
Non-destructive determination of taste-

related compounds in tomato using NIR 

spectra

Abstract

Near infrared (NIR) diffuse reflectance was used to predict the contents of 

taste-related compounds of tomato. Models were obtained for several varietal 

types including processing tomato, cherry and cocktail tomato, mid-sized 

tomato and tomato landraces, with a wide range of varieties. Good 

performance was obtained for the prediction of soluble solids, sugars and 

acids, considering a non-destructive methodology applied to fruits with 

different internal structure. Specific models averaged RMSEP (%mean) values 

lower than 6.1% for SSC, 13.3% for fructose, 14.1% for glucose, 12.7% for citric 

acid, 13.8% for malic acid and 21.9% for glutamic acid. The performance was 

dependent on varietal type. General models with a higher number of samples 

and variation did not improve the performance of specific models. The models 

obtained, either specific or general, couldn't be extrapolated to external assays 
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and an internal calibration would be required for each assay in order to provide 

a reliable performance.

Keywords :Fructose; Glucose; Citric; Breeding; Solanum lycopersicum L.

1 Introduction

Consumers are often disappointed with the flavor of tomatoes (Solanum lycopersicum 

L.). Several causes explain this situation, ranging from poor genetic material to harvest 

and handling procedures (Baldwin et al., 2000). Tomato flavor is defined by taste and 

aroma. Taste is determined by the accumulation of sugars, mainly fructose and glucose, 

organic acids, mainly citric and malic acid, and the relationship among them. A 

prominent role for glutamic acid has also been suggested (Bucheli et al., 1999). 

Increased levels of sugars and acids raised flavor acceptability, though there are 

maximum levels of acids above which further increases negatively affect consumer 

acceptability (Malundo et al., 1995). On the other hand, tomato aroma is defined by the 

accumulation of volatiles. Unlike other crops, aroma in tomato is rather complex, 

determined by the accumulation and interaction of multiple volatile compounds with 

none of them holding a prominent role (Baldwin et al., 2000).

Both taste and aroma are also inter-related. Some volatiles associated with fruity or 

floral notes can enhance the perception of sweetness, and other related to green notes 

can enhance the perception of sourness (Baldwin et al., 1998). On the other hand, 

sugars also affect aroma perception. Increased sugar levels enhance the perception of 

overall, ripe tomato, sweet tomato and tropical aroma notes. Furthermore, increased 

levels of acids also affect aroma perception. In this case, raising the perception of 

overall, tropical, ripe tomato and green aroma notes. It also causes a shift from floral 

and sweet tomato aroma and sweet taste towards bitter and citrus tastes and earthy, 

green, viney and musty notes (Baldwin et al., 2008).

The development of high-quality tomato productions has become an important 

objective in order to supply market segments, where some customers value niche 

products characterized by organoleptic features, giving less importance to the visual 

quality of the product and willing to pay a premium price (Bazzani and Canavari, 2013). 

This added value is especially important in the current market context, as after the 

financial crisis, the level of volatility in tomato prices is especially high and although the 

prices of tomato for consumers seem to be quite stable, price fluctuations in the chain 

damage the rest of the agents (Sidhoum and Serra, 2016).

For this purpose, it is necessary to develop new high-quality varieties to offer improved 

genotypes, to evaluate the growing conditions that optimize the expression of these 

genotypes and finally to monitor the production to assure quality standards. Although 



the recovery of positive alleles involved in the accumulation of volatile compounds that 

were present in tomato landraces has been proposed (Tieman et al. (2017), the truth is 

that it is not feasible to analyse the aroma of high quantity of samples at an affordable 

cost. Accordingly, most emphasis has been placed in the evaluation the accumulation of 

the sugar and acids, which also play a crucial role in the improvement of tomato flavor. 

Traditionally, these taste-related compounds have been indirectly measured with gross 

determinations involving soluble solid contents (SSC) and titratable acidity. But it has 

been described that sucrose equivalents calculated from the individual accumulation of 

fructose and glucose is a far better predictor of sweetness and tomato acceptability (

Baldwin et al., 1998). And the same applies to organic acids, as it has been reported the 

positive influence of free acids on sourness (Tandon et al., 2003).

Near-infrared (NIR) spectroscopy offers several advantages over the precise 

determination of sugars and acids via direct analytical methods based on high pressure 

liquid chromatography or capillary electrophoresis. It entails an indirect analysis, as NIR 

data is related to the actual sugar and acid content using chemometrics. Different 

algorithms have been used for this purpose. In the case of fruit and vegetables the most 

widely used are least squares regression, LSR, multiple linear regression, MLR, partial 

least squares, PLS, and principal component regression, PCR (Naes et al., 2002). Among 

them, PLS is usually preferred over other alternatives for quantification purposes, and 

PCA as an explorative method (Bureau et al., 2019). In fact, most researches involving 

spectroscopic data and with NIR and FTIR data choose PLS models (Arendse et al., 2018; 

Bureau et al., 2019).

The most notable advantage of NIR indirect quantification is that it enables non-

destructive indirect determinations, highly valuable in applications that require 

straightforward, speedy characterization of samples (Blanco and Villarroya, 2002). For 

this purpose, it has been used in quality analysis of fruits and vegetables. But most 

works related to taste are targeted to predict gross measurements such as soluble 

solids contents (SSC) or titratable acidity and using a limited number of varieties (

Arendse et al., 2018). Nevertheless, the lacking availability of scientific evidence of the 

accuracy of these systems is considered a major drawback (Porep et al., 2015).

In this context, several questions have driven the development of the present work. Can 

efficient NIR PLS regression models be obtained to predict not only SSC but also major 

sugars and acids in diverse heterogeneous materials with similar characteristics? And in 

that case, are particular calibrations needed for each assay or general models can be 

satisfactorily extrapolated?

2 Material and methods

2.1 Plant material



Five sets of samples, each one with a specific material, were used to develop prediction 

models. The sample sets were configured considering varietal types, usually determined 

by their size (e.g. cherry and cocktail tomato) and purpose (e.g. processing tomato). 

The first sample set included 180 samples belonging to eight processing tomato 

varieties grown with different water and fertilization regimes in Navarra (Spain). The 

168 samples from the second sample set were similar but were obtained in 

Extremadura, a different environment with warmer and sunnier conditions. These 

samples were obtained during the development of different agronomical studies (Lahoz 

et al., 2016; Martí et al., 2018). In both cases the fruits had a width in the range of 40–
50 mm. The third sample set included 106 samples of 32 varieties of cherry and cocktail 

tomato (width range 20–35 mm) obtained from local markets. The fourth sample set was 

more heterogeneous. It represented 108 samples of mid-sized tomatoes (width range 

40–82 mm) from 25 varieties including ribbed flat, rounded, plum and cluster tomatoes 

from commercial and landrace varieties. It was also obtained from local markets. Finally, 

the fifth sample set included 88 samples of 11 accessions of Spanish tomato landraces 

(width range 60–120 mm) of the ”Moruno” type, ribbed flat tomatoes similar to the beef 

type, grown in Albacete (Spain) and kindly provided by Dr. Moreno.

Each specific sample set and a general set with the 650 tomato samples were used for 

the calculation of models predicting SSC, sugar and acid contents from NIR spectra. In 

all cases, fully ripe fruits were sampled.

2.2 Acquisition of NIR spectra

All the fruits were washed with water and dried with cellulose tissue. The measurements 

of the NIR spectrum were carried out at four different and equidistant points in the 

equatorial peripheral zone of each fruit, as following the four cardinal points, (Hahn, 

2002), and measurements were averaged. The spectrum was obtained with a portable 

NIR spectrometer (Ocean Optics, Dunedin, FL, USA) with an InGaAs detector, covering 

the range between 902 and 2094 nm, with measurements spaced 6.80 nm, and an optic 

fibre probe that allowed measurements directly on fruits using diffuse reflectance. The 

same probe was used for all the varieties independently of the size of the fruit, and if 

had a space of 20 mm between the optical fibre and the edge of the probe. In order to 

calibrate the equipment a Teflon disk was used as reference, measuring the spectra 

several times per day.

2.3 Quantification of sugars and acids with capillary electrophoresis

Once the NIR spectra were acquired, the tomatoes were crushed and homogenized. The 

determination of the soluble solids content was carried out with the obtained tomato 

juice using a Pocket PAL-α digital refractometer (Atago, Tokyo, Japan). The remaining 

sample was stored at −80 °C until the other analytical determinations were made.



The quantification of the reducing sugars fructose and glucose and the organic acids 

citric, malic and glutamic acids was performed by capillary zone electrophoresis (CZE) 

with an Agilent 7100 equipment (Agilent Technologies, Waldbronn, Germany) following 

the method described by Cebolla Cornejo et al., (2012).

2.4 Chemicals and reagents

Fructose, glucose, citric, malic and glutamic acids, hexadimethrine bromide (HDM), and 

2,6-pyridine dicarboxylic acid (PDC), and sodium dodecyl sulfate (SDS) were purchased 

from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was obtained using a Milli-Q 

water system (Millipore, Molsheim, France).

2.5 Data analysis

Each sample set was randomly divided into a calibration group (75% of the samples), 

used to develop the calibration and cross-validation procedures of partial least squares 

(PLS) regressions, and a validation group (25% of the samples), used to make 

predictions with the PLS developed. PLS method was selected considering that it is the 

preferred method for the quantification of sugars and acids in fruits and vegetables 

using spectroscopic data (Arendse et al., 2018; Bureau et al., 2019).

Before PLS regression, the NIR spectra pre-treatment was performed transforming the 

diffuse reflectance measured in absorbance (log [1/R]). Subsequently, signal 

interferences of a multiplicative type, those due to particle size and those associated 

with changes in wavelength, were eliminated with the SNV correction algorithm (Barnes 

et al., 1989).

The predictive models were then obtained by PLS regression (Naes et al., 2002). The 

optimal number of latent variables was calculated using the Venetian blinds cross-

validation procedure. Root mean squared errors of calibration (RMSEC) and cross-

validation (RMSECV) and the respective coefficients of determination were calculated to 

check the validity of the results. Minimum RMSECV values and number of latent 

variables were used as the selection criteria for the number of latent variables to be 

included in the model. New latent variables were included if they provided a reduction 

of RMSECV higher than 2%.

At this point, the software provides information regarding outliers in the NIR spectra. 

The considerations explained by Porep et al. (2015) regarding the identification and 

removal of outliers were taken into account. Consequently, outliers were removed 

considering the values of the Hotelling T
2
 statistics and the Q residues. In the case of 

response variables, the values of the normalized residuals (<-3 or >3) and leverage 

parameters were considered. Then, a definite PLS regression model was recalculated, 

and the spectra of the samples of the validation group were used to make predictions, 



calculating the coefficient of determination and root mean squared errors of prediction 

(RMSEP). RMSEP values were also contextualized using the mean (%mean) of the 

validation group. Residual prediction deviation (RPD), representing the ratio between 

the standard deviation of the validation and RMSEP, was calculated to provide a better 

comparison between models obtained with different samples. Usually, RPD values 

higher than 2 represent useful models for classification or quantification (Fearn, 2002).

The reliability of the specific models was studied applying each model to the rest of 

sample sets. In order to analyse the reliability of general models, five new general 

models were calculated with four of the sample sets for the calibration and cross-

validation and they were later applied to predict the contents using the spectra of the 

remaining specific sample set.

The pre-treatment of the spectra, PLS regression models, detection of outliers, error 

parameters and goodness of fit for each model were performed with Matlab v 9.4 

(Mathworks Inc, Natick, MA, USA) using the PLS_Toolbox v 8.2.1 module (Eigenvector 

Research Inc, Wenatchee, WA, USA).

3 Results and discussion

The calibration and validation groups for the specific and general model had similar 

means and coefficients of variation (Table 1). As expected, the set with cherry and 

cocktail tomatoes had the highest SSC, and contents of fructose, glucose and citric and 

malic acids. The group with tomato landraces also had high sugar content, but with 

much lower citric acid accumulation. In general, a higher level of variation was found for 

acid contents than for sugars.

alt-text: Table 1

Table 1

Statistical parameters of the sample sets used for the calibration and validation of PLS models. Nc: 

number of samples used for calibration; Nv number of samples used for validation. N: Navarra; E: 

Extremadura.

Model (Nc/Nv)

Calibration Validation

Mean SD Range
CV 

(%)
Mean SD Range

CV 

(%)

SSCºBrix Processing 

tomato N 

4.53 0.56 3.45-6.10 12.3 4.54 0.48 3.60-5.50 10.6

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



(135/45)

Processing 

tomato E 

(126/42)

4.57 0.47 3.50-5.80 10.3 4.51 0.41 3.65-5.35 9.2

Cherry&cocktail 

(80/26)
5.64 1.08 3.95-9.15 19.1 5.51 1.14 3.50-9.00 20.6

Mid-sized tomato 

(81/27)
4.30 0.55 2.95-5.65 12.9 4.31 0.55 3.45-5.40 12.7

Tomato 

landraces 

(66/22)

5.42 0.42 4.30-6.20 7.7 5.32 0.53 4.20-6.20 10.0

General model 

(487/163)
4.72 0.580 2.95-9.00 16.9 4.79 0.82 3.45-9.15 17.2

Fructose g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

13.42 2.85 5.84-22.42 21.2 12.47 3.12 7.16–19.21 25.0

Processing 

tomato E 

(126/42)

14.46 2.89 8.30-20.04 20.8 14.38 2.44 10.56-18.64 17.0

Cherry&cocktail 

(80/26)
19.90 5.63 12.09–38.26 28.3 19.67 5.74 10.35–38.30 29.2

Mid-sized tomato 

(81/27)
13.52 3.56 8.15–25.63 26.3 13.86 3.88 8.84-22.75 28.0

Tomato 

landraces 

(66/22)

19.42 2.35 13.85-23.60 12.1 19.02 2.71 13.92-22.95 14.2

General model 

(487/163)
15.14 4.36 7.16–38.30 28.8 15.00 4.96 5.09–36.85 33.0

Glucose g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

12.15 2.79 6.10–20.87 22.9 11.67 2.54 7.42-17.16 21.8

Processing 

tomato E 

(126/42)

14.08 2.51 7.60-19.69 18.4 13.88 1.82 10.17–18.67 13.1

Cherry&cocktail 

(80/26)
17.30 5.91 9.09–37.25 34.2 17.50 6.61 7.71-38.63 37.8

Mid-sized tomato 

(81/27)
11.86 3.34 6.73-22.72 28.1 12.24 3.45 7.11–20.14 28.2

Tomato 17.71 2.67 11.02–22.11 15.1 17.26 3.18 11.13–21.86 18.4



landraces 

(66/22)

General model 

(487/163)
13.89 4.11 6.10–38.63 29.6 13.83 4.40 6.24–35.25 31.9

Citric g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

4.33 0.81 2.13-7.06 18.7 4.18 0.89 2.22-5.69 21.3

Processing 

tomato E 

(126/42)

3.52 0.61 2.03–5.54 17.4 3.50 0.64 2.36-5.22 18.4

Cherry&cocktail 

(80/26)
8.61 1.64 5.38-12.38 19.0 8.22 1.53 5.20-10.72 18.7

Mid-sized tomato 

(81/27)
5.79 1.94 2.70-14.03 33.6 5.66 1.73 2.98-9.64 30.6

Tomato 

landraces 

(66/22)

4.47 0.81 2.83-6.02 18.2 4.53 0.89 3.13-6.12 19.5

General model 

(487/163)
5.05 2.08 2.03–14.03 41.3 5.13 2.20 2.13-11.73 42.9

Malic g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

0.95 0.24 0.37-1.74 25.2 0.91 0.26 0.32-1.27 28.0

Processing 

tomato E 

(126/42)

1.15 0.31 0.48-1.86 26.7 1.21 0.36 0.64-2.00 29.5

Cherry&cocktail 

(80/26)
1.42 0.36 0.96-2.55 25.2 1.42 0.54 0.79-3.44 37.6

Mid-sized tomato 

(81/27)
1.75 0.65 0.56-4.02 36.9 1.74 0.62 0.56-3.89 35.8

Tomato 

landraces 

(66/22)

1.59 0.50 0.72-2.68 31.7 1.48 0.46 0.82-2.22 30.7

General model 

(487/163)
1.26 0.51 0.32-4.02 40.3 1.28 0.51 0.37-3.89 39.7

Glutamic 

g kg
−1

 

fw

Processing 

tomato N 

(135/45)

1.75 0.41 0.81-2.77 23.5 1.76 0.45 0.87-2.82 25.7

Processing 

tomato E 

1.03 0.36 0.36-2.35 35.3 1.11 0.46 0.45-2.30 41.6



3.1 Prediction models

3.1.1 SSCd

Most published works based in non-destructive methods for fruits with thin or thick rind 

have focused their interest in the indirect quantification of basic parameters such as 

SSC, titratable acidity and pH ( Arendse et al., 2018 ). In the case of SSC, the 

performance for prediction varies in each study, with R
2 = 0.9 and RMSEP = 0.4 for apple 

( Giovanelli et al., 2014 ), R
2 = 0.88 and RMSEP = 0.46 for pear ( Xu et al., 2012 ), R

2 = 0.93 

and RMSEP = 0.62 in peach ( Shao et al., 2011 ) and R
2 = 0.82 and RMSEP = 0.85 in cherry 

( Escribano et al., 2017 ).

Tomato has also received attention. Even though only one variety has been used in 

most studies, the performance of NIR based predictions have not been always 

satisfactory.  de Oliveira et al. (2014)  tried to develop NIR models predicting SCC in 

different fruits but concluded that the methodology was not appropriate for fruits with 

heterogeneous internal structure such as tomato. In fact, their performance for 

prediction with a single variety was R
2 = 0.53 and RMSEP = 0.53 (%RMSEP = 8.9%). 

Other authors have obtained better performances with their materials.  Saad et al. 

(2016)  reached R
2 = 0.91 and SEP = 0.28, again with a single variety.  Ecarnot et al. 

(2013)  with the model cultivar “Microtom” obtained a performance for prediction with 

R
2 = 0.82 and RMSEP = 0.45.  Torres et al. (2015)  with an obsolete variety, but highly 

appreciated in the Spanish market, obtaining performances for the prediction with 

R
2 = 0.60–0.75 and SEP = 0.83-0.65, depending on the hardware used. These last results 

are similar to the previously obtained by  Flores et al. (2009)  with the same variety and a 

validation group of 100 samples (R
2 = 0.77 and SEP = 0.68).

In the present work, the performance was highly dependent on the tomato type 

considered, with R
2

P values for prediction ranging from 0.92 in tomato landraces to 

0.51 for processing tomato grown in Navarra ( Table 2 ). RMSEP values also ranged from 

(126/42)

Cherry&cocktail 

(80/26)
1.43 0.91 0.28-4.35 63.7 1.40 0.97 0.32-4.10 69.7

Mid-sized tomato 

(81/27)
1.71 0.75 0.70-4.25 44.0 1.64 0.69 0.74-3.70 42.1

Tomato 

landraces 

(66/22)

1.97 0.44 0.92-2.88 22.5 1.87 0.45 0.93-2.65 23.8

General model 

(487/163)
1.50 0.66 0.28-4.35 43.9 1.50 0.68 0.43-4.22 45.2



0.14 to 0.46, which represented 2.7%–8.4% of the mean value of the validation. RPD 

values were close to 2, considered a limit to define useful models (Fearn, 2002). These 

values are similar or even improve those obtained in previous works in tomato or other 

crops. It is true that the range of variation present in the samples of the calibration 

model was greater than in other works. This was expected as most works deal with a 

single variety and in the present work several varieties are present in each specific 

model. But at the same time this fact also represented a challenge, considering that the 

interference of the internal structure of tomatoes (pericarp width, number and size of 

locules, juiciness …) would be much higher as it was much more varied, and differences 

in internal structure hinder the development of efficient models (de Oliveira et al., 2014

).

alt-text: Table 2

Table 2

Performance of NIR based models using partial least squares (PLS) regression predicting contents of tast

related compounds. SSC: soluble solids content; R
2

 coefficient of determination; RMSE: root mean squar

error; NC: number of samples in the calibration group. NV: number of samples in the validation group; C: 

calibration; CV: cross-validation; P: prediction; RPD: residual prediction deviation. The number of outliers 

includes the sum of cases from both the calibration and validation group.

Model(Nc/Nv) Outliers R
2

C RMSEC R
2

CV RMSECV R
2

P RMSEP
%RMSEP 

(Mean)

SSC°Brix

Processing 

tomato N 

(135/45)

7 0.89 0.18 0.06 0.69 0.72 0.23 5.1

Processing 

tomato E 

(126/42)

13 0.81 0.20 0.25 0.43 0.51 0.28 6.2

Cherry&cocktail 

(80/26)
4 0.92 0.31 0.52 0.78 0.87 0.46 8.4

Mid-sized 

tomato (81/27)
10 0.88 0.18 0.64 0.32 0.63 0.34 7.9

Tomato 

landraces 

(66/22)

4 0.97 0.07 0.33 0.36 0.92 0.14 2.7

General model 

(487/163)
8 0.73 0.41 0.47 0.61 0.62 0.47 9.8

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



Fructose 

g kg
−1

 

fw

Processing 

tomato N 

(135/45)

8 0.73 1.35 0.08 2.91 0.49 1.95 15.6

Processing 

tomato E 

(126/42)

8 0.78 1.35 0.35 2.44 0.58 1.69 11.7

Cherry&cocktail 

(80/26)
8 0.86 2.07 0.52 4.04 0.81 2.32 11.8

Mid-sized 

tomato (81/27)
9 0.82 1.47 0.29 3.05 0.32 2.94 21.2

Tomato 

landraces 

(66/22)

7 0.93 0.64 0.19 2.29 0.82 1.15 6.0

General model 

(487/163)
14 0.58 2.76 0.41 3.31 0.47 3.24 21.6

Glucose 

g kg
−1

 

fw

Processing 

tomato N 

(135/45)

16 0.78 1.12 0.18 2.39 0.42 1.51 13.0

Processing 

tomato E 

(126/42)

9 0.75 1.21 0.25 2.23 0.50 1.66 12.0

Cherry&cocktail 

(80/26)
6 0.80 2.47 0.58 3.66 0.62 2.87 16.4

Mid-sized 

tomato (81/27)
14 0.84 1.30 0.28 2.94 0.38 2.49 20.4

Tomato 

landraces 

(66/22)

6 0.91 0.80 0.22 2.54 0.73 1.49 8.7

General model 

(487/163)
14 0.57 2.54 0.41 2.98 0.46 2.92 21.1

Citric g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

15 0.81 0.28 0.04 0.80 0.71 0.43 10.2

Processing 

tomato E 

(126/42)

18 0.79 0.25 0.06 0.62 0.65 0.31 8.8

Cherry&cocktail 

(80/26)
5 0.53 1.11 0.22 1.50 0.46 1.17 14.2

Mid-sized 8 0.68 0.96 0.30 1.47 0.40 1.33 23.5



tomato (81/27)

Tomato 

landraces 

(66/22)

5 0.94 0.19 0.54 0.57 0.88 0.31 6.9

General model 

(487/163)
23 0.84 0.80 0.73 1.01 0.75 1.00 19.5

Malic g 

kg
−1

 fw

Processing 

tomato N 

(135/45)

4 0.79 0.11 0.30 0.21 0.71 0.15 16.6

Processing 

tomato E 

(126/42)

9 0.83 0.12 0.52 0.21 0.73 0.16 13.0

Cherry&cocktail 

(80/26)
7 0.81 0.16 0.48 0.27 0.72 0.18 12.6

Mid-sized 

tomato (81/27)
10 0.80 0.23 0.50 0.37 0.62 0.29 16.6

Tomato 

landraces 

(66/22)

5 0.96 0.10 0.48 0.37 0.90 0.15 10.3

General model 

(487/163)
23 0.69 0.27 0.53 0.35 0.67 0.28 21.9

Glutamic 

g kg
−1

 

fw

Processing 

tomato N 

(135/45)

12 0.75 0.20 0.17 0.39 0.35 0.25 14.2

Processing 

tomato E 

(126/42)

14 0.75 0.18 0.35 0.30 0.54 0.24 21.3

Cherry&cocktail 

(80/26)
4 0.85 0.35 0.62 0.57 0.74 0.48 34.3

Mid-sized 

tomato (81/27)
14 0.73 0.32 0.23 0.59 0.26 0.51 31.2

Tomato 

landraces 

(66/22)

8 0.94 0.10 0.39 0.34 0.81 0.16 8.7

General model 

(487/163)
30 0.51 0.43 0.31 0.53 0.36 0.50 33.1



The general model including all the samples had a performance similar to the worse 

specific model, with R
2

P = 0.62 and RMSEP = 0.47°Brix, which represents 9.8% of the 

mean contents (Table 2). Despite being higher, the values obtained with the general 

model are still similar to those described by other works with a limited range of varietal 

variation, and would still be interesting in order to minimize costs in wide screening 

programs.

The robustness of the models was tested trying to apply each of the specific models 

obtained to the samples of the rest of sample sets. On the other hand, new general 

models were calculated with the data of four of the five sample sets and then they were 

applied to predict the contents of the remaining one. None of the specific models 

passed the test (Table 3). The highest R
2

P values for the predictions with external 

assays was 0.20, and RMSEP values ranged from 0.5 to 5.10 in absolute values, and 

from 10.6% to 100.2% in values contextualized with the mean.

alt-text: Table 3

Table 3

Performance of NIR based models using partial least squares (PLS) regression for cross-predicting 

soluble solids content in other assays. SSC: soluble solids content; R
2

P coefficient of determination of 

the predictions; RMSEP: root mean squared error of the predictions. N: Navarra; E: Extremadura. For 

each sample set (calibration and validation), the number of samples is indicated.

Model calibration Model validation R
2

P RMSEP°Brix
%RMSEP 

(Mean)

Processing tomato (N)(168 

samples)

Processing tomato (E) (180 

samples)
0.031 0.65 14.4

Cherry&cocktail (106 samples) 0.026 5.10 90.9

Mid-sized tomato (108 

samples)
0.002 4.28 100.2

Tomato landraces (88 

samples)
0.126 0.74 13.7

General (482 samples) 0.002 3.49 72.7

Processing tomato (E)(180 

samples)

Processing tomato (N) (168 

samples)
0.001 0.71 15.4

Cherry&cocktail (106 samples) 0.000 2.65 47.2

Mid-sized tomato (108 0.003 2.19 51.3

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



samples)

Tomato landraces (88 

samples)
0.202 1.29 23.9

General (470 samples) 0.010 1.85 38.5

Cherry&cocktail (106 samples)

Processing tomato (N) (168 

samples)
0.008 1.05 22.8

Processing tomato (E) (180 

samples)
0.000 0.95 21.1

Mid-sized tomato (108 

samples)
0.006 2.10 49.2

Tomato landraces (88 

samples)
0.101 0.57 10.6

General (544 samples) 0.021 1.30 28.3

Mid-sized tomato (108 samples)

Processing tomato (N) (168 

samples)
0.013 0.61 13.3

Processing tomato (E) (180 

samples)
0.042 0.50 11.1

Cherry&cocktail (106 samples) 0.005 1.80 32.1

Tomato landraces (88 

samples)
0.157 1.28 23.7

General (542 samples) 0.001 1.01 21.0

Tomato landraces (88 samples)

Processing tomato (N) (168 

samples)
0.027 1.07 23.3

Processing tomato (E) (180 

samples)
0.121 1.13 25.1

Cherry&cocktail (106 samples) 0.008 1.88 33.5

Mid-sized tomato (108 

samples)
0.030 1.34 31.4

General (562 samples) 0.014 1.33 28.3

General models (650-model 

validation)

Processing tomato (N) (168 

samples)
0.082 0.56 12.2

Processing tomato (E) (180 

samples)
0.060 0.50 11.1

Cherry&cocktail (106 samples) 0.004 2.00 35.7

Mid-sized tomato (108 

samples)

0.000 1.15 26.9



Among the different models applied to predict the rest of assays, the one corresponding 

to mid-sized tomatoes and the general models had the lowest mean %RMSEP values 

(20.2% and 20.6% respectively) with absolute values close to 1°Brix ( Table 3 ). In the 

case of the new general models, R
2

P values were close to 0, with mean %RMSEP values 

ranging from 11.1%, when it was applied to predict the contents of processing tomato 

grown in Extremadura to 35.7%, when applied to make predictions with cherry and 

cocktail tomato, and averaging 20.6% ( Table 3 ).

On the other hand, when the different models were applied to predict the contents of 

the samples of processing tomato grown either in Navarra or Extremadura and tomato 

landraces, a lower mean %RMSEP was obtained (17.4, 16.6 and 17.8% respectively). 

The samples from the cherry and cocktail set and mid-sized tomatoes were more 

difficult to predict using external calibrations.

It is difficult to compare these results with other works, as it is unusual to find the 

application of the obtained models to external assays.  Escribano et al. (2017) , in their 

work with two cherry varieties tried to apply the models of one of the varieties to the 

other. In that case, the authors concluded that models for SSC did not need to be 

specific to the variety to be measured to perform adequately. In the present work, 

neither specific models nor general models were robust enough as to offer reliable 

predictions in other assays. Even those developed the same varieties and growing 

conditions but applied to predict contents of samples obtained in a different 

environment failed to offer a reliable performance. This result emphasizes the need to 

develop specific calibrations for each assay in order to minimize the error in the indirect 

predictions.

3.1.2 Sugars and acids

The performance of specific PLS models for the prediction of fructose and glucose was 

highly dependent on the varietal type considered. Mean %RMSEP values of 13.3% and 

14.1 were obtained for fructose and glucose respectively, with R
2

P values for prediction 

ranging from 0.32 to 0.82 (Table 2 ). Nonetheless, the model for mid-sized tomato 

offered comparatively high errors, up to 21.2% for fructose and 20.4% for glucose. This 

group was formed by highly heterogeneous varieties, including flat salad type tomato, 

plum tomato and cluster tomatoes. The rather heterogeneous internal structure of the 

varieties would be probably originating a higher level of error in the predictions.

The performance of the general model was highly influenced by the worse specific 

model, with R
2

P for prediction of 0.47 for fructose and 0.46 for glucose and %RMSEP 

Tomato landraces (88 

samples)
0.046 0.91 16.9



values of 21.6% and 21.1%. As in the case of SSC, general models proved to have low 

efficacy. Consequently, in this case it would also be recommended to rely on specific 

models.

Few articles on the determination of specific sugars are available for the quantification 

of specific compounds, as most published works rely on the determination of basic 

parameters such as SSC and titratable acidity (Arendse et al., 2018). Among the 

different limitations of non-destructive NIR spectroscopy for this purpose, the scattering 

typical of non-transparent media and assignment of NIR bands to specific compounds 

which absorb in the MIR region have been suggested (Porep et al., 2015). Nonetheless, 

some data is available. For example, Torres et al. (2015), with a single variety obtained 

SEP values of 3.8 and 4.0 for fructose and 4.2 for glucose and R
2
 values ranging from 

0.35 to 0.52, depending on the hardware. Considering mean contents in that work, 

those values would represent contextualized errors of 20.1%–21.2% for fructose and 

19.3% for glucose. Better results were reported by Pedro and Ferreira (2007) with %SEP 

values of 13.4% for fructose and 11.6% for glucose. In that case, the authors also used 

diffuse reflectance, but they analyzed samples of tomato concentrate, involving 

homogenized samples with higher sugar contents. Therefore, a better performance 

would be logically expected.

The performance of specific models for the indirect quantification of acids was similar to 

those obtained for sugars, though a worse performance was obtained for glutamic acid. 

Mean %RMSEP values of 12.7%, 13.8% and 21.9% were obtained for citric, malic and 

glutamic acid respectively (Table 2). Again, the models for mid-sized tomatoes tended 

to show a worse performance and the efficiency of the general model was lower than 

that of the worse specific model. Torres et al. (2015) also modelled citric and malic acid 

accumulation in their work, obtaining SEP values of 0.81–0.86 and 0.22 respectively, 

which would represent 18.1–19.2% and 16.5% of the reported mean contents 

respectively. Most specific models improved these results, while the model for mid-sized 

tomatoes had similar error levels.

In perspective, mean %RMSEP values obtained in the present work are lower than 15% 

for fructose, glucose, citric and malic acids, using specific models based on different 

varieties. These values are considerably good, bearing in mind that they are obtained 

directly on intact fruits with heterogeneous internal structure. It is true though that the 

higher level of heterogeneity in fruit internal structure will result in inferior performance, 

as reported by de Oliveira et al. (2014). That would mean that in order to develop useful 

models in the industry, the calibration and prediction groups should be formed by fruits 

with similar structures.

Models based on FT-MIR can be more accurate than those obtained with NIR (Schulz and 

Baranska, 2009). But the high absorption of MIR radiation in biological tissues entails a 



low penetration depth, allowing only superficial measurements of a few micrometers (

Porep et al., 2015). That means, that MIR indirect measurements require a previous 

homogenization of the sample and centrifugation of the juices obtained. Undoubtedly, 

this prior homogenization contributes to a higher accuracy.

The selection of the most appropriate methodology will remain a decision for each 

industrial/agronomical application. It will be necessary to choose between high-

throughput indirect analysis directly on intact fruits with NIR models, with higher error 

levels and the need to obtained specific calibrations, or obtaining more accurate 

indirect measurements with general models, but involving a cumbersome pre-

processing of samples.

4 Conclusions

One of the main limitations of non-destructive indirect predictions of taste-related 

compounds based on NIR spectra is that different internal structures of tomatoes can 

critically affect the performance of the models. In fact, most of the published work 

available relies on a single tomato variety. Our work proves that it is possible to obtain 

models with good performance despite this limitation. These models can include several 

varieties within a specific varietal type and will represent a valuable tool to quantify 

gross measurements such as soluble solid contents, or even the individual accumulation 

of fructose, glucose and citric and malic acids. General models can also be obtained, 

representing a higher number of samples and variability, but their performance would 

not be better than specific models. More importantly, models must be calibrated for 

each assay, as the performance of specific or general models to samples obtained in 

new assays is unacceptable.
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