to use. It is more appropriate to allow a random effect on the midpoint 
age and on the slope. The theory behind the random-effects models is explained in 
section 7.1 above. While the theory is common for the two models I have used, the 
computer implementation is different. The linear model and the generalised linear 
model both work by maximising the likelihood function: for the random-effects models 
this is not possible, as there is no functional calculation for the likelihood. The two 
models maximise an approximation to the likelihood function. glmmPQL maximises 
the Penalized Quasi-Likelihood, and nlme the restricted maximum likelihood.

All random-effects models suffer from problems of convergence, and indeed I had to 
drop some data  points to get both models to converge. glmmPQL would not converge 
unless I dropped the patients with the smallest rate of decline, and nlme would not 
converge if I included any of the points where Camcog = 0.

The glmmPQL model which gave the best fit to the data  estimated a parameter for 
the intercept for each individual, as well as estimates of the parameters of the various 
covariates. My initial model had a random effect on the slope and intercept, but I 
could drop the random effect on the slope, and still achieve a good fit to the data. The 
extra level of parameterisation compared with the fixed-effects model gave significantly 
larger errors on the parameters. A table of the parameters and p-values for the various 
covariates from the fixed-effects and random-effects model using glmmPQL is shown 
in Table 8.1. As can be clearly seen, the p-values from the random-effects model are 
larger than those from the random-effects model. The values of the various parameters 
are reasonably close.
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random-effects model 
parameter p-value

fixed-effects model 
param eter p-value

midpoint age 0.24 0.0006 0.17 < 2e-16
Age onset 0.0057 0.69 0.0061 0.014
Age at first visit 0.043 0.13 0.029 5e-07
First visit -0.041 0.66 0.16 3e-12
Gender M 0.028 0.88 -0.16 0.65
Normal Hey 0.31 0.0006 0.21 2e-16
APOE4 0.44 0.0053 0.25 2e-16
Drugs 0.42 0.0002 0.28 2e-16
Normal Hcy:APOE4 -0.45 0.073 -0.21 4e-05
midpoint age:Gender -0.10 0.56 -0.069 0.025

Table 8.1: Parameters and p-values from fixed- and random-effects models

The nlme model I used differed from the glmmPQL and fixed-effects model, in that 
I included an extra parameter giving the asymptote for each individual. This extra 
param eter is the initial Camcog score for each patient, and I included it to see if there 
was any significant variation from the standard value of 107 tha t I used in the other 
models. I initially allowed a random effect on each of the three param eters (intercept, 
asymptote and slope) for each individual, as well as the parameters for the various 
covariates. I hoped to be able to drop some of these random effects, as I could with the 
glmmPQL model, but unfortunately the fit without these parameters was significantly 
worse. The nlme model did not give me any meaningful estimates of the parameters for 
the various covariates, doubtless because of the extra level of parameterisation. This 
was very disappointing, but not surprising, especially since I had to drop a number of 
data  points in order to get the model to converge at all.



Chapter 9

Interpreting the results

As discussed in chapter 2, earlier research has compared rates of decline in varying 
groups of people, and sometimes come to the conclusion tha t decline is faster or slower 
in a particular group. The model I have used allows a more quantitative approach. 
The model is

log ^107 _  — a — bt + b\Vi +  &2V2 +  . . .  +  bnVn

where V i , . . . ,V n are the covariates, The value b gives a measure of how someone’s 
log(cognitive score) will change in the future. Rewriting this gives

Ae~bt
C = 107

1 +  Ae~bt

where A  = e (a+]C6nV'n  ̂ Differentiating C with respect to time, to find the rate of 

decline, gives
dC _  (  —bAe~ht (1 +  Ae~bt) +  bA2e~2bt \
dt 1 7 y (1 +  Ae~btf  J

dC _  —bAe~bt 
dt (1 +  Ae~btf

As A  =  e ?the rate of decline is critically dependent on the parameters bn of
the covariates. W hat does this mean in practice? Consider a patient for whom all the 
covariates are 0, with a Camcog score of 106 at t = 0 .Calculate the value of a from 
these initial values:

a = l o g ( m / l ) = 4.66

Using a value of b of —0.5 (an approximate value from the fixed-effects model), consider 
the same patient after 1 year. His score then is

'09( lo ^ c ) =4-66- a5 = 4-16

Hence after 1 year his score will be

C = 105.35
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Effect of covariates

oo

ooo

oCO

o■'T

O
CM

—  Covariate parameter = 0.1
—  No covariate
—  Covariate parameter = -0.1

o

0.0 0.2 0.4 0.6 0.8 1.0

adjusted age (years)

Figure 9.1: Effect of changing the model parameters

By the same calculation, a patient with a starting score of 53 would have a score of 

39.50 one year later.
For a similar patient who differs from the first only in the value of the covariate 

V^with param eter bn , the rate of decline from the same starting values is shown in 
Figure 9.1 for values of bn of 0.1 and —0.1.

Starting Camcog Camcog 1 year later 
bn = 0.1 no covariate bn = - 0.1

105 104.0 103.7 103.4
85 77.2 75.0 72.7
55 44.4 41.8 39.3
35 26.3 24.2 22.5

Table 9.1: Comparison of change in Camcog for differing covariates

While the actual decline in a year depends on the starting value, it is clear tha t the 
more negative b is, the worse the overall decline, and in the middle of the scale, the 
change in the final Camcog scores is very marked. A patient with an initial Camcog 
of 85, which is just above the score of 80 where dementia is normally diagnosed, could 
have declined to a Camcog of 77 - still around initial diagnosis levels, or to a Camcog 
of 72, at which the dementia is likely to be very noticeable. A person with a Camcog 
of 55 is likely still to be living at home, although dependent on help for some things. 
After 1 year, this person may have declined to a score of 44, and is probably still at 
home with more help, or have declined to a score of 39, and probably living in a nursing 
home. Since I am modelling cognitive decline, and since the minus sign is inherently
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confusing, I will define an im p a irm en t ra tio , which is exp(—bn).
The impairment ratio gives a way of comparing the changes in two patients who are 

otherwise similar, but differ in only one covariate. If patient A  has covariate Vn = 1, 
and patient B  has covariate Vn = 0, then over a particular time period (e.g. 1 year), 
if patient A ’s impairment index (=  Camcog) *s -̂ 4, patient B 's  impairment index 
will be I  a  * im pairm ent ratio. If the impairment ratio for a given covariate is 1, the 
two patients will have similar final scores given the same starting conditions. If the 
impairment ratio is < 1 the patient with the covariate will have a higher score (i.e. the 
covariate is protective). If the impairment ratio is > 1 , the patient with the covariate 
will have a lower score, i.e. the covariate is destructive.

All the covariates are measured relative to a patient who has a midpoint age of 
50 years, an initially high homocysteine level, no APOE4 alleles, and does not use 
anti-cholinesterase drugs.

Let us consider the covariate DrugsA, which is 1 for patients who use anticholinesterase 
drugs in the early stages of their illness, and 0 for patients who do not use these drugs. 
The model gives the parameter for this covariate as 0.417, and this gives an impairment 
ratio of 0.66 This means that over the course of a specific time period, patients who 
use these drugs will decline at approximately 2/3 the rate of people who do not, all 
other factors being equal

The model I have used to model the Camcog decline is more normally used to 
model the probability of an event happening, when the equivalent parameter gives an 
estimate of how the odds ratio of an event happening will vary with a particular co­
variate. So in some ways the difference in impairment ratios is similar to the odds ratio.

I n t e r p r e t i n g  o t h e r  c o v a r ia te s  

A ge

age at midpoint impairment ratio 
40 1.10
60 0.91
70 0.81
80 0.68

Table 9.2: Effect of age on impairment ratio

The age I have used in my model is the midpoint age; tha t age at which I estimate 
the patient would have had a Camcog score of 53.5, the midpoint of the Camcog scale. 
The value of the parameter for this variable is.0.24, and the impairment ratios for 
varying ages are shown in Table 9.2. This shows tha t the illness progresses faster in 
young people, and that the difference between someone who is 40 at midpoint age and 
someone who is 80 is as marked as the difference between someone who does not use 
anticholinesterase drugs and someone who does.
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Age at Onset, Age at Episode 1, First Episode, Gender

None of these covariates is found to have a significant effect on the rate of decline.

Heart arrhythmia, Pacemaker fitted

Initially these covariates seemed to have an effect on the rate of decline. However, a 
closer examination of the data revealed only two patients with a fitted pacemaker, one 
of whom was exceptionally young, and only four patients with atrial fibrillation. It was 
felt th a t there was insufficient data to analyse.

Diagnosis

The criteria for diagnosis, particularly of the less common illnesses, have changed over 
the years since Optima started. Currently the illnesses are diagnosed as Alzheimer’s 
disease, or "other dementias". There is an ongoing process to revisit all patient diag­
noses, to provide more detail, and to standardise the diagnostic criteria. I decided to 
delay looking at the effect of diagnosis until the new data were available.

H om ocysteine and the APOE gene

Impairment ratio
Normal homocysteine not APOE44 0.72
Normal homocysteine APOE44 1.31
High homocysteine APOE44 0.64

Table 9.3: Interaction of Homocysteine and APOE impairment ratios

As already mentioned, homocysteine is a blood chemical tha t is known to have an 
epidemiological effect on the prevalence of Alzheimer’s disease, and also incidentally 
heart disease and stroke. A high level of homocysteine is associated with a higher 
incidence of heart disease, stroke and Alzheimer’s disease. The way homocysteine is 
processed by the body is determined by a gene called the APOE gene. Hence there 
may be an interaction between the APOE gene and homocysteine, and tha t is what 
my model shows. The table below shows the three impairment ratios for normal and 
high homocysteine for APOE44 and other APOE alleles, all relative to a patient with 
high homocysteine and no APOE44 alleles. It can be seen from Table 9.3 that there 
is a clear difference: for people without the APOE44 allele, an initially normal level 
of homocysteine is protective; people with a high level are likely to decline more in 
a given time period. But for those with the APOE44 allele, the picture is not so 
clear. Although the APOE44 carriers with a normal level of homocysteine have an 
impairment ratio of 1.31 (i.e. this is a destructive combination), in fact the errors on 
the impairment ratio include the value 1, so within a 95% confidence level there is no 
evidence for any effect on the impairment ratio. There is some evidence tha t APOE44 
carriers with an initially high homocysteine have an impairment ratio < 1, indicating 
tha t this combination may be protective.



Chapter 10

A djusting Camcog values

For the purpose of displaying the fit, the raw data were adjusted to allow for the effect 
of the covariates. The actual Camcog score at any age can be adjusted according to the 
actual covariates, using the coefficients given by the model. I applied this adjustment 
to all the data  points available, not just those used in the analysis.

If this is done, the actual score is adjusted, typically by ±10 Camcog points. A 
graph of the predicted line of the model and raw data points is shown in Figure 10.1 
and also one with model and adjusted data points in Figure 10.3.

The principal corrective covariates are initial homocysteine level, APOE genotype, 
use of anticholinesterase drugs and midpoint age. The first three of these are available 
at the first visit, and the midpoint age bears a close relationship to the current age. 
Hence it may be possible to give some prediction at an initial visit, or soon afterwards, 
of the likely rate of progression of the illness for any give individual.
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Figure 10.1: Final model and raw Camcog points

Camcog Adjusted for Covariates

adjusted age

Figure 10.2: Final model and adjusted Camcog points
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Figure 10.3: Final model and adjusted Camcog points



Chapter 11

Conclusions

I have looked at the Camcog scores over time of a cohort of patients within the Optima 
project in Oxford. I first modelled the individual patients with a logistic model, and 
obtained a good fit to the decline of individual patients. However, these patients differ 
greatly in the age at which they developed the illness, and the time at which they 
joined the Optima project, which made comparing rates of decline very difficult. By 
using a linear model in the central part of the decline, I calculated a midpoint age, 
defined as the age at which the patient would probably have had a Camcog score of 
53.5 (half the Camcog fullscale value). I then used values relative to this midpoint age 
(i.e. plus/m inus time from the midpoint) as a timescale, rather than the actual age 
of the patient. This technique allowed two initially incomparable time scales (age or 
date) to be reduced to a single scale, and enabled me to amalgamate the data from 
many patients into a single fixed-effects logistic model. This model was successful, and 
allowed me to find a few covariates of the many I considered which proved to have a 
significant effect on the rate of decline.

I then modelled the decline with two random effects logistic models. The random- 
effects model is more appropriate than the grouped fixed-effects model, as it allows for 
a random variation from person to person. I then looked for fixed effects within the 
random variation, using the significant covariates from the grouped fixed-effects model 
as a guide. I considered the effect of the initial Camcog score being less than full scale; 
both within the fixed-effects model and the random-effects models, and found that the 
assumed starting Camcog had little effect on the model.

This model allows a numerical prediction of how the decline rate will vary with 
differing covariates, and hence from one individual to another. I used the values of the 
parameters given by the random-effects model to develop a measure, the im p a irm e n t 
ra tio , which allows varying rates of decline to be compared. The larger the impairment 
ratio, the faster the illness progresses, and the greater the decline in any one year. Of 
course, because of the nature of the model, the actual numeric value of the points lost 
in any year depends on the starting Camcog score as well as the impairment ratio. The 
impairment ratio is very similar to the odds ratio obtained in fitting logistic regressions 
and has a similar intuitive interpretation.
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h]
Estim ate for 

impairment ratio
95% confidence interval 

for impairment ratio
Use of anticholinesterase drugs 0.66 0.51 to 0.79
midpoint age 40 1.10 1.15 to 1.06
midpoint age 60 0.91 0.87 to 0.94
midpoint age 70 0.81 0.75 to 0.89
midpoint age 80 0.68 0.62 to 0.76
Normal homocysteine not APOE44 0.72 0.62 to 0.83
Normal homocysteine APOE44 1.31 0.61 to 2.18
High homocysteine APOE44 0.64 0.48 to 0.86

Table 11.1: Estimates for impairment ratios

I considered the covariates

• Diagnosis

• APOE genotype;

• Age at midpoint of the illness;

• Age at which symptoms were first noticed;

• Levels of homocysteine in blood at the initial visit;

• Cardiovascular status;

• Gender;

• Age at first visit to Optima;

• Learning correction for first visit - first time the patient has heard the Camdex 
questionnaire;

• Use of anticholinesterase drugs.

I showed that the use of anticholinesterase drugs APOE genotype, homocysteine 
and age at midpoint of the illness were significant covariates.

Estimates for impairment ratios and 95% confidence intervals for impairment ratios 
are shown in Table 11.1. The impairment ratio for a particular covariate is a means 
of comparing people who differ only in the value of tha t covariate, but for whom all 
other factors are equal. If the impairment ratio for a given covariates is < 1, then the 
covariate is protective, and the lower the impairment ratio, the greater the protection 
offered. W hat I mean by a "protective factor" is that over a given time period, a 
person with the covariate is likely to show a smaller decline tha t a person without the 
covariate. If the impairment ratio is > 1, then the covariate is destructive, and a person 
with the covariate is likely to show a greater decline in cognitive score than someone 
without the covariate.

As is shown in Table 11.1, people who use anticholinesterase drugs are likely to 
show a slower decline tha t people who do not. The illness is likely to progress faster
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in younger people, and more slowly in the more elderly, where the age is taken at 
the midpoint of the illness. For people without the APOE44 allele, an initially normal 
level of homocysteine is protective, and an initially high level is likely to lead to a faster 
decline. For carriers of the APOE44 allele, the picture is less clear, but it does seem 
that a high level of homocysteine may be protective. This unexpected result warrants 
further investigation as Optima collects more data.



A ppendix A

R  output of m odel refinement

>
>
> fml <- as.formula("dll ~AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ DiagasFactor +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ DrugsG +
+ APF +
+ CVS +
+ Pulse +
+ Pacemaker +
+ AtrF +
+ DLMid:Gender +
+ Gender .-DiagasFactor +
+ HcyFactor:APF")
>
>  hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
>  summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max
-10.08552 -1.95328 -0.02396 1.51483 11.82694 
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.481935 0.089671 -5.374 7.68e-08 ***
AdjAgeAll -0.494314 0.005211 -94.857 < 2e-16 ***
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DLMid 0.242659 0.022374 10.846 <  2e-16 ***
AdjAgeOnset 0.010013 0.002574 3.889 0.000100 ***
AdjAgeEpl 0.021986 0.006158 3.570 0.000356 ***
GenderM 0.018020 0.038304 0.470 0.638037 
DiagasFactorOD -0.022773 0.023902 -0.953 0.340703 
HcyFactorN 0.206217 0.016890 12.209 <  2e-16 ***
FirstEpY 0.153278 0.023426 6.543 6.03e-ll ***
DrugsA1 0.272507 0.028099 9.698 <  2e-16 ***
DrugsGl 0.007161 0.038731 0.185 0.853318 
APF 0.221449 0.030248 7.321 2.46e-13 ***
CVSAbnormal -0.208290 0.094590 -2.202 0.027663 *
CVSNormal -0.277682 0.097958 -2.835 0.004587 **
PulseEct 0.297248 0.046263 6.425 1.32e-10 ***
Pulselrr 0.180657 0.050691 3.564 0.000365 ***
PulseNormal 0.287455 0.041591 6.911 4.80e-12 ***
PulseRegirr NA NA NA NA
PacemakerY -0.595757 0.051298 -11.614 <  2e-16 ***
AtrFY 0.305995 0.053748 5.693 1.25e-08 ***
DLMid:GenderM -0.144293 0.032377 -4.457 8.32e-06 ***
GenderM:DiagasFactorOD 0.105695 0.033359 3.168 0.001533 **
HcyFactorN:APF -0.198919 0.049033 -4.057 4.97e-05 ***

Signif. codes: 0 ’ * * * ’ 0.001 '**' 0.01 ’ * ’ 0.05 ' 0.1 ’ } 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7689.8 on 950 degrees of freedom
AIC: 11899
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll "AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender + 
DiagasFactor + HcyFactor + FirstEp + DrugsA + DrugsG + APF +
CVS + Pulse + Pacemaker + AtrF + DLMid:Gender + Gender:DiagasFactor +

HcyFactor:APF
Df Deviance AIC LRT Pr(Chi)
<none> 7689.8 11898.9
AdjAgeAll 1 19696.9 23904.0 12007.1 <  2.2e-16 ***
AdjAgeOnset 1 7705.1 11912.2 15.3 9.333e-05 ***
AdjAgeEpl 1 7702.6 11909.7 12.7 0.000356 ***
FirstEp 1 7732.8 11940.0 43.0 5.405e-ll ***
DrugsA 1 7783.9 11991.0 94.1 <  2.2e-16 ***
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DrugsG 1 7689.8 11897.0 0.03418 0.853322 
CVS 1 7698.9 11906.1 9.1 0.002536 **
Pulse 3 7747.7 11950.9 57.9 1.629e-12 ***
Pacemaker 1 7821.6 12028.7 131.8 <  2.2e-16 ***
AtrF 1 7722.0 11929.2 32.2 1.388e-08 ***
DLMid:Gender 1 7709.7 11916.8 19.9 8.257e-06 ***
Gender:DiagasFactor 1 7699.9 11907.0 10.0 0.001532 **
HcyFactor:APF 1 7706.3 11913.5 16.5 4.859e-05 ***

Signif. codes: 0 ’ * * * >  0.001 > * * ’ 0.01 0.05 ’ 0.1 ’ ’ 1
>
> fml <- as.formula("dll "AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ DiagasFactor +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ CVS +
+ Pulse +
+ Pacemaker +
+ AtrF +
+ DLMid:Gender +
+ Gender:DiagasFactor +
+ HcyFactor:APF")
> hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
> summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max 

-10.08617 -1.95436 -0.02615 1.51398 11.82695 
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.481768 0.089667 -5.373 7.75e-08 ***
AdjAgeAll -0.494364 0.005204 -94.989 < 2e-16 ***
DLMid 0.242619 0.022372 10.845 < 2e-16 ***
AdjAgeOnset 0.010007 0.002574 3.887 0.000101 ***
AdjAgeEpl 0.022049 0.006149 3.586 0.000336 ***
GenderM 0.018446 0.038235 0.482 0.629495
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DiagasFactorOD -0.022947 0.023884 -0.961 0.336660 
HcyFactorN 0.206453 0.016842 12.259 <  2e-16 ***
FirstEpY 0.153036 0.023389 6.543 6.03e-ll ***
DrugsAl 0.272059 0.027995 9.718 <  2e-16 ***
APF 0.221224 0.030223 7.320 2.49e-13 ***
CVSAbnormal -0.208414 0.094587 -2.203 0.027566 *
CVSNormal -0.277904 0.097950 -2.837 0.004551 **
PulseEct 0.297682 0.046204 6.443 1.17e-10 ***
Pulselrr 0.181362 0.050546 3.588 0.000333 ***
PulseNormal 0.287716 0.041567 6.922 4.46e-12 ***
PulseRegirr NA NA NA NA
PacemakerY -0.595805 0.051298 -11.615 <  2e-16 ***
AtrFY 0.305438 0.053664 5.692 1.26e-08 ***
DLMid:GenderM -0.144558 0.032345 -4.469 7.85e-06 ***
GenderM:DiagasFactorOD 0.105802 0.033354 3.172 0.001513 ** 
HcyFactorN:APF -0.198499 0.048981 -4.053 5.06e-05 ***

Signif. codes: 0 > * * * >  0.001 ’ * * >  0.01 >*’ 0.05 5 .5 0.1 J } 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7689.8 on 951 degrees of freedom
AIC: 11897
Number of Fisher Scoring iterations: 5
> dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll ~AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender + 
DiagasFactor + HcyFactor + FirstEp + DrugsA + APF + CVS +
Pulse + Pacemaker + AtrF + DLMid:Gender + Gender:DiagasFactor + 
HcyFactor:APF
Df Deviance AIC LRT Pr(Chi)
<none> 7689.8 11897.0
AdjAgeAll 1 19730.6 23935.7 12040.7 <  2.2e-16 ***
AdjAgeOnset 1 7705.1 11910.2 15.2 9.422e-05 ***
AdjAgeEpl 1 7702.7 11907.8 12.9 0.0003355 ***
FirstEp 1 7732.9 11938.0 43.0 5.410e-ll ***
DrugsA 1 7784.3 11989.4 94.5 <  2.2e-16 ***
CVS 1 7699.0 11904.1 9.1 0.0024937 **
Pulse 3 7747.8 11948.9 58.0 1.605e-12 ***
Pacemaker 1 7821.7 12026.8 131.8 <  2.2e-16 ***
AtrF 1 7722.0 11927.2 32.2 1.400e-08 ***
DLMid:Gender 1 7709.8 11915.0 20.0 7.785e-06 ***
Gender:DiagasFactor 1 7699.9 11905.0 10.1 0.0015125 **
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HcyFactor:APF 1 7706.3 11911.5 16.5 4.948e-05 ***

Signif. codes: 0 > * * * ’ 0.001 ’**’ 0.01 0.05 * 0.1 * * 1
>
>  fml <- as.formula("dll ”AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ DiagasFactor +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ CVS +
+ Pulse +
+ DLMid:Gender +
+ Gender:DiagasFactor +
+ HcyFactor:APF")
> hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
> summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max
-9.997438 -1.971252 0.003977 1.504654 11.842202 
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.429083 0.089266 -4.807 1.53e-06 ***
AdjAgeAll -0.490860 0.005189 -94.600 <  2e-16 ***
DLMid 0.191879 0.021933 8.749 < 2e-16 ***
AdjAgeOnset 0.007373 0.002523 2.922 0.003478 **
AdjAgeEpl 0.030657 0.006058 5.061 4.17e-07 ***
GenderM -0.050763 0.037491 -1.354 0.175728 
DiagasFactorOD -0.052000 0.023776 -2.187 0.028738 *
HcyFactorN 0.218032 0.016726 13.036 <  2e-16 ***
FirstEpY 0.155690 0.023364 6.664 2.67e-ll ***
DrugsAl 0.270230 0.027907 9.683 < 2e-16 ***
APF 0.237667 0.030103 7.895 2.90e-15 ***
CVSAbnormal -0.177316 0.094197 -1.882 0.059782 .
CVSNormal -0.232284 0.097546 -2.381 0.017253 *
PulseEct 0.268310 0.045860 5.851 4.90e-09 ***
Pulselrr 0.164646 0.049792 3.307 0.000944 ***
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PulseNormal 0.247527 0.041228 6.004 1.93e-09 ***
PulseRegirr NA NA NA NA
DLMid:GenderM -0.075545 0.031408 -2.405 0.016158 *
GenderM:DiagasFactorOD 0.112397 0.032544 3.454 0.000553 *** 
HcyFactorN:APF -0.231676 0.048754 -4.752 2.01e-06 ***

Signif. codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 ’*» 0.05 * 0.1 ’ * 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7821.7 on 953 degrees of freedom
AIC: 12025
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll "AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender + 
DiagasFactor + HcyFactor + FirstEp + DrugsA + APF + CVS +
Pulse + DLMid:Gender + Gender:DiagasFactor + HcyFactor:APF 
Df Deviance AIC LRT Pr(Chi)
<none> 7821.7 12024.8
AdjAgeAll 1 19749.5 23950.6 11927.8 <  2.2e-16 ***
AdjAgeOnset 1 7830.3 12031.4 8.6 0.0033753 **
AdjAgeEpl 1 7847.3 12048.4 25.6 4.141e-07 ***
FirstEp 1 7866.3 12067.4 44.6 2.380e-ll ***
DrugsA 1 7915.5 12116.6 93.8 < 2.2e-16 ***
CVS 1 7827.5 12028.6 5.8 0.0162118 *
Pulse 3 7865.8 12063.0 44.2 1.394e-09 ***
DLMid:Gender 1 7827.5 12028.6 5.8 0.0161450 *
Gender:DiagasFactor 1 7833.6 12034.7 11.9 0.0005523 *** 
HcyFactor:APF 1 7844.3 12045.5 22.7 1.940e-06 ***

Signif. codes: 0 >***» 0.001 J**» 0.01 ’ * > 0.05 * 0 . 1  * * 1
>
>  fml <- as.formula("dll "AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ CVS +
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+ Pulse +
+ DLMid:Gender +
+ HcyFactor:APF")
>
>  hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
>  summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max 

-10.08604 -1.99427 0.00734 1.54829 11.92821 
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.418508 0.089212 -4.691 2.72e-06 ***
AdjAgeAll -0.492130 0.005176 -95.071 <  2e-16 ***
DLMid 0.187797 0.021823 8.605 <  2e-16 ***
AdjAgeOnset 0.007761 0.002517 3.083 0.002049 **
AdjAgeEpl 0.033239 0.006003 5.537 3.08e-08 ***
GenderM -0.012067 0.035719 -0.338 0.735501 
HcyFactorN 0.216998 0.016702 12.992 < 2e-16 ***
FirstEpY 0.155625 0.023364 6.661 2.72e-ll ***
DrugsAl 0.268039 0.027669 9.687 <  2e-16 ***
APF 0.238956 0.029485 8.104 5.31e-16 ***
CVSAbnormal -0.206685 0.093570 -2.209 0.027184 *
CVSNormal -0.281347 0.095500 -2.946 0.003219 **
PulseEct 0.285363 0.045656 6.250 4.10e-10 ***
Pulselrr 0.183614 0.049334 3.722 0.000198 ***
PulseNormal 0.265439 0.040945 6.483 9.00e-ll ***
PulseRegirr NA NA NA NA
DLMid:GenderM -0.080926 0.031248 -2.590 0.009604 **
HcyFactorN:APF -0.235171 0.048754 -4.824 1.41e-06 ***

Signif. codes: 0 ’***’ 0.001 »**’ 0.01 > * > 0.05 ».» 0.1 ’ * 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7833.7 on 955 degrees of freedom
AIC: 12033
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll "AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender +
HcyFactor + FirstEp + DrugsA + APF + CVS + Pulse + DLMid:Gender +
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HcyFactor:APF
Df Deviance AIC LRT Pr(Chi)
<none> 7833.7 12032.8
AdjAgeAll 1 19894.4 24091.5 12060.7 <  2.2e-16 ***
AdjAgeOnset 1 7843.3 12040.4 9.6 0.0019798 **
AdjAgeEpl 1 7864.4 12061.5 30.7 3.058e-08 ***
FirstEp 1 7878.3 12075.4 44.6 2.427e-ll ***
DrugsA 1 7927.5 12124.7 93.8 <  2.2e-16 ***
CVS 1 7846.3 12043.4 12.6 0.0003868 ***
Pulse 3 7883.4 12076.5 49.7 9.121e-ll ***
DLMid:Gender 1 7840.4 12037.5 6.7 0.0095955 **
HcyFactor:APF 1 7857.0 12054.2 23.3 1.357e-06 ***

Signif. codes: 0 ’ ***’ 0.001 ’**’ 0.01 0.05 } . } 0.1 ’ 3 1
>
> CogDataA$PulseIrr <- CogDataA$Pulse
>  CogDataA$PulseIrr <- 0
>  CogDataA$PulseIrr[CogDataA$Pulse == "Irr"] <- 1
>  summary(CogDataA$PulseIrr)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.06687 0.00000 1.00000
>  CogDataA$PulseIrr <- as.factor(CogDataA$PulseIrr)
>  summary(CogDataA$PulseIrr)
0 1

907 65
>
>  fml <- as.formula("dll "AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ CVS +
+ Pulselrr +
+ DLMid:Gender +
+ HcyFactor:APF")
>
>  hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
>  summary(hblml)
Call:
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glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max

-10.01190 -1.95014 0.03448 1.52149 11.98922 
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.397521 0.089077 -4.463 8.09e-06 ***
AdjAgeAll -0.490902 0.005171 -94.939 <  2e-16 ***
DLMid 0.162138 0.021465 7.554 4.23e-14 ***
AdjAgeOnset 0.006170 0.002473 2.495 0.0126 *
AdjAgeEpl 0.032907 0.005848 5.627 1.83e-08 ***
GenderM -0.023606 0.035608 -0.663 0.5074 
HcyFactorN 0.206372 0.016602 12.430 <  2e-16 ***
FirstEpY 0.161732 0.023344 6.928 4.26e-12 ***
DrugsAl 0.278196 0.027480 10.123 <  2e-16 ***
APF 0.241033 0.029205 8.253 <  2e-16 ***
CVSAbnormal 0.046609 0.085185 0.547 0.5843 
CVSNormal -0.015214 0.086520 -0.176 0.8604 
Pulselrrl -0.071489 0.030374 -2.354 0.0186 *
DLMid:GenderM -0.063419 0.031062 -2.042 0.0412 *
HcyFactorN:APF -0.222183 0.048689 -4.563 5.04e-06 ***

Signif. codes: 0 > * * * >  0.001 ’ 0.01 ’ 0.05 0.1 ’ 3 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7877.9 on 957 degrees of freedom
AIC: 12073
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll “AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender +
HcyFactor + FirstEp + DrugsA + APF + CVS + Pulselrr + DLMid:Gender +

HcyFactor:APF
Df Deviance AIC LRT Pr(Chi)

<none> 7877.9 12073.0
AdjAgeAll 1 19908.9 24102.1 12031.1 < 2.2e-16 ***
AdjAgeOnset 1 7884.1 12077.3 6.3 0.01236 *
AdjAgeEpl 1 7909.5 12102.7 31.7 1.829e-08 ***
FirstEp 1 7926.1 12119.3 48.3 3.749e-12 ***
DrugsA 1 7980.4 12173.5 102.5 <  2.2e-16 ***
CVS 2 7886.8 12077.9 8.9 0.01171 *
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Pulselrr 1 7883.4 12076.5 5.5 0.01852 *
DLMid:Gender 1 7882.0 12075.2 4.2 0.04117 *
HcyFactor:APF 1 7898.8 12091.9 20.9 4.871e-06 ***

Signif. codes: 0 »***> 0.001 ’**» 0.01 0.05 * 0 . 1  > ’ 1
>
>  fml <- as.formula("dll "AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ Gender +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ Pulselrr +
+ DLMid:Gender +
+ HcyFactor:APF")
>
>  hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
>  summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max 

-10.1829 -1.9654 0.0735 1.5450 11.9937 
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.377140 0.030976 -12.175 <  2e-16 ***
AdjAgeAll -0.490227 0.005164 -94.928 <  2e-16 ***
DLMid 0.166962 0.021401 7.802 6.11e-15 ***
AdjAgeOnset 0.005982 0.002467 2.425 0.0153 *
AdjAgeEpl 0.029769 0.005748 5.179 2.23e-07 ***
GenderM -0.021337 0.035603 -0.599 0.5490 
HcyFactorN 0.207330 0.016584 12.502 <  2e-16 ***
FirstEpY 0.161578 0.023328 6.926 4.32e-12 ***
DrugsA1 0.277394 0.027448 10.106 <  2e-16 ***
APF 0.241938 0.029190 8.288 <  2e-16 ***
Pulselrrl -0.061466 0.030194 -2.036 0.0418 *
DLMid:GenderM -0.060730 0.031058 -1.955 0.0505 .
HcyFactorN:APF -0.213965 0.048627 -4.400 1.08e-05 ***

S ig n if .  codes: 0 , ***} 0.001 ’**> 0 .01 0 .05 ’ 0. 1 3 3 1
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(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7886.8 on 959 degrees of freedom
AIC: 12078
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll “AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + Gender +
HcyFactor + FirstEp + DrugsA + APF + Pulselrr + DLMid:Gender + 
HcyFactor:APF
Df Deviance AIC LRT Pr(Chi)
<none> 7886.8 12077.9
AdjAgeAll 1 19923.1 24112.2 12036.3 <  2.2e-16 ***
AdjAgeOnset 1 7892.7 12081.8 5.9 0.01509 *
AdjAgeEpl 1 7913.6 12102.7 26.8 2.240e-07 ***
FirstEp 1 7935.0 12124.1 48.2 3.797e-12 ***
DrugsA 1 7988.9 12178.0 102.1 <  2.2e-16 ***
Pulselrr 1 7890.9 12080.0 4.1 0.04167 *
DLMid:Gender 1 7890.6 12079.7 3.8 0.05051 .
HcyFactor:APF 1 7906.2 12095.3 19.4 1.049e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 > * > 0.05 * 0 . 1  , * 1
>
>  fml <- as.formula("dll "AdjAgeAll +
+ DLMid +
+ AdjAgeOnset +
+ AdjAgeEpl +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
+ APF +
+ Pulselrr +
+ HcyFactor:APF")
>
> hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
> summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max
-9.99911 -1.92543 0.05288 1.49966 12.09952 

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.391555 0.026994 -14.506 <  2e-16 ***
AdjAgeAll -0.488503 0.005162 -94.629 <  2e-16 ***
DLMid 0.143980 0.015872 9.071 <  2e-16 ***
AdjAgeOnset 0.004712 0.002456 1.918 0.05510 .
AdjAgeEpl 0.030037 0.005718 5.253 1.49e-07 ***
HcyFactorN 0.201162 0.016358 12.297 <  2e-16 ***
FirstEpY 0.159373 0.023315 6.836 8.16e-12 ***
DrugsAl 0.254600 0.027183 9.366 <  2e-16 ***
APF 0.244121 0.029118 8.384 <  2e-16 ***
Pulselrrl -0.090490 0.029681 -3.049 0.00230 **
HcyFactorN:APF -0.223752 0.048043 -4.657 3.20e-06 ***

Signif. codes: 0 >***> 0.001 ’**’ 0.01 0.05 * 0 . 1  * ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29232.7 on 971 degrees of freedom

Residual deviance: 7924.3 on 961 degrees of freedom
AIC: 12111
Number of Fisher Scoring iterations: 5
>  dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll “AdjAgeAll + DLMid + AdjAgeOnset + AdjAgeEpl + HcyFactor + 
FirstEp + DrugsA + APF + Pulselrr + HcyFactor:APF 
Df Deviance AIC LRT Pr(Chi)
<none> 7924.3 12111.5
AdjAgeAll 1 19956.0 24141.1 12031.6 <  2.2e-16 ***
DLMid 1 8006.8 12191.9 82.5 <  2.2e-16 ***
AdjAgeOnset 1 7928.0 12113.2 3.7 0.054662 .
AdjAgeEpl 1 7951.9 12137.1 27.6 1.500e-07 ***
FirstEp 1 7971.3 12156.4 47.0 7.216e-12 ***
DrugsA 1 8012.1 12197.2 87.7 <  2.2e-16 ***
Pulselrr 1 7933.7 12118.8 9.3 0.002276 **
HcyFactor:APF 1 7946.1 12131.2 21.8 3.088e-06 ***

Signif. codes: 0 ’ * * * ’ 0.001 >**> 0.01 ’ * > 0.05 0.1 * * 1
>
>  fml <- as.formula("dll “AdjAgeAll +
+ DLMid +
+ AdjAgeEpl +
+ HcyFactor +
+ FirstEp +
+ DrugsA +
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+ APF +
+ Pulselrr +
+ HcyFactor:APF")
>
>  hblml <- glm(fml,family="binomial",weights=dl2, data=CogDataA)
> summary(hblml)
Call:
glm(formula = fml, family = "binomial", data = CogDataA, weights = dl2) 
Deviance Residuals:
Min IQ Median 3Q Max

-9.95032 -1.92435 0.05608 1.47875 12.06670 
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.407189 0.025737 -15.821 <  2e-16 ***
AdjAgeAll -0.489412 0.005139 -95.227 <  2e-16 ***
DLMid 0.144643 0.015870 9.114 <  2e-16 ***
AdjAgeEpl 0.035106 0.005069 6.926 4.34e-12 ***
HcyFactorN 0.201455 0.016356 12.317 < 2e-16 ***
FirstEpY 0.158337 0.023308 6.793 1.10e-ll ***
DrugsAl 0.256501 0.027176 9.438 <  2e-16 ***
APF 0.247926 0.029047 8.535 < 2e-16 ***
Pulselrr1 -0.090491 0.029677 -3.049 0.00229 **
HcyFactorN:APF -0.221809 0.048040 -4.617 3.89e-06 ***

Signif. codes: 0 ’ * * * ’ 0.001 ’ * * ’ 0.01 0.05 0.1 ’ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 29233 on 971 degrees of freedom

Residual deviance: 7928 on 962 degrees of freedom
AIC: 12113
Number of Fisher Scoring iterations: 5
> dropl(hblml,test="Chisq")
Single term deletions 
Model:
dll “AdjAgeAll + DLMid + AdjAgeEpl + HcyFactor + FirstEp + DrugsA +
APF + Pulselrr + HcyFactor:APF 
Df Deviance AIC LRT Pr(Chi)
<none> 7928.0 12113.2
AdjAgeAll 1 20217.4 24400.5 12289.4 <  2.2e-16 ***
DLMid 1 8011.3 12194.4 83.2 < 2.2e-16 ***
AdjAgeEpl 1 7976.1 12159.3 48.1 4.056e-12 ***
FirstEp 1 7974.4 12157.5 46.4 9.719e-12 ***
DrugsA 1 8017.1 12200.2 89.1 <  2.2e-16 ***
Pulselrr 1 7937.3 12120.5 9.3 0.002273 **
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HcyFactor:APF 1 7949.4 12132.6 21.4 3.753e-06 ***

Signif. codes: 0 ’ * * * ’ 0.001 ’**’ 0.01 0.05 0.1 ’ ’ 1
>
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