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Abstract 
 

Flat hybrid membranes composed of polyetherimide (PEI) as matrix and zeolitic imidazolate 

frameworks (ZIFs) as fillers at concentrations of 10 and 20 wt % were prepared. Apparent 

permeability coefficient and apparent diffusivity coefficient of gases (CO2 and N2) for these 

hybrid membranes (PZIFs) were determined by the “time-lag” method. The experimental 

conditions used were from 25 °C to 55 °C with pressures of 2, 3 and 5 bar. The PZIFs with 

fillers of ZIF-8 (PZ-Zn) and ZIF-67 (PZ-Co) showed apparent selectivities (𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄ ) 

of 39.6 and 27.5, respectively, higher than the 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  of the reference membrane 

PEI, while the membrane with filler of ZIF-Mix (PZ-Zn/Co) showed the lowest 

𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  selectivity of 10.3 in the membrane series (under conditions of 25 °C and 2 

bar). It is proposed that the selectivity of the membrane series can be attributed to two critical 

factors: the particle size/distribution ratio in the polymer base and sorption of CO2 at local 

sites of the bimetallic mixture.  

On the other hand, gas permeation studies (O2, CO2 and CH4, and CO2/CH4 and CO2/C2H4 

mixtures), were carried out in the series of PZIFs membranes. Permeability data were 

obtained by an isostatic method based on a permeation cell connected in series to a gas 

chromatograph where the rate of permeated gases was analyzed until a stationary state was 

reached. The complementary characterization techniques were: scanning electron 

microscopy, thermogravimetric analysis, and powder X-ray diffraction, which support the 

existence of the amorphous/crystalline phases of the PZIFs. 
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permeability. 



1. Introduction 

Membrane technology is an attractive and competitive alternative with regard to 

technologies (for example: separation of gases with amines and reforming of methane with 

water vapor), which are focused on related processes in obtaining energy and capturing and 

/ or separation of greenhouse gases (especially CO2 and CH4), which are mostly released 

into the environment and promote the very well-known global warming. [1] In the last 

decade, the introduction of polymer membranes in gaseous separation processes, hydrogen 

recovery (H2 / HC), sweetening of natural gas (CO2 / CH4), adjustment of the ratio of 

synthesis gas or fuel cells (H2 / CO2) ), among others, has had an increasing interest due to 

its multiple benefits, such as: low surface area of operation, assembly of units by modules, 

low operating costs, the non-use of chemical additives, etc. [2,3] Currently most of the gas 

separation studies carried out on polymer membranes, [1] asymmetric membranes, [4] and 

composite membranes, [5] seem to be oriented towards the use of materials such as 

molecular sieves, where the ratio of pore size / kinetic diameter (polymer / gas, respectively) 

points to being the predominant factor before the permeation and gas separation. However, 

another factor that participates in the gas transportation and that has not yet been much 

studied is the adsorbate-adsorbent sorption process, which can play an important role in the 

separation of gases in the membrane technology. Today there is a great interest in the 

research and development of new membrane structures hose objective is to obtain greater 

selectivity and permeability of specific gases. The polyetherimide (PEI), commercially 

known as ULTEM®, is a high performance thermoplastic polymer with imide, isopropylidene 

and ether groups [6]. The repeating unit of PEI is [C37H24O6N2]n with molecular weight of 

592 g/mol. The polymer presents glass transition temperature at 215 °C, and decomposition 

temperature at 427 °C [6,7]. These features make it interesting for high temperature 

applications. Zeolitic Imidazolate Frameworks (ZIFs), are members of a new class of 

organic-inorganic hybrid materials called Metal Organic Frameworks (MOFs), which offer 

diversity of architectures, pore sizes and high surface areas [8,9]. ZIFs have been used as 

fillers in polymeric matrices in membrane technology due to its great potential for sorption, 

separation of mixtures of gases and vapors [10,11,12,13]. ZIF-8, which molecular formula 

is: Zn (mIm)2, (where mIm=2-methylimidazole) has sodalite topology and shows adsorption 

affinity CO2 molecules; also the ZIF-8 exhibits exceptional thermal and chemical stability 



[8,14,15].  ZIF-67, Co (mIm)2,  ZIF-Mix, Zn/Co (mIm)2, and ZIF-8 are isostructural materials 

exhibit six members rings (~ 3.4 Å) as pore openings [16,17,18]. These three materials have 

shown a differentiated sorption performance (when studied by IGC), due to the charge 

anisotropy, consequence of the metallic center nature. It seems likely that this behavior would 

be reproducible employing ZIFs as fillers in the polymeric base PEI. 

In the present work, it is proposed that the variation of the permeation coefficients obtained 

not only depends on the ratio of pore size/kinetic diameter of the gas, but also on the factors 

such as the isotropy and anisotropy of the electrical charge that are present in each of the 

ZIFs structures and the dipole moment of the gas in question. So, mixed-matrix flat 

membranes composed of microporous fillers (ZIF-8, ZIF-67 and the bimetallic mixture ZIF-

Zn / Co) and the polymeric PEI base were prepared. The pure gas permeation coefficients 

and gas mixture separation were evaluated for the series of membranes obtained. In addition, 

the materials obtained were studied by means of DRX, SEM, and TGA to demonstrate the 

presence of the microporous phase in the polymeric base and to analyze the thermal stability 

of the obtained membranes.  

 

2. Experimental 

2.1. Materials 

Polyetherimide, PEI was purchased from Sabic. N-methyl-2-pyrrolidone (≥99.7%), NMP; 2-

methylimidazole (99%), 2-mIm; and zinc chloride (≥97%), ZnCl2 were purchased from 

Sigma Aldrich. Cobalt chloride (≥99.8%), CoCl2 and sodium formate (≥99%), NaCOOH 

were purchased from Baker Analyzed and Reasol, respectively. Dry CO2 and CH4, and 

CO2/CH4 50/50, CH4/C2H4 50/50 mixtures were supplied by Abello-Linde (Puzol, Spain). 

 

2.2. Synthesis of ZIF-8 

ZIF-8 (Z-Zn) was synthesized in our laboratory according to the procedure reported 

elsewhere. [8]. In brief, the mixture of 821 mg of 2-mIm and 765 mg of NaCOOH in 30 ml 

of methanol was placed under stirring for 20 min. In a separate beaker a solution of 512 mg 

of ZnCl2 in 15 ml of methanol was prepared. Both solutions were mixed and stirred for 25 

min.  Then the resulting mixture was retorted in a PTFE coated stainless steel reactor at 



130°C for 4 h. The final product was centrifuged and the precipitate was washed, centrifuged 

and dried under vacuum for 12h. 

2.3. Synthesis of ZIF-67 y ZIF-Mix 

The synthesis of ZIF-67 (Z-Co) and ZIF-Mix (Z-Zn/Co) is similar to that described above: 

for the synthesis of Z-Co, substituting 483 mg of CoCl2, instead of ZnCl2. In the case of Z-

Zn/Co, equimolar amounts of metal ions (Zn/Co) were used with the aim of promoting a 

solid solution with metal ratio of 1:1. 

 

2.4. Preparation of colloids and membranes 

PEI:NMP solutions (in 1:3 w/w relation) were mixed to form a solution. Each ZIF was added 

to the polymer solution at concentrations of 10 wt % and 20 wt % of the final solid product 

(See equation 1). The mixtures were capped and placed in an ultrasonic bath for 2 hour and 

then stirred during 15min. After two cycles, membranes were prepared by the casting 

technique; the colloidal dispersions were spread on a flat glass and placed in an oven where 

samples were heated from room temperature to 210°C (heating rate = 30°C/h) and kept 

isothermally for 2 h. The obtained hybrid membranes, PEI/ZIFs or PZIFs, (100 ± 18 µm 

thick) were labeled as PZ-Zn (PEI/Z-Zn), PZ-Co (PEI/Z-Co) and PZ-Zn/Co (PEI/Z-(Zn/Co)). 

The PZIFs membranes and PEI membrane were sealed and stored until further use. 

 weight 𝑍𝐼𝐹 % =
weight ZIF

weight ZIF + weight PEI
 𝑥 100%                     (Eq. 1)  

2.5. X-ray diffraction analysis 

The XRD pattern of the synthesized fillers and membranes were collected using a Bruker-

AXD D8-Advance diffractometer with Bragg-Brentano theta/theta geometry, with Cu, 

diffracted beam monochromator and scintillation detector. 

 

2.6. Porosity analysis 

The N2 adsorption isotherms were recorded at 77 K with an ASAP 2050 pressure sorption 

analyzer (from Micrometrics) equipped with a Smart Vac degassing system. The processing 

of the adsorption data was done to obtain the surface areas (BET) and the volume of 



micropores. The sample was activated under vacuum at 100 °C for 2 hours before the 

thermogravimetric analysis 

 

2. 7. Scanning electron microscopy 

The surface morphology of the samples: ZIFs fillers and PZIFs membranes was studied using 

a field scanning electron microscope (JEOL 7001F EDX-WDX Oxford, INCA 350 / Wave 

200). The samples were gold coated and conserved under vacuum before SEM observations. 

 

2.8. Thermogravimetric analysis 

The thermal stability of the membranes was evaluated with a TGA 2950 thermogravimetric 

analyzer TA Instruments (New Castle, DE, USA) by heating the sample from 25°C until 700 

°C at a heating rate of 5°C/min. The experiments were carried out under nitrogen atmosphere 

with 60 ml/min flux. 

 

2.9. Apparent permeability of gases 

The gas permeation properties were determined by means of automated gas permeation 

equipment (see diagram in supporting information) and the variable-volume pressure-

constant method [19]. Measuring devices used were: (PFEIFFER) Vacuum pressure sensors 

with ranges of 1x10-3 mbar in the lower chamber, 1bar in the upper chamber and a Dual 

Gauge ™ transducer (TPG 252-A model).  Gas transport gas through dense membranes is 

usually expressed in terms of the apparent permeability, Pa and the apparent diffusion 

coefficient, Da. The apparent permeability coefficient in the steady-state may be determined 

by the following expression [20]: 

𝑃𝑎  =
273

76
 ∙  

V ∙ L

A ∙ T ∙ 𝑝0
 ∙

𝑑𝑝(𝑡)

𝑑𝑡
                                          (Eq. 2) 

Where V is the volume of the lower chamber, L the thickness of the membrane, A is the 

effective area of the membrane interaction, T the absolute temperature, p0 the pressure of the 

upper chamber and dp(t)/dt the pressure increase rate in the lower chamber at the steady state. 

This value is the slope of the line that fits the linear section of pressure vs time plot. The 

measurement conditions were from 25 °C to 55 °C and pressures from 2 bar to 5 bar. 



Apparent diffusion coefficient was obtained using the time lag model, θ, using the expression 

[20,21]: 

𝐷𝑎 =
𝐿2

6θ
                                                                   (𝐸𝑞. 3) 

The θ value is obtained as the intersection of the above mentioned line with the time axis. 

Another important aspect is that gas separation selectivity is considered ideal and defined as 

[20,21] : 

                 𝛼 (
𝐴

𝐵
) =  𝛼𝐴/𝐵 =

𝑃𝐴

𝑃𝐵
                                                 (Eq. 4) 

Where, PA and PB are the permeation coefficients for gases A and B, respectively. Frequently 

the most permeable gas is taken as A, so that αA/B> 1. 

 

2.10. Permeability to gases 

O2 permeability values were measured in dry conditions by using an Oxtran 2/20 (Mocon, 

Minneapolis as described earlier [22].  Permeability data for other gases were obtained by an 

isostatic method based on a permeation cell connected in series to a gas chromatograph (GC) 

equipped with a TCD detector as described elsewhere [22,23,24]. In brief, the film under 

analysis separates the two chambers of the permeation cell. In the low concentration chamber, 

a constant flow of helium (f) carries the permeated molecules out of the cell and to the 

injection valve of the GC. The high concentration gas on the high concentration chamber a 

constant flow of the permeant gas (or gas mixture) maintains the pressure of the gas constant 

at 1 atm (or 0.5 atm for gas mixtures). Gas pressures were adjusted by appropriate 

manometers and flows were controlled by needle valves and measured and mass flow meters 

from Dakota Instruments (New York). Gas samples of the He flow stream were injected until 

peak area got constant, indicating the achievement of stationary state. The GC response was 

previously calibrated by injection of known amounts of the tested gases.  Permeability values 

were calculated from the concentration of the permeant at stationary state (𝑐∞) as follows: 

 

𝑃𝑖 =
𝑐∞ · 𝐿

𝑓 · 𝐴 · ∆𝑝𝑖
                                                           (𝐸𝑞. 5) 



Where ∆𝑝𝑖is the pressure difference of gas “i” between the two chambers of the cell. 

Experiments were carried out in triplicate. Results shown are the mean values, the 

experimental error being estimated in 5%.   

 

3. Results and discussion 

ZIF powders were successfully obtained following the experimental procedure and then 

incorporated in the polymeric solution to obtain the membranes series PZIFs. PZIFs 

membranes and the white polyetherimide membrane were studied; although the family of 

PZIFs membranes starts from the same polymeric base, same synthesis conditions, same 

concentrations and similar thicknesses (100 ± 18 μm); these membranes only differ in the 

fillers used: Zn and Co monometallic zeolitic imidazolate frameworks (ZIF-8 and ZIF-67, 

respectively), in addition to the bimetallic composition Zn/Co (ZIF-Zn/Co), considered a 

solid solution. It should be mentioned that the crystalline ZIFs in question are isostructural 

to each other, so that the pore sizes of the structures are similar among them. [18] Therefore, 

we proposed that the variation of the permeation coefficients obtained not only depends on 

the ratio of pore size/kinetic diameter of the gas, but also on the factors such as the isotropy 

and anisotropy of the electrical charge that are present in each of the ZIFs structures and 

the dipole moment of the gas in question. It can be said that the network of Z-Zn/Co seen 

from the atomic level (unlike the Z-Zn and the Z-Co), presents an anisotropic environment 

of metallic cations Zn and Co, throughout its entire network; The alternating combination of 

these metals (with ionic radii of 0.074 nm and 0.063 nm, respectively), promotes the creation 

of micotensions and local dislocations (between the assembling metal and the binder) that 

result in an anisotropic behavior of the electric charge which aims to interact with the dipolar 

and/or quadrupole moment of the gaseous molecules. An example of the above can be seen 

in the permeation analysis which will be seen in detail later. 

 

3.1 Porosity analysis 

In the Figure 1. shows the nitrogen sorption isotherms of the Z-Zn, Z-Co and Z-Zn/Co. The 

results indicate a reversible type I isotherm, characteristic of microporous materials. 

Porosity analysis of the ZIFs in question by means of isotherms of adsorption/desorption is 



very relevant (especially Z-Zn/Co), because the Z-Zn/Co to be a solid solution (of the mixture 

bimetallic Zn and Co) and present an isostructural crystalline structure to that of Z-Zn and 

Z-Co, showed an intermediate surface area to that of its two predecessors (Z-Zn and Z-Co). 

The values of BET area and micropore volume are shown in the same figure: 

 

 

Figure 1. Isotherms of adsorption/desorption of the ZIFs. The closed marks refer to the N2 adsorption measurements while 

the open marks refer to the desorption measurements. 

 

3.2 Scanning electron microscopy 

Micrographs of the Z-Zn filler and the PZ-Zn membranes are shown in Figure 2-a and 2-b, 

respectively. The increase in the concentration of fillers ZIFs in the polymeric base PEI if it 

affects the strength of the membranes of mixed matrix however it is possible to work without 

fracture problems using concentrations in 10 wt% and 20 wt%. Ma. Josephine and 

coworkers. [25] report the permeability of N2, CH4, and C3H8 in mixed matrix membranes 

(composed of matrimid/ZIF-8) in percent weight concentrations of ZIF-8, which they range 

from 0 wt% (polymeric base alone) to 60 wt%. The micrographs obtained from the as-

synthesized Z-Zn powders exhibited well-defined crystallites and an average particle size of 

2.6 μm (see Figure 2-a), bigger than particle size of the as-synthesized Z-Co and Z-Zn/Co 

powders (1.8 μm and 1.2 μm, respectively). On the other hand, a cross-section of the PZ-Zn 

membrane is shown in Figure 2-b, which exhibits a random dispersion of the particles in the 

PEI polymer base. Figure 2-c shows in greater detail the fracture and fragmentation of the 

ZIFs crystalline particles (with an average size has been reduced to 9 μm) located in the 



polymeric matrix. The reduction of the ZIFs particles size and their morphological change of 

these fillers are associated with the exposure period of the colloidal solution in the ultrasonic 

bath. This change turned to be advantageous because the crystalline phase is still preserved, 

while the effective contact area to the permeating gases increases with the increase in the 

population of small particles well dispersed in the polymer phase. 

 

 

Figure 2. SEM micrographs and XRD patterns. a) Z-Zn, b) PZ-Zn/Co, c) Z-Zn/Co particles fractured inside of PEI and d) 

XRD patterns of membrane series and Z-Zn powder. 

 

3.3. X-ray diffraction analysis  

XRD patterns of the series of membranes and the phase of Z-Zn are shown in Figure 2-d and 

evidence the presence crystalline of the Z-Zn, Z-Co, and Z-Zn/Co incorporated into the PEI 

polymer base [8,26,17]. The crystalline phases of the obtained ZIF materials were identified 

using the "Match" program and using the Scherrer equation, the particle size was determined, 

which has the following trends: Z-Zn (1225 Å) > Z-Co (1120 Å) > Z-Zn/Co (879 Å). In the 

process of synthesis and self-assembly of the Z-Zn/Co, the tensions due to the mixture of 

metals (Zn/Co) and the organic linker may be a limiting factor for particle growth. [27]  



Preliminarily in Figure 2-d it can be seen that the first diffraction maximums of the MMM 

(corresponding to the crystalline phase) are widened compared to the diffraction maximums 

of the Z-Zn sample; This behavior is attributed to finite dimensions of the crystallites, that 

is, the smaller the crystal, the more atoms will be out of optical coherence and consequently 

the diffraction maximums will widen. Subsequently, the particle size of the ZIFs fillers within 

the polymer matrix was determined resulting in smaller crystallites compared to the 

crystallites before the preparation of the colloid; The results obtained show the following 

trend: Z-Zn (966 Å) > Z-Co (941 Å) > Z-Zn/Co (796 Å).  

 

3.4. Thermogravimetric analysis 

The termogravimetric curves of the PZIFs membranes are showed in the Figure 3. The curves 

presented a weight loss in the temperature range of 170 °C to 300 °C, later showed a constant 

weight profile up to 300 °C. This first weight loss was related to the evaporation of the solvent 

molecules trapped in the membranes (mainly in the polymeric matrix) and results in 5.4%, 

6%, 7.2% and 8% losses for PEI, PZ-Zn, PZ-Co and PZ-Zn/Co, respectively. It is common 

to think that the solvent molecules trapped in the membranes could plasticized the matrix 

increasing the transport of gases and affecting the values of their representative coefficients 

(Pa and Da) of the ternary system (polymer/ZIFs/solvent), although this is not our case. Using 

the PEI membrane as a reference, the permeability values obtained (which will be discussed 

later) were similar to those reported in the literature. Probably, the solvent molecules were 

removed during the activation time of the membranes (vacuum of 8 hours) to which they 

were submitted before each test. As Figure 3 shows, the weight of all PZIFs remained 

constant within the 300 °C-360ºC range. At 360ºC, the thermograms showed the initiation of 

a second weight loss which finished ca. 500ºC, and that accounts for ca. 30% of the original 

sample weight. This loss could be related with the decomposition of the ZIFs materials. At 

higher temperatures, the curves showed a similar profile with a smooth slope which is related 

with the decomposition of the polymer.   
  



 

Figure 3. Thermogravimetric analysis of PEI and PZIFs membranes 

 

 

3.5. Apparent gas permeation in PZIFs membranes 

Figure 4 shows the permeability coefficients to CO2 and N2 for PEI and PZIFs at 35 °C and 

2 bar conditions. To verify the correct operation and calibration of the permeation equipment, 

the PEI membrane was taken as a reference. The apparent permeability to CO2 and selectivity 

of gases (CO2 and N2) in the PEI membrane, were Pa = 1.25 barrer and 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄ = 24.01, 

respectively, similar to already reported data [28].  In the case of PZIFs membranes at 10 wt 

% concentration, the permeabilities were slightly lower than those obtained for the PEI 

membrane.  

On the other hand, the series of membranes of greater concentration (20 wt %) showed 

different behaviors: The permeability coefficients for CO2 obtained for the membrane series 

showed the following trend: PZ-Co > PZ-Zn > PEI > PZ-Zn/Co; while the permeability 

coefficients for N2 showed the following trend: PZ-Co > PZ-Zn/Co > PEI > PZ-Zn. Although 

the fillers are at the same concentration, isostructural and with similar pore size (3.4 Å), the 

Pa to CO2 for the membrane with PZ-Zn/Co filler was considerably lower. Similar behavior 

was observed for the rest of temperatures analyzed (see supporting information). This 

phenomenon could be attributed to intrinsic properties of the filler Z-Zn/Co (since the method 

of preparation and measurement conditions of the membrane series were the same). Such 

intrinsic properties should be reviewed in terms of isostructurality, pore size, crystallite size 

and local charge anisotropy. 

 



 

Figure 4. Graphics of permeability series membranes to 2 bar and 35°C 

 

According to the results observed in the figure 4, it can be considered that the increase of the 

concentration of the fillers in the PEI polymer base has as consequence the increase of the 

permeability of the gases through the mixed matrix membrane (MMM), this is attributed to 

the increase of the contact surface crystallite-polymer. The crystallite-polymer interface 

present in the MMM can be considered as a number of preferential paths for the transport of 

gases. Therefore it could be said that, the higher the concentration of the filling, the greater 

the gas permeability, through these preferential roads; An important fact is that ZIFs are also 

known for their properties in gas sorption [29,30,31] so having a certain crystallite-polymer 

contact surface can reduce the permeability of gases and even more when the material counts 

with seductive properties (such as the anisotropy of electric charge that is present in the Z-

Zn/Co material) that allow it to attract gaseous molecules. In addition, the particle size aims 

to be another critical factor that participates in the reduction of permeability to CO2 in the 

membrane with PZ-Zn/Co filler. This filler has smaller crystallite sizes than Z-Zn and Z-Co 

providing greater effective contact area with the permeant gas. Electron density distribution 

is not-uniform due to the presence of the metallic cations (local charge anisotropy) and this 

leads to crystallites with more reduced dimension than in the monometallic ZIFs (Z-Zn and 

Z-Co). Smaller crystallites better dispersed in the polymer matrix result in larger interacting 

area for the permeant molecules. Subsequently, the Pa value decreased by half in the case PZ-

Zn/Co while the Pa values for the other two ZIFs increased, what it is attributed to the absence 

of local charge anisotropy, bigger particle size (smaller contact area) and a slight increase in 



pore size. The most important of the three factors is the local charge anisotropy since CO2 

molecules have a quadrupole moment of (-4.3 erg1/2 cm5/2 ×1026) and a polarizability (2.9x10-

24 cm3) that results in an effect on its permeability as a consequence of the contacting area 

composition [18]. 

The values of Pa and Da for the developed membranes (obtained by “time-lag” method and 

with a measurement error of 3 %) are shown in Table 1. As it is known, the rapidity at which 

the mass transport of gaseous molecules occurs across a membrane depends mainly on the 

size of the kinetic diameter of the permeant gas, so it is usual for the permeation values to be 

higher for molecules with smaller kinetic diameter and smaller for those with greater kinetic 

diameter (for example: 𝑃𝐶𝑂2
> 𝑃𝑁2

) [20]. The attractive interactions between molecules with 

quadrupole moment, Q, (such as QN2 (-1.5 erg1/2 cm5/2 ×1026) and QCO2 (-4.3 erg1/2 cm5/2 

×1026)), and the local electric field present in lattices ZIFs, are an example of the sorption 

force [18,32]. In the process of gas transport through the PZIFs, these sorption forces are 

present and are evidenced on the permeability values obtained (see Table 1). 

 

Table 1 

Values of apparent permeability and diffusion coefficients at 35 °C and p0 = 2 bars. 

Membrane Pa / Barrer Da x 10-10 / cm2 s-1 

CO2 N2 CO2 N2 

PEI 1.250.08 0.0520.002 252 25 2 

PZ-Zn 1.790.09 0.0310.001 443 303 

PZ-Zn/Co 0.640.03 0.0620.003 1065 1229 

PZ-Co 3.330.17 0.1200.006 352 20.31.7 

 

 

Apparent selectivities, 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄ , in the series of membranes are shown in Figure 5. The 

results obtained in the PZ-Zn hybrid membrane with 10% filler showed a slight improvement 

in the 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  compared to the control PEI membrane, while that the PZ-Co and PZ-

Zn/Co membranes with 10 wt% filler showed 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  lower than PEI. The 

𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  for the PZ-Zn and PZ-Co membranes in concentration 20 wt% of filler, 

showed greater selectivity than the PEI, while the PZ-Zn/Co membrane did not show a 

relevant change. It can be considered that the low 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  of the PZ-Zn/Co membrane 

is mainly related to the retention of CO2 due to the anisotropy of local charge present in the 



filling, so it can be proposed that the permeability of CO2 in the membrane (PZ-Zn/Co) is 

reduced by effects of a local field and the transport of N2 by the pore size of the membrane. 

The series of membranes showed a similar behavior at all tested temperature and pressure 

conditions (see complementary material). Table 2 shows effect of temperature on the 

apparent permselectivity values obtained for the PZIFs membranes at 2 bar pressure. 

       

 

Figure 5. Apparent selectivity in PZIFs and PEI at 2bar and 35°C: PZIFs with a) 10 wt % fillers and b) 20 wt % fillers 

 

Table 2. Apparent selectivities to membrane white 20% wt  at 2 bar. 

𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  

T / °C 
Sample 

PEI PZ-Zn PZ-Zn/Co PZ-Co 

25 20.380.02 46.810.05 5.110.01 30.530.07 

35 24.010.04 39.600.05 10.350.02 27.350.09 

45 24.900.04 35.490.06 11.620.03 22.940.10 

55 26.480.05 33.820.07 13.130.04 22.420.10 

 

Samano and coworkers. [18] reported the separation of the H2/CO2 and CH4/CO2 binary 

mixtures using packed columns of ZIFs (ZIF-4, ZIF-8, ZIF-67 and ZIF-ZnCo). The gas 

separation study showed that the solid ZIF-Zn/Co solution exhibited higher sorption of 

molecules with quadrupole moment (for example H2 and CO2) compared to their analogues. 

The chromatographic profile of Figure 6 shows the response times of the CH4/CO2 binary 

mixture using a column packed with PZ-Zn/Co fillers at a concentration of 10 wt% and a 

temperature at 30 °C; the results of this study showed shorter response times compared to 

those obtained in a column packed with ZIF-ZnCo powders (5 times smaller) previously 



reported [13]. The separation behavior for the gas mixture CH4/CO2 in the column with PZ-

Zn/Co gaskets (similar to the behavior of ZIF-ZnCo) supports the hypothesis of CO2 sorption 

in local sites of the PZ-Zn/Co membrane, explaining the reduction of selectivity when using 

gases with relatively large kinetic diameters and molecules with quadrupole moments. 

 

Figure 6. Chromatogram of separation CH4/CO2 in PZ-Zn/Co 

 

Assuming that the gas transport processes through these membranes are thermally activated, 

the activation energy values can be calculated using the Arrhenius equation: 

X = 𝑋0 exp (
−𝐸𝑋

𝑅𝑇
)                                 𝐸𝑞. 6 

where X stands for apparent of permeation or diffusion coefficient (Pa and Da), X0 

corresponds to the pre-exponential factor and Ex to the activation energy of Pa or Da. 

Arrhenius plots of Pa and Da to CO2 and N2 for the PEI and PZIFs membranes at 2 bars are 

shown in Figure 7 and the calculated activation energy values are included in Table 3.  The 

activation energies associated with CO2 permeation coefficients in the membranes decreased 

in the order: PZ-Zn/Co> PEI> PZ-Zn> PZ-Co, at 2 bars. The activation energies for N2 in 

the series of membranes showed less variation compared to CO2, although the values 

obtained can also be ordered as: PZ-Zn > PZ-Zn/Co > PEI > PZ-Co in the third column of 

Table 3. The values of the apparent sorption enthalpies of CO2 and N2, (ΔHs = EP-ED), are 

also shown in Table 3. It is noticeable that the sorption enthalpy values calculated for the 

PZIFs are of the same order than those obtained for the fillings in their single phase [18]. 

These values indicate that the solubility processes of CO2 in PEI membrane and hibrid 



membranes with fillers Z-Zn and Z-Co are exothermic. On the contrary, for membranes with 

Z-Zn/Co the sorption processes for CO2 and N2 are endothermic. 

 

Figure 7. Arrhenius for apparent permeability and diffusion of a) CO2, b) N2, at 2 bars. 

Color symbol Black, Red, Green, and blue corresponding to PEI, PZ-Zn, PZ-Zn/Co and PZ-Co  

 

Note that the enthalpy of sorption of CO2 in the PZ-Zn/Co membrane is greater than that of 

its analogues (PZ-Zn and PZ-Co), which supports the low selectivity obtained 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  

due to the adsorption of CO2 within the membrane and the possible obstruction of gaseous 

molecules through the hybrid membrane. 

 

Table 3 

Activation energy (Ea) of the permeation and diffusion processes and sorption enthalpy for CO2 and N2 in the 

diverse tested membranes at 2 bar. 

Films EP / kJ mol-1 ED / kJ mol-1 ∆Hs / kJ mol-1 

CO2 N2 CO2 N2 CO2 N2 

PEI 32.8 ± 1.8 31.0 ± 0.3 36.0 ± 0.3 37.4 ± 0.3 -3.2 ± 2.1 -6.4 ± 0.6 

PZ-Zn 17.6 ± 1.3 36.9 ± 0.3 18.1 ± 0.3 30.5 ± 0.3 -0.6 ± 1.6 6.4 ± 0.6 

PZ-Zn/Co 58.1 ± 1.1 33.8 ± 0.4 22.1 ± 0.2 20.7 ± 0.2 36.0 ± 1.3 13.0 ± 0.6 

PZ-Co 18.0 ± 0.8 27.0 ± 0.5 20.2 ± 0.3 43.8 ± 0.3 -2.1 ± 1.1 -16.8 ± 0.8 

 



3.6. Gas mixture study 

 

The estimation of permeability to single and mixture of gases at atmospheric pressure through 

PEI and PZIFs at 10% ZIF weight concentration was carried out by an isostatic method 

described in the experimental section. Figure 8 shows the apparent permeability values (of 

the individual gases O2, CO2, and CH4) and the permselectivity of the gas pairs. In Figure 8-

a, it can be observed that in all membranes, CO2 is the most permeable gas of the three tested, 

followed by O2 and CH4, as it could be expected from reported data in other polymers. The 

greater solubility of CO2 caused by its condensability is mainly responsible for the high P 

values. A comparison between membranes shows that PEI offers and intermediate barrier to 

all these three gases than PZ-Zn (higher) and PZ-Co (lower).     

 

Figure 8. Values of the permeability coefficients of single gas in PEI and PZIFs membranes (plot a) and apparent 

selectivity (plot b) measured at room temperature and at 1 atm of pressure.    

After these results, one could expect that the Pa values for the PZ-Zn / Co membrane would 

be intermediate to those with the single metallic ZIFs (PZ-Zn and PZ-CO), however the 

permeability coefficients of O2, CO2 and CH4 in the PZ-Zn / Co are larger showing that the 

Z-Zn/Co filling is a solid solution and its behavior is typical of a new material with different 

properties than the Z-Zn and Z-Co.  

From the values of apparent permeability (see Table 4) the permselectivity of the membranes 

for the diverse gas pairs were calculated and are also presented in Figure 8-b. In general, the 

results obtained for the PZIFs membranes showed low selectivities compared to the PEI as 

blank; however, it is important to mention that the selectivity behavior of the membrane 

series preserves a pattern similar to the selectivities shown in Figure 5-a. The relationship of 



the observed pattern (by the variable-volume pressure-constant method and isostatic method) 

allows us to suggest that the concentration in percent weight of the PZIFs membranes is a 

potential factor for the increase of selectivity of the gases in question. 

 

Table 4 

Permeability and selectivity of single gases at conditions of 1 atm and room temperature. 

Sample 

Pa x 10-1 

(O2) 

Pa x 10-1 

(CO2) 

Pa x 10-2 

(CH4) 

P(O2)/P(CH4) P(CO2)/P(CH4) P(CO2)/P(O2) 

 

Barrer    

PEI 2.10.1 7.40.4 4.20.2 5.00.5 17.51.8 3.50.4 

PZ-Zn 1.80.1 8.20.4 6.60.3 2.80.3 12.51.2 4.50.5 

PZ-Co 1.40.1 5.10.3 5.00.2 2.80.3 10.41.0 3.70.4 

PZ-Zn/Co 2.60.1 9.40.5 7.60.4 3.40.3 12.31.3 3.70.4 

 

Figure 9 shows the gas permeability measured by the isostatic method with two gas mixtures, 

CO2/CH4 and CH4/C2H4.   

 

Figure 9. Graphics of a) permeation of mixture gases (CO2/CH4) in membrane series and b) selectivity of mixture gases 

(CH4/C2H4)  in membrane series, both at room temperature and 1 atm of pressure.    

Similar to the apparent permeation of single gases, the transport values of these gas mixtures 

through the PZIFs membranes were higher (with the exception of the PZ-Co membrane) than 

through PEI membrane.  In the case of the CO2/CH4 mixture (see Figure 9-a) the permeation 

values obtained for CO2 are in the 5.13x10-1 – 9.37x10-1 barrer range, while that for CH4, are 

in the 4.21 x10-2 to 7.59 x10-2 barrer range. The transport is slower for CH4 than for CO2, in 

agreement with reported literature values and suggests that the transport of gases through the 

PZIFs and PEI membranes is mainly due to the kinetic diameter of the species in question 

(0.38 nm for CH4 and 0.33 nm for CO2). This considerations is also valid for the CH4/C2H4 



mixture. As can be observed in Figure 9-b the permeabilities of CH4 are greater than those 

of C2H4 (with kinetic diameters of 0.38 and 0.39, respectively). [20] Comparing between 

membranes, a similar profile to those observed for pure gases and mixtures were obtained. 

The PZ-Zn/Co membrane presented the greatest permeabilities followed by PZ-Zn, and PEI, 

and again the PZ-Co showed the greatest barrier properties.  

 

Table 5. Permeability and selectivity values of mixture gases at 1 atm and room temperature. 

Sample 

CO2/CH4 CH4/C2H4 

Px10-2(CH4) Px10-1(CO2) 

α (CO2/CH4) 

Px10-2(CH4) Px10-3(C2H4) 

α (CH4/C2H4) 
 Barrer Barrer 

PEI 4.210.21 7.360.37 17.490.30 4.210.21 1.850.09 22.730.15 
PZ-Zn 6.550.30 8.200.41 12.530.40 5.020.25 4.040.20 12.440.20 
PZ-Co 4.970.25 5.130.26 10.340.40 2.350.12 3.360.17 7.000.20 
PZ-Zn/Co 7.590.38 9.370.47 12.340.42 7.590.38 1.090.05 6.990.22 

 

Table 5 presents the permeability of the mixtures and the permselectivities calculated from 

the P values. The selectivities determined for both gas mixtures (CO2/CH4 and CH4/C2H4) in 

the series of membranes showed that the polymer base PEI presents a greater gas 

discrimination compared to the hybrid membranes with 10% ZIF weight concentration. 

Nevertheless, we suggest that the selectivity of PZIFs can change with ZIF concentration 

according to the results obtained with the variable-volume pressure-constant method. 

 

4. Conclusions 

The series of membranes obtained had regular thicknesses (100 ± 18 μm) and free of defects; 

They also exhibited good flexibility during the assembly process and did not present ruptures 

or breaking points during the permeation process. 

In this work, single gas permeation values of CO2 and N2, through PEI membranes containing 

ZIFs at 10% and 20% weight were measured by the "time-lag" method. In addition, the 

permeation values of single gases (O2, CO2 and CH4) and gas mixtures (CO2/CH4 and CH4/ 

C2H4) through PZIFs membranes with 10% of ZIF were obtained by an "isostatic" procedure 

at atmospheric pressure. The PZIFs with fillers of Z-Zn and Z-Co showed apparent 

selectivities (𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄ ) of 39.6 and 27.5 respectively, higher than the 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  



of the PEI membrane, while the membrane with the bimetallic ZIF (PZ-Zn/Co) showed the 

lowest 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  selectivity (10.3) of the membrane series (under conditions of 25 °C 

and 2 bar). It is proposed that the selectivity of the membrane series can be attributed to two 

critical factors: the particle size/distribution ratio in the polymer base and sorption of CO2 at 

local sites of the bimetallic mixture 

The permeability values for the PZIFs vary with respect to the concentration of the filler and 

the adsorbate-adsorbent ratio. The results obtained in the PZ-Zn hybrid membrane with 10% 

filler weight showed a slight increase in the 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  while that the PZ-Co and PZ-

Zn/Co membranes with 10 wt% filler showed 𝛼𝑃𝑎(𝐶𝑂2) 𝑃𝑎(𝑁2)⁄  lower than the PEI control 

membrane, The selectivity of CO2 in membranes of concentration 10% wt of ZIFs was lower 

than the PEI however, when doubling the concentration (20% wt of ZIFs) the increase in 

selectivity was observed only for the PZ-Zn and PZ-Co membranes. 

The activation energy calculated using Arrhenius expression in the activated state theory 

shows activation energies associated with CO2 permeation coefficients in the membranes 

were reducing in the order PZ-Zn/Co> PEI> PZ-Zn> PZ-Co, at 2 bars. However the 

activation energies for N2 showed less variation compared to CO2. The values of the apparent 

sorption enthalpies of CO2 and N2, presented by the PZIFs is of the same order as the fillings  

in its single phase. The reults indicate that heats solubility CO2 in PEI and hibrid membranes 

with fillers Z-Zn and Z-Co are exothermic processes. For filling the membrane with Z-Zn/Co 

heats of solubility of CO2 and N2 are endothermic processes. 
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