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Abstract—In this paper, we show that the flicker waveforms of
various CFL and LED lamp models exhibit distinctive waveform
patterns due to harmonic distortions of rectifiers and voltage
regulators, the key components of modern lamp drivers. We then
propose a passive localization technique based on fingerprinting
these distortions that occur naturally in indoor environments
and thus requires no infrastructure or additional equipment.
The novel technique uses principal component analysis (PCA)
to extract the most important signal features from the flicker
frequency spectra followed by kNN clustering and neural net-
work classifiers to identify a light source based on its flicker
signature. The evaluation on 39 flicker patterns collected from 8
residential locations demonstrates that the technique can identify
a location within a house with up to 90% accuracy and identify
an individual house from a set of houses with an average accuracy
of 86.3%.

Index Terms—IoT, localization, machine learning algorithms,
wireless sensor network, VLC

I. INTRODUCTION

The area of indoor localization is well researched with
numerous techniques based on WiFi [1], UWB [2], RFID
[3], chirp spread spectrum modulation [4] and visible light
communication [5]. Most prior work requires instrumenting
an environment with reference nodes, which are used by
mobile nodes to compute their location through proximity,
triangulation, trilateration or RSSI signatures. More recently,
infrastructure-less indoor localization made it possible to
detect object location by analysing wireless signal strength
fluctuations from ambient wireless signals such as WiFi, TV
or Radio transmission signal [1]. The technique however relies
on the presence of ambient WiFi access points or nearby
radio signal emitters, which are not always available in certain
environments.

It is well known that indoor LED and compact fluorescent
light sources exhibit flicker, which has been mostly seen as
nuisance due to interference on visible light communication,
video recording [6], detrimental impact on productivity [7]
and health concerns [8] [6]. The flicker has been studied
mainly within the context of light quality improvement [9] or
ergonomics with numerous works on flicker characterisation
[10] or minimising distortions [11]. However, investigating this
phenomenon in the context of indoor localization has received
little attention.

In this paper we measure the flicker profiles from several
commercially available LED and fluorescent light sources
and show that the flicker waveforms depend on light source
type and a bulb model. Compared to traditional incandescent
lights, where flicker is caused primarily by 50 Hz/60 Hz AC
mains voltage, the flicker in LED and fluorescent sources
has a different nature. Both LED and fluorescent sources
operate on DC voltage and therefore require a rectifier and
voltage regulators, which being a non-linear devices introduces
harmonics and distortions into a power signal, resulting in
a non-sinusoidal waveform with a distinct shape. This shape
depends upon the electrical driver design and its electronic
component combination, which may be different for each light
bulb type and a bulb model.

Based on this observation we propose a passive localiza-
tion technique based on fingerprinting artefacts present in
the flicker waveform from distinct light sources in indoor
environments. Compared to existing techniques, it can work
passively without retrofitting the environment with additional
equipment such as LED drivers, UWB [2], Bluetooth, Zigbee,
RFID [12] or ultrasonic devices [12]. The main goal of the
paper is to investigate the feasibility of the concept and report
on the performance of the proposed technique. The paper
makes the following novel contributions:

• We measure the flicker waveform profiles of commer-
cially available LED and compact fluorescent bulbs and
demonstrate that light sources may exhibit distinct flicker
characteristics in the frequency and temporal domains.

• We propose a novel passive localization technique based
on flicker waveform fingerprinting and experimentally
evaluate its performance using real flicker measurement
data obtained from multiple residential homes.

The proposed technique first uses principal component
analysis [13] to extract the essential features from the light
flicker frequency spectrum. The location is then inferred using
kNN clustering and an artificial neural network classification
methods. Based on extensive measurements and experiments,
we show that the proposed technique provides a location
accuracy of up to 90% within an indoor environment. The
proposed approach does not require any specialised equipment
apart from a high-frequency light sensor, which is a tiny low-
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cost component that can be connected directly to a sensor node
or potentially a mobile phone without requiring any additional
components.

The rest of the paper is structured as follows: Section II
describes the operation of LED and CFL light sources. Section
III describes the proposed classification approach. Section IV
describes the measurement setup including hardware configu-
ration. Section VI reviews related work on indoor localization,
and finally Section VII concludes the paper.

II. LED AND FLUORESCENT LIGHT OPERATION

Flicker is an intrinsic problem of the light source and
associated electronic components such as drivers or ballasts
and can be categorised into visible flicker caused by an
alternating 50/60 Hz current and a stroboscopic flicker caused
by inherent characteristic of power supply. As shown in
Fig. 1, the flicker waveform may have non-sinusoidal form
characterised by a maximum, minimum and average value
within a single cycle. Although the light sources also exhibit
chromatic flickering associated with changing color spectrum
[10], this study focuses on visible and stroboscope flickering.
The amount of flickering is characterised by percent flicker
and flicker index parameters as defined below [10] :

Percent flicker = 100%
A−B
A+B

(1)

Flicker index = 100%
Area1

Area1 +Area2
(2)

Where A, B, Area1 and Area2 are defined in Fig. 1. Many
LED bulb manufacturers specify the percent flicker to be less
than 30% in the 100-120 Hz frequency range [10]. CFL lamps
with magnetic ballasts have relatively high flicker of 37-70%
while CFL bulbs with electronic ballast have a flicker of 5%.

In the following subsections we briefly describe the princi-
ple of operation of LED, compact fluorescent and incandescent
lamps to understand the reason behind the flicker.

A. LED lights

Light-emitting diodes are currently the most energy efficient
form of illumination and are steadily gaining adoption in both
business and residential spaces. LED light sources operate on
DC current with typical operating voltage of 3-3.6 V and pro-
duce flicker largely caused by alternating current and inherent
properties of power supply. As LED output reacts instantly
on changing LED current, their flicker is more noticeable
compared to other light sources such as CFL or incandescent
lamps.

To understand the reason behind 100 Hz/120 Hz flicker it
is helpful to understand the design of a typical LED driver
shown in Fig. 2. [14] [15]. Basic offline switching rectifiers
comprise a diode bridge, which produces half-waves at double
the AC frequency and a buck converter to step down the
voltage for an LED lamp. The diode rectifier being inherently
a non-linear device, introduces new harmonics, distortions and
temporal artefacts to the pure sine waveform. This distortion
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Fig. 1. Flicker waveform may have a non-sinusoidal shape characterised by
a minimum, maximum and average values within a single cycle [16].
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Fig. 2. Basic LED driver contains a rectifier and switching voltage regulator
which introduce harmonics and distortions.

is specific to the diode characteristics such as forward voltage
and resistance and may differ depending on LED model. In
addition, the non-linearity is introduced by duty cycling to
control brightness or temperature. The ripple and distortion
can be reduced by using capacitors before and after the buck
converter, however in practice, they do not eliminate the ripple
completely.

B. Compact fluorescent lights

Compact Fluorescent Lights (CFL) rely on fluorescence to
produce visible light and consist of a glass tube filled with
mercury vapour, which emits ultraviolet light when excited
by electric field and causes a phosphor coating to glow.
Fluorescent lights are negative differential resistance devices,
which means that the more current flows through the device
the lower the resistance becomes, which would cause the
lamps to destruct if connected to constant voltage source [17].
Therefore, the CFL lights require a ballast to stabilise the
current.

The simplest ballast represents a coil in series with the
lamp, called a magnetic ballast, introduces flicker at twice
the supply frequency. Compact fluorescent lamps use more
complex electronic ballasts, which contain a rectifier and a
switching voltage regulator and supply current to the lamp at
high frequency. This significantly reduces the visible flicker,
however, as our experiments show can still be noticeable using
high-frequency sampling.

C. Incandescent lamps

Incandescent lamps produce light by heating a wire filament
in a bulb filled with inert gas or vacuum and have an efficiency
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of less than 5% with flickering produced mostly by supply
current frequency. Although a new generation of incandescent
lamps can theoretically reach up to 40% efficiency, they are
mostly limited to lab prototypes [18]. Due to relatively low
efficiency, the incandescent bulbs are being phased out or
completely banned in some countries. The UK government
for example, planned to phase out incandescent bulbs by 2011
The halogen light bulbs, which share the same principle of
operation, are planned to be phased out in EU from 2018
[19]. We therefore do not consider incandescent lights in this
study.

III. LOCATION INFERENCE

The proposed localization technique consists of signal filter-
ing, segmentation, feature extraction, dimensionality reduction
and classification steps as illustrated in a high-level block
diagram on Figure 3. The details of each step are described
in the subsections below.

A. Signal Model

We assume that a light flicker is a periodic signal, which
we denote

xn = x+
1

N

N−1∑
k=1

Xkcos(
2πkn

N
− φk) + ε (3)

Where x is a mean value, φk is phase offset of kth frequency
component and ε is i.i.d. zero-mean Gaussian noise. In the
presence of non-linear distortions created by lamp rectifier,
we assume that each lamp model may have a distinct set of
frequency components Xk.

B. Filtering, Segmentation and Normalization

Since mean value x mostly depends on ambient brightness,
distance, location and orientation of a light sensor relative to
the lamp, it does not hold information about the light source
itself. To remove this DC component we use a 5th order
Butterworth high-pass filter with a pass-band frequency of
10 Hz. The filtered signal was then partitioned into N = 20481

sample segments and then normalized to 0..1 range:

x̂i =
xi −min(x)

max(x)−min(x)
(4)

C. Feature Extraction

The goal of feature extraction is to extract frequency compo-
nent of a flicker signal, which is accomplished using a discrete
Fourier transform.

Xk =
N−1∑
n=0

x̂ne
− i2π

N kn (5)

A vector of signal amplitudes |Xk| was used as a feature
vector. Since Fourier transform results in a large number of
possibly correlated variables, a PCA is used to extract the most
important frequency components as described below.

1Our experiments show that increasing the segment size further does not
improve the localization performance.
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Fig. 3. High-level overview of an approach

D. Principal component analysis

Principal component analysis (PCA) is a statistical tech-
nique to reduce data dimensionality by transforming a large
number of correlated variables (in our case Fourier coeffi-
cients) into a smaller number of principal components, which
are linear combinations of original variables. Mathematically,
PCA linearly transforms a raw data matrix X of dimension
m× n into matrix Y of dimension m× n [13]:

Y = PX (6)

Where n is the number of samples and m is the number of
variables in each sample, in our case the number of Fourier
coefficients. P is a transformation matrix of dimension m×m
containing eigenvectors of covariance matrix XXT with rows
in order of importance. Y is a transformed m×n matrix which
minimises cross-correlation between its variables. The first
k < m rows of matrix Y present compressed features, which
are linear combinations of original variables. The reduced
dimensionality of a feature vector can make a classifier more
stable and robust.

E. Classification

The signal features are fed into either a kNN or neural
network classifier to identify a light source. The performance
of three classification approaches has been compared:

• kNN: k-nearest neighbour clustering algorithm (k = 15)
on raw high-dimensional data.

• PCA-kNN: Feature extraction using principal component
analysis and classification using kNN (k = 15).

• PCA-NN: Feature extraction using principal component
analysis and classification using neural network. The
neural network contained a single layer with (70) neurons
for normal and noisy datasets, and two layers with (200,
200) for a full set data.

IV. MEASUREMENTS

This section describes a hardware setup, resulting datasets
and preliminary analysis of the measured data. The purpose of
the measurements was to analyse the light flicker fingerprints
of 52 LED and CFL light sources.
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Fig. 4. Hardware setup. Flicker has been measured using Taos TSL257-LF
high frequency light sensor and National Instruments MyDAQ data acquisition
kit

A. Hardware setup

The light flicker has been measured using Taos TSL257-
LF high sensitivity low-noise light-to-voltage optical convertor
[20], which contains a photodiode and an amplifier on a single
integrated circuit. The light sensor has an output voltage in
0..5 V range directly proportional to light intensity (irradiance)
and a latency of less than 100 ns, which makes it suitable for
high-frequency sampling and detecting the flicker that would
not be noticeable to human eye. The sensor does not require
any additional components apart from 5 V source, which was
obtained from 5 V output pin of Arduino Duemilanove board,
Fig 4. The sampling rate was set to 20 kHz with 100,000 16-
bit samples (5 s) for each light source collected using a single
continuous measurement. As some light sources, especially
CFLs take a relatively long amount of time to warm up, the
measurements have been conducted 2-3 minutes after the light
was switched on. The data has been collected using National
Instruments MyDAQ data acquisition kit [21] connected via
USB to a Samsung P510 Core 2 Duo laptop.

B. Lab dataset

This dataset includes light flicker measurements for 13
different lamp models (10 LED and 3 CFL) acquired in a
local store in a controlled environment. The measurements
have been conducted over 2 hours within a single location.
To study the effect of noise, two sets of measurements have
been taken for each light source: one measurement was taken
in bright conditions and another measurement was taken in
the darkest part of the room. These measurements would be
referred to normal and noisy data sets in the remainder of the
paper. The measurements were conducted while making sure
that the sensor output is not saturated, i.e. Vsensor < 5V . A
care has been taken so that a flicker from laptop screen did
not pollute the measurements.

C. Residential dataset

This dataset includes profiles of 39 LED and CFL light
sources as they occurred in the wild, e.g. in real life indoor
locations, such as rooms, halls and desks across 8 different
residential locations in Luton, UK. The light sources included
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Fig. 5. Flicker waveforms for 5 CFL and 2 LED lights. The waveforms have
non-sinusoidal shape that can be visually distinguished, which can be used
for localization purposes

ceiling, hall, desk and floor lights. Each light source has been
measured when it was the only light source in the location. The
measurements have been conducted in the evening after sunset.
Most light sources contained a single light bulb only, however,
in cases where multiple light bulbs were operated with a single
light switch, they were measured as a single light source. As
with lab measurements, two sets of measurements have been
taken for each light source: one measurement was taken in
bright conditions and another measurement was taken in the
darkest part of the room, referred to normal and noisy data
in the remainder of the paper. The measurements have been
conducted over a 4-week period. The vast majority of houses
contained CFL light sources only with only one location
containing a mix of CFL and LED lamps as shown in Table
I.

D. Example waveforms

Fig 5 demonstrates the variety of waveforms collected from
7 light sources within a single home from a residential dataset.
The first 5 waveforms have been produced by CFL ceiling
lights, whereas the last two were produced LED ceiling and
LED desk light respectively. It is evident that waveforms have
varying shapes and frequency characteristics (Fig 6) depending
on the light source type and the model. As can be seen, the

TABLE I
LAMP TYPES. RESIDENTIAL DATASET (39 LIGHT SOURCES)

House ID
Lamp type 1 2 3 4 5 6 7 8

CFL 6 5 5 6 2 5 3 4
LED 0 0 0 0 0 0 0 3
Total 6 5 5 6 2 5 3 7
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Fig. 6. Fourier transform of flicker waveforms. The light sources exhibit
a strong 100 Hz component, double the AC frequency. CFL sources have
multiple harmonics at frequencies of x2, x3, x4...of fundamental frequency,
whereas LED sources have more high-frequency components

light sources contain a strong 100 Hz component, with CFL
lamps showing harmonics at x2, x3, x4... frequency, whereas
both LED light sources are characterised by high frequency
components.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section reports on the classification accuracy of afore-
mentioned methods to identify a light source. k-fold cross-
validation was used to evaluate the classifier performance: a
dataset was split randomly into k subsets; each subset was
used as a testing set with training performed on the remaining
(k-1) subsets. The process was repeated k times, once for each
subset, and the average is taken as a classification accuracy.
The classification accuracy has been measured separately
for normal, noisy and a combined data set. Analysis was
conducted in R [22] with signal [23] and neuralnet [24]
libraries on Intel i7, 8 MB RAM workstation.

A. Localization accuracy in lab environment

In this experiment, we evaluate the bulb identification
accuracy using a lab dataset, which contained light flicker
measurements of 13 light bulb models obtained from a local
store. The analysis of the dataset using PCA has revealed
that 99.8% of total data variance can be represented by just
9 components, with the first two components accounting for
77.9% and 20.9% respectively. This means that the classifica-
tion can be conducted using 9 features only, which represent a
linear combinations of original Fourier frequency components.
Moreover, increasing the number of components beyond 9 did
not have an impact on the classification accuracy.

Table II shows a classification accuracy for normal, noisy
and full datasets using k-fold cross-validation (k = 10). PCA-
kNN showed the highest average classification accuracy on
normal and noisy datasets, followed by kNN and PCA-NN.
The classification accuracy on a full data set is 67.4%, 69.0%
and 62.7% for kNN, PCA-kNN and PCA-NN respectively,
which represent the average of related columns in Table II.
This is lower than expected but nevertheless much higher than
random bulb selection (7.7%).

TABLE II
CLASSIFICATION ACCURACY

Type Accuracy, % (normal set) Accuracy, % (noisy set) Accuracy, % (full set)
kNN PCA-kNN PCA-NN kNN PCA-kNN PCA-NN kNN PCA-kNN PCA-NN

CFL 92.0 87.7 96.2 98.0 96.9 99.2 71.9 71.0 80.3
LED 89.3 95.1 84.9 87.8 90.8 84.4 64.2 67.0 49.8

Mixed 90.0 91.7 85.8 90.3 92.5 89.3 66.2 69.0 57.9

B. Localisation accuracy in residential environment
Next, we consider localization accuracy for residential light

dataset. We define micro-location as a specific light source
such as ceiling light, wall light, desk or a floor light within
a room. The classification accuracy for normal and noisy
datasets tends to be high with up to 100% for certain lo-
cations. The average location accuracy for a full data set is
82.9%, 83.2% and 87% for kNN, PCA-kNN and PCA-NN
respectively, Table III. Similarly to previous experiment, the
PCA-kNN method has shown the highest accuracy of all three
classification methods.

TABLE III
MICRO-LOCATION CLASSIFICATION ACCURACY

Home ID Accuracy, % (normal set) Accuracy, % (noisy set) Accuracy, % (full set)
kNN PCA-kNN PCA-NN kNN PCA-kNN PCA-NN kNN PCA-kNN PCA-NN

1 83.5 82.2 96.1 98.5 98.5 100 85.3 85.7 94.0
2 77.3 76.7 95.6 69.8 72.1 86.7 57.5 58.8 69.8
3 94.2 93.8 100 96.3 95.9 98.1 90.0 89.6 97.7
4 71.9 70.2 91.4 61.1 58.7 84.3 59.9 60.6 64.1
5 100 100 100 100 100 100 100 100 98.7
6 68.4 66.2 97.3 61.7 61.7 95.6 70.9 71.7 77.4
7 100 100 100 100 100 100 100 100 99.8
8 99.4 97.7 99.9 100 100 100 99.8 99.4 99.2

C. Macro-location inference
As the residential dataset comes from 8 different house-

holds, in this experiment we evaluate the ability of the method
to correctly recognise a particular household using a sample
from a single bulb. To implement this, the flicker waveforms
coming from the same household were tagged using the same
household ID. As shown in Table IV, the individual house
can be identified with an accuracy of up to 86.3%, 93.6% and
67.9% for normal, noisy and full datasets respectively.

Finally, we measured the accuracy of an individual bulb
identification across all houses, Table V. The classification
accuracy for a full dataset is 24.9%, 23.9% and 41.6%
for kNN, PCA-kNN and PCA-NN respectively. This is not
sufficient to reliably identify a bulb within an entire dataset,
but still significantly higher than a random selection (1 out of
39, or 2.6%).
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TABLE IV
MACRO-LOCATION CLASSIFICATION ACCURACY

Dataset Accuracy, % (normal set)
kNN PCA-kNN PCA-NN

Normal set 74.0 73.0 86.3
Noisy set 83.6 86.9 93.6
Full set 73.9 74.0 67.9

TABLE V
MICRO-LOCATION CLASSIFICATION ACROSS ALL HOUSES

Dataset Accuracy, %
kNN PCA-kNN PCA-NN

Normal set 71.5 70.6 88.5
Noisy set 74.87 78.5 91.67
Full set 24.9 23.9 41.6

D. Time dependency

As the performance of the approach could be affected by the
grid power quality, we conducted an extra set of measurements
separated by a 2-hour interval at 9 pm and 11 pm. Typically,
the grid power quality in terms of frequency, the total harmonic
distortions and other parameters is defined by the relevant reg-
ulators. In the EU for example, the power quality is defined by
the EN 50160 developed by a working group under European
Committee for Electrotechnical Standardisation. Among other
parameters, the EN 50160 standard requires that the power
frequency is within 50Hz ± 1Hz for 95% of time and the
total harmonic distortion does not exceed 8%. The purpose
of these additional measurements was to test the localization
technique over a longer time interval.

The measurements have been conducted within one of the
residential locations and included 4 separate rooms. As with
previous experiments, each set of measurements included 5
seconds of noisy (dark) and 5 seconds of normal (bright) data.
A visual inspection of waveforms in Figures 7 and 8 shows that
the waveform shapes remain largely stable over time although
there have been some minor variations possibly due to noise.
We then trained the system on a full set of 9 pm data and
validated against a full set of 11 pm and vice versa. Table VI
shows the localization accuracy performance. We find that the
approach performs well even if the training and testing data
are separated by 2-hour interval.

E. Case study

In this section, we evaluate the accuracy of the localization
method within one a studio flat by taking additional measure-
ments of 8 light sources including ceiling, kithenette, bath-
room, lobby, floor and desk lights. The average classification
accuracy was 60.8%, 65.8% and 68.4% for kNN, PCA-kNN
and PCA-NN respectively. A confusion matrix in Table VII
shows that some light sources such as ceiling and floor A
lights are reliably distinguished, whereas others have lower
classification rate. Although, the accuracy was not sufficient to
be used as a dedicated indoor localization system, we believe
that the approach could be used as an opportunistic mechanism
to augment the accuracy of existing systems.
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Fig. 7. Light profiles taken at 9pm
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Fig. 8. Light profiles taken at 11pm share visual similarity with those
measured at 9pm

The indoor accuracy could potentially be improved by
using light sources with unique flicker patterns. Since different
households are likely to use a different combinations of light
sources, we believe it is possible to increase macro-localization
accuracy by mapping those light source combinations to
unique locations. For example, if locations 1, 2 and 3 use light
sources {A, B, C}, {B, C, D}, and {A, B, D} respectively,
then fingerprinting these light set combinations could be used
to more accurately predict the location. The exploration of
those ideas is a potential future work.
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TABLE VI
TIME DEPENDENCY RESULTS

Dataset Accuracy, % (full set)
KNN PCA-KNN PCA-NN

train using 9pm, validate using 11pm 75 75 76.1
train using 11pm, validate using 9pm 75 75 98.6

TABLE VII
LOCALISATION ACCURACY IN A SMALL STUDIO FLAT

aaaaaaa
actual

prediction
ceiling A floor A floor B hall ceiling B bath desk kitchinette

ceiling A 11 0 0 0 0 0 0 0
floor A 0 11 0 0 0 0 0 0
floor B 0 0 7 4 0 0 0 0
hall 0 0 5 6 0 0 0 0
ceiling B 0 0 0 0 11 0 0 0
bath 0 0 0 0 0 0 10 1
desk 0 0 0 0 0 0 9 2
kitchinette 0 0 0 0 0 0 8 3

VI. RELATED WORK

Indoor localization is a well-researched topic with numerous
approaches based on RSSI [25], UWB [2], RF-sensing [1],
ultrasonic [12], dead-reckoning, signature-based and hybrid
technologies [26]. Below we review key existing techniques
and their differences from the proposed method.

A. Proximity-based

Proximity based-techniques provide a course grained po-
sition, which rely on the fact that direct wireless link can
only be established if an object is within a communication
range. When using short-range communication technologies,
such as active RFID [27] [3], 802.15.4 [26] and Bluetooth
Low Energy (BLE), a position can be established with 5-
10 meters range. Proximity-based techniques have been used
widely in inventory, personnel and wildlife tracking [3] and
require instrumenting the space with reference beacons or
reader base stations.

B. Trilateration-based

In trilateration-based techniques, a mobile object measures
a distance to three or more reference points with known
locations and then applies a simple geometric transformation
to compute its position. The distance is estimated using
received signal strength information (RSSI), UWB, ultrasonic
or time-difference of arrival method (TDOA). The RSSI-based
methods are popular since the signal strength information
is provided by virtually all transceivers but rely on certain
assumptions on radio-propagation model and its parameters
within an indoor environment. RSSI values are also relatively
noisy due to interference and multi-path fading, which results
in low position accuracy. UWB transceivers estimate range
with centimetre-level accuracy, however, require specialised
and more expensive hardware [2]. Time-difference of arrival
method estimates distance by measuring the time difference
between arrival of an RF and ultrasonic signal, which requires

the mobile node to have additional equipment to support both
RF and ultrasonic communication. All trilateration methods
rely on existing infrastructure or reference nodes with known
positions.

C. RF Signature-based

RF signature-based methods operate by simply mapping
each object location to a tuple (RSSI1, RSSI2...RSSIn) in a
training phase, where RSSIn is the signal strength between an
object and each reference point [26]. In normal operation, the
object position is established by measuring signal strength to
each reference point and comparing the resulting RF signature
with the database constructed during the training phase. The
RF signature-based methods do not make any assumptions
on a radio propagation model but still rely on an ambient
infrastructure of reference nodes. RF signature-based methods
are sensitive to changes in the radio environment and require
retraining after each major change, which can be time and
labour intensive process.

D. RF sensing-based

RF-sensing is relatively new and detects human presence
by monitoring its impact on ambient wireless network links.
It is based on the fact that the human body consist of 65%
of water, which attenuates, reflects and scatters radio waves
in 2.4 GHz frequency band [6] and can cause signal strength
fluctuations in surrounding wireless links that can be detected
by traditional radio signal receiver. Since these fluctuations are
dependent on the object position relative to each wireless link,
the exact position or activity can be detected through statistical
analysis and machine learning techniques [1]. The technique
is non-invasive and provides situational awareness about the
environment non-invasively without any co-operation from the
person.

Although RF-sensing does not require any dedicated equip-
ment and relies on ambient wireless links from already existing
Wi-Fi infrastructure, it does require some additional equipment
to monitor and analyse ambient RF signals. Secondly, the
technique relies on a training phase to recognise a position,
which can be very labour and time consuming process. Finally,
the technique is known to be very sensitive to even minor
changes in the environment, such as change in furniture
position and requires recalibrating the system after a major
change. In contrast, passive light flicker fingerprinting requires
a length training phase or any specialised equipment apart
from a mobile device with a low-cost high-frequency light
sensor.

E. VLC-based

VLC is a recent optical communication technology that
transmits data by modulating the visible light emitted by Light
Emitted Diodes (LEDs). The position is established through
a proximity to a certain reference node or by measuring the
angle of arrival for most accurate localization. The advantage
of VLC-based localization techniques is a wide-spread avail-
ability of LED lights within indoor environments. However,
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the VLC based localization methods require a specialised LED
driver on light sources to incorporate positioning information
and support LED light sources only. In contrast, the proposed
method works with all a wide range of unmodified light
sources including compact fluorescent lights and standard
LEDs. [28] have recently proposed a similar method that
exploits flicker fingerprints for infrastructure-less indoor lo-
calization. The work however uses a very high frequency
sampling, on the order of 1 MHz and convolutional neural
network classifier (CNN) as classification method. In our
work, we show that it is possible to obtain a reasonable
localization accuracy using a relatively low frequency signal
and use a principal component analysis for classification. We
also show that is possible to use the method to identify
a macro-location, such as a household, and demonstrate a
temporal stability of the proposed method over normal and
noisy datasets.

VII. CONCLUSIONS AND FUTURE WORK

Indoor localization is an essential ingredient for indoor
navigation systems [12], healthcare [29], context sensitive
and assisted living applications. In this study, we propose
and evaluate a novel method for passive localization based
on fingerprinting light flicker patterns. The method requires
neither additional infrastructure such as reference beacons nor
modification of existing light sources. As no flicker dataset
seems to be publicly available, we have built our own dataset
containing light flicker profiles of 39 light sources collected
from 8 households as well as an additional 13 commercially
available CFL and LED bulbs.

The evaluation has shown that an indoor location such as
a room or a desk, can be identified with up to 90% accuracy.
A flicker waveform can also help in identifying a global
location, i.e. a particular household with up to 86.3% accuracy.
The experiments indicate that the location information can
be obtained opportunistically, depending on the presence of
unique patterns in the environment. This could potentially be
used in context-aware applications to provide an additional
information about the user location or a context. Having
said this, we do not envision the proposed technique as di-
rect replacement of dedicated infrastructure-based localization
techniques.

While this study focused on visible stroboscopic flickering,
some light sources are known to exhibit chromatic flickering
associated with changing color spectrum [10], which is an
interesting topic for future work. Furthermore, some indoor
locations are often illuminated with multiple light sources
simultaneously resulting in an arbitrary superposition of mul-
tiple light waveforms, which may have an impact on the
accuracy. The authors leave investigation of such scenarios
as a potential future work.
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