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Abstract: This manuscript describes the randomized algorithm randUTV for computing a
so called UTV factorization efficiently. Given a matrix A, the algorithm computes a factor-
ization A = UTV∗, where U and V have orthonormal columns, and T is triangular (either
upper or lower, whichever is preferred). The algorithm randUTV is developed primarily to
be a fast and easily parallelized alternative to algorithms for computing the Singular Value
Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for prob-
lems such as low-rank approximation, solving ill-conditioned linear systems, determining
bases for various subspaces associated with the matrix, etc. Moreover, randUTV also pro-
duces highly accurate approximations to the singular values of A. Unlike the SVD, the
randomized algorithm proposed builds a UTV factorization in an incremental, single-stage,
and non-iterative way, making it possible to halt the factorization process once a specified
tolerance has been met. Numerical experiments comparing the accuracy and speed of ran-
dUTV to the SVD are presented. These experiments demonstrate that in comparison to col-
umn pivoted QR, which is another factorization that is often used as a relatively economic
alternative to the SVD, randUTV compares favorably in terms of speed while providing far
higher accuracy.

1. INTRODUCTION

1.1. Overview. Given an m× n matrix A, the so called “UTV decomposition” [36, p. 400] takes the form

(1)
A = U T V∗,

m× n m×m m× n n× n
where U and V are unitary matrices, and T is a triangular matrix (either lower or upper triangular). The UTV
decomposition can be viewed as a generalization of other standard factorizations such as, e.g., the Singular Value
Decomposition (SVD) or the Column Pivoted QR decomposition (CPQR). (To be precise, the SVD is the special
case where T is diagonal, and the CPQR is the special case where V is a permutation matrix.) The additional
flexibility inherent in the UTV decomposition enables the design of efficient updating procedures, see [36, Ch. 5,
Sec. 4] and [13, 35, 29]. In this manuscript, we describe a randomized algorithm we call randUTV that exploits
the additional flexibility provided by the UTV format to build a factorization algorithm that combines some of the
most desirable properties of standard algorithms for computing the SVD and CPQR factorizations.

Specific advantages of the proposed algorithm include: (i) randUTV provides close to optimal low-rank approxi-
mation in the sense that for k = 1, 2, . . . ,min(m,n), the output factors U, V, and T satisfy

‖A−U(:, 1 : k)T(1 : k, :)V∗‖ ≈ inf{‖A− B‖ : B has rank k}.
In particular, randUTV is much better at low-rank approximation than CPQR. A related advantage of randUTV is
that the diagonal elements of T provide excellent approximations to the singular values of A, cf. Figure 10. (ii) The
algorithm randUTV builds the factorization (1) incrementally, which means that when it is applied to a matrix of
numerical rank k, the algorithm can be stopped early and incur an overall cost of O(mnk). Observe that standard
algorithms for computing the SVD do not share this property. The CPQR algorithm can be stopped in this fashion,
but typically leads to substantially suboptimal low-rank approximation. (iii) The algorithm randUTV is blocked.
For a given block size b, randUTV processes b columns of A at a time. Moreover, the vast majority of flops
expended by randUTV are used in matrix-matrix multiplications involving A and thin matrices with b columns.
This leads to high computational speeds, in particular when the algorithm is executed on multicore CPUs, GPUs,
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and distributed-memory architectures. (iv) The algorithm randUTV is not an iterative algorithm. In this regard, it
is closer to the CPQR than to standard SVD algorithms, which substantially simplifies software optimization.
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FIGURE 1. Solid lines show the acceleration
of randUTV with the parameter choice q = 1
(cf. Section 4.3) compared to Intel’s MKL SVD
(dgesvd). Dashed lines show the analogous ac-
celeration of CPQR over SVD.

Section 6 describes the results from several nu-
merical experiments that illustrate the accuracy
and speed of randUTV in comparison to stan-
dard techniques for computing the SVD and
CPQR factorizations. As a preview, we show
in Figure 1 that randUTV executes far faster
than a highly optimized implementation of the
LAPACK function dgesvd for computing the
SVD (we compare to the Intel MKL imple-
mentation). Figure 1 also includes lines that
indicate how much faster CPQR is over the
SVD, since the CPQR is often proposed as
an economical alternative to the SVD for low
rank approximation. Although the comparison
between CPQR and randUTV is slightly un-
fair since randUTV is far more accurate than
CPQR, we see that CPQR is faster for small
matrices, but randUTV becomes competitive as
the matrix size increases. More importantly, the
relative speed of randUTV increases greatly as
the number of processors increases. In other
words, in modern computing environments, randUTV is both faster and far better at revealing the numerical rank
of A than column pivoted QR.

1.2. A randomized algorithm for computing the UTV decomposition. The algorithm we propose is blocked
for computational efficiency. For concreteness, let us assume that m ≥ n, and that an upper triangular factor T is
sought. With b a block size, randUTV proceeds through approximately n/b steps, where at the i’th step the i’th
block of b columns of A is driven to upper triangular form, as illustrated in Figure 2.

In the first iteration, randUTV uses a randomized subspace iteration inspired by [31, 19] to build two sets of b
orthonormal vectors that approximately span the spaces spanned by the b dominant left and right singular vectors
of A, respectively. These basis vectors form the first b columns of two unitary “transformation matrices” U(1) and
V(1). We use these to build a new matrix

A(1) =
(
U(1)

)∗
AV(1)

that has a blocked structure as follows:

A(1) =

[
A

(1)
11 A

(1)
12

0 A
(1)
22

]
= .

In other words, the top left b × b block is diagonal, and the bottom left block is zero. Ideally, we would want
the top right block to also be zero, and this is what we would obtain if we used the exact left and right singular
vectors in the transformation. The randomized sampling does not exactly identity the correct subspaces, but it does
to high enough accuracy that the elements in the top right block have very small moduli. For purposes of low-rank
approximation, such a format strikes an attractive balance between computational efficiency and close to optimal
accuracy. We will demonstrate that ‖A(1)

22 ‖ ≈ inf{‖A − B‖ : B has rank b}, and that the diagonal entries of A(1)
11

form accurate approximations to the first b singular values of A.

Once the first step has been completed, the second step applies the same procedure to the remaining block A
(1)
22 ,

which has size (m− b)× (n− b), and then continues in the same fashion to process all remaining blocks.
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1.3. Relationship to earlier work. The UTV factorization was introduced and popularized by G.W. Stewart in
a sequence of papers, including [33, 34, 35, 37], and the text book chapter [36, p. 400]. Among these, [37] is of
particular relevance as it discusses explicitly how the UTV decomposition can be used for low-rank approximation
and for finding approximations to the singular values of a matrix; in Section 6.2 we compare the accuracy of the
method in [37] to the accuracy of randUTV. Of relevance here is also [28], which describes deterministic iterative
methods for driving a triangular matrix towards diagonality. Another path towards better rank revelation and more
accurate rank estimation is described in [12]. A key advantage of the UTV factorization is the ease with which it
can be updated, as discussed in, e.g., [4, 3, 29]. Implementation aspects are discussed in [13].

The work presented here relies crucially on previous work on randomized subspace iteration for approximating the
linear spaces spanned by groups of singular vectors, including [31, 19, 25, 24, 18]. This prior body of literature
focused on the task of computing partial factorizations of matrices. More recently, it was observed [26, 27, 11] that
analogous techniques can be utilized to accelerate methods for computing full factorizations such as the CPQR.
The gain in speed is attained from blocking of the algorithms, rather than by reducing the asymptotic flop count.
An alternative approach to using randomization was described in [8].

1.4. Outline of paper. Section 2 introduces notation, and lists some relevant existing results that we need. Section
3 provides a high-level description of the proposed algorithm. Section 4 describes in detail how to drive one block
of columns to upper triangular form, which forms one step of the blocked algorithm. Section 5 describes the whole
multistep algorithm, discusses some implementation issues, and provides an estimate of the asymptotic flop count.
Section 6 gives the results of several numerical experiments that illustrate the speed and accuracy of the proposed
method. Section 7 describes availability of software.

2. PRELIMINARIES

This section introduces our notation, and reviews some established techniques that will be needed. The material in
Sections 2.1–2.4 is described in any standard text on numerical linear algebra (e.g. [14, 36, 38]). The material in
Section 2.5 on randomized algorithms is described in further detail in the survey [19] and the lecture notes [23].

2.1. Basic notation. Throughout this manuscript, we measure vectors in Rn using their Euclidean norm. The
default norm for matrices will be the corresponding operator norm ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}, although we
will sometimes also use the Frobenius norm ‖A‖Fro =

(∑
i,j |A(i, j)|2

)1/2. We use the notation of Golub and
Van Loan [14] to specify submatrices: If B is an m× n matrix, and I = [i1, i2, . . . , ik] and J = [j1, j2, . . . , j`]
are index vectors, then B(I, J) denotes the corresponding k × ` submatrix.. We let B(I, :) denote the matrix
B(I, [1, 2, . . . , n]), and define B(:, J) analogously. In denotes the n × n identity matrix, and 0m,n is the m × n
zero matrix. The transpose of B is denoted B∗, and we say that an m × n matrix U is orthonormal if its columns
are orthonormal, so that U∗U = In. A square orthonormal matrix is said to be unitary.

2.2. The Singular Value Decomposition (SVD). Let A be an m × n matrix and set r = min(m,n). Then the
SVD of A takes the form

(2)
A = U D V∗,

m× n m× r r × r r × n

where matrices U and V are orthonormal, and D is diagonal. We have U =
[
u1 u2 . . . ur

]
, V =

[
v1 v2 . . . vr

]
, and

D = diag(σ1, σ2, . . . , σr), where {uj}rj=1 and {vj}rj=1 are the left and right singular vectors of A, respectively,
and {σj}rj=1 are the singular values of A. The singular values are ordered so that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

A principal advantage of the SVD is that it furnishes an explicit solution to the low rank approximation problem.
To be precise, let us for k = 1, 2, . . . , r define the rank-k matrix

Ak = U(:, 1 : k)D(1 : k, 1 : k)V(:, 1 : k)∗ =

k∑
j=1

σj uj v
∗
j .
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Then, the Eckart-Young theorem asserts that

‖A− Ak‖ = inf{‖A− B‖ : B has rank k}.

A disadvantage of the SVD is that the cost to compute the full SVD is O(n3) for a square matrix, and O(mnr) for
a rectangular matrix, with large pre-factors. Moreover, standard techniques for computing the SVD are challenging
to parallelize, and cannot readily be modified to compute partial factorizations.

2.3. The Column Pivoted QR (CPQR) decomposition. Let A be anm×nmatrix and set r = min(m,n). Then,
the CPQR decomposition of A takes the form

(3)
A = Q R P∗,

m× n m× r r × n n× n

where Q is orthonormal, R is upper triangular, and P is a permutation matrix. The permutation matrix P is typically
chosen to ensure monotonic decay in magnitude of the diagonal entries of R so that |R(1, 1)| ≥ |R(2, 2)| ≥
|R(3, 3)| ≥ · · · . The factorization (3) is commonly computed using the Householder QR algorithm [14, Sec. 5.2],
which is exceptionally stable.

An advantage of the CPQR is that it is computed via an incremental algorithm that can be halted to produce a
partial factorization once any given tolerance has been met. A disadvantage is that it is not ideal for low-rank
approximation. In the typical case, the error incurred is noticeably worse than what you get from the SVD but
not disastrously so. However, there exist matrices for which CPQR leads to very suboptimal approximation errors
[21]. Specialized pivoting strategies have been developed that can in some circumstances improve the low-rank
approximation property, resulting in so called “rank-revealing QR factorizations” [7, 16].

The classical column pivoted Householder QR factorization algorithm drives the matrix A to upper triangular form
via a sequence of r − 1 rank-one updates and column pivotings. Due to the column pivoting performed after
each update, it is difficult to block, making it hard to achieve high computational efficiency on modern processors
[10]. It has recently been demonstrated that randomized methods can be used to resolve this difficulty [26, 27, 11].
However, we do not yet have rigorous theory backing up such randomized techniques, and they have not yet been
incorporated into standard software packages.

2.4. Efficient factorizations of tall and thin matrices. The algorithms proposed in this manuscript rely crucially
on the fact that factorizations of “tall and thin” matrices can be computed efficiently. To be precise, suppose that
we are given a matrix B of size m× b, where m� b, and that we seek to compute an unpivoted QR factorization

(4)
B = Q R,

m× b m×m m× b

where Q is unitary, and R is upper triangular. When the Householder QR factorization procedure is used to compute
the factorization (4), the matrix Q is formed as a product of b so called “Householder reflectors” [14, Sec. 5.2], and
can be written in the form

(5)
Q = I + W Y,

m×m m×m m× b b×m

for some matrices W and Y that can be readily computed given the b Householder vectors that are formed in the
QR factorization procedure [6, 32, 20]. As a consequence, we need only O(mb) words of storage to store Q, and
we can apply Q to an m× n matrix using ∼ 2mnb flops. In this manuscript, the different typeface in Q is used as
a reminder that this is a matrix that can be stored and applied efficiently.

Next, suppose that we seek to compute the SVD of the tall and thin matrix B. This can be done efficiently in a
two-step procedure, where the first step is to compute the unpivoted QR factorization (4). Next, let Rsmall denote
the top b× b block of R so that

(6) R =

[
Rsmall

0m−b,b

]
.
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Then, compute the SVD of Rsmall to obtain the factorization

(7)
Rsmall = Usmall Dsmall V∗small.
b× b b× b b× b b× b

Combining (4), (6), and (7), we obtain the factorization

(8) B = Q
[
Usmall 0

0 Im−b

] [
Dsmall

0m−b,b

]
V∗small,

m× b m×m m×m m× b b× b
which we recognize as a singular value decomposition of B. Observe that the cost of computing this factorization is
O(mb2), and that only O(mb) words of storage are required, despite the fact that the matrix of left singular vectors
is ostensibly an m×m dense matrix.

Remark 1. We mentioned in Section 2.3 that it is challenging to achieve high performance when implementing
column pivoted QR on modern processors. In contrast, unpivoted QR is highly efficient, since this algorithm can
readily be blocked (see, e.g., Figures 4.1 and 4.2 in [27]).

2.5. Randomized power iterations. This section summarizes key results of [31, 19, 23] on randomized algo-
rithms for constructing sets of orthonormal vectors that approximately span the row or column spaces of a given
matrix. To be precise, let A be an m× n matrix, let b be an integer such that 1 ≤ b < min(m,n), and suppose that
we seek to find an n× b orthonormal matrix Q such that

‖A− AQQ∗‖ ≈ inf{‖A− B‖ : B has rank b}.
Informally, the columns of Q should approximately span the same space as the dominant b right singular vectors of
A. This is a task that is very well suited for subspace iteration (see [9, Sec. 4.4.3] and [5]), in particular when the
starting matrix is a Gaussian random matrix [31, 19]. With q a (small) integer denoting the number of steps taken
in the power iteration, the following algorithm leads to close to optimal results:

(1) Draw a Gaussian random matrix G of size m× b.
(2) Form a “sampling matrix” Y of size n× b via Y =

(
A∗A

)q
A∗G.

(3) Orthonormalize the columns of Y to form the matrix Q.

Observe that in step (2), the matrix Y is computed via alternating application of A∗ and A to a tall thin matrix with
b columns. In some situations, orthonormalization is required between applications to avoid loss of accuracy due
to floating point arithmetic. In [31, 19] it is demonstrated that by using a Gaussian random matrix as the starting
point, it is often sufficient to take just a few steps of power iteration, say q = 1 or 2, or even q = 0.

Remark 2 (Over-sampling). In the analysis of power iteration with a Gaussian random matrix as the starting point,
it is common to draw a few “extra” samples. In other words, one picks a small integer p representing the amount of
over-sampling done, say p = 5 or p = 10, and starts with a Gaussian matrix of size m× (b+ p). This results in an
orthonormal (ON) matrix Q of size n× (b+ p). Then, with probability almost 1, the error ‖A− AQQ∗‖ is close
to the minimal error in rank-b approximation in both spectral and Frobenius norm [19, Sec. 10]. When no over-
sampling is used, one risks losing some accuracy in the last couple of modes of the singular value decomposition.
However, our experience shows that in the context of the present article, this loss is hardly noticeable.

Remark 3 (RSVD). The randomized range finder described in this section is simply the first stage in the two-stage
“Randomized SVD (RSVD)” procedure for computing an approximate rank-b SVD of a given matrix A of size
m× n. To wit, suppose that we have used the randomized range finder to build an ON matrix Q of size n× b such
that A = AQQ∗ + E, for some some error matrix E. Then, we can compute an approximate factorization

(9)
A = U D V∗ + E,

m× n m× b b× b b× n m× n
where U and V are orthonormal, and D is diagonal, via the following steps (which together form the “second stage”
of RSVD): (1) Set B = AQ so that AQQ∗ = BQ∗. (2) Compute a full SVD of the small matrix B so that

(10) B = U D V̂
∗
.

m× b m× b b× b b× b
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A(0) = A A(1) = (U(1))∗A(0)V(1)

A(2) = (U(2))∗A(1)V(2) A(3) = (U(3))∗A(2)V(3)

FIGURE 2. Cartoon illustrating the process by which a given matrix A is driven to block upper
triangular form, with most of the mass concentrated into the diagonal entries. With A(0) = A,
we form a sequence of matrices A(i) = (U(i))∗A(i−1)V(i) by applying unitary matrices U(i) and
V(i) from the left and the right. Each U(i) and V(i) consists predominantly of a product of b
Householder reflectors, where b is the block size. Black blocks represent non-zero entries. Grey
blocks represent entries that are not necessarily zero, but are small in magnitude.

(3) Set V = QV̂. Observe that these last three steps are exact up to floating point arithmetic, so the error in (9) is
exactly the same as the error in the range finder alone: E = A− AQQ∗ = A−UDV∗.

3. AN OVERVIEW OF THE RANDOMIZED UTV FACTORIZATION ALGORITHM

This section describes at a high level the overall template of the algorithm randUTV that given an m× n matrix A
computes its UTV decomposition (1). For simplicity, we assume thatm ≥ n, that an upper triangular middle factor
T is sought, and that we work with a block size b that evenly divides n so that the matrix A can be partitioned into
s blocks of b columns each; in other words, we assume that n = sb. The algorithm randUTV iterates over s steps,
where at the i’th step the i’th block of b columns is driven to upper triangular form via the application of unitary
transformations from the left and the right. A cartoon of the process is given in Figure 2.

To be slightly more precise, we build at the i’th step unitary matrices U(i) and V(i) of sizes m × m and n × n,
respectively, such that

U = U(1)U(2) · · ·U(s), and V = V(1)V(2) · · ·V(s).

Using these matrices, we drive A towards upper triangular form through a sequence of transformations

A(0) = A,

A(i) =
(
U(i)

)∗
A(i−1)V(i), i = 1, 2, 3, . . . , s,

T = A(s).

The objective at step i is to transform the i’th diagonal block to diagonal form, to zero out all blocks beneath the
i’th diagonal block, and to make all blocks to the right of the i’th diagonal block as small in magnitude as possible.

Each matrix U(i) and V(i) consists predominantly of a product of b Householder reflectors. To be precise, each
such matrix is a product of b Householder reflectors, but with the i’th block of b columns right-multiplied by a
small b× b unitary matrix.
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The next two sections provide additional details. Section 4 describes exactly how to build the transformation
matrices U(1) and V(1) that are needed in the first step of the iteration. Then, Section 5 shows how to apply the
techniques described in Section 4 repeatedly to build the full factorization.

4. A RANDOMIZED ALGORITHM FOR FINDING A PAIR OF TRANSFORMATION MATRICES FOR THE FIRST STEP

4.1. Objectives for the construction. In this section, we describe a randomized algorithm for finding unitary
matrices U and V that execute the first step of the process outlined in Section 3, and illustrated in Figure 2. To
avoid notational clutter, we simplify the notation slightly, describing what we consider a basic single step of the
process. Given an m× n matrix A and a block size b, we seek two orthonormal matrices U and V of sizes m×m
and n× n, respectively, such that the matrix

(11) T = U∗AV

has a diagonal leading b × b block, and the entries beneath this block are all zeroed out. In Section 3, we referred
to the matrices U and V as U(1) and V(1), respectively, and T as A(1).

To make the discussion precise, let us partition U and V so that

(12) U =
[
U1 | U2

]
, and V =

[
V1 | V2

]
,

where U1 and V1 each contain b columns. Then, set Tij = U∗iAVj for i, j = 1, 2 so that

(13) U∗AV =

[
T11 T12

T21 T22

]
.

Our objective is now to build matrices U and V that accomplish the following:

(i) T11 is diagonal, with entries that closely approximate the leading b singular values of A.
(ii) T21 = 0.

(iii) T12 has small magnitude.
(iv) The norm of T22 should be close to optimally small, so that ‖T22‖ ≈ inf{‖A− C‖ : C has rank b}.

The purpose of condition (iv) is to minimize the error in the rank-b approximation to A, cf. Section 5.3.

4.2. A theoretically ideal choice of transformation matrices. Suppose that we could somehow find two matrices
U and V whose first b columns exactly span the subspaces spanned by the dominant left and right singular vectors,
respectively. Finding such matrices is of course computationally hard, but if we could build them, then we would
get the optimal result that

(ii) T21 = 0.
(iii) T12 = 0.
(iv) ‖T22‖ = σb+1 = min{‖A− C‖ : matrix C has rank b}.

Enforcing condition (i) is then very easy, since the dominant b × b block is now disconnected from the rest of the
matrix. Simply executing a full SVD of this small b× b block, and then updating U and V will do the job.

4.3. A randomized technique for approximating the span of the dominant singular vectors. Inspired by the
observation in Section 4.2 that a theoretically ideal right transformation matrix V is a matrix whose b first columns
span the space spanned by the dominant b right singular vectors of A, we use the randomized power iteration
described in Section 2.5 to execute this task. We let q denote a small integer specifying how many steps of power
iteration we take. Typically, q = 0, 1, 2 are good choices. Then, take the following steps: (1) Draw a Gaussian
random matrix G of size m × b. (2) Compute a sampling matrix Y =

(
A∗A

)q
A∗G of size n × b. (3) Perform an

unpivoted Householder QR factorization of Y so that

Y = V R.
n× b n× n n× b

Observe that V will be a product of b Householder reflectors, and that the first b columns of V will form an
orthonormal basis for the space spanned by the columns of Y. In consequence, the first b columns of V form an
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orthonormal basis for a space that approximately spans the space spanned by the b dominant right singular vectors
of A. (The font used for V is a reminder that it is a product of Householder reflectors, which is exploited when it is
stored and operated upon, cf. Section 2.4.)

4.4. Construction of the left transformation matrix. The process for finding the left transformation matrix U is
deterministic, and will exactly transform the first b columns of AV into a diagonal matrix. Observe that with V the
unitary matrix constructed using the procedure in Section 4.3, we have the identity.

(14) A = AVV∗ =
[
AV1 | AV2

]
V∗,

where the partitioning V = [V1 V2] is such that V1 holds the first b columns of V. We now perform a full SVD on
the matrix AV1, which is of size m× b so that

(15)
AV1 = U D V∗small.
m× b m×m m× b b× b

Inserting (15) into (14) we obtain the identity

(16) A =
[
UDV∗small | AV2

]
V∗.

Factor out U in (16) to the left to get

A = U
[
DV∗small | U∗AV2

]
V∗.

Finally, factor out Vsmall to the right to yield the factorization

(17) A = U
[
D | U∗AV2

]︸ ︷︷ ︸
=T

V∗, with V = V
[
Vsmall 0

0 In−b

]
.

Equation (17) is the factorization A = UTV∗ that we seek, with

T =

[
T11 T12

T21 T22

]
=

[
D(1 : b, 1 : b) U∗1AV2

0 U∗2AV2

]
.

Remark 4. As we saw in (17), the right transformation matrix V consists of a product V of b Householder re-
flectors, with the first b columns rotated by a small unitary matrix Vsmall. We will next demonstrate that the left
transformation matrix U can be built in such a way that it can be written in an entirely analogous form. Simply
observe that the matrix AV1 in (15) is a tall thin matrix, so that the SVD in (15) can efficiently be computed by first
performing an unpivoted QR factorization of AV1 to yield a factorization

AV1 = U
[
R11

0

]
,

m× b m×m m× b

where R11 is of size b× b, and U is a product of b Householder reflectors, cf. Section 2.4. Then, perform an SVD
of R11 to obtain

R11 = Usmall Dsmall V∗small.
b× b b× b b× b b× b

The factorization (15) then becomes

(18) AV1 = U

[
Dsmall

0

]
V∗small,

m× b m×m m× b b× b
with U = U

[
Usmall 0

0 I

]
.

We see that the expression for U in (18) is exactly analogous to the expression for V in (17).

4.5. Summary of the construction of transformation matrices. Even though the derivation of the transforma-
tion matrices got slightly long, the final algorithm is simple. It can be written down precisely with just a few lines
of Matlab code, as shown in the right panel in Figure 3 (the single step process described in this section is the
subroutine stepUTV).
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function [U,T,V] = randUTV(A,b,q)
T = A;
U = eye(size(A,1));
V = eye(size(A,2));
for i = 1:ceil(size(A,2)/b)

I1 = 1:(b*(i-1));
I2 = (b*(i-1)+1):size(A,1);
J2 = (b*(i-1)+1):size(A,2);
if (length(J2) > b)

[UU,TT,VV] = stepUTV(T(I2,J2),b,q);
else

[UU,TT,VV] = svd(T(I2,J2));
end
U(:,I2) = U(:,I2)*UU;
V(:,J2) = V(:,J2)*VV;
T(I2,J2) = TT;
T(I1,J2) = T(I1,J2)*VV;

end
return

function [U,T,V] = stepUTV(A,b,q)
G = randn(size(A,1),b);
Y = A’*G;
for i = 1:q
Y = A’*(A*Y);

end
[V,˜] = qr(Y);
[U,D,W] = svd(A*V(:,1:b));
T = [D,U’*A*V(:,(b+1):end)];
V(:,1:b) = V(:,1:b)*W;

return

FIGURE 3. Matlab code for the algorithm randUTV that given an m × n matrix A computes its
UTV factorization A = UTV∗, cf. (1). The input parameters b and q reflect the block size and
the number of steps of power iteration, respectively. This code is simplistic in that products of
Householder reflectors are stored simply as dense matrices, making the overall complexity O(n4);
it also assumes that m ≥ n. An efficient implementation is described in Figure 4.

5. THE ALGORITHM RANDUTV

In this section, we describe the algorithm randUTV that given an m×n matrix A computes a UTV factorization of
the form (1). For concreteness, we assume that m ≥ n and that we seek to build an upper triangular middle matrix
T. The modifications required for the other cases are straight-forward. Section 5.1 describes the most basic version
of the scheme, Section 5.2 describes a computationally efficient version, and Section 5.4 provides a calculation of
the asymptotic flop count of the resulting algorithm.

5.1. A simplistic algorithm. The algorithm randUTV is obtained by applying the single-step algorithm described
in Section 4 repeatedly, to drive A to upper triangular form one block of b columns at a time. We recall that a
cartoon of the process is shown in Figure 2. At the start of the process, we create three arrays that hold the output
matrices T, U, and V, and initialize them by setting

T = A, U = Im, V = In.

In the first step of the iteration, we use the single-step technique described in Section 4 to create two unitary “left
and right transformation matrices” U(1) and V(1) and then update T, U, and V accordingly:

T← (U(1))∗TV(1), U← UU(1), V← VV(1).

This leaves us with a matrix T whose b leading columns are upper triangular (like matrix A(1) in Figure 2). For
the second step, we build transformation matrices U(2) and V(2) by applying the single-step algorithm described in
Section 4 to the remainder matrix T((b+ 1) : m, (b+ 1) : n), and then updating T, U, and V accordingly.

The process then continues to drive one block of b columns at a time to upper triangular form. With s = dn/be
denoting the total number of steps, we find that after s−1 steps, all that remains to process is the bottom right block
of T (cf. the matrix A(2) in Figure 2). This block consists of b columns if n is a multiple of the block size, and is
otherwise even thinner. For this last block, we obtain the final left and right transformation matrices U(s) and V(s)

by computing a full singular value decomposition of the remaining matrix T(((s−1)b+1) : m, ((s−1)b+1) : n),
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and updating the matrices T, U, and V accordingly. (In the cartoon in Figure 2, we have s = 3, and the matrices
U(3) and V(3) are built by computing a full SVD of a dense matrix of size 2s× s.)
We call the algorithm described in this section randUTV. It can be coded using just a few lines of Matlab code,
as illustrated in Figure 3. In this simplistic version, all unitary matrices are represented as dense matrices, which
makes the overall complexity O(n4) for an n× n matrix.

5.2. A computationally efficient version. In this section, we describe how the basic version of randUTV, as
given in Figure 3, can be turned into a highly efficient procedure via three simple modifications. The resulting
algorithm is summarized in Figure 4. We note that the two versions of randUTV described in Figures 3 and 4 are
mathematically equivalent; if they were to be executed in exact arithmetic, their outputs would be identical.

The first modification is that all operations on the matrix T and on the unitary matrices U and V should be carried
out “in place” to not unnecessarily move any data. To be precise, using the notation in Section 4, we generate at each
iteration four unitary matrices U, V, Usmall, and Vsmall. As soon as such a matrix is generated, it is immediately
applied to T, and then used to update either U or V.

Second, we exploit that the two “large” unitary transforms U and V both consist of products of b Householder
reflectors. We generate them by computing unpivoted Householder QR factorizations of tall and thin matrices,
using a subroutine that outputs simply the b Householder vectors. Then, U and V can both be stored and applied
efficiently, as described in Section 2.4.

The third and final modification pertains to the situation where the input matrix A is non-square. In this case, the
full SVD that is computed in the last step involves a rectangular matrix. When A is tall (m > n), we find at this
step that J3 is empty, so the matrix to be processed is T([I2, I3], J2). When computing the SVD of this matrix, we
use the efficient version described in Remark 4, which outputs a factorization in which Usmall consists in part of a
product of Householder reflectors. (In this situation Usmall is in fact not necessarily “small,” but it can be stored
and applied efficiently.)

Remark 5 (The case m < n). In a situation where the matrix has fewer rows than columns, but we still seek an
upper triangular matrix T, randUTV proceeds exactly as described for the first s − 1 steps. In the final step, we
now find that I3 is empty, but J3 is not, and so we need to compute the SVD of the “fat” matrix T(I2, [J2, J3]).
We do this in a manner entirely analogous to how we handle a “tall” matrix, by first performing an unpivoted QR
factorization of the rows of T(I2, [J2, J3]). In this situation it is the matrix of right singular vectors at the last step
that consists in part of a product of Householder reflectors.

5.3. Connection between RSVD and randUTV. The proposed algorithm randUTV is directly inspired by the
Randomized SVD (RSVD) algorithm described in Remark 3 (as originally described in [24, 22, 31] and later
elaborated in [25, 19]). In this section, we explore this connection in more detail, and demonstrate that the low-
rank approximation error that results from the “single-step” UTV-factorization described in Section 4 is identical
to the error produced by the RSVD (with a twist). This means that the detailed error analysis that is available for
the RSVD (see, e.g., [41, 15, 19]) immediately applies to the procedure described here. To be precise:

Theorem 1. Let A be an m × n matrix, let b be an integer denoting step size such that 1 ≤ b < min(m,n), and
let q denote a non-negative integer. Let G denote the m × b Gaussian matrix drawn in Section 4.3, and let U, T,
and V be the factors in the factorization A = UTV∗ built in Sections 4.3 and 4.4, partitioned as in (12) and (13).

(a) Let Y =
(
A∗A

)q
A∗G denote a sampling matrix, and let Q denote an n × b orthonormal matrix whose

columns form a basis for the column space of Y. Then, the error ‖A− AQQ∗‖ precisely equals the error
incurred by the RSVD with q steps of power iteration, as analyzed in [19, Sec. 10]. It holds that

(19) ‖A− AQQ∗‖ = ‖A−U1T11V
∗
1‖ =

∥∥∥∥[ T12

T22

]∥∥∥∥ .
(b) Let Z = AY =

(
AA∗

)q+1
G denote a sampling matrix, and let W denote an m × b orthonormal matrix

whose columns form a basis for the column space of Z. If the rank of A is at least b, then

(20) ‖A−WW∗A‖ = ‖A−U1

(
T11V

∗
1 + T12V

∗
2

)
‖ = ‖T22‖ .
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[U, T, V] = randUTV (A, b, q)
% Initialize output variables:
T = A; U = Im; V = In;

for i = 1 : min(dm/be, dn/be) do
% Create partitions 1 : m = [I1, I2, I3] and 1 : n = [J1, J2, J3] so that (I2, J2) points to the “active” block that is to be
diagonalized:
I1 = 1 : (b(i− 1)); I2 = (b(i− 1) + 1) : min(bi,m); I3 = (bi+ 1) : m;
J1 = 1 : (b(i− 1)); J2 = (b(i− 1) + 1) : min(bi, n); J3 = (bi+ 1) : n;

if (I3 and J3 are both nonempty) then
% Generate the sampling matrix Y whose columns approximately span the space spanned by the b dominant right sin-
gular vectors of the matrix X = T([I2, I3], [J2, J3]). We do this via randomized sampling, setting Y =

(
X∗X

)q
X∗G

where G is a Gaussian random matrix with b columns.
G = randn(m− b(i− 1), b)
Y = T([I2, I3], [J2, J3])∗G
for j = 1 : q do

Y = T([I2, I3], [J2, J3])∗
(
T([I2, I3], [J2, J3])Y

)
.

end for
% Build a unitary matrix V whose first b columns form an ON basis for the columns of Y. Then, apply the transfor-
mations. (We exploit that V is a product of b Householder reflectors, cf. Section 2.4.)
[V,∼] = qr(Y)
T(:, [J2, J3]) = T(:, [J2, J3])V
V(:, [J2, J3]) = V(:, [J2, J3])V
% Build a unitary matrix U whose first b columns form an ON basis for the columns of T([I2, I3], J2). Then,
apply the transformations. (We exploit that U is a product of b Householder reflectors, cf. Section 2.4.)
[U,R] = qr(T([I2, I3], J2))
U(:, [I2, I3]) = U(:, [I2, I3])U
T([I2, I3], J3) = U∗T([I2, I3], J3)
T(I3, J2) = 0

% Perform the local SVD that diagonalizes the active diagonal block. Then, apply the transformations.
[Usmall,Dsmall,Vsmall] = svd(R(1 : b, 1 : b))
T(I2, J2) = Dsmall

T(I2, J3) = U∗
smallT(I2, J3)

U(:, I2) = U(:, I2)Usmall

T(I1, J2) = T(I1, J2)Vsmall

V(:, J2) = V(:, J2)Vsmall

else
% Perform the local SVD that diagonalizes the last diagonal block. Then, apply the transformations. If either I3 or
J3 is long, this should be done economically, cf. Section 5.2.
[Usmall,Dsmall,Vsmall] = svd(T([I2, I3], [J2, J3]))
U(:, [I2, I3]) = U(:, [I2, I3])Usmall

V(:, [J2, J3]) = V(:, [J2, J3])Vsmall

T([I2, I3], [J2, J3]) = Dsmall

T(I1, [J2, J3]) = T(I1, [J2, J3])Vsmall

end if
end for
return

FIGURE 4. The algorithm randUTV that given anm×nmatrix A computes the UTV factorization
A = UTV∗, cf. (1). The input parameters b and q reflect the block size and the number of steps of
power iteration, respectively.
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We observe that the term ‖A−WW∗A‖ that arises in part (b) can informally be said to be the error resulting from
RSVD with “q + 1/2” steps of power iteration. This conforms with what one might have optimistically hoped for,
given that the RSVD involves 2q + 2 applications of either A or A∗ to thin matrices with b columns, and randUTV
involves 2q + 3 such operations at each step (2q + 1 applications in building Y, and then the computations of AV
and U∗A, which are in practice applications of A to thin matrices due to the identity (5)).

Proof. The proofs for the two parts rest on the fact that A can be decomposed as follows:

(21) A = UTV∗ =
[
U1 U2

] [ T11 T12

0 T22

] [
V∗1
V∗2

]
= U1T11V

∗
1 +U1T12V

∗
2 +U2T22V

∗
2,

where U1 and V1 have b columns each, and T11 is of size b × b. With the identity (21) in hand, the claims in (a)
follow once we have established that the orthogonal projection QQ∗ equals the projection V1V

∗
1. The claims in (b)

follow once we establish that WW∗ = U1U
∗
1.

(a) Observe that the matrix Q is by construction identical to the matrix V1 built in Sections 4.3 and 4.4. Since V1 =
V1V

∗
small, we find that QQ∗ = V1V∗1 =

(
V1V

∗
small

)(
V1V

∗
small

)∗
= V1

(
V∗smallVsmall

)
V∗1. Since V∗smallVsmall =

Ib, it follows that QQ∗ = V1V
∗
1. Then

(22) AQQ∗ = AV1V
∗
1 = {Use (21) and that V∗2V1 = 0 and V∗1V1 = I.} = U1T11V

∗
1.

The first identity in (19) follows immediately from (22). The second identity holds since (21) implies that A −

U1T11V
∗
1 = U1T12V

∗
2 +U2T22V

∗
2 = U

[
T12

T22

]
V∗2, with U unitary and V2 orthonormal.

(b) We will first prove that with probability 1, the two m × b matrices AV1 and Z have the same column spaces.
To this end, note that since V1 is obtained by performing an unpivoted QR factorization of the matrix Y defined in
(a), we know that V1R = Y for some b × b upper triangular matrix R. The assumption that A has rank at least b
implies that R is invertible with probability 1. Consequently, AV1 = AYR−1 = ZR−1, since Z = AY. Since right
multiplication by an invertible matrix does not change the column space of a matrix, the claim follows.

Since AV1 and Z have the same column spaces, it follows from the definition of U that U1U∗1 = WW∗. Since
U1 = U1Usmall where Usmall is unitary, we see that U1U∗1 = U1U

∗
1. Consequently,

WW∗A = U1U
∗
1A = {Use (21).} = U1T11V

∗
1 +U1T12V

∗
2.

which establishes the first identity in (20). The second identity holds since (21) implies that A − U1(T11V
∗
1 +

T12V
∗
2) = U2T22V

∗
2, with U2 and V2 orthonormal. �

Remark 6 (Oversampling). We recall that the accuracy of randUTV depends on how well the space col(V1) aligns
with the space spanned by the b dominant right singular vectors of A. If these two spaces were to match exactly,
then the truncated UTV factorization would achieve perfectly optimal accuracy. One way to improve the alignment
is to increase the power parameter q. A second way to make the two spaces align better is to use oversampling,
as described in Remark 2. With p an over-sampling parameter (say p = 5 or p = 10), we would draw a Gaussian
random matrix G of size m× (b+ p), and then compute an “extended” sampling matrix Y′ =

(
A∗A

)q
A∗G of size

n× (b+p). The n× b sampling matrix Y we would use to compute V would then be formed by the b dominant left
singular vectors of Y′, cf. Figure 11. Oversampling in this fashion does improve the accuracy (see Section A.2),
but in our experience, the additional computational cost is not worth it. Incorporating over-sampling would also
introduce an additional tuning parameter p, which is in many ways undesirable.

5.4. Theoretical cost of randUTV. Now we analyze the theoretical cost of the implementation of randUTV, and
we compare it to those of CPQR and SVD.

The theoretical cost of the CPQR factorization and the unpivoted QR factorization of an m× n matrix is: 2mn2 −
2n3/3 flops, when no orthonormal matrices are required. Although the theoretical cost of both the pivoted and
the unpivoted QR is the same, other factors should be considered, being the most important one the quality of
flops. In modern architectures, flops performed inside BLAS-3 operations can be about 5–10 times faster than flops
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performed inside BLAS-1 and BLAS-2 operations, since BLAS-3 is CPU-bound whereas BLAS-1 and BLAS-2
are memory-bound. Hence, the unpivoted QR factorization in high-performance libraries such as [2] can be much
faster because most of the flops are performed inside BLAS-3 operations, whereas only half of the flops in the
best implementations of CPQR (dgeqp3) in [2] are performed inside BLAS-3 operations. In addition, this low
performance of CPQR can even be smaller because of the appearance of catastrophic cancellations during the
computations. The appearance of just one catastrophic cancellation will stop the building of a block Householder
reflector before all of it has been built. This sudden stop forces the algorithm to work on smaller block sizes, which
are suboptimal, and hence performances are even lower.

The SVD usually comprises two steps: the reduction to bidiagonal form, and then the reduction from bidiagonal to
diagonal form. The first step is a direct step, whereas the second step is an iterative one. The theoretical cost of the
reduction to bidiagonal form of an m × n matrix is: 4mn2 − 4n3/3 flops, when no singular vectors are needed.
If m � n, the cost can be reduced to: 2mn2 + 2n3 flops by performing first a QR factorization. The cost of the
reduction to diagonal form depends on the number of iterations, which is unknown a priori, but it is usually small
when no singular vectors are built. On the one hand, in the bidiagonalization a large share of the flops are performed
inside the not-so-efficient BLAS-1 and BLAS-2 operations. Therefore, no high performances are obtained in the
reduction to bidiagonal form. On the other hand, the reduction to diagonal form uses just BLAS-1 operations.
These operations are memory-bound, and in addition they cannot be efficiently parallelized within BLAS, which
might reduce performances on multicore machines. In conclusion, usual implementations of the SVD will render
low performances on both single-core architectures and multicore architectures.

The theoretical cost of the randUTV factorization of an m×n matrix is: (5+2q)mn2− (3+2q)n3/3 flops, when
no orthonormal matrices are required, and q steps of power iteration are applied. If q = 0, the theoretical cost of
randUTV is three times as high as the theoretical cost of CPQR; if q = 1, it is four times as high; and if q = 2, it
is five times as high. Although randUTV seems computationally more expensive than CPQR, the quality of flops
should be considered. The share of BLAS-1 and BLAS-2 flops in randUTV is very small: BLAS-1 and BLAS-
2 flops are only employed inside the CPQR factorization of the sampling matrix Y, the QR factorization of the
current column block, and the SVD of the diagonal block. As these operations only apply to blocks of dimensions
n× b, m× b, and b× b, respectively, the total amount of these types of flops is negligible, and therefore most of the
flops performed in randUTV are BLAS-3 flops. Hence, the algorithm for computing the randUTV will be much
faster than what the theoretical cost predicts. In conclusion, this heavy use of BLAS-3 operations will render good
performances on single-core architectures, multicore architectures, GPUs, and distributed-memory architectures.

6. NUMERICAL RESULTS

6.1. Computational speed. In this section, we investigate the speed of the proposed algorithm randUTV, and
compare it to the speeds of highly optimized methods for computing the SVD and the column pivoted QR (CPQR)
factorization.

All experiments reported in this article were performed on an Intel Xeon E5-2695 v3 (Haswell) processor (2.3
GHz), with 14 cores. In order to be able to show scalability results, the clock speed was throttled at 2.3 GHz,
turning off so-called turbo boost. Other details of interest include that the OS used was Linux (Version 2.6.32-
504.el6.x86 64), and the code was compiled with gcc (Version 4.4.7). Main routines for computing the SVD
(dgesvd) and the CPQR (dgeqp3) were taken from Intel’s MKL library (Version 11.2.3) since this library usu-
ally delivers much higher performances than Netlib’s LAPACK codes. Our implementations were coded with
libflame [40, 39] (Release 11104).

Each of the three algorithms we tested (randUTV, SVD, CPQR) was applied to double-precision real matrices of
size n× n. We report the following times:

Tsvd The time in seconds for the LAPACK function dgesvd from Intel’s MKL.
Tcpqr The time in seconds for the LAPACK function dgeqp3 from Intel’s MKL.
TrandUTV The time in seconds for our implementation of randUTV.

For the purpose of a fair comparison, the three implementations were linked to the BLAS library from Intel’s MKL.
In all cases, we used an algorithmic block size of b = 64. While likely not optimal for all problem sizes, this block
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size yields near best performance and, regardless, it allows us to easily compare and contrast the performance of
the different implementations.

Table 1 shows the measured computational times when executed on 1, 4, and 14 cores, respectively. In these
experiments, all orthonormal matrices (U and V for SVD and UTV, and Q for CPQR) are explicitly formed. This
slightly favors CPQR since only one orthonormal matrix is required. The corresponding numbers obtained when
orthonormal matrices are not built are given in Appendix A.1. To better illustrate the relative performance of the
various techniques, we plot in Figure 5 the computational times measured divided by n3. Since all techniques
under consideration have asymptotic complexityO(n3) when applied to an n×nmatrix, these graphs better reveal
the computational efficiency. (We plot time divided by n3 rather than the more commonly reported “normalized
Gigaflops” since the algorithms we compare have different scaling factors multiplying the dominant n3-term in the
asymptotic flop count.) Figure 5 also shows the timings we measured when the orthonormal matrices were not
formed.

The results in Figure 5 lead us to make several observations: (1) The algorithm randUTV is decisively faster than
the SVD in almost all cases (the exceptions involve the situation where no unitary matrices are sought, and the input
matrix is small). (2) Comparing the speeds of CPQR and randUTV, we see that when both methods are executed
on a single core, the speeds are similar, with CPQR being slightly faster in some regimes. (3) As the matrix size
grows, and as the number of cores increases, randUTV gains an edge on CPQR in terms of speed.

6.2. Errors. In this section, we describe the results of the numerical experiments that were conducted to investigate
how good randUTV is at computing an accurate rank-k approximation to a given matrix. Specifically, we compared
how well partial factorizations reveal the numerical ranks of four different test matrices:

• Matrix 1 (Fast Decay): This is an n×nmatrix of the form A = UDV∗ where U and V are randomly drawn
matrices with orthonormal columns (obtained by performing an unpivoted QR factorization on a random
Gaussian matrix), and where D is diagonal with entries given by dj = β(j−1)/(n−1) with β = 10−5.
• Matrix 2 (S-shaped Decay): This matrix is built in the same manner as “Matrix 1”, but now the diagonal

entries of D are chosen to first hover around 1, then decay rapidly, and then level out at 10−2, as shown in
Figure 7 (black line).
• Matrix 3 (Gap): This matrix is built in the same manner as “Matrix 1”, but now there is a sudden drop in

magnitudes of the singular values so that σ151 = 0.1σ150. Specifically, D(j, j) = 1/j for j ≤ 150, and
D(j, j) = 0.1/j for j > 150.
• Matrix 4 (BIE): This matrix is the result of discretizing a Boundary Integral Equation (BIE) defined on

a smooth closed curve in the plane. To be precise, we discretized the so called “single layer” operator
associated with the Laplace equation using a 6th order quadrature rule designed by Alpert [1]. This operator
is well-known to be ill-conditioned, which necessitates the use of a rank-revealing factorization in order to
solve the corresponding linear system in as stable a manner as possible.

For each test matrix, we computed the error

(23) ek = ‖A− Ak‖
where Ak is the rank-k approximation resulting from either of the three techniques discussed in this manuscript:

SVD: Ak = Aoptimal
k = U(:, 1 : k)D(1 : k, 1 : k)V(:, 1 : k)∗,(24)

CPQR: Ak = Q(:, 1 : k)R(1 : k, :)P∗,(25)

randUTV: Ak = U(:, 1 : k)T(1 : k, :)V∗.(26)

For randUTV, we ran the experiment with zero, one, and two steps of power iteration (q = 0, 1, 2). In addition to
the direct errors defined by (23), we also calculated the relative errors, as defined via

(27) erelativek = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
.

The results are shown in Figures 6, 7, 8, and 9. The figures also report the errors resulting from a UTV factorization
that G.W. Stewart proposed in [37], precisely for purposes of low-rank approximation and estimation of singular
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Computational times when executed on a single core
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 1.21e-01 2.54e-02 6.13e-02 6.82e-02 7.46e-02

1000 7.85e-01 1.72e-01 3.36e-01 3.82e-01 4.27e-01
2000 5.52e+00 1.30e+00 2.33e+00 2.67e+00 3.01e+00
3000 2.11e+01 6.08e+00 7.72e+00 8.93e+00 1.01e+01
4000 5.31e+01 1.62e+01 1.80e+01 2.10e+01 2.40e+01
5000 1.04e+02 3.22e+01 3.39e+01 3.98e+01 4.57e+01
6000 1.82e+02 5.65e+01 5.82e+01 6.85e+01 7.88e+01
8000 4.34e+02 1.39e+02 1.39e+02 1.63e+02 1.87e+02

10000 8.36e+02 2.66e+02 2.60e+02 3.08e+02 3.55e+02

Computational times when executed on 4 cores
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 8.73e-02 1.80e-02 7.59e-02 7.98e-02 8.16e-02

1000 4.20e-01 9.00e-02 2.86e-01 3.07e-01 3.22e-01
2000 2.50e+00 5.33e-01 1.26e+00 1.40e+00 1.52e+00
3000 7.14e+00 1.58e+00 3.26e+00 3.65e+00 3.99e+00
4000 1.78e+01 5.29e+00 6.99e+00 7.89e+00 8.71e+00
5000 3.51e+01 1.24e+01 1.24e+01 1.42e+01 1.59e+01
6000 6.20e+01 2.25e+01 2.03e+01 2.33e+01 2.63e+01
8000 1.48e+02 5.39e+01 4.39e+01 5.10e+01 5.78e+01

10000 2.91e+02 1.07e+02 8.26e+01 9.55e+01 1.09e+02

Computational times when executed on 14 cores
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 7.51e-02 1.71e-02 8.90e-02 9.18e-02 9.35e-02

1000 3.26e-01 6.37e-02 2.90e-01 3.02e-01 3.13e-01
2000 1.65e+00 2.80e-01 1.02e+00 1.08e+00 1.12e+00
3000 4.48e+00 7.83e-01 2.40e+00 2.55e+00 2.69e+00
4000 1.18e+01 3.61e+00 4.41e+00 4.74e+00 5.07e+00
5000 2.43e+01 9.41e+00 7.38e+00 8.03e+00 8.66e+00
6000 4.41e+01 1.78e+01 1.16e+01 1.27e+01 1.38e+01
8000 1.07e+02 4.41e+01 2.38e+01 2.64e+01 2.91e+01

10000 2.14e+02 8.77e+01 4.20e+01 4.72e+01 5.25e+01

TABLE 1. Computational times of different factorizations when executed on one core (top), 4
cores (middle), and 14 cores (bottom). All orthonormal matrices are built explicitly.

values. To be precise, Stewart builds a factorization A = ULV∗ where U and V are orthonormal, and L is lower
triangular. The procedure is to first compute a CPQR factorization of A so that A = Q1R1P

∗
1. Then compute

a CPQR of the transpose of the upper triangular matrix R1 so that R∗1 = Q2L
∗P∗2. Finally, set U = Q1P2 and

V = P1Q2. The rank-k approximant is then

QLP: Ak = UL(:, 1 : k)V(:, 1 : k)∗.(28)

Based on the errors shown in Figures 6–9, we make several empirical observations: (1) randUTV is much better
than CPQR at computing low-rank approximations. Even when no power iteration (q = 0) is used, errors from
randUTV are substantially smaller. When one or two steps of power iteration are taken (q = 1 or q = 2), the



16

0

1

2

3

4

5

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e
 /

 n
3

n

No Orthonormal matrices (1 core)

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e 
/ 

n
3

n

Building Orthonormal matrices (1 core)

MKL SVD (dgesvd)

MKL CPQR (dgeqp3)

randUTV q=0

randUTV q=1

randUTV q=2

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e
 /

 n
3

n

No Orthonormal matrices (4 cores)

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e 
/ 

n
3

n

Building Orthonormal matrices (4 cores)

MKL SVD (dgesvd)

MKL CPQR (dgeqp3)

randUTV q=0

randUTV q=1

randUTV q=2

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e
 /

 n
3

n

No Orthonormal matrices (14 cores)

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

1
0

1
0
 ×

 T
im

e 
/ 

n
3

n

Building Orthonormal matrices (14 cores)

MKL SVD (dgesvd)

MKL CPQR (dgeqp3)

randUTV q=0

randUTV q=1

randUTV q=2

FIGURE 5. Computational cost (the lower, the better performances) of randUTV compared to the
cost of the LAPACK drivers dgesvd (SVD) and dgeqp3 (CPQR). The algorithms were applied
to double-precision real matrices of size n × n. The measured computational time divided by n3

is plotted against n (e.g. the red line is Tsvd/n3.) The three rows of plots correspond to executing
on 1, 4, and 14 cores, respectively.

errors become close to optimal in all cases studied. (2) For the matrix with a gap in its singular values (cf. Figure
8), randUTV performs remarkably well in that both σ150 and σ151 are approximated to high accuracy. (3) The
relative errors resulting from randUTV are consistently small, and much more reliably small than those resulting
from CPQR. (4) Comparing the “QLP” factorization of Stewart [37] to randUTV, we see that Stewart’s algorithm
results in errors that are similar to those resulting from randUTV with q = 0. As soon as the power parameter is
increased, randUTV tends to perform better. (We observe that in terms of speed, Stewart’s QLP algorithm relies on
two CPQR factorizations, which makes it much slower than randUTV.)

All error results shown in this section refer to errors measured in the spectral norm. When errors are measured in the
Frobenius norm, randUTV performs even better, as shown in Figures 13, 15, 17, and 19. The effects of including
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FIGURE 6. Rank-k approximation errors for the matrix “Fast Decay” (see Section 6.2) of size
4000× 4000. The block size was b = 100. Left: Absolute errors in spectral norm. The black line
marks the theoretically minimal errors. Right: Relative errors, as defined by (27).

over-sampling in the algorithm, as described in Remark 6, is illustrated in numerical experiments given in Appendix
A.2. These experiments show that over-sampling does improve the error, but also that the improvement is almost
imperceptible. For most applications, over-sampling is in our experience not worth the additional effort.

6.3. Concentration of mass to the diagonal. In this section, we investigate our claim that randUTV produces a
matrix T whose diagonal entries are close approximations to the singular values of the given matrix. (We recall that
in the factorization A = UTV∗, the matrix T is upper triangular, but with the entries above the diagonal very small
in magnitude which forces the diagonal entries to approach the corresponding singular values.) Figure 10 shows
the results for the four different test matrices described in Section 6.2, again for matrices of size 4 000× 4 000. For
reference, we also show the diagonal entries of the “R-factor” in a CPQR, and the diagonal entries of the “L-factor”
in Stewart’s QLP factorization [37]. We see that both Stewart’s and our algorithm results in far better results than
plain CPQR. randUTV roughly matches the accuracy of the QLP when q = 0, and does better as q is increased to
one or two. (We recall that randUTV is much faster than the QLP method.)

7. AVAILABILITY OF CODE

Implementations of the discussed algorithm are available under 3-clause (modified) BSD license from:

https://github.com/flame/randutv

This repository includes two different implementations: one to be used with the LAPACK library [2], and the other
one to be used with the libFLAME [30, 17] library.

Acknowledgements: The research reported was supported by DARPA, under the contract N66001-13-1-4050, and
by the NSF, under the awards DMS-1407340 and DMS-1620472.
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FIGURE 7. Rank-k approximation errors for the matrix “S-shaped decay” (see Section 6.2) of size
4000× 4000. The block size was b = 100. Left: Absolute errors in spectral norm. The black line
marks the theoretically minimal errors. Right: Relative errors, as defined by (27).
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FIGURE 8. Rank-k approximation errors for the matrix “Gap” (see Section 6.2) of size 4000 ×
4000. The block size was b = 100. Left: Absolute errors in spectral norm. The black line marks
the theoretically minimal errors. (Observe that we zoomed in on the area around the gap.) Right:
Relative errors, as defined by (27).
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FIGURE 9. Rank-k approximation errors for the matrix “BIE” (see Section 6.2) of size 4000 ×
4000. The block size was b = 100. Left: Absolute errors in spectral norm. The black line marks
the theoretically minimal errors. Right: Relative errors, as defined by (27).
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APPENDIX A. SUPPLEMENTARY NUMERICAL RESULTS

In this appendix, we present some additional numerical data that illustrates the performance and accuracy of the
algorithms in more detail.

A.1. Additional timing data. In Section 6.1 we provided graphs showing the computation speed of various fac-
torization algorithms for the case when all orthonormal matrices are build explicitly. In this section, we additionally
provide the results for the times required when the orthonormal matrices are not built. Table 2 shows these times
when executed on 1, 4, and 14 cores, respectively. These numbers were illustrated graphically in the left column of
Figure 5.

A.2. Improving the accuracy via over-sampling in the randomization step. We recall that the randomized
range finder that forms the key novelty of the algorithm randUTV has been thoroughly investigated and is well
understood both empirically and via rigorous theory, cf. Section 2.5. In most of this prior work, it is standard to
perform a small amount of over-sampling, as described in Remark 2. In other words, if one seeks a basis that
approximately captures the space spanned by the dominant k singular vectors of a matrix, we draw k + p samples
from the range, where p is a small integer (common choices are p = 5 or p = 10). For a single-step method, such
as the simple “Randomized SVD” algorithm described in Remark 3, such over-sampling is essential to get accurate
results. For randUTV, it is a simple matter to incorporate over-sampling in an analogous way. At each step of the
algorithm, we simply draw p extra samples from the range to form an “extended” sampling matrix Y with k + p
columns. We then compute the dominant k left singular vectors of Y, and use these as the basis for the column
space of the remainder matrix. The resulting algorithm is given in Figure 11.

Figures 12–19 show the errors resulting from randUTV without over-sampling (solid lines) and with (dotted lines).
The test matrices and the notation are described in Section 6.2. We see that over-sampling does provide some
benefit in terms of accuracy, as evidenced by the fact that each dotted line is lower than the corresponding solid
line. However, we also see that the difference is very minor. Overall, it is our opinion that the additional accuracy
obtained by over-sampling is in the present context not worth the additional work. (Avoiding the introduction of an
additional tuning parameter is of course also helpful.)

function [U,T,V] = stepUTV(A,b,q,p)
G = randn(size(A,1),b+p);
Y = A’*G;
for i = 1:q

Y = A’*(A*Y);
end;
[Z,˜,˜] = svd(Y,’econ’);
[V,˜] = qr(Z(:,1:b));
[U,D,W] = svd(A*V(:,1:b));
T = [D,U’*A*V(:,(b+1):end)];
V(:,1:b) = V(:,1:b)*W;

return

FIGURE 11. This code illustrates how the accuracy in the single-step UTV factorization can be
improved by incorporating over-sampling, as discussed in Remark 6 and Section A.2. The func-
tion shown here has exactly the same input and output parameters as the function stepUTV in
Figure 3, with the exception that there is one additional input parameter p that specifies how much
oversampling should be done.
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FIGURE 12. Spectral norm errors for the “Fast Decay” matrix. This figure is identical to Figure
6, except that we now include lines showing the effect of over-sampling (dotted lines).
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FIGURE 13. Frobenius norm errors for the “Fast Decay” matrix. This figure is identical to Figure
12, except that errors are now measured in the Frobenius norm.
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FIGURE 14. Spectral norm errors for the “S-shaped Decay” matrix. This figure is identical to
Figure 7, except that we now include lines showing the effect of over-sampling (dotted lines).
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FIGURE 15. Frobenius norm errors for the “S-shaped Decay” matrix. This figure is identical to
Figure 14, except that errors are now measured in the Frobenius norm.
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FIGURE 16. Spectral norm errors for the “Gap” matrix. This figure is identical to Figure 8, except
that we now include lines showing the effect of over-sampling (dotted lines).
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FIGURE 17. Frobenius norm errors for the “Gap” matrix. This figure is identical to Figure 16,
except that errors are now measured in the Frobenius norm.
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FIGURE 18. Spectral norm errors for the “BIE” matrix. This figure is identical to Figure 9, except
that we now include lines showing the effect of over-sampling (dotted lines).
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FIGURE 19. Frobenius norm errors for the “BIE” matrix. This figure is identical to Figure 18,
except that errors are now measured in the Frobenius norm.



27

Computational times when executed on a single core
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 3.84e-02 1.83e-02 4.17e-02 4.78e-02 5.43e-02

1000 2.57e-01 1.24e-01 2.02e-01 2.48e-01 2.93e-01
2000 1.90e+00 9.25e-01 1.19e+00 1.53e+00 1.87e+00
3000 3.44e+00 4.91e+00 3.90e+00 5.12e+00 6.33e+00
4000 8.48e+00 1.35e+01 9.13e+00 1.21e+01 1.51e+01
5000 5.67e+01 2.73e+01 1.72e+01 2.32e+01 2.91e+01
6000 1.01e+02 4.81e+01 2.95e+01 3.98e+01 5.01e+01
8000 2.50e+02 1.20e+02 6.95e+01 9.37e+01 1.18e+02

10000 4.83e+02 2.30e+02 1.31e+02 1.78e+02 2.26e+02

Computational times when executed on 4 cores
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 2.60e-02 1.31e-02 6.54e-02 6.85e-02 7.24e-02

1000 1.70e-01 6.65e-02 2.28e-01 2.47e-01 2.62e-01
2000 9.28e-01 4.05e-01 8.76e-01 1.01e+00 1.12e+00
3000 1.72e+00 1.21e+00 2.06e+00 2.47e+00 2.81e+00
4000 3.65e+00 4.46e+00 4.23e+00 5.21e+00 5.99e+00
5000 1.85e+01 1.10e+01 7.22e+00 9.02e+00 1.07e+01
6000 3.49e+01 2.03e+01 1.16e+01 1.46e+01 1.76e+01
8000 8.94e+01 4.92e+01 2.43e+01 3.14e+01 3.82e+01

10000 1.85e+02 9.78e+01 4.52e+01 5.89e+01 7.16e+01

Computational times when executed on 14 cores
n Tsvd Tcpqr TrandUTV

q = 0 q = 1 q = 2
500 2.44e-02 1.27e-02 8.20e-02 8.44e-02 8.58e-02

1000 1.02e-01 5.00e-02 2.56e-01 2.66e-01 2.75e-01
2000 4.14e-01 2.16e-01 7.98e-01 8.56e-01 9.00e-01
3000 8.77e-01 5.98e-01 1.72e+00 1.88e+00 2.02e+00
4000 1.87e+00 3.21e+00 3.07e+00 3.41e+00 3.74e+00
5000 1.36e+01 8.74e+00 5.00e+00 5.64e+00 6.28e+00
6000 2.73e+01 1.67e+01 7.63e+00 8.74e+00 9.81e+00
8000 7.40e+01 4.18e+01 1.50e+01 1.76e+01 2.03e+01

10000 1.55e+02 8.33e+01 2.58e+01 3.10e+01 3.62e+01

TABLE 2. Computational times of different factorizations when executed on one core (top), 4
cores (middle), and 14 cores (bottom). No orthonormal matrices are built.
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