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ABSTRACT

Malaria is responsible for 1-3 million deaths per year worldwide, with half the global 

population at risk of infection. Plasmodium falciparum is the parasite responsible for 

severe malaria and accounts for almost all fatal cases. The Plasmodium falciparum 

genome sequencing project identified a putative protein that shares sequence homology 

with the cytokine macrophage migration inhibitory factor (MIF). MIF has been shown 

to have a wide range of functions including the modulation of inflammatory responses. 

The major objective of this project was to characterise the potential MIF homologue in 

P. falciparum (PfMIF) and to test the hypothesis that this protein may influence the host 

immune system during the course of P. falciparum infection.

Sequence analysis and modelling techniques were used to show that PfMIF shares 

important structural similarities to other MIF species. Studies of parasites in culture 

demonstrated that PfMIF mRNA and protein are expressed during ring and trophozoite 

stages of the parasite life cycle. Furthermore, PfMIF was found to be exported into the 

cytosol of the infected erythrocyte, and released upon schizont rupture, thus providing 

an opportunity for PfMIF to interact directly with the host immune system. 

Recombinant PfMIF protein was generated and used to treat monocytes in vitro. These 

experiments showed that PfMIF inhibits the random migration and chemotaxis of 

monocytes and influences surface molecule expression, as evidenced by a decrease in 

TLR2, TLR4 and CD86. Access to a cohort of children in Kenya allowed examination 

of patient antibody responses to PfMIF, which showed a pattern of expression similar to 

antibody responses to other malaria antigens previously examined.

In conclusion, these studies suggest that PfMIF could be an important molecule 

involved in the interaction between the parasite and the host immune system during the 

course of P. falciparum infection.
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CHAPTER 1

Introduction



Malaria has historically been, and still remains, a major global health burden. 

Investigation into the development of immunity to malaria, although greatly advanced 

in recent years, is still far from complete. One aspect of the immune response to malaria 

that requires particular attention is direct interactions between the parasite and host. A 

major advance in malaria research in recent years has been the sequencing of the 

Plasmodium falciparum genome. This project identified a gene that shares significant 

sequence homology with the mammalian cytokine macrophage migration inhibitory 

factor (MIF). Identification of a cytokine homologue expressed by the malaria parasite 

suggests the possibility of interaction between parasite and host that could contribute to 

the development of immunity to malaria. This hypothesis forms the basis of this thesis.

The following introductory chapter provides an overview of malaria including global 

burden, transmission, symptoms and immunity to the disease. Additionally, the activity 

of macrophage migration inhibitory factor, including current knowledge of its role in 

immune responses to malaria and other infectious and immune mediated diseases, is 

also reviewed.

1.1 MALARIA-BURDEN AND DISTRIBUTION

Prior to intervention, malaria was much more widespread than it is today. In 1900, the 

time of maximal distribution of malaria, areas of Plasmodium transmission spread to the 

latitudes of 64° north and 32° south (i.e. extending from Moscow to Durban). This 

distribution was estimated to cover 53% of the Earth’s land surface, thereby exposing 

77% of the world’s population to Plasmodium infection (Hay et a l, 2004). Since 1900, 

malaria controls have restricted this distribution dramatically; however as of 2002, half
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the planet’s population remains exposed to the risk of malaria (figure 1.1). Firm data on 

the global morbidity and mortality caused by malaria is not available, but it has recently 

been estimated that there are around 500 million malaria cases per year worldwide 

(Snow et al., 2005). Estimates of the number of deaths caused by malaria are equally 

vague but generally fall between 700,000 and 2.7 million per year (Breman, 2001). The 

majority of the malaria burden is borne by sub-Saharan Africa, accounting for 

approximately 70% of global infections. It has also been reported that the risk of death 

after Plasmodium infection is higher in Africa than in South East Asia or the Western 

Pacific (Snow et al., 2005).

IValana e n dem icity

Figure 1.1: Global malaria transmission risk, 2003. From World Health Organization, 

World Malaria Report 2005. http://www.rbm.who.int/wmr2005 (WFIO, 2005).

http://www.rbm.who.int/wmr2005


The burden of disease depends on the nature of malaria transmission in a given region. 

In hyperendemic and holoendemic areas, the burden of severe disease and malaria 

mortality is borne by the under-5 age group. This is a common situation in sub-Saharan 

Africa. In regions with more seasonal transmission, such as South East Asia, more 

malaria cases are seen in adults that have not developed immunity. The burden of 

malaria comprises not just morbidity and mortality, but also the financial cost to 

malarial countries. Estimates of malaria’s economic impact are difficult to calculate but 

the gross domestic product of malarial nations is five times lower than the global 

average (Gallup and Sachs, 2001). It remains unclear whether malaria is a major 

contributor to poverty or simply an effect of poverty.

Malaria is transmitted to vertebrate hosts by the bite of female Anopheles mosquitoes 

infected with a protozoan parasite of the genus Plasmodium. There are four species of 

Plasmodium responsible for malaria in humans. Plasmodium ovale and Plasmodium 

malariae are infrequent causes of clinical malaria. In Asia, South America and Oceania 

Plasmodium vivax is a major cause of clinical malaria, but is rarely fatal. Plasmodium 

falciparum is responsible for the most severe disease and almost all malaria deaths, with 

the greatest burden of mortality in sub-Saharan Africa.

1.2 P.FALCIPARUM LIFE CYCLE

The lifecycle of Plasmodium falciparum parasites is complex and involves stages in 

mosquito and mammalian hosts (figure 1.2). During the ingestion of a blood meal by an 

Anopheles mosquito, sporozoites are injected into the bloodstream of the mammalian
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host. Sporozoites make their way to the liver within minutes of inoculation and infect 

hepatocytes where they undergo a period of intracellular replication. In the subsequent 5 

to 10 days, parasites differentiate and multiply within the hepatocytes and finally 20,000 

to 40,000 merozoites are released into the bloodstream where they invade erythrocytes. 

The intraerythrocytic phase of infection lasts approximately 48 hours, during which 

time parasites develop and multiply. When the infected red blood cell (iRBC) bursts, 6- 

32 merozoites per erythrocyte are released into the bloodstream to invade uninfected 

erythrocytes and begin a new cycle. Parasite multiplication continues until it is 

controlled by the immune response or drug treatment and it is during this repeated 

intraerythrocytic cycle that symptoms of disease develop. A small proportion of the 

invading merozoites undergo differentiation into either male or female gametocytes, 

which are subsequently taken up in a mosquito blood meal. In the mosquito mid-gut, the 

male and female gametes are released and fuse to form a zygote, which then undergoes 

a series of complicated differentiation and growth stages that results in the production 

of infective sporozoites in the salivary glands of the mosquito.
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Figure 1.2: Plasmodium lifecycle. The stage of the lifecycle that is the primary focus in 

the course of this thesis is the erythrocytic cycle (B). Modified from CDC,

http://www.cdc.gov/malaria/biology/life cvcle.htm (CDC, 2006).

1.3 CYTOADHERENCE OF INFECTED ERYTHROCYTES

One major characteristic of P. falciparum , unique to Plasmodium parasites that infect 

humans, is the phenomenon of cytoadherence. As P. falciparum  parasites mature during 

the 48hr replicative blood stage cycle they express variant surface antigens, including 

Plasmodium falciparum  erythrocyte binding protein-1 (PfEMPl), on the surface of the 

infected erythrocyte. PfEMPl proteins have been shown to bind to multiple receptors 

on the vascular endothelium including CD36, intercellular adhesion molecule (ICAM)- 

1, complement receptor 1 (CR-1), E-selectin, CSA, vascular cell adhesion molecule
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(VCAM)-l, CD31, E-selectin and hyaluronic acid. This process is primarily thought to 

be a mechanism of avoiding circulation to, and subsequent destruction by, the spleen. 

This process of avoiding the spleen also leads to concentration of parasites in various 

other organs, depending on the specific PfEMPl being expressed and the endothelial 

receptor expression profile. This sequestration of iRBC in organs and blood vessels has 

pathological consequences for the progress of malarial disease severity. Parasitised 

RBC also bind to thrombospondin, but this adherence precedes the expression of 

PfEMPl on the surface of iRBC implicating another binding partner, possibly another 

parasite variant antigen (Gardner et al., 1996).

1.3.1 Rosetting

Infected red blood cells (iRBC) from some P. falciparum isolates bind to CR-1, which 

is expressed on uninfected erythrocytes, to form rosettes. Blood group A and 

immunoglobulins have also been shown to play a role as ligands in the rosetting 

phenotype (Fernandez et al., 1998; Rowe et al., 1995). Although rosetting is an in vitro 

observation, it has been suggested that if it does occur in vivo it may enhance merozoite 

invasion of uninfected erythrocytes upon schizont rupture or help shield the iRBC from 

the immune system (Rowe et al., 2002). A rosetting phenotype has been linked with 

severe malaria in some studies (Rowe et al., 1995) but the impact of a rosetting 

phenotype remains to be clarified.

1.3.2 Agglutination

Some laboratory lines of P. falciparum are also capable of forming clumps of iRBC. 

This agglutination is mediated by platelets and is expressed by some but not all CD36- 

binding parasite lines (Pain et al., 2001). This is a further mechanism whereby iRBC 

may accumulate or be retained in the microvasculature and thereby avoid destruction.
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This particular phenotype may also contribute to vascular obstruction and more severe 

pathology.

1.4 SYMPTOMS

Infection with Plasmodium falciparum can result in anything from asymptomatic 

infection, through a range of disease severities: from mild febrile illness through to life- 

threatening illness characterised by one or more syndromes including severe anaemia, 

acidosis, cerebral malaria and placental malaria.

1.4.1 Severe malarial anaemia

Severe malarial anaemia is the most common complication of malaria. Malarial 

anaemia results not only from the lysis of iRBC, but also involves the destruction of 

unparasitised red blood cells (RBC) as well as suppression of RBC production (Angus 

et al., 1997; Jakeman et al., 1999).

Destruction of non-parasitised RBC is not generally via haemolysis, which would be 

characterised by haemoglobin in the urine (Casals-Pascual and Roberts, 2006). Instead, 

it is thought to be mediated by macrophages in the red pulp of the spleen. This is 

consistent with observations that onset of anaemia is simultaneous with a distended 

spleen.

Blackwater fever is the relatively uncommon pathological state that is the exception to 

the intravascular haemolysis rule (Bruneel et al., 2001). It is characterised by dark red 

to almost black urine due to the release of haemoglobin and pathogenesis remains 

unclear. Blackwater fever is primarily associated with quinine use to treat severe 

malaria.



The number of reticulocytes in circulation, a direct indicator of recent erythropoietic 

activity, has been shown to be reduced during acute P. falciparum infection (Kurtzhals 

et a l, 1997). Malaria has been shown to suppress erythropoiesis during malaria in 

murine models. Lysates from the murine parasites P. berghei and P. chabaudi have 

been shown to cause erythropoietic suppression in vivo implicating bioactive parasite 

products in the process (Rudin et al., 1997). It has subsequently been shown that the 

malarial pigment haemozoin contributes to abnormal erythropoiesis in vitro (Casals- 

Pascual et a l,  2006). Additionally, in malaria patients the proportion of monocytes 

containing haemozoin and the levels of plasma haemozoin are associated with both 

anaemia and reticulocyte suppression (Casals-Pascual et a l, 2006).

1.4.2 Metabolic acidosis

Metabolic acidosis is characterised by respiratory distress, deep breathing and 

hypovolaemia. It has been suggested that inadequate oxygen supply, due to a 

combination of severe anaemia and vascular obstruction via cytoadherence (see section 

1.3), leads to a shift to anaerobic glucose metabolism and increased lactic acid 

production (Dondorp et a l, 1997; Vander Jagt et a l, 1990). Metabolic acidosis is 

strongly associated with disease severity and a predictor of poor outcome (Marsh et a l , 

1995).

1.4.3 Cerebral malaria

Cerebral malaria (CM) is described as a syndrome consisting of unrousable coma not 

attributable to hypoglycaemia, convulsions or meningitis in a patient with P. falciparum 

parasitaemia. It is generally believed that cerebral malaria is primarily caused by the 

sequestration of iRBC in the micro vasculature of the brain. However, some studies 

suggest that cerebral malaria is mediated by another mechanism, possibly aberrant
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cytokine responses (Hunt and Grau, 2003). This latter hypothesis is supported by the 

fact that patients who recover from cerebral malaria have relatively low rates of 

subsequent neurological impairment, which would be expected to result from the 

vascular obstruction caused by parasite sequestration (Brewster et a l, 1990). In a study 

by Taylor et al., 23% of fatalities attributed to CM actually resulted from other causes, 

including severe anaemia, pneumonia and meningitis (Taylor et a l, 2004). Accurate 

diagnosis of CM is clearly difficult and studies involving CM patients need to be 

cautious of this fact.

1.4.4 Placental malaria

In areas of high malaria transmission, women who reach childbearing age have already 

developed considerable immunity to malaria. However during their first or second 

pregnancy, women are at risk of developing placental malaria. Placental malaria is 

mediated by the binding of iRBC to chondroitin sulphate A (CSA) and hyaluronic acid 

that are preferentially expressed on placental endothelial cells (Beeson et a l, 1999; 

Beeson et a l, 2000). This leads to accumulation of iRBC in the placenta and results in 

low birth weight.

1.5 IMMUNITY TO PLASMODIUM FALCIPARUM

Immunity to malaria is never sterile and develops with increasing exposure and age. 

Mathematical models suggest that protection against severe malaria is acquired after 

only one or two successful infectious bites (Gupta et a l, 1999). Clinical immunity to 

mild malaria, resulting in asymptomatic infection, takes much longer to develop.
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1.5.1 Cellular immune responses

A broad range of cell types discussed briefly below have been shown to be involved in 

responses to P. falciparum infection.

1.5.1.1 Monocytes and Macrophages

Mononuclear phagocytes play an important role in innate immune responses to malaria 

due to their ability to phagocytose infected erythrocytes in the absence of antibodies 

that opsonise, (i.e. effectively mark for destruction) iRBC (Serghides et al., 2003). 

Opsonin-independent phagocytosis is mediated by the binding of infected erythrocytes 

to CD36, most likely mediated by PfEMP-1. This opsonin-independent phagocytosis of 

iRBC by macrophages leads to an accumulation of haemozoin and subsequent cellular 

dysfunction (see section 1.5.3.3).

1.5.1.2 Dendritic cells

Dendritic cells (DC) are professional antigen presenting cells that provide a vital link 

between the innate and adaptive arms of the immune system. Two major DC subsets 

can be detected in vivo that have distinct but overlapping functions. Myeloid DC are the 

main producers of interleukin (IL)-12, while plasmacytoid DC are the main producers 

of interferon (IFN)-a. In vitro studies have shown that RBC infected with P. falciparum 

are capable of binding to monocyte-derived DC in a CD3 6-dependent manner and 

modulate subsequent DC function (Urban et al., 1999). DC modulated by parasites are 

capable of secreting IL-10 and TNF-a but fail to up-regulate adhesion, co-stimulatory 

and major histocompatibility complex (MHC) molecules on their surface and are unable 

to activate naive T cells. Modulation of DC function by P. falciparum may be a primary 

method of immune evasion utilised by the parasite. DC maturation has also been shown 

to be modulated by the malarial pigment haemozoin. Monocytes that have taken up
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haemozoin have been shown to express fewer surface molecules such as MHC class II 

and ICAM-1, indicating an impairment of immune responses (Schwarzer et al., 1998). 

These haemozoin loaded monocytes also failed to mature into dendritic cells in vitro 

implicating a role for haemozoin in impairing DC maturation.

1.5.1.3 Natural Killer cells

Natural killer (NK) cells are primarily associated with the destruction of virus-infected 

cells. NK and natural killer T (NKT) cells are the first cells to produce IFN-y after 

exposure to iRBC (Artavanis-Tsakonas and Riley, 2002; Artavanis-Tsakonas et al.,

2003). Parasitised RBC interact directly with NK cells, resulting in the production of 

IFN-y. The nature of this interaction remains to be determined. The P. chabaudi mouse 

malaria model supports the importance of NK cells in innate immune responses during 

Plasmodium infection. This model showed that NK cell-depleted mice infected with P. 

chabaudi exhibit more severe disease (Artavanis-Tsakonas and Riley, 2002).

1.5.14 yd T cells

yb T cells are another bridge between the innate and adaptive immune responses. There 

is a large increase in circulating yb T cells during acute P. falciparum infection. 

Although the clinical relevance of this expansion is not fully understood, yb T cells have 

been shown to be a source of large amounts of IFN-y (Hviid et a l, 2001; Pichyangkul et 

al., 1997).

1.5.1.5 Regulatory T Cells

CD4+CD25+ regulatory T cells are thought to suppress CD4+ and CD8+ T cell activation 

thereby contributing to chronic infections. This has been demonstrated in mouse malaria 

models where the depletion of regulatory T cells protected mice from lethal P. yoelii
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infection (Hisaeda et al., 2004). In experimental sporozoite challenge of human 

volunteers the presence of regulatory T cells is associated with increased parasite 

growth rates (Walther et al., 2005).

1.5.1.6 B cells

Chronic P. falciparum infection leads to overactivation of B cells, which results in the 

secretion of a broad range of autoantibodies (Adu et al., 1982), hyperglobulinaemia and 

frequent occurrence of Burkitt’s lymphoma (Greenwood et al., 1970). The cysteine-rich 

interdomain region (CIDR)-lcx domain of PfEMP-1 has been implicated in the 

polyclonal activation of B cells via the binding of surface immunoglobulin molecules 

(Donati et a l , 2004).

1.5.1.7 Eosinophils

Eosinophils are present at low levels in the circulation and primarily responsible for the 

extracellular killing of multicellular parasites. The role of eosinophils during P. 

falciparum infection has not been extensively studied. It has been shown that during 

acute illness in children the relative number of eosinophils on blood films is decreased 

compared to controls (Kurtzhals et al., 1998b). Markers of eosinophil activity were 

increased during acute malaria. Meanwhile, children with asymptomatic infection had a 

relative increase in eosinophil frequency compared to controls (Kurtzhals et al., 1998b). 

It was also shown that eosinophil activity was higher during cerebral malaria compared 

to uncomplicated malaria. Further work is required to elucidate the function and 

relevance of eosinophils during malaria.

1.5.2 Pattern Recognition Receptors

Innate immune recognition relies on pattern recognition receptors (PRR) to recognise 

pathogen molecules and initiate an immune response. A growing number of PRR have
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been examined in recent years including Toll-like receptors, scavenger receptors and 

complement receptors.

1.5.2.1 Toll-like receptors

Toll-like receptors (TLR) recognise conserved molecular motifs predominantly found in 

microorganisms that do not occur in vertebrates. To date ten TLR members have been 

identified in mammals.

The activation of TLR pathways by iRBC or their products has been intensely 

investigated in recent years. The study of rodent models of malaria, using mice deficient 

in specific receptors or adaptor molecules, has considerably advanced the field. 

However, when comparing events in rodent models of malaria with the human disease, 

the differences in TLR expression on monocytes, macrophages and DC subsets have to 

be taken into consideration. In mice, TLR2, TLR4 and TLR9 are expressed on both 

myeloid and plasmacytoid DC. In humans, myeloid DC express TLR2 and TLR4 but 

not TLR9 and plasmacytoid DC express TLR7 and TLR9 (Shortman and Liu, 2002).

One of the first reports of the involvement of TLR in the immune response to 

Plasmodium infection indicated that myeloid differentiation factor 88 (MyD88), part of 

the downstream signalling cascade of TLR, was essential for responses to infection 

(Adachi et al., 2001). It was demonstrated that MyD88-deficient mice failed to produce 

IL-12 in response to infection with P. berghei, preventing subsequent liver damage that 

is associated with IL-12 production during infection in this model. The specific TLR 

mediating this response was not identified but TLR2, TLR4 and TLR6 were ruled out 

because knock out mice for these receptors showed normal increases of IL-12 in 

response to P. berghei infection (Adachi et al., 2001).
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In vitro experiments using P. falciparum-iRBC demonstrated that intact iRBC, lysates, 

or the soluble fractions of lysates all activate human plasmacytoid DC. Although the 

viability of plasmacytoid DC was maintained, they never fully matured in response to 

subsequent stimulation and induced only poor proliferation in allogeneic CD4+ T cells 

(Pichyangkul et a l , 2004). The plasmacytoid DC did however efficiently activate ybT 

cells in the presence of lysate, consistent with a marked increase in circulating y5T cells 

observed during acute P. falciparum infection (see section 1.5.1.4) (Behr and Dubois, 

1992; Goodier et al., 1993). Following these observations further work was undertaken 

to characterise the molecule or molecules responsible for these effects. While the factors 

inducing activation of plasmacytoid DC had characteristics of a protein, factor(s) 

activating yST cell appeared to be lipids as had been reported before (Farouk et al.,

2004). Further experiments indicated that the effect of P. falciparum lysate on mouse 

plasmacytoid DC in vitro was dependent on TLR9 (Farouk et al., 2004).

Studies by Coban et al addressed activation of murine DC by P. falciparum haemozoin 

(Coban et a l, 2005). They observed that pro-inflammatory cytokine production was not 

evident in MyD88 knock out mice indicating involvement of TLR pathways. Myeloid 

and plasmacytoid DC derived from wild type mice or TLR2, TLR4 and TLR7 knock 

out mice were activated by haemozoin, as indicated by an increase in CD40 and CD86 

expression. However, neither activation nor cytokine production was observed in DC 

derived from TLR9 knock out mice. Cytokine responses were the same for parasite- 

derived or synthetic haemozoin, indicating that in this model the effects were due to 

haemozoin itself rather than contaminating factors such as lipids, proteins or DNA.

Plasmodium glycosylphosphatidylinositol (GPI) has long been suspected to induce 

inflammatory signals (see section 1.5.3.2). Recent studies have demonstrated that GPI
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binds to TLR2 and, to a lesser extent, to TLR4 expressed by mouse and human 

macrophages and induces TNF-a secretion (Krishnegowda et a l, 2005; Zhu et al.,

2005). Mouse macrophages were also shown to produce IL-12, IL-6 and nitric oxide in 

response to GPI when they were first primed with IFN-y. It is therefore possible that 

GPI will also activate other myeloid cells such as myeloid DC via TLR2 and TLR4 in 

humans. Of note, free GPI has been shown to be quickly inactivated in vivo by 

phospholipases in serum and on cell surfaces. This may explain why activation of 

myeloid cells by Plasmodium GPI has long been suspected but very difficult to prove.

A recent study has examined TLR polymorphisms in African children in relation to 

malaria susceptibility (Mockenhaupt et al., 2006). It was shown that there was no 

difference in the distribution of known TLR9 polymorphisms in children with severe 

malaria compared to controls. In the case of TLR2, two polymorphisms found in 

Caucasians, Asians and North Africans were screened for, but none of the cases or 

controls had either of these polymorphisms in the study population. One child with 

severe malaria had a previously unidentified TLR2 single nucleotide polymorphism 

(SNP). When this SNP was characterised in vitro it was shown to be unresponsive to the 

TLR2 ligand Par^Cys. Two TLR4 polymorphisms were shown to be significantly more 

common in patients with severe malaria compared to controls. Although these 

polymorphisms have not been fully characterised, this study does provide further 

evidence that TLR2 and TLR4 are important for the innate immune responses to 

Plasmodium infection.

Together, the above studies suggest that both haemozoin and as yet unidentified 

protein(s) can activate DC by binding to TLR9, while GPI can activate DC by binding 

to TLR2 and TLR4. In mice, TLR9-mediated signalling occurs in both myeloid and

16



plasmacytoid DC. In this case, TLR9-mediated signalling can induce tolerance to 

TLR4-mediated signalling (Perry et al., 2005). In human malaria however, only 

plasmacytoid DC will respond to TLR9 ligands. The activation of plasmacytoid DC and 

their production of IFN-a can then induce the maturation of myeloid DC. Whether or 

not myeloid DC will be more or less responsive to TLR2 and TLR4-mediated signals, 

however, remains to be investigated for P. falciparum infection.

1.5.2.2 Scavenger receptors

Scavenger receptors consist of a group of receptors that bind to chemically modified 

lipoproteins and mediate endocytosis. These receptors are broadly expressed on 

macrophages, DC and some endothelial cells. The class B scavenger receptor, CD36, is 

the most important scavenger receptor studied so far in P. falciparum malaria. Studies 

suggest that CD36 is the crucial receptor for the phagocytosis of iRBC that have not 

been opsonised by either complement proteins or antibodies. Macrophages from CD36- 

deficient mice ingest P. falciparum-iRBC at a much lower rate than macrophages 

expressing normal levels of CD36 (McGilvray et al., 2000; Patel et al., 2004). Neither 

human nor rodent macrophages produce TNF-a in response to phagocytosis of iRBC 

suggesting that non-opsonic phagocytosis does not result in the activation of myeloid 

cells. This is similar to the in vitro modulation of DC function mentioned above (see 

section 1.5.1.2). Similar modulation of DC function was observed in response to 

antibodies against CD36 suggesting that adhesion of iRBC to CD36 expressed on DC is 

sufficient to cause modulation of activity (Urban et al., 2001). Interestingly, it has 

recently been reported that TLR2 and CD36 cooperate in the recognition of microbial 

diacylglycerides (Hoebe et al., 2005; Stuart et al., 2005).

The role of scavenger receptors other than CD36 in Plasmodium blood stage infection is

17



less clear. Mice resistant to P. chabaudi infection show some increase in phagocytic 

activity compared to susceptible mice. Subsequent blocking of scavenger receptors with 

polyinosinic acid inhibited phagocytosis of iRBC and merozoites in vitro and led to 

increased parasitaemia in vivo in resistant mice compared to susceptible mice. However, 

blocking of scavenger receptors did not affect the development of protective immune 

responses (Su et al., 2002). Furthermore, type I and II class A scavenger receptor knock 

out mice showed a similar course of P. chabaudi infection to wild type mice. The 

involvement of mannose receptors was tested by inhibition with mannan. Again, a 

decrease in phagocytosis was seen without altering the course of infection in vivo (Su et 

a l , 2002). Together, these results suggest that scavenger receptors are involved in 

innate responses to Plasmodium infection but not critical for the control of parasitaemia 

or indeed survival in rodent models of malaria.

1.5.2.3 Complement receptors

Complement receptor 1 (CR-1) is an immune regulatory molecule expressed on the 

surface of a range of cell types including erythrocytes. CR-1 is responsible for binding 

activated complement components C3b and C4b, leading to the clearance of immune 

complexes, increased phagocytosis and the regulation of complement activation 

(Ahearn and Fearon, 1989). CR-1 is also required for rosetting, a process associated 

with severe malaria where iRBC bind uninfected RBC to form aggregates (see section 

1.4.1)(Rowe et a l , 1995). CR-1 on uninfected RBC has been shown to be required for 

the formation of rosettes by interacting with PfEMPl expressed on the surface of iRBC 

(Rowe et a l, 1997). Several studies have investigated the effect of CR-1 

polymorphisms on malarial disease but the role of CR-1 remains to be clarified. CR-1 

polymorphisms in West Africans have been identified in association with malaria
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(Moulds et a l, 2000; Thomas et a l, 2005). Subsequent work in Papua New Guinea 

indicated that a CR-1 polymorphism that reduces CR-1 expression confers protection 

against severe malaria (Cockburn et al., 2004). This was, however, associated with the 

heterozygotes not the homozygotes for the CR-1 low-expression allele. It is still to be 

determined whether effects mediated by CR-1 are due to rosetting or its ability to bind 

immune complexes and C3b. Either hypothesis for its method of protection from severe 

malaria is possible depending on which of the two theories of cerebral malaria 

pathogenesis is preferred; occlusion of microvasculature due to rosetting or the 

stimulation of inflammation via the binding of immune complexes. A further study 

indicated that Thai adults homozygous for low CR-1 expression were in fact more 

susceptible to severe malaria (Nagayasu et a l, 2001). However there was no significant 

difference in CR-1 levels between the homozygous controls and the heterozygotes, 

leading to questions of whether the effects are due to CR-1 expression or another factor.

1.5.3 Pattern recognition receptor ligands in Plasmodium

Several ligands that are thought to interact with pattern recognition receptors have been 

examined in Plasmodium parasites. The major PRR ligand candidates identified so far 

include P. falciparum erythrocyte membrane protein-1 (PfEMP-1), 

glycosylphosphatidylinositol (GPI) and haemozoin.

1.5.3.1 P. falciparum erythrocyte membrane protein-1 (PfEMP-1)

PfEMP-1 mediates sequestration of infected red blood cells (iRBC) during P. 

falciparum infection and undergoes clonal antigenic variation. PfEMP-1 is encoded by 

approximately 60 var genes per genome, only one of which is transcribed at any time. 

The extracellular portion of PfEMP-l is composed of variable numbers of two main 

domains: the Duffy binding like (DBL) domain and the cysteine-rich interdomain
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region (CIDR) (Gardner et al., 2002). All PfEMP-1 molecules contain at least one 

CIDR domain and two DBL domains. Although domain structures can be identified, 

these domains show considerable sequence heterogeneity. Adhesion of specific PfEMP- 

1 variants to host receptors has been located within different domains (Baruch et al., 

1997; Rowe et al., 1997; Smith et al., 2000). Almost two thirds of CIDR domains of 

PfEMP-l encoded by var genes in the genome of the laboratory parasite line 3D7 bind 

to the scavenger receptor CD36, whereas some DBL domains can bind to ICAM-1 or 

complement receptor-1 (CR-1) (Robinson et al., 2003). Binding to CR-1 expressed on 

erythrocytes mediates rosetting of erythrocytes by iRBC, as discussed above (see 

section 1.4.1) (Rowe et a l, 1997). Whether iRBC that bind to CR-1 on erythrocytes 

also adhere to myeloid cells (i.e. macrophages in the spleen), remains to be determined.

1.5.3.2 Glycosylphosphatidylinositol (GPI)

Many proteins expressed on the surface of merozoites are anchored by GPI (Sanders et 

al., 2005). GPI has long been associated with potent activation of innate immune cells 

resulting in the production of TNF-a, which makes it a good candidate PRR ligand 

(Schofield and Hackett, 1993). Individuals living in endemic areas readily make 

antibodies against P. falciparum GPI. The expression of GPI antibodies has been 

associated with protection from severe disease in some studies (Boutlis et al., 2002; de 

Souza et a l, 2002). In addition, GPI has been proposed to be a ligand for CD Id, a non- 

classical MHC molecule that binds gly colipids. Recognition of CD Id by invariant T 

cell receptors expressed on NKT cells has been shown to regulate susceptibility to 

severe disease in rodent models of malaria (Hansen et al., 2003).

1.5.3.3 Haemozoin

The malarial pigment haemozoin is a detoxification product of haem that is usually
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found in the food vacuoles of the Plasmodium parasite. Haemozoin, together with other 

debris, is released when mature iRBC rupture and is rapidly taken up by neutrophils, 

monocyte/macrophages and DC. Haemozoin is not biochemically inert: it reacts with 

membrane phospholipids which are transformed into hydroxy-polyunsaturated fatty 

acids, causing membrane peroxidation (Schwarzer et al., 1992; Schwarzer et al., 2003). 

In addition, haemozoin catalysis induces the formation of prostaglandin^ (PGE2) and 

PGF2a. While hydroxy-polyunsaturated fatty acids inhibit monocyte function such as 

phagocytosis, activation by inflammatory cytokines and generation of an oxidative 

burst, the release of PGE2 and PGF2a could alter T- and B-cell functions. Furthermore, 

monocyte differentiation into DC was impaired in the presence of haemozoin 

(Skorokhod et al., 2004) and DC co-cultured with haemozoin showed an altered 

response to maturation signals. These impairments were accompanied by increased 

expression of the peroxisome proliferator-activated receptor-y, up-regulation of which is 

known to interfere with DC maturation (Angeli et al., 2003; Nencioni et a l, 2002).

1.5.4 Cytokines in P. falciparum infection

Malarial disease and its severity are largely dependent upon the balance of cytokines 

released during the course of infection (Malaguarnera and Musumeci, 2002). Several 

different cytokines have been deemed to be required for the development of immunity 

to Plasmodium infection or the development of severe pathology. Early pro- 

inflammatory (ThI) cytokine responses seem to be responsible for protective immunity 

whereas late responses contribute to pathology and may lead to severe disease. In mild 

malaria it would seem that early inflammatory responses are downregulated by 

subsequent anti-inflammatory (Th2) cytokine production.
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1.5.4.1 Tumour Necrosis Factor-a

Tumour Necrosis Factor-a (TNF-a) was the first cytokine described as being induced 

by parasite infection. TNF-a is involved in the regulation of IL-12 and is an important 

co-factor for IL-12-induced production of IFN-y by NK cells. Elevated TNF-a levels 

are associated with parasite clearance and resolution of fever (Tripp et a l, 1993).

1.5.4.2 Interferon- y

NK cells produce the pro-inflammatory cytokine interferon-y (IFN-y) during early 

Plasmodium infection and T lymphocytes are the primary source during the specific 

immune responses that follow. There is evidence that children with uncomplicated 

malaria are more likely to have higher concentrations of IFN-y-secreting CD4+ T-cells 

than children with hyperparasitaemia (Beutler and Grau, 1993).

1.5.4.3 Interleukin-12

Interleukin-12 (IL-12) has been shown to be effective in conferring protection against a 

broad range of infections (Trinchieri, 1995). IL-12 induces antibody isotype-switching 

through IFN-y-dependent and independent mechanisms as well as increasing cell- 

mediated immune responses. Some but not all studies show that levels of IL-12 are 

lower in severe falciparum malaria (Luty et al., 2000; Musumeci et al., 2003; Perkins et 

al., 2000); however, there is a subsequent study that shows the opposite, with a small 

but significant increase in IL-12 during severe malaria (Lyke et al., 2004).

1.5.4.4 Interleukin-18

Interleukin-18 (IL-18) is an immunoregulatory cytokine that induces TNF-a, IFN-y and 

IL-1 (3 secretion by macrophages, induces ThI differentiation and NK cell cytotoxicity. 

IL-18 acts synergistically with IL-12 to induce IFN-y release from macrophages.
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It has been shown that during P. falciparum infection there is an increase in IL-18 

during acute and convalescent phases of uncomplicated malaria (Torre et a l , 2001).

1.5.4.5 Interleukin-4

Interleukin-4 (IL-4) is an anti-inflammatory cytokine that stimulates a Th2 response 

whilst inhibiting ThI responses by suppressing IFN-y production.

An association between IL-4 production by T-cells to specific malaria antigens in vitro 

and increasing serum antibodies to the same antigens in vivo has been demonstrated 

(Troye-Blomberg et al., 1990).

1.5.4.6 Interleukin-10

Interleukin-10 (IL-10) induces B cell proliferation, which is essential for the 

development of malarial antibodies. IL-10 is secreted by macrophages, Tr2 cells and B 

cells and inhibits cytokine production by ThI cells. Low levels of IL-10 have been 

shown to be associated with severe malarial anaemia compared to cerebral and 

uncomplicated disease (Kurtzhals et al., 1998a; Othoro et al., 1999).

1.5.4.7 Interleukin-8

IL-8 is a chemotactic pro-inflammatory chemokine that is involved in a range of 

inflammatory and immune responses (Mukaida et al., 1998).

The role of IL-8 in the course of malaria infection has been examined in a small number 

of studies. Volunteers experimentally infected with P. falciparum show an increase in 

IL-8 early in the course of infection (Hermsen et al., 2003). Similarly, a study in 

patients in Mali has shown that there is a small but significant increase in IL-8 levels 

during severe malaria compared to controls (Lyke et al., 2004).
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1.5.4.8 Transforming Growth Factor-(5

Transforming Growth Factor-(3 (TGF-P) plays a role in the transition between ThI and 

Tr2 responses in malaria. TGF-p inhibits the production of IFN-y and TNF-a, 

upregulates IL-10 and downregulates surface adhesion molecules (Maeda and Shiraishi, 

1996; Nakabayashi et al., 1997). Recently, TGF-p has attracted considerable attention 

in relation to its role during malaria. Lower levels of TGF-p were detected in acute 

malaria patients than healthy controls; however there was no difference between acute 

and severe malaria (Wenisch et a l, 1995). A study involving P. falciparum sporozoite 

challenge of human volunteers has suggested that the production of TGF-P is associated 

with higher growth rates of parasites in vivo (Walther et a l , 2005).

1.5.5 Nitric oxide

Nitric oxide (NO) has long been suggested to play a role in malarial disease (Clark et 

a l, 1992). The role of nitric oxide has been described as both detrimental in patients in 

Papua New Guinea (Al Yaman et a l, 1996) and protective in patients in Tanzania 

(Anstey et a l, 1996). The inability to measure NO directly, due to its labile nature, 

leads to a requirement to use its oxidation products as indirect measures. When testing 

patient samples this makes interpretation of results difficult.

1.5.6 Antibody responses

The importance of antibody responses in malarial immunity is demonstrated by a 

reduction of parasitaemia by passive transfer of immunoglobulins (Ig). This is 

supported by the fact that children of less than six months of age, in high transmission 

areas, are protected from malaria, this being attributed to the transfer of maternal IgG 

(Riley et a l, 2001). Studies of the antibody responses of both convalescent children and 

immune adults have demonstrated that they have circulating iRBC-agglutinating
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antibodies (Marsh and Howard, 1986). These agglutinating antibodies are specific to 

parasite variant surface antigens (VSA), such as PfEMP-1, exposed on the surface of 

iRBC. Bull et a l showed that Kenyan children are unlikely to be infected with parasites 

expressing VS A against which they have specific antibodies (Bull et ah, 1998). This 

demonstrates the importance of VSA-recognising antibodies in the protection against 

subsequent P. falciparum infection. It is thought that a component of immunity to 

malaria is developed through the gradual acquisition of a repertoire of antibodies to the 

different parasite variants in a human population (Bull and Marsh, 2002). Antibody 

responses alone however are not thought to be sufficient to provide protection from 

malaria episodes.

It has been shown that IgE levels are higher in people living in malaria endemic areas 

and that IgE levels are elevated during malaria, with levels significantly higher in cases 

of severe and cerebral malaria compared to uncomplicated malaria (Perlmann et a l, 

1999). Experimentally induced malaria in mice also results in elevated IgE providing 

indirect evidence that this is induced by the Plasmodium parasite itself and not a 

concomitant infection.

1.5.7 Role of the spleen during malaria

The spleen plays a significant role during Plasmodium infection, however its 

importance has been neglected in recent years. The spleen is responsible for removing 

damaged and iRBC from the circulation. Splenectomised individuals with malaria have 

reduced clearance of parasites from the circulation (Chotivanich et a l, 2002). 

Interestingly, splenectomy in mice has been shown to protect against cerebral malaria 

upon P. berghei infection. Similarly, depletion of CD4+ and CD8+ T cells has the same 

effect, confirming the importance of the spleen as a site for the development of
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protective and pathological immune responses following Plasmodium infection 

(Hermsen et al., 1997). Specific T and B cell responses are generated within the spleen. 

The spleen is also an important site for haematopoiesis and erythropoiesis (Engwerda et 

al., 2005). Recent evidence suggests that fatal malaria is associated with disorganisation 

of splenic architecture, including the inhibition of DC migration (Urban et al., 2005). 

Additionally, immune cells in the spleen can ‘pit’ iRBC in order to remove and destroy 

the parasite but leave the erythrocyte intact and able to reenter the circulation (Angus et 

al., 1997; Chotivanich et al., 2002).

1.5.8 Co-infection with Plasmodium and helminth parasites

In areas of malaria transmission P. falciparum is not likely to be the exclusive pathogen 

that a patient carries. Co-infection with different pathogens can influence the generation 

of immunity to these infectious agents. Parasitic worms have high prevalence rates in 

regions with malaria transmission and have generated interest in relation to their effect 

on malaria progression and immunity. Studies from the late 1970’s showed that 

infection with Ascaris lumbricoides led to suppression of malaria symptoms and 

treatment for ascariasis was followed by subsequent malaria recrudescence (Nacher et 

al., 2002). Ascariasis has subsequently been shown to protect against cerebral malaria 

(Nacher et al., 2000). In any study involving malaria patients, concomitant infection 

with worms should be taken into consideration.

In general, it has not been clearly established whether clinical immunity to P. 

falciparum infection is due to regulation of the balance of ThI and Tr2 cytokines, 

development of an appropriate repertoire of antibodies, adaptive immune responses to 

bioactive parasite products or a combination of mechanisms.
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1.6 MACROPHAGE MIGRATION INHIBITORY FACTOR

Macrophage migration inhibitory factor (MIF) was one of the first cytokines described 

about 40 years ago. It was identified as a T-cell derived factor that inhibited the random 

migration of monocytes in an in vitro model for delayed-type hypersensitivity reaction 

(David, 1966). The biological activities of MIF were not further elucidated until the 

cloning of MIF complementary DNA was achieved in 1989 (Weiser et a l , 1989). A 

single human MIF gene is present on chromosome 22 that encodes a 12.5 kDa protein. 

MIF is highly evolutionarily conserved with homologues identified in birds, jawless 

fishes (Sato et al., 2003) and nematodes, as well as plants and cyanobacteria (Calandra 

and Roger, 2003). Mammalian MIF has been assigned cytokine, hormone-like and 

thioredoxin-like functions. The only other gene with which MIF shares marked 

homology is D-dopachrome tautomerase. Although MIF has been studied extensively 

over the last 15 years, clarification of its activities and exact modes of action remains 

elusive and at times contradictory.

Initial studies identified a role for mouse MIF as a mediator of endotoxic shock 

(Bernhagen et a l , 1993). Subsequently, MIF has been linked to an expanding range of 

activities in a wide variety of systems.

1.6.1 MIF expression

MIF is expressed in a wide range of tissues and cell types and is not specific to the 

immune system. The primary source of MIF was initially thought to be T cells; 

however, it has since been shown that many other cells of the immune system produce 

MIF, including monocytes, macrophages, eosinophils, dendritic cells, B cells, mast 

cells, basophils and neutrophils (Calandra et a l, 2003). Outside the immune system 

MIF is expressed in kidney, liver, fibroblasts, Leydig cells, adipocytes and vascular
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endothelial cells (Abe et al., 2000; Calandra et a l, 1994; Calandra and Roger, 2003; 

Meinhardt et al., 1996; Nishihira et al., 1998; Rossi et al., 1998; Skurk et al., 2005).

1.6.2 MIF secretion

MIF is released from macrophages in response to LPS, exotoxins, haemozoin, and 

exposure to gram-negative and gram-positive bacteria, mycobacteria, and pro- 

inflammatory cytokines including TNF-a and IFN-y (Calandra et al., 2003). Many of 

these stimuli elicit a bell-shaped release of MIF (Calandra et al., 1998).

Preformed MIF exists in several cell types indicating that a good deal of MIF is secreted 

from preformed stores. This is unlike most cytokines for which expression is 

upregulated by stimulation. The majority of cytokines are secreted via an endoplasmic 

reticulum (ER) mediated mechanism; MIF however has no discernable signal sequence 

for translocation to the ER. Furthermore, studies of cell localisation have shown MIF is 

located in the cytosol, in small vesicles, the nucleus and vesicles outside the cell 

(Burger-Kentischer et al., 2002; Nishino et al., 1995). This suggests that MIF secretion 

occurs via a non-classical pathway and subsequent investigation has shown that MIF is 

secreted by an ABCA1 transporter-dependent pathway (Flieger et al., 2003).

1.6.3 Structure

In 1996, Sugimoto et al. published crystallography studies, which suggested that MIF 

forms a homotrimer (Sugimoto et al., 1996). Subsequent cross-linking experiments 

found that MIF in fact consists of a mixture of monomeric, dimeric and trimeric forms 

(Mischke et al., 1998). Estimates of relative human MIF protein densities have shown 

that 44% of protein exists in the form of a monomer, 33% dimer and 23% formed 

trimers. Substitution of the cysteine at position 57 results in less trimer formation, 

which may affect enzymatic activity (see section 1.6.4.1).
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1.6.4 MIF mechanisms of action

The molecular mechanisms attributed to MIF are varied and often contradictory. MIF 

activity has been attributed to its documented enzymatic activities, activation of 

signalling pathways, regulation of surface molecule expression, induction of expression 

and secretion of several factors, the binding of intracellular regulatory molecules and a 

putative cell surface receptor. The stability and hydrophobicity of MIF led to the 

suggestion that the protein may be a molecular chaperone (Cherepkova et al., 2006). In 

vitro assays have shown that MIF is indeed capable of preventing protein aggregation in 

a chaperone-like manner (Cherepkova et al., 2006).

1.6.4.1 MIF enzymatic activities

Uniquely for a cytokine, MIF has two distinct enzymatic activities. Initially a 

phenylpyruvate tautomerase activity was attributed to MIF (Rosengren et al., 1997). 

This was soon followed by the identification of a thiol-protein oxidoreductase activity 

(Kleemann et al., 1998). Although both catalytic sites are well described, the 

physiological substrates and possible roles for these enzymatic activities are still to be 

determined.

Several groups have examined mutant MIF proteins in order to dissect the role of its 

different enzymatic activities in various in vitro immunological assays. Mutational 

analysis has determined that the initial N-terminal proline is essential for tautomerase 

activity. Several separate studies have confirmed that the removal or substitution of the 

proline at position 1 with another amino acid completely ablates tautomerase activity 

(Bendrat et al., 1997; Hermanowski-Vosatka et al., 1999; Stamps et al., 1998; Swope et 

al., 1998). However, MIF proteins with a truncated C-terminus are also incapable of 

tautomerase activity. This is most likely due to the importance of the C-terminus in
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correct protein folding and not to direct involvement at the catalytic site.

The oxidoreductase activity has been shown to be centred on the CXXC motif of MIF 

(Kleemann et al., 1998). Substitution of either cysteine in this motif reduces 

oxidoreductase activity. This motif also appears to be required for macrophage 

activation. Substitution of the cysteines at position 57 or 60 as well as the downstream 

cysteine at position 81 leads to a reduction in glucocorticoid overriding activity 

(Kleemann et al., 1999). In vitro experiments have shown that a 16-residue MIF peptide 

that straddles the CXXC motif has oxidoreductase activity, overrides glucocorticoid 

activity and also increases extracellular signal-regulated kinases (ERK)l/2 

phosphorylation (see section 1.6.4.3) (Nguyen et a l , 2003).

Although the enzymatic activities of MIF are well established, their contribution to the 

physiological roles of MIF remains to be determined. N-terminal mutants, which lack 

tautomerase activity, are still capable of inhibiting chemotaxis and random migration of 

monocytes in vitro (Hermanowski-Vosatka et al., 1999), as well as counter-regulating 

glucocorticoid inhibition of TNF-a production in monocytes (Lubetsky et al., 2002). 

This indicates that another mechanism of action, aside from tautomerase activity, is 

responsible for the migration phenotype of MIF and its effect on glucocorticoid counter

regulation. Numerous studies of MIF mutants form no consensus to clearly link either 

enzymatic activity to any of MIF’s attributed biological actions. The lack of a consistent 

test for MIF activity across these studies makes this issue more difficult to clarify.
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1.6.4.2 Counter regulation o f glucocorticoid action

Glucocorticoids have the ability to inhibit the expression of a wide range of pro- 

inflammatory cytokines. This is exploited during the treatment o f chronic inflammatory 

conditions such as arthritis, Crohn’s disease and asthma (Van Molle and Libert, 2005). 

The initial link between anti-inflammatory glucocorticoids and pro-inflammatory MIF 

was the surprising finding that dexamethasone (a glucocorticoid analogue) induced MIF 

expression (Calandra et al., 1995). MIF was subsequently shown to override the 

dexamethasone mediated inhibition of LPS-induced pro-inflammatory cytokines (figure 

1.3). Further studies have demonstrated that there is a balance between pro- and anti

inflammatory responses mediated by glucocorticoids and MIF (Van Molle and Libert,

2005).
MIF
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Figure 1.3: MIF counter-regulation of glucocorticoid activity. MIF counter-regulates the 

immunosuppressive effects of glucocorticoids at the transcriptional and post- 

transcriptional levels. Modified from Calandra and Roger (2003) (Calandra and Roger, 

2003) and Renner et al. (2005) (Renner et al., 2005).
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1.6.4.3 A ctivation o f signalling pathways

In 1999, Mitchell et al. reported dose-dependent activation of ERK1/2 by recombinant 

MIF (figure 1.4) (Mitchell et al., 1999). This was the first regulatory affect attributed to 

MIF and has subsequently been confirmed by several groups (Fukuzawa et al., 2002; 

Leng et al., 2003; Liao et al., 2003; Lue et al., 2005; Nguyen et al., 2003; Onodera et 

al., 2002). MIF has also been shown to alter the expression of monocyte surface 

molecules (see section 1.6.4.6). Inhibition of src kinases, phosphoinositide 3 (PI3) 

kinase and nuclear factor kB (NFkB) led to reduced expression of surface molecules in 

response to MIF (Amin et al., 2006). The role of MIF in some other cell signalling 

pathways is less well defined. For example, Santos and colleagues identified p38 

mitogen activated protein (MAP) kinase activation by MIF in synovial cells (Santos et 

al., 2004). However, this is contradicted by studies in both osteoblasts (Onodera et al., 

2002) and endothelial cells (Amin et al., 2003), which report that p38 signalling 

pathways are not activated by MIF. Many of the contradictory results seen in this area 

may be due to differing mechanisms of action of MIF in the wide variety of different 

cell types the protein is known to influence.

1.6.4.4 Inhibition o f p53 activity

p53 is a protein involved in mediating growth arrest and apoptosis. Studies performed 

by Hudson et al. identified MIF as a negative regulator of p53 activity (Hudson et al., 

1999). An effect of MIF to down-regulate p53 activity, including NO-induced 

apoptosis, thereby implicates MIF in inflammation and potentially in tumorigenesis. 

Inhibition of p53 activity by MIF has subsequently been shown to reduce in vitro 

apoptosis in macrophages, thereby demonstrating a potential pro-inflammatory 

regulatory role for MIF in innate immunity (figure 1.4) (Mitchell et al., 2002).

32



LPS

MIF
TLR4

CD74 CD44

Oxidative

Ik^ degradation

KB ERK 1/2

cPLA,MIFApoptosis

Arachidonic acid

iNOS

PGE.

Cytokines, surface m olecules and MMP

NO
Growth arrest and apoptosis

Figure 1.4: Induction and regulation of inflammatory responses by MIF. MIF can 

activate a cascade of events including ERK1/2 activation, PLA2 induction, JNK activity 

and PGE2 production. Additionally MIF has been shown to be important for TLR4 

expression on macrophages, thereby increasing recognition of endotoxin, which 

promotes the production of cytokines, nitric oxide and other mediators. Modified from 

Calandra and Roger (2003) (Calandra and Roger, 2003) and Renner et al. (2005) 

(Renner et al., 2005).

The role of MIF in the regulation of p53 during the course of disease progression has so 

far been examined for a couple of conditions. The inflammation seen during rheumatoid 

arthritis is underpinned by an imbalance between proliferation and apoptosis. 

Synoviocytes treated in vitro with MIF express less p53 than untreated cells (Leech et 

al., 2003). Similarly, MIF-deficient mice express more p53 in spleen cells and 

fibroblasts than wild-type animals and also showed greater rates of sodium
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nitroprusside induced apoptosis (Leech et al., 2003). Experimentally induced arthritis 

was found to be less severe in MIF deficient mice, indicating an important role for MIF 

in the progression of this disease and also providing further evidence for MIF as a pro- 

inflammatory signal (Ichiyama et al., 2004). Indirect evidence has also suggested that 

MIF is responsible for Helicobacter £>y/on-mediated inhibition of apoptosis and 

development of gastric cancers via the inhibition of p53 activity (Beswick et al., 2006).

1.6.4.5 Binding to JAB 1

MIF was shown to bind to JUN-activation domain-binding protein 1 (JAB1) in a yeast 

two-hybrid system (Kleemann et al., 2000). MIF and JAB1 were subsequently shown to 

co-localise in the cytoplasm (Kleemann et al., 2000). JAB1 is involved in activating 

JUN N-terminal kinase (JNK), which phosphorylates JUN and thereby activates the 

transcription factor activator protein-1 (AP-1). AP-1 is implicated in cell death, 

transformation and growth. MIF inhibits JAB1 mediated activation of AP-1 while also 

antagonising JAB 1-dependent cell cycle regulation by stabilising p27Kipl protein 

leading to cell cycle arrest and apoptosis (figure 1.5).
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Figure 1.5: MIF influence on JAB-1 activity. MIF binding to JAB1, preventing JAB1- 

induced degradation of the p27kip1, results in cell cycle arrest and apoptosis. Modified 

from Calandra and Roger (2003) (Calandra and Roger, 2003) and Renner et al. (2005) 

(Renner et al., 2005).

1.6.4.6 Regulation o f surface molecule expression

MIF has been shown to regulate the expression a number of molecules expressed on the 

surface of cells. An important example is TLR4. RAW 264.7 mouse macrophage cells 

were transfected with antisense MIF mRNA, thereby lowering endogenous MIF levels. 

This led to a reduction in expression of TLR4 (Roger et al., 2001). This downregulation 

was shown to be dependent on reduced TLR4 promoter activity, which is linked to 

reduced DNA-binding of the transcription factor PU.l in the absence of MIF. Reduced 

MIF expression was also shown to reduce LPS induced TNF-a production. A 

subsequent study in macrophages isolated from MIF KO mice demonstrated that M1F-
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deficient macrophages express lower levels of TLR4 and also produce less TNF-a in 

response to LPS (Roger et a l, 2003). These studies primarily address endogenous MIF, 

however, addition of anti-MIF antibodies to RAW 264.7 macrophage cells also reduced 

TLR4 expression and LPS-induced TNF-a production (Roger et a l , 2003). This 

suggests that MIF also exerts an autocrine effect on macrophage function and that cells 

may therefore be responsive to exogenous MIF. The effect of exogenous MIF on TLR4 

expression has not yet been examined.

The regulation of cell surface molecules other than TLR4 has been shown to be 

influenced by exogenous MIF. Monocytes exposed to recombinant MIF in vitro 

significantly upregulated vascular cell adhesion molecule-1 (VCAM-1) and intercellular 

cell adhesion molecule-1 (ICAM-1) (Amin et al., 2006). This increase in surface 

molecule expression is dose-dependent but exhibits a bell-shaped dose response with 

ICAM-1 and VCAM-1 expression peaking with lOnM recombinant MIF and decreasing 

at higher MIF concentrations. Functional significance of this increase in expression was 

confirmed by an increase in monocyte adhesion after MIF treatment (Amin et a l, 

2006). This has significant potential for malaria pathology when considering that 

parasite cytoadhesion can be mediated by the binding of PfEMP-1 to both ICAM-1 and 

VCAM-1 (see section 1.4).

Evidence for the potential importance of MIF induced surface molecule expression in 

vivo is provided by studies in MIF KO mice. MIF deficient mice were shown to exhibit 

reduced interactions between leukocytes and endothelial cells when treated with LPS 

(Gregory et a l, 2004). This reduction in leukocyte adhesion and rolling in MIF KO 

mice could well be mediated by a reduction in adhesion molecules on endothelial cells 

due to MIF deficiency.
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1.6.4.7 Receptor-mediated actions

CD74 (also known as MHC class II-associated invariant chain) is involved in the 

transport of MHC class II from the ER to the Golgi apparatus. CD74 has been identified 

as a putative MIF receptor (Leng et a l, 2003). An estimated 5% of cellular CD74 is 

expressed on the cell surface. The intracellular domain of CD74 has no motifs that 

interact with known signal-transducing molecules so its role in down-stream MIF 

cellular activation is questionable. Despite this, several groups have described the 

importance of CD74 in downstream signalling upon binding of MIF. It has been shown 

that activation of the ERK signalling pathway by MIF is dependent upon the 

involvement of CD74 (Leng et al., 2003). CD74 bound with either MIF or anti-CD74 

antibody has also been shown to lead to NFkB activation (Beswick et al., 2005; Matza 

et al., 2001). Recently, it has been shown that downstream ERK 1/2 signalling initiated 

by MIF binding to CD74 requires the involvement of CD44 (Shi et a l, 2006). This 

indicates that CD74 is essential but not sufficient as a MIF receptor. CD74 appears to be 

an anchoring molecule that upon binding MIF, interacts with CD44 leading to 

downstream signal transduction.

1.6.4.8 MIF induction o f cellular factors

The treatment of different cells with MIF induces the release of several factors. 

Treatment of macrophages with MIF induces the release of the pro-inflammatory 

cytokines TNF-a, IL-1 (3, IL-12, IL-6 and IL-8 (Calandra et al., 1995; Donnelly and 

Bucala, 1997). MIF treatment of T cells also promotes IL-2 expression and memory T- 

cell development (Bacher et a l, 1996; Rodriguez-Sosa et al., 2003). Other factors are 

also induced in response to MIF, including nitric oxide (Bozza et al., 1999), 

cyclooxygenase 2 (Mitchell et al., 2002) and products of arachidonic acid metabolism
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(Mitchell et al., 1999). Studies into arthritis have shown that MIF can also induce the 

expression of matrix metalloproteinases (see section 1.7.2) (Onodera et al., 2000; 

Onodera et al., 2002).

1.6.4.9 A ntibody regulation

Research published 20 years ago demonstrated that glycosylation inhibiting factor 

(GIF), a pseudonym for MIF, purified from T cell hybridomas could suppress IgE and 

IgGl antibody responses (Akasaki et al., 1986). This effect has been subsequently 

confirmed using recombinant GIF to treat B cells activated by LPS and IL-4 (Sugie et 

al., 1999). Modulation of antibody responses is another potential mechanism that MIF 

may influence during the course of an infection.

In summary, MIF has several potential modes of action. Aside from the two distinct 

enzymatic activities there is also evidence for receptor-mediated mechanisms of MIF 

action and direct interaction of MIF with intracellular signalling molecules. The 

mechanisms of action of MIF in its wide variety of target cell types still requires 

considerable clarification in order to reveal a clear mode of action of MIF in relation to 

different diseases.
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1.7 MIF AND DISEASE

A role for MIF has been proposed in a multitude of immune-mediated and infectious 

diseases. Particular attention has been given to the role of MIF during bacterial sepsis 

(see section 1.7.1) (Calandra et al., 2003) and the onset and progression of rheumatoid 

arthritis (see section 1.7.2) (Morand et al., 2006). MIF has also been linked to 

artherosclerosis (Burger-Kentischer et al., 2005), diabetes (Cvetkovic et al., 2005), 

asthma (Mizue et al., 2005), autoimmune encephalomyelitis (Denkinger et al., 2003) 

and ulcerative colitis (de Jong et al., 2001) among many others. The involvement in 

such a wide range of diseases indicates the importance of MIF in the immune system.

1.7.1 The role of MIF in sepsis

The pro-inflammatory activities of MIF in innate immune responses led to the 

examination of the protein’s role in sepsis. Initial studies showed that administration of 

MIF to mice in conjunction with LPS led to increased mortality compared to LPS alone 

(Bernhagen et al., 1993). Neutralisation of MIF with anti-MIF antibodies resulted in 

less mortality and this was reflected in experiments in MIF-deficient mice (Bozza et al., 

1999). In experimental sepsis in mice, induced by live bacteria, MIF concentrations 

were increased in peritoneal fluid and in systemic circulation (Calandra et al., 2003). 

High MIF levels have also been detected in the circulation of patients with sepsis 

(Calandra et al., 2003). Survivors of sepsis had significantly lower levels of circulating 

MIF than those that did not survive. The critical role of MIF in sepsis demonstrates the 

importance of MIF in inflammatory conditions.
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1.7.2 The role of MIF in arthritis

One of the best studied links between MIF and disease is in relation to arthritis. MIF has 

a described role in both systemic-onset juvenile arthritis and rheumatoid arthritis (RA). 

It has been shown that MIF levels are increased in the synovial tissues and circulation 

of animals with experimentally-induced arthritis. Neutralising antibodies against MIF 

lead to delayed onset and a lower frequency of arthritis (Leech et al., 2003; Mikulowska 

et a l, 1997). Removal of the suppressive effects of glucocorticoids via adrenalectomy 

exacerbated experimental arthritis providing further indirect evidence of the role of MIF 

in this disease (Leech et a l, 2003). Subsequent studies using MIF KO mice has 

confirmed the role of MIF in rheumatoid arthritis models. Arthritis induced in MIF KO 

was less severe with evidence of reduced cartilage damage (Leech et al., 2003).

One aspect of MIF activity, that so far appears to be unique to the progress of arthritic 

disease, is the induction of metalloproteinase (MMP) expression. MMP are proteolytic 

enzymes including collagenases, gelatinases and stromelysins. MIF has been shown to 

stimulate MMP-1 and MMP-3 mRNA transcription in synovial fibroblasts from RA 

patients, as well as MMP-9 and MMP-13 in rat osteoblasts (Onodera et a l, 2000; 

Onodera et a l, 2002). MIF has therefore been suggested to play a role in joint 

destruction during autoimmune disease and bone remodelling (Onodera et a l, 2002). 

Due to its role in the induction of MMP, MIF has been suggested as a therapeutic target 

molecule for the treatment of osteoporosis and RA. Upregulation of MMP by MIF is 

interesting in relation to malaria because MMP-9 activity has been shown to be 

increased in response to haemozoin, thereby implicating MMP in the pathogenesis of 

malaria (Prato et a l, 2005).
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1.7.3 MIF and infectious diseases

MIF has been shown to be responsible for mediating protection against several 

infectious organisms. In relation to bacterial pathogens, MIF reduces the growth of 

Mycobacterium tuberculosis in macrophages in vitro and is also a mediator of immunity 

to Salmonella typhimurium (Koebernick et al., 2002; Oddo et al., 2005). Immune 

responses to parasitic infection have been more extensively studied. It has been 

demonstrated that MIF induces macrophages to kill Leishmania major parasites in 

mice; this manifests as a reduced number of infected cells and lower parasitaemia 

(Juttner et al., 1998). This killing is dependent on TNF-a and reactive nitrogen 

intermediates. Following from these findings it has been shown that administration of 

MIF to mice is protective against subsequent L. major infection (Xu et al., 1998). 

Similarly, MIF KO mice are more susceptible to L. major infection than wild type mice, 

with larger legions and higher parasite loads (Satoskar et al., 2001). MIF KO mice also 

produce less NO and superoxide in response to L. major infection.

Evidence of the role of MIF in adaptive as well as innate immunity is provided by a 

study into Trypanosoma cruzi infection. Compared to wild type mice, MIF KO mice 

have higher parasitaemia and mortality rates upon T. cruzi infection (Reyes et al.,

2006). This is characterised by reduced cytokine responses in MIF KO mice including 

TNF-a, IL-12, IFN-y and IL-4. Adaptive immune responses in the form of protective 

antibody responses to T. cruzi were also reduced in MIF KO mice. These findings are 

consistent with findings in helminth infections. Taenia crassiceps infection in MIF KO 

mice results in higher parasite loads, with lower circulating IL-12 and IgG2a responses 

(Rodriguez-Sosa et a l, 2003).
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1.7.3.1 MIF and malaria

The first report linking MIF to Plasmodium infection was indirectly related to malarial 

anaemia. It was demonstrated that the addition of MIF to bone marrow cultures reduced 

the development of erythroid and myeloid progenitors (Martiney et al., 2000; McDevitt 

et al., 2006). This could be reversed by the addition of anti-MIF antibodies. In vitro 

assays also demonstrated that RBC infected with P. chabaudi induced MIF release from 

macrophages (Martiney et al., 2000). It was subsequently shown that, during the course 

of P. chabaudi infection, circulating MIF levels increased, with the peak in 

concentration coinciding with peak parasitaemia. Further examination of the expression 

of MIF during P. chabaudi infection indicated that MIF was expressed in the spleen, 

liver and bone marrow. This study suggested that host-derived MIF may be involved in 

the pathophysiology of malarial anaemia but no direct evidence was provided (Martiney 

et a l, 2000). A subsequent study in P. chabaudi-infected MIF KO mice showed that 

they had significantly less severe anaemia and better survival than control animals 

(McDevitt et a l , 2006). It was also demonstrated that, during the course of infection, 

MIF KO mice displayed greater erythroid progenitor maturation than in control mice. 

This is, however, contradicted by a recent study that identified an association between 

decreased MIF levels in children with acute malaria and severity of anaemia (Awandare 

et al., 2006c).

Initial studies of MIF during human Plasmodium infection addressed malaria during 

pregnancy. MIF levels are seen to increase during P. falciparum infection in pregnant 

women, with levels higher in primigravid than multigravid women (Chaisavaneeyakorn 

et al., 2002; Chaiyaroj et al., 2004). Two subsequent studies measuring circulating MIF 

levels in P. falciparum-mfQctQd children produced conflicting results. The first study
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performed in Gabon showed a significant decrease in circulating MIF in patients with 

malaria compared to aged-matched controls (Awandare et al., 2006a). By contrast, a 

similar study in Zambia showed a significant increase in plasma MIF in P. falciparum- 

infected children compared to age-matched controls (McDevitt et a l , 2006). A further 

study, with larger numbers of subjects will need to be carried out to clarify this 

discrepancy.

The only other study investigating the role of MIF during malaria infection addressed 

the tissue distribution of MIF in samples from fatal malaria cases (Clark et al., 2003). 

The primary finding was that MIF was present in the chest wall blood vessels but not in 

those of the brain. All of these studies fail to address the possible influence of P. 

falciparum-derived MIF, or another parasite-derived MIF homologue, as a confounder 

of these results. All the studies utilise anti-MIF antibodies that could potentially cross- 

react with MIF homologues from other species. This may explain, at least in part, the 

conflicting results.

1.8 MIF GENE POLYMORPHISMS

Two MIF gene polymorphisms that alter the transcription levels of the gene have been 

identified. These polymorphisms have been examined in several conditions, the severity 

of which may be influenced by MIF expression levels.

Studies into the pathogenesis of arthritis first identified two polymorphisms of the 

human MIF gene that predispose to the condition. The first identified polymorphism 

was a single nucleotide polymorphism, G-to-C transition, at position -173 in the 5' 

promoter region that conferred a 2-fold increased risk of developing juvenile idiopathic
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arthritis (Donn et a l, 2001). Characterisation of this polymorphism showed that 

carrying the G/C or C/C combination of alleles resulted in significantly higher 

circulating MIF compared to individuals with the G/G alleles (Donn et al., 2002). This 

would suggest that higher circulating MIF predisposes to juvenile idiopathic arthritis. 

The second polymorphism is a CATT tetranucleotide repeat beginning at position -794 

and ranging between 5 and 8 repeats (Baugh et a l, 2002). The 5-CATT allele was 

shown to have the lowest transcription activity and correlated with reduced disease 

severity in rheumatoid arthritis. A subsequent study demonstrated an association 

between 5-CATT allele and reduced susceptibility to RA, but no relationship with 

severity (Barton et a l, 2003). Recently, an association of 5-CATT polymorphism with 

both sarcoidosis and mild asthma has been described in Caucasians (Plant et a l,

2006)(Mizue, 2005). MIF gene polymorphisms may also be important in a range of 

other disease states where the levels of MIF expression seem to play an important part.

Studies into MIF gene polymorphisms and their relation to malaria susceptibility have 

recently been carried out. A limited survey of MIF polymorphisms in Zambians showed 

a higher proportion of 5-CATT and -173G polymorphisms compared to European 

samples, both of which are associated with low expression of MIF (Zhong et a l, 2005). 

Analysis of the genotype of malaria patients reported a correlation between 5/X CATT 

repeat genotype (where X represents 6-, 7- or 8-CATT) and lower parasitaemia. 

However, much larger studies are required to confirm these and any other possible 

effect of this polymorphism in malaria. Another study, examining the role of the -173 

G/C polymorphism in Kenyan children, found that MIF -173 C/C was associated with 

high parasitaemia compared to MIF -173 G/G (Awandare et a l, 2006b). No association 

was seen between -173 alleles and severe malarial anaemia. This study also confirmed
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that homozygous G alleles were associated with lower circulating basal MIF compared 

to G/C alleles, which was previously seen in arthritis studies. MIF secretion from 

peripheral blood mononuclear cells in response to haemozoin have shown that cells 

with the 5-CATT polymorphism produce less MIF compared to 6- or 7-CATT 

(McDevitt et a l, 2006). Interestingly, mononuclear cells with the -173 G/G genotype, 

which is associated with low basal MIF levels, produce increased MIF in response to 

haemozoin, whereas cells carrying the -173GC genotype produce less MIF in response 

to haemozoin (Awandare et a l, 2006b).

These preliminary studies suggest an important role for MIF gene polymorphisms in the 

progression of diseases for which MIF has been implicated.

1.9 MIF HOMOLOGUES IN PARASITIC SPECIES

Several parasitic species express homologues of MIF. The first indication of a potential 

MIF homologue in parasites was the detection of dopachrome tautomerase activity 

attributed to MIF in soluble extracts from several species of parasite worms (Pennock et 

a l, 1998). In 1998, a MIF homologue was identified in the filarial nematode Brugia 

malayi (Pastrana et a l, 1998). B. malayi MIF (BmMIF) was detected in all stages of the 

parasite lifecycle as well as in the excretory/secretory products of all stages. 

Recombinant BmMIF protein was found to inhibit human macrophage migration in a 

similar fashion to huMIF. It was subsequently shown that B. malayi expresses a second 

copy of BmMIF (Falcone et a l, 2001). Although the two homologues share only 27% 

identity, both MIF homologues are capable of inhibiting monocyte migration and 

demonstrate tautomerase activity. The extent of enzymatic activity of the different
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homologues differs depending on the substrate tested. These two MIF homologues have 

also been shown to induce IL-8 and TNF-a expression in monocytes (Zang et a l, 

2002). A single study investigating the role of MIF homologues during nematode 

infections has so far been described (Falcone et al., 2001). Helminth infection is 

associated with eosinophilia, characterised experimentally by recruitment of eosinophils 

to the abdominal cavity during B. malayi infection. Injection of recombinant BmMIF 

into the peritoneal cavity of mice led to an increase of eosinophil recruitment, whereas 

tautomerase inactive mutants of BmMIF did not, suggesting this phenomenon is 

dependent on the enzymatic activity of BmMIF (Falcone et a l, 2001). The inhibition of 

BmMIF during infection, with a neutralising antibody for example, would be required 

to determine if BmMIF was exclusively responsible for eosinophil recruitment. MIF 

homologues have since been identified in several more species of parasitic nematodes 

(Tan et a l, 2001; Zang et a l, 2002), as well as two tick species Amblyomma 

americanum (Jaworski et a l, 2001) and Haemaphysalis longicornis (Umemiya et a l, 

2006).

A putative protein identified during the sequencing of the P. falciparum genome 

showed sequence homology to the pro-inflammatory cytokine macrophage migration 

inhibitory factor (PlasmoDB entry for PfMIF: PFL1420w) (Gardner et a l, 2002). The 

PfMIF gene is located on chromosome 12 of the parasite genome. Microarray data 

indicate that it is primarily expressed in ring and trophozoite stages of the asexual cycle 

of the parasite (Bozdech et a l, 2003; Le Roch et a l, 2004). Clearly, the presence of a 

cytokine homologue in parasite species raises a question as to how these proteins may 

be influencing the immune system of the host during the course of infection.

Although several MIF homologues have been identified, the role of parasitic MIF
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during infection is yet to be clearly defined. As previously mentioned, the two BmMIF 

proteins, the best characterised of the homologues, have very similar structures to 

mammalian MIF protein, exhibit tautomerase activity and inhibit monocyte migration. 

However, the role of MIF homologues during infection is poorly understood. Aside 

from one study examining eosinophil recruitment, there has been no clear determination 

of the possible role of MIF homologues during infection. One hypothesis put forward is 

that continuous secretion of MIF homologues may induce a counter-inflammatory 

response, either by desensitisation or by stimulating macrophages beyond the short-term 

acute phase usually examined (Maizels et a l , 2001). It is also possible that an as yet 

unidentified difference in parasite MIF homologues may confer a counter-inflammatory 

response, possibly by blocking the binding of MIF to receptors or substrates.

The discovery of a MIF homologue in P. falciparum raises interesting questions as to 

why a parasite would express an apparently pro-inflammatory cytokine homologue and 

whether this protein is capable of influencing the host immune system during the course 

of malarial disease. As mentioned above, these issues remain to be addressed in other 

parasites that express MIF homologues as well as during the course of P. falciparum 

infection.
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1.10THESIS AIMS

The potential role of PfMIF during the course of malaria is yet to be investigated. The 

mRNA expression profile of PfMIF during the blood stages of the parasite lifecycle has 

been described; however, further characterisation of PfMIF remains to be carried out. 

The initial aim of this thesis is to characterise the potential properties of PfMIF by 

comparison to the known sequence and structure of human MIF. Following from this, 

the expression of PfMIF protein during the course of parasite blood stages requires 

confirmation. Characterisation of PfMIF also requires the investigation of the 

localisation of PfMIF within the infected erythrocyte.

A wide range of activities have been attributed to mammalian MIF. So far however, 

there has been no characterisation of the activity of the P. falciparum homologue. The 

second aim of this thesis is to determine some of the in vitro activities of PfMIF. 

Elucidation of the activity of PfMIF could provide an insight into the actions of PfMIF 

during the course of malarial disease.

Finally, the potential role of PfMIF during the course of Plasmodium infection remains 

to be investigated. In order to do this, a third aim of this thesis is to determine PfMIF 

protein levels in the circulation of infected patients as well as anti-PfMIF antibody 

responses in those patients. These will then be compared to known demographic and 

immunological data also collected from the patients in order to determine potential 

influences that PfMIF may have on the course and severity of infection.
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CHAPTER 2

M ethods, Materials and  P a tien ts
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2.1 SEQUENCE, PHYLOGENETIC AND STRUCTURE ANALYSIS

Sequence comparisons were carried out using the Bioedit program available at 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html. The phylogenetic tree was drawn by 

the neighbour-joining method using amino-acid sequence ^-distances, utilising 

Geneious software available at http://www.geneious.com. MIF sequences from 

GenBank and PlasmoDB (http://www.plasmoDB.or g) were used for phylogenetic 

analysis. The three dimensional structural prediction of PfMIF was generated using a 

program available at http://swissmodel.expasv. org. The instructions available on this 

website were followed using the known structure of huMIF as a template for the PfMIF 

prediction. The protein structure generated was viewed using Swisspdb viewer which is 

freely available on the website mentioned above.

2.2 RECOMBINANT PfMIF PROTEIN PRODUCTION

2.2.1 PfMIF cloning

PfMIF sequence was amplified by reverse transcriptase-polymerase chain reaction from 

P. falciparum total RNA (kindly provided by Dr Sue Kyes, Molecular Parasitology 

Group, Weatherall Institute of Molecular Medicine, Oxford) using oligo (dT) primers 

and Superscript II reverse transcriptase (Invitrogen, USA). The two terminal primers 

used were: 5'- G A ATT CC AT AT GCCTT GCT GT G AAGT A AT AAC A AACG-3' and 5'- 

CGCCCTAGGCTAGCCGAAAAGAGAACCAC-3'. The amplified DNA fragment was 

sub-cloned into T7/NT-T0P0 expression vector that contained an in-frame N-terminal 

histidine-tag following the standard protocol (Invitrogen, USA). Briefly, lp l of 

amplified DNA, lp l of salt solution, 2pl of sterile water and lp l of TOPO vector were 

mixed and incubated at room temperature for 5 minutes followed by chilling on ice and
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transforming into TOPI OF’ competent Escherichia coli cells. Recombinant plasmids 

with the correct sized insert determined by restriction digest were sequenced to confirm 

the correct orientation and frame.

2.2.2 PfMIF protein expression

The construct containing the complete PfMIF sequence in correct orientation was 

transformed into Escherichia coli BL21(DE3) pLysS strain (Invitrogen, USA). The 

transformed cells were cultured for approximately 3 hours using a saturated overnight 

culture as an inoculum, and then induced at 0.6 OD600 with 0.5mM isopropyl |3-D- 

thiogalactopyranoside (IPTG) for another 4 hours. Cells were then pelleted and either 

used for PfMIF protein purification or stored at -20°C for later use.

2.2.3 Protein purification

The pelleted cells were lysed using Bugbuster reagent (Novagen, USA) according to 

manufacturer’s instructions and the crude bacterial extract was purified through Ni- 

NTA column (Invitrogen, USA). The crude bacterial lysate was diluted with binding 

buffer (50mM NaFEPO^ pH 8.0 and 0.5M NaCl) and run through the nickel column. 

The histidine-tagged protein bound to the column was eluted using 200mM imidazole in 

the binding buffer and 2ml fractions collected. Levels of PfMIF were assessed in each 

fraction by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE; 

see section 2.5.22). The peak fractions were subjected to ion exchange chromatography 

using DEAE Sepharose (Amersham Biosciences, UK). The PfMIF protein eluted 

between 150mM and 250mM NaCl. Isolated PfMIF protein required refolding in order 

to be active. Purified protein was denatured in 6M urea containing lOmM |3- 

mercaptoethanol for 20 minutes. The protein was then dialysed against a buffer 

consisting of 20mM Tris-HCl, 50mM NaCl, pH 7.5 with sequential 2 hour incubations
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in decreasing concentrations of urea (4M, 2M and 1M) until final dialysis with no urea 

overnight. The activity of PfMIF on random migration of monocytes was found to be 

unstable and lost approximately 10 days after refolding. Therefore, after each batch of 

PfMIF protein purification and refolding the activity of the protein was assessed by 

inhibition of random migration of monocytes (see section 2.6.3). If the protein inhibited 

random monocyte migration by 60-70% compared to controls then it was used for 

subsequent experiments within 7 days of refolding.

2.2.4 Endotoxin removal

Lipopolysaccharide (LPS) was removed using EndoTrap (Profos, Germany) according 

to the manufacturer’s instructions. The protein preparation was applied to an EndoTrap 

resin column, which acts to retain the endotoxin on the column, allowing 

decontaminated protein to run through. LPS removal was confirmed using QCL-1000 

Limulus Ameobocyte Lysate (LAL) assay (Cambrex, USA). The assay was performed 

using the manufacturer’s “microplate” method. A 50pl volume of standard or sample 

was added to glass tubes pre-warmed to 37°C along with 50pi of LAL solution. After 

lOmin, lOOpl of substrate solution was added followed by a further 6min incubation. 

The reaction was stopped by the addition of 50pl of 25% acetic acid. Samples were 

transferred to a microplate and absorbance read at 405nm. LPS concentration in 

recombinant protein solutions was routinely found to be <2pg per pg protein.

2.2.5 Determination of protein concentration

Protein concentrations were determined using a BCA (bicinchoninic acid) Protein 

Assay kit (Pierce Biotechnology, USA). The kit was used according to the 

manufacturer’s protocol. Briefly, each assay was performed in a microplate with 25pi of 

sample or protein standard added to each well followed by 200pl of a 50:1 mix of
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Reagent A (containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and 

sodium tartrate in 0.1M sodium hydroxide) and Reagent B (4% cupric sulphate). The 

plate was then incubated at 37°G for 30 minutes followed by the measure of absorbance 

at 570nm.

2.2.6 Cloning of Human MIF

Attempts were made to generate human MIF (huMIF) protein following the same 

methods that were used for PfMIF cloning (see section 2.2.1). The human RNA used 

was isolated from human peripheral blood mononuclear cells (PBMC) using TRIzol 

(Invitrogen, USA). The two terminal primers used to amplify huMIF DNA were: 5'- 

GGGT CT CCT GGT CCTT CT GCC AT C-3' and 5'-

TTAGGCGAAGGTGGAGTTGTTCCAGCC-3'. Several attempts were made to 

generate amplified huMIF DNA fragments and to ligate these into the T7/NT-TOPO 

expression vector. Plasmids with an insert of the correct size were sequenced to 

determine correct orientation and frame. Unfortunately, no plasmid capable of 

expressing huMIF protein was identified.

2.3 PRODUCTION OF ANTI-PfMIF ANTIBODIES

2.3.1 Antibody generation

Polyclonal anti-PfMIF serum was generated by immunization of New Zealand white 

rabbits with four subcutaneous injections of 50pg recombinant PfMIF over 35 days 

(Charles River, USA). The initial injection was emulsified with Freund’s Complete 

Adjuvant with the following 3 injections emulsified with Freund’s Incomplete 

Adjuvant. Serum was harvested at day 49 after the initial injection.
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An anti-peptide antibody was also generated in rabbits against a PfMIF specific peptide 

sequence (NRSNNSALADQITKC) (Sigma-Genosys, USA). This sequence of PfMIF 

was chosen because there is relatively little homology with huMIF in this region. 

Additionally, structural modelling predicted this sequence to be on the outer surface of 

the protein and therefore easily accessible for antibody binding.

2.3.2 Determination of antibody specificity

Antibody specificity was tested by immunoblotting (following the procedure in section 

2.5.2.3) membranes bound with 130ng each of huMIF (R&D Systems, USA) and 

recombinant PfMIF proteins with different dilutions of the two anti sera (ranging from 

1:20 to 1:2000).

2.3.3 Purification of IgG

Antisera and/or purified IgG were used in subsequent experiments. Rabbit IgG was 

purified from anti-PfMIF and anti-peptide sera using Protein G Sepharose (Amersham, 

UK). Rabbit sera were diluted with 20mM sodium phosphate binding buffer, pH 7.0 and 

run through a Protein G Sepharose column. The column was then washed with 5 

column volumes of phosphate buffer. Bound IgG was eluted using 0.1M glycine, pH 

3.0 and 200pl fractions were collected into 1M Tris-HCl, pH 9.0 to neutralise fractions. 

The presence of antibodies in each fraction was confirmed using SDS-PAGE.

2.4 P. falciparum PARASITE CULTURE

2.4.1 Culturing conditions

Intraerythrocytic stage Plasmodium falciparum parasites derived from the ITG/A4 

clone were cultured in vitro following the protocol described previously (Roberts et al.,
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1992). Parasites were cultured in RPMI 1640 medium (Sigma, USA) supplemented 

with 10% pooled human serum (National Blood Service, UK), 37.5mM HEPES buffer 

(Sigma, USA), 0.18% glucose (Sigma, USA), 6mM NaOH (Sigma, USA), 25pg/ml 

gentamicin sulphate (Sigma, USA), 2mM glutamine (Sigma, USA) and 0.1 pM 

hypoxanthine. Cultures were maintained in human Type O RBC (National Blood 

Service, UK) at 1% haematocrit, gassed with a mixture containing 1% oxygen, 3% 

carbon dioxide and 96% nitrogen and incubated at 37°C.

2.4.2 Synchronisation of parasites

Parasite cultures were synchronised using a sorbitol lysis method (Lambros and 

Yanderberg, 1979). Briefly, parasite cultures were pelleted and resuspended with 10 

times volume of pre-warmed 5% sorbitol (w/v in EbO) and stood upright at 37°C for 20 

minutes. Cells were then washed with serum free medium and returned to culture with 

fresh RBC. Tightly synchronised parasites were sampled throughout the asexual blood 

stages in order to perform immunoblotting and immunofluorescence microscopy (see 

sections 2.5.2.3 and 2.5.3). At each time point a blood film was made to monitor 

parasite development during the time course.

2.5 DETECTION OF PfMIF EXPRESSION

2.5.1 PfMIF mRNA expression

2.5.1.1 Sample preparation

Briefly, parasites were sorbitol-synchronized, cultures were at 3-10% parasitaemia and 

200-500 pi of packed iRBCs were processed for each RNA sample. Cells were spun 

directly from culture and packed cells resuspended in the appropriate volume of TRIzol 

(Invitrogen, USA).
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2.5.1.2 Northern blot

Northern blots were kindly carried out by Dr Sue Kyes. Prepared samples were 

processed as previously described (Kyes et al., 2000).

2.5.2 Detection of PfMIF protein expression

2.5.2.1 Sample preparation

Tightly synchronised parasites were sampled during ring and trophozoite stages of the 

erythrocytic cycle. A small aliquot was removed for immunofluorescence microscopy 

and the remaining iRBC were lysed with 0.01% saponin in PBS (Sigma, USA) and the 

parasites thoroughly washed with fresh 0.01% saponin/PBS to remove haemoglobin and 

other RBC proteins (Hsiao et al., 1991). For the detection of PfMIF in the culture 

supernatant, a 4% haematocrit culture of 20% trophozoites was cultured overnight to 

allow schizont development and rupture. Culture supernatant was then collected and 

spun at 10,000rpm to remove any remaining RBC and used in immunoblotting (see 

section 2.5.2.3).

2.5.2.2 SDS-PAGE

Purified parasite lysates were diluted in loading buffer and run on SDS-PAGE gels. All 

SDS-PAGE gels were 12% acrylamide (Protogel, USA) run at 30 amps per minigel in 

running buffer consisting of 25mM Tris-base, 192mM glycine and 0.1% (w/v) SDS. 

Proteins were visualised by staining with coomassie blue followed by destaining with 

10% methanol and 20% acetic acid.

2.5.2.3 Immunoblotting

For immunoblotting, proteins were transferred from SDS/PAGE gels to nitrocellulose 

membranes (Schleicher and Schuell, Germany) at 100 volts for 1 hr in a buffer
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consisting of 25mM Tris-base, 192mM glycine and 20% methanol. Membranes were 

then blocked with 1-2% milk powder and immunoblotted with a 1:500 dilution anti- 

PfMIF rabbit sera for 1 hour at room temperature. This was followed by washing in 

TTBS (0.5M NaCl, 20mM Tris-HCL and 0.1% Tween-20). Membranes were then 

immunoblotted with alkaline phosphatase-conjugated swine anti-rabbit IgG secondary 

antibody (Dako, Denmark) for 1 hour. After washing, membranes were developed using 

BCIP/NBT substrate solution (Invitrogen, USA).

2.5.3 PfMIF immunofluorescence microscopy

2.5.3.1 Sample preparation

Parasites were cultured as described in section 2.4. Tightly synchronised parasites at 

10% parasitaemia were sampled at appropriate intervals throughout the asexual blood 

stages in order to perform immunofluorescence microscopy. Microscope slides were 

prepared by washing with 70% ethanol followed by flooding with 0.1% poly-l-lysine 

solution for 5 minutes and allowing to air dry. Parasite cultures were pelleted and 

washed in warm PBS and resuspended in PBS to give a volume 10 times the original 

sample volume. To each section of the slide 100pl of washed RBC was allowed to 

attach for 10 minutes. Cultures were then removed and the adhered cells fixed by the 

addition of 4% paraformaldehyde in 0.25M HEPES buffer for 15 minutes in the dark. 

Fixed cells were washed twice with room temperature PBS. Slides were then stained 

immediately or stored at -20°C for later staining.

2.5.3.2 Staining procedure and visualisation

Cells were permeabilised with 0.2% Triton-X in PBS for 10 minutes followed by 3 

washes with PBS. Slides were blocked with 10% fetal calf serum in PBS for 30 

minutes. Primary and secondary antibody solutions were prepared in the blocking
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solution. The primary antibodies used were purified rabbit anti-PfMIF peptide IgG and 

mouse anti-P. falciparum skeleton binding protein 1 (PfSBPl) sera (kindly provided by 

Prof. Catherine Braun-Breton, Dynamique Moleculaire des Interactions Membranaires, 

University Montpellier 2, France), which has been shown to localise to the Maurer’s 

cleft (Blisnick et a l , 2000).

Fixed and permeabilised iRBCs were blocked with fetal bovine serum and stained with 

primary antibody (anti-PfMIF peptide: 1:100 dilution; anti-PfSBPl 1:400 dilution) for 

30 minutes at room temperature. Slides were then washed 3 times with PBS. FITC 

conjugated anti-rabbit IgG (Dako, Denmark) and Alexa-Fluor® 546 conjugated anti

mouse IgG (Molecular Probes, USA) were used as secondary antibodies (1:40 and 

1:400 dilutions respectively). Slides were incubated with secondary antibodies for 30 

minutes at room temperature. Slides washed 3 times with PBS at room temperature. 

Antibodies were cross-linked by incubating in 4% paraformaldehyde solution for 10 

minutes, followed by 3 washes in PBS. The final PBS wash contained 4'-6-diamidino-2- 

phenylindole (DAPI) in order to stain the parasite nuclei (Sigma, USA). Slides were 

visualised on a Nikon Eclipse 50i microscope and the images captured using Nikon 

ACT-2U.

2.6 PfMIF FUNCTIONAL ASSAYS

2.6.1 Monocyte isolation

Monocytes were isolated from buffy coats (National Blood Service, UK) using anti- 

CD 14 magnetic beads (Miltenyi Biotec, Germany). Buffy coats were diluted with 50ml 

of room temperature PBS and the PBMC were separated by sedimentation through
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Lymphoprep by spinning at 1800rpm for 30min. PBMC were washed 3-4 times with 

cold RPMI. After the final spin, PBMC were resuspended in 2.5ml of wash buffer 

consisting of PBS supplemented with 2mM EDTA and 2% human serum. Anti-CD 14 

microbeads (Miltenyi Biotec, Germany) were added at 300pl per buffy coat and 

incubated at 4°C for 30min. Cells were then washed with 20ml of wash buffer and run 

through a prewashed LS column attached to a Miltenyi magnet. The column was 

washed three times with wash buffer followed by the removal of the column from the 

magnet and the CD 14 positive cells eluted with 4ml of RPMI medium. Monocytes were 

then washed to remove EDTA, counted and used as required. All culturing and 

subsequent assays of monocytes were carried out in RPMI 1640 medium (Sigma, USA) 

supplemented with 2mM glutamine, 50pM kanamycin (Sigma, USA) and 2% pooled 

human serum (NBS, UK).

2.6.2 Dendritic cell maturation

Dendritic cells (DC) were generated from monocytes isolated using the protocol 

outlined above (section 2.6.1). Monocytes were cultured at 5 x 105 cells/ml of RPMI 

1640 medium (detailed in section 2.6.1) supplemented with 50ng/ml IL-4 (Peprotec) 

and 50ng/ml GM-CSF (Leucomax) to promote maturation into DC. Medium was 

changed every 2-3 days and after 4 days in culture onwards, cells were used as 

immature dendritic cells.

2.6.3 Migration assays

Migration assays were performed using 24 well, 6.5mm Transwell membranes with 

5.0pm pore size (Corning, USA). Briefly, 5x104 purified monocytes or dendritic cells in 

lOOpl medium were added to the upper chamber with or without lOOng/ml recombinant 

PfMIF or lOOpg/ml lipopolysaccharide (LPS). Medium (600pl) with or without 100
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ng/ml Monocyte Chemotactic Protein 1 (MCP-1) added to the lower chamber (R&D 

Systems, UK). Plates were incubated at 37°C (5% CO2) for 2hr. After incubation, the 

base of the membrane was rinsed twice with 2 0 0 pi medium and cells that had passed 

into the lower chamber were counted using a FACScalibur flow cytometer (BD, USA).

2.6.4 Surface molecule expression

Monocytes or dendritic cells were cultured in 24 well plates (Corning, USA) at 5x105 

cells per well in 500pl medium. Cells were incubated with PfMIF at different 

concentrations or LPS at lOOpg/ml. After 24hr incubation at 37°C/5% CO2 , supernatant 

was collected for enzyme-linking immunosorbent assays (ELISA) and NO assays. The 

cells were harvested, washed and stained for surface molecules. All washes and staining 

steps were carried out with PBS supplemented with 2% human serum, 5mM EDTA and 

0.02% sodium azide. The primary antibodies used were: anti-CD54 (ICAM-1; 1:100 

dilution; Dako, Denmark), anti-CD40 (1:25 dilution; Serotec, UK), anti-CD8 6  (1:50 

dilution; Serotec, UK), anti-TLR2 (1:50 dilution; eBioscience, USA), anti-TLR4 (1:100 

dilution; eBioscience, USA) and anti-HLA DR (1:100 dilution; Dako, Denmark). Cells 

were stained with primary antibodies for 30 minutes. Cells were washed again and then 

incubated with secondary antibody for 30 minutes (FITC conjugated anti-mouse IgG; 

1:25 dilution; Dako, Denmark). Cells were then washed again and fixed in wash buffer 

supplemented with 1% formaldehyde. Staining was assessed by flow cytometry 

(FACScalibur, USA) and the data analysed using FlowJo (Treestar Inc., USA).

2.6.5 Cytokine enzyme-linked immunosorbent assay

Culture supernatants from the surface expression experiments were stored at -20°C to 

assay for cytokine secretion. Enzyme-linked immunosorbent assays (ELISA) for IL-8 , 

IL-10, IL-12 and TNF-a were performed according to manufacturer’s instructions
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(Pharmingen, USA). Briefly, plates were coated with capture antibodies in 0.1M 

carbonate buffer, pH 9.5, overnight at 4°C. Plates were washed 3 times with PBS 

containing 0.05% Tween 20, all subsequent incubations were followed with 6  washes 

with PBS/Tween. Plates were blocked with 1% bovine serum albumin (BSA) in PBS, 

pH 7.5 for lhr at room temperature. Standards and samples were diluted appropriately 

and lOOpl was added for 2hr at room temperature. This was followed by a one hour 

incubation with detection antibody and horseradish peroxidase together. Plates were 

developed using o-phenylenediamine dihydrochloride (OPD) substrate (Sigma, UK). 

Colour development was stopped after 20min by the addition of 50pi 2M H2 SO4 and 

the optical density (OD) read at 490nm.

2.6.6 Nitric oxide assays

Nitrite levels (an indirect measure of nitric oxide) in the culture medium of cells treated 

with PfMIF were determined used the Griess method (Hevel and Marietta, 1994). 

Briefly, culture supernatants from the surface molecule expression experiments were 

diluted appropriately and 1 0 0 pi added to a microplate in duplicate along with nitrite 

standards. To each well was added 50pl of 1% sulphanilamide (w/v) in 5% H3PO4 , 

followed by 50pl 0.1% naphthylethylenediamine (w/v) in 5% H3PO4 . Absorbance was 

measured at 530nm on an MRX Revelation-TC plate reader.

2.7 PATIENTS

Patient samples were made available to us through a collaboration with the Kenya 

Medical Research Institute/Wellcome Trust Centre based at the Kilifi District Hospital 

in coastal Kenya. A large cohort of children living in Kilifi District has been established
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over several years to study malaria. Blood samples were collected from children living 

in the Ngerenya area of Kilifi District, who were under active surveillance for malaria 

as detailed previously (Nyakeriga et al., 2004). This area has two rainy seasons: the 

"long" rains in May-July and the "short" rains in November creating distinct malaria 

transmission seasons. It has been estimated that residents of Ngerenya have, on average, 

10 infective bites/person/year (Mbogo et a l , 1995). We analyzed plasma from 117 

children that were collected during the cross-sectional survey conducted during low 

transmission season in October 2003. All children were examined clinically, and venous 

blood samples were collected for whole blood counts and to determine the presence of 

malaria parasites. Children who were negative for P. falciparum blood stage parasites 

by microscopy were included in the study. In August 2004 and January 2005, blood 

samples were collected from children attending the outpatient clinic at Kilifi District 

Hospital with mild, uncomplicated malaria (fever > 37.5°C, associated with a blood film 

positive for P. falciparum parasites and with no alternative explanation on careful 

clinical examination), and from children admitted to the wards with severe malaria. All 

80 subjects included in this study were invited to donate a convalescence blood sample 

14 days after discharge from hospital; 35 convalescent samples were collected. The 

study was approved by the Kenya Medical Research Institute / National Ethical Review 

Committee and the Oxford Tropical Research Ethical Committee. Written informed 

consent was obtained from the parents or guardians of the participating children.

2.7.1 PfMIF antibody ELISA

A general ELISA protocol was used to assess the levels of antibodies present in patient 

samples that recognise recombinant PfMIF. Briefly, plates were coated with lOOpl of 

0.1M carbonate buffer (pH 9.5; Sigma, USA) containing 15pg/ml recombinant PfMIF
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and incubated at 4°C overnight. The following morning plates were blocked with 1% 

Bovine Serum Albumin (PAA Laboratories, Austria) in PBS for 1 hour. After blocking, 

patient sera, diluted 1 : 1 0 0  in the block solution, were added and incubated for one hour 

at room temperature. This was followed by the addition of a 1:4,000 dilution of horse 

radish peroxidase conjugated rabbit anti-human IgG detection antibody (Dako, 

Denmark) and incubated at room temperature for 30 minutes. Finally 200pl of o- 

phenylenediamine dihydrochloride (OPD) substrate was added to each well and allowed 

to develop for 20-30 minutes. Development was stopped with 50pi 2M H2 SO4 and 

absorbance read at 495nm. Between each incubation step the plates were washed 3-6 

times with PBS/0.05% Tween 20. Patients’ sera were assayed in duplicate and 7 sera 

from nonimmune European adults were used to control for non-specific binding. Sera 

that showed binding two standard deviations above the average of the European 

controls were considered positive.

2.7.2 PfMIF sandwich ELISA

Development of a sandwich ELISA to measure the level of PfMIF in the circulation of 

malaria patients was attempted using the antibodies that have been generated against 

PfMIF. Purified IgG from both antisera (see section 2.3) were tested in combination as 

capture and detection antibodies for a PfMIF protein ELISA. Recombinant PfMIF 

protein was used to test the affinity of these ELISA assays. Neither combination could 

successfully detect recombinant PfMIF. When recombinant PfMIF protein was bound 

to the ELISA plate as a capture antigen it was still not recognised by either IgG.

2.8 STATISTICAL ANALYSIS

All data were analysed using SPSS (SPSS Inc., USA). Comparisons were done using 

Pearson’s Chi-squared, Mann-Whitney U tests and paired t-tests.
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CHAPTER 3

PfMIF s truc tu re  an d  ex p re ss io n
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3.1 INTRODUCTION

In recent years, much attention has been given to examining the immune responses to 

Plasmodium infection and to the interaction between parasite and host. It was therefore 

of particular interest when a potential cytokine homologue, Plasmodium falciparum 

macrophage migration inhibitory factor (PfMIF), was identified during the sequencing 

of the P. falciparum genome (Gardner et a l, 2002). The hypothesis that PfMIF 

represents a novel immune evasion mechanism that the parasite may utilise to influence 

the host immune system gave rise to this PhD project.

At the onset of this project, nothing was known regarding the function of PfMIF, and 

the only evidence of the gene’s expression was at the mRNA level, with PfMIF shown 

to be transcribed during ring and trophozoite stages of the P. falciparum lifecycle 

(Bozdech et al., 2003). In order to establish whether PfMIF could in fact represent an 

important link between the parasite and the host immune system, a number of basic 

characteristics of the protein, such as its structure and expression, needed to be 

investigated.

The first priority of this project was therefore to characterise PfMIF based on its 

predicted sequence and to assess whether the protein was expressed during the course of 

human infection. By comparing the sequence of PfMIF with the characterised 

sequences and tertiary structure of MIF from other species it was aimed to predict 

whether the Plasmodium protein shares structure and enzymatic activities that have 

been confirmed in other MIF proteins.

A second aim was to assess if PfMIF is expressed during the course of human infection. 

If expression of PfMIF cannot be demonstrated in parasite blood stages then the protein
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could clearly not be involved in modulating the immune system during this stage of P. 

falciparum infection.

Finally, a third aim was to determine the localisation of PfMIF within the infected 

erythrocyte. This is an important consideration in relation to the influence of PfMIF on 

the host immune system. If PfMIF does not move from the parasite into the infected 

erythrocyte during blood stages it would bring into question whether PfMIF could have 

any meaningful interaction with the host immune system. If however, PfMIF were 

trafficked into the iRBC it would indicate that the protein could be released upon 

schizont rupture thereby interacting with host myeloid cells.

3.2 RESULTS

3.2.1 MIF sequence comparison

Comparison of PfMIF with other MIF amino acid sequences was carried out using 

Bioedit as described in section 2.1. The results from these comparisons showed that 

PfMIF shares a moderate amino acid sequence identity with huMIF of 28%. Similarity 

between these sequences was 46%. Importantly, although this similarity is reasonably 

low, PfMIF shares residues that are highly conserved in MIF proteins across a broad 

range of species (figure 3.1), indicating a likely functional similarity to these proteins.

The proline residue at position 1, which is essential for tautomerase activity (section 

1.6.4.1), is conserved in PfMIF. The residues clustering around the tautomerase active 

site are also conserved, suggesting that this enzymatic activity would be maintained. In 

contrast, the second cysteine in the CXXC motif, which is essential for oxidoreductase 

activity in huMIF (section 1.6.4.1), is not present in PfMIF. This, however, is also the
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case with MIF homologues in other parasites. Oxidoreductase activity of these proteins 

has not been assessed. Thus, whether this second enzymatic activity is extant cannot be 

definitively determined from sequence analysis alone.
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Figure 3.1: Alignment of MIF amino acid sequences from several species. Fluman, 

Plasmodium and both free living and parasitic nematode MIF proteins are aligned for 

comparison. The residues in blue are conserved sequences and grey residues share 

similarity. The marked residues (*) are shared across the species shown.

Like mammalian MIF, PfMIF lacks any known signal sequence (see section 1.6.2). 

Approximately 8% of all predicted genes in the P. falciparum  genome carry a motif 

denoted Plasmodium export element or vacuolar transport signal (Pexel/VTS). 

Pexel/VTS is considered an export motif as it was identified in protein sequences that 

are linked to protein export from the parasite into the host erythrocyte (Hiller et al., 

2004; Marti et al., 2004). Notably however, the Pexel/VTS motif is not essential for this 

function since it is not present in all proteins exported to the host cell. Sequence
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analysis of PfMIF identified no Pexel/VTS motif and therefore no direct indication from 

the sequence that PfMIF is exported to the host erythrocyte. This however does not 

mean that PfMIF is not exported into the host cell as evidenced by mammalian MIF, 

which also lacks a signal sequence and is secreted by a non-classical pathway most 

likely involving the ABCA1 transporter (Flieger et al., 2003) (section 1.6.2).

Overall, primary sequence comparison has shown that PfMIF shares some sequence 

similarity to MIF proteins from other species, especially in relation to conserved 

residues, thereby indicating its possible functional similarity to these proteins.

3.2.2 Phlyogenetic analysis of MIF proteins

To examine the phylogenetic relationship between the MIF proteins from different 

species the neighbour-joining distance method was used (see section 2.1). Included in 

this analysis were vertebrate MIF proteins, including those from humans, mice and 

Rhesus macaques, all hosts for Plasmodium species, along with sequences from 

parasitic and free-living nematodes, protozoan parasites, plants and cyanobacteria. The 

phylogenetic tree separates into three broad groups (see figure 3.2). The first group 

consists of cyanobacteria, plants and the protozoan Leishmania parasites. The second 

group includes other protozoan parasite MIF proteins including those from Plasmodium 

species. The remaining group includes the vertebrates as well as nematodes, ticks and 

jawless fish. The presence of MIF across a broad range of species would suggest that it 

arose in early eukaryotes as has been suggested previously (Sato, 2003 #78}. This 

analysis also reveals that Plasmodium MIFs are not as closely related to host MIF 

proteins as those from parasitic nematodes.
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Figure 3.2 (previous page): Phylogenetic tree of MIF sequences from different species. 

The tree is drawn by the neighbour-joining method using amino acid sequence. Each 

species name is accompanied by a GenBank accession code with the exception of P. 

vivax which is accompanied by a PlasmoDB code.

3.2.3 Prediction of PfMIF protein structure

To extend the analysis of PfMIF structure beyond the primary sequence comparisons, 

the three-dimensional structure of PfMIF was then predicted by employing the Swiss- 

Model protein modelling server, using the known structure of huMIF as a template 

(section 2.1).

Although, as shown above, the sequence homology between PfMIF and huMIF was 

relatively modest, the structural predictions for PfMIF show that its amino acid 

sequence fits the known tertiary structure of huMIF, as illustrated in figure 3.3.
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a)

b)

Figure 3.3: Predicted 3 dimensional structure of MIF proteins, a) Predicted dimer, the 

white subunit shows the known structure of huMIF while the predominantly green 

subunit is the predicted structure of PfMIF. The green portion of PfMIF represents the 

sequence that fits the structure of PfMIF, whereas the red portion is the one region that 

does not fit the template, b) Overlay of huMIF and predicted PfMIF 3D structures. The 

predicted 3D structure of PfMIF is overlaid with the known structure of huMIF that had 

been used as a template. The region of PfMIF that does not fit the structure of huMIF is 

outlined by the red circle.
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Figure 3.3a shows a MIF dimer, with the mainly green monomer lying to the right hand 

side representing the predicted three-dimensional structure of PfMIF. The white subunit 

on the left side is the known structure of huMIF, provided for comparison. The portions 

of PfMIF that fit the structure of huMIF are represented in green and the area 

highlighted in red represents the single amino acid of PfMIF that does not fit the huMIF 

structure. Figure 3.3b shows an overlay of the known structure of huMIF and the 

predicted structure of PfMIF, with the single amino acid that does not fit the structure 

circled. This amino acid is the aspartate at position 15 and has been determined not to 

thread appropriately onto the known huMIF structure based on high mean force 

potential energy. This aspartate is in a region of the protein that is not near the active 

sites for either of the enzymatic activities attributed to MIF, and so is unlikely to affect 

either of these enzymatic functions. This amino acid is however an external residue and 

therefore could potentially influence other MIF activities such as receptor binding.

3.2.4 PfMIF expression in blood stage parasites

Having confirmed that the structure of PfMIF is consistent with the functional 

characteristics of MIF proteins in other species, it was then necessary to characterise 

PfMIF expression in P. falciparum during parasite blood stages.

3.2.4.1 PfMIF mRNA transcription

As an initial investigation into PfMIF expression, Northern blots were carried out using 

specific probes to detect PfMIF mRNA, as described in section 2.5.1. These 

experiments confirmed that PfMIF mRNA transcription begins during ring stages and 

peaks during late ring and trophozoite stages of the P. falciparum lifecycle (figure 3.4a). 

This confirmed the findings from two previous microarray studies using tightly 

synchronised parasites that demonstrate PfMIF mRNA transcription being initially
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detected in ring stage parasites and peaking during trophozoites stages of the P. 

falciparum lifecycle (Bozdech et a l, 2003; Le Roch et al., 2003).

3.2.4.2 PfMIF protein expression

Despite the previous studies having reported PfMIF mRNA transcription during the 

blood stages of parasite development (Bozdech et a l, 2003; Le Roch et a l, 2003), 

expression of PfMIF at the protein level has never been demonstrated.

Tightly synchronised parasites were therefore established and sampled at various stages 

of the blood stage cycle and immunoblotted for PfMIF protein. A representative 

Western blot is shown in Figure 3.4b. This figure demonstrates that in parallel with its 

mRNA expression, PfMIF protein is expressed during both ring and trophozoite stages 

of the parasite life cycle. Uninfected RBC were also included in these experiments and 

no protein was detected.

The presence of PfMIF protein in blood stage cultures raises the possibility that PfMIF 

may be released from the iRBC in order to have an affect on the host immune system. 

In order to investigate this, samples of the supernatant taken from P. falciparum 

cultures during ring or trophozoite stages of development were immunoblotted and no 

PfMIF was detected (data not shown). This could indicate that either PfMIF was not 

being trafficked from the iRBC or, alternatively, that this methodology was not 

sufficiently sensitive to detect the levels of PfMIF, if only small amounts were released. 

Efforts made to develop a sandwich ELISA for PfMIF, which would provide a more 

sensitive method to detect protein exported from the intact iRBC were unsuccessful, as 

discussed in section 5.2.2. Immunoblots of supernatant sampled after schizonts had 

ruptured the RBC to release merozoites did however detect PfMIF protein (figure 3.4b). 

Release of PfMIF after rupture indicates that PfMIF would be released into the
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circulation of patients at this point and would thereby come into direct contact with the

host immune system.

a) PfMIF Northen blot

PfMIF mRNA

b) Parasite lysates and supernatant

yCp A  -TV5 \2l ,

PfM IF
12kDa

Figure 3.4: Expression profile of PfMIF in erythrocyte stage P. falciparum parasites. 

(A) Northern blot of synchronised blood stage parasite RNA blotted with PfMIF specific 

probes. (B) Western blots of synchronised blood stage parasite lysates and culture 

supernatant taken from parasites after schizont rupture respectively, blotted with anti- 

PfMIF peptide IgG. The parasite lysate blot is representative of several experiments. 

The schizont rupture supernatant blot represents a single experiment. No protein was 

detected in uninfected RBC.
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3.2.5 PfMIF localisation

The next aim was to confirm that PfMIF is trafficked from the parasite into the cytosol 

of the iRBC during the course of intra-erythrocytic parasite development. In order to do 

this indirect immunofluorescence microscopy was used to determine the localisation of 

PfMIF in iRBC.

During the ring stage of development, PfMIF was exclusively located within the 

parasite, as indicated in the upper panel of figure 3.5. Flowever, as the parasites 

developed into trophozoites (figure 3.5, lower panel), PfMIF was clearly detected in 

both the parasite and the iRBC cytosol.

Ring s ta g e

T ro p h o zo ites

Figure 3.5: Localisation of PfMIF in blood stage parasites. Tightly synchronised 

parasites at different developmental stages were stained with DAPI to identify 

parasitised RBC, PfSBPI to indicate the iRBC cytosol and anti-PfMIF peptide IgG to 

determine its localisation within the iRBC. The inset shows the co-localisation of 

PfSBPI and PfMIF more clearly with the yellow areas representing co-localisation of 

the two proteins. This experiment was carried out three times, co-localisation was seen 

in many iRBC during each experiment. Arrows in bright-field micrographs indicate 

iRBC. The bar represents Ktyvrn.

Bright field P fS B P I PfMIF DAPI M erged
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Anti-PfSBPl antibody was initially used in these experiments as a control to highlight 

the infected erythrocyte surrounding the parasite itself. PfSBPI is a protein that spans 

the Maurer’s cleft membrane. It has been shown to be essential for the delivery of 

PfEMP-1 (section 1.5.3.1) to the erythrocyte membrane, possibly by mediating the 

anchoring of the Maurer’s cleft to the RBC plasma membrane (Blisnick et al., 2000; 

Cooke et al., 2006). Although no SBP1 proteins have been identified in other 

Plasmodium species, PfSBPI-specific antibodies have been shown to react with P. 

berghei and P. chabaudi infected erythrocytes suggesting that SBP1 proteins are 

conserved among malaria species {Blisnick, 2000 #160}. If PfMIF export to the host 

erythrocyte occurs it would most likely be trafficked via the Maurer’s cleft, therefore 

co-localisation of PfMIF and PfSBPI would expected. PfMIF in iRBC did appear to be 

associated with distinct vesicles and co-localised with PfSBPI, suggesting an 

association with the Maurer’s cleft (figure 3.5, lower panel, inset). This showed that 

PfMIF moved from the parasite into the iRBC during trophozoite stages and that the 

protein was associated with distinct vesicles in the cytosol.

3.3 DISCUSSION

This chapter demonstrates that PfMIF is similar to other known MIF proteins in both 

sequence and potentially in structure. It has also been confirmed that PfMIF is 

expressed during the blood stages of the P. falciparum lifecycle and is released upon 

schizont rupture. Immunofluorescence studies showed that, during the trophozoite stage 

of parasite development, PfMIF moves from the parasite into the host erythrocyte and is 

localised in specific vesicles. These vesicles are also positive for PfSBPI, indicating 

that PfMIF is also located in the Maurer’s cleft.

76



PfMIF was identified as a hypothetical P. falciparum protein that shared sequence 

homology with mammalian MIF. Although overall sequence homology is only 

moderate, analyses of the amino acid sequence shown in this chapter reveal important 

similarities between PfMIF and MIF proteins from other species. Comparisons of the 

amino acid sequence of PfMIF with MIF sequences from diverse species demonstrate 

that this homologue shares all residues that are conserved across the range of MIF 

proteins examined. The amino acid sequence of PfMIF shows no obvious differences 

that may suggest a variation in function. Furthermore, the predicted three-dimensional 

structure of PfMIF, based on threading the PfMIF sequence into the known structure of 

huMIF, demonstrated that PfMIF could form an almost identical structure to other, 

better characterised mammalian MIF proteins.

The results described above clearly show that PfMIF is expressed during the 

erythrocytic stages of the P. falciparum life cycle. Additionally, they demonstrate that 

PfMIF is transported from the parasite into the erythrocyte, and from there it is released 

into circulation upon schizont rupture. These results imply that PfMIF enters the 

circulation of the patient during the course of infection and thereby has the ability to 

come into direct contact with the host immune system. This means that PfMIF has the 

potential to modulate host immune responses to P. falciparum, particularly when it is 

considered that local concentrations of PfMIF may actually be quite high in areas of 

parasite accumulation, such as the spleen or other sites of parasite sequestration.

The localisation of PfMIF in the cytosol of iRBC is interesting in view of recent 

findings that the Maurer’s cleft has an important role in trafficking of parasite proteins 

to the surface of the erythrocytes, and that mammalian MIF has chaperone-like 

properties in vitro (Cherepkova et a l , 2006; Cooke et al., 2006; Potolicchio et a l,
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2003). Maurer’s clefts are parasite-derived vesicular structures that appear in the RBC 

cytosol during the early trophozoite stage. Cooke and colleagues recently demonstrated 

that PfSBPI, which is associated with the Maurer’s cleft, is responsible for the final 

translocation step of PfEMPl to the iRBC plasma membrane. As previously described, 

PfMIF does not have an identified motif that targets it for export from the parasite (see 

section 3.2.1). The targeting of PfMIF to the Maurer’s cleft may indicate a mechanism 

of parasite protein release independent of the Pexel/VTS sequence. Alternatively, recent 

studies examining the peptide binding properties of mammalian MIF in vitro as well as 

its role in heat-induced protein aggregation have highlighted its potential role as a 

chaperone-like protein (Cherepkova et al., 2006; Potolicchio et al., 2003). Considering 

this, it may be possible that the apparent localisation of PfMIF to the Maurer’s cleft is 

associated with a role for PfMIF in protein trafficking within the iRBC.

Many of the findings in this chapter have been recently confirmed by another study 

characterising Plasmodium MIF homologues (Augustijn et al., 2006), as discussed in 

Chapter 6.

In summary, results from this chapter show that PfMIF exhibits similar sequence 

characteristics and predicted structure to the more extensively studied mammalian and 

parasite MIF proteins. It has been confirmed that PfMIF protein is expressed in the 

blood stage replicative cycle of the P. falciparum life cycle. Finally, PfMIF is trafficked 

from the parasite into the iRBC cytosol. PfMIF is associated with the Maurer’s cleft, 

and released upon schizont rupture, and therefore able to interact with the host’s 

immune system.
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CHAPTER 4

In vitro activity of PfM IF
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4.1 INTRODUCTION

In Chapter 3 it was shown that PfMIF shares sequence and structural similarity with 

MIF proteins from other species. Whether this structural consistency with other MIF 

proteins also translates into similar immunological activity remains to be determined. 

The primary step in the assessment of any potential MIF protein has been to examine in 

vitro activity, and accordingly, this became the next objective of this project. The 

assessment of whether PfMIF behaves in a similar or different manner to other 

previously described MIF proteins in vitro should give some insight into the possible 

role of PfMIF during malarial disease.

Inhibition of random cellular migration in vitro was the first function attributed to MIF 

and is generally the first activity to be tested when new MIF homologues are identified. 

Although the inhibition of migration by MIF proteins has only been demonstrated in 

vitro, it does suggest that MIF proteins can influence the activity of myeloid cells. 

Hence, an initial aim of this chapter was to determine whether PfMIF affects the 

migration characteristics of myeloid cells in a similar fashion to other MIF proteins 

previously studied. This would be achieved by measuring the effect of recombinant 

PfMIF on the random migration and chemotaxis of myeloid cells in culture.

Other important markers of both malaria and MIF activity include changes in cytokine 

production, surface molecule expression and NO generation by myeloid cells (see 

section 1.6.4). For example, increased expression of cytokines IL-10, IL-12, TNF-a and 

IFN-y has been associated with the pathogenesis of malaria (Beutler and Grau, 1993; 

Trinchieri, 1995; Tripp et a l, 1993; Troye-Blomberg et al., 1990). IL-8 has been shown 

to be induced by MIF treatment in monocytes and increased early during P. falciparum 

blood stage infection (Hermsen et a l, 2003; Lyke et a l, 2004; Murakami et a l, 2002).
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TLR4 surface expression has been shown to be dependent on endogenous MIF in 

macrophages (Roger et al., 2001). Furthermore, TLR4 and TLR2 have also been 

implicated in innate immune responses to Plasmodium infection (see section 1.5.2.1). 

Each of these parameters represents a possible way in which the parasite might 

influence host immune responses. Thus it was also aimed to measure the expression of 

a range of cytokines and surface molecules as well as NO generation in myeloid cells 

exposed to PfMIF.

The investigation of these potential in vitro activities requires high concentrations of 

purified PfMIF protein. Thus, the first objective for these studies involved the 

development of a system to generate and purify recombinant bacterial PfMIF, which 

could subsequently be used to treat myeloid cells in vitro.

4.2 RESULTS

4.2.1 Expression of recombinant PfMIF

In order to begin to dissect the activities of PfMIF protein itself, high concentrations of 

purified protein were required. Recombinant PfMIF was therefore expressed using a 

bacterial expression system and purified using several different methods to remove 

contaminating proteins and endotoxin, as described in section 2.2.

Figure 4.1a shows the overexpression of PfMIF induced by IPTG in E. coli trxB strain. 

PfMIF was subsequently concentrated and purified using a nickel column (Figure 4.1b). 

The protein was further purified by running through an ion exchange column to remove 

any contaminating proteins that remained. Purified recombinant PfMIF was refolded 

and then contaminating endotoxin removed using an Endotrap column. The final protein
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preparation was consistently greater than 500pg per ml PfMIF, with LPS contamination 

less than 2pg per pg protein.

a) b)
IPTG

+

9m Mi — PfMIF—
15kD—

Figure 4.1: Recombinant PfMIF produced in E.coli. Recombinant PfMIF expression in 

E  coli was induced by IPTG and visualised on SDS-PAGE by coomassie a) before and 

b) after purification and concentration.

Non-reducing acrylamide gel electrophoresis of recombinant PfMIF indicated that the 

protein may form dimers and trimers (figure 4.2). This is consistent with cross-linking 

experiments of huMIF, and occurred despite the possible influence on subunit 

association of the presence of a 5kD N-terminal tag (Mischke et al., 1998). Evidence 

that PfMIF may form trimers, combined with the prediction that PfMIF shares a similar 

structure to huMIF (see section 3.2.3), leads to suggestions that PfMIF could form 

hetero-trimers with huMIF resulting in the potential modulation of huMIF activity.
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Figure 4.2: Recombinant PfMIF forms dimers and trimers. PfMIF run on a non

reducing SDS-PAGE gel appears to form both dimers and trimers on non-reducing 

gels, although monomers and dimers predominate. This is consistent with cross-linking 

experiments with huMIF but will be complicated in the present case by the presence of 

a 5kD N-terminal tag.

4.2.2 Generation of anti-PfMIF antibodies

In order to provide further tools to examine the role of PfMIF, two different anti-PfMIF 

antisera were generated in rabbits during the course of this project (see section 2.3). The 

first anti-serum was generated using purified recombinant PfMIF protein as the antigen. 

The second was generated against a peptide sequence specific to PfMIF 

(NRSNNSALADQITKC). This sequence was chosen due to low sequence homology 

with huMIF in this region and because the 3-dimensional structure prediction indicated 

that it would be exposed on the outer surface of the protein, thereby providing good 

antibody access. Western blotting membranes that only carried recombinant PfMIF and 

huMIF were used to determine the specificity of these two anti-sera (figure 4.3). The 

anti-peptide anti-serum specifically recognised PfMIF at all dilutions. Anti-PfMIF anti

serum recognised both PfMIF and huMIF but with a higher affinity for PfMIF, with
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huMIF not detected at 1:500 dilutions or less.

Anti-PfMIF sera Anti-peptide sera

PfMIF—

-  15kD
HuMIF-
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Figure 4.3: Specificity of anti-PfMIF and anti-peptide antisera. Equal quantities (130 ng) 

of PfMIF and huMIF were separated by electrophoresis on a 12% gel and then 

transferred to nitrocellulose membranes. After blocking, membranes were incubated 

with different dilutions of the two antisera raised against PfMIF. Anti-PfMIF antiserum 

shows some crossreactivity with huMIF at the higher concentrations, whereas the anti

peptide antiserum recognises PfMIF exclusively.

4.2.3 Modulation of monocyte activation by PfMIF

4.2.3.1 PfMIF affects migration o f  monocytes in vitro

The initial step in the assessment of the activity of recombinant PfMIF was to determine 

its influence on the random migration and chemotaxis of monocytes in vitro. Random 

migration is the cellular movement occurring in the absence of a known stimulus. 

Alternatively, chemotaxis is directed cellular movement under the influence of a 

chemoattractant.
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Unsuccessful attempts were made to generate recombinant huMIF protein as a control 

for PfMIF activity, especially in migration assays (see section 2.2.6). Therefore, LPS 

was used as a control in migration assays due to the ability of LPS to consistently 

inhibit monocyte migration.

The effect of PfMIF on cellular movement across a membrane was measured by flow 

cytometry (see section 2.6.3). It was observed that random monocyte migration was 

significantly inhibited by treatment with lOOng/ml PfMIF (figure 4.4). This was 

consistent with previous data showing that mammalian MIF and parasite MIF proteins 

inhibit random migration (David, 1966; Pastrana et a l, 1998). In this instance, LPS was 

included as a positive control for each assay due to its known ability to inhibit random 

monocyte migration.

To assess whether chemotaxis was also inhibited by PfMIF, the chemotactic agent 

MCP-1 was used. MCP-1 is a chemoattractant that, in this experimental system, 

promotes the movement of cells across a membrane. MCP-1 induced around a four-fold 

increase of migration by monocytes compared to random migration. The addition of 

PfMIF inhibited MCP-1 chemotaxis in a dose-dependent manner. However, MCP-1 

induced migration was still above baseline level even in the presence of 500 ng/ml 

PfMIF (figure 4.4).
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Figure 4.4: In vitro migration of monocytes in the presence of PfMIF. The random 

migration of monocytes across a membrane was assessed in the presence of 

recombinant PfMIF or LPS and compared to untreated monocytes (medium). Monocyte 

chemotaxis in response to MCP-1 was also assessed in the presence or absence of 

PfMIF or LPS (N ^ 3 for each condition, performed in duplicate for each experiment; 

*p<0.01, paired t-test).

These results confirm that PfMIF does indeed act in a similar fashion to other 

previously described MIF proteins, inhibiting both random migration and chemotaxis.
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This is despite the presence of an N-terminal tag on recombinant PfMIF that is likely to 

inactivate tautomerase activity (see section 1.6.4.1). Therefore the inhibition of 

monocyte migration by PfMIF is unlikely to be mediated by tautomerase activity and 

must be mediated by another mode of action of the protein.

The effect of PfMIF on random migration of monocytes was found to be unstable and 

lost approximately 10 days after purification. It was therefore confirmed that PfMIF 

maintained its effect on random monocyte migration before being used in each 

subsequent experiment.

4.2.3.2 Cytokine secretion in monocytes exposed to PfMIF

In order to assess the effect of PfMIF on cytokine secretion, monocytes were cultured in 

the presence or absence of lOOng/ml or 500ng/ml PfMIF (section 2.6.5). After 24 hours 

exposure to PfMIF, culture supernatants were harvested and the levels of IL-8, IL-10, 

IL-12 and TNF-a were measured by ELISA.

Figure 4.5 shows that exposure to PfMIF had no effect on the release of IL-8, TNF-a or 

IL-12 from monocytes within 24 hours. There was a tendency for PfMIF treatment to 

increase IL-8 secretion but this did not reach significance and was low in comparison to 

IL-8 secretion induced by lOOpg/ml LPS (figure 4.5). Preincubation of monocytes with 

PfMIF had no significant influence on subsequent cytokine release in response to LPS 

(data not shown). No changes in IL-10 release were detected under any condition and 

therefore the IL-10 data is not shown.

4.2.3.3 Surface molecule expression in monocytes treated with PfMIF

As a further indicator of monocyte modulation, I went on to determine whether the 

expression of the surface molecules HLA-DR, ICAM-1, CD40, CD86, TLR2 and TLR4
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was altered upon incubation with PfMIF. Expression of these surface molecules on 

monocytes cultured in the presence or absence of PfMIF (lOOng/ml or 500ng/ml) for 24 

hours was assessed by flow cytometry (see section 2.6.4).
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Figure 4.5: Effects of in vitro PfMIF treatment on cytokine release from monocytes. 

Monocytes were cultured in the presence or absence of recombinant PfMIF 

(concentrations as indicated) and/or LPS (100 pg/ml). After 24 hours of treatment, 

culture supernatant was collected and assessed for IL-8, TNF-a and IL-12 release by
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ELISA (N ^ 5 for each condition, performed in duplicate for each experiment; *p<0.05, 

paired t-test).

TLR2, TLR4 and CD86 surface expression was significantly reduced in response to 

PfMIF, whereas all other surface markers remained unchanged (figure 4.6a). By 

contrast, LPS treatment of monocytes resulted in upregulation of CD40, CD86 and 

ICAM-1 and a significant decrease in expression of TLR4 (p<0.05 paired t-test; figure 

4.6b). Together these data would indicate that PfMIF alters monocyte function but has 

no effect on LPS-mediated activation of monocytes.

Due to the reduction of TLR expression induced by PfMIF, subsequent responses to 

TLR ligands were examined. Monocytes were preincubated with PfMIF for 12 hours 

followed by stimulation with either the TLR4-ligand LPS or the TLR2-ligand 

peptidoglycan (PGN). As mentioned above, LPS alone upregulated CD40, CD86 and 

ICAM-1, whilst significantly downregulating TLR4. Pre-incubation of monocytes with 

PfMIF before a 24 h treatment with LPS did not change expression levels for any of the 

surface markers compared with LPS alone, although TLR2 showed a trend towards 

downregulation (p=0.09 paired t-test for PfMIF 500 ng/ml; figure 4.6b). Treatment of 

monocytes with the TLR2-Iigand PGN alone increased expression of CD86 only 

(p<0.05 paired t-test; Figure 4.6c). Pre-incubation with PfMIF before a 24h incubation 

with PGN had no effect on the surface expression of any of the markers analysed 

compared with PGN alone. Together these data would indicate that PfMIF alters 

monocyte function but has no significant effect on LPS- or PGN-mediated activation of 

monocytes.
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Figure 4.6: Monocyte surface marker expression after PfMIF treatment. Monocytes 

were untreated (white bars), or exposed to 100 ng/ml PfMIF (grey bars) or 500 ng/ml 

PfMIF (black bars) for 12 hours before incubation in medium alone (a), LPS (b), or PGN 

(c) for another 24 hours, followed by staining for the expression of surface molecules. 

The mean fluorescence intensity (MFI) for a given marker was divided by the MFI of 

the control (monocytes alone panel a, white bars) to normalise for variations in 

expression levels of a given marker between individuals (N^3 for each condition, 

performed in duplicate for each experiment; *p<0.05 paired t-test, PfMIF treated 

monocytes versus control; **p<0.05 paired t-test, LPS or PGN treated monocytes 

versus control).
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4.2.3.4 NO production in monocytes induced by PfMIF

Nitric oxide has been suggested to be important for the pathogenesis of malaria. I tested 

whether PfMIF was capable of inducing NO production in vitro, by the measurement of 

nitrite levels in monocyte culture supernatant (see section 2.6.6). In monocytes there 

was no concentration of PfMIF that induced a significant change in NO production 

(figure 4.7). If anything, PfMIF appeared to show a tendency to inhibit basal and LPS 

stimulated NO release. The levels of nitrite detected in monocyte culture supernatant 

were however not high enough to suggest a physiologically significant change in NO 

production under any condition.

CD

Control LPS PfM,F PfMIF & 
100pg/ml 100ng/ml LPS

Figure 4.7: NO production by monocytes in response to PfMIF and LPS treatment (n=3 

for each condition, performed in duplicate for each experiment).
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4.2.4 Dendritic cell activity and PfMIF

Following the assessment of the effect of PfMIF on monocytes, similar experiments 

were then carried out on monocyte-derived dendritic cells (DC) to see if PfMIF might 

have equivalent effects in these cells. The potential modulation of DC activity by PfMIF 

would be of interest in relation to the finding that DC migration is disrupted in the 

spleen of patients that have died during the course of P. falciparum infection (see 

section 1.5.7).

4.2.4.1 Dendritic cell migration in response to PfMIF

The random migration of dendritic cells in response to PfMIF was tested using the same 

protocol as used for monocytes (see section 2.6.3). Exposure to PfMIF resulted in no 

significant difference on random DC migration compared to controls (data not shown).

4.2.4.2 Cytokine secretion in dendritic cells exposed to PfMIF

The release of the cytokines IL-8, IL-12 and TNF-a from dendritic cells after treatment 

with PfMIF was tested as described in section 2.6.5. Figure 4.8 shows that there was no 

significant difference in cytokine release from DC induced by incubation with PfMIF, 

at any concentration.
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Figure 4.8: Effects of in vitro PfMIF treatment on cytokine release from DC. DC were 

cultured in the presence or absence of recombinant PfMIF (concentrations as 

indicated) and/or LPS (1 /;g). After 24 hours of treatment, culture supernatant was 

collected and assessed for IL-8, TNF-a and IL-12 release by ELISA (N = 3 for each 

condition, performed in duplicate for each experiment).
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4.2.4.3 Surface molecule expression in dendritic cells treated with PfMIF 

The effect of PfMIF on the expression of surface molecules that was examined in 

monocytes was also measured in DC. There was no significant difference in the 

expression of CD40, CD86 or ICAM-1 upon exposure to PfMIF. As was seen in 

monocytes, PfMIF exposure did cause a reduction in TLR2 expression (figure 4.9). 

However, this effect was only evident at the highest concentration of PfMIF tested 

(5pg/ml), which is ten-fold higher than any concentration tested on monocytes. There 

was no indication of a reduction in TLR4 expression as was seen in monocytes; 

however, only two assays gave reliable results for TLR4 expression (figure 4.10), the 

third assay gave results that were below baseline and therefore were not used. The two 

available assays were quite variable and did not suggest a consistent pattern to TLR4 

expression in response to PfMIF on DC.

0303
OC

32o
1-

□  Control

□  PfMIF 500ng/m l

□  PfMIF 5^/g/ml 

H  Control

■  PfMIF 500ng/ml

■  PfMIF 5/jg/ml

+LPS 1^/g/ml

CD40 CD86 ICAM-1 TLR2

Figure 4.9: Dendritic cell surface marker expression after in vitro treatment with PfMIF. 

Of the surface markers tested only TLR2 was significantly reducing in response to 

PfMIF exposure (* p<0.05, paired t-test, PfMIF treated DC versus control; n=3 for each 

condition, performed in duplicate for each experiment).
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Figure 4.10: TLR4 surface expression on dendritic cells in response to PfMIF and LPS 

(n=2 for each condition, performed in duplicate for each experiment).

4.2.4.4 NO production in dendritic cells induced by PfMIF

A single nitrite assay was carried out to determine NO production with no suggestion of 

a difference in NO production between DC treated with LPS, PfMIF or control cells 

(figure 4.11). This is similar to the results seen with monocytes, with the very low levels 

of nitrite detected in the culture supernatant not suggesting a physiologically significant 

change in NO production under any of the study conditions. For this reason PfMIF- 

induced NO production in DC was not pursued any further.
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Figure 4.11: NO production by DC in response to PfMIF (n=1, done in duplicate).

96



4.3 DISCUSSION

The previous chapter provided evidence that PfMIF is capable of coming into direct 

contact with myeloid cells upon schizont rupture and raised the possibility that it may 

affect myeloid cell function. In this chapter, the ability of PfMIF to affect myeloid cell 

activities was investigated in vitro. These experiments demonstrated that exposure of 

monocytes to PfMIF resulted in modulation of some of the activities tested.

The initial challenge faced in these experiments involved the generation of pure and 

active recombinant PfMIF. A bacterial expression system and sequential purification 

steps were employed to produce recombinant PfMIF which was shown in cellular 

migration assays to inhibit random migration and chemotaxis of monocytes in a similar 

manner to other MIF proteins, thus confirming its activity.

With inhibition of migration confirmed, recombinant PfMIF could then be used to 

assess other in vitro activities of monocytes and DC. Both malaria and MIF activity 

have been shown to be associated with changes in cytokine production, surface 

molecule expression and NO generation, which can be used as indicators of myeloid 

cell activities. The current studies showed no effect of PfMIF on the secretion of any 

cytokines tested nor NO generation by monocytes or DC. On the other hand, PfMIF 

was found to affect the expression of a number of surface molecules in myeloid cells. 

PfMIF resulted in a significant reduction of CD86, TLR2 and TLR4 surface expression 

on monocytes, indicating that PfMIF can influence myeloid cells and may therefore 

have an effect on the host immune system during the course of P. falciparum infection.

TLR2 surface expression was also downregulated in response to PfMIF in DC. 

Although consistent with the effect seen in monocytes, a significant reduction in TLR2

97



expression did not appear to be dose-dependent in DC and was only seen at a PfMIF 

concentration much higher than those used on monocytes. This may indicate that this 

effect was due to an increase in contaminating LPS on a cell type that is more 

endotoxin-sensitive. Generally, DC were much less responsive to PfMIF treatment than 

monocytes across the range of activities tested.

The expression of ICAM-1 was examined because of its importance as an anchor for 

cytoadherence when the parasite expresses one of a subset of ICAM-1 specific PfEMP- 

1 molecules (section 1.5.4). It has also been shown that ICAM-1 cell surface expression 

is increased upon treatment with MIF in monocytes (Amin et a l , 2006). ICAM-1 was 

therefore considered an ideal candidate for modulation of expression by PfMIF but 

surprisingly, showed no change in expression levels on monocytes in response to 

recombinant PfMIF.

The moderate but significant downregulation of TLR2 and TLR4 expression on 

monocytes in response to PfMIF is an interesting and novel finding. Endogenous MIF 

has previously been shown to be required for the expression of TLR4 in mouse 

macrophages (Roger et al., 2003), but no prior study has looked at the effect of 

exogenous MIF on TLR4 expression in human macrophages, or any other cell type. It 

has long been recognised that TLR tolerance can be induced in that pre-treatment of 

cells with LPS renders them unresponsive to further stimulation through TLR4 (the 

TLR specifically activated by LPS) or other TLRs (Dobrovolskaia et al., 2003). It was 

therefore hypothesised that a twelve-hour pre-incubation of cells with PfMIF would 

alter monocyte activation by the TLR2-ligand PGN or the TLR4-ligand LPS. However 

this was not found to be the case. Pre-incubation with PfMIF at two different 

concentrations had no effect on the TLR2- or TLR4-mediated activation of monocytes,
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suggesting that PfMIF does not play an active part in the TLR tolerance that has been 

previously described during Plasmodium yoelii infection in mice (Perry et a l , 2005).

A reduction in TLR expression on myeloid cells has also been demonstrated in patients 

with filarial infections (Babu et al., 2005, 2006). T and B cells and monocytes from 

filarial-infected individuals were shown to exhibit significantly less TLR1, TLR2 and 

TLR4 expression compared to uninfected controls. The mechanism for reduced 

expression has not been elucidated but, given the results shown in this chapter, it is 

feasible that the MIF homologue produced and secreted by filarial nematodes may 

contribute to this phenomenon.

The reduction in CD86 expression on monocytes treated with PfMIF also demonstrates 

that PfMIF can influence monocyte activity. CD86 is an important co-stimulatory 

molecule and a reduction in expression could affect the strength of subsequent T cell 

activation.

In conclusion, this chapter demonstrates that PfMIF can influence the activity of 

myeloid cells in vitro based on the limited number of factors tested. This would suggest 

that PfMIF has the potential to modulate the immune response in malaria patients.
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CHAPTER 5

PfMIF in pa tien ts
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5.1 INTRODUCTION

The results from previous chapters have shown that PfMIF is expressed during parasite 

blood stages and that it is released upon schizont rupture. It has also been shown that 

PfMIF can alter the function of myeloid cells in vitro. The next major objective in this 

project was therefore to determine the possible relevance of PfMIF in patients with 

malaria.

Through a collaboration with the Kenya Medical Research Institute/Wellcome Trust 

Centre based at the Kilifi District Hospital in coastal Kenya, I had access to a unique, 

large and well-established cohort of children (see section 2.7). Access to this population 

gave me the opportunity to look at PfMIF in vivo. The aim was to collect blood from 

children before, during and after a malarial episode and determine if there is any 

relationship between circulating PfMIF levels and the immune responses to malaria or 

the severity of infection. In order to carry out these objectives it was necessary to 

develop assays to measure PfMIF-specific antibodies and PfMIF protein levels in 

patient samples.

5.2 RESULTS

During the malarial season, symptomatic patients from the cohort were identified by 

active surveillance and blood samples taken. Convalescent samples were also collected 

two weeks later where possible. Additionally, cross-sectional surveys were carried out 

in the low transmission seasons when patients from the cohort were asked to provide 

blood samples in order to generate data on this group when not infected with P. 

falciparum.
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5.2.1 PfMIF antibody responses in patients

In order to detect anti-PfMIF IgG in patient circulation, an enzyme-linking 

immunosorbent assay (ELISA) was developed using plates coated with recombinant 

PfMIF as a capture antigen (section 2.7.1).

Antibody responses to PfMIF were examined in blood samples taken from Kenyan 

children with acute malaria, the same patients during convalescence, and from healthy 

Kenyan children during the low transmission season (see table 5.1).

Table 5.1: Malaria patient characteristics and PfMIF IgG levels.

H e a l t h y A c u t e  m a l a r i a C o n v a l e s c e n t

Number 1 1 7 8 0 3 5

Age months 5 7 2 9 2 6

(range) ( 1 2 - 1 0 7 ) ( 4 - 1 3 8 ) ( 6 - 7 0 )

Number positive for anti- 

PfMIF IgG
6 2  ( 5 3 % ) 6 5  ( 8 1 % ) 3 5  ( 1 0 0 % )

Anti-PfMIF IgG OD 0 . 1 6 1 0 . 7 2 1 5 1 . 0 6 4 9

(range) ( 0 . 0 1 - 0 . 8 6 ) ( 0 . 1 - 2 . 1 ) ( 0 . 4 - 2 . 2 )
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Patients with acute malaria were significantly younger than healthy subjects (P< 0.05, 

Table 5.1). Within each group however, there was no correlation between age and 

PfMIF IgG levels (Spearman’s correlation coefficient, acute malaria: r=0.076, p=0.547; 

convalescent: r=0.173, p=0.328; healthy children: r=0.16, p=0.221).

In the healthy control group 62 children (53%) presented antibody responses to PfMIF. 

Within this responder group, PfMIF antibodies were not associated with age and 

therefore with recent exposure. By contrast, in the acute malaria and convalescent 

groups, 65 (81%) and 35 (100%) children respectively, were found to have circulating 

antibodies against PfMIF. Therefore, compared to healthy controls, there was a larger 

than expected proportion of positive antibody responses in acute and convalescent 

samples (Pearson’s Chi-square, p<0.001). When only responding children from each 

group were taken into account, healthy children had significantly lower levels of 

circulating PfMIF antibodies than seen during and immediately subsequent to P. 

falciparum infection (figure 5.1; acute: OD=0.7215, range 0.1-2.10; convalescent: 

OD=1.0649, range 0.4-2.20; healthy: OD=0.1610, range 0.01-0.86; p<0.001 Mann 

Whitney test). This result suggests a rapid decrease in PfMIF antibody concentration 

following acute infection, and is consistent with the antibody profiles seen in response 

to other malaria antigens (Cavanagh et a l , 1998).
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Figure 5.1 Antibody responses to PfMIF in Kenyan children. Samples were taken from 

acute malaria patients, convalescent patients and healthy controls and assessed for 

PfMIF IgG levels. Acute and convalescent malaria patients had significantly higher anti- 

PfMIF IgG levels than healthy children (**p<0.0005, Mann-Whitney U test).

Cross-sectional surveys were carried out on the cohort in two consecutive low malaria 

transmission seasons. A total of 96 patients had samples available from both cross 

sectional surveys to assess changes in antibody levels over the course of a year. 

Average antibody levels were found to be significantly lower in blood samples collected 

from these subjects in October 2004 compared to samples collected in October 2003 

(P< 0.05, Figure 5.2). This drop may be explained by a reduced exposure to P. 

falciparum parasite. As described above, antibody responses to malarial antigens tend to 

decrease over time. Usually it has been estimated that people living in this region of 

coastal Kenya can expect 10 infectious bites/year. However, due to low rainfall in the 

study area between the cross-sectional surveys there were greatly reduced numbers of 

malaria cases than expected during the normal malaria season. This lack of transmission
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between the surveys would explain the drop in antibody levels, as most children would 

not have been exposed to parasites in order to boost their responses over that period.
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Figure 5.2: Antibody levels in Kenyan children during the low malaria transmission 

season in consecutive years. The box plot on the left shows a significant drop in PfMIF 

specific IgG in paired samples between October 2003 and October 2004 (n=96, 

*p<0.05, paired t-test). The plot on the right shows the raw data, more clearly 

demonstrating a drop in PfMIF IgG levels over a year.

5.2.2 Detection of PfMIF in malaria patient samples

The ideal way to study the role of PfMIF in human malaria patients would be to 

measure the circulating level of parasite protein itself and investigate the relationship 

between parasitaemia, disease severity and host immune responses. To allow detection 

of PfMIF protein, the two antisera generated against PfMIF (section 2.3) were used in 

an effort to develop a sandwich ELISA. Purified IgG from the antisera was used in 

order to assess their suitability for use as capture or detection antibodies. Unfortunately,
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neither combination of these antibodies was successful in detecting PfMIF protein by 

sandwich ELISA. Additionally, when these antibodies were used to detect PfMIF 

protein bound to the ELISA plate as a capture antigen they still did not recognise the 

protein. One factor contributing to the difficulties experienced in trying to establish this 

method may be that both antibodies were generated in the same species, which is 

known to be problematic.

5.3 DISCUSSION

The studies described in this chapter aimed to determine if PfMIF plays a role in human 

malaria. PfMIF IgG was detected in the circulation of subjects in a cohort of Kenyan 

children. A rapid loss of anti-PfMIF antibody levels was evident during the low 

transmission season compared to acute or convalescent malaria patients. This pattern of 

antibody response has been shown for other malaria antigens (Cavanagh et al., 1998). 

There was no indication that PfMIF antibody responses were involved in protection 

from subsequent disease or linked to disease severity.

The significant drop in low transmission season PfMIF antibody levels from October 

2003 to October 2004 can be attributed to the failure of the rains in 2003 that resulted in 

very few presentations of malaria from the cohort area in the subsequent malaria season. 

The reduction in antibody levels in this instance is therefore likely to be due to a lack of 

exposure rather than any other factors.

The inability to generate a method to detect PfMIF in patient samples severely limited 

the ability to analyse the possible role of PfMIF in malaria pathogenesis. There is a 

large amount of data available for the cohort of Kenyan children that has been collected
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over many years. These data range from demographic data, such as age and sex, the 

number and severity of malaria episodes, through to immune responses, such as 

cytokine levels during malaria episodes and subsequent convalescence. It was therefore 

frustrating not to be able to compare these data with PfMIF protein levels in the subjects 

and determine if there is an association between PfMIF concentration in patients with 

the immune response to a malaria episode or disease severity.

In conclusion, in this chapter it is shown that PfMIF antibodies could be detected in the 

circulation of a cohort of children living in a malarial region and that these antibodies 

follow a similar pattern of response to those seen against other malaria antigens 

previously tested. The levels of PfMIF protein present in the circulation of these 

children could not be determined due to technical difficulties. In order to be able to 

develop a successful ELISA assay, new antibodies specific for PfMIF need to be 

generated in other species. This would then allow comparison of PfMIF protein levels 

with the broad range of immunological, epidemiological and demographic data that 

have been collected over several years from the cohort of children in coastal Kenya. 

Such analyses would greatly boost the strength of this study and would confirm whether 

PfMIF plays an important role in the development of immunity to falciparum malaria, 

or the progression and severity of the disease.
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CHAPTER 6

G enera l  d iscuss ion

108



Malaria is responsible for 1-3 million deaths per year worldwide, with half the global 

population at risk of infection. Plasmodium falciparum is the parasite responsible for 

severe malaria and accounts for almost all fatal cases. In order to develop strategies for 

the treatment or prevention of malaria, a better understanding of the interaction between 

parasite and host is required. This project aimed to characterise the structure and 

function of the putative MIF homologue identified during sequencing of the P. 

falciparum genome and to investigate the possibility that PfMIF plays a role in 

influencing the host immune system during the course of P. falciparum infection.

Sequence analysis and modelling techniques were used to suggest that PfMIF shares 

important structural similarities to MIF proteins from other species. Such similarities 

suggest that enzymatic activities attributed to other MIF proteins may be conserved in 

the P. falciparum homologue. Additionally, there were indications that recombinant 

PfMIF formed homotrimers, as has been reported for other MIF proteins (Mischke et 

al., 1998). Studies of parasites in culture demonstrated that PfMIF mRNA and protein 

are expressed during ring and trophozoite stages of the parasite life cycle. Furthermore, 

PfMIF was found to be exported into the cytosol of the infected erythrocyte and 

released upon schizont rupture, thus providing an opportunity for PfMIF to interact 

directly with the host immune system. During the preparation of this thesis, another 

study characterising PfMIF was published and confirmed the above findings (Augustijn 

et al., 2006). Augustijn and colleagues characterised aspects of both P. berghei MIF 

(PbMIF) and PfMIF activity. In addition to the results described above, these authors 

report that Plasmodium MIF protein is expressed during all stages of the parasite 

lifecycle. This study also reported that both species of Plasmodium MIF have 

tautomerase and oxidoreductase activities, albeit significantly less activity than huMIF.
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The lack of a complete CXXC motif, that was also identified in the present study, was 

shown to reduce but not completely ablate oxidoreductase activity of the Plasmodium 

MIF proteins.

Augustijn et al. also carried out in vivo experiments in which mice were infected with 

PbMIF gene knockout P. berghei parasites (Augustijn et al., 2006). These mice 

demonstrated higher levels of circulating reticulocytes. Although this was the only 

significant difference identified in mice infected with PbMIF knockout parasites it does 

suggest that Plasmodium MIF homologues may play a role in malarial anemia. The 

mechanism of this effect was not reported but may involve indirect inhibition of 

erythropoiesis, for instance by influencing cytokine responses, or a direct effect that 

Plasmodium MIF may have on erythropoietic cells. The effects of PbMIF deficiency in 

these parasites may become more apparent when the P. berghei knockout parasites are 

used to infect the thicket rat (Grammomys saurdaster), the natural host of P. berghei.

The localisation of PfMIF to the Maurer’s cleft in the cytosol of iRBC (section 3.2.4) is 

of particular interest as it raises the possibility that, in addition to its effect on monocyte 

function, PfMIF may play a role in protein trafficking within in the iRBC. This is based 

on the recent finding that mammalian MIF may have chaperone-like properties 

(Cherepkova et al., 2006) and that the Maurer’s cleft has been implicated in the 

trafficking of parasite proteins to the surface of the erythrocytes (Cooke et al., 2006). 

Studies on protein trafficking in iRBC using PfMIF knockout parasites could address 

this question and would be an interesting direction for future studies. Alternatively, 

considering that PfMIF does not have an export Pexel/VTS motif like some other 

exported P. falciparum proteins (see section 3.2.1), the association of PfMIF with the 

Maurer’s cleft may represent a mechanism of protein export from the parasite, which is
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independent of the Pexel/VTS motif.

To address the potential ability of PfMIF to modulate immune responses, recombinant 

PfMIF protein was generated and used to treat monocytes in vitro. These experiments 

demonstrate that PfMIF inhibits the random migration and chemotaxis of monocytes 

and influences surface molecule expression, as evidenced by the downregulation of 

TLR2, TLR4 and CD86. This supports the hypothesis that PfMIF can influence immune 

responses.

The effect of exogenous MIF on TLR expression had not been previously examined. In 

contrast to the effect of endogenous MIF, which has been shown to be required for the 

expression of TLR4 in mouse macrophages (Roger et al., 2003), during the present 

study it was observed that TLR2 and TLR4 expression on monocytes was moderately 

but significantly reduced in response to PfMIF. PfMIF was not found to alter monocyte 

activation by the TLR2-ligand PGN or the TLR4-ligand LPS and therefore may not 

play an active part in the TLR tolerance that has been previously described during 

Plasmodium yoelii infection in mice (Perry et al., 2005). Interestingly, TLR expression 

on myeloid cells has also been found to be decreased in patients with filarial infections 

through an unknown mechanism (Babu et al., 2005, 2006). Considering the results from 

the present study, it is tempting to speculate that the MIF homologue produced and 

secreted by filarial nematodes may contribute to this phenomenon.

The downregulation of CD86 on the surface of monocytes after exposure to PfMIF 

raises another potential mechanism by which PfMIF may influence the immune 

response to malaria. CD86 is an important co-stimulatory molecule necessary for T cell 

activation. A previous study looked at CD86 expression on DC in response to 

Plasmodium infection. Using monocyte-derived DC, it was shown that binding to iRBC
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lowered DC surface molecule expression, including CD86, and led to a suppression of 

subsequent T cell responses (Urban et al., 1999). Although there was no reduction in 

CD86 expression on DC in response to PfMIF in this study, the reduction in CD86 

levels on monocytes may also result in a similar reduction in the strength of subsequent 

T cell activation. This possibility should be addressed in future studies.

Based on MIF activities described in other systems, there are a number of potential 

mechanisms for modulation of immune responses that have not been investigated in the 

present study and which may be of interest for future studies into the actions of PfMIF. 

These include modulation of expression of matrix metalloproteinases and effects on 

eosinophil recruitment and activity.

The expression of MMP-9 has been shown to be induced by MIF in rat osteoblasts and 

has also been implicated in the pathogenesis of malaria (see sections 1.6.4.8 and 1.7.2) 

(Onodera et al., 2002; Prato et al., 2005). Disruption of basal lamina and endothelial 

alterations, especially at sites of iRBC sequestration, have been described in cerebral 

malaria (Brown et al., 2000). It is possible that this disruption may be due to the activity 

of MMP-9, the expression of which was increased in monocytes by the phagocytosis of 

trophozoites and haemozoin (Prato et al., 2005). Although trophozoites and haemozoin 

induce MMP-9 in monocytes this does not preclude a role for PfMIF in MMP 

induction. PfMIF is expressed in trophozoites, and haemozoin isolated from parasites 

binds many lipids and proteins, which may include PfMIF. PfMIF may therefore be 

responsible, at least in part, for the induction of MMP-9 in monocytes and may thereby 

play an important role in cerebral malaria pathogenesis.

Another potential mechanism of action of PfMIF during the course of malarial disease 

is its influence on eosinophils. Although the role of eosinophils has not been extensively
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studied during the course of Plasmodium infection, one study suggests that eosinophils 

in circulation decrease during acute malarial disease and are increased during 

asymptomatic infection (Kurtzhals et al., 1998b). Markers of eosinophil activity 

however are increased during acute malaria. This may suggest that eosinophils are 

recruited to a specific tissue during infection. Interestingly, a study in mice has shown 

that administration of recombinant parasite MIF (specifically Brugia malayi-MIF-1) 

into the peritoneal cavity led to eosinophil recruitment in a similar fashion to B. malayi 

infection itself (Falcone et al., 2001). This suggests a potential role for PfMIF in the 

course of malaria in respect to eosinophil recruitment.

Analysis of the pathophysiological role of host-derived MIF during Plasmodium 

infection has so far been limited to its role in the development of malarial anaemia 

(McDevitt et al., 2006). MIF knockout mice infected with P. chabaudi developed less 

severe anaemia, had better erythroid development and improved survival compared to 

controls. Following from this observation it was shown that human MIF (huMIF) levels 

in plasma were significantly increased during acute malarial disease in patients from 

Zambia (McDevitt et al., 2006). This finding is however in direct contrast to a study by 

Awandare and colleagues that showed a significant decrease in circulating huMIF in 

acute malaria patients from Gabon (Awandare et al., 2006a). Neither of these studies in 

patients addressed the likely involvement of PfMIF during acute malaria. The present 

study highlights the important issue that future studies should take into account the 

presence of parasite MIF in the circulation, and hence any potential cross-reactivity 

between reagents detecting PfMIF and huMIF.

The measurement of PfMIF in patient samples is an important step in determining the 

potential role of the protein in the influence of the host immune system. Access to a
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cohort of children in Kenya allowed examination of patient antibody responses to 

PfMIF in this study. Antibody responses to PfMIF were found to follow a pattern 

consistent with antibody responses against other malaria antigens that have been 

previously described (Cavanagh et al., 1998). Attempts to develop a sandwich ELISA 

to detect PfMIF in patient circulation during the course the project were unsuccessful. 

An alternative method for PfMIF detection may be possible by developing a 

radioimmunoassay using the antibodies available and radio-labelled recombinant PfMIF 

protein, however, this was not feasible with the facilities available during this project. 

The inability to develop a method to detect PfMIF in patient samples with the resources 

available reduced the ability to fully utilise the data from the patient cohort. The 

development of a method to detect PfMIF in patient samples would be the main priority 

in any future study as comparisons with available cohort data would be invaluable in 

determining whether PfMIF plays a role in immune regulation during P. falciparum 

infection.

The influence of concomitant Plasmodium and nematode infections should be taken 

into consideration in studies investigating the influence of Plasmodium MIF in malaria 

patients. Regions of the world that have high rates of malaria transmission also 

generally have high rates of nematode infection. For instance, in a study carried out in 

Malindi district of coastal Kenya, just north of the study area used in this study, 34.4% 

of males over 15 years of age showed signs of Wuchereria bancrofti infection (Njenga 

et a l, 2006). This increased to 55.4% of males over 40. Future studies associating 

PfMIF and patient responses or malarial disease severity should therefore consider the 

potential influence of concomitant nematode infection. Hypothetically, if PfMIF 

released during the course of infection was responsible for pushing a host pro-
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inflammatory MIF response into an anti-inflammatory response (like the bell-shaped 

dose response seen previously, see section 1.6.2) then nematode MIF may cause the 

same response regardless of levels of P. falciparum. The present study only looked at 

antibody responses and did not compare these to other host immune responses, so the 

influence of nematode MIF molecules is not an important consideration here.

During the course of this project several unique tools have been developed to examine 

the role of PfMIF during the course of P. falciparum infection. Initially, active 

recombinant PfMIF protein was produced to examine the effect of this protein on 

myeloid cells in vitro. Antibodies were generated against this protein and used in 

Western blots and immunofluorescence to examine the expression and localisation of 

PfMIF within the parasite. Additionally, an ELISA was developed to measure anti- 

PfMIF IgG levels in patient samples. These resources will be of use in future studies 

examining other aspects of PfMIF expression and actions.

In summary, this project has investigated the potential role of PfMIF in the pathogenesis 

of malaria. PfMIF is shown to be expressed by blood stage parasites and released from 

the infected erythrocyte upon schizont rupture, allowing direct contact with the host 

immune system. Recombinant PfMIF was found to be capable of modulating the 

function of myeloid cells in vitro, specifically by inhibiting the migration of monocytes 

and decreasing their surface marker expression. These results taken together suggest 

that PfMIF could be an important molecule involved in the interaction between the 

parasite and the host immune system. Although detection of PfMIF in patient 

circulation was not possible in the course of this study, major advances have been made 

towards determining the role that this Plasmodium MIF homologue plays in modulating 

the host immune system during the course of malarial disease.
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