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ABSTRACT

The time- and dose-dependence of the blocking activity, cell loss and recycling 

from block that follow a treatment with anticancer agents is not always easy to 

interpret, especially because of the superimposition of cytostatic and cytotoxic 

effects. Their separate quantification, in terms of the cellular control mechanisms 

that regulate the response to a drug treatment, is important to deeply understand 

the mode of action of an anticancer compound.

We investigated cell cycle effects induced by different drugs on a cell line growing 

in vitro with an approach including experimental data coming from cell counting 

and different flow cytometric techniques and a mathematical model reproducing 

the perturbed cell growth after drug treatment. In this way we could quantify the 

effects induced by treatments performed with topotecan, doxorubicin and 

melphalan on IGROV1 cells, evaluating separately cytostatic and cytotoxic effects. 

For each one of the considered drugs we obtained and compared a set of 

parameters describing the time- and dose-dependence of cell cycle effects. These 

results were compared with those previously published by our group (Sena et al., 

1999; Montalenti et al., 1998).

Besides the classical flow cytometric techniques, we used the method of 

carboxyfluorescein diacetate succinimidyl ester staining to quantify and appreciate 

the heterogeneity of the effects induced by a treatment on the cells of the same 

population. The results obtained could be simulated with our mathematical model. 

In the last part of the project, the previously listed tools were used to obtain two 

sets of parameters describing the effects induced by a short treatment of cisplatin 

on HCT-116 and HCT-116 p53-/-. This allowed the quantification of the role of p53 

in the cell response to cisplatin treatment, finding that this protein has a more 

important role in the activation of the apoptosis than in the cytostatic effects 

induced by this drug.
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CHAPTER 1: Introduction



1.1 CELL CYCLE IN NORMAL AND TUMOUR CELLS

The cell cycle is the mechanism by which cells divide. It is controlled by numerous 

mechanisms ensuring correct cell division. Cell division consists of two 

consecutive processes: DNA replication and segregation of replicated 

chromosomes into two separate cells. Originally, cell division was divided into two 

stages: mitosis (M) and interphase. Interphase cells simply grow in size, but 

different techniques revealed that the interphase includes G i, S and G2 phase 

(Howard and Pelc, 1953). Replication of DNA occurs in a specific part of the 

interphase called S phase. S phase is preceded by a gap called Gi during which 

the cell is preparing for DNA synthesis and is followed by a gap called G2 during 

which the cell prepares for mitosis (reviewed by Norbury and Nurse, 1992; 

Vermeulen et al., 2003).

Different cellular proteins regulate the transition from one cell cycle phase to 

another. Key regulatory proteins are the cyclin-dependent kinases (CDK), a family 

of serine/threonine protein kinases that are activated at specific points of the cell 

cycle. When activated, CDKs induce downstream processes by phosphorylating 

selected proteins. CDK protein levels remain stable during the cell cycle, in 

contrast to the cyclins. Cyclin protein levels rise and fall during the cell cycle and in 

this way they periodically activate CDK (Evans et al., 1983; Pines, 1991).

The three D-type cyclins (cyclin D1, cyclin D2, cyclin D3) bind to CDK4 and to 

CDK6 and they are essential for entry in Gi (Sherr, 1994). Unlike the other cyclins, 

cyclin D is not expressed periodically, but it is synthesised as long as growth factor 

stimulation persists (Assoian and Zhu, 1997). Another Gi cyclin is cyclin E which 

associates with CDK2 to regulate the progression from Gi into S phase (Ohtsubo 

et al., 1995). Cyclin A binds CDK2 and this complex is required during S phase 

(Girard et al., 1991). In late G2 and early M, cyclin A complexes with CDK1 (CDC2)

18



to promote entry into mitosis. Mitosis is further regulated by cyclin B in complex 

with CDK1 (King et al., 1994; Arellano and Moreno, 1997).

CDK activity is modulated by cell cycle inhibitory proteins called CDK inhibitors 

(CKI), which bind to CDK alone or to the CDK-cyclin complex. Two distinct families 

of CKI have been discovered (Sherr and Roberts, 1995), the INK4 family which 

specifically inactivates Gi CDK and the Cip/Kip family, that includes p21, p27 and 

p57. The first family forms stable complexes with the CDK enzyme before cyclin 

binding, the second one inactivates CDK-cyclin complexes. Moreover, p21 inhibits 

DNA synthesis by binding and inhibiting the proliferating cell nuclear antigen 

(PCNA) (Pan et al., 1995; Waga et al., 1997). CKI are regulated both by internal 

and external signals: the expression of p21 is under transcriptional control of the 

p53 tumour suppressor gene. The p21 gene promoter contains a p53-binding site 

that allows p53 to transcriptionally activate the p21 gene (El Deiry et al., 1993). 

CDKs present different substrates and when they are active, target proteins 

become phosphorylated on CDK consensus sites, resulting in changes that are 

physiologically relevant for cell cycle progression. For instance, during early Gi, 

Rb becomes phosphorylated and this leads to disruption of the complex with the 

histone deacetylase protein (HDAC) and release of the transcription factors E2F-1, 

which positively regulates the transcription of genes whose products are required 

for S phase progression (Buchkovic et al., 1989; Kato et al., 1993). pRb remains 

hyperphosphorylated for the remainder of the cell cycle and CDK2-cyclin E 

complex participates in maintaining this hyperphosphorylated state. During G-i/S 

the CDK2-cyclin E complex also phosphorylates its inhibitor p27, inducing its 

proteasome-dependent degradation (Hinds et al., 1992; Montagnoli et al., 1999).
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1.1.1 Checkpoints

In response to DNA damage, checkpoints arrest the cell cycle in order to provide 

time for DNA repair. DNA damage checkpoints are positioned before S phase or 

after DNA replication, even though control systems are located also during S and 

M phase (lliakis et al., 2003).

At the G i/S checkpoint, cell cycle arrest induced by DNA damage is characterised 

by two kinetically distinct components. The initial, acute phase operates by 

inactivating CDK2-cyclin E through inhibition of the activating phosphatase 

Cdc25A and is followed by a more delayed and sustained Gi arrest, also mediated 

by CDK2-cyclin E inactivation through stabilisation of the p53 tumour suppressor 

protein (Bao et al., 2001; Lukas et al., 2001).

Both components of the checkpoint response utilise the ATM/ATR and Chk1/Chk2 

kinases (Costanzo et al., 2000; Falck et al., 2001). Downstream, inactivation of 

Cdc25A deprives the cell from an activator of the CDK2-cyclin E kinase, operating 

by removing inhibitory phosphatase from CDK2. This keeps the kinase in an 

inactive state and inhibits further downstream events required for the progression 

of cells into S phase.

The central element of the second branch of the Gi component of the DNA 

damage checkpoint is the stabilisation of the p53 protein and the activation of its 

transcriptional activity. These effects lead to the transcription of a large number of 

genes, including p21, Mdm2'and Bax (Agarwal et al., 1998). The induction of p21 

results in CDK inhibition and cell cycle arrest, preventing the replication of 

damaged DNA (Ko and Prives, 1996). Mdm2 plays an important role in the 

regulation of p53: it binds to and inhibits p53 transcriptional activity and contributes 

to the proteolytic degradation of p53 by facilitating its ubiquitination (Oren, 1999). 

In the case of severely damaged cells, p53 induces cell death by activating genes, 

such as Bax, that are involved in apoptotic signalling.

-  —  20



When DNA is damaged during early part of the DNA synthesis phase, the S-phase 

checkpoint is activated (Larner et al., 1997). The length of the S-phase delay may 

be determined by the repair requirements imposed in this phase of the cell cycle. 

In contrast to the Gi/S checkpoint a role for p53 or p21 could not be established 

for the S-phase checkpoint (Lee et al.,- 1997; Guo et al., 1999). In presence of 

DNA damage ATM is activated and phosphorylates several substrates that are 

candidate components of the S-phase checkpoint including Chk2 (Matsuoka et al., 

2000). Inhibition of CDK2 activity through Cdc25A degradation leads to delay in S- 

phase progression that correlates timely with the S-phase checkpoint response. 

The G?/M checkpoint is operational in late G2 phase and it was initially considered 

a passive consequence of the presence of damaged DNA, but extensive 

investigations led to speculations for an active response with a role in DNA repair 

(Hartwell and Weinert, 1989). A key effector of the G2  checkpoint is the CDK1 

kinase. Chk1 and Chk2, which are activated during DNA damage in an ATM- 

dependent manner, phosphorylate Cdc25C, a specific phosphatase required for 

the removal of the inhibiting phosphorylation of tyrosine 15 of CDK1 (Matsuoka et 

al., 1998; Yu et al., 1998). Nuclear CDK1 remains phosphorylated in the absence 

of active Cdc25C and the cells remain arrested in the G2 phase.

1.1.2 Cell Cycle and Cancer

In cancer cells the genetic control of cell division presents fundamental alterations 

that determine an unscheduled cell proliferation. Inactivation of tumour suppressor 

genes like pRb and p53 results in dysfunction of proteins that normally inhibit cell 

cycle progression. In cancer, mutations have been observed in genes encoding 

CDK, cyclins, CDK-activating enzymes, CKI, CDK substrates and checkpoint 

proteins (Sherr, 1996; McDonald and El Deiry, 2000).
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Alterations of CDK molecules in cancer have been reported, although with low 

frequency (Wolfel et al., 1995; Easton et al., 1998). On the other side aberrant 

cyclin D1 expression has been observed in many tumours. Cyclin D7 gene 

amplification occurs in breast, oesophageal, bladder, lung and squamous cell 

carcinomas (Hall and Peters, 1996) and cyclin E has been found to be amplified or 

overexpressed in some cases of breast and colon cancer and in acute 

lymphoblastic and acute myeloid leukaemias (Leach et al., 1993; Keyomarsi et al., 

1995; lida et al., 1997).

Genetic analysis of human cancers has revealed that checkpoint proteins are 

inactivated in a large fraction of cases, and that alterations of the DNA damage 

checkpoint are likely to contribute to resistance of tumour cell to chemotherapeutic 

agents or irradiation. In particular, the p53 gene is known to be the most frequently 

mutated gene in human cancer (Miller and Koeffler, 1993; Greenblatt et al., 1994). 

Point and mis-sense mutations lead to conformational changes and inactivation of 

the protein. p53 function can be altered or blocked also by other mechanisms, 

such as gene deletion or inactivation due to the binding of viral oncoproteins (for 

further details see 9.1.1).

On the other side overexpression by gene amplification of M dm 2  has been 

reported in leukaemia and lymphoma, breast carcinoma, sarcoma and glioma.and 

this can represent an alternative to p53 mutation to escape p53-mediated growth 

control (Moller et al., 1999).

Cell cycle checkpoints play a crucial role in the cell response to drug treatment 

with conventional chemotherapeutic and radiotherapeutic agents and with new 

compounds that target specific proteins, many of which belong to the cell cycle 

engine.
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1.2 CANCER CHEMOTHERAPY

Before 1950, surgery was essentially the only available cancer therapy. With the 

invention of the linear accelerator, radiation therapy became a valuable tool to 

control local and regional disease after 1960 (reviewed by Chabner and Roberts, 

2005). Both radiation therapy and surgery could eradicate localized tumours. Thus 

it was required to develop systemic therapies potentially active against metastasis. 

The employment of nitrogen mustard in 1942 as an effective treatment for some 

systemic human neoplasms such as lymphoma marked the beginnings of the 

modern era of chemotherapy (Gilman, 1963). The mechanism of action of nitrogen 

mustards was elucidated four years later by Gilman and Phillips (1946) who 

hypothesized that its therapeutic effects were due to alkylation of macromolecules. 

After the Second World War the employment of folic acid analogues in patients 

with leukaemia were investigated (Farber et al., 1948). The folate analogues, like 

methotrexate, were found to be active in haematological malignancies inducing 

remission in children with acute lymphoblastic leukaemia (ALL). In addition to 

antifolates other compounds, structurally related to pyrimidines and purines 

present in nucleic acids and active as antimetabolites, were successfully employed 

for the therapy of different neoplasms (Galmarini et al., 2002).

A further step toward the therapeutic cure of ALL was represented by the use of 

Vincristine, a natural product acting as inhibitor of microtubule polymerization. 

More recently many other natural or semisynthetic compounds that act by 

targeting the cell proliferative process have been discovered, such as novel 

inhibitors of mitosis, like taxanes (Manfredi and Horwitz, 1986) or topoisomerase I- 

and topoisoperase ll-poisons, like camptothecin or epipodophillotoxins and 

anthracyclines (Minocha and Long, 1984; Hsiang et al., 1985).

In the late 1980s, molecular and genetic approaches to understanding cell biology 

uncovered new signalling networks that regulate cellular activities such as
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proliferation and survival. Many of these networks were found to be altered in 

cancer cells, thus the aim of cancer therapy became the repair of these molecular 

defects or their use as specific targets. One of the most paradigmatic compounds 

of this category is imatinib mesylate. This product is a selective inhibitor of the 

BCR-ABL kinase (Druker et a l., 1996), the fusion protein product of a 

chromosomal translocation that is involved in the pathogenesis of chronic myeloid 

leukaemia (CML).

The series of events that prompts a human cell out of quiescence and into cell 

division involves a complicated progression of signals. It is a highly regulated 

process, frequently altered in cancer cells leading to abnormal proliferation. A 

variety of novel agents that interfere with discrete elements of the signal 

transduction cascade are now in clinical development. Some of these compounds 

may inhibit the activation of membrane receptors involved in the transmission of 

proliferative signals, such as the epidermal growth factor receptor (EGFR) 

inhibitors. Multiple lines of evidence indicate that dysregulation of the EGFR signal 

transduction pathway plays a critical role in the process of tumour pathogenesis, 

growth and metastasis. At the cellular level, three major signalling pathways 

mediate the downstream effects of EGFR activation. The first pathway involves the 

Ras-Raf-MAP kinase pathways, the second involves phosphatidylinositol 3-kinase 

and Akt and the third involves the stress-activated protein kinase pathway. Thus 

different strategies for targeting the EGFR are under evaluation. These include 

monoclonal antibodies against EGFR and small molecules acting as inhibitors of 

the receptor tyrosine kinase domain. Monoclonal antibodies (e.g. cetuximab) 

generally act binding the extracellular domain of the EGFR and inhibiting ligand 

binding to the receptor, whereas tyrosine kinase inhibitors (e.g. gefitinib) compete 

with ATP for the intracellular catalytic site of EGFR (El-Rayes and Lo Russo, 

2004).
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Over the last decade also cell cycle and apoptotic pathways have emerged as 

interesting targets in the treatment of cancer. In particular, the inhibition or the 

modulation of CDK activity may promote different responses to the treatment 

including cell cycle arrest, induction of differentiation, apoptosis and inhibition of 

transcription. The induced effect depends not only on which specific CDK is 

modulated but also on the growth state of the cell, the presence of specific cell 

cycle components, and many other environmental factors. At least four molecules 

of this family are under clinical investigation, such as Flavopiridol, UCN-01, 

CYC202 and BMS-387032 (reviewed by Senderowicz, 2004).

On the other side, the fact that most tumours are aneuploid, reflecting abnormal 

sister chromatid separation, has motivated increasing interest in the mitotic 

checkpoints. Depletion of one of several mitotic components by small molecules, 

intracellular antibodies, dominant negative alleles or siRNA promotes cell death in 

in vitro cancer models. There are at least two serine-threonine kinases relevant to 

mitotic checkpoints that are being targeted by small molecules: aurora and polo

like kinases.

Even though a significant progress in the design of potentially cancer-selective 

compounds has been recently made there are still unresolved questions including 

finding ways of targeting these agents specifically to tumours, the development of 

effective combinations of new molecular target-directed agents with standard 

therapies and overcoming resistance mechanisms.

1.2.1 Anticancer Drugs

Conventional chemical or physical anticancer agents are generally cytotoxic and 

cytostatic, that means that they exert their antitumour activity inducing cell death or 

inhibiting cell proliferation. In general, they act interfering, directly or indirectly, with 

the mechanisms of cell division or with the basic machinery of DNA synthesis and
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function. The most part of anticancer agents has DNA as principal target and this 

is probably responsible for both therapeutic effects and adverse side effects, but 

the clinical use of these compounds is based on the rationale that rapidly 

proliferating tumour cells are more sensitive than normal cells to their action (De 

Vita etal., 2001).

From the point of view of the antiproliferative effect, drugs have been traditionally 

divided into three different classes. In the first group are classified the non cycle- 

specific drugs. This kind of drugs exerts its killing activity against both proliferating 

and non-proliferating cells, which in solid tumour are the most part. However, only 

a few compounds, like melphalan and nitrosureas, were classified in this category. 

In general, many anticancer drugs exert their prevalent action against proliferating 

cells (cycle-specific compounds) and among them it is possible to distinguish 

between phase-specific and non phase-specific agents. Phase-specific agents, 

like antimetabolites, preferentially kill the cells that are in a particular phase of the 

cell cycle at the time of treatment, by causing cells to transiently accumulate in a 

limited part of the cell cycle.

On the other side non phase-specific agents had cytotoxic and cytostatic effects 

on proliferating cells independently of the phase that they occupied at the time of 

treatment (Gianni et a l., 1999). However this classification has not to be 

interpreted as a rigid subdivision, in fact some cycle-specific drugs, like 

anthracyclines, are able to kill resting cells too and phase-specific agents can 

exert certain cytostatic or cytotoxic effects in more than one cell cycle phase (see 

chapter 4).

A further subdivision of these compounds can be made taking into account their 

chemical origin or their mode of action. Cytotoxic drugs conventionally used in 

clinical practice can be divided in alkylating agents (e.g. nitrogen mustards, 

nitrosureas and tetrazines), platinum based compounds, antimetabolites (e.g. folic
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acid analogues, pyrimidine or purine analogues), DNA-topoisomerase I or II 

inhibitors (e.g. camptothecins, epipodophillotoxins and anthracyclines) and 

antimitotic agents (e.g. Vinca alkaloids and taxanes).

1.2.2 Extracellular Determinants of Drug Effects

The therapy-induced effects depend both on the pharm acologic and 

pharmacokinetic properties of the therapeutic agent and on the sensitivity of 

cancer cells that is related to biochemical and cytokinetic response following 

treatment. The importance of the cell cycle traverse properties of normal and 

tumour cell populations in the development of anticancer strategies has been 

studied and debated for a long time (Steel, 1977). It has become clear that 

substantial cytokinetic differences exist in humans among tumours and normal cell 

populations, this contributes to the variability of the individual outcome of 

treatments. In addition, a substantial number of drugs have been identified to 

exhibit cell cycle specific effects. At the most elementary level, it was recognized 

that cell cycle specific agents would more heavily affect populations in which the 

majority of cells were actively proliferating than populations in which relatively few 

cells were actively proliferating. This concept has led to preferential application of 

phase-specific drugs to fast growing tumours. The knowledge of the cytokinetics 

and of the mechanisms regulating cells death is expected to be crucial also for the 

development of new therapeutic strategies and for the comprehension of the drug 

resistance.

The effects of the treatment schedule have been investigated empirically in animal 

tumour model systems, but the application of cytokinetic concepts in the clinic has 

been limited for different reasons. The experimental techniques used in cytokinetic 

studies often yield inaccurate or insufficient information and the rapidly 

proliferating rodent tumours used in anticancer studies are usually poor cytokinetic
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models of slowly proliferating human tumours. In spite of these deficiencies, the 

potential for the improvement of cancer therapy using cytokinetic principles 

remains, especially because newly developed techniques allow a more accurate 

cytokinetic information in vivo. These techniques include measurement of the rate 

of growth of tumour volume and cell number, of rates of cell production and cell 

loss, of cell survival and regrowth after treatment. Thus, the use of a mathematical 

model would allow the connection between the kinetic properties of the population 

and the experimentally obtained data, such as the fraction of cells in a particular 

cell cycle phase or cell cycle phase duration, variability and growth fraction.

1.2.3 Cellular Determinants of Drug Effects

Even at the cellular level the effectiveness of the drug is variable, resulting in a 

real "resistance" in many cases. The concept of cancer resistance is in part 

derived from the work of Luria and Delbruck (1943), who found that bacteria 

spontaneously developed mutations that make them resistant to bacteriophages. 

When applying this concept to cancer, Goldie and Coldman (1979; 1985) 

proposed that the probability that a given tumour will contain resistant clones at 

the time of diagnosis would be a function of the mutation rate of the cancer and 

the size of the tumour at diagnosis (Shah and Schwartz, 2001).

While treatment of certain malignancies with chemotherapy is successful, in most 

cases the effectiveness is limited by the occurrence of tumour drug resistance and 

by side effects on normal tissues. Drug resistance is one of the biggest obstacles 

to the success of cancer chemotherapy, especially because of its complexity and 

because of its multifactorial origin. In fact, many tumours are intrinsically resistant 

to many of the more potent cytotoxic agents used in cancer therapy. Other 

tumours, initially sensitive, recur and are resistant not only to the initial therapeutic 

agents, but also to other drugs not used in the treatment. Studies focused on the
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causes leading the cells to drug resistance at the same time give information 

about the ways to improve the drug efficacy at the cellular level.

However, in spite of the efforts that have been made to advance the 

understanding of the mechanisms involved in drug effectiveness/resistance, the 

knowledge of this phenomenon is still not complete, even though we can 

recognize different molecular processes that determ ine it. The principal 

mechanisms of cell sensitivity/resistance to anticancer drugs can be divided into 

the following categories: intracellular transport of the drug, extracellular transport 

of the drug, activation of the drug, inactivation of the drug, alteration of the target 

and DNA repair.

1.2.3.a Intracellular transport

Anticancer drugs can be divided into two types, on the base of their mechanism of 

entry into the cell. There are compounds, like nitrogen mustard and melphalan, 

that can be actively transported and others, like nitrosureas, that are passively 

diffusing. In both the cases the uptake can be heterogeneous and, in the case of 

malphalan, for instance, it depends on the cellular content of L-leucine and L- 

glutamine, that share a common transport mechanisms with melphalan (Vistica et 

al., 1978). Moreover alkylation of membrane components may effect both active 

and passive transport with a consequent reduction of the cellular uptake of the 

drug (Fisher et al., 1983).

1.2.3.b Extracellular transport

Resistance to a broad spectrum of chemotherapeutic agents in cancer cell lines 

and human tumours has been defined multidrug resistance (MDR). This 

phenotype is associated with increased drug efflux from the cells that is mediated
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by an energy-dependent mechanism that involves transporter proteins like MDR- 

associated Protein (MRP) and P-glycoprotein (P-gp).

1.2.3.0 Activation or detoxification

This mechanism involves the drugs that need to be converted in an active form in 

order to elicit their action. For instance, cytosine arabinoside (Ara-C) needs to be 

converted to its metabolite ara-CTP to become active. The first step in the 

conversion process is phosphorylation of Ara-C to Ara-CMP by cytoplasmic 

deoxycytidine kinase (Durham and Ives, 1969), for this reason cells with altered 

activity or low levels of deoxycytidine kinases seem to be resistant to this drug 

(Rogers et al., 1980).

On the other side, drug resistance can be also ascribed to detoxification 

processes. One of the molecules responsible for this phenomenon is GSH. 

Increased levels of GSH or glutathione S-transferases (GST) seem to be 

correlated with the resistance to DDP and alkylating agents (Morrow and Cowan, 

1990; Black and Wolf, 1991; Tew, 1994; Kartalou and Essigmann, 2001). In 

particular, DDP can be covalently linked to GSH after nucleophilic attack of the 

glutathione thiolate anion, and this complex can be transported out of the cell by 

an ATP-dependent pump (Ishikawa and Ali-Osman, 1993). In addition, conjugation 

with GSH inhibits the conversion of DNA cross-linkable monoadducts to cross

links, thereby reducing the cytotoxic potential of the adducts (Eastman, 1987). 

Intracellular levels of GSH have also been shown to affect the sensitivity of cells to 

cell death-inducing stimuli, as well as the mode of cell death, but the results are 

often contradictory (Vahrmeijer et al., 1999), and direct evidence that GSTs are 

responsible for altering drug sensitivities is limited.
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1.2.3.d Alteration of drug target

Tumour ceils can become resistant to anticancer drugs by altering the specific 

target of the considered compound. In the case of treatment with topoisomerase I 

inhibitors, whose toxicity is due to the formation of a complex with DNA, drug and 

enzyme, cancer cells become resistant by reducing the level of topoisomerase, or 

expressing a mutant form of it with reduced drug affinity (Pommier et al., 1999).

1.2.3.e DNA repair and apoptotic pathways

The most part of classical anticancer agents targets DNA. DNA damage 

responses, and particularly DNA repair, influence the outcome of therapy, in fact 

DNA repair normally excises lethal DNA lesions and for this reason the 

mechanisms that are able to increase the repair of DNA damage can be a key 

event in the induction of drug resistance. There is evidence that reduced levels of 

DNA nucleotide excision repair are associated with a good therapeutic outcome, 

especially for treatments performed with platinum compounds (Koberle et al., 

1999) or alkylating agents (Grant et al., 1998). A more contradictory relationship 

has been reported between DNA mismatch repair (MMR) and drug sensitivity, 

where the difference between repair-proficient and -defective variants is highly 

dependent on the drug (Bignami et al., 2003).

In addition to increased DNA repair, adduct tolerance could also be attained by 

inhibition of apoptosis. Apoptotic process may be either p53-dependent or 

independent, but frequently the cellular response to DNA damage is regulated by 

this protein (Bellamy, 1997). Depending on the particular cell type and damage, 

p53 may then initiate one of two possible pathways: apoptosis or a process of cell- 

cycle arrest and repair. In cells where the apoptotic pathway dominates, changes 

that cause dysfunction or deletion of p53 are likely to result in reduced apoptosis in 

response to DNA damage, leading to relative resistance and cell survival with
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damage. In cells where the p53-dependent cell-cycle arrest and repair response 

dominates deletion or mutation of p53 might be expected to result in decreased 

cell-cycle arrest and repair leading to accumulated DNA damage and hence an 

increased sensitivity to the chemotherapeutic-agent.

Besides p53 there are other families of genes regulating apoptotic process. The 

Bcl-2 and Bax family proteins comprise several important regulators of apoptosis. 

Bcl-2 proteins (Bcl-2, Bcl-XL, Bcl-w, A1, and Mcl-1) are antiapoptotic, whereas Bax 

family is constituted by proapoptotic proteins (Bax, Bak, Bad, Bik, and Bid). Their 

expression can influence the relative sensitivity of cells to toxic stress. Indeed it 

has been proposed that increased levels of antiapoptotic proteins may result in 

reduced sensitivity to DNA-damaging anticancer drugs (Walton et al., 1993). Thus, 

the expression of mutant and wild type p53, Bcl-2 family members, and other 

proteins associated with the control of apoptosis may contribute significantly to the 

sensitivity of tumour cells (Dole et al., 1994; Eliopoulos et al., 1995; Miyake et al., 

1999).

1.2.4 Therapeutic Concepts

For more than 30 years anticancer drugs were used as single agents following a 

daily or weekly schedule of treatment with an alternation of the different 

compounds in order to counteract drug resistance. The concept of combining 

chemotherapeutic agents to increase cytotoxic efficacy has evolved greatly over 

the past several years. The rationale for combination chemotherapy has centred 

on attacking different biochemical targets, overcoming drug resistance in 

heterogeneous tumours. Moreover the employment of agents.with different side 

effects can increase the tolerance of the patient towards the toxic action of the 

drugs, trying to improve clinical efficacy with acceptable toxicity.
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Combination chemotherapy has been crucial in the development of regimens more 

effective than single agent therapies in haematological malignancies and in the 

majority of solid tumours including breast, lung, gastrointestinal, ovarian and 

testicular cancer (Frei, 1972; Frei, 1985).

However combination treatment can induce a cell cycle-mediated antagonism, a 

phenomenon that can be observed when one chemotherapeutic agent impacts the 

cell cycle such that the other chemotherapeutic agent given in combination 

becomes less effective. This is particularly relevant with the use of cell cycle- 

specific inhibitors but also has relevance for the action of standard less specific 

chemotherapeutic agents currently in clinical practice. A greater understanding of 

chemotherapeutic cell cycle effects can be essential to counteract cell cycle 

mediated resistance, providing the rationale for investigating appropriate 

sequencing and scheduling of agents in combination chemotherapy.

In principle the clinical investigation should be performed following the indications 

derived from preclinical studies aimed to evaluate the cytostatic and cytotoxic 

effects induced by anticancer agents and to explore the synergism or antagonism 

of a combination therapy.

1.3 EVALUATION OF DRUG EFFECTS

Several methods have been developed since the 1950s to determine the in vitro 

sensitivity of human tumour cells to various anticancer agents. Studies performed 

by using reliable in vitro drug-response assays raised the possibility of selecting 

effective anticancer agents to be used either alone or in combination. In vitro 

identification of agents with an extremely low probability of response or ineffective 

in a particular regimen makes possible to stop further in vivo evaluation and 

clinical trials of such agents (Chu and De Vita, 1997).
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Clonogenic assay, cell v iab ility  assay, growth inh ib ition assay and 

chemotherapeutic treatment of athymic nude mice with human tumour xenografts 

are only some of the different methods that can be used to investigate the 

sensitivity of tumours and tumour cell lines. The major distinction among these 

methods is the end point used to measure cell viability. Cell toxicity is usually 

assessed from the fraction of cells killed by exposure to the therapeutic agent. 

These studies depend critically upon the criterion by which cell kill is assessed. 

Some scientist score as dead, those cells lacking membrane integrity and thus 

unable to exclude dyes such as trypan blue or ethidium bromide. Others consider 

as dead, every cell not capable of self-reproduction (clonogenicity). Thus, assay 

end points include colony formation from a single cell, incorporation of tritiated 

thymidine, microscopic examination of cells with vital dyes, mitochondrial enzyme 

activity and many other parameters. For each assay type the difficulties arise not 

only in the evaluation of the precision of the results obtained, but also in their 

interpretation, once that the level of precision is defined. During this phase it is 

necessary to take into account all the limitations and the drawbacks that are 

included in the considered method (Bellamy, 1992). Without such exercise the use 

of different methods might easily lead to contradictory conclusions.

One of the factors that can influence the utility of the in vitro assays as predictors 

of the sensitivity of a patient's tumour response is the high heterogeneity of the 

tumour in vivo and its environment. In fact, cells in culture lack the architectural 

and cellular complexity of "real" tumours, which include inflammatory cells, 

vasculature and stromal components. Nevertheless, cell lines can be considered 

useful models for the evaluation of drug effects on the proliferative core of the 

tumour.

Xenograft models too present differences from human tumours. Human tumours 

develop over a number of years, whereas mouse xenografts are chosen because
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they are rapidly growing and their growth can be monitored in the timeframe of 

days or weeks (Kamb, 2005).

Besides the limitations in the models used for preclinical studies, there are also 

problems coming from the experimental techniques that often yield inaccurate or 

insufficient information.

Despite the acknowledged importance of cell cycle events to determine the 

outcome of a treatment with anticancer drugs, classical methods of measuring 

drug efficacy seem to overlook the complex relationship between cell cycle 

perturbations and the measured quantity, even at the in vitro level. For instance, 

an evaluation of growth inhibition, by a colorimetric assay, measures the 

percentage of absorbance of treated respect to untreated samples at a given - 

arbitrary- time. The same value can be obtained by blocking cycle progression of 

all cells without killing them, or by killing a fraction and leaving the other 

unaffected. More, infinite combinations of a partial cytostatic effect with a partial 

cytotoxic effect will produce the same measured outcome. Obviously, different 

results should be expected by measures performed at a different sampling time, 

and one should be very cautious to make numerical comparisons between cell 

lines with different rate of unperturbed growth (which strongly affects the 

measure). There are methods oriented to measure cell survival (like a properly 

performed colony assay) or to evaluate blocking activity (like DNA flow cytometry), 

but also in these cases a closer analysis reveals that the connection between the 

number given as "datum" and the underlying phenomenon is not straightforward. 

For instance, cells blocked for a few days and then recovering will not be 

considered "surviving" if their colony had not time to reach an arbitrarily set 

threshold size. More badly, the culture (and treatment) conditions required in 

clonogenic assay are often far from being optimal for tumour cells, resulting in low 

plating efficiency. In that respect, an in vitro treatment of an exponentially growing



cell population, minimises manipulations and potential artefacts and maintains the 

possibility of cell interaction. For these reasons, a similar condition is preferred in 

most studies of cell cycle perturbations performed by DNA flow cytometry. But 

even the interpretation of flow cytometric data is not exempt from ambiguities 

when more than one cell cycle effect occurs at the same time, as it often happens. 

In the two following sections advantages and disadvantages of the methods more 

frequently used in studies aimed to investigate the cell response to a treatment 

with anticancer agents will be presented.

1.3.1 Classical Methods for the Evaluation of Drug Effects: Advantages and 

Disadvantages

The methods that are classically used to evaluate the impact of a drug treatment 

on a cell population, such as growth inhibition or clonogenic assays, generally lack 

of connection with phase related events. In many classical studies authors 

overcame this limitation by synchronizing the cell population in a certain cell cycle 

phase and then performed a clonogenic assay. This was the most used 

experimental approach to evaluate the phase specificity of a particular anticancer 

agent.

1.3.1 .a Cell synchronization and clonogenic assay

Cell synchronization can be achieved with different methods, but, independently of 

the method used to synchronize the cells, this technique presents some negative 

aspects. For instance, using centrifugal elutriation it is possible to obtain cells 

enriched in the various phases of the cell cycle with minimal loss of cell viability. In 

a typical experiment, cells are treated with the drug, harvested, dissociated into 

single cells, elutriated and assayed for cell survival. However the stress induced 

by harvesting, centrifugation, collection and re-seeding is not negligible and its
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contribution to the drug effect eventually observed is unknown (Mikulits et al., 

1997). Moreover pure populations of Gi, S, and G2 M cells were not obtained with 

elutriation, thus true phase specific plating efficiencies cannot be determined 

experimentally and a correction taking into account of the %Gi, %S and %G2 M 

(independently measured by flow cytometry) has been proposed (Linfoot et al., 

1986). In addition, the plating efficiency of reference untreated cells may vary 

fraction by fraction, and this is seldom reported and compared with the plating 

efficiency of exponentially growing cells not subjected to the elutriation procedure. 

Synchronisation can also be achieved by techniques that metabolically block cells 

in specific phases, using for instance hydroxyurea, 5-fluorouridine, aphidicolin, 

methotrexate or isoleucine deprivation etc. but all of them have the limitation that 

only partial synchrony is achieved. The population is spread at various points 

through a phase and even in other stages of the cycle (Knehr et al., 1995). 

Moreover the cells do not exit the block at the same time and the synchrony 

decays due to random rates of transit through cell cycle stages (Drewinko and 

Barlogie, 1976).

As demonstrated by Urbani et al. (1995) and Ji et al. (1997) cell synchronization 

introduces alteration in cell cycle kinetics and in protein expression. In particular Ji 

and coworkers investigated the level of p53 and p21 in cell synchronized with 

mimosine and aphidicolin, demonstrating the presence of high levels of both 

proteins for 48h following release from block. That means that, in any case, 

caution should be exercised in the interpretation of the results obtained by this 

kind of experiments.

The clonogenic assay that generally follows cell synchronization and treatment is 

considered the optimal test system for in vitro radiation studies. A treated cell is 

considered clonogenic if at about ten days after treatment it has been able to 

generate a colony with at least 50 cells. For this reason this test is not only
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laborious but it also requires long times before obtaining the results. Furthermore, 

it is limited by the need of cells to form colonies and is less reliable for cells with 

low colony forming capacity (Pauwels et al., 2003), possibly due to the lack of cell 

interactions and/or optimal growth conditions.

1.3.1.b Growth inhibition assays

The two most important members of this family of techniques employed for in vitro 

studies about drug interactions are Sulphorhodamine Blue assay (SRB) and 

tetrazolium-based assay (MTT).

MTT assay depends on cellular capacity to metabolise the MTT dye to a highly 

coloured formazan product. The tetrazolium salt is metabolised to a formazan 

product through the action of a mitochondrial succinic dehydrogenase. The UV 

ab so rb ance  o f the so lub ilised  form azan crys ta ls  is m easured 

spectrophotometrically and directly correlates with the number of cells, which are 

metabolically active. This assay depends on cellular reductive capacity and makes 

the assumption that the reductive capacity remains constant through out the time 

duration of experiment.

Factors which may lead to problems with proper interpretation of the MTT assay 

include: (a) alterations in pH of the media; (b) chemical interference with the 

cellular reduction of the dye, and chemical reduction of the dye due to factors 

within the media, including the test agents; and (c) the quality of reagents used to 

solubilise the formazan crystals (Carmichael et al., 1987; Twentyman and 

Luscombe, 1987), moreover MTT assay can only assesses metabolically active 

cells.

In SRB assay cell growth and viability are based on whole culture protein 

determination. The protein stain SRB binds electrostatically to basic amino acids 

of cellular macromolecules. The assay is reported to provide a sensitive index of
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cellular protein content that is linear over a cell density range of two orders of 

magnitude (Rubinstein et al., 1990).

The advantages for this assay include that it is simple to perform, faster, more 

sensitive and less affected by environmental factors than the MTT assay. The 

assay also has a stable endpoint, which does not require immediate reading. On 

the other hand SRB assay could not discriminate live cells from debris of freshly 

lysed cells. However, by 24h after cell lysis, the SRB assay was reported to be 

comparable to the MTT assay, indicating that at this point the SRB assay was not 

staining cellular debris (Keepers et al., 1991). Therefore it seems likely that the 

SRB does not overestimate the survival fraction of cells in chemosensitivity assays 

under normal growth conditions.

However, in general, all growth inhibition assays do not discriminate between 

cytostatic and cytotoxic effects and the frequent choice of a short-time endpoint 

might result in an overestimation of the cell survival due to delayed cell killing 

induced by anticancer agents.

1.3.2 Flow Cytometric Approach: Advantages and Disadvantages

Since its origin, flow cytometry has been used to evaluate the kinetic of cell 

proliferation in vitro and in vivo in basal conditions and after treatment with 

chemical or physical anticancer agents (Mauro et al., 1986).

Monoparametric staining of DNA and biparametric staining of DNA and the use of 

BrdUrd made possible to monitor the cell distribution and flow through the different 

phases of the cycle. In presence of cells that are growing without any perturbation, 

flow cytometric data can be related to some parameters, such as phase duration, 

doubling time, potential doubling time and so on, that describe the kinetics of 

proliferation of the population (Steel, 1977; Bertuzzi et al., 1997).
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After treatment with an anticancer agent, damaged cells interact with molecular 

cell cycle control mechanisms and the percentage of cells in G-i, S and G2 M that 

can be obtained by analysing flow cytometric data is the result of this interaction. 

These percentages are the result of the superimposition of cytostatic and cytotoxic 

effects and of their time dependence. The situation becomes much more complex, 

if we take into account the heterogeneity of the cell population and its response to 

the anticancer agent. For instance, we can suppose that not all treated cells are 

damaged and that at the time of their passage through G1 phase only some of 

them are intercepted by the checkpoint and remain blocked in G 1 phase. A similar 

behaviour can be observed for cells passing through G2 M phase, whereas 

damaged cells traversing S phase cannot be intercepted in a particular region 

within this phase. In this case treated cells can slow down their progression 

through the phase, trying to repair the damage or shifting towards cell death if they 

are not able to complete successfully repair processes. In the next paragraph 

evidence will be provided that combinations of different microscopic effects can 

generate similar DNA distributions, requiring a proper experimental plan and a tool 

as the model presented in 3.6 to interpret univocally all the experimental data.

The starting point of the following examples is an asynchronously growing cell 

population with mean phase duration of 9.1, 8.7 and 3.1 h for G-i, S and G2 M 

respectively. Different scenarios of cell cycle perturbations were hypothesized and 

the corresponding flow cytometric data were simulated (see paragraph 3.6 for 

further details about the simulation program).

1.3.3 Interpretation of Flow Cytometric Results

1.3.3.a Perturbations in G1 phase

In this first case the hypothesis is that drug treatment activates a cell response in 

G 1 phase, by intercepting at the checkpoint a high percentage of cells which can

  - 40



subsequently repair the damage. DNA histograms generated by this situation are 

represented in figure 1.1. The block in Gi causes a depletion of cells in S and in 

G2 M phase. 18h after treatment cells ieave G1 and a wave of semisynchronized 

cells is detected at 21 and 24h while traversing S phase and in G2 M at 30h. At 48h 

the histograms of treated samples are essentially equivalent to those of the 

control.

This example demonstrates that a sequence of DNA histograms at different times 

after treatment is necessary for the comprehension and interpretation of the 

phenomena, that could not be caught by a single histogram of those shown in 

figure 1.1.
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Figure 1.1: Time-course of DNA distributions obtained by the simulation. We 

hypothesized the presence of a blocking activity in G 1 phase for 18h, in particular 

80% of cells passing through G 1 phase remained blocked. After 18h, blocked cells 

start cycling again and the rate of entering S phase is of 20% of cells every hour.
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F igure 1.2: Time-course of DNA distributions obtained by the simulation. We 

hypothesized the presence of a delay in the cell progression through S phase.

We supposed that just after treatment DNA synthesis is totally inhibited, but the 

parameters describing this effect halves its value every 8h.

DNA histogram of control cells is that reported in figure 1.1 (histogram at Oh).

1.3.3.b Perturbations in S phase

In figure 1.2 are reported DNA histograms of a cell population with a delayed 

progression through S phase, this phenomenon can be a consequence of a drug 

treatment with an agent inhibiting DNA synthesis. When the drug is removed the 

delay of cell progression through S phase decreases.

if we compare figure 1.1 (histogram at 24h) with figure 1.2 (histogram at 12h), we 

can observe that the DNA distributions look very similar. However, in the first case 

the hump in the S region is a consequence of a release from Gi block, whereas in 

the second case it is a consequence of a delayed progression through S phase. 

This demonstrates that the interpretation of flow cytometric data, obtained by a 

simple analysis of DNA distribution, is not always univocal.

A BrdUrd pulse-and-chase experiment (see 3.4.2) performed at short times after 

treatment would allow the discrimination between these two situations.
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1.3.3.C Perturbations in G?M phase

In figure 1.3 two different effects in G2 M phase were represented. The histograms 

in the first row (figure 1.3a) have been obtained by supposing the existence of a 

checkpoint able to intercept the 80% of cells passing through G2 M phase and after 

18h the previously blocked cells repair their damage and start cycling again. Very 

similar DNA distributions can be obtained by considering the same blocking 

activity, but supposing that blocked cells die and are lost 18h after treatment 

(figure 1.3b). In these two cases the information coming from the cell count 

become a crucial datum to discriminate between the hypotheses that can be made 

just analysing DNA histograms.

In real cases the situation is not always so clear: the competition between cell loss 

and proliferation could cause an increase in the number of cells. In any case the 

association of DNA distribution with cell number greatly improves our ability in 

interpreting the experimental data.

1.3.3.d Perturbations in all cell cycle phases

The scenario shown in figure 1.4 takes into account the possibility that drug 

treatment affects every cell cycle phase, as often occurs in the real situation. All 

the perturbations hypothesized in the previous examples are now considered 

together.

At short times after treatment blocking activity and delay are quite strong, and the 

DNA distribution at 6h looks very similar to that of control cells at Oh, as expected 

in the presence of a generalized freezing effect. As delay in S phase decreases, 

18h after treatment the cells that were in S phase at the time of treatment are able 

to reach Gi and G2 M checkpoints. In fact at this time a subpopulation of blocked 

cells is present in these two phases. After 18h both Gi and G2 M blocking activity 

end and this determines a decrease in the percentage of cells in G2 M and the
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presence of a wave of synchrony in S phase formed by those cells that left Gi at 

18h. Passing from 24 to 30h the wave becomes always less detectable and the 

DNA histograms become more similar to asynchronous distribution of the controls.
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Figure 1.3: Time-course of DNA distributions obtained by the simulation. We 

hypothesized the presence of a blocking activity in G2M for 18h. 80% of cells 

passing through G2 M phase remained blocked. 18h after treatment 5% of blocked 

cells per hour start cycling again (panel a) or die (panel b).
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Figure 1.4: Time-course of DNA distributions obtained by the simulation, 

hypothesizing the presence of effects in every cell cycle phase.

The parameters used to describe these effects are the same that were considered 

in the previous examples.
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Considering together the previously described examples, we have the 

demonstration that flow cytometric experiments can give us a lot of information 

about cell cycle effects induced by treatment with anticancer agents. However, 

only combining DNA histograms with cell count and other flow cytometric methods, 

like B rdllrd labelling, we can attempt to distinguish between cytostatic and 

cytotoxic effects and determine their time- and dose-dependence. Moreover the 

use of Brdllrd allows the recognition of any possible differential effect between 

cells that were in S phase at the time of treatment and those that were in Gi and in 

G2 M phase, without any synchronization procedure.

On the other side, as we have shown in the considered examples, flow cytometric 

data could be easily misinterpreted or there is the risk of focusing the attention 

only on particularly evident effects, such as accumulation of cells in a cell cycle 

phase. The situation becomes much more complex when more than one cell cycle 

effect occurs a tih e  same time, as it often happens. For instance, no difference 

may be detected in the DNA profile between well growing untreated cells and 

another sample treated with drug concentration causing a complete freezing of the 

cycle (figure 1.4). Moreover the presence of a block in G2 M phase, for instance, 

reduce the percentage of cycling cells and as a consequence the presence of a 

possible block in Gi phase could be hidden by the small number of cells passing 

through this phase.

In well-designed experiments, replicated flasks are sampled at different times 

during/after treatment, in the attempt to catch the dynamics of cell cycle 

perturbations. But then the analysis of such sequence of data is not simple, 

because the cell cycle distribution observed at a given time depends on that 

observed at the previous time (soon diverging and unrelated to control distribution 

a few hours post treatment) plus the normal cycle flux of cells growing normally,
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plus the recycling or death of previously blocked cells, plus the result of new 

blocking or killing activity carried on by checkpoint and apoptotic machinery. In 

order to face this complex situation a computer simulation tool was developed in 

our laboratory (Montalenti et al. 1998) with the aim to objectively support the 

interpretation of the available data and reach a comprehensive view of all cell 

cycle perturbations.

1.4 MATHEMATICAL MODELS

Mathematical modelling is currently a common tool in the study of physiological 

and biochemical systems. In recent years, it has become increasingly clear that 

sophisticated computational methods will be needed to manage, interpret and 

understand the complexity of biological information. The representation of complex 

biological systems in terms of mathematical equations allows us to increase the 

comprehension of the system itself by providing a concise and objective 

description of dynamic processes and by defining the relationships between 

quantitative measurements. This approach can also be used to improve 

experimental designs, by testing different hypotheses about physiological or 

biochemical phenomena (Tyson et al., 2001).

The model is a mathematical description of a real process that can help the 

comprehension of the phenomenon considered. The modelling process is an 

iterative process: it is possible to distinguish in it a number of steps, which usually 

must be repeated.

i. The first step is represented by empirical observations of the considered 

system, performing experiments and data collection.

ii. State variables that are taken to be sufficient to summarize the properties of 

interest in the study system have to be listed and the properties that have been 

observed during the experiments have to be formalized using known
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relationships (stoichiometric relations, biochemical reactions, pressure-force 

relationships in mechanics and fluids etc.).

iii. The mathematization by algebraic and/or differential equations with constraints 

and initial and/or boundary conditions of the relationships recognized at the 

previous step contribute to the final design of the mathematical model.

iv. The analysis of the model can be approached in two different ways: (a) 

mathematically, so that it is possible to find an analytical solution of the 

problem or (b) translating the equations into computer code to obtain numerical 

solutions for state variable trajectories.

v. The results have to be compared with the real system, in order to verify the 

hypotheses that have been made at the beginning of the process. On the other 

side the results can help a more precise design of new experiments.

From this point of view the construction of successful models is constrained by 

what we can measure, either to estimate parameters that are part of the model 

formulation or to validate model predictions. Moreover, in the field of mathematical 

modelling it is possible to distinguish between at least two basic types of scientific 

models: descriptive and phenomenological models. Descriptive models are those 

designed to fit observed data with arbitrary functions, whereas phenomenological 

models reproduce the behaviour of a biological system on the basis of some a 

priori knowledge of the underlying "mechanisms".

Cancer biology is one of the fields were both descriptive and phenomenological 

modelling has been applied (reviewed by Komarova, 2005).

1.4.1 Models in Cancer B iology

The mathematical investigation of cancer began in the 1950s, when Nordling 

(1953), Armitage and Doll (1954, 1957), and Fisher (1958) set out to explain the 

age-dependent incidence curves of human cancers. In the early 1970s, Knudson
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(1971) used a statistical analysis of the incidence of retinoblastoma in children to 

explain the role of tumour-suppressor genes in sporadic and inherited cancers. 

Later on, other studies were devoted to the development of specific theories for 

drug resistance (Goldie and Coldman, 1979; Goldie and Coldman, 1983), 

angiogenesis (Anderson and Chaplain, 1998) and immune responses against 

tumours (Owen and Sherratt, 1999) and genetic instability (Chang et al., 2001).

In this context we recognize the two different cited approaches. The application of 

mathematical modelling in the context of epidemiology, where simple arbitrary 

functions are used to fit the existing data, or statistical tests performed to 

recognize the existence of relationships or differences between measured data 

can be considered as descriptive models. In the same category we found the 

models trying to reproduce and interpret the trend of a dose-response curve after 

drug treatment and all the statistical tools that are applied to analyse microarrays 

and other data coming from high throughput discovery technologies.

The category of phenomenological modelling in cancer research includes a large 

amount of examples that are listed in table 1.1. In general, mathematical modelling 

in cancer and cancer therapy has been attempted at different levels, starting from 

the most microscopic one that describes molecular interactions or protein 

networks of specific cellular functions (Kohn, 1998; Qu, 2003), to cell cycle and in 

vitro cell proliferation, up to the most macroscopic level describing tumour growth 

in vivo.
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Experimental

Level

System Variables Parameters

Molecular Molecular

networks

Concentration of 

molecules

Association and 

disassociation rates

In vitro Cell population Number of cells at 

different stages of 

maturity (age and cell 

cycle phases)

Transition rate from 

one state to another 

and killing rate in the 

different cell cycle 

phases to simulate 

drug effects

In vivo Tumour Mass of the tumour 

(volume, number of cells, 

number of quiescent and 

resistant cells)

Proliferation rate and 

loss rate to simulate 

tumour growth in 

normal conditions. 

Killing rate, diffusion 

and resistance rate to 

simulate drug effects

Pharmacokinetic

systems

Drug concentration Transition rate from 

one body compartment 

to another, 

representing the 

absorption, distribution 

and transformation of 

drugs within the body

Tumours and 

normal tissues

Mass of tumour and 

normal tissues

Interaction among 

populations and killing 

rate

Table 1.1: Overview of the different examples of phenomenological models in 

cancer biology.
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1.4.1 .a Models of molecular interactions

At the most microscopic level molecular interactions are studied, using biophysical 

models to elaborate the atomic structure of the molecules, their binding sites and 

chemical bonds. Research focuses on a single or a group of molecules isolated 

from the cellular environment, investigating their possible bonds with chemical 

agents (Albert, 2005). At a more macroscopic level, the issue is the 

comprehension of cellular mechanisms that control the production of the proteins 

necessary for the cell life and proliferation or necessary to perform other specific 

tasks (Tyson et al., 2001). In this case, mathematicians work by modelling 

molecular networks, trying to explain the global behaviour of such complex 

systems of intertwined molecular relationships that molecular biology studies 

focusing on a single cells or on a cell extract.

1.4.1.b Models of cell proliferation

The demonstration by autoradiographic methods of the existence of different cell 

cycle phases (Howard and Pelc, 1953) provided a base for most of the 

mathematical modelling in cell kinetics. The cell cycle is an ordered sequence of 

biochemical events leading up to cell division. The cycle can be divided into four 

phases, Gi, S, G2 and M and after mitosis a daughter cell can again traverse the 

cycle or can shift to a quiescent state during which cells do not divide for long 

periods. The time for a cell to traverse the cycle is defined "cycle time", and this 

parameter is not equal for all the cells even in a homogenous population (Sisken 

and Morasca, 1965). Thus the models of cell kinetics aim to quantify the biological 

aspects and to define the relationships that regulate the cell cycle.

In the literature the time evolution of a cell is often defined by either its 

chronological age or its position in the cell cycle. The main body of modelling is the
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reproduction of the cell cycle dynamics. From this point of view cell cycle models 

can be divided into two categories. In the first group there are models in which the 

cell position in the cycle is represented by its belonging to one of a finite number of 

stages. In the models of the second group the cell position in the cycle is 

represented by a continuous variable, that was called "maturity". In any case, in 

discrete stage models each successive stage corresponds to an increased 

maturity value, so a cell maturity distribution for the population can be considered 

both in the continuous and in the discrete models (Bertuzzi et al., 1981).

1.4.1 .c Spatial models of tumour growth

A different approach to the problem is that adopted by the researchers that aim to 

study spatial aspects of tumour growth. In this case, tumour was described as a 

fluid with a production term proportional to concentration of nutrients (Franks et al., 

2003), or as a mixture of solid (tumour) and liquid (extracellular fluid with nutrients) 

phases (Byrne; and Preziosi, 2003). The phenomena of migration of tumour cells 

(Mansury and Deisboeck, 2003) and the vascular stage involving the mechanisms 

responsible for angiogenesis can be also investigated with this kind of approach 

(Breward et al., 2003; Chaplain and Anderson, 2004).

The tools of applied mathematics, such as nonlinear partial differential equations 

and discrete cellular automaton approach are used to describe these phenomena 

(Qi et al., 1993), but modelling can also be used to address practical questions of 

drug dosage and therapy timing. For instance, Swanson et al. (2003) studied 

cancerous growth for gliomas in the context of drug therapy. Their model included 

both cell proliferation and motility and took account of inhomogeneities of the brain 

tissue.
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1.4.1 .d Models of tumour growth and drug efficacy in vivo

From measurements made in preclinical studies or in clinical investigations it is 

possible to know the volume of the tumour growing in animals or in humans and it 

is possible to monitor its variation after drug treatment. Because of the simplicity of 

these outlines, simplified models of tumour growth were used. For instance 

Skipper et al. (1964) adopted a model of exponential growth, defined by the 

number of tumour cells at a given time, typically the beginning of the observation 

period, and by the doubling time. This model was able to reproduce leukaemia 

amplification in mice and drug effect was described by the fraction of cells killed at 

each administration. Norton and Simon (1977) improved the Skipper's model using 

a Gompertz function that takes into account the decline of the growth rate as the 

tumour mass increases. This shape is able to fit many experimental time courses 

of solid tumours, particularly in animals, where the whole story of the tumour may 

be followed. Reduction of drug efficacy in massive tumours was described by a 

simple link between the fraction of surviving cells at each treatment and the growth 

rate. Goldie and Coldman (1979) tackled the issue of drug resistance and they 

described its rising by considering the probability of spontaneous mutation(s) 

towards a resistant phenotype.

1.4.1.e Pharmacokinetic and parmacodvnamic models

The starting point of pharmacokinetic-pharmacodynamic model is the formulation 

of a model describing the progression of the disease, then a link has to be made 

between the administration regimen of a particular compound and tumour growth 

dynamics. In the model of perturbed growth the effects of an anticancer compound 

are related to plasma drug concentrations. Plasma drug concentrations in input to 

the pharmacodynamic model are derived from the pharmacokinetic parameters 

using the appropriate dosing regimen (Simeoni et al., 2004). These models have
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been developed with the aim of making a quantitative characterisation of the 

relationship between drug dose, plasma concentration and haematological toxicity. 

The knowledge of this relationship is of importance in drug development, dose 

finding, schedule optimisation and drug combination studies.

One of the principal differences in all these models is represented by the 

consideration and the use of the data available at a given level. Some models are 

more theoretical and catch qualitative information from the experimental scientific 

literature, while some others try to fit specific data sets. For instance, the models 

connected with cell proliferation can start from experimental data coming from the 

most common tests used to evaluate in vitro toxicity of different anticancer agents. 

In this case the measured quantities are probabilistic data, like the percentage of 

surviving cells. At this level the mathematical models have to take into account the 

cell cycle, including intercell variability due to differences in protein levels or drug 

uptake, simulating the time course of cytostatic and cytotoxic effects of drugs. 

Flow cytometric techniques can also provide information about cell response to a 

drug treatment and in the literature there are attempts of reproducing experimental 

flow cytometric results with mathematical models of cell cycle (Kozusko et al., 

2001; Basse et al., 2004). In these studies the starting point is the description of 

the unperturbed growth of the considered cell population. Parameters describing 

cell loss and cell transition from one phase into the next one are changed in order 

to fit the DNA distributions obtained after treatment. However, in this kind of 

approach, the experimental data are used as tools to validate the hypotheses 

made in the model.

On the other side pharmacodynamic studies are focused on the investigation of 

killing effects that occur after drug treatment, whereas cytostatic effects are not 

deepened.
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In this rich context of modelling in cancer therapy our contribution was aimed to 

face the study of the time- and dose-dependence of cytostatic and cytotoxic 

effects in the different cell cycle phases, taking into account the current knowledge 

about cell cycle checkpoints. Our point of view is to consider the model as an 

instrument to interpret "macroscopic" data, coming from flow cytometric 

experiments and cell count, in function of more "microscopic" quantities describing 

blocking activity, recycling from block and cell loss, trying in this way to make a 

connection between the molecular level and the measured parameters (Montalenti 

et al., 1998; Sena et al., 1999; Lupi et al., 2004).
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CHAPTER 2: Aims



2.1 GENERAL AIM

After treatments with all anticancer agents, either classical compounds or new 

drugs with specific targets, cell cycle perturbations occur. The perturbations are 

usually classified as cytostatic (cell cycle arrest) or cytotoxic (cell killing). 

Molecular research is now focusing on the molecular pathways exploited by a 

cell when challenged by chemical and physical agents, triggering cell cycle 

arrest, particularly at checkpoints within phases G1 and G2, or apoptotic death. 

The knowledge of the kinetics of such events is particularly relevant in cancer 

research, both applied and basic. However, no substantial progress has been 

made on how to describe these effects in quantitative terms, with a clear 

separation between cytostatic and cytotoxic effects: this work aims to provide a 

contribution in that direction.

Drug effects are still described by growth inhibition and clonogenic assays, often

overlooking the limitations of these measures, such as unresolved overlapping

of cytostatic and cytotoxic effects, and the lack of connection with phase-related

events (Cook and Mitchell, 1989; Lamb and Friend, 1997; Waldman et al., 1997),

and not considering the time-course of the response to treatment. On the other

hand, DNA flow cytometry allows the study of cell cycle perturbations, by

detecting accumulation or depletion of cells in G^ S and G2M. However, a single

flow cytometric measure of DNA content takes a picture of the cell distribution in

the different cell cycle phases at a given time, which is the result of the

superimposition of the effects of cell block and death and their time evolution. In

addition, the cell response to treatment is heterogeneous: only a fraction of cells

is blocked, some of them repair DNA damage and start cycling again, som e

others die. Moreover, the values of these fractions depend on the treatment

dose. In such a situation, even a time-course of cytometric data cannot univocally

discriminate among different kinds of effect. Indeed, as shown in the section
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1.3.2, different combinations of the underlying cytostatic and cytotoxic effects may 

give similar values of %G1t %S, and %G2M.

The first solution to this problem was the enrichment of the experimental plan, 

adding other kinds of independent measures to the basic time-course of DNA 

histograms at different drug concentrations. Thus, biparametric flow cytometric 

DNA-BrdUrd measures and absolute cell count made by Coulter Counter were 

included in the experimental plan. This allowed the reconstruction of cell flow 

into the different phases of the cell cycle after treatment with a sub-lethal drug 

concentration (Ubezio et al., 1991).

In our laboratory the use of a mathematical model was attempted to face the 

complexity of data analysis in presence of cytotoxic effects. The model adopted 

for data analysis and interpretation is the result of a merging of two models, one 

for the cell cycle and the other for the drug effects. The inputs are parameters 

that describe the cell cycle during unperturbed growth and the effects induced in 

each phase by the treatment. The simulation gives the temporal evolution of cell 

flow into the different cell cycle phases and a set of values that are equivalent to 

the measured data and can be directly compared with them. The parameters 

that describe in a quantitative way the effects induced by-the treatment are 

directly linked to the phenomena of cell cycle arrest, DNA repair and cell death in 

each phase (for further details see section 3.6).

This particularly rich experimental plan and the analysis using mathematical 

simulation were already applied to study the effects of two classical anticancer 

drugs: DDP and paclitaxel (Montalenti et al., 1998; Sena et al., 1999). During this 

project, the presented approach was not only used to investigate the effects 

induced by treatments with other anticancer drugs but it was also improved by 

considering new experimental data and performing deeper mathematical 

analysis.
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In particular, the methodology was further implemented by:

1- Including new flow cytometric information (obtained from CFSE staining) in 

the experimental data.

2- Doing a sensitivity analysis of the parameters considered in the simulation 

model.

3- Collecting a relevant number of data reproducing the time-course of the cell 

response to drug treatment, considering, besides cisplatin and paclitaxel, 

three other different anticancer drugs (TPT, DXR and L-PAM). This allowed 

the creation of a database for a panel of five different drugs (belonging to the 

principal classes of classical anticancer drugs) using the same experimental 

plan and the same cell line.

4- Obtaining, with the use of the simulation program, the time- and dose- 

dependence of each specific cytostatic and cytotoxic effect. This allowed us to 

perform the first comparative analysis of the response of the same cell line to 

treatment with five different drugs.

5- Performing experiments and simulation analysis with a p53-defective cell 

line and its wild type counterpart to explore the capability of the methodology 

to catch the contribution of a specific protein in the cell cycle response to drug 

treatment.

2.2 SPECIFIC AIMS

2.2.1 Application of a New Method to the Study of Classical Drugs with

Different Mode of Action

Extensive experiments were set up in order to study the time- and dose-

dependence of cytostatic and cytotoxic effects of classical drugs, L-PAM, DXR

and TPT, on IGROV1 cells, an ovarian carcinoma cell line growing in vitro. Cells

were treated for 1h with different drug concentrations, in order to cover all
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sensitivity ranges from low to high drug efficacy, qualitatively assessed by 

preliminary experiments.

In the basic experimental plan, three replicated flasks were harvested at different 

times after treatment with each concentration, counted and fixed for flow 

cytometric analyses. This part of the project was specifically aimed to collect a 

suitable amount of data to cover a wide range of time and drug concentrations, 

and to construct a database of such data. Preliminary qualitative evaluation of 

the results was made at this level. Then the database was used in the 

simulation to evaluate.separately the time- and dose-dependence of blocks in 

G-], in G2M, recycling from blocks, S-phase delay and killing in G1t S and G2M 

phase.

2.2.2 Study of the Sensitivity of the Mathematical Model and Comparison 

between Cell Cycle Effects Induced by Different Drugs

A work similar to that described in 2.2.1 was already done in our research group 

to study the effects induced on IGROV1 cells by treatments with DDP and 

paclitaxel. As in this part of the project we aimed to compare the response of the 

same cell line to different anticancer compounds with various mechanisms of 

action, we needed to evaluate the sensitivity of the mathematical model that we 

use to interpret the data.

In particular, several sets of parameters describing the drug effects were tested 

by computer simulation. The aim of the analysis was to find a set (or the sets) of 

descriptors coherent with the data, i.e. producing simulated measures in the 

range of the real measures with their experimental error.

In case of coexistence of more than one scenarios compatible with the data, the 

discrimination between them was performed experimentally (not

mathematically), by additional experiments suggested by the simulation itself. At
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the end of the procedure, only a single set of parameter values gave the 
»

scenario coherent with the experimental measures. Then, we studied the 

sensitivity of the parameters considered in the best-fit simulation, in order to 

evaluate the range of parameters' values in keeping with the data.

We studied the sensitivity of parameters not only for L-PAM, TPT and DXR, but 

also for the previously evaluated drugs DDP and paclitaxel. On the basis of this 

analysis, we approached the final aim, i.e. the comparison of the dynamics of 

cytostatic and cytotoxic effects of the five drugs in each cell cycle phase, trying to 

reach a better appreciation of the complexity of the cell cycle response, but also 

possible common features among the drugs.

2.2.3 Integration of Cytometric Data with Information Coming from CFSE 

Staining

CFSE is a fluorescent dye that allows the detection of cell division, because it is 

equally divided between subsequent cell generations. For its characteristics 

CFSE has normally been used to stain lymphocytes and to determine the 

number of cell divisions (see 8.1).

From this technique we could obtain additional information about the impact that 

a drug treatment has on the proliferating ability of a cell population. However the 

common cytochemical protocol was set up for lymphocytes and it was not 

suitable for exponentially growing tumour cells. For this reason, the first aim of 

this part of the project was the optimisation of CFSE staining and the 

interpretation of the data, in order to adapt the protocol to the study of cell cycle 

and cell kinetic effects of anticancer drugs. Subsequent aim, upon success of 

the first part, was to introduce the information provided by CFSE (i.e. the 

percentage of cells at the different cell cycle divisions) in our process of 

reconstruction of drug effects by mathematical model.
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2.2.4 Study of the Impact of p53 on Cell Cycle Response to Drug Treatment

In parallel with the comparison of the effects of different drugs on the sam e 

biological model, we attempted the comparison of the response of different 

biological models to the same drug. The specific aim of this part of the project 

was the evaluation of the contribution of p53 to the cell cycle response after drug 

treatment.

For this purpose we used a colon carcinoma cell line HCT-116 and its isogenic 

cell line lacking for the gene coding for p53 (HCT-116 p53-/-) and we applied the 

experimental and mathematical approach listed above to . quantify the 

parameters describing the effects induced by DDP in the two cell lines. The 

comparison of the results in the two cell lines could allow the estimation of the 

role of p53 in each cell cycle effect.
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CHAPTER 3: Materials and Methods



3.1 CELL CULTURE

In order to test cell cycle effects induced by a treatment with an anticancer agent 

three different cell lines where used:

IGROV1, an ovarian cancer cell line with wild type p53 (ATCC) (Benard J et al., 

1985). This line is maintained as monolayers in T-25 cm2 tissue culture flasks 

(Iwaki, Bobby Sterilin, Staffordshire, UK) and routinely subcultured twice a week. 

The culture medium consisted of RPMM640 (Cambrex, Verviers, Belgium) with 

10% foetal bovine serum (Sigma, St. Louis, MO, USA) and 1% L-glutamine 

(Cambrex). Culture was maintained in an incubator with 5% CO2  in air at 37°C and 

96% relative humidity.

To allow cells to reach exponential growth, they were seeded at about 20,000 

cells/ml 72h before drug treatment.

HCT-116 and HCT-116 p53-/-. two isogenic colon carcinoma cell lines which 

respectively express p53 wild type (Brattain et al., 1981) or with p53 disrupted by 

homologous recombination (Bunz et al., 1998) (kindly provided by Dr. B. 

Vogelstein from John Hopkins University Baltimora, MA, USA). The cell line is 

maintained as monolayers in T-25 cm2 tissue culture flasks and routinely 

subcultured twice a week. The culture medium consisted of Iscove’s Modified 

Dulbecco’s Medium (IMDM) (Cambrex) with 10% foetal bovine serum and 1% L- 

glutamine. Culture was maintained in an incubator with 5% CO2 in air at 37°C and 

96% relative humidity.

To allow cells to reach exponential growth, they were seeded at about 10,000 

cells/ml 72h before drug treatment.
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3.2 DRUG TREATMENT

Exponentially growing cells were treated for 1h with different drugs at different 

concentrations.

TPT (generously provided by Glaxo Smithkline, Middlesex, UK) was dissolved in 

dimethylsulfoxide (DMSO) (ICN Biomedicals, Irvine, CA) and the stock solution of 

5 mM was stored at -20°C until required, further dilutions were performed in 

culture medium. IGROV1 cells were treated with 0.05, 0.2, 1, 10 and 100 pM TPT. 

Multiple treatments were done using the lowest drug concentrations (0.05 and 0.2 

pM). We consider as Oh the time of the first treatment, so the cells were treated at 

0, 24 and 48h. Each treatment lasted 1h, and the cells were counted and fixed 

every 24h for 96h.

L-PAM (Sigma) was dissolved in 4*1 O'3 N HCI in sterile water. The stock solution 

of 3 mM was prepared just before using it. IGROV1 cells were treated with 3, 10, 

30, 50, 100 and 300 pM L-PAM.

DXR (generously provided by Pharmacia, Nerviano, Italy) was dissolved in sterile 

water and the stock solution of 3 mM was stored at -20°C until required, further 

dilutions were performed in culture medium. IGROV1 cells were treated with 0.5, 

1 ,3 ,6 , 10 and 30 pM DXR.

DPP (Sigma) was dissolved in culture medium at a concentration of 1 mM. The 

stock solution was prepared just before using it. HCT-116 and HCT-116 p53-/- 

cells were treated with 10, 30 and 100 pM DDP.

After treatment the cells were washed twice with warm PBS (Cambrex) and left in 

drug-free medium for 0, 6, 24, 48, 72 or sometimes also 96h. At each time the 

cells were detached, using 1ml 0.05% trypsin - 0.02% EDTA (Cambrex) in PBS, 

counted with a Coulter Counter ZM (Coulter Electronics, Harpenden, UK), then 

fixed in cold 70% ethanol and stored at 4°C.
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3.3 FLOW CYTOMETRY

The basic principles of flow cytometry arise from some very old ideas generated 

early in the 20th century and follow the principles of laminar flow defined by 

Reynolds in the late 19th century.

3.3.1 Fluidic System

Reynolds formulated the relationship for fluid flow as Re = vdp/rj where Re is the 

Reynolds number (a dimensionless number), v the average velocity, d the tube 

diameter, p the fluid density, and r] the viscosity. Below a Reynolds number of 

2300, flow will be laminar, a necessary factor for quality optical measurements in 

flow cytometry. Maintenance of nonturbulent flow requires careful design of fluidic 

systems in flow cytometers, particularly the flow cell components.

Cells are hydrodynamically focused in a core stream encased within a sheath. 

This sheath-flow system is constituted by a needle that deposits cells within a 

flowing stream of sheath fluid (usually water or saline), creating a coaxial flow that 

moves from a larger to a smaller orifice. In this way it is possible to obtain a 

parabolic distribution of the velocity profile (figure 3.1). Because of the 

hydrodynamic focusing effect, cells that are injected through the injection tube 

remain in the centre of the core fluid, thus allowing very accurate excitation with 

subsequent excellent sensitivity and precision of measurement within the flowing 

stream.

There is a small differential pressure between the sheath and the sample (core), 

forcing alignment of cells in single file throughout the core.
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3.3.2 Optical System

The key to the efficiency and sensitivity of flow cytometers is the laser-based 

coherent light source. The light source needs to be focused to a spot and a 

desired shape. This is accomplished by using a beam-shaping optic to obtain the 

desired crossed-cylindrical beam shape. The most desirable beam shape is an 

elliptical beam of approximately 15 by 60 microns, which at typical flow rates can 

be traversed by the cell in a few microseconds. Moreover its large and relatively 

flat cross-section reduces the variation in intensity of the excitation spot.

The most used excitation sources employed argon ion laser tuned to 488 nm. This 

wavelength is optimal because is close to the absorption maximum of the common 

fluorochrome fluorescein isothiocyanate (FITC) and other commonly used 

fluorochromes. On more sophisticated cytometers two or more lasers can be used 

to analyse the stream of cells in sequence enabling complex combinations of 

fluorochromes to be examined.

When a cell passes through the laser beam several physical processes take place, 

such as absorption, diffraction, refraction and reflection of the incident light and 

also fluorescence emmission. In flow cytometers, after blocking the direct laser 

beam, any low angle scattered light is focused by a lens onto a photoelectric 

diode. This signal represents an important parameter commonly referred to as 

forward angle light scatter. At higher angles refraction and reflection become 

increasingly important, these processes result from structural features of the cell 

such as granularity and surface convolutions. This measurement is made 

orthogonal to the stream and is referred to as side scatter (SS, SSC). 

Fluorescence measurements are also made in the orthogonal direction after 

separating various components by optical filtration. A typical arrangement for 

measuring four components is shown in figure 3.2.
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Figure 3.1: Schematic representation of the fluidic system. Sheath fluid flows

through a large area and under pressure is forced into a much smaller orifice. In 

the centre of the cell is an injection tube that injects cells or particles into the 

centre of the flowing stream, forcing the cells to undergo hydrodynamic focusing, 

which will result in laminar flow if Reynolds number does not exceed 2300. In 

particular, in the square is shown the coaxial cross section of the sheath and core.
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Figure 3.2: Schematic representation of the optical system.
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3.3.3 Spectral Compensation

When a particle or cell contains fluorophores of multiple spectral bands, the 

identification and analysis become more complex. For example, a detector with a 

band pass filter designed to collect fluorescence from FITC (525 nm) and another 

detector designed to collect signals at 550 nm (PE) will register photons in both 

detectors. It is impossible to determine which detector is detecting the real photons 

from FITC. To achieve this, it is necessary to perform spectral compensation 

whereby a percentage of signal from one detector is subtracted from the other. At 

this point it is necessary to consider a cell labelled with only FITC, in this case, a 

large fraction of the emission (F) will be detected through the FITC bandpass filter 

and a small fraction f  = (kF) through the PE bandpass filter. The true PE signal is 

known to be zero and can be obtained by electronically reducing the apparent PE 

signal by an amount kF. The same process is applied using a sample labelled with 

only PE to obtain a correction factor to subtract from the apparent FITC signal. 

These correction factors can then applied to all simultaneous measurements of 

FITC and PE.

3.3.4 Electronic System

Flow cytometers collect a lot of data very quickly. Every particle that passes 

through the laser beam is individually collected on every detector.

The relationship between incident electrons and output voltage from PMT's is 

sigmoid i.e. the output voltage reaches a saturation level. The sensitivity is also a 

function of high voltage, if this is increased too far the dynamic range of a tube will 

be severely limited by the saturating level.

The amplified signal can be used directly or subject to a logarithm ic 

transformation, which effectively increases resolution for low input level.
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Linear amplifiers produce signals that are proportional to their inputs but most 

immunofluorescence applications have huge dynamic ranges that are beyond 

amplification in the linear domain. For this reason, logarithmic amplifiers with 

scales covering three to five decades are required. This is particularly useful for 

samples in which some cells exhibit very small amounts of signal, while others 

have signals four orders of magnitude larger.

The final stage before storing signals is converting from analogue to digital. Many 

systems operate on an eight-bit conversion giving 256 channels. This allows one 

measurement per byte (8 bits) with a sufficient resolution for most flow cytometric 

measurements. Ten-bit conversion allows 1024 channels and is commonly used 

for measurements where fine detail is essential.

3.4 FLOW CYTOMETRIC ANALYSIS 

3.4.1 Monoparametric Staining of DNA Content

About 1*106 fixed cells were washed with cold PBS and resuspended in 1 ml of 25 

pg/ml propidium iodide (PI) (Calbiochem, Darmstad, Germany) in PBS plus 25 pi 

of 1 mg/ml RNAse (Sigma) in water. The samples were measured with a FACS 

Calibur (Becton Dickinson, San Jose, CA, USA) flow cytometer after at least 2h 

incubation at room temperature in the dark.

3.4.2 5-Bromo-2'-Deoxyuridine (BrdUrd) Incorporation

Short-term perturbations were investigated by BrdUrd pulse-and-chase analysis. 

30 pM BrdUrd (Sigma) was added to the cell culture during the last 20 min of 

treatment. After drug and BrdUrd washout the cells were left in drug- and BrdUrd- 

free medium for 6h. During the labelling BrdUrd, which is an analogue of 

thymidine, was incorporated by the cells that were synthesizing DNA (in S phase).

71



BrdUrd pulse-and-chase 6h after treatment detected the cell movement through 

the S phase and the outflow of unlabelled Gi and G2 M cells.

At the same way cells can be labelled with BrdUrd at the time of treatment, 

washed and let in BrdUrd-free medium until 72h. In this case BrdUrd pulse-and- 

chase analysis allows the appreciation of a selective cell killing of the considered 

anticancer agent against BrdUrd-positive or BrdUrd-negative cells. If the 

percentage of BrdUrd-positive or BrdUrd-negative cells is not different from that of 

the control we conclude that the drug does not specifically affect one of the two 

subpopulations.

For BrdUrd pulse labelling experiment the cells were labelled with 30 pM BrdUrd 

20 min before detaching them. This was generally done at 24, 48 or, in some 

cases, 96h after treatment and it allows us to obtain qualitative information about 

the reduction of DNA synthesis.

For BrdUrd continuous labelling cells were incubated with 30 pM BrdUrd and 

deoxycytidine for at least 48h (this depends on the doubling time of the considered 

cell line) so that all cycling cells can incorporate BrdUrd. At the end of incubation 

the cells were fixed in 70% ethanol.

3.4.3 Two-parameter Flow Cytometry Analysis: DNA Content and BrdUrd 

Incorporation

About 2*106 fixed cells were washed with PBS and resuspended in 3 N HCI for 30 

min. After Washing with 0.1 M Na2 B4 C>7 , pH 8.5, to stop acid depurination, the cells 

were resuspended with 180 pi 0.5% Tween 20 (Sigma) with 1% NGS (Dako, 

Glostrup, Denmark) in PBS. After this, 20 pi anti-BrdUrd monoclonal antibody 

(Becton Dickinson) was added and the mixture was incubated for 1h at room 

temperature. After washing with PBS, cells were incubated for 1h with fluorescein 

(FITC)-conjugated affinity pure F(ab’)2 fragment goat antimouse IgG (Jackson,
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West Grove, PA, USA) diluted 1:50 in PBS with 0.5% Tween 20 and 1% NGS. 

After incubation with antibody, cells were centrifuged, resuspended in 2.5 pg/ml PI 

in PBS plus 25 pi of 1 mg/ml RNAse in water, incubated overnight and analysed.

In the case of direct BrdUrd immunostaining, we added 20 pi of anti-BrdUrd FITC 

(Becton Dickinson) at the cells resuspended in 180 pi 0.5% Tween 20. After 1h 

incubation the cells were washed with PBS and resuspended in 2.5 pg/ml PI in 

PBS plus 25 pi of 1 mg/ml RNAse in water, incubated overnight and analysed.

3.4.4 Two-parameter Flow Cytometry Analysis: DNA Content and FITC- 

Conjugated dUTP

DNA fragmentation was detected by the TdT-mediated dUTP nick end labelling 

technique (TUNEL), which uses terminal deoxynucleotidyl transferase (TdT) to 

catalyze the binding of FITC-conjugated dUTP to DNA strand breaks. This 

technique detects DNA fragmentation induced during apoptosis. 2*106 fixed cells 

were washed in PBS and permeabilized for 2 min on ice in 0.1% Triton X-100, 

0.1% sodium citrate. The cells were washed, resuspended in 50 pi of TUNEL 

reaction mixture (Roche, Mannheim, Germany) containing dUTP-FITC and TdT, 

and incubated for 90 min at 37°C in the dark. After that, the samples were washed 

and resuspended in 1 pg/ml PI plus 25 pi of 1 mg/ml RNAse in water and 

incubated overnight at 4°C.

3.4.5 CFSE Loading and Drug Treatment

Cells were detached and loaded with 1 pM CFSE (Molecular Probes, Eugene, 

Oregon) in PBS for 15 min in a tube kept at 37°C under gentle shaking. After 

labelling the cells were washed with warm PBS and then seeded in T-25 cm2 

tissue culture flasks. Experiment started at least 24h after seeding.
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In particular CFSE-loaded IGROV1 cells were treated for 1h with TPT, whereas 

CFSE-loaded HCT-116 and HCT-116 p53-/- cells were treated for 1h with DDP, 

washed twice using warm PBS and left in drug-free culture medium. At the 

appropriate times, cells were detached, counted and immediately analysed in the 

flow cytometer or fixed in cold 70% ethanol and stored at 4°C.

3.4.6 DNA Staining of CFSE-loaded Cells

For biparametric flow cytometric analysis cells fixed in 70% ethanol were washed 

with cold PBS and stained with a standard procedure for detection of DNA content 

with 2.5 pg/ml PI plus 25 pi of 1 mg/ml RNAse.

3.4.7 Triparametric Staining CFSE/BrdUrd/DNA

CFSE-loaded cells were treated for 1h with different drug concentrations, 20 min 

before the end of the treatment the cells were labelled with 30 pM BrdUrd, then 

washed and left in drug- and BrdUrd-free medium. The cells were counted and 

fixed in 70% ethanol at 24, 48 and 72h after treatment. In this way we were able to 

follow the fate of BrdUrd-positive and BrdUrd-negative cells at different times after 

treatment, monitoring in particular their ability of generating descendant.

About 1*106 fixed cells were washed with cold PBS and resuspended in 2 N HCI 

for 30 min. After washing with 0.1 M Na2B40 7, pH 8.5, to stop acid depurination, 

the cells were resuspended with 160 pi 0.5% Tween 20 with 1% NGS in PBS. 

After this, 40 pi of PE-conjugated Anti-BrdUrd Monoclonal Antibody (PharMingen, 

BD Biosciences, San Jose, CA, USA) was added and the mixture was incubated 

for 1h at room temperature. After incubation the cells were washed with PBS and 

resuspended in 1 ml of 0.25 pM TO-PR03 (Molecular Probes) in PBS plus 25 pi 

1% RNAse in water, incubated for 2h at room temperature in the dark and 

analysed.
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For each samples we acquired at least 10,000 events on a 256-channel scale. 

FITC fluorescence of BrdUrd-indirect immunostaining and CFSE fluorescence 

were detected in FL1 (530 ± 30 nm) with a logarithmic amplifier, while dUTP-FITC 

fluorescence was detected in FL1 with a liner amplifier. BrdUrd-direct 

immunostained cells were detected in FL1 when stained with anti-Brdllrd FITC or 

in FL2 (585 ± 4 nm) when stained with anti-Brdllrd PE, but always with a liner 

amplifier.

DNA content was detected in FL3 (>620 nm) when stained with PI and in FL4 

(>658 nm) when stained with TO-PR03, always with a linear amplifier.

FITC, CFSE, PE and PI were excited with an argon laser (488 nm), whereas a 

diode laser emitting at 635 nm excited TO-PR03.

3.5 COLONY ASSAY

Chemosensitivity of single and repeated treatments with TPT (0.2, 0.2 triple 

treatments, 1 , 10  and 100 pM) was assessed by a clonogenic assay. IGROV1 

cells were seeded at low density (about 250 cells/ml) in a six-well plate (Iwaki) and 

treated 48h later with different drug concentrations. The wells corresponding to 

triple treatment were treated with 0.2 pM TPT for 1h every 24h. One week after 

treatment the plates were washed with PBS and colonies were stained for 3 min 

with Gram's crystal violet solution (Fluka Chemie GmbFI, Buchs, Switzerland). The 

colonies (>50 cells) were counted using an image analyser (Immagini & Computer, 

Milano, Italy). Surviving fractions were obtained by normalizing the plating 

efficiencies to the respective control values (plating efficiency of untreated cells: 

40%). Each value is the mean of four replicates.
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3.6 MATHEMATICAL MODEL

3.6.1 Unperturbed Growth

The study of cell kinetics of a cell proliferating population is the determination of 

the law which gives N(t) and the values of percentage of occupation of different 

intermitotic phases.

In steady state conditions a cell population grows following an exponential trend. 

That means that proliferating cells arrive in a condition of dynamic equilibrium after 

a short time and this condition is described by the following equation:

N(t) = No exp(bt), where N(t) is the number of cells at the time t, No is the initial cell 

number and b is a parameter related to the doubling time (Tc) in the following way: 

b = log2/Tc. ; ■

In cell kinetic studies theory and simulation are based on the age distribution 

n(a,t), where n(a,t)da gives the cell fraction which has an age between a and 

a+da at the time t. If the age distribution is known it is possible to calculate the

percentage of occupation for each intermitotic phase:

r ; tg1 .
%G1(t) = 100* Jn (a ,t)da  

. 0
^  V.: ; J \

%S(t) = 100 * Jn(a ,tjd 'a  (a)
*̂G1

'Tc: ’ ■ ■ ^ : v
%G2(t) = 100* Jn (a ,t)da

J c ~ " r 3 2 .  '

These equations are true if we suppose that there is not intercell variability. That 

means that every cell has to spend a time Tgi in Gi phase, a time Ts in S phase 

and a time Tg2 in pre-mitotic phase. For a cell population which is asynchronously 

growing the age distribution and thus the percentage of occupation of intermitotic 

phases is time independent.

The growing rate of a population at the time t’ is



the number of newborn cells in dt is 2bN(t)dt, because for each dividing cell we 

have two newborn cells. At the time t, the number of cells that have an age 

between a and a+da is equal to the number of cells that were born at the time t-a 

in the same interval da:

2b N(t-a)=2b N(t) exp(-ba).

The probability that, at a time t, a cell has an age a has the following expression: 

P(a)=2b exp(-ba).

This distribution P(a) for a population in exponential growth is independent from 

the time t at which we observe the cells. This independence explains the previous 

sentence where we said that in an asynchronously growing cell population the 

percentage of occupation for each intermitotic phase is constant. Applying the 

equations (a) we obtain the Steel's formulae (Steel, 1977):
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T T T 'c  ‘ c 'c

2

100
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TG2
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From these formulae we can obtain the fraction of Tc spent in each intermitotic 

phase starting from the knowledge of the percentage of occupation. In this 

situation the data obtained from cytometric analysis are very important because 

we can evaluate these percentages from the study of DNA histograms.

If we suppose that there is not intercellular variation in the duration of phases and 

the cells can proliferate without perturbations it is quite easy to simulate the cell 

cycle.

The duration of cell cycle is T c= T g i+ T s+T g 2 and it can be divided in N 

subintervals, each one with a duration At, so that Tc=NAt.
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Let Gi(k,t) be the number of cells laying in the k-th step of Gi, at a certain time t, 

similar definitions holding for S(k,t) and G2 (k,t). The time evolution of Gi(k,t), 

G2 (k,t) and S(k,t) from t to t+At is immediately obtained considering the following 

set of equations:

Gi(k+1,t)=G1(k,t-At)

S(1s,t)=Gi(kMGi,t-At)

S(k+1,t)=S(k,t-At)

G2(lG2,t)=S(kMS,t-At ) (b)

G2(k+1 ,t)=G2(k,t-At)

Gi(lG1,t)=2G2(kMG2,t-At )

Equations (b) refer to a cell cycle divided as shown in the following picture:

0 A 2A Tgi Ts Tg2
-►age

IG1 2gi kMG1 kMS G2 kMG2

The set of equation (b) is valid for system without intercell variability and without

real effects such as cell death or slowing down of cell cycle. These equations

could become more realistic if we suppose that each cell spends a different time in

the same phase of the cell cycle, in this case TPh becomes the mean value of the

time that each cell spends in a phase before leaving it. Now we can introduce a

distribution function Fph(k) which gives us the probability that a cell, with an age k

in a certain phase, leaves the same phase. For FPh(k) we adopted a reciprocal-

normal distribution on the basis of earlier studies performed in our laboratory

(Sisken and Morasca, 1965) and showing that intermitotic times can be well

approximated by this function. For calculus purposes the distribution was

truncated six standard deviations above its mean, assuming to include in this way
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also cells with very long phase duration. Cells with longer phase duration would be 

considered quiescent. KPh indicates the last value of k for which Fph is not zero. 

Introducing the Dph(k) factor, defined in the following way:

Dph(k) =
Fph(k)
k-1

- 2 F* (j)
J - 1

and giving the fraction of cells completing a phase at age k, among the cells that 

reached age k-1, we can change the equations (b):

Kg2
G,(1G„ t )  = 2 | G 2(k ,t-& t)D a (k)

G,(k+ 1,t) = G,(k,t -  A t) [ l-D G1(k)]
KG1

S(1s,t) = \  G,(k,t -  At)DG1(k)
«  (c)

S(k + 1,t) = S(k,t -  At)[l -  Ds(k)]
ks

G2(1G2,t) = g S (k , t -A t)D s(k)

G2(k + 1,t) = G2(k,t -  At)[l -  DG2(k)]

The level of complexity of these equations can be increased considering the pre

cycle phase Go and pmjt. pmit is the mean number (<2) of living newborn cells 

originating from a mitotic event. Go is simulated as a single compartment and bpGo 

is the probability that a newborn cell bypass Go phase and enter Gi phase. That 

means that G0 cells can enter Gi with a rate Pgogi- Thus the Gi equation in (c) 

becomes:

G,(1G„ t )  = G0(t -  At)pG0G1 +bpG0pmit V  G2(k,t -  At)DG2(k)
C=1 (d)

G0(t) = G0(t -  At)(1 -  pG0G1) + (1 -  bpG0)pmi, V  G2(k,t -  At)DG2(k)
C=1
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For a cell population growing in vitro this is the highest level of complexity that we 

can consider, but at this point it is possible to introduce in the model the kinetic 

effects of a drug (figure 3.3 and 3.4).

D efin itively 
quiescent 
G, cells Phase G

i+1 Max 
age G

P go->g i

D efin itive ly  
quiescent 

S cells

Cell d iv is ion  
(Pd =2)

NJ
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Max age 
G,M

Phase GoM
D efin itive ly 
quiescent 
G M  cells

Figure 3.3: Scheme of the mathematical model, reproducing the unperturbed 

growth. In an asynchronously growing population, cells are distributed in every 

phase of the cell cycle. Each phase is divided in discrete age compartments of 

width A = 30 min, which groups cells with the same age ± 15 min.
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Figure 3.4: Scheme of the mathematical model, reproducing the perturbed 

growth. After drug treatment cells that were in Gi phase can enter S phase as 

control or can remain blocked in Gi phase, if intercepted by Gi checkpoint. Once 

blocked the cells recycle, if they are able to repair their damage, or die. All these 

possibilities are represented in this scheme as “Gi control”.
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3.6.2 Drug Perturbations

From a kinetic point of view we can briefly resume the effects of an anticancer 

drug. Cells can be blocked at the checkpoints at the end of Gi or G2 M phase, or 

they can be slowed down in their cycle (freezing). After each time step there is a 

probability that the cells pass from a certain compartment to Go and they become 

definitively quiescent. The drug can kill cells that are normally cycling or cells, 

which are quiescent, blocked or delayed. The parameters pPhBm represent the 

fraction of cells that leave their compartment and become blocked cells. There is 

also a probability that a blocked cell repairs the DNA damage caused by the drug 

and recycle. This probability can be represented by the following parameter: 

pphB0Ut, on the contrary the probability that a blocked cell dies is pPhBdie.

The freezing acts in a different way from the block, because with this parameter 

we represent an inhibition of the age maturation of a fraction pPhF of non blocked 

cells which populates a certain phase ph at the time t. As for blocked cells there is 

also a probability pPhFdie that frozen cells are eliminated every time step.

Cells entering a given phase may otherwise become definitively quiescent with a 

probability pPhQ. Quiescent cells accumulate in a specific compartment Q, in which 

death occurs with a probability pPhQdie every step.

The last possibility is the death of a proliferating cell, that can be simulated 

introducing a non zero probability pdiePh of leaving the cell population, in particular 

the death of a cell after mitosis can be simulated choosing for pmit a value smaller 

than 2.

With these corrections we can compare the experimental data to the simulations 

obtained from this mathematical model. For instance, the evolution of the cell 

number in S(k) passing from t to t+At can be written in the following way: 

S(k,t+At)=S(k-1,t)(1-Ds(k))(1-psF(t))(1-pdies(t))+S(k,t)psF(t)(1-psFdie(t))
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With this program it is also possible to simulate a label of BrdUrd: in practice, at a 

given labelling time, every cell in S phase becomes BrdUrd positive, filling the 

compartment S+(k,t). After that time, the evolution of positive and negative cells is 

followed, considering that a positive cell which doubles gives two positive cells and 

that the presence of BrdUrd does not change the evolution equations. Thus the 

program computes two parallel cycles, one describing Ph‘(k,t) and the other one 

describing Ph+(k,t). Obviously Ph(k,t)= Ph'(k,t)+ Ph+(k,t).

3.6.3 Simulation

This program reproduces the unperturbed growth of a cell population and its 

response to treatment with several drug concentrations. In particular, the task of 

the computer simulation is to consider all experimental data together, with a 

number of drug doses and recovery times, to give a complete coherent kinetic 

scenario based on a quantitative estimate of the time- and dose-dependence of 

the probabilities of cell arrest and killing.

3.6.3.a Input data

The first step towards the reconstruction of the scenario is represented by the 

determination of input parameters describing the baseline unperturbed growth of 

untreated cells:

- Mean transit times in the cell cycle phases TGi, Ts and TG2 m

- The intercellular spread of Gi, S and G2M transit times, measured by the 

respective coefficients of variation CVqi, CVs and CVg2m

- Initial cell distribution through the cycle phases.

A detailed BrdUrd study of the growth of IGROV1 and HCT-116 cells led us to 

determine the values of these parameters. In particular, the experiments that have 

to be performed in order to obtain the necessary experimental data are:
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- BrdUrd pulse-and-chase experiment with 20 min of labelling followed by cell 

count and harvesting every 3h for 48h.

- BrdUrd continuous labelling for 48h to evaluate the percentage of quiescent 

cells.

This part of the simulation allowed us to determine the following values:

IGROV1: TGi = 9.1h; CVGi = 50%; Ts = 8.7h; CVS = 10%; TG2m = 3.1h; CVG2M = 

10%

HCT-116: TGi = 1.8h; CVGi = 20%; Ts = 9.5h; CVS = 5%; TG2M = 3.2h; CVG2M = 

20%,

Once that we found the values of the mean transit times of different cell cycle 

phases, the spread of Gi, S and G2M transit times and the initial cell distribution 

that reproduce the experimental data we can use them in every experiment 

performed with the same cell line. From an experiment to another we only have to 

correct the percentage of quiescent cells, keeping them in the order of 5%.

The results of the simulation of unperturbed growth of IGROV1 and HCT-116 cells 

are respectively reported in figure 3.5 and 3.6. The simulated data that were able 

to reproduce the trend of the measured data were obtained by applying the mean 

transit times of phases and CVs listed above. In particular, the percentage of 

labelled undivided cells and their fraction respect to the initial number of BrdUrd- 

positive cells highlighted the necessity of taking into account a certain intercell 

variability, even in the case of a cell population growing exponentially and without 

any particular perturbation (figure 3.7).
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Figure 3.5: Results of the simulation of unperturbed growth of IGROV1 cells, 

using the parameters listed in the paragraph 3.6.3.a. The symbols represent the 

data obtained by the analysis of BrdUrd pulse-and-chase experiments, while the 

continuous line represents the result of the simulation. The considered 

experimental data are defined in table 3.1.
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Figure 3.6: Results of the simulation of unperturbed growth of HCT-116 cells, 

using the parameters listed in the paragraph 3.6.3.a.
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Data obtained by BrdUrd pulse-and-chase analysis

%1c+=LU Percentage of labelled undivided cells.

%1c+/N+=100*LU/(%BrdUrd+)

Percentage of labelled undivided cells over the 

total percentage of BrdUrd-positive(BrdUrd+) 

cells.

%res1c+=(100*LU)/(LU+0.5(BrdUrd+-LU)

Percentage of labelled undivided cells over the 

percentage of BrdUrd+ cells at the time of the 

labelling..

%SW

Percentage of S-phase cells included between 

INTfGi+CGz-GO’TM) and 

1NT(G1+(G2-G1)*0.6)i where "G i" and "Gz" are 

respectively the position of Gi and G2 pick and 

IN T() is a function that rounds a number down 

to the nearest integer.

%SW+

Percentage of BrdUrd+ cells included between 

INTfG^Gz-GirCW ) and 

INTfG^Gz-GO^.e).

RM=(Xmean-Gi)/(G2-Gi)

This number allows the quantification of the 

cell progression through S phase.

Xmean is the BrdUrd mean fluorescence of 

labelled undivided cells.

Table 3.1: List of some of the quantities that can be calculated analysing a 

biparametric DNA/Brdllrd dot plot. In control samples in exponential growth these 

quantities depend on the mean transit time of phases and on the coefficient of 

variation.
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Figure 3.7: Role of the coefficient of variation (CV) in the simulation of the 

percentage of labelled undivided cells for IGROV1.

The symbols represent the data obtained by the analysis of BrdUrd pulse-and- 

chase experiment. The lines represent the results of the simulation performed with 

the following values of CV:

C V Gi = 50% ; C V S = 10% ; C V G2m = 10%  ----------------

C V Gi = 0 .5% ; C V S = 0.5% ; CVG2m = 0.5%

C V Gi = 100% ; C V S = 100% ; C V G2M = 100%  ----------------

These graphs demonstrated that even in a cell population growing without any 

perturbations a certain intercell variability in the transit time of phases has to be 

taken into account.
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Before comparing the parameters that describe the cell cycle effects induced by 

each drug, it was necessary to test the role of time duration and CVs in the 

determination of cell number and flow cytometric percentages. This kind of 

evaluation was done considering the scenario describing the effects of two 

different DDP concentrations (75 and 200 pM) and monitoring the variations of 

output in the correspondence of the different parameters considered (listed in table 

3.2).

Base Tgi (h) Ts(h) Tg2m (h) CVG1 (%) CVS (%) CVq2M (%)
1 9.5 8.1 2.6 50 10 10

2 7.8 8.9 3.2 50 10 10

3 8.9 8.6 2.6 50 10 10

4 8.7 9.3 3.1 50 10 10

5 9.1 8.7 3.1 50 10 10

6 9.1 8.7 3.1 80 20 40

7 9.1 8.7 3.1 1 1 1

8 9.1 8.7 3.1 10 10 10

9 9.1 9.0 3.5 1 1 1

Table 3.2: The impact of the parameters describing the unperturbed growth of 

IGROV1 cells on the output of the simulation was tested considering the values of 

time duration and CVs listed above. The scenario describing the effects induced 

by a treatment with 75 and 200 pM DDP was that described in Montalenti et al. 

(1998). We defined as "Base" the set of parameters (Tqi, T s , TG2m and CVGi, CVS, 

CVG2m) considered in the simulation of unperturbed growth.

The results of this study are shown in figure 3.8 where the output of the simulation 

was compared with the experimental data. In spite of the variation of the time 

duration and CVs the trend of the cell number and flow cytometric percentages 

was maintained with only slight variations in the absolute values of the simulated
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data. This allowed us to confirm that the determination of the final scenario was

not influenced by the parameters connected with the unperturbed growth.
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Figure 3.8: Comparison of the output obtained applying the scenario describing 

the effects induced by DDP treatment at different initial cell distributions described 

by different bases (listed in table 3.2). The experimental data are represented with 

the error tolerated during the simulation: 20% for the cell number and 3% for flow 

cytometric percentages.
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In unperturbed conditions, kinetics of HCT-116 p53-/- was not different from that of 

wild type cells. For this reason we used the same parameters to simulate the 

growth of untreated cells.

Because cells were treated while in exponential growth, asynchronous initial cell 

distribution was chosen (i.e. cell percentages in every phase are constant over 

time).

To simulate all possible cell cycle perturbations, a set of additional parameters 

("effect descriptors") was devised, all associated with cell cycle perturbations with 

a true biological significance:

- "Delay" rate (psF): this is the proportion of cells whose progression inside S 

phase is inhibited at each step, resulting in a longer mean transit time for this 

phase. The value of the parameter is equivalent to the fractional reduction of 

the DNA synthesis rate. The extreme situation (delay rate = 1) indicates 

complete cell "freezing" within S phase.

- "Block" probability (pPhBm): this is the proportion of cells entering a block in Gi 

or G2 M phase, instead of proceeding to the next phase. In other words, "Block" 

represents the probability of being intercepted by a checkpoint and blocked 

there. Blocked cells may subsequently either re-enter the cycle or die in the 

block, depending on the next two parameters.

- "Recycling" rate (pPhB0Ut): this is the proportion of blocked cells re-entering the 

cycle, at each time step. It is indicative of recovery in cells blocked in a

'• particular checkpoint.

- "Death" rate (pphBdie, psFd,e or pdiePh); this is the proportion of cells removed 

from a group, at each time step. Independent rates can be applied to cycling, 

blocked or delayed cells in a phase. In the first interval of time (0-6h) the same 

death rate was applied on blocked and proliferating cells, because a population 

of blocked cells was not identifiable yet. For S phase the same death rate was
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always considered on delayed and proliferating cells, because in this phase 

there is not a compartment for delayed cells, so that they are indistinguishable 

from proliferating ones.

To reduce the redundancy of descriptive parameters, drug effects in Gi and G2 M 

were described only by block parameters, whereas those in S phase by freezing 

parameters. This choice is biologically sustainable, since Gi and G2 molecular 

checkpoints are known to be active in intercepting damaged cells, blocking them 

until the damage is repaired or cell death occurs, whereas there is not a definite 

checkpoint in the S phase. This is also coherent with DNA histogram data, which 

excluded the presence of a specific point in S phase where the cells accumulate. 

Block and recycling are probably continuous throughout S phase and the result of 

these two processes is described by the average delay rate considered in the 

model.

3.6.3.b Output data

Giving as input a set of values of the parameters describing drug effects (the 

"scenario" under evaluation), as output the simulation program gives the time- 

course of several measurable quantities consequent to this scenario. These 

values are compared directly with the experimental data:

- Total number of cells, reproducing the growth curve.

- Percentages of cells in Gi, S and G2 M phases.

- Output of BrdUrd experiments: percentages of Gi, S, G2 M BrdUrd unlabelled 

cells; percentages of "undivided" and "divided" BrdUrd-positive cells (i.e. 

BrdUrd-labelled cells still in the S and G2M phases of their first simulated cycle, 

and in the Gi phase of their second simulated cycle); total percentage of 

BrdUrd-positive cells.
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Both input parameters and output data were synthetically reported in table 3.3.

INPUT PARAMETERS AND BIOLOGICAL PHENOMENA

Unperturbed growth

Intercell variability of phase duration

Mean time of phases

Tg-ii Ts, Tq2

Coefficient of variation of the 

probability distribution

CVtGL CVts, CVtG2

Perturbed growth

Gi and G2 block Percentage of cells entering the block 

instead of leaving the phase

PPhBin (t,d)

Inhibition of DNA synthesis Average reduction of DNA synthesis 

rate in each interval

PsF (t,d)

Cytotoxic effect Percentage of blocked cells which 

dies in each interval of time

PphBdie (t,d), psFaie (t,d) 

or pdleph (t,d)

Recovery from block Percentage of blocked cells exiting 

from the block and recycling in each 

interval of time (recycling rate)

Bout (t,d)

OUTPUT PARAMETERS AND EXPERIMENTAL DATA

Number of cells N (t,d)

Percentage of cells in Gi phase (BrdUrd positive 

or negative)

%G.|(t,d) (%G1(t,d)+, %G1(t,d)-)

Percentage of cells in S phase (BrdUrd positive 

or negative)

%S(t,d) (%S(t,d)+, %S(t,d)-)

Percentage of cells in G2 phase (BrdUrd positive 

or negative)

%G2(t,d) (%G2(t,d)+, %G2(t,d)-)

Fraction of BrdUrd labelled divided and undivided 

cells

F|d(t,d) F|Und(t,d)

Table 3.3: All the possible input parameters with their biological meaning are listed 

in this table, where "t" indicates the time after treatment and "d" the drug 

concentration.



3.6.3.C Optimisation

During the simulation hundreds of sets of input parameters are tested by a trial- 

and-error procedure. As the experimental precision of flow cytometric percentages 

is about 3% and for cell counts is about 20%, the fitting was considered 

satisfactory when all experimental data were reproduced with the same precision. 

Using a principle of parsimony, we start trying to reproduce the data with a few 

parameters, as suggested by the interpretation of flow cytometric data and adding 

progressively new parameters until we obtained a satisfactory reproduction of all 

available data. The data of each drug concentration were initia lly fitted 

independently, finding a small number of scenarios coherent with data. Then, the 

dose-dependence of each parameter was considered, allowing the exclusion of 

some biologically inconsistent scenarios that forecasted a decrease of overall 

blocks and cell loss when drug concentration increases.

The parameters were taken as constant in the intervals between successive 

experimental data (i.e. 0-6h, 6-24h, 24-48h and 48-72h). The resulting values for 

"Block", "Recycling" and "Death" should be considered as descriptions of average 

effects in those intervals. The adopted time intervals are a compromise between 

feasibility of the experiment and necessity to have an estimate of the time course. 

We found that the hypothesis of the time-dependence of the parameters is 

necessary to fit the data but any detail of that time-dependence inside subsequent 

data points was not necessary and would not be demonstrable.

Wishing to include all basic perturbations of the cell cycle with their time- 

dependence, the equations of the model are too complex to be solved and we are 

not able to obtain cell cycle percentages as analytical functions of those 

perturbations. For this reason, we make simulations, solving numerically the
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equations of the model. In this situation it is not necessary (and also not 

technically possible in our knowledge) to fit directly the data with some non-linear 

fitting routine and we adopt a trial-and-error procedure. This also allows us to 

maintain a biological comprehension of the phenomena in all phases of the 

analysis.

3.6.3.d Representation of the scenario

As previously described each parameter of the model represents a probability that 

a cell passing through a certain phase is intercepted by the checkpoint and that a 

blocked cell die or re-enter the cycle. From the point of view o f the whole cell 

population this probability can also be quantified in terms of the percentage of 

cycling cells that remain blocked in a certain phase or that, once blocked, die or 

re-enter the cycle. As we demonstrated with the study of the sensitivity of the 

parameters (paragraphs 4.2.3, 5.2.3 and 6.2.3), there could be more than one 

value for each parameter that allows the reproduction of the experimental data. It 

is for this reason that we decided to classify the best values of the parameters in 

the final scenarios using interval of efficacy. For what concern the blocking activity, 

the categories were built using the percentage of cells that remain blocked in a 

particular phase, while the death and recycling rates were re-expressed in terms of 

the corresponding percentage of cells that would die or recycle in a group of 

blocked cells in the considered interval of time. Following this representation five 

different intervals of efficacy were hypothesized. In particular, the activity of the 

cell cycle control mechanisms were considered negligible when less than 5% of 

cells were intercepted by the checkpoint or die/recycle in a particular interval of 

time; thus the intervals were divided in the following way: 5-20%, 20-40%, 40-60%, 

60-80 and 80-100%.
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3.6.3.e Study of the sensitivity

The final scenario allowed the reproduction of all the data within the experimental 

precision, i.e. 3% for flow cytometric percentages and 20% for cell counts. 

However, a further level of evaluation is necessary to measure the uncertainty of 

the parameters estimation (sensitivity analysis). To study the sensitivity of each 

parameter in our model we started from the scenario obtained and we varied each 

parameter on its own to determine the impact of this variation on the output. For 

each parameter, a confidence band was constructed including all values enabling 

to simulate the data within their experimental error. A wide band means that a 

given parameter, at the specified time and concentration, is irrelevant for the data, 

while a narrow band means that the estimate is robust and the prediction of the 

observed data would be lost with small changes to the assumed value.
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CHAPTER 4: Cell Cycle Effects of Topotecan
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4.1 INTRODUCTION

4.1.1 Biochemical Mechanism of Action of Camptothecins

Camptothecin (CPT) is a potent antitumour antibiotic isolated by Wail and Wani in 

1958 from extracts of Camptotheca acuminata, a tree native to China and Tibet 

which has been extensively used in traditional Chinese medicine (Wall, 1993). The 

structure was determined to be that of a pentacyclic alkaloid and was first reported 

in 1966 (W allet al., 1966).

CPT and its derivatives, such as topotecan (TPT) and irinotecan, that are used for 

clinical therapy, and several novel CPT derivatives that are currently in various 

stages of clinical trials (Pratesi et al., 2004), show the same mechanism of action. 

This mechanism was elucidated about 20 years ago, when it was found that they 

caused DNA single-strand breaks by poisoning DNA-topoisomerase I (Hsiang et 

al., 1985; Holm et al., 1989). CPT binds covalently to the normally transient DNA- 

topoisomerase I cleavable complex and inhibits the religation step of the enzyme 

(Hsiang et al., 1989). As a consequence, protein-linked single-strand breaks in the 

DNA accumulate in the cell. These stabilised breaks are fully reversible and non- 

lethal (Schneider et al., 1990). However, the enzymes of the DNA synthesis 

machinery come up against an obstacle while processing DNA and single-strand 

breaks are converted to irreversible double-strand breaks. This is a crucial event 

for cytotoxicity (Hsiang et al., 1989) and apoptotic cell death mediated by caspase 

activation. On the other hand, collision with RNA polymerases produces 

predominantly topoisomerase l-linked single-strand breaks and the cleavable 

complex, located on the transcribed strand (Wu and Liu, 1997), inhibits RNA 

synthesis by avoiding the progression of the enzyme trough the transcribed strand 

itself (Zhang et al., 1990). Collision with RNA polymerases can also lead to 

double-strand breaks when two cleavable complexes are seated closely on the 

opposite strands of the DNA duplex. If CPT is removed from cells the
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phenomenon reverses, probably because the topoisomerase I complex 

dissociates from the transcription unit, and RNA synthesis restarts (Parchment and 

Pessina, 1998).

Maintenance of the complex requires the presence of CPT in its active form, which 

is represented by the closed ring lactone. However, at neutral and alkaline pH, 

equilibrium favours the essentially inactive carboxy-acid from (Yao et al., 1998). 

The study of different cell lines resistant to this family of compounds allowed a 

better comprehension of their mechanisms of action. CPT resistant cell lines are 

characterized by specific mutations within the gene codifying for topoisomerase I 

(Pommier et al., 1999). Deletion of the gene for topoisomerase I from 

Saccharomyces cerevisiae resulted in viable cells that were fully resistant to CPT. 

Re-expression of the yeast or human enzymes in S. cerevisiae restored sensitivity 

to CPT (Nitiss and Wang, 1988; Bjornsti et al., 1994). In general the different 

causes of resistance to topoisomerase I inhibitor can be grouped into three 

categories: (a) pre-cleavage mechanisms related to the drug metabolism and 

uptake; (b) topoisomerase I alterations that results in reduced levels of cleavage 

complexes; and (c) the post-cleavage complex mechanisms, which are related to 

the multiple pathways leading to cell death, cell cycle regulation and DNA repair.

4.1.2 Previous Cell Cycle Studies

The earliest studies about cell cycle effects induced by this class of compounds 

showed that the cytotoxicity of camptothecins is cell cycle phase specific (Li et al., 

1972). In particular, it has been calculated that a cell in S phase is about 1000 

times more sensitive to the cytotoxic effect of topoisomerase I inhibitors than cells 

in other phases of the cell cycle (Horwitz, 1975). However, if the toxicity is 

measured as damage produced by CPT on DNA the result is very similar either in 

S- and Gi-phase cells (Horwitz and Horwitz, 1973). This apparent discrepancy
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suggest that the cause of ceil death by CPT is probably due to the collision 

between the cleavage complex and the replication forks and that the entering in S 

phase converts a reversible damage of DNA into a lethal lesion.

The results of previous studies using synchronised cells (Li et al., 1972) have to be 

interpreted with caution as the synchronisation itself could modify the metabolic 

behaviour of the cancer cells, possibly producing artefacts (Mikulits et al., 1997). 

On the other side, results reported by more recent studies showed a substantial 

reduction of the S-phase selectivity of camptothecins (Gong et al., 1993) when 

cells are pretreated with DNA polymerase inhibitor as aphidicolin (Tsao et al., 

1992; Wu et al., 2002). But also in this case the results might be altered because 

of the inhibition of DNA polymerase-dependent DNA repair processes (Moore and 

Randall, 1987).

More recent flow cytometric studies about cell cycle effects induced by short 

treatments with CPT or its derivatives add a deeper level of complexity in the 

comprehension of the question. In this case, accumulation or depletion of cells in 

G i, S and G2 M were detected. McDonald et al. (1998) showed that, 24h after 

treating an ovarian cancer cell line with an ICso TPT concentration, there was an 

accumulation of cells in G2 M phase, with reduction in Gi and S phases, partly 

attributable to the block in G2 M. They also suggested that, despite the lack of 

significant Gi accumulation, the depletion of the S-phase compartment observed 

is in part due to impaired transit across the G-i/S cell cycle checkpoint.

Some of these cell cycle effects were confirmed by Taron's study (Taron et al., 

2000). They investigated the response of different cell lines to a treatment with a 

single concentration of TPT (identified as the IC5 0 ), analysing flow cytometric DNA 

profiles at different times after treatment and showing a transient accumulation of 

cells in S and G2 M. At 24h many cells accumulated in G2 M suggesting that delay

99



in S was transient. In all cell lines, the authors found no difference between the cell 

cycle profiles of treated and control cells 48h after TPT treatment.

Experiments involving short treatments with CPT and its derivatives where more 

than 80% of cells were killed (O’Connor et a l., 1990; O’Connor et al., 1991) 

suggest that the effects of these compounds are not specific to S-phase cells. The 

observation was confirmed in a more recent study made by Feeney et al. (2003) 

using time-lapse microscopy. They suggested that cells treated with TPT while in 

Gi and S phase were unable to duplicate in 48h, while part of G2 M cells could 

divide. The proliferation of S-phase cells, unlike G1 and G2 M cells, was inhibited 

even at a low TPT concentration.

This can be explained by tacking into account that topoisomerase I does not play a 

role only in DNA replication, but is certainly implicated in the DNA repair 

mechanisms as well as in the regulation of gene transcription. Both these 

processes occur not only during S phase but also during the other phases of the 

cell cycle. Thus CPT-induced DNA damage may be produced during transcription 

outside of S-phase as well as by DNA replication during S-phase (Mosesso et al., 

2000).

4.1.3 Clinical Use

Preclinical data showing CPT activity in tumours of both colonic and gastric origin, 

and toxic effects of the drug to the digestive tract, led to phase I trials focusing 

largely on gastrointestinal malignancies. In these initial trials, myelosuppression 

was identified as the primary dose-limiting toxic effect. Although CPT had 

impressive antineoplastic activity, phase II evaluation was terminated when severe 

and unpredictable toxicities, including severe haemorrhagic cystitis, were 

observed (Eckardt et al., 1995). Poor aqueous solubility also precluded further 

development. Interest was then focused on the development of water-soluble
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synthetic analogous, such as topotecan, which had an improved toxicity profile 

and broad-spectrum antitumour activity (Kingsbury et al., 1991).

Preclinical models have demonstrated that TPT is active against many tumours 

types, including adenocarcinomas of the ovary and colon, tumours of the central 

nervous systems, and sarcomas. During phase I assessment, evidence of activity 

was most promising when TPT was administered on an i.v. daily x5 schedule and 

a dose of 1.5 mg/m2/day was selected for phase ll/lll evaluation (Saltz et al., 

1993). This regimen, which is associated with plasma concentrations of the lacton 

form of about 0.1 pM (Rowinsky et al., 1992), is used against recurrent ovarian 

cancer, relapsed small cell lung cancer (SCLC), non-small cell lung cancer, colon 

cancer, and breast cancer, as well as haematological malignancies (Heron, 1998; 

Hochster et al., 1999). As reported by Schoemaker et al. (2002), the efficacy of 

this schedule of treatment could be explained by the increased topoisomerase I 

level observed after repeated TPT administration.

The interest about clinical role of TPT was focused also on its use in combination 

regimens. Reports of a number of early-phase studies in ovarian cancer and 

SCLC have shown activity for TPT in combination with DDP and paclitaxel (Frasci 

et al., 1999; Frasci et al., 2001).

4.2 RESULTS

Exponentially growing IGROV1 cells were treated for 1h with 0.05, 0.2, 1, 10, 100 

pM TPT. We measured the following quantities related to the cell kinetics after 

treatment: overall (absolute) cell number, flow cytometric DNA histograms, 

biparametric DNA-BrdUrd flow cytometric histograms using two protocols (pulse- 

and-chase, pulse labelling).
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4.2.1 Experimental Data

Figure 4.1 shows the growth curves after treatment from 0.05 pM, with almost no 

difference from controls, to 10 pM where cell number was stable up to 48h and 

then increased, and 100 pM, where no regrowth was observed up to the end of 

observation (96h). 1 pM would represent the IC5o on a 72-h growth inhibition test. 

Controls and 0.05-pM treated cells reached sub-confluence at 72h, while 0.2-pM 

treated cells continued to grow up to 96h. The 72-96h interval was included in the 

subsequent analyses only for 0.2 pM and higher TPT concentrations, being also 

0.05 pM flow cytometric data similar to controls.

Flow cytometric DNA histograms of control and treated samples are shown in 

figure 4.2. Simple visual inspection of the histograms shows departures from the 

steady-state distribution of controls with 1-10 pM (increased percentage of cells 

within S at 6h, within G2 M at 24h), and 100 pM (debris and high late S and G2 M 

peak at 24-48h, high G2 M peak at 96h).

Short-term effects of TPT were evaluated by a pulse-and-chase experiment. Cells 

were exposed to BrdUrd in the last 20 min of treatment, allowing DNA- 

synthesizing cells to incorporate BrdUrd, becoming "BrdUrd-positive", and were 

collected 6h later. The resulting biparametric DNA-BrdUrd plots are shown in 

figure 4.3. They indicate the movement of the cells in the cell cycle in the first 6h 

after treatment. In untreated samples BrdUrd-positive cells that occupied S phase 

at Oh were distributed within late S, G2M and G1 phases at 6h. A dose-dependent 

delay was observed in treated samples. In 0.2-pM treated sample the cloud of 

BrdUrd-positive cells covered the middle S to G2 M part of the cell cycle with no 

detectable cells in G-i, after mitosis. The similarity of the 10 and 100 pM plots at 6h 

with controls at Oh indicates the complete freezing of the cell cycle. However DNA

102



synthesis was not inhibited at Oh, in fact at the end of the 1-h treatment, BrdUrd

was incorporated even by 100-pM treated cells.
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Figure 4.1: Growth curves of IGROV1 cells after 0.05, 0.2, 1, 10, 100 pM TPT for 

1 h, measured by Coulter Counter. Each point is an average of at least three 

replicate flasks.
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Figure 4.2: Time-course of DNA histograms after 0.05, 0.2, 1,10 and 100 pM TPT 

for 1h. DNA corresponding to Gi and G2 M cells is indicated. Persistent 

accumulation in the G2 M peak is particularly evident in the 100 pM histograms.
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F igure  4.3: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(BrdUrd content) plots. Cells incorporated BrdUrd 20 min before the end of the 1h- 

treatment and were harvested 6h after the treatment (BrdUrd pulse-and-chase). 

Cells were considered BrdUrd-positive (in the S phase at the time of treatment, Oh) 

when detected above the straight line (left panel). BrdUrd-positive cells with Gi 

DNA content (Gi+) at 6h were born from mitosis of cells in S phase at the time of 

treatment. Gi BrdUrd-positive cells are present only in the control and in samples 

treated with the lowest concentration of TPT. BrdUrd-negative cells did not flow 

from Gi to S in samples treated with 1 pM or higher TPT concentrations (cells 

were detected in the "S-" region at 6h only in controls and samples treated with 

0.05 and 0.2 pM).

The mathematical model previously described (see section 3.6) becomes essential 

in order to combine all these experimental data and to interpret them in terms of
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the underlying cell cycle effects (blocking activity in Gi and G2 M, death rate and 

recycling of blocked cells, reduction of DNA synthesis rate and death rate of S- 

phase cells), looking for scenario(s) in which all data are coherently explained. 

During the simulation we tested hundreds of sets of values of blocking activity, 

death rate and recycling rate, looking for those that enabled us to reproduce the 

observation within the experimental precision.

We started the simulation testing the hypothesis that TPT had cytotoxic and 

cytostatic effects only on cells that were in S phase at the time of treatment 

(BrdUrd positive). The results are shown in figure 4.4. In the samples treated with 

the lowest drug concentrations this hypothesis seemed to be acceptable, in fact it 

was possible to reproduce the data within the experimental error, but when the 

drug concentration increased we were not able to fit the data any more.

Thus, the simulation falsified the hypothesis that TPT had an effect only on cells in 

S phase during treatment. In fact we were not able to reproduce the cell number 

and the flow cytom etric percentages of the samples treated with TPT 

concentrations higher than 0.2 pM. Moreover, as shown in figure 4.3, BrdUrd- 

negative cells in Gi at the time of treatment were unable to go through S phase, at 

least in the first 6h and with 1 pM or higher TPT concentrations.

However, the experimental data available at this point were too few to clarify 

whether the effects in BrdUrd-positive and BrdUrd-negative cells were different, 

because concurrent scenarios simulated the data within the range of the 

experimental error. Thus, additional experiments were run, using two different 

BrdUrd methods.
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Figure 4.4: Results of the simulation obtained supposing that TPT had cytostatic 

and cytotoxic effects only on cells that were in S phase at the time of treatment.
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The BrdUrd labelling experiment (figure 4.5a), based on exposure to BrdUrd at a 

given time after treatment, immediately followed by cell harvesting and fixation, 

serves to qualitatively monitor the DNA synthesis rate of S-phase cells. At 48h 

BrdUrd incorporation was similar to controls up to 1 pM, but was strongly reduced 

at 10 pM and only a few S-phase cells incorporated BrdUrd after treatment with 

100 pM TPT. DNA synthesis was completely restored at 96h after 10 pM but was 

still inhibited in 100-pM treated cells.

In the BrdUrd pulse-and-chase experiment (figure 4.5b), samples were labelled 

with BrdUrd at the time of treatment and harvested at 72h. BrdUrd-positive cells 

were <10% even in the samples treated with a low TPT concentration (0.2 pM).
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F igure 4.5: Additional BrdUrd labelling (a) and pulse-and-chase (b) experiments. 

Panel a (BrdUrd labelling): 48 and 96h after treatment cells were labelled for 20 

min with BrdUrd and immediately harvested and fixed, this allowed the 

qualitatively monitoring of DNA synthesis rate in S-phase cells. At 48h BrdUrd 

incorporation was similar to controls up to 1 pM, but was strongly reduced at 10 

pM. The samples treated with 10 pM TPT restored their DNA synthesis activity by 

96h but BrdUrd incorporation was still reduced in 100 pM-treated cells.

Panel b (pulse-and-chase): cells incorporated BrdUrd 20 min before the end of the 

1h-treatment and were harvested 72h after treatment. BrdUrd-positive cells 

amounted to <15% even in the samples treated with 0.2 pM TPT.
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4.2.2 Scenario of Cell Cycle Perturbations Underlying Experimental Data

This additional information enabled us to draw a scenario of the time course of 

events occurring in G-i, S and G2M consistent with all the data for each TPT 

concentration. The different panels of figure 4.6 detail this scenario, whose main 

characteristics are the following:

4.2.2.a Events occurring in Gi phase (figure 4.6a)

The controls of Gi phase act during and immediately after treatment on BrdUrd- 

negative cells, while BrdUrd-positive cells cross Gi checkpoint only after their first 

division, which may occur several hours after treatment. BrdUrd-negative cells 

remained blocked in this phase immediately after treatment. 1 pM TPT was the 

lowest concentration required to intercept almost all (80-100%) cells in transit from 

Gi to S in the interval 0-6h (upper right panel). With lower TPT concentrations, 

less than 20% of those cells remained blocked. No more BrdUrd-negative cells 

were blocked after 6h.

The cytotoxic response is characterised by a substantial loss of cells in Gi 

immediately after treatment (0-6h) (middle right panel). Gi blocked BrdUrd- 

negative cells, that had survived the 0-6h loss, re-entered the cycle before 24h (up 

to 10 pM) or continued to die, recycling after 48h (100 pM) (lower right panel). 

BrdUrd-positive cells that could divide and reach Gi phase were very strongly 

blocked, for 72h even with 0.2 pM TPT (upper left panel). Gi block was initially not 

detectable in BrdUrd-positive cells, simply because no BrdUrd-positive cells were 

expected to come out Gi before 24h, and for the same reason the block again 

became undetectable between 72-96h. There was no evidence of recycling within 

Gi blocked BrdUrd-positive cells (lower left panel), meaning that the cells that 

were able to reach Gi phase remained blocked there. However, they were few and 

it was uncertain whether they remained blocked or eventually died.
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4.2.2.b Events occurring in S phase (figure 4.6b)

At low concentrations (<1 pM) there was a reduction in the DNA synthesis rate for 

BrdUrd-positive cells (upper left panel). Even though this effect was lower than 

40% it was still well detectable for the samples treated with 0.05 pM TPT and it 

peaked in the 6-24h interval, where 0.2 pM was enough to almost completely 

inhibit DNA synthesis. The intensity was lower at the low concentrations but it 

remained strong at least up to 48h with the highest concentrations. Cell death was 

limited to BrdUrd-positive cells treated with the highest concentrations of TPT up 

to 24h (10 pM) or 48h (100 pM) (lower left panel). BrdUrd-negative cells were not 

delayed when entering S phase (upper right panel). Cells treated outside S phase 

were able to traverse it like controls.

4.2.2.C Events occurring in G?M phase (figure 4.6c)

The effects of TPT in G2M phase were stronger for cells that were in S phase at 

the time of treatment (left panels) than for cells initially in Gi or in G2M (right 

panels). 80-100% of the BrdUrd-positive cells expected to divide in the 0-6h 

interval remained blocked in G2M even when treated with a concentration as low 

as 0.2 pM. Roughly half of them remained blocked in this phase when treated with 

0.05 pM TPT.

The duration of that block was dose-dependent and cells arriving in G2M continued 

to be blocked up to 24h (0.2 pM), 48h (1-10 pM) and at least 72h with the very 

high 100 pM treatment (upper left panel). Once blocked, cells were unable to 

recycle (not shown) and some of them eventually died (lower left panel). The 

pattern of the effects in G2M of BrdUrd-negative cells was similar but with lower 

intensity and shorter duration (right-hand panels).
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Figure 4.6: Characteristics of the response scenario for a complete reproduction 

of the experimental data. The blocking activity is represented as the percentage of 

cells that remain blocked among those traversing Gi or G2 M in the time interval 

indicated. The death/recycling rates are expressed in terms of the percentages of 

cells that die/recycle in each time interval, within the compartment of Gi (or G2 M) 

blocked cells. In the 0-6h interval the death rate in Gi or G2 M is applied to both 

blocked and proliferating cells, because they cannot be distinguished. Parameters 

whose values are irrelevant are defined ND (non-detectable).

The S-delay rate is equivalent to the percentage reduction of the average DNA 

synthesis rate.
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4.2.3 Sensitivity Analysis of Parameters

The results coming from the study of the sensitivity of the parameters considered 

in the final scenario (figure 4.6) were reported in figure 4.7. They were obtained as 

described in the paragraph 3.6.3.e.

This analysis confirmed that BrdUrd-negative cells treated while in Gi phase 

remained blocked there for a few hours after drug washout. The high sensitivity of 

the parameter describing this effect confirmed its short duration. On the other side 

the presence of long-term blocking activity in BrdUrd-positive cells was confirmed 

in samples treated with low concentrations. In 100-pM treated cells the presence 

of a strong inhibition of DNA synthesis followed by a block in G2 M phase able to 

intercept almost all BrdUrd-positive cells passing through this phase avoided the 

formation of a population of proliferating cells. It is for this reason that the 

parameter describing the blocking activity in Gi phase for BrdUrd-positive cells 

treated with the highest TPT concentration is not sensitive at all. At the same way 

the death rate in this phase was sensitive only in presence of a non-negligible 

subpopulation of blocked cells. However, in some non-detectable situations the 

dose dependence of the effects could allow the restriction of the range of possible 

values for each parameter. For instance the presence of a non-zero recycling 

probability for Gi blocked cells in samples treated with high drug concentrations 

made sure the presence of a similar effect also in 0.05 and 0.2-pM treated cells. 

The precision of the final estimates of the parameters of S phase delay and G2 M 

blocking activity resulted high by sensitivity analysis with an exception for long

term effects in BrdUrd-positive cells. In any case this study confirmed the trend 

illustrated in the final scenario. As observed for the death rate in Gi phase, the 

parameters describing this effect in S and G2M phase was not very sensitive, but 

the presence of a cell loss in these two phases was confirmed.
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In order to simulate the experimental data we did not need to introduce a recycling 

probability for cells blocked in G2 M phase. However in the samples treated with 

the lowest drug concentration the small amount of cells blocked in this phase did 

not allow an estimation of this phenomenon, even though we could not exclude 

this possibility (not shown).
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Figure 4.7: Time-course of the parameters used in the simulation. The continuous 

line represents the value of each parameter as obtained in the final simulation and 

the filled area represents the range of values of each parameter within which the 

simulation remained close to the experimental data.
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4.2.4 Repeated Treatments

This detailed picture of the response to a single short TPT treatment can be used 

as a starting point for interpreting the response to more complex treatment 

schemes. We investigated the effects of repeated 1h TPT treatments with 0.05 or 

0.2 pM TPT on three consecutive days, comparing them with single treatments. 

The data for the samples treated with 0.05 pM and 0.2 pM TPT only once in this 

new experiment were correctly simulated with minor modifications of the values of 

the parameters of the scenario described in figure 4.6, confirming the previous 

results (not shown). As a starting working hypothesis to simulate the repeated 

treatments we repeatedly applied the parameters of the single-treatm ent 

simulation between 0-6 and 6-24h. As shown in figure 4.8, this led to a correct 

simulation of the 0.05 pM x 3 treatment (figure 4.8a), but not of 0.2 pM x 3 (figure 

4.8b), failing to reproduce the cell cycle percentages at 72h and especially the cell 

number at 96h. Correct simulation of the 0.2 pM x 3 treatment (figure 4.8c) was 

obtained using the modified response scenario that differed from a simple 

repetition of the single treatment effect in two aspects:

-  Cell loss in S phase was present after 24h (i.e. after the second treatment), 

while this was completely absent in the samples treated only once at 

concentrations lower than 10 pM. This kind of loss occurred mainly in the 

subset of BrdUrd-negative cells.

-  BrdUrd-positive cells remained blocked for a long time in G2M and part of them 

were lost after 72h, while for the samples treated only once a weaker cell loss 

in G2M was present after 24h recovery.
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Figure 4.8: Data and simulation of repeated treatments. To reproduce the pattern 

of the experimental data (DNA analysis and cell count) from the samples treated 

three times with 0.05 pM TPT we applied three times the scenario describing a 

single treatment between 0-6 and 6-24h. This led to a correct simulation of the 

0.05 pM x 3 treatment (figure 4.8a), but not 0.2 pM x 3 (figure 4.8b). The correct 

simulation of the 0.2 pM x 3 treatment (figure 4.8c) was obtained using a modified 

response scenario including cell loss in S phase.
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4.2.5 Predictions of the Final Scenario

Once the scenario was defined the simulation gave additional information on the 

behaviour and heterogeneity of the cell population, that were not directly 

measurable from the experimental data. In particular we retrieved the percentage 

of cells blocked in Gi or in G2 M at each time (figure 4.9) and the total amount of 

cells that died in 96h (figure 4.10). These quantities measure the impact o f a 

specific block and killing on the growth of the whole cell population. Instead, the 

values of the parameters in figure 4.6 indicate the strength of the blocking or killing 

activity, independently of the absolute number of cells that reached that phase. 

Figure 4.9a reports the time course of the percentages of blocked cells in Gi and 

G2 M in the single-treatment experiment. The proportion of cells blocked in Gi was 

not negligible compared to the percentage of G2 M blocked. For instance, with 100 

pM about 20% of the whole cell population were blocked in Gi at 48h, despite a 

decrease in %Gi. In the repeated-treatment experiment (figure 4.9b), the 

percentage of Gi blocked cells remained low, while the percentage of G2 M 

blocked cells increased, reaching a peak of 30% of the whole population after the 

third 0.2 pM treatment.

The percentage of lost cells in 96h (figure 4.10a) indicates that 0.2 pM x 3 were 

more "cytotoxic" than a single treatment with 10 pM TPT and there was also a 

difference in the distribution of lost cells in Gi, S and G2 M phases. In 0.2-pM 

treated samples a cell loss was present only in G2M phase, but the mortality was 

distributed between G<\ and G2 M in 1-pM treated cells. When the drug 

concentration increased a percentage of cells died also in S phase, this amount 

reached the 30% in 100-pM treated sample. Even though the cytotoxic effects of 

0.2 pM x 3 treatment was higher than that achieved with a single treatment with 10
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|jM TPT there was not cell loss in Gi phase, in this case the mortality was 

distributed between S and G2 M phase.

The information obtained with a colony assay (figure 4.10b) allowed us to confirm 

the data deduced with our model.
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Figure 4.9: Dose- and time-dependence of the percentage of total (full height of 

the bars) and blocked (height of the filled area of the bars) cells in Gi and in G2 M. 

This serves to evaluate the impact of the blocking effect on the cell population 

after treatment with 0.05, 0.2, 1,10 and 100 pM TPT (panel a) and after repeated 

treatments (panel b). The error bars in the histograms indicate of the range where 

different simulations give predictions fitting the data within the experimental error.
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Figure 4.10: Panel a: Total percentage of dead cells in 96h obtained from the 

simulation. The pies above the columns of the histograms give the distribution of 

lost cells in the different cell cycle phases. The error bars were calculated as 

reported in figure 4.8. Panel b: Survival fraction measured by a colony assay. For 

this test every percentage is the average of four replicates.

Both the simulation and the colony assay confirmed that 0.2 pM x 3 was more 

"cytotoxic" than single treatment with 10 pM TPT.
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4.3 DISCUSSION

In the present study we quantified the response of human ovarian cancer cells to a 

short TPT treatment, unravelling the complex dose- and time-dependence of the 

block, delay, recycling from block and death effects.

Analysis of the effect descriptors allows us to focus on a certain phase and see 

what happens when the cells pass through it. This analysis gave a pattern of time- 

and dose-dependence of the cellular response to TPT much more complex than 

cell cycle analyses reported in the literature. Indeed early reports of the cell cycle 

perturbations induced by CPT and its derivatives stressed S-phase cytotoxicity (Li 

et al., 1972), but in particular dose ranges and using synchronisation techniques 

where S-phase cells are just released from an artificial block. In these studies, G2 - 

enriched fractions appeared much less sensitive than S-phase cells, despite the 

presence of considerable S-phase contaminants. In our opinion factors other than 

phase specificity, like the time from release of the synchronising block, may play a 

role in the outcome of this kind of experiments. For instance, in repeated treatment 

the cells that remained blocked in Gi phase after the first TPT treatment where 

more sensitive to the second treatment and many of them were killed when 

released from the block.

Our results are not in contradiction with these observations and with those made 

by further studies about cell cycle effects induced by camptothecins (McDonald 

and Brown, 1998; Taron et al., 2000; Feeney et al., 2003), but they introduce a 

much deeper level of understanding, making a clear distinction between cytotoxic 

and cytostatic effects and analysing their dose-dependence. Even though TPT is 

supposed to be S-phase specific, it was impossible to account for our 

experimental data assuming cytotoxic and cytostatic effects only on BrdUrd- 

positive cells. As shown in the final scenario (figure 4.6), both BrdUrd-positive and
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BrdUrd-negative cells contributed to the overall effects, interacting with all cell 

cycle controls while traversing each phase.

The challenge of a short TPT treatment caused prompt activation of the Gi block, 

in which the cells processed the damage rapidly, committing some cells to death 

or succeeding in repairing others which were able to recycle in the 6-24h interval. 

Roughly half the G2 M-treated cells remained blocked there but the fate of the other 

half is less clear, because after division they mixed with the much more numerous 

subpopulation of Gi cells. Cells treated while traversing S phase follow a quite 

different path and their outcome was decided over a very long time. Most of them 

were delayed in their progression of S phase, experienced a G2M block, and died 

at a low rate over a long period, up to 72h. Even with a concentration as low as 0.2 

pM, less than 15% of the population present at the end of the observation (96h) 

were cells treated in S phase or their descendants, but this is due more to the 

prolonged inhibition of proliferation, while surviving BrdUrd-negative cells 

multiplied by subsequent divisions, than to selective cell loss.

It is important to note that the events in Gi phase for BrdUrd-positive and BrdUrd- 

negative cells are quite different. The cells exposed to the drug while in Gi (most 

of them) or in G2M remained blocked in Gi immediately after treatment, preventing 

them starting S phase but only for a short period (^6h). The block was weak with 

low concentrations and blocked cells were able to recycle in the 6-24h interval. At 

higher concentrations (1-10 pM) the block was almost complete and there was 

some lethality within 6h. With 100 pM cell loss was more extensive, longer-lasting 

and residual blocked cells were able to recycle only after 48h. Few BrdUrd-positive 

cells could divide and reach Gi with concentrations >1 pM, but they were unable to 

progress further to S, suggesting that, although damaged by TPT, they had 

bypassed the previous G2 M checkpoint. Thus the Gi checkpoint was stricter or 

more sensitive to intercept and block damaged cells.
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Our data were not sensitive enough to clarify at which point of Gi these events 

occur and the model arbitrarily sets the Gi block at the end of the phase. The 

observation that almost no cells entered S phase in the first 6h suggests that the 

block is at the G-i/S border (i.e. just before the onset of DNA synthesis) or 

throughout the phase. At least at the higher concentration block and cell loss 

probably occur throughout the phase, because the whole cell cycle progression is 

frozen and the amount of cells lost is incompatible with the (few) cells expected to 

reach the G-i/S border in that interval.

Simulation also allows us to evaluate the time-course of the overall cell loss, 

irrespective of the phase in which cells were actually lost, but still separately within 

the subpopulation of BrdUrd-positive and negative cells. BrdUrd-negative cells are 

lost mainly in Gi, immediately after treatment (from 1 pM), while BrdUrd-positive 

cells are lost mainly in G2 M, over a longer period, from 0 to 72h at the highest 

dose, 6-72h with 10 pM, 24-72h with 1 pM and 24-48h with the 0.2 pM.

In the whole 0-96h interval, although more BrdUrd-positive cells were lost, the 

short-term loss of BrdUrd-negative cells was not negligible at 1 pM and above. For 

instance, the simulation of 1 pM treatment suggested that 20% of the cells treated 

in Gi (or G2 M) were killed in the 0-6h interval, against 30% of cells treated in S 

phase, mainly in the 24-72h interval.

These findings on cell cycle perturbations can be linked to published data at the 

molecular level. The primaryTopoisomerase l-mediated DNA lesions are single

strand breaks, but a time-dependent formation of DNA double-strand breaks is 

expected as a consequence of collisions between the replication fork and 

topoisomerase l-DNA cleavage complex (Zuco et al., 2003). As a consequence of 

DNA double-strand breaks, Chk2 phosphorylation occurs in an ATM-dependent 

manner (Chaturvedi et al., 1999). This should be in agreement with the theory that 

ATM activates a pathway of inhibition of DNA synthesis after double-strand
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breakage (Falck et al., 2002), and is also a possible explanation of the slowing 

down of the BrdUrd-positive cells in S phase that we quantify in our simulation.

The block in G2 M was associated with impaired activation of CDC2-cyclin B 

complexes (Tsao et al., 1992). This is probably caused by ATR-induced 

phosphorylation of Chk1, which may play an important role in the cell cycle 

responses and survival after treatment with topoisomerase I poisons (Cliby et al., 

2002).

The molecular origin of the Gi block of camptothecins has not been investigated, 

to our knowledge. We found two kinds of Gi block: one was strong but temporary, 

rapidly leading to cell death or recovery (in BrdUrd-negative cells), the other was 

lasting (in BrdUrd-positive cells). These findings fit with the general view of two 

successive waves of cell cycle checkpoint responses at G i. The first is p53- 

independent and exploits a pathway where Cdc25A phosphorylation and 

degradation play a key role. In line with the observation that DNA single strand- 

breaks are rapidly reversed 1h after drug removal (Zuco et al., 2003) and that the 

cleavable complexes are rapidly eliminated when TPT is removed from the 

external medium (Feeney et al., 2003) we assume that in BrdUrd-negative cells 

only a single strand-break occurs, leading to the short-term response driven by the 

p53-independent pathway.

The second response is p53-dependent and might well be activated in our 

IGROV1 cells, which possess wild type p53. The p53-dependent response is 

expected to be sustainable for a long time (Bartek and Lukas, 2001). Agents in this 

pathway might also be engaged outside Gi, with a role in cell cycle delays or cell 

death in S and G2 M phases; these are the effects experienced by many BrdUrd- 

positive cells, which never had a chance to reach Gi. Feeney et al. found that after 

TPT treatment p53 expression increased more in S and G2 M cells than in Gi cells
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and the high level lasted a long time (Feeney et al., 2003). There is also evidence 

of activation of p53-dependent responses outside Gi (Smits and Medema, 2001). 

Thus the G2 M effects in BrdUrd-positive cells may originate from the activation of 

p53-dependent pathways, and the fact that they also led to a late Gi block is 

merely a consequence of the cell kinetics (these cells reached Gi only after 

several hours) and not of delayed activation of the pathway.

After studying the response to a single short treatment we tested a more 

complicated schedule, i.e. daily repeated 0.05 or 0.2 pM TPT. These drug 

concentrations were similar to the plasma concentrations in patients undergoing 

typical TPT treatments and the schedule is closer to the clinical condition (i.e. 30 

min i.v. infusion of 1.5 mg/m2 on days 1-5 of a 21-day cycle) (Rowinsky et al., 

1992; Wall et al., 1992; Schellens et al., 1996). Cell cycle effects of a single dose 

of 0.05 pM TPT (figure 4.6) vanished after 24h, so we can forecast the response to 

repeated treatment on the basis of simple 24h cycles of the values of the "effect 

descriptors" measured with a single treatment. In fact with the 0.05 pM x 3 

schedule the data were consistent with a simple repetition of the effect of the 

single dose. However to fit the data with 0.2 pM x 3, we needed to introduce a loss 

rate for S phase cells after the second treatment, particularly within BrdUrd- 

negative cells, which was absent in the cells treated once with this concentration. 

Instead BrdUrd-positive cells died after remaining blocked for a long time in G2 M. 

As a result, the total percentage of cells lost in 96h indicates that 0.2 pM x 3 is 

more lethal than a single dose of 10 pM TPT (figure 4.10a). This was confirmed by 

a clonogenic assay, even though the survival figures with the two methods do not 

coincide numerically because of the different experim ental conditions. 

Schoemaker et al. suggested that topoisomerase I increases after repeated
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administration (Schoemaker et al., 2002) and this might explain the auto

potentiation at the molecular level.

In conclusion, our approach for analysis of cell cycle perturbations in vitro was to 

consider all the data from different tests and interpret them through a 

mathematical formulation of the problem. Applying the procedure after in vitro 

treatment with TPT, we found complex but biologically consistent patterns of time- 

and dose-dependence for each cell cycle effect descriptor, opening the way to a 

link to the parallel changes in the molecular pathways regulating the specific 

function described.

In earlier studies (Montalenti et al., 1998; Sena et al., 1999) the simulation model 

was always used to evaluate the cell response to a pulse-like treatment. This is a 

necessary step before trying to build up the effect of prolonged or more complex 

schedules. With the analysis of repeated TPT treatments we demonstrated that 

the model could be employed to explain more complex treatment schedules. In 

this case, the simulation clarified the origin of the auto-potentiation observed with 

one of these schemes.
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CHAPTER 5: Cell Cycle Effects of Melphalan
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5.1 INTRODUCTION

5.1.1 Biochemical Mechanism of Action of Alkylating Agents

Alkylating agents are highly reactive electrophiles that can potentially react with a 

large number of nucleophilic sites in mammalian cells, such as N or 0  atoms, with 

phosphate groups of DNA, or with S atoms of proteins, linking through their alkyl 

groups to the target molecule. In particular, the interaction of carbonium ion of 

these compounds with DNA is commonly considered the main cause of cell 

toxicity and death. The adducts formed at the N-7 and 0-6  positions of guanine, 

the N-1 and N-3 positions of adenine, the N-3 position of cytosine interfere with 

DNA replication and transcription events (Ross et al., 1978a; Mattes et al., 1986). 

Differences in the efficiency of repair of DNA damage and the metabolic 

inactivation by protecting agents like glutathione partly explain the varying cell 

sensitivity to these drugs (Redwood and Colvin, 1980; Tew, 1994).

The nitrogen mustard derivative L-phenylalanine mustard (melphalan, L-PAM) is a 

typical representative of this class of drugs. It presents two chloroethylic reactive 

radicals of nitrogen mustards and an L-phenylalanine group bounded to the central 

N atom. L-PAM is actively transported into cells by the high affinity L-amino acid 

transport system, which also transports the amino acid glutamine and leucine. 

Bergel and Stock, who synthesized L-PAM in 1953, reasoned that the drug would 

be concentrated in tumours that actively use phenylalanine or tyrosine, such as 

malignant melanoma (Bergel and Stock, 1954).

L-PAM is a bifunctional (inter-strand, intra-strand) alkylating agent and its cytotoxic 

effects are related to its concentrations and the duration of cell exposure. The 

extent of DNA cross-links increases over time, implying that L-PAM quickly form 

monoadducts that slowly convert to cytotoxic DNA inter-strand, intra-strand or 

DNA-protein links (Hansson et al., 1987; O'Connor and Kohn, 1990). Although 

both inter- and intra-strand cross-links were effective, it was thought that in cells
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the inter-strand cross-links would constitute the more effectively lethal lesion, 

because they are more difficult to repair and they can prevent the separation of the 

strands necessary for cell division (Lawley and Phillips, 1996).

In addition to the above-mentioned causes of drug resistance, in the case of L- 

PAM, we have also to consider alterations of the transport mechanism.

5.1.2 Previous Cell Cycle Studies

Alkylating agents such as L-PAM are considered fairly non cycle-specific drugs, 

being active also against resting cells (Valeriote and van Putten, 1975). In early 

studies, the differential sensitivity of cells treated in vitro in G i, S or G2 M was 

studied by centrifugal elutriation or synchronisation, followed by cell survival 

assay.

Treatment of CHO cells subsequently separated by centrifugal elutriation and 

analysed by colony assay indicated that G1 is the most sensitive phase to most 

alkylating agents, including L-PAM (Murray and Meyn, 1986). Similar results were 

obtained by synchronising DON cells by mitotic selection (Bhuyan et al., 1972) and 

human lymphoma cells by thymidine block (Barlogie and Drewinko, 1977). Mid to 

late S was found the most L-PAM resistant phase of the cell cycle, while there was 

a tendency for cells in G2 phase to be more sensitive than cells in late S phase 

(Barlogie and Drewinko, 1977). The real sensitivity of G2 M was found higher, 

similar to that of G1 cells, when a correction to the elutriation data was applied, 

trying to take off the (strong) contaminant of S cells in the "G2 M" fraction (Linfoot et 

al., 1986, using a rat brain tumour treated with nitrosoureas). In all these studies, 

only one or two concentrations of the drug were tested. A dose-response of cell 

cycle effects of L-PAM was not reported in the literature. Drewinko and Barlogie 

(1976), using another alkylating agent, Yoshi 864, did a study of this kind. This 

work suggested that inter-phase differences in sensitivity on the whole dose-
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response curves were much less evident than suggested by single, particular 

concentrations.

Several reports indicated that the phase most affected by alkylating agents with 

respect to cell progression (cytostatic effect) appears to be G2 , with few reports of 

inhibition of DNA synthesis. Asynchronous cell populations were shown by DNA 

flow cytometry to accumulate in G2 M after treatment with several alkylating agents. 

Both the magnitude and the duration of G2 block are dependent on the phase of 

treatment (Barlogie and Drewinko, 1977, using synchronised cells).

In particular, a flow cytometric study of cell cycle effects of L-PAM on an ovarian 

cancer cell line was supported by Erba et al. (1995) SW626 cells treated with 3.5 

pg/ml L-PAM were followed at different times after treatment. At short times after 

drug washout DNA histograms and Brdllrd dot plots indicated a slowing down of 

cells through the S phase and a progressive cell accumulation in G2 M. At 18h a 

pronounced block in G2 was present and the cells started to overcome the G2 M 

block only 36h after treatment.

5.1.3 Clinical Use

Alkylating agents are a major class of anticancer drugs with established clinical 

activity against a broad spectrum of human malignancies (Sarosy et al., 1988; 

Samuels and Bitran, 1995). In particular, alkylating agent-based chemotherapy 

was the. treatment of choice for primary epithelial ovarian carcinomas prior to the 

emergence of the platinum compounds in the 1970s (Brodovsky et al., 1984; 

Wadler et al., 1996). Response rates to oral L-PAM ranged from 15 to 40% in 

advanced disease (stage lll/IV). Starting from this point of view, Hasan et al.

(2003) have recently investigated the effectiveness of oral L-PAM as salvage 

therapy in patients who progressed after platinum-based chemotherapy (Hasan et

129-



al., 2003). But their data suggest that L-PAM has poor activity as second-line 

therapy agent for this kind of tumour.

However L-PAM is active against a wide spectrum of neoplasms and it is 

particularly used as single agent in the treatment of multiple myeloma (Selby et al., 

1987).

Myelosuppression is the main side toxicity. In standard regimens it is administered 

orally for 4-7 consecutive days. A dose-response relationship for L-PAM in the 

treatment of solid tumours was demonstrated by McElwain et al. (1979), who also 

introduced high-dose regimens (i.v. administration) with autologous bone marrow 

grafting. High-dose L-PAM is used as consolidative therapy in relapsed Hodgkin's 

disease, breast cancer and relapsed neuroblastoma. In high-dose L-PAM 

regimens, after 220 mg/m2 administration, peak plasma concentrations reach 100 

pM (Reece et al., 1988)

5.2 RESULTS

5.2.1 Experimental Data

Exponentially growing IGROV1 cells were treated for 1h with 3, 10, 30, 50, 100, 

300 pM of L-PAM. Then we measured the following quantities related to the cell 

kinetics: overall (absolute) cell number, flow cytometric DNA histograms, 

biparametric DNA-BrdUrd flow cytometric histograms using the pulse-and-chase 

protocol.

Figure 5.1 shows the growth curves after treatment. The cells treated with 3 pM L- 

PAM grew like controls and the number of cells treated with 10 pM decreased only 

after 48h. From 30 to 300 pM the behaviour of the cells was very similar, the 

number remaining almost constant until 48h and starting decrease between 48 

and 72h.
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Figure 5.1: Growth curves of IGROV1 cells after 3, 10, 30, 50, 100, 300 |jM L- 

PAM for 1 h, measured by Coulter Counter. Each point is an average of at least 

three replicate flasks.
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Figure 5.2: Time-course of DNA histograms after 3, 10, 30, 50, 100, 300 pM L- 

PAM for 1h. DNA corresponding to Gi and G2M cells is indicated. Persistent 

accumulation in the G2M peak is particularly evident in the 50, 100 and 300 pM 

histograms, while a large amount of debris (in the region to the left of Gi peak) is 

present at 48 and 72h in the cells treated with 300 pM L-PAM.

131



Flow cytometric DNA histograms of control and treated samples are shown in 

figure 5.2. Differences between the treated samples and the control were 

detectable only 24h after treatment when the cells treated with 10, 30, 50 and 100 

pM L-PAM accumulated in G2M phase. The duration of this block was apparently 

dose-dependent, and for the samples treated with 50 pM and higher 

concentrations a high percentage of G2M cells remained blocked up to the end of 

observation (72h). At 48h the cells treated with the highest concentrations (100 

and 300 pM) contained a large amount of debris.

Short-term effects of L-PAM were evaluated by a pulse-and-chase experiment. 

Cells were exposed to BrdUrd in the last 20 min of treatment, allowing DNA- 

synthesizing cells to incorporate BrdUrd, becoming "BrdUrd-positive", and were 

collected 6h later. The resulting biparametric DNA-BrdUrd plots, in figure 5.3a, 

indicate the movement of the cells in the cycle in the first 6h after treatment. In 

untreated and in 3-pM treated samples BrdUrd-positive cells that occupied S 

phase at Oh were distributed in late-S, G2M and G f phases at 6h. In samples 

treated, with concentrations higher than 3 pM, the percentage of BrdUrd-positive 

cells in Gi (Gi+) was lower. This was probably caused more by a block in G2M 

than by a delay in S phase, because the movement of BrdUrd-positive cells 

towards G2M was visibly reduced only for samples treated with 300 pM L-PAM. 

Because more than one scenario of cytotoxic and cytostatic effects might explain 

the previous data, a BrdUrd pulse-and-chase experiment was subsequently done, 

collecting cells 72h after treatment and BrdUrd pulse. The BrdUrd dot plots shown 

in figure 5.3b revealed that more BrdUrd-positive than BrdUrd-negative cells 

survived 72h after treatment. When the drug concentration increased this 

difference decreased. The samples treated with 10 or 50 pM L-PAM presented 

about 80% of BrdUrd-positive cells after 72h, while after 300 pM L-PAM there was 

only about 55% of BrdUrd-positive cells.
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Figure 5.3: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(BrdUrd content) plots. Cells incorporated BrdUrd 20 min before the end of the 1h- 

treatment and were harvested after 6h (panel a) and 72h (panel b) (BrdUrd pulse- 

and-chase). Cells were considered BrdUrd-positive (in the S phase at the time of 

treatment, Oh) when detected above the line. BrdUrd-positive cells with Gi DNA 

content (Gi+) at 6h were born from mitosis of cells in S phase at the time of 

treatment. Gi BrdUrd-positive cells are present in the control and in samples 

treated with the lowest concentration of L-PAM. The percentage of G i+ cells is 

lower in samples treated with L-PAM concentrations higher than 3 pM. In the 

BrdUrd pulse-and-chase experiment 72h after treatment the percentage of 

BrdUrd-positive cells is higher than that of BrdUrd-negative ones, this difference 

decreasing as the drug concentration increases.

Six-hour samples were detected by direct immunostaining and are thus 

represented with a linear BrdUrd scale; 72-h samples were detected by indirect 

immunostaining and are represented with a logarithmic BrdUrd scale.
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Another qualitative picture of the drug effects can be obtained from figure 5.4, 

where the TUNEL technique confirmed the cell killing in samples treated with the 

highest drug concentrations. The cells treated with 300 pM L-PAM showed a 

substantial percentage of dUTP-FITC-positive cells from 24h; 50 and 100 pM L- 

PAM had cytotoxic effects after 48h.
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300 |JM L-PAM

DNA content-PI

Figure 5.4: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(dUTP content). Cells with DNA fragmentation induced during apoptosis are 

dUTP-positive (above the straight line). For the analysis were considered only 

cells with a DNA content higher than 1/10 of G-i.

5.2.2 Scenario o f Cell Cycle Perturbations Underlying Experimental Data

The simulation program determined a unique scenario coherent with all the 

experiments, taking into account the flow cytometric percentages from DNA 

histograms, BrdUrd dot-plots and cell count as quantitative data, and the 

information from the dUTP-assay as qualitative data. Figure 5.5 shows the values
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of the parameters constituting the scenario. In each panel the color of a square 

indicates the parameter strength in a specific interval of time (column) and at a 

specific L-PAM concentration (row). The parameters are indicated as non- 

detectable (ND) when there were too few cells in a specific cell cycle phase to 

establish their value.

5.2.2.a Events in Gi phase (figure 5.5a)

The molecular controls of Gi phase act during and immediately after treatment on 

Brdllrd-negative cells. However the blocking activity was not strong: 5-20% for 30 

to 100 pM, or 20-40% for the highest concentrations, of Brdllrd-negative cells 

remained blocked in this phase immediately after treatment (upper right panel). 

The duration of the block was dose dependent: it ended 6h after treatment with 30 

pM, 24h with 30 and 100 pM, 48h with 300 pM, only at the highest concentration 

the same blocking activity was observed also in BrdUrd-positive cells (upper left 

panel).

Cells treated with at least 50 pM and blocked in Gi died in this phase after 24h 

(lower panels). The highest concentration was cytotoxic for both BrdUrd-positive 

and BrdUrd-negative cells blocked in this phase (lower left panel). The recycling 

rate for cells intercepted by this checkpoint was negligible (not shown).

5.2.2.b Events in S phase (figure 5.5b)

BrdUrd-positive cells that were treated with at least 30 pM L-PAM immediately 

reduced their DNA synthesis rate. This reduction was either constant or, for the 

highest concentrations, increased with time, reaching 80-100% between 24h and 

72h (top left panel). The behaviour of BrdUrd-negative cells was very similar 

though the effects were stronger (top right panel). At 24h after treatment both 

BrdUrd-positive and BrdUrd-negative cells started to die in this phase. Again, this
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effect was stronger for BrdUrd-negative cells, with 60-80% of cells traversing the S 

phase in 24h dying (L-PAM >10 pM), compared to 20-40% of BrdUrd-positive cells 

(lower panels).

5.2.2.c Events in G?M phase (figure 5.5c)

The block in G2M was stronger for cells treated in Gi and G2M phase (BrdUrd- 

negative, top right panel) than for cells treated in S phase (BrdUrd-positive, top left 

panel). At the lowest concentrations (3 and 10 pM) the block ended 6h after 

treatment for both BrdUrd-positive and BrdUrd-negative cells, whereas it persisted 

until 72h for the samples treated with higher concentrations. For BrdUrd-negative 

cells the intensity of G2M blocking activity increased after 6h and 60-80% of cells 

were intercepted by this checkpoint in the samples treated with 50, 100 and 300 

pM L-PAM. As shown in the lower panels, cells blocked in G2M phase started to 

die 24h after treatment, except for those treated with 3 and 10 pM, where this 

effect was not detectable. After 6h, 80-100% of cells treated with the highest 

concentration and blocked in this phase died in each interval.
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Figure 5.5: The response scenario for complete reproduction of the experimental 

data. Blocking activity is the percentage of cells that remain blocked among those 

traversing Gi or G2 M in the interval indicated. The death/recycling rates are the 

percentages of cells that die/recycle in each interval, within the compartment of Gi 

(or G2 M) blocked cells. In the 0-6h interval the death rate in Gi or G2M applies to 

both blocked and proliferating cells, because they cannot be distinguished. 

Parameters whose values are irrelevant are defined ND (non-detectable). The S- 

delay rate is equivalent to the percentage reduction of the average DNA synthesis 

rate.

137



5.2.3 Sensitivity Analysis of Parameters

The study of the sensitivity of the parameters considered in the final scenario was 

performed as described in the paragraph 3.6.3.e.

The parameter of Gi blocking activity was very sensitive, excluding the presence 

of strong activity but indicating that a weak activity should necessarily be included 

at >30 pM L-PAM (figure 5.6a). The Gi blocking activity of BrdUrd-positive cells 

was irrelevant for the outcome between 0 and 6h, because there was not time for 

these cells to reach the Gi-S transition, where the block would be detectable. 

Sensitivity analysis showed that in most cases the parameters of S phase delay 

(figure 5.6b) and G2 M blocking activity (figure 5.6c) were accurately estimated, 

confirming in both cases the increase in drug effects with time and drug 

concentration.

The parameters connected with the loss of Gi and G2 M blocked cells became 

sensitive only when a subpopulation of blocked cells was not negligible, and this 

happened at least 24h after treatment or with high drug concentrations (panels a 

and c). In these instances, the need to include loss from both Gi and G2 M was 

confirmed by the sensitivity analysis. In particular, to maintain the correspondence 

with the data, for treatment performed with concentrations higher than 100 pM a 

fairly high loss rate needed to be included among BrdUrd-negative cells blocked in 

Gi phase after 24h. This effect could not be detected with 50 pM and at 300 pM a 

cell loss in Gi was present and sensitive in both subpopulations of BrdUrd-positive 

and BrdUrd-negative cells. Lethality among G2M blocked cells was proved after 

24h at >30 pM in both BrdUrd-positive and BrdUrd-negative cells, with similar 

rates, while lethality in S phase was demonstrated at 48h even at 10 pM and at 

24h from 30 pM (panel b).
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In addition, the sensitivity analysis allowed us to conclude that the presence of 

recycling was compatible with our data, assuming a higher G2M blocking activity 

between 6 and 24h, whereas at longer times this parameter became negligible 

and was replaced by a loss rate (not shown).
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Figure 5.6: Time-course of the parameters used in the simulation. The continuous 

line represents the value of each parameter as obtained in the final simulation and 

the filled area represents the range of values of each parameter within which the 

simulation remained close to the experimental data.
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5.2.4 Predictions of the Final Scenario

Once the final scenario is defined, its predictions can be investigated in detail by 

the simulation program, disclosing information on the behaviour and heterogeneity 

of the cell population that could not be directly measured from the experimental 

data. We retrieved from the simulation the percentage of cells blocked in Gi or in 

G2 M at each time (figure 5.7) and the total amount of cells dying in the 72h of 

observation (figure 5.8). The quantities shown in these two figures help to evaluate 

the impact of a specific block and killing on the growth of the whole cell population. 

On the other side the values in figure 5.5 indicate the average strength of the 

blocking or killing activity within the cells that reached that phase, independently of 

their number.

Figure 5.7 shows the total amount of cells blocked in Gi or in G2 M compared with 

the percentage of cells in the same phase. This information could not be directly 

obtained by flow cytometry, in fact we would not be able to distinguish blocked 

from cycling cells. The percentage of cells blocked in Gi was non-zero only for the 

samples treated with concentrations higher than 30 pM and involved more than 

10% of the whole cell population only at the highest concentration (300 pM). The 

percentage of blocked cells was maximum peaked in the first 24h after treatment 

(between 10 and 20% of all cells with 300 pM) but it decreased later on, more 

because of cell loss than because of proliferation of other cells.

At drug concentrations higher than 30 pM the majority of G2 M cells were blocked 

at 24h. The percentage of blocked G2 M cells rose until 48h, then decreased again, 

more because of cell loss than because of proliferation of other cells. With the 

highest concentration, a higher percentage of Gi blocked cells was seen at 24h 

than G2 M blocked ones.
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The percentage of cells lost in 72h is presented in figure 5.8. Drug concentrations 

higher than 30 pM had a strong cytotoxic effect, and about 65% of cells died after 

treatment with 30 pM L-PAM. There were almost no differences between the 

cytotoxicity of 50 pM and 100 pM. The pies above the columns give the 

distribution of cells lost in the different cell cycle phases. After 10 pM L-PAM the 

cytotoxic effect was explained by a loss of cells in S phase. From 30 pM, 60-70% 

of killed cells died in G2M, the remainder mostly in S phase. Only at the highest 

concentration more than 10% of killed cells died in Gi.
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Figure  5.7: Dose-dependence and time-dependence of the percentage of total 

(full height of the bars) and blocked (height of the filled areas) cells in Gi and in 

G2M. This serves to evaluate the impact of the blocking effect on the cell 

population after treatment with 3, 10, 30, 50, 100 and 300 pM L-PAM. The error 

bars indicate the range where different simulations give predictions fitting the data 

within the experimental error.
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Figure 5.8: Total percentage of dead cells in 72h obtained from the simulation. 

The pies above the columns give the distribution of lost cells in the different 

phases. The error bars were calculated as reported in Figure 5.7.

5.3 DISCUSSION

Even though alkylating agents are very well known chemetherapeutic compounds 

we could not find in the literature a study showing a complete time- and dose- 

dependence of the effects induced by one of these drugs. For this reason we 

decided to investigate the effects induced by a short treatment with L-PAM on 

IGROV1 cells.

The minimal scenario of parameter values necessary to reproduce all the data 

(flow cytometric percentages and absolute cell number, plus the qualitative 

information from dUTP assay) was reported in figure 5.5. This gave a 

comprehensive description and quantification of the effect of L-PAM on IGROV1 

cells.

The scenario was quite complex, with perturbations in each phase of the cell

cycle. With low concentrations (3 or 10 pM) we detected no effects in G i, a

temporary G2 M block and a more persistent S delay. With higher concentrations

(^30 pM), cells in Gi or in G2 M at the time of treatment were immediately blocked

in the same phase. However, Gi blocking activity was temporary and weak (only
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5-20% of cells passing through this phase remained blocked there) while G2 M 

blocking activity increased with time.

For what concern S phase, our simulation indicated that in the first 24h there was 

a net delay (block + recycling) but not loss, while cell loss became evident at 

longer times after treatment. This suggested that the outcome of S phase block 

was unbalanced toward repair at short times after treatment, whereas at longer 

times the cells were more committed to apoptosis. This interpretation was 

supported by the TUNEL assay (figure 5.4).

Delay S and G 2 M block were reported to be an essential step for cells to repair 

DNA damage (Dean and Fox, 1983). Brox et al. (1980) showed that the time at 

which cells overcame an L-PAM-induced G2 M block correlated with the time when 

DNA-protein cross-links were removed. In a resistant cell line the DNA interstrand 

cross-links appeared to be completely repaired in the 48h following drug removal 

(Erickson et al., 1978) and at the same time they were able to recover from G2 M 

block. In samples treated with intermediate or high L-PAM concentrations, our 

simulation suggested a G2 M response similar to that in S phase, with a persisting 

block and cell death after 24h. However additional sensitivity analysis showed that 

a certain low recycling rate was possible in this phase in the first 24h. At long 

times after treatment cell death overwhelmed any possible recycling parameter.

In samples treated with intermediate L-PAM concentrations the enrichment of 

BrdUrd-positive cells observed 72h after treatment (figure 5.3b) demonstrated that 

L-PAM had stronger effects on cells that were in Gi and in G2 M phase at the time 

of treatment. The simulation interpreted this phenomenon as due especially to 

stronger cytostatic effects in S and G2M in BrdUrd-negative respect to BrdUrd- 

positive cells, while the relatively higher mortality (in S phase) of BrdUrd-negative 

cells contributed less to the prevalence of BrdUrd-positive cells at 72h. At higher
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concentrations, the effects of the equally strong G2 M block and mortality 

overwhelmed and limited the differential effect between BrdUrd-negative and 

BrdUrd-positive cells.

This is only partially in agreement with reports using synchronized cells, where 

subpopulations treated in Gi or G2M phase appeared more sensitive to L-PAM 

than cells in S phase at the time of treatment (Ludlum, 1977).

Ludlum suggested that cells alkylated during G1-S phase might be more sensitive 

because they have less chance of repairing potentially lethal damage before the 

next phase of synthesis than in G2M phase (Ludlum, 1977). However a study of 

the phase-dependent cytotoxicity of nitrogen mustard toward CHO cells concluded 

that the amount of initial damage and the rate of repair were constant in each 

phase for this drug (Clarkson and Mitchell, 1981).

As a whole, our results are not completely in keeping with current paradigms of the 

effects of L-PAM, pointing to a high level of complexity of the cell response to 

simple, short treatments. The dose-dependence of the effects and their presence 

at long times after treatment were also evaluated in other studies performed with 

different compounds (Caporali et al., 2004; Brozovic et al., 2004). Brozovic et al.

(2004) observed a dose-dependent activation of proteins related with apoptosis 

even at very long time (120h) after 1-h treatment with DDP. We also found that cell 

death was still active at 72h, but we did not extend our period of observation 

beyond that time and we were not able to evaluate how long cell death will last. 

Moreover, we observed that the percentage of cells lost in 72h (figure 5.8) reached 

a sort of plateau for concentrations higher than 30 pM. At lower concentrations 

cells were delayed in S and G2 M phases and lethality occurred in S phase. At 

higher L-PAM concentrations, S and G2 M delay became stronger and more 

persistent and a cell loss in S and in G2 M phase occurs. A cytostatic effect in Gi, 

without lethality, also appeared at these intermediate concentrations. At the
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highest concentration the lethality in Gi added to the other effects and the 

differential response of BrdUrd-positive and BrdUrd-negative cells was definitely 

lost.

The loss of phase specificity of the drug at the highest concentration tested and 

the minimal increase in overall lethality despite a ten-fold increase of the drug 

concentration (from 30 to 300 pM in our cell line) could be important in the design 

of L-PAM therapies.
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CHAPTER 6: Cell Cycle Effects of Doxorubicin
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6.1 INTRODUCTION

6.1.1 Biochemical Mechanism of Action of Anthracycline Antibiotics

Doxorubicin is an antitumour-antibiotic isolated from cultures of Streptomyces 

peucetius var. caesius (Arcamone et al., 1969; Di Marco et al., 1969) and with 

daunorubicin, another compound of the same family, has been in use for more 

than 30 years for the treatment of a variety of malignancies. Typical clinical DXR 

treatment involves bolus administration of 15-90 mg/m2, which are associated with 

peak plasma concentrations in the range of 1-2 pM, rapidly declining to 25-250 nM 

within 1h (Speth et al., 1987; Benjamin et al., 1973).

Despite the extensive clinical use of these drugs, their mechanism of action is still 

uncertain and controversial. A  number o f different mechanisms have been 

proposed for the cytostatic and cytotoxic actions of these agents (Gewirtz, 1999).

6.1.1 .a Inhibition of DNA and RNA synthesis

The biochemical effects first described and most often related to the cell killing 

effects of DXR involve intercalation into double helical DNA and inhibition of 

polymerases, with subsequent inhibition of DNA and RNA synthesis (Di Marco et 

al., 1965; Momparler et al., 1976). Di Marco et al. (1965) demonstrated inhibition 

of both DNA and RNA synthesis in HeLa cells over a concentration range of 0.2 

through 2 pM daunorubicin. Similarly, Kim and Kim (1972) reported a pronounced 

effect of DXR on DNA synthesis in HeLa cells with inhibition evident at 

concentrations as low as 0.02 pM.

On the other side, studies by a number of investigators have failed to detect 

effects on DNA synthesis at the lower range of drug concentrations. Meriwether 

and Bachur (1972) and Wang et al. (1972) found that a concentration of at least 2 

pM DXR was required for inhibition of DNA and RNA synthesis in L1210 cells. 

Momparler et al. (1976) also determined that elevated drug concentrations in the
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range of 2 through 100 pM DXR are required for the inhibition of DNA and RNA 

synthesis in hamster fibrosarcoma cells.

These contradictory findings make it difficult to reach a unifying conclusion 

regarding the involvement of DNA and RNA synthesis inhibition in the growth- 

inhibitory effects of the anthracyclines. It is possible that inhibition of DNA 

synthesis is an early transient signalling event, that is a component of growth 

arrest related to the function of p53 (Kastan et al., 1991). This may relate to a 

cytostatic and transient component of drug action, while other effects of the 

anthracyclines on the tumour cell, such as the inhibition of topoisomerarse II (see

6.1.1.c), may be more closely associated with lethal effects of these compounds.

6.1.1.b Free radicals

The quinone of the anthracycline antibiotics has been shown to interfere with 

mitochondrial oxidative pathways. This structure permits anthracyclines to act as 

electron receptor in reaction mediated by oxoreductive enzymes. The addition of 

the free electron converts the quinones to semiquinone free radicals (Bachur et al., 

1977; Bates and Winterbourn, 1982) which may induce free-radical injuries to DNA 

of themselves (Berlin and Haseltine, 1981; Eliot et al., 1984) or after interaction 

with molecular oxygen to form superoxides, hydroxyl radicals and peroxides 

(Bachur et al., 1978; Benchekroun eta l., 1993).

However this toxicity is probably not responsible for doxorubicin-induced tumour 

cell killing in the in vitro models used for cytotoxicity evaluation. In fact 

Benchekroun et al. (1993) demonstrated free-radical formation only in tumour cells 

treated with drug concentrations which are at least ten-fold higher than those 

routinely achieved in the clinic. Moreover, as demonstrated by Bustamante et al. 

(1990), hydrogen peroxide generation is unlikely to represent a primary response 

to drug treatment and instead may reflect a delayed metabolic response to other
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unidentified perturbations in cell function. Indeed, in this study reactive oxygen 

species were detected in breast tumour cells 9 days after exposure to 0.1 pM 

DXR.

The generation of free radical species could also lead to lipid peroxidation of the 

cell membrane, but again many studies related to this phenomenon have been 

performed using enzyme preparation, non-physiological conditions, such as high 

oxygen tension, or supraclinical concentrations of the anthracyclines (Kharasch 

and Novak, 1983; Griffin-Green et al., 1988). These approaches, using cell-free 

systems or elevated drug concentrations, may provide evidence for the generation 

of free radicals and lipid peroxidation, but they do not serve to indicate whether 

free radicals and lipid peroxidation play a role in anthracycline action in the intact 

cell. Even the increased sensitivity to DXR in cells with alterations in the level of 

GSH is not a key argument in support of the involvement of free radicals in DXR 

toxicity. Again all of the studies showing sensitization to DXR through depletion of 

cellular GSH do so at elevated concentrations of drug (Dusre et al., 1989; Lai et 

al., 1991).

If the potential involvement of free radical generation in the antitumour toxicity of 

the anthracyclines is still complex and controversial, it appears to be fairly well 

accepted that there is an association between the generation of free radicals and 

DXR cardiotoxicity (Myers et al., 1977).

6.1.1.C DNA adduct formation and DNA breaks

Many studies in the literature show that the dominant cellu lar target of 

anthracyclines is DNA (Myers, 1992), resulting in two major types of DNA damage: 

DNA adducts (Phillips et al., 1989, Cullinane and Phillips, 1990) and protein- 

associated single- and double-strand DNA breaks (Holm et al., 1991; Myers, 

1992).
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In vitro transcription assays have previously been used to clarify the nature of the 

interaction of DXR with DNA, and the formation of drug-induced DNA adducts was 

observed almost exclusively at GpC sequences (Phillips et al., 1989). A variety of 

experimental approaches have subsequently shown that adducts at these sites 

contribute to DXR-induced inter-^strand cross-links at GpC sequences (Cullinane 

and Phillips, 1990). Potential importance of DNA cross-links is provided by the 

observation that fewer cross-links are present in drug-resistant cells as compared 

with drug-sensitive cells, even at equivalent intracellular concentrations of drug 

(Skladanowski and Konopa, 1994).

In the late 1970s and early 1980s Ross and coworkers (Ross et al., 1978b; Ross 

and Bradley, 1981) described the induction of strand breaks in the DNA of L1210 

leukaemic cells treated with DXR at concentrations ranging between 0.4 and 5 pM. 

The strand breaks, in both single- and double-stranded DNA, were found to be 

protein-associated and were slowly and incompletely repaired after drug removal. 

In 1984, Tewey et al., using both cells and cell-free extracts, identified 

topoisomerase II as the target enzyme of DXR and demonstrated that subunits of 

the homodimeric enzyme remain locked into the 5' end of the DNA molecule after 

completing the cleavage reaction.

Topoisomerase II is likely to be one of the primary target sites for the activity of the 

anthracycline antibiotics. The strongest argument in support of this presumption 

may be the data indicating that tumour cells that are resistant to the anthracyclines 

have reduced levels or altered activity of the enzyme with a concomitant reduction 

in the level of drug-associated strand breaks in DNA (or a reduction in DNA- 

protein cross-link formation) (Capranico et al., 1987; Webb et al., 1991).

The interaction of DXR with DNA-topoisomerase II complex is a triggering event 

for growth arrest and cell killing through a signalling pathway leading to apoptosis.
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6.1.2 Previous Cell Cycle Studies

The first studies about cell cycle effects induced by anthracycline antibiotics were 

performed in the early 1970s. At that time Kim and Kim (1972) showed that DXR 

killed HeLa cells most effectively in S phase. These results were confirmed also 

for human lymphoma cells (Drewinko and Gottlieb, 1973) and in CHO cells (Kimler 

and Cheng, 1982). In this last case a dose-dependence in cell cycle phase killing 

effects was observed, and the hierarchy on the sensitivity was M and early S 

phase (most sensitive) then G2 , with late S and Gi phase being least sensitive.

As with the cell killing effects of DXR, the changes in cell kinetics or tumour growth 

are also dose-dependent. Generally, low doses or short times of treatment cause 

cells to progress at a slower rate through the phases of the cell cycle, intermediate 

doses cause a short, but reversible delay in cell cycle phase progression, and high 

doses can cause immediate cell cycle arrest (generally irreversible) which 

prevents further progression through the cell cycle.

Synchronized CHO cells were delayed in all phases of the cell cycle except 

mitosis by doses as low as 0.02-1 pM for 1h (Barranco et al., 1973). At these drug 

concentrations 30-90% of cells were killed, but the cell cycle delay was reversible 

in 2 or 4h and the cells continued their progression through the cell cycle for at 

least one more time. Using higher DXR doses (2-20 pM) Tobey et al. (1976) also 

demonstrated S and G2 phase delay in CHO cells. Cells treated during G1 phase 

progressed through S phase, but could not traverse G2 . Noncycling CHO cells 

treated with DXR were only slightly delayed in their re-entering into the cell cycle 

and through S and G2 phases (Crissman et al., 1985). In general, more recent 

studies remark the arrest in G2 M phase as one of the most important cell cycle 

effects induced by DXR treatment (Bilim et al., 2000; Potter et al., 2002). If DNA 

repair fails, apoptosis can occur to eliminate irreparably damaged cells and there
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is evidence that one consequence of treatment with DXR is the induction of 

apoptosis (Bellarosa et al., 2001).

Moreover, DXR is active against both proliferating and nonproliferating cells, even 

though proliferating cells are much more sensitive. This behaviour has been 

observed not only in CHO cells, but also in stimulated and nonstimulated 

lymphocytes (Minderman et al., 1991).

6.1.3 Clinical Use

The anthracycline group of antitumour antibiotics is used widely for cancer 

chemotherapy, where agents, such as doxorubicin, daunomycin, epirubicin, and 

idarubicin, have proved the most useful compounds. The neoplasms that the 

a nth racy clines are effective against include acute leukaemias and solid tumours, 

such as carcinomas of the breast, lung, thyroid, and ovary, and soft tissue 

sarcomas (De Vita et al., 2001). However cardiotoxicity of DXR and tumour-cell 

drug resistance were considered the major problems limiting the success of 

chemotherapy (Bradley et al., 1988).

DXR is generally used in association with other anticancer agents such as 

cyclophosphamide, cisplatin and nitrosurea. In particular, a number of studies 

have looked at the benefit of adding DXR to the cisplatin plus cyclophosphamide 

combination in the therapy against ovarian cancer. Their data suggested a survival 

benefit for platinum-anthracyclines based combinations as compared to platinum 

based combinations without anthracyclines (Fanning et al., 1992; A'Hern and 

Gore, 1995). On the contrary, as observed by A'Hern and Gore (1995), the 

addition of an alkylating agent may add toxicity and lead to a dose reduction of 

these two drugs.
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Other additional studies have been published in the late 1990s that showed 

second-line activity of DXR (Muggia et al., 1997) and epirubicin (Vermorken et al., 

1995) in patients with ovarian cancer pretreated with platinum or paclitaxel.

6.2 RESULTS

6.2.1 Experimental Data

Exponentially growing IGROV1 cells were treated for 1h with 0.5, 1, 3, 6, 10 and 

30 pM of DXR. We measured the following quantities related to the cell kinetics 

after treatment: overall (absolute) cell number, flow cytometric DNA histograms, 

biparametric DNA-BrdUrd flow cytometric histograms using pulse-and-chase 

protocol.

Figure 6.1 shows the growth curves after treatment. The cells treated with 0.5 pM 

DXR were able to growth like controls and the number of cells treated with 1 and 3 

pM DXR was almost constant until 24h, when it started to increase. The behaviour 

of the cells treated with a concentration of DXR ranging from 6 to 30 pM was very 

similar, indeed the number remained almost constant until 24h, showing a slight 

decrease between 48 and 72h.

Flow cytometric DNA histograms of control and treated samples are shown in 

figure 6.2. Simple visual inspection of the histograms did not show any difference 

between control and treated samples at short times after treatment. Some 

differences started to come out 24h after treatment, when the cells treated with 

concentrations higher than 3 pM accumulated in G2 M phase. The duration of this 

effect was dose-dependent and for the samples treated with 6, 10 and 30 pM DXR 

a high percentage of cells remained blocked in this phase until 72h. Moreover in 

DNA histograms of 30-pM treated samples was possible to observe also an
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accumulation of cells in late-S phase, which started 24h after treatment and was 

present up to the end of the observation.
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Figure 6.1: Growth curves of IGROV1 cells after 0.5, 1, 3, 6, 10 and 30 pM DXR 

for 1 h, measured by Coulter Counter. Each point is an average of at least three 

replicate flasks.
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Figure 6.2: Time-course of DNA histograms after 0.5, 1, 3, 6, 10 and 30 pM DXR 

for 1h. DNA corresponding to Gi and G2M cells is indicated. Persistent 

accumulation in the G2M peak is particularly evident in the 6, 10 and 30 pM 

histograms.
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Short-term effects of DXR were evaluated by a pulse-and-chase experiment. Cells 

were exposed to BrdUrd in the last 20 min o f treatment, allowing DNA- 

synthesising cells to incorporate BrdUrd, becoming "BrdUrd-positive", and were 

collected 6h later. The resulting biparametric DNA-BrdUrd plots are shown in 

figure 6.3. They indicate the movement of the cells in the cell cycle in the first 6h 

after treatment. In untreated samples BrdUrd-positive cells that occupied S phase 

at Oh were distributed within late-S, G2 M and G1 phases at 6h. At 6h, treatments 

with low doses of DXR (0.5 and 1 pM) did not affect the progression of BrdUrd- 

positive and BrdUrd-negative cells through the different cell cycle phases, indeed 

treated samples presented biparametric DNA-BrdUrd plots similar to that of control 

sample. When the drug concentration increased the DNA synthesis became 

slower, and in the samples treated with 6, 10 and 30 pM DXR the cloud of BrdUrd- 

positive cells was distributed in middle- and late-S phase. Moreover, DNA-BrdUrd 

plots of these samples showed the presence of a block in G2M phase that was not 

highlighted in monoparametric analysis of DNA. At 6h after treatment, a 

subpopulation of G2M negative cells, that was not present in the control, was still 

detected in treated samples.

A quantitative analysis of biparametric plots allowed the evaluation of the duration 

of S phase in control and treated samples. In IGROV1 cells the mean duration of S 

phase in exponentially growing samples was estimated equal to 8.6h. Figure 6.4 

showed the trend of this duration as function of the drug concentration. The 

progression of the cells through this phase became slower when the dose 

increased and the time that 30-pM treated cells needed to pass through S phase 

was estimated in about 17h, with an almost two-fold increased respect to the 

control.
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treatment and were harvested 6h after treatment. Cells were considered BrdUrd-

positive (in the S phase at the time of treatment, Oh) when detected above the

straight line (left panel). BrdUrd-positive cells with G 1 DNA content (G 1 +) at 6h

were born from mitosis of cells in S phase at the time of treatment.
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Figure 6.4: Impact of the reduction of DNA synthesis rate on the duration of S 

phase. Samples treated with drug concentrations higher than 3 pM needed a 

longer time to complete this phase.
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Besides these data describing short-term effects of drug treatment, we performed 

also a biparametric staining DNA-dUTP, which provided at least qualitative 

information about the apoptosis induced by DXR (figure 6.5). Cells with 

fragmented DNA, because of apoptotic death, formed the dUTP-positive 

subpopulation. At long times after drug washout about 25% of apoptotic cells were 

detected in 10-pM treated samples, whereas for lower-doses treated samples we 

did not observe dUTP-positive cells. In IGROV1 cells treated with the highest 

concentration of DXR an apoptotic death process was already active 24h after 

treatment and the percentage of dUTP-positive cells continued to increase with the 

time.
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Figure 6.5: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(dUTP content) of IGROV1. Ceils with DNA fragmentation induced during 

apoptosis are dUTP-positive, thus detected above the straight line.
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At this point the simulation approach became essential to combine together all the 

information that came from cell count and flow cytometric analyses and to quantify 

the time- and dose-dependence of killing, blocking or delay and repair activity.

6.2.2 Scenario of Cell Cycle Perturbations Underlying Experimental Data

The simulation program allowed the combination of every information that came 

from the experimental data and the final scenario of parameters is shown in figure 

6.6. Each parameter assumed different values for BrdUrd-positive and BrdUrd- 

negative cells only between 0 and 6h. In the following intervals of time the data 

could be reproduced with the same value for BrdUrd-positive and BrdUrd-negative 

cells. This assumption was supported by a BrdUrd pulse-and-chase experiment 

with cell harvesting 72h after treatment (not shown). The percentage of BrdUrd- 

positive cells present in the population at that time was not different from that of 

control samples. This indicated that DXR did not specifically affect BrdUrd-positive 

or BrdUrd-negative subpopulations.

6.2.2.a Events occurring in Gi phase (figure 6.6a)

The controls of Gi phase acted during and immediately after treatment on BrdUrd- 

negative cells. The blocking activity was not strong for the cells treated with the 

lowest doses of DXR. In fact only 5-20% of 0.5- and 1-pM treated cells were 

intercepted by Gi checkpoint. The percentage of BrdUrd-negative cells that 

remained blocked in this phase between 0 and 6h increased in a dose-dependent 

way, reaching its maximum for the samples treated with the highest dose of DXR. 

The blocking activity in Gi phase was persistent and only for 0.5-pM treated cells 

ended 24h after drug washout. For the other drug concentrations this parameter 

had a maximum between 6 and 24h for 1- and 3-pM treated cells, and between 24
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and 48h for samples treated with higher DXR concentrations always followed by a 

decrease (first line panel).

The cells treated with the lowest DXR concentrations and blocked in Gi did not die 

in this phase. For 1-pM treated samples only long-term cell death was present, 

whereas for cells treated with doses higher than 1 pM a cell loss occurred 

immediately after treatment and between 48 and 72h. The recycling rate for cells 

intercepted by this checkpoint was negligible (not shown).

6.2.2.b Events occurring in S phase (figure 6.6b)

In the samples treated with the lowest concentrations DNA synthesis was inhibited 

only between 6 and 24h. In the other cases the synthesis was immediately 

reduced and the effect was persistent and present until 72h. Moreover the 

intensity of this effect increased for 6-, 10- and 30-pM treated cells, reaching 80- 

100% between 24 and 72h (third line panel).

The cell loss in this phase occurred only at long times after treatment, except for 

the cells treated with the highest concentration that died immediately after 

treatment and between 24 and 72h. The percentage of cells that died in this phase 

was higher in samples treated with lower doses, 60-80% for 1-pM treated cells and 

40-60% for 3-pM treated cells (fourth line panel).

6.2.2.C Events occurring in G?M phase (figure 6.6c)

Cells treated with 0.5 pM DXR could pass through G2 M phase w ithout any 

perturbation, and only 5-20% of 1-pM treated cells were intercepted by this 

checkpoint immediately after drug washout. In general the intensity and the 

duration of this blocking activity was dose-dependent, 60-80% of cells passing 

through G2 M remained blocked in this phase (fifth line panel).
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A ceil loss was present in this phase between 48 and 72h in samples treated with 

6, 10 and 30 pM DXR. Moreover, 5-20% of 30-pM treated cells blocked in G2 M or 

passing through this phase died between 0 and 6h. The percentage of dead cells 

was higher at long times after treatment reaching the value of 40-60% or 60-80% 

for the highest dose (sixth line panel).

When the blocking activity ended, cells treated with lower dose were able to 

recycle, even though this behaviour was observed only in 3-pM treated cells, a 

recycling probability could not be excluded for 0.5- and 1-pM treated samples. For 

the lowest drug concentrations the number of blocked cells was too low to allow a 

quantification of this parameter (seventh line panel).
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Figure 6.6: Characteristics of the response scenario for a complete reproduction 

of the experimental data. The blocking activity is represented as the percentage of 

cells that remain blocked among those traversing Gi or G2 M in the time interval 

indicated. The death/recycling rates are expressed in terms of the percentages of 

cells that die/recycle in each time interval, within the compartment of Gi (or G2 M) 

blocked cells. In the 0-6h interval the death rate in Gi or G2 M is applied to both 

blocked and proliferating cells, because they cannot be distinguished. Parameters 

whose values are irrelevant are defined ND (non-detectable).

The S-delay rate is equivalent to the percentage reduction of the average DNA 

synthesis rate.
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6.2.3 Sensitivity Analysis of Parameters

Once that the final scenario was obtained, a study aimed to measure the 

uncertainty of parameters estimation was performed as described in 3.6.3.e.

In figure 6.7 we represented the time-courses of each parameter obtained with our 

final simulation (represented with a continuous line) and the results that came from 

the study of the sensitivity. The filled area represented the range of values of each 

parameter within which the simulation remained close to the data as specified 

above.

The parameter of Gi blocking activity was found very sensitive, confirming its 

oscillating trend and its persistence at long times after treatment. The behaviour of 

this parameter allowed the formation of a non-negligible subpopulation of blocked 

cells that made sensitive the parameters connected with the cell loss and the 

recycling probability, at least at long times after treatment. This study confirmed 

the presence of a cell loss in Gi phase between 48 and 72h and between 0 and 

6h, even though in this case the parameter was less sensitive. In particular the 

presence of a non-zero short-term death in 6-pM treated cells allowed us to 

confirm the presence of a cell loss also in samples treated with 10 pM DXR. On 

the basis of this study, a recycling probability in Gi phase could be excluded in the 

samples treated at the highest concentrations, for samples treated with the lowest 

concentrations we could not exclude this possibility.

The precision of the final estimates of the parameters of S-phase delay and G2 M 

blocking activity resulted high by sensitivity analysis, confirming in both cases the 

trend illustrated in the final scenario. A different behaviour was observed in the 

recycling probability, this parameter was sensitive only in 3-pM treated cells, 

however its low sensitivity in lower-doses treated samples could not exclude the 

presence of a recycling probability also in 0.5 and 1-pM treated cells.
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Figure 6.7: Time-course of the parameters used in the simulation. The continuous 

line represents the value of each parameter as obtained in the final simulation and 

the filled area represents the range of values of each parameter within which the 

simulation remained close to the experimental data.
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6.2.4 Predictions of the Final Scenario

Once the final scenario was defined and confirmed by the sensitivity analysis, its 

predictions could be investigated in detail by the simulation program, disclosing 

information on the behaviour and heterogeneity of the cell population, that could 

not be directly measurable by the experimental data. In particular we retrieved 

from the simulation the percentage of cells blocked in Gi or in G2 M at each time 

(figure 6.8) and the total amount of cells dying in the 72h of observation (figure 

6.9). These quantities allowed the evaluation of the impact of a specific block and 

killing on the growth of the whole cell population. Both blocked and proliferating 

cells constituted the percentage of cells in GTand in G2 M phase, as measured by 

flow cytometry. Using our simulation approach, we could distinguish and 

appreciate these two contributions.

As shown in figure 6.8, 6h after drug washout the percentage of cells blocked in 

Gi phase increased in all the samples. At the following times the percentage of Gi 

cells in 0.5- and 1-pM treated samples remained almost constant but with a 

decrease in the percentage of blocked cells. In general, in samples treated with 

higher concentrations of drug, blocked cells represented the biggest part of the 

population in this phase.

In G2 M phase we did not observe blocked cells in the samples treated with the 

lowest doses of drug, but this subpopulation became detectable in cells treated 

with 3 pM DXR and higher concentrations. In particular, in 3-pM treated samples, 

G2 M blocked cells reached a maximum at 24h, followed by a decrease, but they 

always represented the biggest part of the population. At the same way, in 

samples treated with higher doses, 6h after drug washout the percentage of cells 

in this phase started to increase with blocked cells contributing for more than 80% 

to the whole population.
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In figure 6.9 was illustrated the percentage of lost cells in 72h and the pies above 

the columns of the histograms gave the distribution of lost cells in the different cell 

cycle phases. From this point of view the cells treated with 1 and 3 pM DXR 

presented a very similar behaviour, in fact about 30% of them died in 72h and 

about the 65% of the lost cells died in Gi phase. The percentage of lost cells 

increased in a dose-dependent way, about 70% of them died in the sample treated 

with the highest concentration of drug. A difference in the cell cycle phase where 

the cells died was observed between the samples treated with the lowest doses 

and those treated with 6, 10 and 30 pM DXR. In these last cases about half of the 

cells died in G2M phase and the other half died in G-i.
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Fig ure 6.8: Dose-dependence and time-dependence of the percentage of total 

(full height of the bars) and blocked (height of the filled area of the bars) cells in Gi 

and in G2M. This serves to evaluate the impact of the blocking effect on the cell 

population after treatment with 0.5, 1, 3, 6, 10, and 30 pM DXR. The error bars in 

the histograms indicate the range where different simulations give predictions 

fitting the data within the experimental error.
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Figure 6.9: Total percentage of dead cells in 72h obtained from the simulation and 

calculated over the initial number of cells. The pies above the columns of the 

histograms give the distribution of lost cells in the different cell cycle phases. The 

error bars were calculated as reported in figure 6.8.

6.3 DISCUSSION

Even though DXR is a commonly utilized chemotherapeutic agent we could not 

find in the literature a complete study of the time- and dose-dependence of cell 

cycle effects induced by this drug. However we believe that a deeper knowledge of 

the cytokinetics of cellular events leading to treatment efficacy could be helpful in 

optimizing chemotherapy strategies.

The present study highlighted the complexity of the time- and dose-dependence of 

the effects induced by a short treatment with DXR, revealing a scenario where 

perturbations were present in each phase of the cell cycle. In particular, DXR 

affected at the same way the cell cycle progression of BrdUrd-positive and 

BrdUrd-negative subpopulations. This was in agreement with the conclusions 

made by the first studies about cytotoxic and cytostatic effects of DXR, which 

confirmed that DXR could not be considered a phase-specific agent (Kimler and 

Cheng, 1982; Tobey et al., 1976).

166



As we showed in figure 6.6 the cells that were in Gi phase at the time of treatment 

were immediately intercepted by Gi checkpoint. The percentage of cells that could 

not progress into the next phase was strongly dose-dependent. 6h after treatment 

BrdUrd-positive cells that could escape G2 M checkpoint arrived in Gi and more 

than 20% of them remained blocked in this phase. The long duration of Gi 

blocking activity excluded an active recycling at 3 pM and higher concentrations, 

where more than 20% of cells that were blocked in this phase died between 0 and 

6h and between 48 and 72h. This cell loss was more relevant for samples treated 

with low concentrations.

When the dose increased the number of cells intercepted by G2 M checkpoint 

became higher and this made more relevant the cell loss in this phase, especially 

because the blocking activity in cells treated with high DXR concentrations was 

persistent. Only 20-40% of cells treated with low DXR concentrations and blocked 

in G2 M phase was able to start cycling again, otherwise blocked cells died in this 

phase.

The cell cycle arrest and the cell loss in G2 M phase, together with the delayed 

progression through S phase, were the two perturbations mainly described in the 

literature after short or long treatments with DXR (Tobey et al., 1976; Crissman et 

al., 1985; Bartkowiak et al., 1992; Bilim et al., 2000; Potter et al., 2002). In spite of 

its major role in the response to a treatment with low concentrations and its 

strength at higher concentrations the block in Gi phase was not detected in these 

previous studies, probably because the percentage of Gi cells did not increase in 

treated samples. As shown by our simulations, in cells treated with high DXR 

concentrations the percentage of Gi cells was even decreasing because of the 

delayed progression of the cells through the other cell cycle phases. As shown by 

Waldman at al. (1995), the presence of a block in Gi phase could be highlighted 

by the low percentage of S-phase cells. They used monoparametric staining of
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DNA content to investigate the role of p21 protein in the activation of Gi 

checkpoint after a 24-h treatment with DXR. The same idea was followed in 

Attardi's study (Attardi et al., 2004), but in this case a BrdUrd labelling was used to 

investigate the activation of Gi checkpoint after a continuous DXR treatment. The 

lack of BrdUrd positive cells in S phase was interpreted as a signal of the 

presence of a blocking activity in Gi, which avoided the entrance of Gi cells in S 

phase.

At the same time, Attardi and coworkers confirmed the presence of a block in G2 M 

and a delay in S phase in DXR treated samples but, whereas the block in Gi 

phase seemed to be p53-dependent, the effects observed in the other cell cycle 

phases were p53-independent. This different behaviour could be ascribed to the 

ability of DXR to induce DNA damage in multiple ways. For example the ability of 

DXR to activate G2 M arrest responses might be consistent with the role of 

topoisomerase II inhibitor played by this drug. On the other hand the S phase 

arrest response could possibly be ascribed to the ability of DXR to intercalate into 

DNA and disrupt its structure, thus impeding DNA replication.

If the interpretation of cytostatic and cytotoxic effects induced by a 

chemoterapeutic agent is normally not easy, the situation becomes much more 

complex when the drug acts in multiple ways, like in the case of DXR. We 

demonstrated that a wide range of data collected at different times after treatment 

with different drug concentrations could be helpful in the analysis of the complexity 

of a cellular response to a treatment.
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CHAPTER 7: Comparison between Cell Cycle 

Effects Induced by Different Anticancer Drugs
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7.1 INTRODUCTION

It has been known for over 50 years that exposure of cells to chemical or physical 

anticancer agents delays the normal progression through the cell cycle. These cell 

cycle delays were initially interpreted as passive cellular responses resulting from 

the induction by these compounds of damage in the DNA. However, these early 

studies also provided circumstantial evidence that the delays actually reflect 

induction of cellular processes assisting the treated cell to cope with the induced 

damage by somehow facilitating repair (lliakis et al., 2003). The DNA damage 

checkpoint pathways were originally thought to regulate only cell cycle transition, 

but now we know that they comprise signal transduction cascade that link the 

detection of DNA damage to several other processes. These include inhibition of 

cell cycle progression, activation of DNA repair, maintenance of genome stability 

and, when it is not possible to repair the damage, the initiation of permanent cell 

cycle block or elimination of such cells by cell death (Zhou and Elledge, 2000).

The participating proteins to this complex system can be formally divided into 

sensors, transducers and effectors. Sensor proteins recognize DNA damages, 

directly or indirectly, and function to signal the presence of these abnormalities 

and initiate the biochemical cascade. Transducers are typically protein kinases 

that relay and amplify the damage signals from the sensors by phosphorylating 

other kinases or downstream target proteins. Effector proteins include the ultimate 

downstream targets of the transducer protein kinases (reviewed by lliakis et al., 

2003). In particular ATM and ATR kinases lie upstream in the DNA damage 

response signal transduction network and are central to the entire response. 

Downstream of these proteins lie Chk1 and Chk2 kinases, which carry out subsets 

of the DNA damage response in mammals.

Modification of effector proteins by upstream kinases, directly or indirectly, 

mediates the inhibition in cell cycle progression. The effector stage is where the
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DNA damage checkpoint interacts with the cell cycle machinery. The DNA 

damage response network consists of two parallel pathways that respond to 

different types of DNA damage. The ATM pathway responds to the presence of 

DSBs, and acts during all phases of the cell cycle. On the other side, ATR 

pathway responds to DSBs, but more slowly than ATM and it can respond to 

agents that interfere with the function of DNA replication forks (reviewed by Zhou 

and Bartek, 2004). DNA alkylating agents might activate both pathways.

Once that the damage has been recognized the pathways involved in cell cycle 

checkpoints intertwine with those regulating DNA repair processes. At least four 

main repair pathways operate in mammals: nucleotide-excision repair (NER), 

base-excision repair (BER), recombinational repair (including homologous 

recombination and end joining) and mismatch repair (Hoeijmakers, 2001). NER 

deals with the wide class of helix-distorting lesions that interfere with base pairing 

and generally obstruct transcription and normal replication, whereas small 

chemical alterations of bases are targeted by BER. Two pathways, homologous 

recombination and end joining were developed to face the problem of the 

formation of DSBs. Homologous recombination seems to dominate in S and G2, 

whereas the end joining is most relevant in the Gi phase of the cell cycle (Takata 

et al., 1998).

All these molecular interactions contribute to the overall cell cycle modification that 

can be observed in DNA flow cytometric analysis and they also contribute to the 

determination of growth inhibition observed measuring the absolute number of 

cells in a population. Due to the fact that all these molecular pathways contribute 

to the overall tumour response to drug treatments, the comprehension of their 

dynamics could become important in the optimization of the schedule of treatment. 

However, the molecular approach to this problem allow the identification of the 

molecules involved in the pathways that determine the cell response to drug
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treatment, but it is generally not able to quantify the activity of cell cycle 

checkpoints. Cell cycle arrest, DNA repair and apoptotic death are events 

characterized by complex dynamics that overlap in the experimental data. It is for 

this reason that the separate quantification of cytostatic and cytotoxic effects is not 

possible by inspection of a limited data set.

In this study we performed different experiments aimed to analyse cell cycle 

effects induced by short treatments with TPT, DXR and L-PAM on the same cell 

line (IGROV1). All the collected experimental data formed a complete database 

reproducing the time- and dose-dependence of flow cytometric percentages and 

cell number, but the simple intuition of the researchers is not enough to put all 

available data in a coherent scenario of cell cycle perturbations. The simulation 

program that we normally use to analyse the experimental data allowed us to 

express them as a function of the blocking activity, recycling probability and cell 

loss that contributed to the macroscopic observation. On the base of this analysis 

and taking into account the results previously published by our group about cell 

cycle effects induced by cisplatin (Montalenti et al., 1998) and paclitaxel (Sena et 

al., 1999) we were able to compare the dynamics of cytostatic and cytotoxic 

effects of the five drugs in each cell cycle phase. The use of the same cell line and 

the compilation of a database for each one of the considered drugs including the 

time- and dose-dependence of cytostatic and cytotoxic effects allowed a better 

appreciation of the complexity of the cell cycle response, but also the identification 

of possible common features among the drugs.

From the technical point of view, even considering different experiments, we were 

able to reproduce the kinetics of unperturbed growth of IGROV1 cells with the 

parameters listed in 3 .6.3 .a for time duration (Tqi, Ts, Tg2m) and CVs (CVgi, CVs, 

CVg2m). In any case, before comparing the parameters that describe the cell cycle 

effects, we tested the role o f the estimate of duration and CVs of cell cycle phases
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in unperturbed cells in the determination of cell number and flow cytometric 

percentages (figure 3.8) and we performed the sensitivity analysis of the 

parameters included in the final scenario. The results of this study have not been 

shown for DDP and paclitaxel, whereas for all the other drugs are reported in 

chapters 4, 5 and 6. The study of the sensitivity gave us all the information about 

the variability of each parameter connected with checkpoint activity and allowed 

the determination of the error bars considered in the graphs representing the 

values of the different parameters.

7.2 RESULTS

Once that we arrived at the determination of a scenario including all the time- and 

dose-dependence of the parameters that describe cytostatic and cytotoxic effects 

for each one of the considered drugs we went on to the comparison of the 

checkpoint activity in the different cell cycle phases.

7.2.1 Features of the Activity of Gi Checkpoint

Gi checkpoint activity was measured as the probability (pGiB,n) that the cells at the 

end of Gi phase were intercepted by the checkpoint and remained in Gi instead of 

entering S phase. At each time step of the simulation process a fraction equal to 

P G iB in within the group of cells exiting from Gi entered a separate compartment of 

"G-i-blocked" cells, adding to the previously blocked ones. The cells in this 

compartment could both recycle and enter S phase or die with specific rates in the 

subsequent time steps. Thus pGiB'n indicated what was happening in Gi phase at 

specific laboratory times after drug treatment, quantifying the activity of the 

checkpoint. A checkpoint was considered strongly active if it was able to intercept 

a high fraction of the cells passing through it.
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As the experimental data were collected at 0, 6, 24, 48 and 72h after drug 

treatment, there was not information about the details of the parameter's value 

between subsequent data points, and we limited our analysis to the estimate of the 

average in each interval. For this reason, in a given interval of time, whenever a 

partial block was detected by a value of pGiBm lower than 1, the value should be 

interpreted as a net difference between blocking and recycling effects occurring 

within that interval. With the available data the recycling phenomenon became 

detectable only in the interval of time subsequent to that where the block occurred, 

but only if it was not masked by a persistent blocking activity.

Nevertheless, as shown in figure 7.1, we could evaluate the time-course of 

checkpoint activity after treatment with the five drugs tested. Two bursts of the Gi 

checkpoint activity were observed: one short-term, occurring immediately after 

treatment (detected in the 0-6h interval), and the second acting after 24h. We 

observed both kinds of Gi block in DXR and TPT, only the short-term in DDP, only 

the long-term in paclitaxel, while Gi checkpoint activity was weak in L-PAM treated 

cells.

Figure 7.2 shows the dose-dependence of the two kinds of Gi block, as measured 

by pGiB m between 0 and 6h (short-term block, figure 7.2a) and between 24 and 

48h (long-term block, Figure 7.2b). All dose-responses were sigmoid and were 

fitted using a Hill function. The Hill function was characterized by the maximum 

value of pGiB,n (Emax), by the concentration producing the 50% of the maximum 

response (EC5 0 ) and by the sigmoidicity (m) that measured the steepness of the 

curve. Two global non-linear fittings were made, including the values of PgiB10 of 

all drugs either between 0 and 6h or between 24 and 48h, and optimizing Emax and 

EC50 of each drug with a common sigmoidicity. Figures 7.2a and 7.2b show the 

results after the normalization of the concentrations to the EC50 values for each 

drug. The parameters of the best fitting are reported in table 7.1.
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The fitting of the short-term block indicated that the effect rose from 0.1 x Emax to 

0.9 x Emax in a 15-fold concentration range, from 0.26 x EC5o to 3.88 x EC50. Within 

this range and in general whenever a block is not complete, it is also possible that 

pGiB 'n somewhat underestimates the G1 checkpoint activity, actually stronger but 

counterbalanced by repair occurring within the same interval.

An almost complete block (Emax close to 1) was reached with DDP, DXR, TPT, 

while Emax remained around 0.2 with L-PAM and paclitaxel. Taking into account 

that a detectable amount of BrdUrd-positive cells (in S phase at Oh) was not able 

to reach the end of the following G1 phase in 6h, we could consider the short-term 

block in G1 as mainly involving BrdUrd-negative cells, treated while in G1 or G2 M 

phase. The results suggest that DDP, DXR and TPT were able to damage cells in 

G1 and induce a rapid activation of G1 checkpoint. On the contrary, G 1 cells treated 

with L-PAM and paclitaxel presented only a weak response and most of them 

were able to proceed in S phase.

The dose-response of the long-term G1 block was very steep, suggesting the 

existence of a threshold-concentration. A long-term block was not observed in 

DDP and L-PAM treated cells, whereas in samples treated with DXR and 

paclitaxel it was observed in both BrdUrd-positive and BrdUrd-negative cells, 

whereas in TPT treated samples only BrdUrd-positive and not BrdUrd-negative 

cells underwent this kind of block.
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Figure 7.1: Time-course of the Gi checkpoint activity corresponding to the drug 

concentration that determined the maximum of the response.

Figure 7.2: Dose-dependence of Gi checkpoint activity detected between 0 and 

6h after treatment (panel a) and between 24 and 48h after treatment (panel b). 

The dots represent the values of the parameters as obtained from the simulation, 

while the continuous line represent the fitting obtained by using the Hill function.

On the horizontal axis one unit corresponds to the EC5o of Pg iB10 for each drug. In 

the graphs are not represented the curves corresponding to the parameters that 

were null for every drug concentration.
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7.2.2 Features of the Activity of G2 Checkpoint

Figure 7.3 shows the time-dependence of probability of occurrence of G2M block 

(PG2 B'n) in correspondence to a treatment with a drug concentration .close to the 

EC50 (figure 7.3a) and at the concentration where this activity reached its 

maximum (figure 7.3b). In samples treated with TPT and L-PAM the experimental 

data required a different strength in the checkpoint activity between BrdUrd- 

positive and BrdUrd-negative cells, whereas for other drugs the data could be 

reproduced with the same strength. In any case, for cells treated with EC5 0  drug 

concentration G2 blocking activity reached its maximum within 24h, then at 6h for 

paclitaxel and TPT or at 24h for DDP and DXR the intensity of the block declined 

and got exhausted. A different behaviour was observed in the case of cells treated 

with EC5 0  L-PAM concentration, where at short times after treatment the blocking 

activity in G2M was very weak, but it increased between 6 and 24h and a residual 

activity was still present 72h after treatment. The longer duration of the short-term 

G2 blocking activity respect to the short-term Gi block could be explained by the 

fact that most of the cells are initially in S and Gi phase and they cannot reach G2 

immediately after treatment, whereas Gi cells immediately cross Gi checkpoint. 

When the drug concentration increases the blocking activity in this phase 

strengthened and lengthened (figure 7.3b), but between 0 and 6h the effect 

remained weak in L-PAM treated cells and relatively weak also in BrdUrd-negative 

cells treated with TPT. This behaviour indicated that only a low percentage of the 

cells crossing G2 in that interval were intercepted by the checkpoint. This 

subpopulation of cells escaping the short-term G2 block was formed by cells 

treated in G2M phase in the case of TPT and by cells treated in G2M and in middle 

and late S in the case of L-PAM. In spite of the weak intensity of the blocking 

activity this effect was persistent in L-PAM treated samples, where it remained at
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its maximum up to the end of the observation. A similar continuous effect, without 

decreasing of intensity at longer times, was observed only in BrdUrd-positive cells 

treated with TPT.

Figure 7.4 shows the dose-dependence of G2 checkpoint activity at short (panel a) 

and at long (panel b) times after treatment. As in the previous figure we included 

the distinction between BrdUrd-positive and BrdUrd-negative cells for samples 

treated with L-PAM and TPT, whereas with the other drugs we did not get a proof 

of differences between the two subpopulations. Together with the values of the 

parameters, as obtained by the simulation, the fitting performed with a Hill function 

with a common value of the sigmoidicity was also reported. The fitting of short

term G2 blocking activity indicated that the effect rose from 0.1 x Emax to 0.9 x Emax 

in an 11-fold concentration range, from 0.31 x EC50 to 3.26 x EC5 0 , not much 

differently respect to the Gi short-term block.

From this analysis it is possible to conclude that all the considered drugs were 

able to activate G2 checkpoint but a strong response, as measured by Emax, was 

detected in BrdUrd-positive cells treated with TPT, in paclitaxel, DXR and DDP 

treated samples but not in L-PAM and BrdUrd-negative cells treated with TPT. 

Figure 7.4b shows that the onset of the long-term G2 M response was sharp, with a 

single possible exception represented by BrdUrd-positive cells treated with TPT, 

where the blocking activity was relatively strong even at low concentrations. In 

general this trend was similar to that observed for Gi blocking activity, even though 

in this case only in BrdUrd-positive cells treated with TPT and in DXR treated 

samples the maximum value of G2 blocking activity was close to 1. In all the other 

situations its strength was intermediate, with an Emax included between 0.3 and 

0.7.

178



•  DDP
o DXR
o L-PAM (BrdUrd+) 
o L-PAM (BrdUrd-) 
o paclitaxel 
•  TPT (BrdUrd+) 
o TPT (BrdUrd-)

0-6h 6-24h 24-48h 48-72h 0-6h 6-24h 24-48h 48-72h

Figure 7.3: Time-course of G2 checkpoint activity at drug concentrations close to 

the EC50 (panel a) and at its maximum (panel b).
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Figure 7.4: Dose-dependence of G2 checkpoint activity detected between 0 and 

6h after treatment (panel a) and between 24 and 48h (panel b). The dots represent 

the values of the parameters as obtained from the simulation, while the continuous 

line represent the fitting obtained by using the Hill function (the correspondence 

between the colours and the drugs was the same reported in figure 7.3).
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7.2.3 Features of the Activity of S Checkpoint

The delay parameter (psF) was used to describe the fractional reduction of the 

average DNA synthesis rate, which is an effect observed in all the treated samples 

independently of the compound used for the treatment. Figure 7.5a shows the 

time-course of psF as obtained by the simulation of the samples treated with a 

drug concentration close to the EC50) while figure 7.5b represents the kinetics of 

this parameter at the drug concentration where its value reached the maximum. 

This parameter showed different trends in dependence on the drug considered. 

For instance, between 0 and 6h, paclitaxel and L-PAM treated samples presented 

a low inhibition of DNA synthesis, but the effects rose 24h after treatment. On the 

other side, DDP induced a rapid inhibition of DNA synthesis which rapidly 

decreased in samples treated with low drug concentrations (panel a), whereas the 

parameter remained constant up to 72h in cells treated with high doses (panel b). 

In BrdUrd-positive cells treated with TPT and in DXR treated samples the 

parameter reached its maximum at intermediate times (between 6 and 48h), 

whereas in the case of treatment with high drug concentrations its value was 

almost constant and the inhibition was strong at the beginning and at the end of 

the observation too. The progression through S phase of BrdUrd-negative cells 

treated with TPT did not present any alteration, whereas the delay in S phase of 

BrdUrd-negative cells treated with L-PAM was not represented because 

considered equal to that observed in BrdUrd-positive subpopulation.

The shape of the dose-dependence of this parameter (figure 7.6) was similar to 

that observed for pGiBin and pG2 Bm. The data obtained from the simulation were 

well fitted by a sigmoid curve with a common sigmoidicity for all the drugs. At short 

times after treatment (between 0 and 6h, figure 7.6a), the trend of the data showed 

a gradual increase of the effect when the drug concentration became higher,
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whereas the values found between 24 and 48h (figure 7.6b) revealed a steep 

increase, that could be ascribed to the presence of a threshold.

Short-term delay reached fairly high values in samples treated with DDP and in 

BrdUrd-positive cells treated with TPT. In all the other situations the parameter 

was lower, in particular psF presented a value between 0.3 and 0.5 in DXR and L- 

PAM treated cells and a value lower that 0.2 in samples treated with paclitaxel. On 

the other side, once that the long-term delay reached the dose threshold its effect 

was strong in all the samples, independently of the considered anticancer 

compound.
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Figure 7.5: Time-course of the parameter describing the delay in S phase at the 

concentration closer to the EC5 0 (panel a) and at the concentration where it 

reached its maximum values (panel b). This effect was not present in BrdUrd- 

negative cells treated with TPT, while the effect produced by L-PAM treatment was 

equal for BrdUrd-positive and BrdUrd-negative (not shown) cells.
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Figure 7.6: Dose-dependence of S delay detected between 0 and 6h after 

treatment (panel a) and between 24 and 48h after treatment (panel b). The dots 

represent the values of the parameters as obtained from the simulation, while the 

continuous line represent the fitting obtained by using the Hill function.
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7.2.4 Evaluation of EC5o

From the fitting of the dose-response curves it was possible to obtain all the EC5o 

values for each parameter. These values are listed in table 7.1 and together with 

the evaluation of the Emax they could give an indication about the intensity of the 

response of each cell cycle checkpoint to DNA damage.

VALUES OF EC50

Short-term 

effects (0-6h)

DDP DXR Paclitaxel L-PAM

(BrdUrd+)

L-PAM

(BrdUrd-)

TPT

(BrdUrd+)

TPT

(BrdUrd-)

Gi block 

(BrdUrd-)

10.8 *** 5.2 *** 0.023 * 42.0* 0.5 ***

S delay 

(BrdUrd+)

13.7 *** 4 3 *** 0.024 *** 129.2 ** 0.35 ***

-

G2 block 2  ̂   ̂ *** 2 2 *** 0.016* <3* <3* 0.05 *** 0.05 **

Long-term 

effects (24-48h)

DDP DXR Paclitaxel L-PAM

(BrdUrd+)

L-PAM

(BrdUrd-)

TPT

(BrdUrd*)

TPT

(BrdUrd-)

Gt block 3.1 *** 0.018** 0.18 ***

S delay 78.4 *** 3.0 *** 0.047 *** 50.8 *** 50.8 *** 0.2  ***

G2 block 52.6 ** 5.7 *** 0.388 *** 36.2 ** 31.1 ** 8.7 *** 42.3*

Table 7.1: All the values of the drug concentrations (pM) that determined an effect 

equal to the 50% of the maximum response are listed above. The stars near the 

EC50 indicate the intensity of the maximum value of each parameter. In particular: 

* if Emax ^0.3; ** if 0.3< Emax ^0.7; *** if Emax >0.7.

Immediately after treatment, between 0  and 6 h, G2 checkpoint was the first (i.e. 

detected at the lowest drug concentrations) activated response in four of the five 

considered drugs, the only exception was represented by DDP. In some cases, in 

particular in L-PAM and in TPT treated cells a very low drug concentration was
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enough to activate this response, which after TPT treatment was also able to 

intercept a high percentage of cells, more than 70% for BrdUrd-positive 

population.

The drug concentration that activated Gi and S phase response was almost the 

same in all the considered drugs, only L-PAM represented an exception to this 

behaviour, where a very high drug concentration was necessary to activate S 

delay. Once that Gi and S phase checkpoints were activated they were able to 

intercept a percentage of proliferating cells higher than 70%, only in paclitaxel and 

L-PAM treated samples less than 30% of cells passing through Gi remained 

blocked in this phase.

At long times after treatment, the Gi checkpoint was not active anymore in DDP, 

L-PAM and in BrdUrd-negative cells treated with TPT, whereas the effect in this 

phase was still present and activated by low drug concentrations in all the other 

considered drugs. The S and G2 checkpoints were still active and able to reach, in 

most situations, an Emax correspondent to a percentage of intercepted cells higher 

than 70%. Whereas in DDP, DXR and L-PAM the EC5 0  for S and G2 checkpoints 

were of the same order of magnitude, in paclitaxel and TPT treated cells they were 

much more different. In particular only very high drug concentrations of paclitaxel 

could activate a long-term G2 response, which was in any case able to intercept a 

high amount of damaged cells. On the other side only a small amount of BrdUrd- 

negative cells treated with TPT remained blocked in G2M phase when treated with 

high drug concentrations.

7.2.5 Loss and Recycling

Applying the principle of parsimony on the number of parameters, we introduced 

the recycling probability only at the end of a transient blocking activity. However, in 

samples treated with intermediate drug concentrations, when short-term blocks in
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Gi and in G2 are not total, we could not exclude the contemporary presence of 

recycling. Thus, in cells treated with DXR and L-PAM, recycling was possible after 

short-term block in Gi, but it was not necessary to reproduce the experimental 

data, whereas it was unambiguously detected between 6 and 24h in cells treated 

with TPT, paclitaxel and DDP at low/intermediate concentrations. A t high 

concentrations recycling was not detected, except for TPT treated cells at long 

times after drug washout.

For cells blocked in G2M phase after treatment with low and intermediate 

concentrations of paclitaxel, DDP and DXR recycling was detected. In particular in 

the first case cells left G2M phase between 6 and 24h, in the second case between 

24 and 48h and in DXR treated cells the recycling was observed between 24 and 

72h. Thus, in general, recycling seems to refer to short-term block, involving cells 

blocked in their first passage through Gi or G2M. Recycling, from long-term block 

could not be detected and the steep dose-dependence of this parameter 

suggested the absence of repair in such a situation. Moreover, even in the 

presence of a recycling effect, not all the blocked cells were always able to start 

cycling again, some of them could remain blocked up to the end of the observation 

period (72h) and thus they would be probably destined to die.

Cytotoxic effects appeared when the drug concentration became higher. In table

7.2 we compared the drug concentrations that determined an overall cell loss 

bigger than 5% in each cell cycle phase with the doses that determined the onset 

of a cytostatic effect. The extent of a cytostatic only region was variable between 

drugs, wide in TPT, L-PAM and DDP treated samples, narrower for DXR and 

almost absent for paclitaxel. However, the gap between the onset of cytostatic and 

cytotoxic effects is further on reduced for DXR and TPT if we consider the 

percentage of dead cells together with the cells that were still blocked at 72h,
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supposing that they are committed to die (indicated as Gi loss* or G2 loss* in the 

table 7.2).

In DDP and paclitaxel treated samples the cell killing occurred at similar drug 

concentrations in all cell cycle phases, whereas a very high L-PAM concentration 

(100 pM) and TPT concentration (10 pM) were necessary to kill the cells in Gi and 

in S phase respectively.

Effect DDP DXR Paclitaxel L-PAM TPT

Gi block 10 0.5 0.05 30 0.2

Gi loss 50 1 0.05 100 1

Gi loss* 30 0.5 0.05 50 0.2

S delay 10 0.5 0.05 3 0.2

S loss 10 1 0.05 10 10

G2 block 10 3 0.05 3 0.05

G2 loss 50 6 0.1 10 0.2

G2 loss* 30 3 0.1 10 0.05

Table 7.2: Drug concentrations (pM) that determined the onset of cytostatic or 

cytotoxic effects. In particular, for cytostatic effects, we considered the dose that 

determined a blocking activity higher than 0.05 in at least one interval of time, 

whereas for cytotoxic effects the dose that caused the death (or the permanent 

block) of at least 5% of cells in 72h.

The cytotoxic effects affected all cell cycle phases. In order to evaluate whether 

they occurred preferentially in Gi, S or G2 M we measured the distribution of cells 

lost in each cell cycle phase 72h after treatment with low, intermediate and high 

drug concentrations (table 7.3), adding to them the percentage of cells that were 

still blocked at that time. In samples treated with low doses of DDP and L-PAM cell 

loss principally occurred in S phase, while in DXR and paclitaxel treated samples 

the cells preferentially died in Gi phase. Intermediate concentrations were
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characterized by the onset, or strengthening of G2 loss. G2 M was the phase where 

the majority of cells died at the high concentration, with the exception of DDP. The 

case of TPT treated cells was peculiar. For treatments performed with 

low/intermediate TPT doses the cell loss was mainly Gi and G2 phase, with some 

preferences for Gi. The percentage of dead cells in S phase increased with the 

dose, but did not reach the 25% even at the highest dose.

Low Drug Concentrations

DDP DXR Paclitaxel L-PAM TPT

Gi 21.4 78.3 81.3 - 59.2

S 75.3 20.0 13.4 70.8 -

G 2 M 3.3 1.7 5.4 29.2 40 .8

Intermediate Drug Concentrations

G i 19.4 42.8 62.6 2.4 59.4

S 56.6 4.5 12.4 30.3 6.2

G 2 M 24.0 52.7 25.1 67.3 34.4

High Drug Concentrations

G i 37.1 38.4 34.9 6.5 36.6

S 37.7 13.4 9.9 29.7 22 .8

g 2m 25.2 48.2 55.2 63.7 40 .6

Table 7.3: The percentages of cells lost summed to those of definitively blocked in 

each cell cycle phase 72h after treatment with equitoxic drug concentrations were 

listed above. In particular the drug concentrations were classified as "low" when 

only 25% of cells were killed in 72h, "intermediate" when about 50% of cells were 

killed and "high" when 75% of cells died.

7.3 DISCUSSION

The experiments and the analysis presented in the previous chapters (4, 5 and 6) 

and the published studies (Montalenti et al., 1998; Sena et al., 1999) allowed the



construction of two databases. The first database includes the time-course of flow 

cytometric percentages and cell numbers obtained after treatments with all tested 

drug concentrations. This represents, in our knowledge, the first complete 

database that has been made with the time-course of cell cycle drug perturbations 

induced by short treatments at different concentrations. The second database 

includes all the parameters used in the model to simulate the experimental data. 

These parameters represent the strength of each checkpoint activity as a 

probabilistic quantity. From this point of view, a single cell traversing a particular 

cell cycle phase has a probability to be intercepted by the phase checkpoint and 

this probability increases with the drug concentration. The same probability, 

interpreted from the population point of view, corresponds to the fraction of cells 

that is actually intercepted by the checkpoint among those passing through it. The 

heterogeneity observed in the cell response to drug treatment, where some cells 

are intercepted by a block and other pass from one phase to another, could be 

explained hypothesizing the presence of a variable quantity of damage among the 

cells of the population. This difference can induce the activation of the checkpoints 

only in some cells and not in others. But the heterogeneity could also be explained 

by a variable response to the same damage, as a consequence of different 

amounts of proteins involved in the response among the cells of the same 

population. However, mining the parameters of the database we could highlight 

some common aspects of the response to DNA damage, in spite of the differences 

due to intercell variability and to the use of different anticancer compounds.

For all the compounds we performed short treatments (1 h), even when longer 

schedule of treatment where suggested in consideration of the mechanism of 

action of the drug. In this way we could appreciate the presence of short- and 

long-term effects once that the drug was removed. In particular the cell response 

at long times after treatment revealed the existence of persistent damage into the
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cells or long kinetics of response in the molecular pathways regulating the 

checkpoints. In fact, as known by the literature, in cells treated with alkylating 

agents (Hansson et al., 1987; O 'Connor and Kohn, 1990) and platinum 

compounds (D’lncalci et al., 1985) the formation of cross-links is a slow process 

starting from the presence of monoadducts. On the other side, as demonstrated by 

Wu et al. (2002), the form ation of DSBs induced by treatments with 

topoisomerase-inhibitors is biphasic. In particular these authors showed that a 

detectable amount of DSBs was already present immediately after drug washout, 

8h after treatment this quantity decreased but started rising again at longer times 

after treatment (24-48h). All these facts, together with the failed attempts of 

repairing DNA damage, could justify the presence of long-term effects even in 

samples where the damaging agent was removed. On the contrary, the presence 

of short-term effects could be more due to.the existence of an obstacle that avoid 

the normal progression through cell cycle phases, such as the presence of DNA 

adducts or DNA-topoisomerase-drug complexes, than to the activation of repair 

processes. Starting from this point of view we could explain the biphasic behaviour 

of some checkpoint activity, as that observed in Gi block in TPT and DXR treated 

cells (figure 7.1). Moreover, this behaviour of Gi checkpoint is also in agreement 

with molecular observation that hypothesized the presence of two different 

pathways involved in the activation of this response. The activation of the first 

faster response is p53-independent, whereas the pathway activated by p53 is 

slower, but sustainable for a long time (Bartek and Lukas, 2001).

The different time-dependence of the response to high and low doses was 

investigated, from a molecular point of view, by Caporali et al. (2004). In particular 

they studied the kinetics of activation of several proteins involved in cell cycle 

checkpoints after treatment with a methylating agent. In this case, the activation of 

ATM in cells treated with low drug concentrations was a late event and required a
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functional MMR system for phosphorylation of Chk1, Chk2 and p53. On the other 

side, a rapid activation of ATM was detected during treatment with high doses. 

This could explain the different time course that was observed in the blocking 

activity in the samples treated with low and with high drug concentrations.

In our study the dose-response curve of the checkpoint activity at short and long 

times after treatment revealed two different trends, but in both cases we reached a 

sort of plateau in the intensity of the effect. This behaviour and the presence for 

long-term effects of a threshold-concentration demonstrate that the relationship 

among the drug concentrations, the amount of damage induced by the treatment 

and the cell response is not linear, but a specific amount of damage is required to 

activate the checkpoint activity.

If we consider the values of the EC5 0 obtained by fitting of the dose-response 

curve at short times after treatment we could observe that the most sensitive 

checkpoint is that present in G2 M phase. For four of the considered compounds it 

is enough a low concentration to activate this response that has to prevent 

damaged cells to divide. At short times after treatment only higher drug 

concentrations activate the response in Gi and in S phase. This demonstrates that 

these two checkpoints need a bigger amount of damage to be activated and this 

happens in presence of treatment with higher drug concentrations or for cells that 

are at the second or third generation. In this case the accumulation of damage 

becomes able to activate even lower sensitive checkpoints. In fact the comparison 

of the EC5 0  between 24 and 48h reveals that the concentrations necessary to 

activate Gi checkpoint were even lower than those observed for S and G2 .

Even though we considered anticancer agents with different modes of action, with 

this study we were able to compare all the dose-response curves of checkpoint 

activities and to highlight the principal similarities or differences.
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CHAPTER 8: CFSE-based Approach for the 

Evaluation of Antiproliferative Drug Effects
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8.1 INTRODUCTION

8.1.1 CFSE: B iochemical Properties

CFDASE consists of a fluorescein molecule containing two acetate moieties and a 

succinimidyl ester functional group. In this form, it is non-fluorescent and can 

spontaneously penetrate cell membranes. This compound is rapidly taken up by 

cells, although due to its lipophilic nature CFDASE also freely exits from cells. 

Once inside cells, after diffusion into the intracellular environment, endogenous 

esterases remove the acetate groups, rendering the molecule highly fluorescent 

and non-permeant to the cell membrane (CFSE). The slower exit rate prolongs the 

time available for CFSE to couple covalently to intracellular molecules. In addition, 

the succinimidyl ester reacts with free amine groups of intracellular proteins 

forming dye-proteins adducts. In some cases carboxyfluorescein is coupled to 

molecules to form conjugates that are rapidly degraded or still exit through the 

plasma membrane, whereas in other cases the carboxyfluorescein conjugates are 

stable and unable to exit from the cells (see figure 8.1). Proteins that have a low 

turnover rate, including some cytoskeletal components, are thought to be 

responsible for the very long-lived staining afforded by CFSE (Lyons, 2000).

c h 3— c - o . .0 -C -C H 3

PROTEIN  NH2
Esterase .c -o

N - O - C PROTEIN — N H -CN -O - C

CFDASE CFSE

Figure 8.1: Mechanism of cellular labelling by CFDASE. CFDASE is a non-polar 

molecule that spontaneously penetrates cell membranes and is converted to 

anionic CFSE by intracellular esterases.
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The spectral characteristics of fluorescent CFSE are identical to fluorescein, with 

optimal excitation by 488 nm argon laser light, emitting strongly at 519 nm.

When cells divide, CFSE is equally distributed between the daughter cells, which 

are therefore half as fluorescent as their parents, consequently, each successive 

generation in a population of proliferating cells is marked by specific two-fold 

decrease in cellular fluorescence intensity. In response to a proliferation stimulus, 

cells with one-half, one-fourth, one-eighth, etc. the fluorescence intensity of 

undivided mother cells are detected as distinct peaks in the fluorescence 

histogram of the entire cell population. The percentage of cells in each peak 

corresponds to the percentage of cells in the first (undivided mother cells), second 

(divided once), third (divided twice), and subsequent cell cycles, thereby providing 

a direct measure of the proliferating activity of the population and of the 

heterogeneity of that activity (Leon et al., 2004). The observation of multiple peaks 

on different days after stimulation is indicative of cell heterogeneity and highly 

asynchronous division, but in order to distinguish the peaks it is necessary a good 

resolution. Maximum resolution of division cycles is obtained when the distribution 

of initial cellular fluorescence intensities is narrow and autofluorescence 

background levels are low.

In order to make a quantitative analysis of the data obtained by CFSE histograms 

it is necessary to take into account two characteristics of this probe: high 

concentrations of CFSE may be toxic to some cell types and the majority of CFSE 

initially taken up by the cells it is not stably incorporated and it is lost within the first 

few hours (Hodgkin et al., 1996; Lyons et al., 2001; Dumitriu et al., 2001). This 

means that the dye concentration has to be enough to follow the cells until several 

days after labelling, taking into account the efflux and the fact that the 

fluorescence halves at each generation, without affecting exponential cell growth.
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8.1.2 Applications and Previous Studies

Since its introduction in 1994 (Lyons and Parish, 1994), the flow cytometric 

analysis of lymphocyte proliferation by serial halving of the fluorescence intensity 

of the vital dye CFSE has become widely used in immunological laboratories. It 

has become the method of choice for investigating the division-related 

differentiation of lymphohemopoietic cells, as well as the kinetics of cellular 

expansion during an immune response. An important feature of these studies is 

that many biological processes in lymphocytes, such as T cell cytokine production, 

B cell Ig isotype switching, T cell apoptosis and cell surface molecule expression 

have been shown to be very division dependent. Recently a particular powerful 

application of CFSE-labelling has been employed to monitor T lymphocyte 

proliferation in response to a range of costimulatory signals (Gett and Hodgkin, 

2000).

Among the cell types that have been investigated using the technique are 

hemopoietic stem cells (Kerre et al. 2001), T and B lymphocytes (Lyons and 

Parish, 1994; Hodgkin et al., 1996), natural killer cells (Warren, 1999; Cooper et 

al., 2002) and other cell lines (Khil et al., 1997; von Horsten et al., 2000).

As shown by Hodgkin et al. (1996) this technique allows the visualisation of eight 

to ten discrete cycles of cell division by flow cytometry. For its characteristics 

CFSE has been used not only for monitoring cell proliferation but also for tracking 

the migration of lymphocytes in vivo over several weeks (Weston and Parish, 

1990).

CFSE labelling has been validated relative to standard proliferation analysis 

techniques such as [3H]-thymidine incorporation and BrdUrd labelling. Compared 

with these classical techniques CFSE can provide more information, for example 

an entire population of cells dividing once will incorporate the same amount of 

[3H]-thymidine as one half of the population never divided. These different division

194



patterns can be distinguished by CFSE labelling analysis, which allows following 

the division history of individual cells. At the same way BrdUrd has been 

extensively used to quantify in vitro and in vivo cell division. However, this method 

is generally unable to distinguish the progeny of cells that have undergone several 

divisions from those that have undergone a single division, but BrdUrd staining 

can be performed in combination with CFSE labelling. This biparametric staining 

allows the examination of the division-related proliferation rate and cell cycle 

profile as well as division history (Gett and Hodgkin, 1998; Hasbold et al., 1998). In 

addition, to being able to explore cell surface molecule changes linked to cell 

division, CFSE labelling has also been combined with techniques measuring 

production of bioactive materials such as cytokines (Gett and Hodgkin, 1998; Bird 

et al., 1998; Lyons 1999). Spectral characteristics of CFSE allow the use in 

conjunction with other fluorochromes, such as PE, PI, 7-aminoactinomycin D 

(Marin et al., 2003) etc.

Despite the potential usefulness of the method for investigating the antiproliferative 

effects of drugs, by directly measuring the time-course of the percentage of cells in 

each division cycle during or after treatment, the use of CFSE is still confined to 

immunological research. Technical reasons probably explain why it is rarely used 

in cancer cells. First, the easily identifiable fluorescence peaks usually obtained by 

labelling lymphocytes are not obtained by labelling other cell types, which have a 

much less homogeneous protein content. Peaks that correspond to subsequent 

generations are not readily distinguishable after labelling cancer cells, and this 

poses an apparently insurmountable obstacle to data analysis and interpretation. 

Additional technical problems arise with adherent cells that are eventually 

detached and fixed with the aim of measuring DNA content correlated with CFSE.
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8.1.3 Analysis of CFSE Fluorescence Histograms

We have developed a CFSE-based method to study cell cycle effects of drugs in 

vitro and to provide the first application of it in ovarian cancer cells treated with 

TPT (see chapter 4).

We obtained the percentages of cells in the first, second, third and subsequent 

cycles (% Ci(t), %C2 (t), %C3(t)...) by fitting each histogram with a sum of 

gaussians, each one representing a generation of cells. Thus the average CFSE 

fluorescence of the second, third, etc., gaussian was assumed equal to one-half, 

one-fourth, etc., of the average CFSE fluorescence intensity of the first gaussian, 

which represented undivided cells.

Listmode data were converted as 256 channel histograms using FCS Assistant 

(shareware) and the analysis of the histogram profiles was made with Excel 

(Microsoft, Redmond, WA, USA). The spreadsheet was divided in four areas.

Area 1 included the table of the relation between channel numbers and 

fluorescence intensity (i.e., a column containing the channel numbers, z, and 

another column with the corresponding fluorescence intensity, FL(z)). The ideal 

relation is FL(z) = 10z/64 for a four-decade, 256-channel scale, but analogic 

amplifiers may deviate from that. The correct relationship can be empirically 

determined, when needed, with a calibration procedure.

Area 2 included a matrix of the useful parameters of all guassians, namely, for 

gaussian i, the average fluorescence intensity ( M I f l ) ,  average channel (M Ic h ) ,  

standard deviation (ai) and number of cells (Ni). Given a value of M 1 c h .  the 

corresponding M 1 f l  was automatically calculated by using the relation in area 1 as 

a reference table and the Lookup function of Excel. The fluorescence intensity of 

the average of the second and subsequent gaussians was autom atically 

generated as a function of the average of the first gaussian and of the background 

fluorescence (B G fl; also reported in the spreadsheet) by using the formula: M i>l=
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(M1 fl - B G fl) /2 1' 1 + B G fl, accounting for subsequent halving of the CFSE-related 

fluorescence. Back-transformation of fluorescence intensity into channel numbers 

was automatically made by using area 1 as reference table, providing all updated 

MicH at each recalculation of the spreadsheet.

Area 3 included the histograms of data, of each gaussian and of the fitted curve in 

separate columns. The formulas of each gaussian used the parameters of the 

matrix in area 2 and the formula of the fitting function was simply the point-by-point 

sum of gaussians.

Area 4 included additional quantities, in particular the objective function (the sum 

of square errors), the reduced chi-square and the value of the background 

fluorescence level.

In addition, the plot of data and fitting is automatically generated in the 

spreadsheet.

The constrained non-linear fitting was accomplished with the Solver function 

associated with the Excel spreadsheet. The fitting routine used a sum of squares 

error criterion to optimize the following parameters: (a) average channel of the first 

gaussian (the average of the others being automatically calculated as specified 

above), (b) standard error (assumed equal) of all gaussians and (c) the number of 

cells in each gaussian (constrained to be positive).

The initial estimate of the average of the first gaussian (undivided cells) at each 

experimental time was provided by the parallel calculation of the efflux (see 8.2.2). 

Then the optimization was made by constraining this parameter in a small range 

(three channels) around that initial value.

Once that we have obtained the percentage of cells in the different cycles at time t, 

it is possible to calculate the fraction of the starting population that at a given time t 

remained blocked without dividing, T(t) or the fraction of cells that were able to
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proliferate by dividing once (f2(t)), twice (f3(t)), etc. This leads to an approximate, 

"average", result because descendants do not divide in a synchronized way, and 

an "original" cell may actually, at a given time, have some descendants in the 

second generation, some in the third, and so on.

Within this approximation, the proportion of the original cells that divided zero, one, 

two or more times can be calculated by correcting the %Cj(t) values for the 

amplification due to divisions, as it is done in immunological studies to evaluate 

the frequency of precursors cells able or unable to proliferate (Givan et al. 1999). 

Among cells present at time t, any cell in the first generation is still a cell 

(undivided) of the starting population, two cells in the second generation come 

from a single "starting" cell, like any four in the third generation and so on. Thus 

fj(t) and %C,-(t) values are related through the following formula: 

fi(t) = (%Ci(t)/2i'1)/[%Ci(t) + %C2(t)/2 + %C3(t)/4 (equation 1)

These fractions are based on the cells still detected at time t and do not contain 

any information on the amount of cell loss. However, an estimate of the fraction of 

survival, Fs(t), within the starting cell population can be obtained by joining the f(t) 

values with the absolute number of cells at the same time, N(t), independently 

measured with a Coulter Counter. In this simplified proliferation model,

N(t) = N(0) x Fs(t) x [f 1 (t) + f2 (t) x 2 + f3(t) x 4 +...], so Fs(t) is given by the following 

equation: Fs(t) = N(t)/[N(0) x (T(t) + f2(t) x 2 + f3(t) x 4 +...)]

= [N(t)/N(0)J x [%C-i(t) + %C2(t)/2 + %C3(t)/4 +...]/100. (equation 2) 

The absolute number of surviving cells reported in figure 8.11 is then calculated as 

N(0) x Fs(t).

Conversely, if the fraction of survival is known, the relative growth, N(t)/N(0), can 

be directly calculated by using only percentages of cells after reverting equation 2. 

In particular, when cell loss is negligible, the relative growth curve is given by: 

N(t)/N(0) = 100/[%Ci(t) + %C2(t)/2 + %C3(t)/4+...]. (equation 3)

198



8.2 RESULTS

8.2.1 CFSE Labelling and Toxicity

Cells were labelled in suspension just before seeding the culture. No advantages 

were obtained, in terms of the width of the CFSE fluorescence histogram, by 

labelling cells in adherence some time after seeding or by seeding synchronized 

cells. The start of the experiment with the drug, usually 24h after seeding, was 

adopted as time zero; thus, CFSE-loading and seeding occurred at "-24h". The 

main advantage of this protocol is that, at the start of the experiment, CFSE is 

stably incorporated into the cells, thereby avoiding the pitfalls associated with rapid 

efflux after labelling. In addition, any residual CFSE in solution is washed away by 

the change of the medium in all samples at the time of treatment.

High CFSE concentrations are toxic to the cells, particularly when they are labelled 

in the absence of serum proteins. However, CFSE is sequestered by serum 

protein and with too low concentrations the fluorescence intensity comes too close 

to background fluorescence to be reliable. A valuable compromise was to use 1 

pM CFSE for 15 min of labelling in PBS under gentle agitation. The growth curve 

of cells labelled in this way does not perfectly overlap the growth curve of 

unlabeled cells, but the cells have the same doubling time when in exponential 

growth (figure 8.2) and the CFSE fluorescence intensity of proliferating IGROV1 

cells remains well above the background fluorescence level for several days 

(figure 8.3).
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Figure 8.2: Growth curves of IGROV1 cells after labelling with 0, 1 and 10 pM 

CFSE. The cells were labelled at Oh in the absence of serum. Even though the 

growth curve of 1-|jM labelled cells does not overlap the growth curve of the 

control they have the same doubling time when in exponential growth.
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Figure 8.3: Time-course of fluorescence histograms of IGROV1 cells labelled with 

1 pM CFSE just before seeding (-24h, in the time scale adopted). Cells were 

harvested and directly analyzed (without fixation) at -24h (a few minutes after 

labelling) and 0, 24 and 48 h. With the chosen amplification, the -24-h histogram 

was detected within the scale in the fourth decade, but the background 

fluorescence of cells without CFSE was barely detectable.
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8.2.2 CFSE efflux

Figure 8.3 shows a more than 10-fold decrease of CFSE fluorescence between 

-24 and Oh. This decrease obviously cannot be ascribed to a rapid proliferation of 

our cells because: (a) doubling time would be about 6h to account for such a 

decrease (and the doubling time of exponentially growing IGROV1 cells is 22h), 

and (b) a parallel Coulter Counter cell count indicated only a small increase in cell 

number (as usual in just-seeded cell cultures). Thus, the fluorescence is not 

completely retained by the cells, and this contributes to the decrease besides the 

halving at each division. We also used quiescent lymphocytes in order to evaluate 

properly the decrease of CFSE fluorescence unrelated to cell proliferation.

CFSE efflux in quiescent lymphocytes showed a biphasic pattern (figure 8.4a). A 

huge decrease in fluorescence in the first hours after labelling was followed by a 

continuous small decrease for up to 8 days thereafter. In the same experiment, 

some cells were fixed in ethanol at the same times and analyzed all together at the 

end of the time course. Fluorescence was weaker in fixed than fresh, cells, but 

after the first 24h the difference was smaller and the rate of decline was very 

similar. This suggested that the fluorescence intensity of fixed cells was 

proportional to that of fresh cells from 24h post-labelling and thus a valid measure 

of CFSE content relative to that time. This finding was important with a view to 

using CFSE in multiparametric tests in fixed cells. As the actual experiments 

started at Oh (at the beginning of treatment, at least 24h after labelling), the first 

phase of fluorescence decrease did not affect the results and was not further 

investigated. We focused instead on correcting the data for efflux in the second 

phase, from Oh onward. The same relative fluorescence decrease from Oh was 

observed in formaldehyde plus ethanol-fixed cells and ethanol-fixed cells.
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Evaluation of the efflux was complicated in proliferating cells by the halving of the 

fluorescence at each division. Nevertheless, the decrease in fluorescence intensity 

of undivided cells at different times must be estimated to avoid misinterpreting 

them as divided cells, which would lead to a completely wrong evaluation of the 

proliferating activity of the population. Once established, the position of undivided 

cells in the fluorescence scale at each time would constrain the positions of cells in 

the subsequent generations by halving the fluorescence of the previous, taking 

into account background fluorescence and the log scale calibration (if needed).

We estimated the efflux outline of proliferating cells from the equation:

CFSEfl(t) = N(t) x Avfl(t) 

where CFSEfl(t) represents a measurement of the overall integrated fluorescence 

intensity of the entire population, N(t) is the absolute number of cells 

independently evaluated by Coulter Counter, and Avfl(t) is the average 

fluorescence intensity per cell measured on the flow cytometric histogram. 

CFSEfl(t) is proportional to the overall amount of CFSE inside the cells, thus, in 

control samples, with negligible cell loss, the ratio of CFSEfl(t) to CFSEfl(O) 

enabled us to estimate the decrease in fluorescence from Oh due to efflux. This 

decrease corresponds to the fluorescence decrease that would be detected in 

undivided cells, so we can track their average position (channel number) in the 

logarithmic scale, with respect to their position at Oh. In IGROV1 cells, the outline 

of fluorescence efflux from Oh, calculated using the equation above, was similar to 

that calculated directly in quiescent lymphocytes, with fairly good reproducibility 

between independent experiments.
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Figure 8.4: Time-course of the decrease of fluorescence intensity in CFSE- 

labelled quiescent lymphocytes. Cells were analyzed directly at the times indicated 

(solid columns) or fixed and then analyzed at the end of the experiment (open 

columns). Each value was the average of two replicated samples.

Panel a: Average fluorescence intensity in the same unit of measurement 

(average background fluorescence was about 1 fluorescence unit). Panel b : 

Fluorescence intensity relative to the respective 0-h value (24h after seeding).

8.2.3 Biparametric DNA/CFSE in TPT-treated ceils

On the basis of previous methodological studies, we examined data from an 

experiment in which IGROV1 cells, loaded with CFSE, were either treated for 1h 

with TPT or kept as untreated controls. Figure 8.5 shows biparametric DNA/CFSE 

dot plots of control and treated samples at 72h and the 0-h control sample. The 

drug effect was barely detectable in monoparametric DNA histograms (almost 

overlapping untreated controls after 24h, as will be shown in figure 8.6) but 

became evident at simple visual inspection of the biparametric plots. With 10 pM 

TPT we observed cells with CFSE fluorescence in the range of 72-h control cells 

(inside the lower box) and cells with higher CFSE content. The latter were delayed 

because they divided fewer times than controls, and some remained in the range 

of first cycle cells (inside the upper box). Percentages of cells in the two boxes



provide a first glance at the antiproliferative effect of the drug and its dose 

dependence. In addition, the biparametric histograms of treated cells showed that 

few of delayed cells were in S phase, compared with the regularly proliferating 

cells in the lower box, suggesting that they were at least partly blocked in Gi and 

G2M at 72h.
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Figure 8.5: DNA/CFSE dot plots of controls and cells treated with 10 or 50 pM 

TPT 72h after treatment (96h from CFSE loading, right) and 0-h control (left). Most 

control cells divided several times within 72h and were detected in the lower 

rectangular box, whereas most treated cells had higher CFSE content with fewer 

divisions. As a reference, the upper box approximately indicates the range of cells 

in the first cycle and was drawn in the 72-h plots by taking calculated efflux into 

account.
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Figure 8.6: Time-course of CFSE histograms in controls and treated cells 

(logarithmic scale). The peak of controls (blue line) shifts progressively towards 

lower CFSE content due to subsequent divisions and CFSE efflux. The 

fluorescence of treated cells (10 pM, green line; 50 pM, red line) remains spread 

over a wider range on the right side of control peaks, suggesting the contemporary 

presence of cells from several generations before the one reached by untreated 

cells. DNA histograms are shown in insets.

8.2.4 Time-Course

To make a quantitative interpretation of the proliferation delays caused by TPT, we 

analyzed the cells at various times to obtain the time course of CFSE histograms 

shown in figure 8.6. The average CFSE content of controls decreased as time 

went on, due to halving at each generation and CFSE efflux, whereas CFSE 

histograms of treated cells tend to spread, as expected for delayed cells. Each 

histogram was formed by the point-by-point sum of the distributions of cells in
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each generation, which in turn depended on the percentages of cells in cycle 1 

(undivided), 2 (divided once), 3, etc. These percentages were found by fitting each 

histogram with an envelope of gaussians in the X-scale of channel numbers. 

Histograms of controls and treated samples at the same time were fitted with 

almost the same value of the average of the first gaussian, with one channel 

tolerance and within three channels from the value suggested by the estimate of 

the efflux described above. The channel number of the average of the other 

gaussians was automatically generated as a function of the average of the first, of 

the background and of the calibration of the logarithmic scale. The standard 

deviation of all gaussians of a sample was assumed as equal, as expected with 

logarithmic amplification when changing the fluorescence intensity of all cells by 

the same factor. In a few samples (e.g., 10-pM sample in figure 8.7) a visual 

discrimination of the peak of first cycle cells was possible, allowing a preliminary 

estimate of the standard deviation. After examination of these cases, we assumed 

that the standard deviation in our data set was between 8 and 10 channels. Then 

a non-linear fit was done of each histogram by changing the mean of the first 

gaussian, the standard deviation within the specific boundaries, and the number of 

cells (i.e., area) of each gaussian. This area is proportional to the percentage of 

cells in the corresponding generation. The resulting fittings (figure 8.7) were 

always satisfactory (reduced chi-square < 3). However, satisfactory fittings were 

also obtained without correcting the position of the gaussians for CFSE efflux. 

Thus we challenged the results obtained with and without efflux correction by 

calculating the predicted growth curve in controls using equation 3 and assuming 

negligible cell loss. The outline predicted, which took efflux into account, was in 

keeping with the Coulter Counter measurement; without correction, we had a 

much higher growth rate (figure 8.8). For instance, at 72h, the peak interpreted as
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first cycle with the correction would be interpreted as second cycle without 

correction.
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Figure 8.7: Best fitting of CFSE histograms of controls (left) and cells treated with 

10 |jM TPT (middle) or 50 pM TPT (right) at different times after treatment. Panels 

show data points with overall fit (magenta line) and the underlying gaussians that 

represent cells in subsequent generations.
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corresponding to the best fit of the data.
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Figure 8.9 shows the resulting distribution of cells within the generations. 24h after 

treatment two-thirds (50 pM) or one-half (10 pM) of cells remained undivided, 

whereas most untreated controls were in the second and third cycles. Later, 

whereas controls progressively entered subsequent generations, treated cells 

remained in the first cycle or progressed more slowly. Eventually, at 96h, treated 

cells were spread over several cycles. In particular the 50 pM treated cells were 

almost equally split across the first (26%), second (19%), third (21%), fourth 

(17%), fifth and sixth (16%) cycles. This suggests that, even if treated cells 

succeed in dividing once, some of them are then arrested in later cycles.

The same data of the 50-pM treatment can also be expressed in terms of the 

outcome of the “original” -cell population (i.e., of the cells present at time of 

treatment). On average, for every 26 cells that were still undivided at 96h, 9.5 

divided once and generated 19 descendants, 5.25 divided twice and generated 21 

descendants, 2 divided three times and generated 17 descendants, and only one 

was able to divide at least four times and produce 16 descendants. Thus, for every 

26 cells that remained undivided (and detected at 96h), only 18 divided at least 

once.

The analysis was further improved by taking account of the parallel measure of the 

absolute number of cells. By combining the overall cell number with the flow 

cytometric percentage of first cycle cells, we calculated the number of cells per 

flask that were blocked immediately and did not divide (figure 8.10). At 24h 85% of 

control cells divided, compared with 30% of those treated with 10 pM TPT and 

only 5% of cell treated with 50 pM. Then the number of undivided cells decreased 

to 50% of the original population at 48 and 72h and reached 30% at 96h, similarly 

in cells treated with 10 and 50 pM. This was due to cell division and cell death.
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The simple analysis presented in the paragraph 8.1.3 describes the contributions 

of these two drug effects (figure 8.11). The pie plots in figure 8.11 show the 96-h 

outcome of 1.1 x105 cells per flask treated with TPT for 1h. The two TPT 

concentrations caused a similar long-term block for about one-fourth of the cells 

with dose dependence in cell kill (55% of cells were dead at 50 pM vs. 40% at 10 

pM).
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Figure 8.10: Time-course of the number of cells that remained blocked in the first 

cycle. This number was obtained by multiplying the percentages of the first- 

generation cells by overall cell number, which was independently calculated with a 

Coulter Counter.
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Figure 8.11: Outcome of the starting population of 1.1 x 105 cells that were 

untreated (left) and treated with 10 pM TPT (middle) and 50 pM TPT (right) at the 

end of the experiment (96h). The number of cells that remained undivided comes 

from figure 8.10. The number of cells that divided at least once was calculated by 

summing the “clones” present in each generation (i.e., 100 cells in the second 

cycle at 96h originating from 50 starting cells, 100 cells in the third cycle from 25 

starting cells, etc.). The number of cells lost (dead and disrupted) at 96h was 

calculated as the difference.

8.2.5 Triparametric DNA/BrdUrd/CFSE in TPT-treated cells

As shown in chapter 4, cytotoxic and cytostatic effects induced by TPT are 

dependent on the phase where the cells were at the time of treatment. S-phase 

cells were the most affected by the drug, even though blocking activity and cell 

death were present also in the subpopulation of cells treated during Gi and G2 M 

phase. However with the classical flow cytometric measurements we were not 

able to distinguish in which generation the cells remained blocked and if they died 

before or after generating descendants. With BrdUrd pulse-and-chase of CFSE- 

labelled cells we could obtain this information.

At different times after treatment it was possible to measure and analyze CFSE

histograms of BrdUrd-positive and BrdUrd-negative cells. Biparametric dot plot of

BrdUrd content versus DNA content in a 10-pM treated sample at 24h is reported
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in figure 8.12 (panel a, left), by gating Brdllrd-positive cells we could obtain the 

CFSE histograms of the two subpopulations (figure 8.12, panel a, right). Also in 

this case the results could be quantified by analysing each histogram as previously 

explained (see 8.1.3) and figure 8.12 (panel b) shows the time course of the 

distribution of Brdllrd-positive and Brdlird-negative cells within generations. In 

control samples the cells were proliferating and at 72h they could reach the fourth 

and the fifth generation, on the contrary the cell proliferation in treated samples 

was slower. At 72h Brdlird-negative cells treated with 10 pM TPT could divide four 

times, whereas the cells treated with the highest concentration could reach only 

the third generation. A different behaviour was observed in Brdllrd-positive cells, 

only a small percentage of 10-pM treated cells were able to divide and to reach the 

third generation at 72h the most part of this subpopulation remained in the first 

generation, especially in 100-pM treated samples. Moreover Brdllrd-positive cells 

were affected by cell loss whose presence was highlighted by the decreasing of 

cell percentage. If we consider only living cells we can calculate the relative 

percentage of cells that were able to proliferate at each time (figure 8.13). At 72h 

76% of Brdllrd-positive cells treated with 10 pM TPT were unable to divide and 

this percentage reached the 86% in cells treated with the highest concentration of 

drug. Only 9% of cells treated with 10 pM TPT while in S phase were able to divide 

twice. On the contrary the subpopulation formed by Brdlird-negative cells was 

much more heterogeneous. 72h after treatment with 10 or 100 pM TPT there were 

respectively 18% and 44% of Brdlird-negative cells still undivided but there were 

also 31% and 36% of cells that divided once and 28% and 21% of cell that divided 

twice.

All the information obtained by the analysis of CFSE histograms in biparametric 

and triparametric staining can be used to integrate the set of experimental data 

generally compared with the output of the simulation. In figure 8.14 we reported
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the results of this comparison for cells treated with 100 pM TPT. The scenario 

used to reproduce the data was very similar to that described in figure 4.6 for the 

cells treated with the same drug concentration and the good agreement between 

experimental and simulated data confirmed, once more, the effects described in 

that occasion.
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Figure 8.12: Triparametric staining of IGROV1 cells. Just before seeding cells 

were labelled with CFSE and at the time of treatment S-phase cells incorporated 

BrdUrd. The samples were fixed at different times after treatment. Panel a : 

DNA/BrdUrd dot plot of 10-pM treated sample at 24h (left). BrdUrd labelling allows 

the distinction of CFSE content in BrdUrd-positive and BrdUrd-negative 

subpopulation (right). Panel b: Time course of the distribution of BrdUrd-positive 

(orange columns) and BrdUrd-negative cells (red columns) within generations.
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Figure 8.14: Comparison between the experimental data obtained by the analysis 

of CFSE histograms in triparametric staining (full column) and the data obtained by 

the simulation (dotted column). In particular we represented here the cell 

distribution in different generations for cell treated with 100 pM TPT. The 

simulation was obtained by applying the scenario reported in figure 4.6.
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8.3 DISCUSSION

As far, the use of CFSE to test the effects of antiproliferative drugs in vitro has 

been limited in leukaemic cells (Plate et al., 2000; Holtz et al., 2002) and has not 

been attempted, to our knowledge, with non-haematological mammalian cell lines, 

probably because of methodological problems. The CFSE method for 

immunological studies has been illustrated in detail (Lyons et al., 2001), with 

evidence of possible toxicity, incomplete retention of the substance, and the need 

for robust identification of the CFSE fluorescence intensity of undivided cells. 

Standard protocols (Lyons et al., 2001) overcame these limitations, at least in the 

case of lymphocytes, by optimizing the loading with quiescent cells, running 

controls of undivided (unstimulated) and unloaded (w ithout CFSE) cell 

populations, and supporting the analysis by visual identification of the histogram 

peaks.

With other cell types, in particular non-haematological cancer cells, the problems 

were similar, but further more complicated by the higher intercell variability of 

loading (possibly a direct consequence of intercell variability of protein content), 

resulting in broader, overlapping peaks. In such conditions, to analyze the data on 

a solid ground, we had to evaluate critically all the steps of the procedure, identify 

possible pitfalls, and devise methods to overcome them.

We initially tested different loading procedures by comparing CFSE treatment in 

adherent cells or suspension with synchronized or unsynchronized cells. Selection 

by sorting a subpopulation of cells in a narrow gate of fluorescence intensity 

(Nordon et al., 1999; Holtz et al., 2002) was considered impractical for our 

purposes, because we wanted a test for drug evaluation, where a number of 

treatments and replicated flasks could be used with adherent cell populations. In 

addition, we felt that the sorting procedure was prone to the risk of selecting a
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particular subpopulation of cells, e.g., partially and unpredictably synchronized, 

and thus potentially losing the true intercell variability of the entire population’s 

response to the drug challenge. Eventually, we adopted a short CFSE exposure of 

unsynchronized cells in suspension at the time of seeding.

Most of the strong fluorescence signal detected just after loading was lost in the 

first hours because of the efflux of non-protein-bound dye and catabolism of 

CFSE-bound proteins in the cells (Lyons et al., 2001; Nordon et al., 1999; Hasbold 

et al., 1999; Dumitriu et al., 2001). CFSE that remained at 24h was more stably 

incorporated, decreasing slowly over the next few days, and the fluorescence 

intensity remained strong enough to detect at least five divisions before the signal 

became confounded with background fluorescence (measured in controls without 

CFSE). Thus, by setting drug treatment at least 24h after seeding, the pitfalls 

related to the strong initial decrease in fluorescence were overcome, and the cell 

population received the drug at the beginning of the asynchronous exponential 

phase of growth. Attempts at using higher CFSE concentrations failed because 

CFSE itself caused some growth inhibition, which was clearly unacceptable in a 

test aimed at evaluating the antiproliferative effects of drugs.

At the time of treatment and daily thereafter, cells were fixed to allow 

multiparametric analysis. Good DNA/CFSE biparametric histograms were obtained 

with ethanol fixation, and were no better (in terms of peak sharpness) using 

formaldehyde plus ethanol. Relative efflux from Oh was also superimposable in 

ethanol-fixed and formaldehyde plus ethanol-fixed samples.

CFSE fluorescence was detected in the optical path FL1 by using a four-decade 

logarithmic amplifier. We found that amplifier's distortions were present but 

negligible for our analysis except for very low or very high fluorescence intensities 

(roughly in the first and fourth decades). Thus the need for that correction was 

avoided with a suitable choice of the photomultiplier tube amplifier, so that the
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channel range of all histograms of the time course was in the second and third 

decades. Two decades account for six divisions with a moderate efflux, thereby 

allowing a thorough study of the antiproliferative drug effects.

The CFSE fluorescence distribution is then fitted with a series of gaussians (using 

channel numbers as abscissa), with each representative of a cell generation. Any 

good program for non-linear fitting can be used, but care should be made in 

selecting the position of the first peak (e.g. by separate analysis of the efflux), 

excluding relevant distortions of the logarithmic amplifier (or account for them) in 

the range of the measure, and setting appropriate constraints.

For fitting purposes, the standard deviation of all gaussians was assumed to be 

constant. This assumption is theoretically correct only if at each division the two 

sibling cells would inherit exactly half the CFSE fluorescence of the mother cell. 

Because cytokinesis is not perfect, we would expect an increase of the standard 

deviation as generation number increases. However, an increase was not 

observed between the best-fit standard deviations measured in populations at the 

beginning o f our experiments (when the first generations prevail) and 

subsequently.

Another problem in the analysis o f CFSE is represented by the fact that the 

fluorescence of cells in the sixth and seventh generation, detected in controls at 

96h, was about three and two times, respectively, the average fluorescence of 

negative controls, making it unreliable to distinguish such generations. This is less 

of a problem in treated samples, where only a few cells divide for so many 

generations.

The position of the gaussian of undivided cells cannot be easily found simply by 

keeping a non-stimulated control of quiescent cells, as in most immunological 

studies, because cancer cells naturally divide. One alternative is to use controls 

whose proliferation is inhibited by exogenous treatment, e.g., w ith a low
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concentration of Colcemid (Holtz et al., 2002). However, we preferred to estimate 

the efflux directly by calculating the overall CFSE content retained by control cells 

(Fazekas de St Groth et al., 1999), using the absolute cell number measured 

independently with a Coulter Counter. This procedure is also applicable in cell 

lines where a simple and exact antiproliferative response to Colcemid or other 

antiproliferative drugs cannot be achieved, such as the line used in this study. In 

this way we obtained a consistent prediction (within a few channels) of the position 

of the highest fluorescence peak of cells in treated samples. The best fit of this 

position is then done by the fitting routine.

Our data showed that the CFSE method is useful to evaluate the antiproliferative 

effects of TPT. In chapter 4 we presented the results obtained with classical flow 

cytometric analysis and with the simulation program that we used to interpret 

experimental data, but CFSE labelling adds a new complexity by evaluating the 

flux of cells through subsequent generations. In particular, BrdUrd pulse-and- 

chase of CFSE labelled cells confirmed that cells in S phase at the time of 

treatment were the most affected by the drug, in fact about the 90% of BrdUrd-
j

positive cells remained unable to proliferate at least until 72 h after treatment (see 

figure 8.13). Moreover the output of the simulation program used to interpret cell 

cycle effects induced by drug treatment was modified in order to include the 

percentage of cells at the different generations. As demonstrated in figure 8.14, 

these data could be directly compared with the data obtained from the analysis of 

CFSE histograms. The addition of experimental information could be helpful in the 

restriction of the number of scenarios consistent with the data.
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CHAPTER 9: Role of p53 in Cell Cycle 

Perturbations Induced by Cisplatin



9.1 INTRODUCTION

9.1.1 p53

p53 was the first described (De Leo et al., 1979) and one of the most studied 

tumour-suppressor genes. Although p53 is dispensable for normal development, it 

has a key role in the cellular response to DNA damage from both endogenous and 

exogenous sources providing the maintenance of genomic integrity and a 

protective effect against tumorigenesis.

The p53 protein has a short half-life and it is normally maintained at low levels in 

unstressed mammalian cells by continuous ubiquitination and subsequent 

degradation proteasoma-mediated. The Mdm2 protein is one of the enzymes 

involved in labelling p53 with ubiquitin (Momand et al., 2000), Mdm2 protein binds 

p53 and stimulates the addition of ubiquitin groups to the carboxy terminus of p53, 

which is degraded. This lowers the concentration of p53 and reduces transcription 

of the Mdm2 gene, closing the feedback loop and allowing p53 levels to rise again. 

After genotoxic stress, p53 ubiquitination is suppressed and the wild-type p53 

protein is stabilized and accumulates in the nucleus and transactivates several 

downstream genes (Amundson et al., 1998).

The activation of p53 in response to DNA damage is a multifactorial process, 

where DNA damage or aberrant growth signals trigger different pathways of 

activation of p53. Many different kinase families phosphorylate p53, including 

DNA-PK, the casein kinase family, MAP kinase and CDKs (Meek, 1998). ATM and 

ATR are two of the major upstream regulators of the p53 response to DNA 

damage. Whereas ATM and DNA-PK primarily respond to DSBs (Carr, 2000), 

ATR responds to both ultraviolet light DNA damage (Unsal-Kacmaz et al., 2002) 

and DNA DSBs, and it also responds to other kind of damage induced by stalled 

replication forks, hypoxia (Hammond et al., 2002) and protein-kinase inhibitors.
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p53 is upstream of several pathways in which genes regulated by this protein are 

involved, among its target genes there are p21 and 14-3-3o. They represent the 

major mediators of p53-induced cell cycle arrest (Vogelstein et al., 2000). As 

already explained in paragraph 1.1, p53 protein directly stimulates the expression 

of p 2 iWAF1/clp\  an inhibitor of cyclin-dependent kinases (CDKs). Through its 

negative effects on various CDKs, p21 WAF1/CIP1 can arrest the cells in Gi 

(Brugarolas et al., 1999) and in G2 (Innocente et al., 1999; Bunz et al., 1998).

In addition to playing a role in cell-cycle checkpoint response, the activation of p53 

can lead to apoptosis, in fact the activation of several p53 downstream genes has 

been shown to trigger this death process (El Deiry, 1998; Vousden and Lu, 2002). 

The mechanisms underlying p53-induced apoptosis likely involve reactive oxygen 

species generation (Johnson et al., 1996) and mitochondrial dysfunction, including 

that caused by the induction of Bax (Green and Reed, 1998). A very large number 

of genes have been identified as potential downstream targets of p53 activation or 

suppression, but only two pro-apoptotic genes, Noxa and Puma (Jeffers et al., 

2003; Villunger et al., 2003), have been established as being of critical importance 

in vivo.

Even though the mechanisms are not clearly understood, p53 also participates in 

DNA damage repair. p53 may transcribe target genes that are important in the 

regulation of nucleotide-excision repair of DNA, chromosomal recombination and 

chromosome segregation (Vogelstein et al., 2000). Two examples of p53 target 

genes that participate in DNA damage repair are GADD45 (Smith et al., 1994) and 

p53R2 (Tanaka et al., 2000). Additionally, it has been suggested that p53 itself 

plays a role in genetic stability with the C-terminus of p53 binding to different forms 

of DNA damage including single-stranded DNA, ends of DNA stranded breaks and 

bulges caused by insertions or deletions (Balint and Vousden, 2001). It has been 

shown that cells lacking in p53 do not display a completely efficient NER (Wani et
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al., 1999) or BER (Offer et al., 2001) thus demonstrating the importance of p53 

and its products in DNA damage repair.

9.1.1 .a Inactivation of p53 in human tumours

Wild-type p53 function can be lost by mutation and the p53 protein does not 

correctly function in most human cancer (Hollstein et al., 1991). In about half of 

these tumours, p53 is inactivated directly as a result of mutation in the coding 

region of the p53 gene. The mutations occur at many sites within the gene but the 

most common class of mutation is a point mis-sense mutation in the central DNA 

binding domain of the protein. These mutant proteins can accumulate to high 

levels in tumour cells and the mutations act as dominant negative as the full-length 

mutant protein forms mixed inactive oligomers with the wild type protein (Lane, 

2004).

On the other side half of all human tumours retain wild type p53, but its tumour 

suppressor function is bypassed by inactivation of upstream signalling pathways or 

indirectly inactivated binding to viral proteins (Levine et al., 1991).

Although the interest in the tumour suppressor p53 and the studies about the 

complexity of its function and regulation in carcinogenesis, the problem regarding 

the role of p53 modifications in cancer chemotherapy and cancer prevention is still 

open. In spite of the effort that has been done to determine the effects of p53 

inactivation on the response of cancer cells to therapeutic agents, the results are 

conflicting, with some studies indicating enhanced sensitivity and others indicating 

increased resistance to the same compounds (Blandino et al., 1999).

9.1.2 Biochemical Mechanism of Action of Cisplatin

We believed that in this situation of complex molecular interactions, with redundant 

pathways involved in different mechanisms of cell cycle controls, a correct

223



understanding of the role of p53 should pass through a quantitative evaluation of 

its function in blocking activity, DNA repair and apoptosis.

In particular, in this study we decided to focus our attention on the role of p53 in 

the cell response to a DDP pulse-like treatment. We evaluated the perturbations 

induced by this drug on two isogenic cell lines, one expressing wild type p53 and 

the other lacking for the gene coding for this protein.

DDP is a platinum co-ordination complex that was first synthesized in 1845. 

Interest in DDP was revised in 1965 by the discovery of its biological activity in a 

bacterial culture, where this compound was able to inhibit cell division and induce 

filamentous cell growth (Rosenberg and Camp, 1965).

In general the mechanism of action of DDP is not too far from that observed for 

alkylating agents. Within the nucleus DDP may react rapidly with electrophylic 

sites on the DNA, forming monoadducts, which can be converted to cross-links by 

a slower reaction with the second DNA strand (D'lncalci et al., 1985). The adducts 

can take the form of intra- or inter-strand cross-links, which may cause major local 

distortions of DNA structure, involving both bending and unwinding of the double 

helix. The intra-strand cross-links are the most abundant products of the 

interaction (Fichtinger-Schepman et al., 1985). On the other side, inter-strand 

cross-links represent a small amount of the total DDP lesions, but several studies 

have suggested that they can also be responsible for the cytotoxicity of the drug 

(Ducore et al., 1982; Plooy et al., 1984). As the monoadducts can be converted to 

cross-links by a slower reaction with the second DNA strand, it has been proposed 

that the low sensitivity of some cells to the cytotoxic action of DDP could be due to 

a fast removal of drug-DNA monoadducts before they are converted to lethal inter

strand cross-links (Micetich et al., 1983).

The distortion of DNA caused by the drug stabilizes the interactions between DNA 

and its binding proteins. These trapped proteins contribute not only to enforce
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architectural changes, but they might mask DNA lesions, such as cisplatin-DNA 

adducts, from the NER machinery, or simply deplete important proteins that are 

involved in transcription (Hurley, 2002).

The affinity of DDP for nitrogen and sulphur atoms allows the drug to bind different 

proteins affecting their function, for instance in DDP sensitive cells there are 

alterations in mitochondrial enzymes, cytoskeleton proteins and transmembrane 

transport systems.

As a result DDP treatment inhibits DNA replication, RNA transcription, arrests at 

the G2 phase and/or promotes programmed cell death (Sorenson et al., 1990). 

Although DDP is widely used for treatment of a variety of solid tumours, the 

efficacy of treatment is often limited by the onset of resistance mechanisms. 

Resistance to DDP is multifactorial (Kartalou and Essigmann, 2001). Reduced 

intracellular accumulation of this compound, caused by alteration in the drug 

transport through the cell membrane, is frequently observed in DDP resistant cell 

lines (Parker et al., 1991). Other mechanisms involve sulphur-containing 

molecules, as glutathione (GSH). In this case GSH covalently links DDP and the 

complex may be transported out of the cell by an ATP-dependent pump (Ishikawa 

and Ali-Osman, 1993). Conjugation with GSH also inhibits the conversion of 

monoadducts to cross-links, thereby reducing the cytotoxic potential of the 

adducts.

Alterations in the expression of oncogenes, tumour suppressor genes (including 

p53) and genes coding for proteins involved in DNA repair have also been 

implicated in the cellular resistance to DDP. For instance, different studies have 

shown that resistance to DDP can also be related to MMR deficiency both in vitro 

and in vivo (Fink et al., 1996; Fink et al., 1997). As the most abundant lesions 

produced by DDP in DNA are intra-strand cross-links, loss of MMR produces drug
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resistance by impairing the ability of the cells to detect adducts in its DNA and thus 

to activate a pathway leading to apoptosis (Nehme et al., 1997).

9.1.3 Clinical Use of Platinum Compounds

DDP is one of the most efficacious anticancer drugs. It displayed a significant 

antitumour activity against several types of tumour. DDP is used as single agent in 

the treatment of testis, bladder, ovary, cervix, head, neck and lung cancer, but its 

efficacy in combination with other compounds, such as bleomycin, etoposide and 

vinblastin, was also tested (Einhorn, 1986). In particular, the reason for the very 

high sensitivity of testicular cancer to DDP is not fully elucidated even though 

Lutzker and Levine (1996) suggested that one of the possible reasons might be 

related to the fact that this kind of tumour very rarely shows p53 mutation.

DDP or its analogue carboplatin are two effective agents against ovarian cancer, 

used alone or in combination with paclitaxel, cyclophosphamide, or doxorubicin 

(Omura and Brady, 1993). Moreover the drug increased cell sensitivity to radiation 

therapy (Pearson and Raghavan, 1985).

9.1.4 Background and Rationale of the Study

Due to the complexity of the mechanism of cellular responses to DDP-induced 

damage it is not surprising that the published data are not all consistent in relation 

to the role of p53 and MMR on DDP cytotoxic effects.

Lymphoma cells, ovarian cancer cells, and lung cancer cells mutated in p53 were 

less sensitive to DDP than wild type cells (Fan et al., 1994; Eliopoulos et al., 1995; 

Perego et al., 1996), and the suggested cause was that p53-dependent apoptotic 

response was inactivated. Consistent with these findings are the studies by 

Sansom and Clarke (2002) that investigated the response to DDP in vivo in the 

murine intestinal epithelium, showing that p53 deficiency caused an abrogation of
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the apoptotic pathways. Moreover cells derived from p53-/- mice and from mice 

defecting both for p53 and Msh2, a gene coding for a protein involved in MMR, 

treated with DDP, showed an increased clonogenic survival compared to wild type 

cells.

In contrast, as shown by Hawkins et al. (1996), p53-/- mouse fibroblasts were 

more sensitive to DDP than wild type cells. Similarly, inactivation of p53 in human 

foreskin cells, breast cancer cells and colon cancer cells sensitized them to DDP 

(Fan et al., 1995), presumably because wild type cells were not susceptible to 

apoptosis and p53 could facilitate repair and extend the time available for it.

In such a situation we believe that the use of a wide range of drug concentrations 

together with a method enabling a clear distinction between cytostatic and 

cytotoxic effects should help to clarify the phenomena.

The choice of the cell line is also crucial. As reported by Pestell et al. (2000) 

conflicting results were obtained even using the same cell line. They studied the 

response of an ovarian cancer cell line A2780 to a treatment with DDP and they 

compared the results with the same line transfected with the human papillome 

virus protein HPV-16 E6, which stimulates the degradation of p53 through an 

ubiquitin pathway. In A2780/E6 cells the disrupted p53 function determined an 

increased sensitivity to drug treatment. In this cell line, and similarly in HCT- 

116/E6 (Lin et al., 2001), the loss of Gi/S checkpoint and decreased cisplatin-DNA 

adduct repair were considered the principal causes of the increased cytotoxicity of 

DDP. However they cited another study in which the same cell line transfected 

with a dominant negative mutant p53 showed a higher resistance to DDP, 

compared with the parental cell line (Herod et al., 1996). Also Brown et al. (1993) 

performed some experiments transfecting A2780 cells with mutant p53 which 

acted as a dominant negative and they showed that the presence of this form of 

the protein did not affect the response of this cell line to DDP treatment. This
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behaviour could derive from interaction of the mutant protein with the environment 

or from the presence of a residual functional wild-type p53. All that seems to 

indicate that a p53-/- cell line is the best system to investigate the role of this 

protein in the response to a drug treatment. For this reason we chose to use the 

colon carcinoma cell line HCT-116 and its isogenic cell line with p53 disrupted by 

homologous recombination.

A recent study performed by Lin et al. (2004) revealed that wild type cells HCT- 

116 exhibited greater sensitivity to a 72h treatment with different anticancer 

agents, including DDP, compared to the sensitivity shown by HCT-116 p53-/- cells. 

They found a possible explanation of this result in a paper published by 

Yamaguchi et al. (2001), which demonstrated that lack of p53 function in HCT-116 

p53-/- cells might avoid the activation of p53-dependent apoptosis, generating an 

increased resistance to chemotherapeutic agent-induced DNA damage.

It should also be taken into consideration that in colon carcinoma cell line HCT- 

116 a constitutive mutation in mismatch repair gene hMLH1 is present. Loss of 

MMR because of mutation of Msh2 or MLH1 underlies the majority of cases of 

hereditary nonpolyposis colon cancer and contributes to the resistance of this kind 

of cancer to DDP (Fishel et al., 1993). In this case loss of DNA mismatch repair 

activity and the p53 status both contribute to the cell response to DNA damage. In 

addition, as shown by Vikhanskaya et al. (1999), the absence of DNA mismatch 

repair due to loss of hMLH1 led to an increase in p53 stability after DNA damage.

9.2 RESULTS

9.2.1 Experimental Data

Using the experimental plan already explained in the previous chapters, 

exponentially growing colon carcinoma cells HCT-116 and HCT-116 p53-/- were 

treated for 1h with 0, 10, 30 and 100 pM DDP. After treatment the cells were
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counted in order to obtain the overall cell number and then fixed to perform 

different flow cytometric analyses. In this way we could obtain monoparametric 

DNA histograms, biparametric DNA/BrdUrd dot plots, using BrdUrd pulse-and- 

chase and Brdllrd-labelling protocols, detection of apoptosis by TUNEL assay and 

detection of cytostatic effects by CFSE histograms.

Figure 9.1 shows the growth curves of HCT-116 and HCT-116 p53-/- obtained 

calculating the mean values of cell number coming from, at least, three different 

experiments. The growth curves of the controls indicated that HCT-116 and HCT- 

116 p53-/- had the same doubling time and, considering the similarity of cell cycle 

percentages, we could also suppose that they had the same kinetics in 

unperturbed conditions. The comparison of the growth curves after treatment with 

the same DDP concentration did not reveal striking differences between the two 

cell lines.

HCT-116 HCT-116 p53-/-25000 i 25000 H

20000 20000  ■
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0 24 48 72 0 24 48 72
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■ 10 |jM DDP 100 (JM DDP

Figure 9.1: Growth curves of HCT-116 and HCT-116 p53-/- cells after 10, 30, 100

pM DDP for 1 h, measured by Coulter Counter. Each point is an average of at least

three different experiments represented with its standard deviation.
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Flow cytometric DNA histograms of control and treated samples are shown in 

figure 9.2. In both cell lines DDP induced an accumulation of cells in G2 M phase 

which was dose-dependent. In the samples treated with the highest drug 

concentration the effect was still present 72h after treatment. At this time in p53-/- 

cells (figure 9.2b) a decreasing in G2 M peak and a high amount of debris were 

detected, on the contrary wild type cells (figure 9.2a) showed a DNA histogram 

very similar to that observed 24h earlier with a strong accumulation in G2 M phase. 

DNA percentages of the two cell lines, obtained as mean value of at least three 

different experiments, were plotted in the same graph (figure 9.3). This 

representation highlighted the differences between HCT-116 and HCT-116 p53-/-. 

For 10-pM treated samples the percentage of G 1 population in HCT-116 cells 

increased with the time, particularly in wild type cells. However, as demonstrated 

by the wide error bars, this behaviour of wild type cells was variable in the different 

experiments, and this determined a partial overlapping with the percentage of G1 

cells calculated for the controls, where a smaller increase was also present. An 

opposite behaviour characterised the population in S phase. 24h and 48h after 

drug washout HCT-116 p53-/- treated with the lowest DDP concentration 

presented a higher percentage of cells in S phase. The main feature of the cells 

treated with 30 pM DDP was an increase in the percentage of G2 M cells at 24h, 

confirming the smaller increase observed in the same subpopulation of cells for 

the lowest dose. This trend was similar in wild type and p53-/- cells. Some 

differences between the two cell lines were present in the percentage of cells in G 1 

and S phase. In particular, 48h after treatment the percentage of S-phase cells 

was higher in HCT-116 p53-/-. This trend was already present in 10- and 30-pM 

treated samples, but it became clear in the cells treated with the highest drug 

concentration. Moreover in 100-pM treated samples the percentage of cells in G2 M
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phase remained constant in HCT-116, whereas in p53-/- cells there was a 

decrease between 48h and 72h.
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Figure 9.2: Time-course of DNA histograms of wild type cells (panel a) and p53- 

deficient cells (panel b) after 10, 30, 100 pM DDP for 1h. The data come from one 

typical experiment, but DNA profiles were similar in all the experiments. In 

particular, persistent accumulation in the G2 M peak is evident in the 100-pM 

histograms of wild type cells, whereas a high amount of debris is present at 72h in 

the p53-deficient cells treated with 100 pM DDP. The time-course of DNA 

distribution of control samples were similar for HCT-116 and HCT-116 p53-/-.
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Figure 9.3: Time-course of DNA percentages of the two cell lines. Each point is

the average of the percentages of cells in the different cell cycle phases as

obtained analysing DNA distributions of at least three different experiments. The

data are represented with their standard deviation.

Short-term effects of DDP on HCT-116 and HCT-116 p53-/- were evaluated by a 

pulse-and-chase experiment. As previously explained (paragraph 3.4.2), cells 

were exposed to BrdUrd in the last 20 min of treatment, allowing DNA- 

synthesising cells to incorporate BrdUrd, becoming "BrdUrd-positive", and were 

collected 6h later. The resulting biparametric DNA-BrdUrd plots are shown in 

figure 9.4. In control samples 6h after BrdUrd labelling BrdUrd-positive cells were 

distributed within late-S, G2 M and G 1 phases. In treated samples of both cell lines 

a dose dependent delay was observed, especially for treatment with 30 and 100 

pM DDP, where the cloud of BrdUrd-positive cells was still detected in middle-S 

and G2 M phase. Moreover in the samples treated with 100 pM DDP BrdUrd-

232



positive cells did not reach Gi phase suggesting that this subpopulation was 

slowed down in its progression through S phase and then intercepted by G2 M 

checkpoint. Although, at short time after treatment, BrdUrd pulse-and-chase 

experiment did not show strong differences between the behaviour of wild type 

and p53-/- cells, the progression of BrdUrd-positive cells through S phase was 

more delayed in HCT-116 p53-/-, especially for the samples treated with 10 and 30 

pM DDP.
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Figure 9.4: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(BrdUrd content) plots. Cells incorporated BrdUrd 20 min before the end of the 1h- 

treatment and were harvested 6h after treatment. Cells were considered BrdUrd- 

positive (in the S phase at the time of treatment, Oh) when detected above the 

straight line (left panels). BrdUrd-positive cells with G1 DNA content (G 1 +) at 6h 

were born from mitosis of cells in S phase at the time of treatment. G 1 BrdUrd- 

positive cells are present in the control and in samples treated with 10 and 30 pM 

DDP for both cell lines. BrdUrd-negative cells with S DNA content (S-) at 6h 

originated from G-i phase at the time of treatment.

233



Other qualitative information could be derived from BrdUrd labelling 24 and 48h 

after treatment and from BrdUrd pulse-and-chase at 72h. In the first case (figure

9.5) cells were labelled with BrdUrd and immediately harvested and fixed, this 

allowed to distinguish DNA synthesizing cells from cells that were not cycling or 

that were delayed in their progression through S phase. 24h after treatment 

biparametric dot plots of 10-pM treated cells were very similar to the controls and 

in general, also for cells treated with higher doses, the DNA synthesis was not 

completely inhibited by the drug. Even in 100-pM treated samples a small amount 

of BrdUrd-positive cells was present. The comparison between the biparametric 

dot plots of wild type (9.5a) and p53-/- cells (9.5b) 24h after treatment highlighted 

some differences in the behaviour of the two cell lines. In 30-pM treated samples 

the amount of cells detected in S-late phase with low BrdUrd-fluorescence was 

higher in HCT-116 p53-/- than in wild type cells. Moreover, in p53-/- cells treated 

with the highest dose of DDP, a high percentage of BrdUrd-negative S-phase cells 

(i.e. not cycling) was detected. These observations indicate that the reduction of 

DNA synthesis was stronger in HCT-116 p53-/-.

48h after treatment, the biparametric dot plot of wild type cells treated with 10 pM 

DDP was similar to the control, whereas BrdUrd-positive cells in HCT-116 p53-/- 

were characterized by a lower level of fluorescence. This sample and also the 

others treated with higher doses confirmed the presence of a reduction in DNA 

synthesis rate. Moreover in samples treated with the highest concentration we 

were almost unable to detect BrdUrd-positive cells.
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Figure 9.5: Biparametric DNA-Brdllrd dot plots of HCT-116 (panel a) and HCT- 

116 p53-/- (panel b). 24h and 48h after treatment cells were labelled with BrdUrd 

and immediately harvested and fixed. The cells that are detected above that 

straight line were synthesizing DNA ant thus incorporated BrdUrd.

In figure 9.6 we represented the other information that could be derived from 

BrdUrd pulse-and-chase experiment at 72h. The similarity of the percentage of 

BrdUrd-positive cells of treated and control samples indicated that in both the cell 

lines DDP did not specifically affect BrdUrd-positive or BrdUrd-negative 

subpopulations. In the case of a selective killing, e.g. of cells treated while in S 

phase, we would have observed a strong decrease in the percentage of BrdUrd- 

positive cells.
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Figure 9.6: Comparison between the percentage of BrdUrd-positive cells in HCT- 

116 and HCT-116 p53-/- as detected with BrdUrd pulse-and-chase experiment at 

72h after treatment.

Figure 9.7a and 9.7b show the biparametric dot plots DNA/dUTP, which provide at 

least qualitative information about the apoptosis induced by drug treatment. Cells 

with fragmented DNA, because of apoptotic death, formed the dUTP-FITC-positive 

subpopulation. In HCT-116 and HCT-116 p53-/- only cells treated with the highest 

DDP concentration presented more than 4% of cells in this status. A high 

percentage of dUTP-FITC-positive cells were already detected 48h after treatment 

in HCT-116 cells, whereas a low amount of apoptotic cells was present in p53-/- 

cells at 72h.
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Figure 9.7: Biparametric Pl-fluorescence (DNA content) and FITC-fluorescence 

(dUTP content) of HCT-116 (panel a) and HCT-116 p53-/- (panel b). Cells with 

DNA fragmentation induced during apoptosis are dUTP-positive, thus detected 

above the straight line.
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At this point the simulation approach was applied to combine together all the 

information that came from cell count and flow cytometric analyses and to quantify 

the time- and dose-dependence of killing, blocking or delay and repair activity.

9.2.2 Scenario of Cell Cycle Perturbations Underlying Experimental Data

Several simulation runs were performed with the aim of fitting the data in figure 9.1 

and 9.3 and taking into account the qualitative information reported in figure 9.5, 

9.6 and 9.7. The scenario of parameter values enabling to reproduce all the data is 

shown in figure 9.8.

The twelve panels represent the time- and dose-dependence of blocking activity 

(1st and 4th line), death rate (2nd and 5th line) and recycling rate (3rd and 6th line) in 

HCT-116 (1st, 2nd and 3rd line) and in HCT-116 p53-/- (4lh, 5th and 6th line). The 

effects occurred in BrdUrd-positive cells (left column) were also separated from 

those occurred in the BrdUrd-negative ones (right column).

9.2.2.a Events occurring in Gi phase (figure 9.8a)

In the samples treated with 30 and 100 pM DDP cells remained blocked in this 

phase only between Oh and 6h (first line panel). Between 6h and 24h almost all 

the cells treated with the highest concentrations and blocked in Gi could repair 

their damage and start cycling again (third line panel), this behaviour was similar in 

both cell lines.

The most evident difference between wild type and p53-/- cells was observed in 

the samples treated with the lowest drug concentration. Some of HCT-116 cells (5- 

20%) treated with 10 pM DDP were intercepted by Gi block. The effect was 

persistent and still present 72h after treatment. Instead, in HCT-116 p53-/- Gi 

block lasted 6h after treatment (fourth line panel).
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9.2.2.b Events occurring in S phase (figure 9.8b)

The passage through S phase of BrdUrd-positive and BrdUrd-negative cells was 

affected in the same way by the treatment, but differently in the two cell lines.

Wild type cells immediately reduced their DNA synthesis but this effect lasted for 

24h in 10- and 30-pM treated samples, whereas it was persistent in the cells 

treated with 100 pM DDP. For cells treated with the highest DDP concentration the 

delay rate remained constant up to 72h (first line panel). 5-20% of S-phase cells, 

or 20-40% for the samples treated respectively with 30 and 100 pM, died in this 

phase just after treatment. In cells treated with 100 pM DDP a cell loss between 

24h and 72h added to the cell loss present at short time after treatment (second 

line panel).

In HCT-116 p53-/- DNA synthesis was more delayed than in wild type cells. Even 

in the samples treated with the lowest concentration a 20-40% of reduction of DNA 

synthesis rate was observed and the delay was still present 72h after treatment 

(third line panel). However, cell death was limited to cells treated with 30 and 100 

pM DDP and it occurred only immediately after treatment (fourth line panel).

9.2.2.c Events occurring in G?M phase (figure 9.8c).

G2 M checkpoint in wild type cells intercepted BrdUrd-positive and BrdUrd-negative 

cells just after treatment. The percentage of cells that remained blocked during 

their passage through this phase increased in a dose dependent way, and they 

reached a peak 24h after treatment. After 24h the percentage of cells entering the 

G2 M block decreased, even though for the samples treated with the highest 

concentration a residual effect was present 72h after treatment (first line panel). 

Between Oh and 6h, 5-20% of cells treated with 30 pM DDP and 20-40% of cells 

treated with 100 pM DDP died in this phase (second line panel). Only 20-40% of
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cells treated with 30 pM DDP and blocked in G2 M could start cycling again 

between 24h and 48h (third line panel).

HCT-116 p53-/- cells were more strongly blocked in G2 M phase. In the samples 

treated with 30 pM DDP almost all the cells passing through G2 M between 24h 

and 48h were intercepted by the checkpoint. However, in the samples treated with 

the highest concentration, this effect lasted 48h after treatment and it was followed 

by the death of 20-40% of blocked cells. This behaviour was different from that 

observed in HCT-116, where the cells continued to be blocked up the end of the 

experiment and cell loss was not present.
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Figure 9.8: Characteristics of the response scenario for a complete reproduction 

of the experimental data. The blocking activity is represented as the percentage of 

cells that remain blocked among those traversing Gi or G2 M in the time interval 

indicated. The death/recycling rates are expressed in terms of the percentages of 

cells that die/recycle in each time interval, within the compartment of Gi (or G2 M) 

blocked cells.
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9.2.3 Sensitivity Analysis

As we previously explained (paragraph 3.6.3.e) the final scenario shown in figure 

9.8 allowed the reproduction of the data within the experimental precision, i.e. 3% 

for flow cytometric percentages and 20% for cell counts. Once that the final 

scenario was found it was necessary a further level of evaluation to measure the 

uncertainty of parameters estimation (sensitivity analysis). This study was done 

measuring how much the values obtained for each single parameter are allowed to 

vary maintaining the reproduction of data within their experimental error as in the 

adopted final scenario. In figures 9.9 and 9.10 we respectively represented the 

results of this study for HCT-116 and for HCT-116 p53-/-. The time course of each 

parameter obtained from the final simulation (represented with a continuous line) 

was compared with the results that came from the study of the sensitivity. The 

• dashed area represented the range of values of each parameter within which the 

simulation remained close to the data as specified above. A wide band means that 

a given parameter, at the specified time and concentration, is irrelevant for the 

data, while a narrow band means that the estimate is robust and the prediction of 

the observed data would be lost by small alterations of the assumed value.

In wild type cells the parameter of Gi blocking activity was found very sensitive, 

confirming the presence of a block in this phase for BrdUrd-negative cells in the 

first 6h after treatment (figure 9.9a). The presence of a blocking activity at long 

times in 10-pM treated cells was confirmed by this study in both BrdUrd-positive 

and BrdUrd-negative cells. At this drug concentration a recycling of Gi blocked 

cells could not be excluded, especially because this effect was observed at higher 

concentration after 6h, when the blocking activity ended. 24h after treatment with 

30 and 100 pM DDP the recycling rate became undetectable because there were 

not blocked cells any more. The sensitivity of cell loss of Gi blocked cells was not
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tested because this parameter was not relevant and always considered equal to 

zero in our simulation.

The precision of the final estimates of the parameters of S phase delay and cell 

loss resulted high by sensitivity analysis. The study confirmed the presence of a 

cell loss between 24h and 72h for cells treated with the highest drug concentration 

and a trend of increase with drug concentration for the parameter describing the 

delay in S phase (figure 9.9b).

The parameters connected with the blocking activity in G2 M phase were very 

sensitive to the data (figure 9.9c), confirming an increase in the block's strength 

between 6h and 24h. For the cells treated with 10 and 30 pM DDP the blocking 

activity lasted 24h after treatment leaving place to the presence of recycling. 

Sensitivity analysis confirmed the presence of a recycling activity in 30-pM treated 

cells blocked in G2M and it also revealed that a non-zero recycling rate in 10-pM 

treated cells was compatible with our data. In wild type cells treated with 30 pM 

DDP the presence of a cell loss in G2M phase between Oh and 6h was confirmed 

by the sensitivity analysis. Even though the cell loss in the same interval of time in 

100-pM treated cells was not sensitive, the dose-dependence of the effects 

allowed us to consider non-zero this parameter.

As shown in figure 9.10 also the parameters used in the simulation of p53-/- cells 

were highly sensitive. The presence of Gi blocking activity on BrdUrd-negative 

cells at short times after treatment was confirmed (figure 9.10a). Also the presence 

of a recycling probability was confirmed at short times after treatment in 30 and 

100-pM treated samples, whereas this parameter was not sensitive in the cells 

treated with the lowest drug concentration (figure 9.10a). This could be ascribed to 

the small amount of cells that remained blocked in this phase.

As the sensitivity of the parameter connected with the delay in S phase was high 

(figure 9.10b) we could conclude that DNA synthesis in p53-/- cells were more
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delayed than in wild type cells. The presence of cell loss was confirmed only in the 

first 6h after treatment in samples treated with 30 and 100 pM DDP.

The time-dependent trend of the parameters connected with the effects in G2 M 

phase was very similar for the two cell lines (figure 9.9c and 9.10c). The most 

important difference was observed in the parameter describing the cell loss in G2 M 

phase. In HCT-116 p53-/- only the cells treated with the highest drug concentration 

died in G2 M phase 48h after treatment and this behaviour was confirmed with 

good sensitivity by this analysis.
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9.2.4 Predictions of the Final Scenario

As already shown in the previous chapters, the final scenario could be used to 

obtain information on the behaviour and heterogeneity of the cell population that 

could not be measured otherwise. These predictions allowed an evaluation of the 

impact of a specific cell cycle effect (block, killing or recycling) on the growth of the 

whole cell population.

In figure 9.11 we represented the total amount of cells blocked in Gi or in G2 M 

compared with the total amount of cells in the same phase. %Gi and %G2 M were 

obtained calculating the mean values of different experiments, whereas the 

percentage of blocked cells was calculated using the simulation. Only a small 

proportion of cells in Gi phase was blocked and the most evident differences 

between wild type and p53-/- cells were detectable in the samples treated with 10 

pM DDP. In this case, 72h after treatment, about 18% of HCT-116 cells in Gi were 

blocked. At the same time there were not blocked p53-/- cells in this phase.

After treatment many cells accumulated in G2M and from figure 9.11 we could 

appreciate that a big proportion of G2 M cells was constituted by blocked cells. In 

10-pM treated cells the highest amount of G2 M blocked cells was reached 24h 

after treatment. In this case about 10% of wild type cells over a total amount of 

20% were blocked in G2M, whereas for p53-/- cells the amount of blocked cells 

reached the 20% over a total amount of 30% of G2 M cells. Also in 30-pM treated 

samples the amount of G2 M blocked cells reached its maximum 24h after 

treatment with a similar behaviour for the two cell lines. The decrease in the 

percentage of G2 M cells at 48h could be explained with the presence of a 

recycling probability in both the cell lines. In the samples treated with the highest 

drug concentration the amount of G2M blocked cells reached its maximum 48h 

after treatment. Whereas in wild type cells this amount remained constant also at
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/ 2h, in p53-/- cells there was a decrease in G2 M blocked cells that could be

ascribed to the presence of cell loss.
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Figure 9.11: Dose-dependence and time-dependence of the percentage of total 

(full height of the bars) and blocked (height of the filled area of the bars) cells in Gi 

and in G2 M for wild type and p53-deficient cells. This serves to evaluate the impact 

of the blocking effect on the cell population after treatment with 10, 30, 100 pM 

DDP. The error bars in the histograms indicate of the range where different 

simulations give predictions fitting the data within the experimental error.

From the simulation it was also possible to obtain the percentage of cells lost 

immediately after treatment and in 72h. In figure 9.12 the cytotoxic effect of DDP 

on HCT-116 and HCT-116 p53-/- was compared. Treatment with 10 pM and 30 

pM DDP were more cytotoxic for wild type cells that preferably died in S phase, 

between Oh and 6h after treatment. The bigger proportion of cells lost in S phase 

was represented by the BrdUrd-positive subpopulation. 17% of HCT-116 cells
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treated with 30 pM DDP died in 6h and 88% of them was lost in S phase. On the 

contrary, for samples treated with the highest DDP concentration the mortality was 

higher in p53-/- cells. 37% of HCT-116 p53-/- cells was lost in 72h, compared to 

25% of wild type cells, and the difference was due to cell loss at long times after 

treatment, in fact the percentage of lost cells in 6h was similar for wild type and 

p53-/- cells. In HCT-116 p53-/- 60% of cells died in G2 M phase, while 91% of wild 

type cells died in S phase. For wild type cells about 60% of the cells dead in S 

phase were BrdUrd-positive, at the same way for HCT-116 p53-/- the biggest part 

of the cells lost in S and in G2 M phase were BrdUrd-positive.
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Figure 9.12: Comparison between the total percentage of dead cells in 6h and in 

72h obtained from the simulation for HCT-116 and HCT-116 p53-/-. The pies 

above the columns of the histograms give the distribution of the cells lost in the 

different cell cycle phases. The error bars were calculated as reported in figure 

9.11.

9.2.5 CFSE Labelling of HCT-116 and HCT-116 p53-/-

In order to deepen the interpretation of the proliferation delays caused by DDP, we 

labelled HCT-116 and HCT-116 p53-/- cells with CFSE and we treated them with 

30 and 100 pM DDP. A time-course of CFSE histograms was obtained fixing the
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cells at different times after treatment. In figure 9.13 the data coming from one 

typical experiment were represented.

As explained in chapter 8, CFSE fluorescence intensity of control cells shifted 

toward lower values of fluorescence because of cell division, whereas CFSE 

histograms of treated cells tend to spread, as expected for delayed cells. 

Analysing each histogram as sum of gaussians, each one representing a cell 

generation, it was possible to obtain the percentage of cells that at a certain time 

after treatment remained undivided, those that were able to divide once, twice, etc. 

Comparing the results, the most important differences between the two considered 

cell lines could be observed at 72h, even though some differences in the controls 

should be taken into account. In fact at this time HCT-116 treated with 30 pM DDP 

reached the 6th generation, whereas p53-/- cells treated with the same 

concentration reached the 5th generation, but also their control was slowed down 

in comparison with wild type control. On the contrary the difference between the 

two cell lines treated with 100 pM DDP were much more evident and thus not 

conditioned by the different behaviour of the controls. In this case the majority of 

wild type cells remained blocked at the 1st and 2nd generation, whereas a big 

proportion of surviving p53-/- cells where in 3rd or subsequent generations. This 

suggested that some p53-/- cells were able to escape the block and survive better 

than wild type cells.

These experimental data could also be compared with the output of the simulation 

that results from the application of the final scenario. This comparison might give a 

contribution to the discrimination between different possible scenarios. In figure 

9.14 the cell distribution at 72h obtained from experimental and simulated data 

was compared.

In general the trend of the cell percentages in the different generation was 

respected. The differences could be explained taking into account that the
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simulated data were obtained as mean value of different experiments, whereas the 

data of CFSE came only from one of them. Moreover our model could not 

differentiate in a specific phase the effects that occurred at the cells in the first 

generation from those that occurred in the latter generations.
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Figure 9.13: Time-course of CFSE histograms of HCT-116 and HCT-116 p53-/- 

after Ih-treatment with DDP. In CFSE profiles the controls are represented with 

the black line, the samples treated with 30 pM DDP with the red line and the 

samples treated with 100 pM DDP with the yellow one. The histograms beside 

CFSE profiles represent the percentage of cells in each generation as obtained by 

the analysis of flow cytometric data. All the data shown in this figure come from 

one typical experiment.
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Figure 9.14: Comparison between the cell distribution at 72h obtained with the 

analysis of CFSE histograms and those obtained as output of the simulation, for 

samples treated with 30 and 100pM DDP. The differences between the 

experimental data and the result of the simulation could be ascribed to the fact that 

the simulated experiment was different from that performed with CFSE. Moreover 

our model could not differentiate the effects that occurred at the cells at the first 

generation to those that occurred in the last generation.

9.3 DISCUSSION

We demonstrated that short DDP treatments induced complex cytostatic and 

cytotoxic responses in each cell cycle phase, and each effect presented a peculiar 

time- and dose-dependence.

In wild type cells a blocking activity was observed in Gi and in G2 M phase 

immediately after treatment and, at the same time, the cell progression through S 

phase was delayed. Most cytostatic effects ended within 24h after treatment, 

except for the samples treated with the highest dose, where a blocking activity in 

G2 M and a delay in S phase were still present at 72h. The end of the blocking 

activity in G1 and in G2 M phase left place to recycling, observed between 6h and 

24h in G1 phase for 30- and 100-pM treated cells and between 24h and 48h in 

G2 M phase for 30-pM treated cells. Cell loss, particularly in S-phase cells, was
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observed between Oh and 6h, even at low and intermediate concentration, 

whereas at the highest concentration a second wave of loss occurred after 24h. 

These results could be compared with those reported for IGROV1 cells (Montalenti 

et a l., 1998) treated with the same DDP concentrations. In general the 

perturbations induced by DDP on the cell cycle of HCT-116 were not too different 

from those found for IGROV1 cells. In particular, after a short block in Gi or in G2 M 

phase, IGROV1 cells treated with low doses started cycling again. A blocking 

activity and a cell loss were simultaneously present in the first 6h after treatment. 

The long-term death characterized the treatment performed with higher doses. In 

IGROV1 cells, like in HCT-116, the cell progression through S phase was delayed 

by the treatment and the duration of this effect was strongly dose-dependent. 

However, if the kinetics of these phenomena looked similar in the two cell lines, 

their intensity was different, in fact IGROV1 cells resulted much more sensitive to 

this drug. This is coherent with the hypothesis that cells lacking for proteins related 

to MMR, as HCT-116, are more resistant to DDP, although a role of other genes 

differently expressed in the two cell lines cannot be excluded. Instead, the 

differences observed in the kinetics of the blocking activity, cell loss and recycling 

in the isogenic HCT-116 and HCT-116 p53-/- cell lines could be unambiguously 

ascribed only to the presence or absence of p53.

Qualitative inspection of cell counts, TUNEL assay, DNA histograms and 

DNA/BrdUrd dot plots, obtained in parallel for HCT-116 and HCT-116 p53-/-, 

evidenced several, but not strong, differences in the response between the two 

cell lines. Our findings were not in agreement with other studies comparing HCT- 

116 and HCT-116/E6 cell lines (Lin et al., 2001; Vikhanskaya et al., 1999) and 

reporting a much higher sensitivity of the HCT-116/E6 clone with disrupted p53 

function. However the use of papilloma virus-derived E6 to inactivate p53 is 

reported to cause major effects on cells other than those just mediated by p53
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inhibition (Klingelhutz et a!., 1996; Bunz et al., 1999). Instead, our data are in 

keeping with those of Carrassa et al. (2004) and of Lin et al. (2004) who performed 

experiments using HCT-116 p53-/-. In the first case they demonstrated that wild 

type and p53-/- cells had a similar sensitivity to short DDP treatment. In Lin's study 

the cells were continuously treated for 72h, but also in this case they found at the 

most a two-fold increased sensitivity to this drug for cells with wild type p53. 

However, in both these studies the contribution of p53 in distinct cell cycle control 

mechanisms of block, recycling and death was not quantified. This analysis was 

attempted in the present study, examining a complete time- and dose-series of 

experimental data with the previously described mathematical method (see section

3.6). This procedure proved successful in the explanation of phenomena which 

were apparently contradictory confirming, once again, the complexity of the role of 

p53 in the response to a drug treatment.

In treatments with low DDP concentration (10 pM) the absence of p53 seemed to 

prevent the cells from a limited short-term death, occurring in cells traversing S 

phase. Cytostatic effects were detected in all cell cycle phases but in S and in G2 M 

phase they were relatively stronger if p53 was absent. Thus, damaged cells with 

wild type p53 died, whereas p53-/- cells were able to survive but they were more 

impaired than surviving HCT-116 in the subsequent progression through S and 

G2 M phase. Moreover, some wild type cells were continuously intercepted by G 1 

checkpoint. This effect was not present in HCT-116 p53-/-, suggesting an 

impairment of G 1 checkpoint in this cell line, even though this checkpoint showed 

to have a minor role in the overall response of HCT-116 to treatment with low DDP 

concentrations.
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Similar effects were observed at short time after treatment with intermediate 

concentration (30 pM), even though with a stronger intensity, confirming the 

differences found in 10-pM treated samples. As for the lowest concentration, short

term cytotoxicity was higher in wild type cells, while the progression through S and 

G2 M phase was slower in p53-/- cells. Between 6h and 24h, 90% of the HCT-116 

p53-/- passing through G2 M remained blocked in this phase compared to the 65% 

of wild type cells. Then, both G2 M-blocked p53-/- and wild type cells started cycling 

again between 24h and 48h and there was not long-lasting cell death. For what 

concerns the G 1 response, a low short-term block was common to both wild type 

and p53-/- cells, followed by recycling in the subsequent interval of time (between 

6h and 24h). This effect was associated to cells originally in G1 phase (BrdUrd- 

negative), whereas BrdUrd-positive cells, that could divide and reach G1 phase, 

were not blocked there. This behaviour differed from that observed at the lowest 

concentration, were G1 checkpoint was activated in some BrdUrd-positive wild 

type cells, but in this case the delay in S phase and the blocking activity in G2 M 

phase were less efficient. Moreover, several p53-/- cells that divide once and went 

out from G1 after 24h were delayed in traversing S phase, suggesting that repair 

was not completed in the checkpoints previously traversed. These findings are 

consistent with the hypothesis of a less efficient repair in p53-/- cells, and with the 

hypothesis of a long-term G 1 block not functioning when p53 is absent. On the 

contrary the effects observed in G 1 phase in 30- and 100-pM treated samples 

were equivalent in wild type and p53-/- cells, with a short-term block followed by a 

recycling between 6h and 24h.

The situation changed in cells treated with a relatively high concentration of DDP, 

such as 100 pM, where the presence of long-term cytotoxic effects was relevant, 

whereas the cytostatic effects in all phases reproduced and confirmed those 

observed in 30-pM treated cells. At short times after treatment a cell loss was
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observed in S-phase cells of both cell lines whereas only HCT-116 blocked in G2M 

phase died there. The absence of a killing activity in G2M confirmed the behaviour 

observed at 30 pM, suggesting an involvement of p53 in shifting towards death the 

fate of G2M blocked cells at short times after treatment. On the other side G2M- 

blocked HCT-116 p53-/- collapsed between 48h and 72h, the presence of a non- 

apoptotic cell death was confirmed by the high amount of debris (figure 9.2a) and 

the low percentage of dUTP-positive cells detected at 72h (figure 9.7b). Long-term 

death in HCT-116 involved cells that, 24h after treatment, reached S phase after 

dividing once. This fact could explain the absence of wild type cells in the 3rd and 

subsequent generations at 72h whereas some p53-/- cells were still present (figure 

9.13, lower panels). The ability of these cells to bypass Gi checkpoint had two 

possible explanations. The first hypothesis is that at such a high level of damage 

the p53-dependent Gi block was not functioning, because some of the proteins 

involved in this molecular pathway could not be properly produced. The second 

hypothesis is that the trigger towards apoptosis was given while cells were in Gi 

but they did not remain blocked in that phase.

The reconstruction of this scenario was possible by integrating data obtained with 

different techniques and with a complete experimental plan including the 

monitoring of the cells treated with several drug concentrations at different times 

after drug washout. The use of computer simulation allowed that integration. We 

believe that part of the contradictory results reported in the literature could be 

explained as shortcut interpretations of piece of information obtained with 

incomplete experimental plans.

For instance, from a simple analysis of flow cytometric histograms the 

disappearance of accumulation of cells in G2M at 72h in p53-/- cells could be 

interpreted as a consequence of a shorter duration in G2M blocking activity. This
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interpretation would have supported the hypothesis that p53 was important not 

only in the occurrence of G2 M arrest but especially in the duration of the effect 

(Bunz et al., 1998; Hirose et al., 2001). However our deeper investigation induced 

to suppose that the situation was more complex, with a blocking activity 

overlapped to a cell loss, so that these two contributions determined the overall 

percentage of cells in this phase.

However, due to the low blocking activity induced in Gi phase by DDP, even in 

wild type cells, the role of p53 in this checkpoint should be further investigated with 

a compound inducing a stronger block in this phase.
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CHAPTER 10: General Discussion



The efficacy of many treatments with anticancer agents could be limited by wrong 

knowledge about the cytokinetic properties of the cell population and, on the other 

side, by an incomplete knowledge of the effects induced by the considered 

compounds. In fact we demonstrated in this thesis that even low concentrations of 

agents believed to be rather phase-specific could induce effects in each cell cycle 

phase. Thus the appreciation and the quantification of these effects provide an 

important contribution to the comprehension of the mode of action of a particular 

anticancer agent. Very often also clinically used drugs are not completely 

understood from the point of view of the time- and dose-dependence of the effects 

induced in the cell cycle and many published reports catch only partial aspects of 

them. It is for this reason that we decided to make a complete study of the cell 

cycle response to treatments with a set of drugs belonging to different classes of 

chemotherapeutic agents. As far as we know, a study of this kind, producing a 

database of data with the same methods and with the same biological model, is 

lacking in the scientific literature. Thus we decided to approach the problem 

focusing our attention on a biological model represented by an ovarian cancer cell 

line. The choice was driven by the fact that our laboratory has been interested 

since many years in the study of this kind of tumour and its therapies. As a 

consequence the choice of the drugs considered in this project (cisplatin, 

doxorubicin, melphalan, paclitaxel and topotecan) fell on compounds that are in 

use, or were used in the past, for the treatment of the ovarian cancer as single or 

combined agent, in first line therapy or for relapsed tumours.

As a model of ovarian cancer we decided to use a cell line stabilised in vitro and 

we chose IGROV1 for the following reasons:

i. This cell line is one of the ovarian cancer lines considered by NCI for the 

project of drug screening (http://dtp.nci.nih.gov/branches/btb/ivclsp.html).

259

http://dtp.nci.nih.gov/branches/btb/ivclsp.html


ii. IGR0V1 shows a response to the drug treatment with the compounds 

considered in this project not too far from the average response showed by the 

group of ovarian cancer ceil lines considered in the NCI panel.

iii. Culture conditions of IGROV1 were previously optimised in our laboratory 

(Chiorino et al., 2001), obtaining a good reproducibility of cell growth.

iv. From the molecular point of view IGROV1 have p53 wild type and the other cell 

cycle relevant genes are not exceptionally expressed respect to the other 

ovarian cell lines in the NCI panel.

On the other side, from the point of view of the schedule of treatment, we decided 

to perform pulse-like treatment for all the considered drugs. In our opinion, the 

choice of investigating the cell cycle effects induced by 1-h treatments represents 

the first necessary step before tackling the problem of building the effect upon 

prolonged or more complex schedules. Moreover the extent of the observation 

period was 72h because, as previous experience indicated, cytostatic and 

cytotoxic effects are still present at long times after drug washout.

The data collected with all drugs were analysed with the mathematical approach 

developed by our group. This method allows the simulation of the fluxes of cells 

through the cell cycle in unperturbed conditions and in the presence of specific 

hypotheses concerning the post-treatment dynamics of the activity of Gi, S and 

G2 M checkpoints. In this way we were able to reproduce all the data retrieved at 

different times and drug concentrations and with different techniques. Moreover, 

with the simulation approach, we could overcome many limitations deriving from 

other experimental methods that are not able to quantify separately cytostatic and 

cytotoxic effects (for further details see section 1.3). The application of a 

mathematical model reproducing the cell cycle before and after drug treatment 

allowed the appreciation of the heterogeneity of the cell response to DNA damage
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induced by anticancer agents, evaluating the percentage of cells intercepted by 

each checkpoint.

A remarkable aspect of this approach was the strong connection between 

experiments and theory. In fact, differently from many "theoretical" mathematical 

models, the simulation was used to reproduce a huge amount of experimental 

data. On the other hand the simulation was also crucial in the recognition of 

different combinations of Gi, S and G2 M perturbations coherent with the data and 

in the design of additional experiments to test concurrent hypotheses.

As the model is a simplification of the complex cell response to a drug treatment, 

our aim was not to use it for a precise measure of the parameters but to obtain an 

estimate of the strength of the corresponding phenomenon, enabling to explain the 

available data. On the other side, wishing to include all basic perturbations of the 

cell cycle with their time-dependence, the equations of the model are too complex 

to be solved and we are not able to obtain cell cycle percentages as analytical 

functions of those perturbations. For this reason, we made simulations, solving 

numerically the equations of the model. In this situation it was not necessary (and 

also not technically possible in our knowledge) to fit directly the data with some 

non-linear fitting routine and we adopted a trial-and-error procedure. This also 

allowed us to maintain a biological comprehension of the phenomena in all phases 

of the analysis.

At the end, with our analysis we were able to determine a set of parameters 

(scenario) that describe and quantify the cytostatic and cytotoxic effects induced 

by the treatment with each one of the considered drugs. Eventually, the work done 

for this project produced two complete databases, one including the data (flow 

cytometric percentages and cell numbers at different times after treatment with 

several drug concentrations - appendix 1) and the second including the time- and

261



dose-dependence of the parameters used in the model and associated to blocking 

activity and repair or killing in Gi, S and G2 M.

In this way we were not only able to separate cytostatic from cytotoxic effects, but 

we could also evaluate in which phase of the cell cycle they occurred. In addition, 

using BrdUrd labelling and pulse-and-chase, a distinction between cells that were 

in S phase at the time of treatment and cells that were in Gi and G2 M was possible 

w ithout any synchronization. Thus we could follow the fate of the two 

subpopulations through the different cell cycle phases and quantify separately the 

impact of the drug on BrdUrd-positive and BrdUrd-negative cells.

The possibility of using other flow cytometric information was also tested in this 

project. In particular, CFSE staining allowed the distinction between cells in the 

first, second or other cycles after treatment. We applied this new approach to the 

case of IGROV1 cells treated with different concentrations of topotecan and we 

followed the cell proliferation until 72h after treatment. Moreover the setting up of a 

triparametric staining with CFSE, BrdUrd-PE and PI for DNA content enabled us to 

monitor the effect of topotecan on proliferation of cells that were in S phase at the 

time of treatment. The results of this study (chapter 8) highlighted the 

heterogeneity of drug effects: some cells die, some do not proliferate at all, and 

some divide once, twice or even three times in the 72-h observation period. This 

issue is often overlooked, particularly in studies based on cell extracts, where 

researchers examine changes in average molecular quantities, thus averaging the 

response of the time- and dose-dependent fraction of cells that remain healthy 

with that of the cells that try to repair the damage and even with dying cells. 

However, strong intercell variability of the response is not surprising because of 

the potential differences in the protein content at the time of treatment and in 

cellular drug exposure (Evans et al., 2004). In fact, on the first point, the amount of 

each protein at the time of treatment is the result of many complex interactions,
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each one with its own statistical variability, and therefore is likely to vary widely 

among individual cells. Many combinations of these amounts are probably 

compatible with normal cell life and proliferation. Concerning drug exposure, other 

reports (Feeney et al., 2003; Errington et al., 2005) suggested that the actual drug 

concentration widely varies inside the cells even in the strictly controlled 

environment of in vitro culture. However, with our model we were able to face this 

complexity and the data coming from CFSE could be correctly simulated. As we 

have demonstrated in chapters 8 and 9 this was possible even though in the 

model we did not differentiate the effects that occurred at the cells in the different 

generations.

The model was not only able to explain the data obtained with CFSE staining but it 

was also used to analyse the information connected with more complex schedules 

of treatment. We considered the case of repeated TPT treatments on IGROV1 

cells demonstrating that the model is self-consistent and it can be applied to 

investigate the origin of an auto-potentiation phenomenon that was observed with 

a fractionated scheme.

Moreover, additional and extensive studies were done in order to test the results 

obtained with the simulation. In particular the study of the sensitivity of the 

parameters considered in the model allowed an estimation of the possible range of 

error of the scenario that was obtained for each drug. This represented a 

necessary step towards the comparison of the cell response activated by different 

anticancer agents. Despite the belonging of the five compounds to different 

classes of chemotherapeutic agents, inducing different types of damage, this part 

of the study leaded to the recognition of the existence of common trends in the 

response to drug treatments.

As far, we focused our attention on the same cell line, but with a similar approach, 

it is possible to analyse the similarity and the differences between the response of
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different cell lines to the treatment with the same anticancer agent. With this kind 

of experiments it is possible to answer two different questions: are cell cycle 

effects induced by drug treatment independent of the employed cell line? What is 

the role of a particular protein in the cell response to drug treatment?

We addressed the issue of the reproducibility of the scenario with different cell 

lines, performing a treatment with L-PAM on another ovarian cancer cell line 

(A2780) and a colon carcinoma cell line (HCT-116) and we confirmed most of the 

features observed with IGROV1. However, the same effects observed in IGROV1 

cells were also detected in A2780 treated with a lower concentration and in HCt- 

116 treated with a higher concentration. This difference of sensitivity between the 

three cell lines might also be caused by events upstream cell cycle response, like 

different drug transport across cell membrane or different amounts of DNA lesions 

produced during exposure to L-PAM. The results of this study are not shown in 

this thesis, but have been published on Lupi et al. (in press).

The last part of the project was addressed to answer the second question. In 

particular we investigated the role of p53 in the response to a treatment with DDP. 

In this case we used two isogenic cell lines differing only for the expression of p53 

and we compared the scenarios describing the effects induced by DDP in the two 

systems. Many studies has been done about this topic (see references in chapter 

9), but they generally lack in the quantification of the contribution of p53 in different 

cell cycle control pathways and their results are not always in agreement. Our 

contribution to this subject was represented by a complete description of the time- 

and dose-dependence of the role of p53 in the response to DNA damage. In 

particular we confirmed the role of p53 in the activation of the apoptotic pathway, 

making an observation sim ilar to that reported by Zamble et al. (1998) in 

teratocarcinoma cells treated with DDP. The presence of p53 induces a more 

rapid apoptotic response, even though its absence does not alter the cellular
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sensitivity. On the other side, the role ascribed to p53 in the maintenance of G2 M 

blocking activity (Bunz et al., 1998; Hirose et al., 2001) was not confirmed by our 

study, which instead pointed on different kinetics of loss between G2 M blocked 

cells in HCT-116 and HCT-116 p53-/-.

These studies open new perspectives for future projects. For instance, a deeper 

investigation of the role of p53 in the response to other anticancer agents could be 

done focusing a particular attention on its role in the induction of Gi checkpoint 

activity that has not been further investigated in the case of DDP, because of its 

low effect in this phase in the considered cell line. Besides the role of p53, it would 

be also interesting to study the role of other key proteins in the activation of cell 

cycle checkpoints after drug treatment.

On the other side the study of more complicated schedules of treatment or the 

investigation of the origin of the potentiation deriving from the use of drug 

combination or fractionation would be helpful in the design of new tests aimed to 

find treatments with more efficacious outcome.
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APPENDIX 1



We reported in table A.1 the time course of the experimental data obtained from 

the study of the response of IGROV1 cells to 1-h treatments with cisplatin, 

doxorubicin, melphalan, paclitaxel and topotecan applying the basic experimental 

plan (see Materials and Methods). Besides the flow cytometric percentages 

calculated from DNA histograms or from biparametric DNA/BrdUrd dot plots we 

listed the relative number of cells: N r = N(t)*1000/N(0) where N(t) is the datum 

obtained from the count made with Coulter Counter and N(0) is the number of cells 

at the time of treatment (Oh). The cell numbers listed in the table were obtained as 

the average of at least three replicated samples. These replicated samples were 

then pooled for flow cytometric analysis.

DNA histograms were analysed on the basis of a program developed in our 

laboratory that uses a sum-of-gaussian method to obtain the percentages of cells 

in G i, S and G2 M (figure A.1) (Ubezio, 1985). At short times after treatments, 

together with DNA histograms, a flow cytometric measure of DNA/BrdUrd was 

performed. The obtained cytogram is generally very similar to that shown in figure 

A.2. On this plot we drew four regions of interest and we calculated the percentage 

of cell in each one of these regions.

%1c+: percentage of labelled undivided cells (i.e. cells that are at the first cycle) in 

the upper right window (LU).

% BrdUrd+: percentage of all labelled cells, including the undivided and divided 

ones.

%GiS-: percentage of unlabelled Gi and S cells, in the lower left window.

%G2 M-: percentage of unlabeled G2 M cells, in the lower right window.
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Figure A.1: Example of DNA histogram analysed as sum of gaussians. The open 

circles represent the experimental data, the red line represents the Gi and G2 M 

gaussians and the blue line represents the S gaussians. The sum of all these 

contributions gives the fitting of the data (continuous line above the circles).
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Figure A.2: Example of flow cytometric DNA/BrdUrd biparametric distribution. 

Four windows are set, separating labelled divided (LD), labelled undivided (LU), 

unlabelled G1S (G1S-), and unlabelled G2 M (G2 M-) cells.
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The four-listed "observables" are the main quantities that can be obtained by 

biparametric DNA/BrdUrd distribution. The partition of the cytogram that has been 

chosen is probably as much robust as possible, because it exploits the gaps 

between BrdUrd+ and BrdUrd- cells and between divided and undivided cells to 

distinguish the different subpopulations. The distinction between G2 M- and G 1S- 

cells is also clear, at least until cells exiting Gi arrive in G2 M phase, but, for the cell 

lines that have been considered during this project, the choice of performing this 

kind of measurement at 6h after BrdUrd labelling excludes this possibility.

In some instances additional measures of BrdUrd pulse-and-chase at 72h after 

treatment were performed. However, in this case, only the window of BrdUrd+ 

cells could be drawn because the partial overlap of BrdUrd+ cells divided several 

times with BrdUrd- cells renders somewhat uncertain the positioning of this 

window. For this reason we sometimes considered of limited precision the 

estimate of the percentage of BrdUrd+ cells and we decided to indicate only a 

range instead of a precise value. In any case the addition of this measure to the 

panel of the experimental data supported the exclusion or inclusion of scenarios 

with strong differential effects between BrdUrd+ and BrdUrd- cells.

Together with quantitative data other qualitative information was also reported. In 

particular we indicated with "Y" the presence of apoptotic cells, detected by 

TUNEL assay and the presence of debris highlighted by DNA histograms. For 

some samples TUNEL assay was not performed, in this case dUTP in the table 

was identified by "NM" (standing for "not measured").

1
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LIST OF ABBREVIATIONS

ALL Acute lymphoblastic leukaemia

Ara-C Cytosine arabinoside

ATM Ataxia telangiectasia mutated

ATR ATM-related

BER Base-excision repair

BrdUrd 5-bromo-2'-deoxyuridine

CDK Cyclin-dependent kinases

CFDASE 5-(and-6)-Carboxyfluorescein diacetate succinimidyl ester

CFSE Carboxyfluorescein

Chk1 and Chk2 Checkpoint kinase 1 and checkpoint kinase 2

CKI CDK inhibitors

CML Chronic myeloid leukaemia

CPT Camptothecin

CV Coefficient of variation

DSB Double-strand break

DDP Cisplatin

DMSO Dimethylsulfoxide

DXR Doxorubicin

EDTA Ethylenediaminetetraacetic acid

EGFR Epidermal growth factor receptor

FITC Fluorescein isothiocyanate

FSC Froward scatter

GSH Glutathione

GST Glutathione S-transferases
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IMDM Iscove’s Modified Dulbecco’s Medium

L-PAM L-phenylalanine mustard - melphalan

LU Labelled undivided (cells)

MDR Multidrug resistance

MMR Mismatch repair

MRP MDR-associated protein
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PBS Phosphate buffer solution
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PE Phycoerythrin

P-gp P-glycoprotein

PI Propidium iodide

PMT Photomultiplier tube

Rb Retinoblastoma

SCLC Small cell lung cancer

SRB Sulphorhodamine blue

SSC Side scatter

TdT Terminal deoxynucleotidyl transferase

TPT Topotecan

TUNEL TdT-mediated dUTP nick end labelling technique
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