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subjects. Experimental results show the effectiveness of these indicators to identify differences in standing posture between groups.

Copyright © 2008 Hassan Amoud et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Falls are a major problem for the elderly due to the resulting
loss of autonomy and subsequent behavior modification
related to fear of falling. Health care services worldwide are
actively working on the issue of falls for both medical and
social reasons. For instance, in France alone, the number of
deaths attributed annually to falls is estimated to be more
than 9000, with a resultant cost in excess of two billion euros
[1]. The cost of falls is only going to increase, in line with the
increase in the elderly population. In Europe, the percentage
of adults over 65 years old will almost double from 15% to
30% by the year 2050 [2]. Falling is a consequence of a failure
in the postural control system due to aging or a specific
pathology. Many risk factors have been identified for falls,
the most commonly cited including an underlying muscular
weakness, a previous fall, as well as balance and gait problems
[3].

Postural equilibrium is maintained by reacting to
information from the different sensory systems, including
vestibular, visual, and proprioception systems. It is possible
to evaluate the postural control system using either clinical
or biomechanical tests. Biomechanical tests can be dynamic
or static, with dynamic tests used to characterize the per-

formance of the postural control system to maintain the
posture after an external perturbation. In contrast, static tests
evaluate postural performance in a static position. In static
posture, a force plate is used to evaluate postural sway. The
force plate measures the displacement of the center of pres-
sure (COP), which represents the location of the resultant
force exerted on the surface of a force plate. The COP, which
can be used as a measure of postural stability, is measured
in the horizontal plane in both anteroposterior (AP) and
mediolateral (ML) directions [4]. The representation of the
COP time series in AP and ML directions is known as the
stabilogram (see Figure 1).

Traditional parameters are extracted from the stabilo-
gram signals under the assumption that the COP is a
stationary time series [4, 5]. These classical parameters
give few insights into the control of posture [6], providing
purely statistical information while ignoring the dynamic
characteristics of COP displacements. These parameters
include temporal (mean, RMS), spatiotemporal (area of the
ellipse), and spectral (median frequency) parameters.

Recently, parameters that describe the fractal and time
evolutionary properties of the COP and provide information
related to underlying physiological control processes have
been extracted using nonlinear and fractal analyses. These
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Figure 1: Displacement of the center of pressure in the horizontal
plane (bottom left), displacement in the anteroposterior direction
over time (top right), and displacement in the mediolateral
direction over time (bottom right). Data are recorded from a
healthy control subject for 10 seconds.

new groups of parameters include the Hurst exponent, which
provides information about long-term correlation [7], the
reconstructed phase space [8], and entropy [9].

Stabilogram signals have been shown to be nonstationary
signals [10, 11]. In order to extract information from the

stabilogram and to characterize the postural stability, it
is proposed in this paper to apply the Hilbert transform
on the intrinsic mode functions (IMFs) extracted by the
empirical mode decomposition (EMD) [12]. The EMD
method decomposes the signal into a set of IMFs which
represent the oscillatory modes embedded in the signal.
For the COP signal, IMFs have well-defined instantaneous
frequency and different IMFs do not exhibit the same
frequency at the same time. In addition, the COP signal is
a bidirectional signal and can be represented by a complex
signal (ML + jAP). The two components of the COP signal
are nonlinearly correlated due to the complex correlation
between all the postural control systems. To analyze the
complex COP signal, two new methods derived from EMD
method to decompose a complex signal will be applied.
The first method, complex empirical mode decomposition
(complex-EMD), was developed in [13], while the second
method, bivariate empirical mode decomposition (bivariate-
EMD) was developed in [14, 15].

The complex-EMD method is based on the inherent
relationship between the positive and negative frequency
components of a complex signal. This method treats the pos-
itive and negative frequency components as two independent
signals. The EMD of these two components gives two sets of
IMFs corresponding to the positive and negative frequency
components of a complex signal. The bivariate-EMD method
is based on the idea of replacing the oscillation notion in
EMD by a notion of rotation. This method considers that
the bivariate signal can be described as the sum of a fast
rotation component superimposed on a slower rotation. The
bivariate-EMD algorithm consists in projecting the complex
signal on a set of directions and then applying the sifting
process of the basic-EMD on the projected components.

The EMD, complex-EMD, and bivariate-EMD methods
are powerful signal processing techniques that can be used
to analyze the stabilogram and to characterize the quality
of equilibrium in standing posture. In fact, the plots of
the analytic IMFs in the complex plane have a specific
geometry similar to a circular form; and each IMF has its
own rotation frequency. In contrast, the analytic signal of
the entire stabilogram signal does not have a specific form,
and it differs between experiments for the same subject due
to its inherent nonstationary nature. Furthermore, the sta-
bilogram is a multicomponent signal, thus its instantaneous
frequency cannot be calculated directly. These two features
(circular form and rotation frequency) permit the extraction
of new nonlinear parameters that characterize the quality
of equilibrium and provide more information about the
mechanisms underlying postural control. The first parameter
is simply the area of the circle formed by the shape of the
analytic IMF, while the second parameter is the average
rotation frequency.

In order to test the capacity of different EMD methods
and the Hilbert transform to describe the quality of equilib-
rium and to discriminate between elderly and control group,
the three EMD methods were applied on stabilogram signals
extracted from elderly and control groups. The extracted
nonlinear parameters from the plots of the analytic IMFs
were the area of the circle in the complex plane, and the
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Figure 2: EMD decomposition of the 10-second anteroposterior
displacement time series in Figure 1.

average rotation frequency of each IMF. The paper is orga-
nized as follows. The experimental protocol, EMD, complex-
EMD, bivariate-EMD, and the parameter calculation are
presented in Section 2. The results of the application of the
cited methods on the stabilogram are presented in Section 3.
Discussions about the results and the EMD methods are
presented in Section 4.

2. METHODS

2.1. Subjects

Ten healthy control subjects (three males and seven females)
and ten healthy elderly subjects (four males and six females)
participated in the study. Control subjects’ mean age, height,
and weight were 33.3 ± 7.4 y, 168.0 ± 6.5 cm, and 65.7 ±
17.6 kg, respectively. Elderly subjects’ mean age, height and
weight were 80.5 ± 4.7 y, 165.6 ± 7.0 cm, and 71.9 ± 9.9 kg,
respectively. All subjects who participated gave their written
informed consent. No subjects reported any musculoskeletal
or neurological conditions that precluded their participation
in the study.

2.2. Data acquisition and data processing

Center of pressure data were obtained from a Bertec 4060–
08 force plate (Bertec Corporation, Columbus, Ohio, USA).
The initial COP signals were calculated with respect to the
center of the force plate before normalization by subtraction
of the mean value. Data were recorded using ProTags and
developed in Labview (National Instruments Corporation,
Austin, Tex, USA). Data were sampled at 100 Hz, using an
8th-order lowpass Butterworth filter with a cutoff frequency
of 10 Hz. All subsequent calculations were performed using
MATLAB (Mathworks Inc, Natick, Mass, USA).

2.3. Experimental protocol

Subjects were tested barefoot or wearing socks. Testing began
with subjects standing upright with their arms by their
sides in front of the force-plate while looking at a 10-
cm cross fixed on the wall two meters in front of them.
Upon verbal instruction, subjects stepped onto the force-
plate. Subjects were not required to use a preordained foot
position. Data recording lasted 15 seconds, during which
time subjects maintained an upright posture. A second verbal
command was given for subjects to step down from the force
plate.

2.4. Empirical mode decomposition

EMD is a signal processing decomposition technique that
decomposes the signal into waveforms modulated in both
amplitude and frequency by extracting all of the oscillatory
modes embedded in the signal [12]. The decomposition is an
intuitive and adaptive signal-dependent decomposition and
does not require any conditions about the stationarity and
linearity of the signal. The waveforms extracted by EMD are
named IMFs. Each IMF is symmetric, is assumed to yield
a meaningful local frequency, and different IMFs do not
exhibit the same frequency at the same time. In other words,
each IMF satisfies the two following constraints:

(i) the number of extrema and the number of zero
crossings are identical or differ at most by one;

(ii) the mean value between the upper and the lower
envelope is equal to zero at any time.

The difference between the original signal and the IMF
time series is the residual. The first IMF component is
obtained by a sifting process. This procedure is then applied
on the residual in order to extract the second IMF, and
so forth. Thus all the IMFs are iteratively extracted. The
nonstationary signal x(t) is then represented as a linear sum
of IMFs and the residual component:

x(t) =
K∑

k=1

dk(t) + rK (t), (1)

where dk(t) denotes the kth extracted empirical mode and
rK (t) the residual.

The EMD algorithm can be summarized as follows.

(1) Extract all the extrema of x(t).

(2) Interpolate between minima (resp., maxima) to ob-
tain two envelopes emin(t) and emax(t).

(3) Compute the average: m(t) = (emin(t) + emax(t))/2.

(4) Extract the detail d(t) = x(t)−m(t).

(5) Test if d(t) is an IMF:

(i) if yes, repeat the procedure from the step 1 on
the residual signal r(t) = x(t)− d(t),

(ii) if not, replace x(t) with d(t) and repeat the
procedure from step 1.
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Figure 3: Representation in the complex plane of the analytic signal of a healthy control subject (black lines) and healthy elderly subject
(grey lines) for the AP direction (a). Analytic signals of the first four IMFs (b): IMF1, (c): IMF2, (d): IMF3, and (e): IMF4.

Matlab codes are available at http://perso.ens-lyon.fr/
patrick.flandrin/emd.html.

An example of the application of EMD on the 10-second
AP time series traced in Figure 1 is shown in Figure 2. The
number of IMFs varied between experiments and between
subjects. The minimum number of IMFs was 4.

2.5. Hilbert transformation and phase estimation

The Hilbert transform of a real signal x(t) is defined as

y(t) = 1
π

p.v.
∫ +∞

−∞

x(τ)
t − τ

dτ, (2)
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where p.v. indicates the Cauchy principle value. The analytic
signal of x(t) is then defined as:

z(t) = x(t) + j y(t). (3)

The analytic signal can be further expressed as

z(t) = a(t) exp[ jθ(t)], (4)

where a(t) =
√
x2(t) + y2(t) is the amplitude of z(t), and

θ(t) = arctan y(t)/x(t) is the instantaneous phase from
which the instantaneous signal frequency f (t) is obtained by
differentiation:

f (t) = 1
2π

∂θ(t)
∂t

. (5)

The original signal x(t) is now expressed in a Fourier-like
expansion as

x(t) = Re

{K+1∑

k=1

ak(t) exp

[
j
∫

2π fk(t)dt

]}
(6)

in which the residual rK (t) is included and where the
index k refers to each IMF and Re{·} denotes the real
part of a complex quantity. Huang et al. proposed that the
Hilbert transform should be applied on all IMFs obtained by
EMD. This transform is known as Hilbert-Huang transform
(HHT). Indeed, the IMFs are locally symmetric functions
and therefore the instantaneous frequency is well localized
in the time-frequency domain.

An example of the HHT (with scalar EMD) applied
on two AP time series is presented in Figure 3. The first
AP time series was recorded from a healthy control subject
(black lines), while the second time series was recorded from
a healthy elderly subject (grey lines). This figure presents
the trace of the entire analytic signal in the complex plane
(Figure 3(a)), as well as those of each analytic IMF extracted
with the basic-EMD (Figures 3(b)–3(e)). It can be seen that
the forms of these traces are similar to circles. A discussion
about this figure is presented in the discussion section.

In Figure 4, the phase time series of each IMF and
the average rotation frequencies of a control subject are
presented. The average rotation frequency is equal to the
slope estimate of the phase time series divided by 2π. It can
be observed that the average rotation frequency decreases
from the first IMF to the last IMF simply because the sifting
procedure picks the component with the fastest variation
embedded in the original signal first and that with the slowest
variation last.

2.6. Complex empirical mode decomposition

The complex-EMD is an extension of the basic-EMD suitable
for dealing with complex signals [13]. The motivation to
extend EMD is that a large number of signal processing appli-
cations have complex signals. In addition, this extension is
applied on both the real and imaginary parts simultaneously
because complex signals have a mutual dependence between
the real and imaginary parts. Thus, if the decomposition is
done separately, the mutual dependency will be lost. The
algorithm of the complex-EMD is as follows.
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Figure 4: Traces of the instantaneous phase and the value of
the average rotation frequency for the first four IMFs of the AP
displacement traced in Figure 2.

(1) Extract the positive and negative frequency compo-
nents to generate two analytic signals X+(e jw) and
X−(e jw) as follows:

X+(e jw) = H(e jw)X(e jw),

X−(e jw) = H(e jw)X∗(e− jw),
(7)

where H(e jw) is an ideal bandpass filter equal to one
for 0 ≤ w < π and zero for −π ≤ w < 0, X∗(e jw) is
the complex conjugate of X(e jw).

(2) Extract the real part of the inverse Fourier transform
of X+(e jw) and X−(e jw), denoted by x+(t) and x−(t).

(3) Apply the basic-EMD on x+(t) and x−(t) separately
to extract the IMFs of the positive and negative

components denoted by {xi(t)}N+
i=1 and {xi(t)}−1

i=−N− .

Finally, x+(t) and x−(t) can be expressed as

x+(t) =
N+∑

i=1

xi(t) + r+(t),

x−(t) =
−1∑

i=−N−
xi(t) + r−(t),

(8)

where r+(t) and r−(t) are the residuals of x+(t) and x−(t),
respectively.

The complex-EMD can now be expressed as

x(t) =
N+∑

i=−N− ,i /=0

yi(t) + r(t), (9)

where yi(t) = xi(t)+ jH[xi(t)], andH[·] denotes the Hilbert
transform operator.

2.7. Bivariate empirical mode decomposition

Bivariate-EMD is another extension of the EMD to complex
signals. The main difference between the bivariate-EMD and
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the complex-EMD is that the latter uses the basic-EMD
to decompose complex signals, whereas the bivariate-EMD
adapts the rationale underlying the EMD to a bivariate
framework [14, 15]. The algorithm of the bivariate-EMD, as
proposed in [14], is as follows:

(1) For 1 ≤ m ≤M,

(a) project x(t) on direction φm : pφm(t) =
Re(e− jφmx(t)),

(b) extract the maxima of pφm(t) : (tmi , pmi ),

(c) interpolate the set of points (tmi , e jφm pmi ) to
obtain the partial envelope curve in direction
φm named eφm(t).

(2) Compute the mean of all tangents as follows: e(t) =
(2/M)

∑
meφm(t).

(3) Subtract the mean to obtain d(t) = x(t)− e(t).

(4) Test if d(t) is an IMF:

(a) if yes, repeat the procedure from the step 1 on
the residual signal,

(b) if not, replace x(t) with d(t) and repeat the
procedure from step 1.

The bivariate-EMD can now be expressed as

x(t) =
∑

k

dk(t) + r(t), (10)

where dk(t) denotes the kth extracted complex empirical
mode and r(t) the residual.

2.8. Parameter calculation

Two types of parameters were calculated from the decompo-
sition of COP signals into IMFs using the three methods of
decomposition, EMD, complex-EMD, and bivariate-EMD.
The first parameter is related to the form of the analytic IMFs
in the complex plane, which can be seen to be circular. The
parameter extracted is the area of the circle in which 95%
of the data points are located (AreaCIMF). This parameter
was calculated for each of the first four IMFs. The second
parameter, which is related to the phase of the analytic IMFs,
is the average rotation frequency (FIMF) of the analytic IMFs
in the complex plane. These parameters were calculated for
both AP and ML directions for the basic-EMD method
and for ML + jAP for the complex-EMD and bivariate-
EMD methods. For each COP signal, a total of 24 areas
and 24 frequencies were calculated using the three different
methods. For the bivariate-EMD, we have used M = 4
projections.

2.8.1. Data analysis

Center of pressure data were calculated from the moment
the second foot contacted the force plate (FC2). FC2 was
calculated as the time at which the maximum value of
the second derivative of the ML signal occurred, which
corresponded to the time the second foot touched the

force plate. At this point, the largest acceleration of ML
would occur when the COP moved rapidly towards the
second foot. This instant in time was used for both AP
and ML displacements. All analyses were performed for the
10-second period starting 1 second after FC2, in order to
give both AP and ML displacement time to return to near
central values. The choice of FC2 has been validated in
previous work [7]. Statistical analyses were performed with
the statistical package for social sciences (SPSS Inc., Chicago,
Ill, USA). The Kolmogorov-Smirnov test was used to check
for normality. Owing to the grossly non-normal distribution
of the area parameters (AreaCIMF), it was necessary to apply
a log transformation to all AreaCIMF in order that an analysis
of variance (ANOVA) could be performed. ANOVA was used
to compare results between conditions, with AreaCIMF and
FIMF as the dependent variables and the subject group as the
independent variable. Alpha level was set at P < 0.05.

3. RESULTS

There was a significant difference in AreaCIMF values between
groups for all IMFs for all three methods (basic-EMD
for AP and ML, complex-EMD for negative and positive
components, and bivariate-EMD for real and imaginary
parts) (Figure 5). The area was greater for elderly subjects
then for control subjects. These increases in the values of
AreaCIMF are indicative of degradation in the balance due to
the effect of age on postural stability.

In respect to the average rotation frequency (FIMF)
parameters, significant differences were observed for the
basic-EMD for AP displacement for both IMF1 and
IMF2, with smaller values observed for elderly subjects
(Figure 6(a)). In respect to ML displacement for basic-EMD,
significant differences were observed between elderly and
control subjects for IMF1, IMF2, and IMF3 (Figure 6(b)).
For the bivariate-EMD method, significant differences were
observed only for IMF3 for the real part corresponding
to ML (Figure 6(d)), and for IMF1 for the imaginary
part corresponding to AP (Figure 6(c)). However, for the
complex-EMD, the average rotation frequency was signifi-
cantly different for all IMFs for both positive and negative
components (Figures 6(e), 6(f)). The rotation frequency was
lower for elderly subjects then for the control subjects.

4. DISCUSSION

The first point to be addressed is whether the use of the EMD
methodology followed by the Hilbert transform, as used
in the present study, provides greater insight than simply
applying the Hilbert transform to the whole signal, which
also detected significant differences in surface area between
groups. The response is related to the nature of the trace
of the analytic signal of whole signal. It can be observed in
Figure 3(a) that the analytic signal in the complex plane does
not have a specific geometry, making it impossible to define
the circle that encloses 95% of the data points. In addition,
the form of the analytic trace differs between experiments for
the same subject, as well as between subjects. Such a tracing is
indicative of multiple centers of rotation, possibly due to the
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Figure 5: The surface area of the analytic signal in a logarithmic scale (AreaCIMF) of the first four IMF for control and elderly subjects. (a)
EMD for AP displacement; (b) EMD for ML displacement; (c) bivariate-EMD for the imaginary part of the signal (corresponding to AP
displacement); (d) bivariate-EMD for the real part of the signal (ML); (e) complex-EMD for positive components; and (f) complex-EMD
for negative components. Data are mean and 95% confidence intervals. All comparisons are significantly different between groups.

presence of several different control strategies. In contrast,
the traces of the analytic signals of each IMF always have
a circular form (Figures 3(b)–3(e)), the area of which can
then be estimated in the complex plane.

In respect to average rotation frequency, the trace of the
phase as a function of time indicates a linear relation between
phase and time. This relationship confirms the existence of a
harmonic oscillation with a constant frequency equal to the
average frequency. In addition, all the EMD methods permit

the extraction of a proper rotation that could be related to
different postural control systems.

In respect to the interpretation of the results for the
postural data of the present study, elderly subjects had
significantly greater surface areas for both AP and ML
displacement than did the control subjects. The increased
surface areas observed for the elderly subjects were due to the
greater amplitude of postural sway for elderly subjects for all
IMFs, thus indicating a less well-controlled posture.
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Figure 6: The average rotation frequency (FIMF) of the first four IMF for control and elderly subjects. (a) EMD for AP displacement; (b)
EMD for ML displacement; (c) bivariate-EMD for the imaginary part of the signal (corresponding to AP displacement); (d) bivariate-EMD
for the real part of the signal (ML); (e) complex-EMD for positive components; and (f) complex-EMD for negative components. Data are
mean and 95% confidence intervals. ∗Significant difference from control subjects.

In respect to the rotation frequency, in contrast to surface
area, smaller values were observed for elderly subjects. This
contrast is self-explanatory, as surface area and rotation
frequency are negatively correlated. Given that the time-
series length is the same for the both groups, it follows that if
the radius of the circle is greater, the rotation frequency will
be smaller.

4.1. Comparison between one-dimensional and
two-dimensional EMDmethods

For the one-dimensional EMD method, the mutual depen-
dence between the real and imaginary parts of the complex
signal is lost and is mapped onto two real independent
signals that are decomposed separately. In the case of the
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Figure 7: The average rotation frequency (FIMF) of the first four IMF for control and vibration subjects. (a) EMD for AP displacement; (b)
EMD for ML displacement; (c) bivariate-EMD for the imaginary part of the signal (corresponding to AP displacement); (d) bivariate-EMD
for the real part of the signal (ML); (e) complex-EMD for positive components; and (f) complex-EMD for negative components. Data are
mean and 95% confidence intervals. ∗Significant difference from control subjects.

stabilogram, AP and ML displacements are decomposed
separately in the basic-EMD, despite the fact that the same
postural control systems produce these two signals. It is
almost certain that these two signals are linearly and/or non-
linearly correlated. In addition, physiological interpretation
could be difficult as mutual information is lost.

The complex-EMD method decomposes the positive and
negative components separately, as for two independent
signals. The IMFs resulting from the positive and negative
components form two independent sets of IMFs for which it
is not necessary that the number of IMFs is equal for positive

and negative components. However, interpretation of the
positive and negative frequency is difficult as the positive
and negative components bear no obvious relationship with
physiological control systems. Despite this, complex-EMD
was the only method that enabled discrimination between
elderly and control groups using the average rotation
frequency for all of the first four IMFs for both positive
and negative frequency components. Confirmation of the
capacity of the complex-EMD method to detect differences
between groups based on average rotation frequencies was
performed using data from an experimental study in which
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the proprioceptive and visual systems were degraded by
applying tendon vibration, and by closing subjects’ eyes.
Details of the experiments performed on 17 healthy young
subjects can be found in [16]. The same EMD, complex-
EMD, and bivariate-EMD analyses were applied on the data
from these experiments. In respect to the area, similar results
were obtained between groups, with greater surface areas
and thus increased postural sway observed for vibration.
In respect to the average rotation frequency, the complex-
EMD method again outperformed the two others, with
significant differences observed between groups for all four
IMF for both positive and negative rotation (Figure 7). In
contrast, for the basic-EMD method, significant differences
were observed for all IMFs for AP displacement and for the
first and second IMFs for ML displacement. With respect
to the bivariate-EMD method, only three of the IMFs
for AP and two of the IMFs for ML showed significant
differences between groups (Figure 7). Furthermore, the
IMFs in which these differences were observed were not
the same as those identified in Figure 6 for the control and
elderly subjects.

In addition, we have studied the influence of different
values of M (from M = 4 to M = 16) on the ability
of the bivariate-EMD to discriminate between groups. The
statistical significance of results is unaltered for the surface
parameter AreaCIMF for the different values of M. However,
varying the value of M may cause the change of the statistical
significance of the average rotation frequency to discriminate
between groups. The statistical significance is lost for certain
IMFs and may appear for other IMFs while varying the value
of M.

The difference between results is not surprising for
the bivariate-EMD method. This method is based on the
rotation in two-dimensional space, while the extraction
of extrema is related to the change of the moving point
direction [15]. Due to this fundamental difference in
methodology, the results for the average rotation frequency
are not the same for the bivariate-EMD.

In respect to the sifting process used by the different
methods, complex-EMD uses the basic-EMD method. The
only difference is that the complex-EMD decomposes the
complex signal into two positive and negative frequency
components before applying the sifting process.

Concerning the bivariate-EMD method, despite the
less impressive results shown in the present study when
compared to the complex-EMD method, bivariate-EMD
might offer some advantages under specific conditions. For
instance, rather than split the complex signal into two parts,
the bivariate-EMD decomposition is done on the complex
signal directly, thus the problem of the number of IMFs for
the positive and negative frequency components does not
arise due to the unified approach adopted to decompose the
complex signal. In addition, the mutual dependency between
the real and imaginary parts of the complex signal is taken
into account. In this way, bivariate-EMD might be more
likely to respond to changes in spatial parameters than the
others methods. Furthermore, bivariate-EMD enables the
extraction of the fast rotation that is superimposed on slower
rotation in the COP signals. In this way, it could be possible

to identify the characteristics of different posture control
systems in future studies.

5. CONCLUSION

The EMD, complex-EMD, and bivariate-EMD methods are
useful and powerful methods to analyze nonstationary uni-
variate and bivariate time series. In the case of stabilogram
time series, these methods were able to extract the oscilla-
tions in different adaptive time scales, and to define proper
rotations that could be related to the different postural
control systems. In addition, these methods enabled the
quality of equilibrium of postural systems to be characterized
as well as to identify the differences in postural control
mechanisms between elderly and control subjects. In fact,
the use of the different types of EMD methods enabled
the extraction of individual centers of rotation for each
IMF. In perspective, additional work is planned in order to
find the relation between IMFs and the different postural
control systems. A follow-up study will address this issue,
initially by simulation, before using different experimental
conditions in which the different postural control systems
will be impaired. The aim of this study will be to ascertain
whether or not each IMF corresponds to a given postural
control system.
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Doussot, and J. Duchêne, “Fractal time series analysis of
postural stability in elderly and control subjects,” Journal of
NeuroEngineering and Rehabilitation, vol. 4, pp. 1–12, 2007.

[8] H. Snoussi, H. Amoud, M. Doussot, D. Hewson, and J.
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