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Mattana E, Stevenson PC, Howes M-JR, Pritchard HW, Ballesteros D, Kusumoto B, Ondo I,
Moat J, Milliken W, Ryan P, Ulian T, Pironon S, The climatic challenge: Which plants will
people use in the next century?, Environmental and Experimental Botany (2019),
doi: https://doi.org/10.1016/j.envexpbot.2019.103872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bedfordshire Repository

https://core.ac.uk/display/228376144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.envexpbot.2019.103872
https://doi.org/10.1016/j.envexpbot.2019.103872


This is a PDF file of an article that has undergone enhancements after acceptance, such as
the addition of a cover page and metadata, and formatting for readability, but it is not yet the
definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early
visibility of the article. Please note that, during the production process, errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2019 Published by Elsevier.



Jo
ur

na
l P

re
-p

ro
of

1 
 

The climatic challenge: Which plants will people use in 

the next century? 

 

Borrell J.S.1*, Dodsworth S.2, Forest, F.1, Pérez-Escobar O.A.1, Lee M. A.1, Mattana E.3, Stevenson 

P.C.1,4, Howes M.-J.R.1,5, Pritchard H.W.3, Ballesteros D.3, Kusumoto B.1,6, Ondo I.1, Moat J.1, Milliken, 

W. 3, Ryan P.1, Ulian T.3, Pironon S.1 

 

1Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. 

2School of Life Sciences, University of Bedfordshire, Luton, LU1 3JU, UK. 

3Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West 
Sussex, RH17 6TN, U.K. 

4Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, U.K. 

5Institute of Pharmaceutical Science, King’s College London, London, SE1 9NH, UK. 

6Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan 

 

*Corresponding author: J. S. Borrell (J.borrell@kew.org); Royal Botanic Gardens, Kew, Richmond, 

Surrey, TW9 3AE, UK. 

 

Highlights 
• >31,000 plants have documented uses, but humans fulfil most requirements with very 

few species. 

• Future selection pressures on useful plants are likely to be different to those 

during domestication. 

• Society faces two trade-offs; substitution vs adaptation and specialization vs diversification. 
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• Continued biodiversity loss, in part due to climate change, will further erode our choice 

of future strategies. 

 

Abstract 

More than 31,000 useful plant species have been documented to fulfil needs and services for humans 

or the animals and environment we depend on. Despite this diversity, humans currently satisfy most 

requirements with surprisingly few plant species; for example, just three crops – rice, wheat and maize 

– comprise more than 50% of plant derived calories. Here, we synthesize the projected impact of 

global climatic change on useful plants across the spectrum of plant domestication. We illustrate the 

demographic, spatial, ecophysiological, chemical, functional, evolutionary and cultural traits that are 

likely to characterise useful plants and their resilience in the next century. Using this framework, we 

consider a range of possible pathways for future human use of plants. These are centred on two trade-

offs: i) diversification versus specialization in the range of species we utilize, and ii) substitution of the 

species towards those better suited to future climate versus facilitating adaptation in our existing suite 

of dominant useful plants. In the coming century, major challenges to agriculture and biodiversity will 

be dominated by increased climatic variation, shifting species ranges, disruption to biotic interactions, 

nutrient limitation and emerging pests and pathogens. These challenges must be mitigated, whilst 

enhancing sustainable production to meet the needs of a growing population and a more resource 

intensive standard of living. With the continued erosion of biodiversity, our future ability to choose 

among these pathways and trade-offs is likely to be diminished. 

 

Keywords: Biodiversity, climate change, conservation, crop breeding, crop wild relatives, 

domestication, food security, medicinal plants, sustainable development, resilience. 

1. Introduction 
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As human population increases and the standard of living improves over the next century, our reliance 

on the effective and efficient utilisation of plants will grow (Godfray et al., 2010; Guo, Zhang, & Li, 

2010). In this review our definition of useful plants follows RBG Kew (2016) in the broadest sense, as 

“plant species which have been documented as fulfilling a particular need for humans, animals or the 

wider environment”. Of the approximately 400,000 vascular plant species known to science, around 

8% (31,000) have documented uses (RBG Kew, 2016), encompassing human and animal foods, fuels, 

medicines, materials and crop wild relatives, and we note that many more species may be as yet 

undocumented. While crop plants are perhaps most familiar, more than half of documented useful 

plants (57%) are used for medicines and twice as many are used for materials (36.5%) than as foods 

(17.8%) (Farnsworth & Soejarto, 1991; RBG Kew, 2016). 

Global biodiversity loss as a result of habitat conversion, overexploitation and climate change is 

projected to result in a 7-24% decline in vascular plant diversity by 2050 (C. Bellard, Bertelsmeier, 

Leadley, Thuiller, & Courchamp, 2012; Vuuren, Sala, & Pereira, 2006), with climate adaptation 

becoming a key challenge for many plant species over the next century. The impacts of climate change 

are predicted to – and in many cases have already been demonstrated to – fundamentally alter several 

aspects of plant biology including genomic architecture (Ahuja, de Vos, Bones, & Hall, 2010), 

development (Gray & Brady, 2016), phenology (Springate & Kover, 2014), biotic interactions (Eckert 

et al., 2010), demography (Miller & Gross, 2011) and distribution (Pecl et al., 2017).  This in turn may 

strongly impact on the quality and yield of the material and non-material products and benefits we 

derive from them (Challinor et al., 2014; DaMatta, Grandis, Arenque, & Buckeridge, 2010). 

An estimated 2,500 plant species from 160 taxonomic families have been altered by human selection 

in the ~12,000 years since human plant domestication began (Smýkal, Nelson, Berger, & von 

Wettberg, 2018; Zeven & de Wet, 1982). These species have been subjected to a spectrum of 

domestication effort (Hammer & Khoshbakht, 2015; Meyer, Duval, & Jensen, 2012; Meyer & 

Purugganan, 2013), with only around 200 species considered to be extensively domesticated (Meyer 
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et al., 2012; Vaughan, Balázs, & Heslop-Harrison, 2007), including, for example, extensively engineered 

crops with annual production measured in the millions of tons (e.g. rice (Oryza sativa); Gross and Zhao 

2014; Muthayya et al. 2014). By contrast, there is a substantially greater number of less extensively 

utilised species, cultural, shade and ornamental plants, poisons and medicines harvested on a small 

scale from wild or semi-wild populations (e.g. bamboo shoots (Bambusa sp.) in western Thailand, 

Delang, 2006; Ogle et al., 2003; Schippmann et al., 2002) which have been the subject to little or no 

human-directed selection (Figure 1). Understanding how climate change will impact these useful 

plants is critical to developing climate-resilient strategies that are sustainable and continue to derive 

societal benefits from the plants we depend on. Climate change is a global multi-factor phenomenon 

which includes increased temperatures, rising CO2 concentrations and UV intensity, as well as changes 

to the frequency and magnitude of rainfall events, including drought and flooding (IPCC, 2013). Useful 

plants have been domesticated based on current (or recent past) growing conditions, and in the 

future, may therefore experience very different conditions than they do today. 

Typical features that mark a crop’s divergence from a wild ancestor are together termed the 

‘domestication syndrome’ (Harlan, 1971). These often include traits such as seed retention, increased 

fruit or seed size or palatability, modified nutritive values (including increased protein, fat or sugar 

content), rapid growth rates, altered reproductive strategy, changes in secondary metabolites, and 

reduced resource allocation towards non-edible plant tissues as well as pest and pathogen defence 

(Meyer et al., 2012). Domestication can therefore sometimes work against natural selection, resulting 

in reduced fitness in a wild setting (Meyer et al., 2012), with knock-on impacts to beneficial insects 

through changes to floral chemistry that in wild populations supports healthier pollinators (Egan et 

al., 2018). Given projected future pressures, existing or newly domesticated plants may increasingly 

be selected for tolerance to climatic variation, nutrient limitation (e.g. increased cost or reduced 

availability of industrial fertilisers, and/or soil degradation) and emerging pests and pathogens, 

generating in some cases a novel future ‘domestication syndrome’. To better understand these 

challenges, we explore a representative series of useful plant characteristics that are expected to be 
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impacted by climate change, from small to large scale (e.g. from genes to geographic distribution) and 

from intrinsic to extrinsic factors (e.g. from physiological traits to pollination or human cultural 

preferences). We survey phylogenetic position, geographic distribution, biotic interactions, 

morphological traits and cultural importance - to consider likely indicators of future success in the 

context of climate change and human utilization. Importantly, we consider these characteristics across 

the domestication spectrum, along which is distributed the tremendous global diversity of useful 

plants, from widely-domesticated crops to rare species harvested from the wild.  

We align our review with a range of possible future strategies to meet these challenges (Figure 2). 

These strategies are characterised by the interaction of two spectra; first, the trade-off between 

replacing the major species we elect to use to better fit future environmental conditions (Substitution) 

and selecting for improved performance from our existing species (Adaptation). Concurrently, society 

faces a choice between an increasingly narrow suite of highly domesticated species (Specialization) or 

substantially increasing the number of highly utilised species (Diversification). Our aim is to stimulate 

discussion on the likely trajectory for useful plants under climate change as well as highlighting 

opportunities and trade-offs, whilst better informing the option-values of strategies to sustainably 

meet the growing human requirements we derive from useful plants. 

2. The evolutionary history of useful plants 

Several studies have investigated the phylogenetic distribution of useful plants, mostly using 

angiosperm-wide or regional (i.e. flora) phylogenetic trees (Q. C. B. Cronk & Forest, 2017; Saslis-

Lagoudakis et al., 2012). Equally, many have explored the potential of phylogenetic trees for the 

identification of species closely related to plants with chemical compounds of interest (i.e. so-called 

“bioprospecting”) or crop wild relatives (Ernst et al., 2016; Halse-Gramkow et al., 2016). Fewer studies 

however have directly addressed the effect, using a phylogenetic framework, that future climate 

change might have on the conservation and preservation of plants useful for humans (Edwards, Still, 

& Donoghue, 2007).  
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2.1 The phylogenetic distribution of useful plants 

Plants that humans use tend to be phylogenetically clustered (Cronk, 2008; Cronk and Forest, 2017; 

Meyer and Purugganan, 2013; Moerman, 1991; though see Şerban et al., 2008), and similarly, there is 

initial evidence that the types of services or products plants provide may also be clustered (Cámara-

Leret et al., 2017). Patterns of plant use appear to depend on how common the use is, how common 

the underlying trait is amongst plant taxa, and how phylogenetically close the taxa are to commonly 

encountered plants (Cámara-Leret et al., 2017). For instance, a global analysis of plant utilisation 

showed that common uses are more likely to show phylogenetic clustering than uncommon ones (Dai, 

Zhang, Xu, Duffy, & Guo, 2017). Conversely, there is also evidence of phylogenetic clustering in plant 

extinction risk (Forest et al., 2007; Vamosi & Wilson, 2008) suggesting that entire groups of functional 

traits or uses could be universally vulnerable (Bascompte, Garcia, Ortega, Rezende, & Pironon, 2019). 

At the broadest scale, most useful plants are angiosperms (Meyer et al., 2012), although there are 

some key products derived from other plant groups, in particular from gymnosperms (e.g., pine nuts, 

timber, medicinal compounds). Highly domesticated food crops show the clearest phylogenetic 

clustering (Figure 3), however when all food plants (including spices) are considered, Şerban et al. 

(2008) found little evidence of clustering in the angiosperm tree of life. This study, however, 

encompasses plants consumed by humanity as a whole; it would be interesting to evaluate the 

phylogenetic distribution of these species in cultural groups rather than in its entirety. Phylogenetic 

analyses of useful plants in general have also been limited by lack of documentation on many 

underutilised species, which is now beginning to be addressed (RBG Kew, 2016). 

Most human calories consumed globally are derived from only a handful of crops (e.g., rice, wheat 

and maize) from the grass family (Poaceae). Within the remaining top 10 families globally utilised for 

human calorific intake (FAO, 2015), the number of species from the bean family (Fabaceae) are 

similarly ubiquitous (e.g. globally important soybean or lesser-used groundnuts; Smýkal et al. 2014) 

while the majority of the remaining species dominating the human diet belong to only a handful of 
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other families such as Solanaceae (nightshades; potatoes), Arecaceae (palms; palm oil) and Asteraceae 

(daisies; sunflower oil). This bias may reflect both the history of domestication of these taxa (i.e. 

closely related species may be favoured through cultural experience and familiarity), but also the 

natural presence of desirable traits among closely related species (i.e. nutritious, low toxicity).  

More plant species are used for medicines than for food (RBG Kew, 2016). These plants are more 

widely dispersed across the plant tree of life, but still tend to show a degree of phylogenetic clustering, 

likely as a result of complex secondary metabolite pathways that are perhaps less likely to evolve many 

times independently (Halse-Gramkow et al., 2016; Moerman, 1991). In a study focussing on the plants 

used in traditional medicine in three distinct regions (New Zealand, Nepal, South Africa), Saslis-

Lagoudakis et al., (2012) showed that the medicinal plants of these three floras share phylogenetic 

patterns, indicating that related plants from the three regions are used to treat similar ailments, which 

in turn suggests independent discoveries of medicinal properties. Garnatje et al., (2017) termed this 

‘ethnobotanical convergence’ and, where combined with ‘omics’, suggested that it has the potential 

to identify new potential applications for plants. 

2.2 Genomic resources for useful plants 

Genomic resources are crucial for effective crop breeding, and the transition of species from 

underutilised into extensively domesticated crops (or to push them further along the domestication 

spectrum). Our understanding of the angiosperm phylogenetic tree is being further enhanced and 

shaped by large-scale phylogenomic projects (e.g. 1KP; Kew’s Plant and Fungal Trees of Life; Eiserhardt 

et al., 2018). The new detailed phylogenetic understanding provided by these programmes is crucial 

for two main reasons. First to determine the directionality of evolution of particular traits (including 

their genetic or genomic basis), and secondly to identify the wild relatives of crops, trace in time and 

space their domestication, and estimate their genetic divergence (Chomicki & Renner, 2014). New and 

even larger genome sequencing initiatives aimed at sequencing the diversity of underrepresented 
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plant lineages (e.g. 10KP; Cheng et al., 2018) will help to alleviate the current bias in genomic 

resources, but they need to be matched by further biological characterisation of these taxa. 

Combining such phylogenetic frameworks with ethnobotanical uses (Cámara-Leret et al., 2017) and 

climatic, trait and usage data (Ernst et al., 2016) will allow more sophisticated predictions of where 

and how particularly useful traits have evolved across the angiosperm tree of life. Using biological 

responses to plant extracts rather than standard categories may permit more phylogenetically diverse 

predictions for bioprospecting, for instance in the medicinally important genus Euphorbia (Ernst et al., 

2016). Such approaches could permit identification of which species and traits could be used for 

breeding to tolerate climate change (Mehrabi, Pironon, Kantar, Ramankutty, & Rieseberg, 2019), and 

in turn, permit the identification of more diverse and unexpected uses for plants than would otherwise 

have been the case.   

The identification of new useful plants may also need to consider the context of hybridisation and 

ploidy (i.e. cytogenetic information), particularly with accelerated range shifts and species 

introductions. Many crop plants are polyploids, often allopolyploids (Meyer et al., 2012), the latter 

resulting from hybridisation between species as well as whole genome duplication (e.g. Triticum 

aestivum – allohexaploid bread wheat; Solanum tuberosum – allotetraploid potato). The result is more 

than two sets of chromosomes with distinctive sub-genomes (from each parental donor). This can 

result in reproductive isolation from crop wild relatives (which is an important consideration in 

breeding efforts) but also impacts how species adapt and evolve in response to climate shifts and 

other ecological factors (Soltis & Soltis, 2016). Genome size itself may also be important to consider 

given that it ranges c. 2,400-fold across angiosperms, and has been shown to impact both size (e.g. 

stomatal size, vein diameter) and rate (e.g. duration of mitosis and meiosis) related traits which, in 

turn, can influence where and how plants grow and respond to environmental change (reviewed in 

Pellicer et al. 2019). 

3. The impact of climate change on the distribution of useful plants 
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3.1 The impact across biomes 

Climate is a major driver of the spatial distribution of biodiversity (C. Bellard et al., 2012; Hoffmann & 

Sgró, 2011), exerting a strong influence on the availability of various plants useful to humans around 

the world. Changing climate is anticipated to result in a significant redistribution of the material and 

non-material benefits provided by nature (Mooney et al., 2009), though this impact may differ among 

regions, useful plant species and use types. Boreal and hemi-boreal areas, for example, are expected 

to experience important climatic modifications with novel and disappearing climates mainly found in 

north-eastern North America and Asia (Williams, Jackson, & Kutzbach, 2007). Given their relatively 

poor species richness and endemism in both wild and cultivated useful plants (Pironon et al., in 

review), poleward range extirpations might only affect a relatively limited number of species and 

potential uses. However, increasing local losses could ultimately lead to global extinctions and, 

additionally, it could strongly impact the lives of local indigenous populations given their poorer access 

to replacement options (Garnett et al., 2018). On the other hand, boreal areas represent potential 

opportunities for the expansion of both wild and domesticated species currently found at lower 

latitudes (Odgaard et al., 2011, but see also Bebber et al., 2013). Temperate and Mediterranean useful 

plants may therefore undergo range expansion at higher latitudes, despite declines at their rear-edge. 

Although rear-edge populations of wild plants may be highly threatened by climate change, they have 

often persisted under major past climatic fluctuations and contain unique and valuable adaptive 

genetic diversity (Borrell et al., 2018; Hampe and Petit, 2005). Regions with highly heterogeneous 

landscapes may facilitate the pursuit of suitable climatic conditions by species at a relatively small 

scale, and therefore favour their persistence and survival (Ohlemüller et al., 2008). Despite the fact 

that large negative effects have been observed, climate change tends to impact cultivated plants at a 

lower intensity in temperate areas, in part because of the higher economic and technological capacity 

of many countries in these regions (Challinor et al., 2014; Donatelli, Srivastava, Duveiller, Niemeyer, 

& Fumagalli, 2015; D. B. Lobell & Field, 2007), although well fertilized modern crop varieties seem 

more sensitive to heat related losses (Schlenker & Lobell, 2010). 
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The impact of climate change on useful plants may be more severe in the tropics due to generally 

more persistent food insecurity and a reduced capacity for agricultural adaptation (Muller, Cramer, 

Hare, & Lotze-Campen, 2011). Large parts of the current tropical climatic space are predicted to 

disappear together with the emergence of novel climates (C. Bellard et al., 2012; Céline Bellard et al., 

2014; Williams et al., 2007). Climate change may more acutely threaten the most important hotspots 

of useful plants, both in terms of species richness and endemism (Pacifici et al., 2015, Pironon et al., 

in review). Major modern crops such as wheat, maize and rice have been observed to be highly 

impacted by recent changes in temperature and precipitation regimes in the tropics (Challinor et al., 

2014; D. Lobell, Schlenker, & Costa-Roberts, 2011). Mountainous areas are potentially at greater risk 

in the tropics where species tend to shift their ranges along topographical or habitat features rather 

than latitude (Rumpf et al., 2018). Moreover, ongoing climate change is outpacing past climatic 

modifications, which represents a major issue for tropical plants that evolved relatively slowly along 

elevation (Morueta-Holme et al., 2015; VanDerWal et al., 2012), as opposed to temperate plants that 

have been exposed to significant range shifts over past glaciations (Qian & Ricklefs, 2016).  

There may be benefits to some localized agricultural systems as, for example, the number of cultivable 

species is observed to increase on the elevational gradient from subtropical lowland to alpine in the 

Himalayas (Chaudhary & Initiatives, 2016). For species such as coffee, climatically suitable areas are 

predicted to shift from lowland to higher elevation (Moat et al., 2017), with losses partially 

compensated by newly emerging climatically suitable areas in Indonesia (Schroth, Läderach, Blackburn 

Cuero, Neilson, & Bunn, 2015) or Ethiopia (Moat et al., 2017). Overall, cultivation of useful plants is 

likely to be characterised by accelerated re-distribution of species and agri-systems, with future 

usefulness of plants potentially favouring those that are easier to transition to new locations or 

environments, as well as species with lower inputs or better documented indigenous knowledge 

management requirements. However, for non-cultivated useful plants which represent the largest 

diversity of species used by human populations, relocation potential seems more limited. 

Representing a major option value for humans, non-domesticated useful plants will therefore require 
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strong in-situ conservation efforts accounting for species natural dispersal following climate change 

(Corlett & Westcott, 2013). 

3.2 The impact of range rarity 

Sensitivity to climate change does not only vary among regions (i.e. species range position) but also 

among species. Species range size represents an important biogeographical feature often related to 

vulnerability and extinction (Saupe et al., 2015). Under climate change, narrow ranged species are 

expected to be at high risk due to shrinking habitat and low potential to reach new suitable areas 

(Ohlemüller et al., 2008). The tropics may be at higher risk due to their expected higher turnover in 

climatic conditions, and their extremely high concentration of endemic plant species, narrowly-

distributed human cultures, and therefore plant uses (Pironon et al., in review). Some of the 

detrimental effects of climate change on useful plants have already been perceived by local 

communities, such as in the Sierra Nevada del Cocuy-Güicán of Colombia, where climate change, 

together with unsustainable land use and overharvesting are causing a decline in medicinal plant 

resources (Rodríguez, Angueyra, Cleef, & Van Andel, 2018). Moreover, narrow-ranged species and 

tropical areas might be even more vulnerable because they are also expected to be particularly 

impacted by other global change drivers such as land use change or biotic invasions. On the other 

hand, wide-ranged species have been demonstrated to have a high adaptability to changes in climatic 

conditions (Newbold et al., 2016), even though many wild plants might not be able to expand quickly 

due to dispersal lag (Svenning et al., 2008). It is also important here to note that the ecological niche 

occupied by a species will also affect its ability to adapt to climate change, and that this might be 

uncorrelated to its geographic range (i.e. a species with a large distribution range could more easily 

be obliterated should it have a narrow ecological niche). For example, wetland rice, which is cultivated 

globally, is more vulnerable to heat stress by climate change compared with other key crops (Teixeira, 

Fischer, Velthuizen, Walter, & Ewert, 2013).  
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Overall, in this context, useful plants might suffer relatively less from extinction than other wild plants 

as the geographical ranges of many have been largely expanded and intensified by humans through 

some level of domestication, breeding, agricultural practices, global trade, or accidental introduction 

(Coradin et al., 2018; Dempewolf et al., 2014; Khoury et al., 2014; Khoury et al., 2016). Future 

manipulation of useful plant distributions – and mitigation of negative climate change repercussions 

on plant derived benefits – will be dependent on accurate climate projections enabling identification 

of appropriate species and areas to utilise or cultivate across the landscape (Pironon et al., accepted). 

As a result, underutilized narrow-range or narrow-niche plants might represent important targets for 

short-term conservation actions (Padulosi, Heywood, Hunter, & Jarvis, 2011), perhaps through 

domestication. 

4. The impact of climate change on biotic interactions with useful plants 

A large proportion of plants, including those useful to humans, depend on biotic interactions for 

pollination, predation of pest herbivores, seed dispersal, or persist where herbivores or harmful pest 

and pathogens do not. Here, we predominantly consider insect interactions relating to pollination and 

pests, as these are among the most extensively researched, though we note the importance of 

interactions between pests and pathogens, seed dispersers, rhizobial symbionts and mycorrhizal 

associations. Evidence about how climate change influences plant-insect interactions is growing and 

indicates that these changes can have a negative impact, notably for pollination (Eckert et al., 2010) 

and beneficial tri-trophic interactions such as those provided by natural pest regulation (Dyer, 

Richards, Short, & Dodson, 2013), but may also exacerbate the occurrence of pests (Deutsch, 

Tewksbury, & Tigchelaar, 2018). 

4.1 The impact on plant-pollinator interactions 

Outcomes for pollination include increased selection for selfing and perennialism (Otto, 2018), 

reduced phenological and distributional overlap between plants and their pollinators, and decreased 

variety in forage for pollinators (Memmott, Craze, Waser, & Price, 2007; Solga, Harmon, & Ganguli, 
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2014). In extremis the outcome may be the extinction of pollinators, plants or their interactions 

(Bascompte et al., 2019; Memmott et al., 2007). The consequences of changing climate on pollinators 

may not be fully apparent for decades (Burton & Lim, 2005) although severe discrete effects appear 

likely in some circumstances (Garibaldi et al., 2016). While responses by plants and pollinators to 

increasing temperature may occur concurrently, there is considerable variation in the direction and 

magnitude of the response (Hegland, Nielsen, Lázaro, Bjerknes, & Totland, 2009) suggesting potential 

spatial and temporal mismatch. For example, plants may flower earlier with increasing temperature 

(Fitter & Fitter, 2002; Penuelas, 2002) but first emergence of pollinators may be slower to respond 

(Gordo & Sanz, 2005; Hegland et al., 2009), and the success of pollination services is highly dependent 

on synchrony between flower and pollinator. This is particularly apparent in highly specific pollinator 

plant interactions.  The first flight date of the solitary bee Andrena nigroaenea advances more in 

response to higher temperatures than the flowering date of the orchid Ophrys sphegodes, which A. 

nigroaenea males inadvertently pollinate through pseudocopulation owing to the flower mimicking 

the odour and appearance of the female bee (Ayasse et al., 2000). Ironically, advanced emergence of 

both genders leads to greater competition for males by female bees with the plant losing out.  Small 

temperature rises increase the probability of males and females flying at the same time and before 

orchid flowering, reducing the frequency of pseudocopulation and pollination success for the flower 

(Robbirt, Roberts, Hutchings, & Davy, 2014).  

Pollinator ranges are also fluctuating, in some cases characterized by migration to cooler latitudes and 

higher altitudes, although these changes are not always compensated at opposing range limits (Potts 

et al., 2016). For example, in 67 bumble bee species across Europe and North America, southward 

range contractions of up to 300 km have been recorded compared to historical distributions, with 

closely related species showing similar shifts – yet typically the northward range expansions are 

limited by availability of forage, particularly for oligolectic species and specialists since plant range 

expansions are too slow. This results in an overall range contraction with potential temporal and 

spatial mismatches for plants dependent on these pollinators (Bascompte et al., 2019; Kerr et al., 
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2015). Changing pollinator ranges could lead to a loss in pollinator diversity or abundance leading to 

lower food production (Potts et al., 2016). Seasonal behaviour and ranges of many pollinators may 

change but differentially, leading to disruption of life cycles, plant-pollinator interactions and 

population structure and composition (Schweiger, Settele, Kudrna, Klotz, & Kühn, 2008). Different 

groups of pollinators may be too slow to adapt to rapid temperature changes disrupting crop 

pollination especially if the overlap of climatic conditions for crops and their pollinators is limited 

(Giannini et al., 2013; Polce et al., 2014; Settele et al., 2016).  

The combined and interactive effects of different stressors (e.g. pesticide exposure, diseases, habitat 

loss and climate change) for pollinators are also predicted to be important (Vanbergen et al., 2013). 

Thus, the likely consequences of multiple interacting factors such as habitat loss exacerbated by 

climate change may lead to greater impacts on pollination services by limiting capacity to compensate 

for range shifts (Thorne et al., 2010). This may lead to landscapes dominated by adaptable generalists 

at the expense of less adaptable specialists (Settele et al., 2016), with consequences for plants with 

specialist pollinator syndromes. For example, butterfly species that were mobile and habitat 

generalists increased in distribution consistent with exploiting warmer temperatures, whereas less 

motile generalists and habitat specialists declined in distribution consistent with being limited by 

habitat loss (T. Warren, 2001). So, the combined effects of landscape and climate may cause specialists 

to decline, reducing population diversity and placing plant species at risk. 

Changes to climate other than temperature may also detrimentally impact biotic interactions. Cocoa 

production for example is uniquely dependent upon the pollination services of Ceratopogonid midges 

(Bogdanski et al., 2008). There is increasing evidence that pollinator limitation (Forbes and Northfield, 

2015; Groeneveld et al., 2010) is influenced by drought rather than temperature since the lifecycle of 

the pollinator relies on high forest floor moisture for larval development (Arnold et al., 2018). It is 

possible that similar impacts may manifest themselves in wild populations of Theobroma species 

influencing future diversification within the genus, since it shows greater diversity at lower altitudes 
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that may be warmer and wetter (Richardson, Whitlock, Meerow, & Madriñán, 2015) and changes to 

this status may influence diversity and abundance of pollinators and their services in different 

habitats.  

4.2 The impact on pest regulation 

Trophic interactions where beneficial invertebrates provide natural pest regulation may also be 

affected, particularly since the natural enemies of many pests also rely on non-crop habitats for food, 

refuge and as alternative hosts (Gurr, Wratten, Landis, & You, 2016). However, by comparison to 

pollinators much less is reported about natural enemies of pests. Dyer et al. (2013), for example, 

report that higher temperatures and CO2 concentrations led to developmental asynchrony between 

the parasitic wasp Cotesia marginiventris and its host, the larvae of the moth Spodoptera exigua, and 

in some cases, to the mortality of the wasp. More recently, Roslin et al., (2017) reported that insect 

predation increases towards the Equator and lower elevations suggesting a strong association with 

higher temperature which may influence the range and effectiveness of natural regulation of pests 

with consequences for crop production. Thus, natural pest regulation that is dependent on insect 

predators or parasitism may decline as a direct consequence of a changing climate, which could 

particularly impact plants that have been domesticated and are now cultivated at large scales. 

Climate may also influence the severity and temporal phenology of herbivory that may result in major 

consequences for useful plants. This is particularly so for domesticated species that have been bred 

for uniform traits so are more susceptible to major outbreaks of insects.  For example, the tent 

caterpillar Malacosoma disstria is a major pest of poplar and birch trees, which have regional 

importance for silviculture. However an increase in temperature of between 1.7 and 3.4°C has resulted 

in more advanced spring phenology for trees than insects, potentially mitigating against risks of major 

outbreaks (Schwartzberg et al., 2014). Conversely, models evaluating relationships between 

temperature, population growth and metabolic rates in insects show that global increases in 
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temperature could lead to an escalation in preharvest losses of rice, maize, and wheat with increases 

estimated to be up to 25% per degree of temperature increase (Deutsch et al., 2018). 

4.3 Generalism vs specialism in biotic interactions 

In the future, the effective and efficient use of plants in food production, provisioning and supporting 

ecosystem services may increasingly depend on the discovery and conservation of other related 

species for which plant pollinator interactions are less affected by climate change. Alternatively, 

continued management of useful plants may also extend to the network of species with which they 

interact. Concurrently, there may be increasing demand for plant species less reliant on pollinators 

and plant selection favouring selfing or clonal reproduction. This may be the case, for example, with 

Theobroma species (cacao) for which selfing is an alternative pollination system although with poorer 

yield and higher risk of fruit abortion (J. Warren, Misir, & Kalai, 1995). While current concerns focus 

primarily on short-term impacts, climate change has disrupted ecosystems and trophic interactions 

over much greater time scales affecting abundance and ranges leading to communities dominated by 

generalists (Blois, Zarnetske, Fitzpatrick, & Finnegan, 2013). Understanding how climate influences 

trophic interactions and community dynamics will be critical to predicting how managed and 

unmanaged ecosystems react to change in the short and longer term, and crucially could involve cases 

where rapid evolution alters provision of ecosystem services (sensu lato Rudman et al., 2017).    

5. The future of useful plant traits 

In the future, useful plants are very likely to be growing in different conditions than they are today, 

either through inability to track their climate envelope, reduction or disappearance of their historical 

climate niche (see section 4) or reluctance or inability of users to shift to new species. Projected 

changes will include warmer temperatures, more frequent drought or flooding, increased UV 

exposure and rising CO2 concentrations (IPCC, 2013; Figure 4). Concurrently, there may be agricultural 

pressures to reduce energy intensive or environmentally harmful inputs such as fertilizers and 

pesticides. The interactions of these environmental variables with plant traits is complex and the traits 
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which best promote resistance and resilience to climate change will be strongly context and scale 

dependent. There are two general strategies to enable plant resilience to climate change: i) selecting 

for positive adaptive traits to a given abiotic stress or ii) selecting for traits to avoid a particular stress 

factor (e.g. increased seed dormancy or changes to phenology). The appropriate strategy in any given 

situation is likely to be dependent on the duration, direction and magnitude of projected climatic 

changes, as well as the resource allocation and morphological trade-off with other desirable plant 

traits.  

Plants can also alter the environment they are exposed to through ‘niche construction’ mechanisms 

(sensu Laland et al., 2016), such as phenology, seed dispersal, dormancy and germination (Donohue, 

2005). Domestication has directly or indirectly influenced many of these traits (i.e. “human driven 

niche construction” (sensu Smith, 2007) with seed traits that had been of selective advantage for wild 

seed-bearing plants, including seed dormancy, not necessarily being advantageous for crops. These 

differences in functional seed traits might, for example, limit the capacity of cultivated plants to cope 

with periods of drought in contrast to their wild relatives (e.g. Castillo-Lorenzo et al., 2019; Castillo‐

Lorenzo et al., 2018).  

We emphasise that whilst many trait shifts in response to climate change may be negative, or erode 

plant usefulness, some aspects of future climate, such as elevated CO2 levels, may present 

opportunities for increased yield or value. Finally, whilst we principally consider adaptation involving 

genetic change in this manuscript, acclimatization (i.e. phenotypic plasticity) may also facilitate 

adaptation, though this ultimately has a genetic basis. 

5.1 Adaptation to changing precipitation 

The direction of precipitation changes, either increasing or decreasing, is likely to be spatially variable, 

with the frequency and magnitude of droughts expected to increase across many regions. Plant traits 

that promote drought tolerance fall into two categories; water saving and water acquisition traits. 

Water saving traits include a shorter habit, smaller leaves, early maturity, plasticity in leaf chemistry 
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for osmotic control and the capacity for prolonged stomatal closure which reduces seasonal 

evapotranspiration (Cattivelli et al., 2008). Increased investment in roots as well as deeper, finer roots, 

rather than shallow tap roots, promotes water acquisition when water is scarce (Fry, Evans, Sturrock, 

Bullock, & Bardgett, 2018). Conversely, other regions will be exposed to more frequent and severe 

flooding. The ability to maintain high levels of soluble sugars in plant tissues during germination is one 

proposed mechanism for tolerance to fresh water (Peña-Fronteras et al., 2009) and salt water flooding 

(Colmer, Vos, & Pedersen, 2009). Traits associated with the rapid closure of root stomata, larger 

interconnected aerenchyma that allows oxygen translocation and rapid petiole elongation also confer 

flood tolerance in addition to traits that support seed dormancy under anoxic conditions (Else, 

Janowiak, Atkinson, & Jackson, 2009).  

5.2 Adaptation to increased temperature and CO2 levels 

Unlike precipitation, both temperatures and CO2 concentrations are expected to rise across most 

regions, although this will vary in magnitude (IPCC 2013). Smaller, fibrous and slow-growing leaves 

with thicker cell walls, narrowly spaced veins, greater hair densities and high lignin content are 

generally associated with heat tolerance (Kering, Guretzky, Funderburg, & Mosali, 2011). However, 

these traits are generally undesirable in human food crops and, in animal feed, can lead to increased 

enteric methane emissions (Lee, Davis, Chagunda, & Manning, 2017). Other traits, such as a greater 

photosynthetic rates, increased membrane thermostability (e.g. cellular lipids and/or sugars) and the 

maintenance of RUBISCO production may confer heat tolerance in a way which does not limit yields 

(Larkindale & Huang, 2004). Synthesis of some of the intra-cellular compounds which protect plant 

tissues from heat may also protect them from UV damage (Wahid, Gelani, Ashraf, & Foolad, 2007). An 

example is the production of anthocyanins in leaves and fruits, the consumption of which may also 

offer human health benefits (Cassidy, 2018). Rising temperatures may lead to increased productivity 

in some cases and CO2 can also have a fertilising effect on plants. Yet this effect is not universal and 

often becomes saturated even at relatively low CO2 concentrations (M. Lee, Manning, Rist, Power, & 
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Marsh, 2010). Traits which promote a continued CO2 fertilisation effect as concentrations increase 

may therefore be beneficial and include greater photosynthetic nitrogen use efficiency, a high relative 

growth rate (particularly of meristems) and an ability to maintain a consistent partitioning coefficient, 

with plants investing an equal proportion of the additional energy into photosynthetic capacity (e.g. 

increased number or surface area of leaves) and product (e.g. increased number or mass of seeds) 

(Bishop, Betzelberger, Long, & Ainsworth, 2015; Oguchi, Ozaki, Hanada, & Hikosaka, 2016).  

5.3 Adaptation in nutritional and chemical traits 

Changes in precipitation, temperature and CO2 levels have been shown to influence chemical 

composition across a diverse range of useful plants (Holopainen et al., 2018; Hummel et al., 2018; 

Loladze, 2014). These changes could have a substantial impact on the benefits derived from certain 

species, relevant to their uses for nutrition, as medicines and other uses for humanity. For example, 

Laenoi et al., (2018) showed that in four modern varieties of rice, both yield and grain quality 

responded differently across seasons and in general had lower concentrations of nutrients including 

N, P, Fe and Zn in the wet season. Similarly, exposure to UVB light, which is predicted to increase with 

climate change, can negatively affect the nutritional quality of certain soya bean cultivars (Choudhary 

& Agrawal, 2015). As atmospheric CO2 rises, plants are predicted to have increased starch and reduced 

protein content, which is associated with a decline in digestibility (Ziska, Epstein, & Schlesinger, 2009). 

Indeed, increased CO2 leads not only to decreased protein, but also reduced levels of iron and zinc in 

crops such as wheat, rice, potatoes, soy, and peas, and in fruits and vegetables, which are important 

sources of nutrients especially in many low-income countries (Fanzo, Davis, McLaren, & Choufani, 

2018; Green et al., 2018).  Conversely, some studies conclude that elevated CO2 levels can increase 

grain (including wheat and canola) yield, which is an important factor to support livelihoods. The 

negative effect on grain nutritional value is, however, likely to have long term consequences for 

human health (Jin, Armstrong, & Tang, 2019). Furthermore, abiotic stresses including light, 

temperature, drought and altered soil composition that may be linked with climate change have 
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already been shown to have a negative impact on the nutritional value of forage crops, affecting 

livestock health (Kulkarni et al., 2018). Ozone (O3) is a contributor to climate change and it reduced 

the nutritive quality of forage crops including ryegrass (Lolium perenne) and clover (Trifolium 

subterraneum) (Kulkarni et al., 2018). Thus, from the emerging evidence available to date, climate 

change could mean higher yields of less nutritious crops with consequences for both human and 

livestock health. 

There is, however, evidence to suggest that extreme environmental conditions may increase 

production of certain secondary metabolites in plants in response to stress factors, such as flavonoids 

in vegetables, and phenolics with antioxidant activity in quinoa (Dong, Gruda, Lam, Li, & Duan, 2018). 

Such compounds may be produced by plants in response to environmental stressors, but are also 

relevant to maintaining human health beyond functional nutrition (Howes & Simmonds, 2014). Plant 

secondary metabolites not only provide benefits to human health by maintaining a dietary range, but 

their increased production could have relevance to the medicinal or social uses of plants and their 

chemical constituents. For example, higher CO2 can increase morphine production in the wild poppy 

(Papaver setigerum) and digoxin production in Digitalis lanata (Ziska et al., 2009). Increased yields of 

such pharmaceutically important compounds may be useful to meet therapeutic demands in the 

future, but levels of other secondary metabolites with toxic or other potentially adverse effects (e.g. 

allergens) may also be increased, with consequences for the value of currently useful plants and for 

human health.  

5.4 Adaptations in seed germination biology  

Climate change is altering the drivers for seed dormancy and germination, and in the future may 

preclude, delay, or enhance regeneration from seeds (Walck, Hidayati, Dixon, Thompson, & Poschlod, 

2011). As a result, there is no clear positive or negative response in useful plants and we cannot predict 

whether emergence will continue to match with the season favourable for establishment (Fernández‐

Pascual, Mattana, & Pritchard, 2018). Breaking dormancy and germination are complex physiological 



Jo
ur

na
l P

re
-p

ro
of

21 
 

events. The more developmental stages from imbibition to germination, the increasing likelihood that 

changes in the environment could affect or disrupt reproduction by seeds. For example, seeds with 

morphophysiological dormancy could have different thermal thresholds for the internal growth of the 

embryo and radicle protrusion. This appears to be the case for some species with rudimentary 

embryos in Ranunculaceae (Porceddu, Mattana, Pritchard, & Bacchetta, 2017). Wild plants show a 

high intraspecific variation in traits underpinning seedling emergence, growth and establishment 

(Cochrane, Yates, Hoyle, & Nicotra, 2015). However, it is not yet possible to make generalizations 

about how this variation is allocated across geographic ranges and further research to identify the 

distribution of seed traits within foundation species and the mechanisms driving them is required 

(Cochrane et al., 2015). In wild populations of useful plants, persistence in the soil seed bank may be 

affected by the abiotic environment (Long et al., 2015). Warmer soil can increase seed bank decay due 

to increased germination rates, for facultative pyrogenic plants, whose physical seed dormancy (i.e., 

seeds with an impermeable coat) is broken by high temperature thresholds (Ooi, Denham, Santana, 

& Auld, 2014).  

5.5 Selection of life history traits 

The time taken to domesticate crops has decreased since the earliest domestication events (Meyer et 

al., 2012; Vaughan et al., 2007), suggesting that accelerating the development of certain traits in 

underutilized plants is possible. Similarly the processes and timing leading to domestication can vary 

across groups of plants, depending especially on how they are reproduced – by seed or vegetatively 

by cuttings – as well as which plant part is being selected for (Fuller et al., 2014). Trees and longer-

lived plants, for example, have historically been domesticated at a slower rate than annuals with 

shorter life cycles, due to extended juvenile stages which delay the point at which desirable (often 

reproductive) traits can be evaluated and selected. This in turn means that perennial crops often retain 

higher genetic diversity than annual crops (Miller & Gross, 2011). Therefore, if we sought to accelerate 

the domestication of underutilized species, on the one hand we may prefer to focus on shorter 
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lifecycle species, i.e. annuals. Yet conversely, whilst the majority of annual crops are grown from seed, 

more than 75% of perennial crops are clonally propagated, which overcomes the challenges of a long 

juvenile stage and eliminates the variation of sexual reproduction (Miller & Gross, 2011). Whilst 

annuals predominate in our current food system (McClure, Sawler, Gardner, Money, & Myles, 2014), 

from a plant domestication perspective, it is not yet clear which life history traits will be most 

advantageous in the future.   

5.6 Multi-trait adaptation 

Climate change is multifactorial, therefore traits that confer resistance or resilience to multiple 

climatic effects (whilst simultaneously retaining traits for enhanced production and nutrition) would 

be preferable. For example, reaching maturity earlier in the season, flowering at cooler times of the 

day, expression of protective secondary metabolites which offer osmotic control, and deeper, finer 

roots may offer combined protection against warming, drought and UV (Shah et al., 2011). If flooding 

is projected, then traits which promote additional growth, phenological shifts or dormancy in adverse, 

often anoxic, conditions will be favourable. The interactions between different climatic variables can 

also lead to synergistic or antagonistic effects on useful plants. For example, it is known that 

simultaneously increasing rainfall and nitrogen enrichment can increase plant productivity to a greater 

degree than the sum of their separate effects, since the additional water washes the dissolved 

nitrogen over roots, aiding nutrient uptake (Lee et al., 2010). The interactive effects of CO2 with 

warming or drought varies substantially between plant species and can be synergistic, antagonistic or 

neutral, with additional complexity added since the outcome can be further modified by factors such 

as phenological stage, intensity and stress duration (Kadam et al., 2014). 

Given the complexities associated to the prediction of future climates for a given location, particularly 

at a finer-scale, combined with inter-annual variation in conditions, then it may be preferable to 

cultivate multiple genotypes with different traits as an insurance against different climatic outcomes. 

Concurrently, many traits will be linked and therefore the selection of some traits will automatically 
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cause a rise or trade-offs in other traits (Díaz et al., 2016), thus a more thorough understanding of 

linked traits will be required for breeding optimisation. It will be important to consider the direction, 

magnitude and likelihood of multiple aspects of climate change and the full suite of plant traits if we 

are to adequately adapt to our changing world. Technical advances, such as genomic selection or 

prediction, which uses genome-wide markers to predict individual’s breeding values, may permit 

selection for multiple traits whilst maintaining genetic diversity (Crossa et al., 2017). 

6. The cultural influences on our use of plants 

Although agriculture began up to 12,000 years ago (Meyer & Purugganan, 2013), in many parts of the 

world people have continued to exploit seasonally available food sources from the wild. 

Domestications occurred independently on different continents within different temporal contexts, 

and the possible climatic and socio-economic reasons are still debated, along with the co-evolutionary 

mechanisms behind these recurrent parallel processes (Fuller et al., 2014). Change accelerated 

dramatically in the mid-twentieth century with the green revolution focusing on increasing yields of a 

small number of species. This was accompanied by new farming practises with high use of fertilizers 

and agrochemicals, altered irrigation techniques (Pingali, 2012), and accelerated cultural selection of 

a smaller suite of focal useful plants (Meyer et al., 2012). More recently, this trend has been countered 

by efforts to increase the number of crops and foster the conservation and sustainable use of the 

whole biodiversity portfolio for human use. For example the FAO Commission on Genetic Resources 

for Food and Agriculture recently recognised the value of “Globally Important Agricultural Heritage 

Systems” (FAO 2018), which are traditional systems with high agrobiodiversity, resilient ecosystems, 

and linkage of farming practices to cultural identity and local ecological knowledge (e.g. the Ethiopian 

Highlands; Borrell et al., 2018). Other initiatives that have gained traction include the African Orphan 

Crops Consortium (http://africanorphancrops.org), The Millennium Seed Bank (MSB) in the UK, 

supported by a global network of partner institutions, and The Global Crop Diversity Trust’s Svalbard 



Jo
ur

na
l P

re
-p

ro
of

24 
 

Global Seed Vault in Norway to safeguard through duplicate storage as much of the world’s unique 

crop genetic material as possible (Ulian, Pritchard, Cockel, & Mattana, 2019). 

6.1 Transitions between major and minor useful plants 

The plants a community or society may choose to cultivate or harvest from the wild may be strongly 

influenced by climate and biogeography, but these factors also interact with technological 

developments, socio-economic changes and cultural preferences. Many crops that are currently 

‘minor’ have been major crops or had wider distributions in the recent or ancient past (Austin, 2006). 

Species use may change for many reasons, including shifts to more beneficial alternative species, as a 

result of overharvesting (Parejko, 2003), changes in their major use preference (i.e. food to 

construction, fodder to medicine) or the development of new uses for existing crops (e.g. grain crops 

adapted for biofuel production) (Hill, 2007). In northern Sudan, several indigenous African crops 

including sorghum, lablab and cowpea, were major crops until recently, but have become less 

important (Ryan, 2018). Lablab (Lablab purpureus) in particular has been described as a 'lost crop' in 

Africa, yet in India, lablab still has considerable importance, showing spatial variation in societal value 

of crops even outside of their regions of origin.  This demonstrates that whilst there has been a decline 

and homogenisation of global plant species utilization, it is possible for currently minor species to 

become more widely utilized once again. Some species have been exploited for other purposes, before 

being additionally used for food (Meyer et al., 2012). For example Theobroma cacao, now used 

worldwide to produce chocolate, was originally used in the production of a fermented beverage and 

is still used for preparing mole in Mexico, whilst others can lose some of their applications, for example 

more palatable and easier to process enset landraces may be less suited to fibre production (Borrell, 

Biswas, et al., 2018).  

6.2 Human influence on plant resilience 

There are several strategies to facilitate climate adaptation whilst continuing to derive material and 

non-material benefits from useful plants. In the short-term, the conservation of extant genetic 
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diversity, particularly in a period of rapid environmental change, is critical to enable future crop 

development. Human selection for useful plant traits is sometimes at odds with natural selection of 

fitness traits; thus maintaining diversity across all traits, not just target traits, is considered important 

(Fu, 2015). For the majority of useful plants that are not cultivated, cultural choices are crucial to 

enable conservation of wild populations. Conservation may also be key to enabling discovery of 

currently unknown or undocumented useful plants (Dempewolf et al., 2014; Garnett et al., 2018; 

Rodríguez et al., 2018). In the medium-term, plant breeding and genomic prediction tools are likely to 

enable faster development of resilience traits (for example; breeding of dieback resilient Fraxinus in 

the UK). Concurrently, for wild populations, assisted gene flow or migration strategies could be 

employed to facilitate adaptation (Aitken & Bemmels, 2016).  

In the longer term, ex situ conservation strategies for preservation of genetic resources from useful 

plants will need to be adapted to the effects of climate change on certain seed traits and be mindful 

of how these traits are represented in the range of species considered as useful plants. For example, 

seed storability has been a key trait selected during crop domestication. Indeed, 84% of the world´s 

major crops or crop complexes listed in Annex I of the International Treaty for Plant Genetic Resources 

for Food and Agriculture produce seeds that are considered orthodox (i.e. tolerate desiccation and 

storage at low temperatures, the standard seed storage conditions) and these seeds can be stored ex 

situ for relatively long-periods of time (Pritchard, 2016). However, seed storability (i.e. desiccation 

tolerance and longevity) is affected by changes to the parental environments, and the environmental 

conditions expected under climate change scenarios may potentially reduce seed storability for 

diverse species (Kochanek, Buckley, Probert, Adkins, & Steadman, 2010). Additionally, there is an 

increasing number of plant species that are or have the potential to become useful plants for which 

seed storability may be reduced or intractable using the standard seed storage conditions (i.e. 

recalcitrant seeds that do not tolerate desiccation and/or storage at low temperatures and clonally 

reproduced crops) (Li & Pritchard, 2009). This is particularly important in the tropics where there is 

the largest concentration of recalcitrant seeded species (Wyse & Dickie, 2017). Historically, 
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recalcitrant seeds (desiccation intolerant) and clonally reproduced crops have required field gene 

banks and in vitro collections. These methods are higher risk as, for example, field gene banks are 

exposed to pests and the unfavourable environmental changes predicted under climate change. New 

approaches such as Cryobiotechnology, including cryogenic storage and explant recovery in vitro 

(Pritchard, 2018), provide a long-term solution for previously intractable species and is also likely to 

improve longevity of orthodox seeded species (Walters, Wheeler, & Stanwood, 2004). 

Finally, we note that genetic engineering is likely to play an increasingly important and sophisticated 

role in manipulating the diversity of useful plants. In the short term, this is likely to benefit a relatively 

narrow range of extensively domesticated (and better studied) species, and in the context of this 

review could be considered a form of Adaptation-Specialization (Figure 1). A full discussion of this 

broad topic is outside of the scope of this review, and we refer the reader to Ortiz et al., (2014). 

6.3 Preservation of indigenous knowledge associated with useful plants 

The efficient exploitation of many underutilised useful plants depends to a large degree upon the 

preservation of associated, and often diverse indigenous knowledge, for example the complex 

cultivation and processing practices for enset in Ethiopia (Borrell et al., 2018). It is important to 

recognise that many communities still cultivate relatively few species, and are reliant on harvested 

(wild) plants for construction, medicine, tools, food, firewood (and also game animals dependent on 

plants) (Mollel, Fischer, Hemp, & Fischer, 2017). Indigenous knowledge combined with science has 

been suggested as one of the most effective approaches to achieving agricultural climate adaptation 

(Makondo & Thomas, 2018). There is increasing evidence that a large proportion of this knowledge is 

endangered, with the future of many underutilised plants depending upon addressing cultural biases 

against the use of local or traditional food crops (Berkes, Colding, & Folke, 2000; Makondo & Thomas, 

2018). For example modernising cultural attitudes see some traditional wild harvested plants as 

‘children’s food’, or indigenous species are overlooked because they are perceived as ‘backwards’ in 

favour of introduced ‘modern’ crops (Yemataw, Tesfaye, Zeberga, & Blomme, 2016).  
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6.4. Useful plants as an option value 

Conservation of species and ecosystems is essential to preserve useful plant diversity but is inhibited 

by the scale of the challenge and limited resources. In this regard, phylogenetic diversity (which in 

many cases may also be spatially correlated with biodiversity hotspots) has been considered as a 

suitable representative of feature diversity (but see Kelly et al., 2014 and Owen et al., 2019 for further 

discussion of this topic). Consequently, maximizing phylogenetic diversity would be an efficient way 

to identify potential future value of plant diversity, including plants useful to humans (i.e. the concept 

of option values; Faith, 1992). In the future, the desire to create sustainable products will require new 

solutions to overcome the overexploitation of wild raw resources. New challenges (e.g. reduction in 

single use plastics, emerging diseases) may also require development of entirely new classes of useful 

plant product, from as yet unexploited branches of the plant tree of life. 

7. Conclusion 

Useful plants underpin human well-being and the global economy, but the majority are under-

documented and under-developed. Lack of knowledge on the ecological characteristics of many useful 

plant species emphasises the urgent need to synthesise the future impact of climate change on our 

useful plant resource system over the next century. In this review we have identified a range of 

characteristics that may be typical of the useful plants we will increasingly rely on in the future as well 

as conceivable pathways for society’s use of plants (Figure 2).  

Different combinations of characteristics or traits are likely to be favoured under different pathways. 

A trend towards adaptation, for example, may intensify the pattern of domestication that is already 

established, with continued emphasis on our existing extensively domesticated species. This would be 

concomitant with development of novel genomic and breeding approaches to make further 

performance gains whilst technological solutions may also be sought for pest regulation, plant-

pollinator interactions and appropriate irrigation or nutrient inputs. Conversely, substitution may 

favour different species, better suited to future conditions – i.e. useful plants that already display 
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desired traits to tolerate climate change – but in which productivity traits may not yet have been 

extensively developed. In this case, useful plant development may focus on species with higher 

temperature tolerance, improved photosynthesis and water use efficiency. The key difference 

between adaptation and substitution is that the former relies on technology to develop traits in 

species with existing desirable yield or product attributes, enabling them to tolerate future climatic 

conditions, whereas substitution favours species already (or likely to be) tolerant of future climatic 

conditions, with development of ‘useful’ features or traits being secondary.  

Concurrently, a trend towards specialization is likely to favour wide-spread generalist species, selected 

to be tolerant to a wide range of climatic conditions. They may have more generalist pollinators (or 

no pollinator), and a range of uses or co-products enabling multiple benefits to be derived from a 

limited pool of species. It is likely that many of the species used under a specialization scenario are 

already moderately or extensively domesticated, though some may be subject to reduced intra-

specific diversity. The alternative trend, diversification, entails increasing use of larger numbers of 

species. A key pillar to support this trend would be conservation, to support maintenance of option 

values, particularly in species-rich areas such as the tropics. Conservation of crop and crop wild relative 

genetic diversity would be prioritized, together with accelerated documentation of indigenous 

knowledge associated with weakly domesticated or wild harvested species. From a phylogenetic 

perspective, a better understanding of the frequency of different uses across and within plant families 

would aid management of useful plant resources, as well as facilitate the identification of novel useful 

plants.  

The strategies considered here are a simplified representation of a continuous spectrum of pathways 

and a subset of useful plant characteristics. These pathways should be framed by the current global 

trend towards lower numbers of species and reduced genetic diversity. Therefore, on our current 

trajectory, without adequate in situ and ex situ conservation of species and genetic diversity, the 

adaptation and specialization pathways become increasingly unavoidable. Conservation and seed 
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banking interventions, now, could help ensure that the full range of pathways are available in the 

future. In the near term, global and national agricultural and conservation policies will substantially 

influence society’s long-term trajectory across these spectra of strategies. Useful plant documentation 

efforts, for example, should be a priority in the same way that seed banks have sought to safeguard 

physical plant diversity. Similarly, robust multilateral systems of access and benefit-sharing will be 

critical to ensure equitable benefit from useful plants, and are key to enabling strategies such as 

substitution and diversification. We conclude that whilst we currently have a choice of strategies, the 

continued loss of diversity combined with climate change means that without effective safeguards 

and planning, the range of strategies available to us will become much more limited. 
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Figure Legends 

Figure 1. A schematic diagram of the potential distribution of useful plants across the domestication 

spectrum. The total number of useful plants is reported as exceeding 31,000 (Kew, 2016), however 

the actual and relative size of domestication classes is unknown. 

 

Figure 2. climate change adaptation strategies and trade-offs for the future utilization of useful 

plants.  
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Figure 3. Phylogenetic distribution of selected plant crops across the seed plant families. A) Crops 

species were identified sensu FAO (2010). Families containing at least one crop taxon are indicated 

with red bars placed in front of the phylogenetic tips. Plant families without any crop are colour coded 

in blue. We note however that families without crop taxa may nevertheless include useful plants not 

considered in this analysis. A bar plot with the proportion (%) of crop plant taxa per number of species 
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is also provided. A familial phylogeny of seed plants was produced by collapsing species into families 

using the R package BioGeoBEARS (Matzke, 2018) while crop plant families were plotted as trait data 

in phylogenetic tips using the R package ggtree (Yu, Smith, Zhu, Guan, & Lam, 2017). The total number 

of species per family was obtained from Christenhusz et al. (2017). 

 

Figure 4. Traits that are likely to characterise future useful plants under climate change. Schematic 

diagram with a non-exhaustive selection of desirable useful plant traits in response to a range of 

emerging environmental stressors associated with climate change.  



Jo
ur

na
l P

re
-p

ro
of

47 
 

 


