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Campus del Riu Sec. Universitat Jaume I, 12071 Castelló, Spain.

Abstract

Statistics and analytic methods are becoming increasingly important in bas-
ketball. In particular, predicting players’ performance using past observa-
tions is a considerable challenge. The purpose of this study is to forecast
the future behavior of basketball players. The available data are sparse func-
tional data, which are very common in sports. So far, however, no fore-
casting method designed for sparse functional data has been used in sports.
A methodology based on two methods to handle sparse and irregular data,
together with the analogous method and functional archetypoid analysis is
proposed. Results in comparison with traditional methods show that our
approach is competitive and additionally provides prediction intervals. The
methodology can also be used in other sports when sparse longitudinal data
are available.

Keywords: Forecasting, Functional data analysis, Archetypal analysis,
Functional sparse data, Basketball

1. Introduction

Basketball analytics started to attract attention with the publications
by [24] and [17]. More recently, other papers and books have been released
[22, 34, 32]. Technological advances have made it possible to collect more
data than ever about what is happening on the field, requiring new methods
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of analysis. There is currently a need for innovative methods that exploit
the full potential of the data and that make it possible to generate additional
value for athletes and technical staff. One of the main challenges in basket-
ball analytics is to use past performance to predict future performance [32].
To address this open question, some forecasting methods have been devel-
oped. Following [19, Chapter 1.4], two main approaches can be distinguished
based on the type of data used: time-series forecasting and cross-sectional
forecasting. On the one hand, forecasting using data collected over time de-
scribes the likely outcome of the time series in the immediate future, based
on knowledge of recent outcomes. On the other hand, cross-sectional fore-
casting methods use data collected at a single point in time. The goal here
is to predict a target variable using some explanatory variables which are
related to it.

Two well elaborated methods can be found using historical time data:
College Prospect Rating (CPR) is a score assigned to college basketball play-
ers that attempts to estimate their NBA potential [32, 33]. A methodology
with a similar design to ours is the Career-Arc Regression Model Estima-
tor with Local Optimization (CARMELO) method. For a player of interest,
CARMELO identifies similar players throughout NBA history and uses their
careers to forecast the future player’s activity [35].

Regarding cross-sectional models, a Weibull-Gamma with covariates tim-
ing model is proposed in [18] to predict the points scored by players over time.
In this case, the time variable is years playing in NBA. Another interesting
approach is presented in [30], where correlations and regression models are
computed to figure out which foreign players will be successful in the NBA,
by using their previous statistics in international competitions.

In addition to the effort of predicting individual performance, there have
also been other approaches focusing on teams and other features of the game.
Some models using simulation have been developed to forecast the outcome
of a basketball match [37, 42]. A comparison between predictions based on
NCAAB and NBA match data is discussed in [46]. A dynamic paired com-
parison model is described in [3] for the results of matches in two basketball
and football tournaments. Furthermore, in [4] a process model is used with
player tracking data for predicting possession outcomes.

We wish to consider a new perspective by using Functional Data Analysis
(FDA) in sports. FDA is a relatively new branch of Statistics that analyses
data drawn from continuous underlying processes, often time, i.e. a whole
function is a datum. Let us assume that n smooth functions, x1(t), ..., xn(t),
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are observed, with the i-th function measured at ti1,..., tini
points. In our

study, xi(t) represents the metric value of player i for a certain age t. An
important point we would like to emphasize here is that the time component
of the FDA approach we are considering will represent players’ ages. As such,
in this paper we propose different models for aging curves, which is a well-
recognized and important topic within the more general area of forecasting
player performance. As mentioned in [35], the most important attribute of
all, in terms of determining a player’s future career trajectory, is his/her age.

The goals of FDA coincide with those of any other branch of Statis-
tics, and the classical summary statistics can be also defined, such as the
mean function x̄(t) = n−1

∑n
i=1 xi(t), the variance function varX(t) = (n −

1)−1
∑n

i=1(xi(t) − x̄(t))2 and the covariance function covX(th, tl) = (n −
1)−1

∑n
i=1(xi(th) − x̄(th))(xi(tl) − x̄(tl)). An excellent overview of FDA is

found in [28], while methodologies for studying functional data nonparamet-
rically are found in [15]. [29] introduce related software and [27] present some
interesting applications in different fields. Other recent applications include
[9] and [23]. In all these problems, a continuous function lies behind these
data even though functions are sampled discretely at certain points. The
FDA framework is highly flexible since the sampling time points do not have
to be equally spaced and both the argument values and their cardinality can
vary across cases. When functions are observed over a relatively sparse set
of points, we have sparse functional data. An excellent survey on sparsely
sampled functions is provided by [21].

As regards the forecasting of functional time series, there is a body of
research, such as [31, 2, 20], where functions are measured over a fine grid
of points. However, only a few works deal with the problem of forecasting
sparse functional data [11]. Notice that when functions are observed over a
dense grid of time points, it is possible to fit a separate function for each case
using any reasonable basis. Nevertheless, in the sparse case, this approach
fails and the information from all functions must be used to fit each function.

Sports data are sparse and irregular. They are sparse because most play-
ers do not have a very long career in the same league. And they are irregular
because each player’s career lasts for a different length of time. Despite
the fact that time series data or movement trajectories are very common in
sports, FDA has been mostly used in sport biomechanics or medicine [14, 16].
To the best of our knowledge, there are only two references about sports ana-
lytics using FDA. In [43], FDA was introduced for the study of players’ aging
curves and both hypothesis testing and exploratory analysis were performed.
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[40] extended archetypoid analysis (ADA) for sparse functional data (see also
[41, 13]), showing the potential of FDA in sports analytics. In particular, it
was demonstrated that advanced analysis with FDA reveals patterns in the
players’ trajectories over the years that could not be discovered if data were
simply aggregated (averaged, for example).

In this paper, we propose a methodology to predict player’s performances
using sparse functional data. Two metrics will be analyzed: Box Plus/Minus
(BPM)1 and Win Shares (WS)2. Analysis using BPM will allow us to estab-
lish a plausible comparison with CARMELO, while analysis with another
variable such as WS will allow us to evaluate differences in career arcs. To
that end, we will focus on two existing methods designed to handle sparse and
irregular data: (i) Regularized Optimization for Prediction and Estimation
with Sparse data (ROPES), originally developed by Alexander Dokumentov
and Rob Hyndman [11, 10]; (ii) Principal components Analysis through Con-
ditional Expectation (PACE), originally developed by Fang Yao, Hans-Georg
Müller and Jane-Lin Wang [44].

Our methodology will also involve using the method of analogues based
on functional archetypoid analysis (FADA), which will allow us to refine pre-
dictions for the players of interest and to achieve a more reliable forecasting,
in line with the expectations of basketball analysts. We will apply them to a
very comprehensive database of NBA players. Results will be obtained using
the R software [25].

Forecasting future performance is also very relevant to other sports (see
for instance [1]. We would like to emphasize that our methodology can
also be used in other sports when sparse longitudinal data are available.
Data and R code (including a web application created with the R pack-
age shiny [5]) to reproduce the results can be freely accessed at https:

//www.uv.es/vivigui/software. The rest of the paper is organized as fol-
lows: Section 2 reviews ROPES, PACE, ADA and FADA. Section 3 will be
concerned with the data and input variables used. Section 4 presents three
analyses: (i) A validation study is carried out to choose an optimal blend
of tuning parameters which ROPES depends on; (ii) ROPES and PACE are
compared with each other and with standard benchmarks; (iii) The reliabil-
ity of ROPES predictions for current players using the method of analogues

1https://www.basketball-reference.com/about/bpm.html
2https://www.basketball-reference.com/about/ws.html
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with FADA is shown. A discussion with CARMELO results is also provided.
The paper ends with some conclusions in Section 5. An appendix shows how
this methodology can also be proposed for forecasting international players.

2. Methodology

2.1. ROPES

The method ROPES (Regularized Optimization for Prediction and Es-
timation with Sparse data), proposed by Alexander Dokumentov and Rob
Hyndman [11, 10], solves problems involving decomposing, smoothing and
forecasting two-dimensional sparse data. In practical terms, where the aim
is to interpolate and extrapolate the sparse longitudinal data, made up of n
observations, and presented over the time dimension with m time points, the
following optimization problem is solved:

{(U, V )} = argmin
U,V

(
||W � (Y − UV T )||2 + ||U ||2 + ||DIFF2(m,λ2)V ||2+

||DIFF1(m,λ1)V ||2 + ||DIFF0(m,λ0)V ||2
)
(1)

where:

• Y is an n×m matrix.

• U is an n× k matrix of “scores” (“coefficients”), k = min(n,m).

• V is a m× k matrix of “features” (“shapes”).

• ||.|| is the Frobenius norm.

• � is the element-wise matrix multiplication.

• W is an n×m “masking matrix” of weights.

• λ0, λ1 and λ2 are smoothing parameters.

and where DIFFi(m,λ) represents the discrete i times derivative operator
multiplied by the scalar λ. In particular, DIFF0(m, 1) is the identity matrix
m × m; DIFF1(m, 1) is the matrix (m − 1) × m, with −1 values in the
main diagonal, 1 values in the following upper diagonal and 0 otherwise;
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DIFF2(m, 1) is the matrix (m− 2)×m, with 1 values in the main diagonal,
−2 values in the following upper diagonal, 1 values in the following upper
diagonal, and 0 otherwise.

ROPES is equivalent to maximum likelihood estimation with partially
observed data, which allows the calculation of confidence and prediction in-
tervals. They are estimated using a Monte-Carlo style method. The original
two sources [11, 10] should be referred to for all the specific details.

2.2. PACE

Functional Principal Components Analysis (FPCA) is a common tool to
reduce the dimension of data when the observations are random curves. The
usual computational methods for FPCA based on discretizing the functions
or basis by expanding the functions are inefficient when data with only a
few repeated and sufficiently irregularly spaced measurements per subject
are available. Note that when functions are measured over a fine grid of
time points, it is possible to fit a separate function for each case using any
reasonable basis. However, in the sparse case, this approach fails and the
information from all functions must be used to fit each function.

A version of FPCA, in which the FPC scores are framed as conditional
expectations, was developed by Fang Yao, Hans-Georg Müller and Jane-Lin
Wang to overcome this issue [44]. This method was referred to as Principal
components Analysis through Conditional Expectation (PACE) for sparse
and irregular longitudinal data. In practice, the prediction for the trajectory
Xi(t) for the ith subject, using the first p φq eigenfunctions, is:

X̂p
i (t) = µ̂+

p∑
q=1

ξ̂iqφ̂q(t) (2)

where µ̂ is the estimate of the mean function E(X(t)) = µ(t) and ξiq are
the FPC scores. PACE and its implementation in the R library fdapace
([7]) use local smoothing techniques to estimate the mean and covariance
functions of the trajectories, specifically a local weighted bilinear smoother
is used for estimating the covariance. Generalized Cross Validation is used
for bandwidth choice, which is the default method for the FPCA function
in the R library fdapace (default parameters are considered; for example,
10 folds and a Gaussian kernel are used). The number of components p is
determined using the Fraction-of-Variance-Explained threshold (0.9999 by
default) computed during the SVD of the fitted covariance function.
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The eigenfunctions φ̂q(t) and the number p are estimated with the training
set, and they are used in the estimation of the scores for the test set. This is
the procedure we will follow in Section 4.2. With the scores and the estimated
eigenfunctions, we obtain an approximation of the trajectories and they can
be used to predict unobserved portions of the functions. [44] also explain
the construction of asymptotic pointwise confidence intervals for individual
trajectories and asymptotic simultaneous confidence bands.

2.3. ADA

Archetypoid analysis (ADA) was presented in [41] and is an extension
of archetypal analysis defined by [6] (see [8, 26] for other derived method-
ologies). In ADA, archetypes correspond to real observations (the so-called
archetypoids). Let X be an n × p matrix of real numbers representing a
multivariate data set with n observations and p variables. For a given g, the
objective of ADA is to find a g × p matrix Z that characterizes the archety-
pal patterns in the data. In ADA, the optimization problem is formulated
as follows:

RSS =
n∑

i=1

‖xi −
g∑

j=1

αijzj‖2 =
n∑

i=1

‖xi −
g∑

j=1

αij

n∑
l=1

βjlxl‖2, (3)

under the constraints

1)

g∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n and

2)
n∑

l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , g i.e., βjl = 1 for one and

only one l and βjl = 0 otherwise.

Archetypoids are computed with the R package Anthropometry [39].

2.3.1. ADA for sparse data with FDA

ADA was defined for functions in [13], where it was shown that functional
archetypoids can be obtained as in the multivariate case if the functions are
expressed in an orthonormal basis, simply by applying ADA to the basis
coefficients. When functions are measured over some sparse points, we have
sparse functional data.

7



The basic idea of functional archetypoid analysis (FADA) is as follows.
Based on the Karhunen-Loève expansion, the functions are approximated as
in Eq. 2. Because the eigenfunctions are orthonormal, to obtain FADA we
can apply ADA to the n × p matrix X, with the scores (the coefficients in
the Karhunen-Loève basis).

3. Data

We have used the R package ballr [12] to obtain the total advanced
statistics for each NBA player from the 1973-1974 season to the latest season,
2017-2018, including the player’s age on February 1st of that season. From
the total set of statistics, we have focused on Box Plus/Minus (BPM) and
Win Shares (WS).

BPM is a box score-based variable for estimating basketball players’ qual-
ity and contribution to the team. It takes into account both the players’
statistics and the team’s overall performance. The final value enables us
to evaluate the player’s performance relative to the league average. BPM
is a per-100-possession statistic and its scale is as follows: 0 is the league
average, +5 means that the player has contributed 5 more points than an
average player over 100 possessions, −2 is replacement level, and −5 is very
bad. Replacement level players are those who replace a roster spot for short-
term contracts, so they are not normal members of a team’s rotation. We
have chosen BPM because it was created to use only the information that
is available historically. According to the website where BPM is explained
3, “it is possible to create a better stat than BPM for measuring players, but
difficult to make a better one that can also be used historically”, which fits
perfectly with the goal of our method. BPM is available from the 1973-1974
season.

We have chosen a second metric, which is also widely used: Win Shares
(WS). It also has the advantage of taking the surrounding team into ac-
count. In particular, WS is a player statistic that distributes the team’s
success among the team players. It is calculated using player, team and
league statistics. The sum of all the players’ WS in a given team will be
approximately equal to that team’s total wins for the season. A player with
negative WS means that the player took away wins that the teammates had
generated.

3https://www.basketball-reference.com/about/bpm.html
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Figure 1: BPM and Win Shares values for some players present in the database, at their
corresponding ages (colors in the online version).

The reason for analyzing two variables is to investigate differences in
career arcs for different aspects of skill. This allows us to highlight the power
of our approach and could be of interest to basketball fans/analysts. Any
other statistic can be chosen.

We have removed the observations with fewer than five games played.
They were related to very extreme BPM values, such as −86.7 for Gheorghe
Muresan in 1998-19994 or −49.3 for Mindaugas Kuzminskas in 2017-20185.

Fig. 1 illustrates the type of data we are working with. It shows the
observations of certain players, whose values are represented as connected
points.

Players’ ages will represent the time points to be used by our method-
ology. The initial range of ages in the database went from 18 to 44 years
old. However, there were only a few measurements between ages 41 and 44,

4https://www.basketball-reference.com/players/m/muresgh01.html#all_

advanced
5https://www.basketball-reference.com/players/k/kuzmimi01.html#all_

advanced
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related to a few long-lasting players, so we have removed them. The age
range finally considered is from 18 to 40 years old, i.e., there are 23 time
points. In total there are 3075 players.

4. Results

In Section 4.1 a validation study is proposed to choose an appropriate
combination of ROPES tuning parameters, which is crucial for good predic-
tive activity. Section 4.2 contains a comparison analysis between ROPES,
PACE and two benchmark methods. Section 4.3 specifies the type of projec-
tions obtained.

4.1. Selection of parameters

ROPES depends on three tuning parameters (λ2, λ1, λ0), which have to
be chosen to guarantee that the model itself returns predictions with enough
accuracy. We evaluate the precision of the model’s prediction in terms of the
mean squared error (MSE). MSE measures the average of the squares of the
differences between the predicted values ŷ and the true values y across all
individual estimates i, as shown in Eq. (4).

MSE =
1

n

n∑
i=1

(ŷi − yi)2 =
1

n

n∑
i=1

e2i (4)

We adopt MSE since ROPES uses it to measure the error term. In order
to select the parameters, we proceed as follows: our goal will be to predict
the BPM in the 2017-2018 season, for the players who played at least in one
season before the 2017-2018 season and who also played in the 2017-2018
season itself. The justification for doing this is related to sporting reasons.
In sports, when coaches and managers are building their rosters, it is highly
important for them to have a basic idea about how players will perform
during the following season. Of course, they would also like to know the
players’ performance in the long term, but most rosters are built according
to the most immediate season. This would allow them to decide whether
the current roster should remain the same for the next season or whether
some players should be replaced. This procedure makes sense because we
will consider the previous performance of all the players selected, but we are
only interested in predicting their BPM for the next season, by taking into
account each player’s data and the information about the other players. This
procedure is more computationally efficient than the leave-one-out approach.
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From the 3075 players, there are 385 who played in the 2017-2018 sea-
son and at least another season before that. Firstly, we split our data into
a training+validation set (TrVaSet) with 2690 (3075 − 385) players and a
test set with the 385 aforementioned players. No test set player belongs to
TrVaSet. We will select the optimal combination of λ’s with TrVaSet. To
do this, we use a 10 fold cross-validation procedure. Inside each fold, we use
60% of the data for training and then calculate the performance using the
40% remaining validation data. For the validation players, their BPM value
is replaced by NA in the Y matrix. In the W masking matrix the 1 value is
then replaced by 0.

The first step is to optimize the parameter λ2, setting λ1 = 0 and λ0 = 10.
The parameter λ2 takes values in a sequence from 0 to 1000 in increments of
100. In this way, the first blend is (λ2 = 0, λ1 = 0, λ0 = 10), the second is
(λ2 = 100, λ1 = 0, λ0 = 10) and so on. We are looking for smooth curves, so
we place more emphasis on λ2 because it is related to the second derivative
and this derivative is strongly related to the smoothness of the curve. This
is justified because if the second derivative is a smooth curve, both the first
derivative and the original function will also be smooth. From the definition
of derivative, it directly follows that if a function has a first derivative at
any point, then it does not have a sharp bend (v-shape) at that point (the
same can be said of the second derivative with respect to the first derivative).
See for example [28, Section 5.2.2] for further insights. The opposite is not
always true.

Fig. 2 shows the averaged MSE across folds for every combination when
only λ2 is moving. The smallest MSE was for the combination with λ2 = 900.

Once the optimal λ2 has been found, we then adjust λ1 and λ0 as well.
Both λ0 and λ1 take values in a sequence from 0 to 10 in increments of 5. Fig.
3 shows the averaged MSE across folds for every combination when both λ0
and λ1 are moving. The smallest MSE was for the combination (λ2 = 900,
λ1 = 10, λ0 = 10).

The grid search procedure is chosen since it is a traditional way of per-
forming hyperparameter optimization and can return results in a reason-
able amount of time. This second point was particularly important because
ROPES is computationally expensive.
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Figure 2: Averaged MSE across folds for every combination of lambdas when λ2 is moving
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Table 1: Actual and predicted BPM values for the 2017-2018 season with ROPES, PACE,
the average method and the näıve method, for the test set of players who played during
the 2017-2018 season and at least one season before. The difference between actual and
predicted values and MSE are also provided. MSE is highlighted in bold. Extract of the
results.

ROPES (900,10,10) PACE Average Näıve
Player Age BPM BPMpr Dif.2 BPMpr Dif.2 BPMpr Dif.2 BPMpr Dif.2

Aaron Brooks 33 -4.3 -4.14 0.03 -3.32 0.96 -2.21 4.37 -4.6 0.09
... ... ... ... ... ... ... ... ... ... ...

Josh Richardson 24 1.4 0.66 0.55 0.56 0.71 0.40 1.00 0.2 1.44
... ... ... ... ... ... ... ... ... ... ...

Zaza Pachulia 33 0.8 1.00 0.04 0.54 0.07 -0.75 2.40 2.7 3.61
Mean (MSE) -0.92 -0.61 6.73 -0.87 3.24 -1.15 7.59 -0.92 7.11

Sd 3.31 3.01 16.28 2.35 7.6 2.72 15.41 3.22 16.53
Mean ± Sd (2.39,4.23) (2.4, 3.62) (1.48,3.22) (-3.87,1.57) (-4.14,2.3)

4.2. Comparison with other methods

In order to evaluate the usefulness of ROPES and PACE, we carry out a
comparison with each other and with two benchmark methods, such as the
average method and the näıve method. In the average method, the forecast
of the next value is the mean of the previous values. In the näıve option, the
forecast is the value of the last observation. They are two common simple
alternatives to more advanced techniques [19, Section 2.3].

In order to check the performance of all the methods, we have applied
them to the test set of 385 players. Table 1 reports an extract of the results.
It contains the following information for all players in the 2017-2018 season:
(i) their age; (ii) their actual BPM value; (iii) the predictions with ROPES
(using the optimal λ combination), PACE and the simple methods; (iv)
the squared difference between actual values and predictions (denoted as
Dif.2); (v) the resulting total MSE (highlighted in bold). PACE obtains
the smallest MSE, followed by ROPES. It is interesting to note that the
mean BPM obtained with the näıve method is practically the same as the
actual one (both rounded to −0.92). This may indicate that in theory the
player’s performance in the next year should not be far from the previous
one. However, this is not always the case in practice.

Fig. 4 displays the boxplots for the actual BPM values together with the
BPM predictions for each method in different intervals.
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Figure 4: Boxplots for the actual BPM values together with the BPM predictions for each
method in different intervals.

The intervals [−14,−9) and [−9,−4) refer to players with a very bad
performance (according to the BPM scale). We see in both cases that the
predictions are far away from the true values. All the methods give a con-
servative forecast for such extreme values. PACE is the method that pro-
vides the closest results in these two intervals. ROPES is close to PACE
in [−9,−4). In the interval [−4, 1), the four methods show similar values
with respect to the actual ones. In the interval [1, 6), ROPES gives the most
similar predictions with respect to the actual ones. In the interval [6, 11),
again ROPES and PACE give the most accurate predictions. Remarkably,
the näıve method shows outliers in all the intervals.

Overall, PACE is the method that performs best. ROPES is able to beat
the simple benchmark methods, showing an improvement with respect to
them. The main drawback of the current PACE implementation is the lack
of prediction intervals. The main goal of this paper is to draw attention to
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the added value of using an FDA approach to forecast players’ performance,
which has not been done so far. Therefore, even though PACE should give
somewhat more accurate predictions than ROPES, in next Section we will use
ROPES to forecast future players’ activity because it does provide prediction
intervals. Prediction intervals are very helpful and important because they
express how much uncertainty is associated with the forecast.

4.3. Projections of future performance with ROPES and the method of ana-
logues

4.3.1. Case study: Joel Embiid

Joel Embiid is a Cameroonian player for the Philadelphia 76ers. He was
selected with the third overall pick in the 2014 NBA draft and made his
debut in the NBA in the 2016-2017 season after two years of injuries and
problems. During his rookie season, Embiid was selected for the NBA All-
Rookie First Team, even though he only played 31 games. In 2017-18, he was
named an All-Star and was member of both the All-NBA Second Team and
the NBA All-Defensive Second Team. The widespread view is that he will
be a super star player on both ends of the court for years to come. Hence, it
is interesting to see his forecasting.

In a first attempt to compute predictions using all the players of the data
set, we realized that the ROPES method had some pull towards the mean
of the entire sample (like the other methods discussed in Section 4.2 but not
as strong as them). This gave unrealistic performance predictions for both
the best and most promising players. Therefore, in order to refine predic-
tions, it is much more suitable to use the so-called “method of analogues”.
The idea is to find players related to the one of interest and then use their
documented activity to obtain the predictions. We know how other players
already performed, so we can use their information to gain an approximate
idea about the future performances of others. The method of analogues has
been used for years in fields such as climatology [45] and epidemiology [38].
Recently, an R package has been released that contains analogue methods for
palaeoecology [36]. The CARMELO method is also based on this scheme.

In order to find related players, we use archetypoid analysis (see [41] for
theoretical details). In this technique, the BPM (and WS) function of a
player is approximated by a mixture of archetypoids, which are themselves
functions of extreme players. Archetypoids are specific players and the α
coefficients represent how much each archetypoid contributes to the approx-
imation of each individual. The most comparable archetypoid should be the
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one corresponding to the largest value of the α coefficients for the player of
interest.

We choose the number of archetypoids for each metric following the
screeplot explained by [41]. Five are selected for BPM and four for WS.

The archetypoids for the BPM metric are (their career BPM shown in
brackets): Devin Gray (−8.4), Darryl Dawkins (−2.52), Diamond Stone
(−24.1), Eddy Curry (−6.5) and LeBron James (9.21).

LeBron is the representative of super star players. He is one of the best
players in history. This is in line with the expected results, since LeBron has
achieved the highest BPM values.

Darryl Dawkins represents the replacement level players (as a reminder,
−2 is replacement level). Dawkins had a long NBA career. He was selected
with the fifth pick in the 1975 NBA draft and played for 14 seasons, where
he averaged double figures in scoring in nine of them. He lead the league in
fouls committed in three seasons. In his case, his performance does not fit
exactly with the replacement level description, but his average BPM does.

Eddy Curry, Devin Gray and Diamond Stone are representatives of play-
ers with a short-term career or with overall poor performance. Eddy Curry
was selected fourth overall in the 2001 NBA draft and had a long NBA ca-
reer. He led the NBA in field goal percentage in the 2002-2003 season but
he did not really meet the expectations that his talent was indicating. Devin
Gray had an irrelevant NBA career, playing a total of 27 games in two NBA
seasons. Diamond Stone only played seven games in the NBA.

Regarding the WS metric, the archetypoids are (their career WS shown
in brackets): Steve Burtt (0), Ben Wallace (5.84), Otis Birdsong (4.03) and
LeBron James (14.6). Again, as expected, LeBron is the representative of
super star players.

Otis Birdsong and Ben Wallace represent very good players. Otis Bird-
song played twelve NBA seasons and appeared in four NBA All-Star Games.
He was selected with the second pick of the 1977 NBA draft. Ben Wallace was
very good at grabbing rebounds and blocking opponent shots. He won the
NBA Defensive Player of the Year Award four times and won a championship
with the Pistons in 2004.

Steve Burtt represents ordinary players. He played 101 games in four
NBA seasons between 1984-1985 and 1992-1993.

Table 2 shows the α values for Embiid for the BPM and WS archetypoids.
In order to select the group of analogous players, we choose the archety-

poids with the highest α. Embiid’s greatest similarity for BPM is with Le-
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Table 2: Similarity of Joel Embiid to the BPM and WS archetypoids according to the α
coefficients.

BPM Archetypoids
Player D. Gray D. Dawkins D. Stone E. Curry L. James

J. Embiid 0.23 0.15 0 0.13 0.49
WS Archetypoids

Player S. Burtt B. Wallace O. Birdsong L. James
J. Embiid 0.42 0.18 0.29 0.11

Bron and for WS is with Burtt. Then, the group of BPM analogous players
to Embiid is made up of LeBron James, together with the other players whose
largest α coefficient is also for LeBron and who have an α value greater than
Embiid’s α. Current stars such as Chris Paul or Kevin Durant and stars of
previous seasons such as Michael Jordan or Charles Barkley belong to this
set. Likewise for WS.

The ROPES algorithm (with the lambda combination obtained in the
validation study) is used to obtain p-forecasting intervals, where p = 0.05
is the selected significance level. Fig. 5 shows the forecasting obtained for
Embiid. Regarding BPM, it shows that Embiid will improve his BPM in the
two coming seasons and then his performance will slowly decline. Regarding
WS, it indicates a constant decrease over time. The WS prediction stops at
age 33 because this is the last age for which the set of analogous players shows
values. In general, the curves are smooth and the intervals are wide. These
prediction intervals are very useful to assess the uncertainty of forecasts.

4.3.2. Discussion with respect to CARMELO and the web application

CARMELO is a basketball forecasting system released in the 2015-2016
season. Successive versions present some improvements [35]. To the best of
our knowledge, it is the only publicly available projection system to compare
our approach against.

For each player of interest, CARMELO computes the similarity scores
between that player and all historical players. To that end, it uses a num-
ber of statistics and players’ attributes and a version of a nearest neighbor
algorithm. The Wins Above Replacement (WAR) metric is computed for all
historical players with a positive similarity score. The forecast is given by
averaging these WAR values.

WAR reflects a combination of a player’s projected playing time and his
projected productivity while on the court. Productivity is measured by a
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Figure 5: BPM and WS predictions for Joel Embiid using only the set of analogue players
(colors in the online version).
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blend of two-thirds Real Plus-Minus (RPM) and one-third Box Plus/Minus
(BPM). BPM was solely used to make the 2016-2017 forecasts, but the combi-
nation of RPM and BPM is used for the 2018-2019 forecasts (as in 2015-2016
and 2017-2018). According to the developers of CARMELO, the RPM/BPM
blend seems to outperform BPM alone. The RPM statistic quantifies how
much a player hurts or helps his/her team when (s)he is on the court. There
has been some controversy regarding the validity of RPM, since the com-
putations are not detailed 6. In fact, the CARMELO methodology cannot
be replicated either. In addition, for seasons before 2000-01, no RPM is
available and CARMELO uses BPM only.

We have checked our BPM prediction for Embiid with the one that
the CARMELO 2018-2019 version provides7. RPM is not available in our
database. Therefore, we would like to draw the reader’s attention to the fact
that our results are not directly equivalent to those of CARMELO, since the
target variable is not exactly the same. However, both approaches should be
complementary. We see that CARMELO also indicates that Embiid’s per-
formance will increase within two seasons and then his values will decrease.
This is in line with our forecast.

Additionally, an interactive web application available at https://www.

uv.es/vivigui/AppPredPerf.html allows the user to represent the BPM
and WS forecasting plots for every player in the 2017-2018 season under the
age of 24 (154 players in total). A link to the CARMELO forecast for every
player is also provided for easy comparison. The app gives some basic infor-
mation about the way it works. It can also be generated from R with these
two commands:
library(shiny) ; runUrl(’http://www.uv.es/vivigui/softw/AppPredPerf.zip’)

As a final point, it is important to remember that statistical models are
not completely reliable for long-term forecasting, because the assumption
that the future looks similar to the past slowly breaks down the further we
go into the future. So the predictions should be constantly updated as new
data becomes available.

6https://www.boxscoregeeks.com/articles/rpm-and-a-problem-with-advanced-stats
7https://projects.fivethirtyeight.com/carmelo/joel-embiid/
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5. Conclusions

Basketball, like any other sport, contains a lot of uncertainty. A central
issue is to predict future players’ performance using past observations. In
spite of the fact that basketball data continues to expand and there is a
constant demand for new techniques that provide objective information to
help understand the game, there are not many publicly available projection
systems. In this paper we have presented a methodology to deal with sparse
functional data in order to forecast the basketball players’ performance. This
has been done by analyzing ROPES and PACE and by including the method
of analogues together with functional archetypoid analysis.

ROPES depends on several parameters, so we have carried out a valida-
tion study to choose an optimal combination that provides smooth curves
and avoids overfitting. The combination obtained works well to avoid nar-
row intervals and overconfident inferences. A comparison study has also been
carried out to compare ROPES with PACE, and with simple alternatives,
such as the average and näıve methods. PACE performed best overall and
also in terms of runtime with respect to ROPES. However, unlike ROPES, it
is not possible to obtain prediction intervals with its current computational
implementation. In addition, ROPES also performed better than simple
methods. Therefore, we have applied ROPES in the real case using data
between 1973-1974 and 2017-2018 NBA regular seasons.

In the sparse case, information from all functions is used to fit each func-
tion, so all individuals contribute to a greater or lesser degree to form the
estimations. In order to overcome this problem and to refine the predictions,
we have used the so-called “method of analogues”. The idea is to relate a
player’s curve to one of the possible types of players and then to predict his
performance using only the information about these comparable athletes. In
our case, the types of players are given by the archetypoids of the data set.

Once the computations are finished, an interactive web application shows
the plots with the past and future behavior of 2017-2018 NBA players under
the age of 24. Two variables have been analyzed: on the one hand, BPM
is recognized as the most suitable metric to carry out an analysis involving
historical data; on the other hand, WS is another widely-used advanced
metric. Adding a second variable allows us to examine differences in career
arcs for different aspects of skill. Any other variable can be used.

Player forecasting systems are important as a means of summarizing the
overall match performance of individual players. Any forecasting method is
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limited because some aspects such as injury risk or work ethic, which influ-
ence future performance, are very difficult to quantify. However, coaches and
experts can use these systems to review performances of their own players
as well as tracking the performance levels of potential acquisitions. We hope
that the approach presented here will provide valuable information about
players’ overall ability to support decision making. Sparse functional data
are very common in sports. Therefore, it is very reasonable to bring methods
developed to deal with this kind of data to the field of sports. This methodol-
ogy can serve as a starting point for further efforts in the same direction. Two
complicating factors that our analysis is currently not considering are as fol-
lows: (i) heteroscedasticity (unequal variances) caused by different amounts
of playing time going into each averaged BPM and WS data points; (ii) the
pattern of sparsity in the data is not random, since players retiring or leav-
ing the NBA should indicate that their BPM and WS would be low in these
intervals. We will consider these matters in future work. The data and all
R code are freely available for reproducibility and further exploration of the
results.
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[2] Aue, A., Dubart Norinho, D., Hörmann, S., 2015. On the Prediction of
Stationary Functional Time Series. Journal of the American Statistical As-
sociation 110 (509), 378–392, http://dx.doi.org/10.1080/01621459.

2014.909317.

[3] Cattelan, M., Varin, C., Firth, D., 2013. Dynamic Bradley-Terry mod-
elling of sports tournaments. Journal of the Royal Statistical Society: Se-
ries C (Applied Statistics) 62 (1), 135–150, http://dx.doi.org/10.1111/
j.1467-9876.2012.01046.x.

[4] Cervone, D., D’Amour, A., Bornn, L., Goldsberry, K., 2016. A Multireso-
lution Stochastic Process Model for Predicting Basketball Possession Out-
comes. Journal of the American Statistical Association 111 (514), 585–599,
http://dx.doi.org/10.1080/01621459.2016.1141685.

[5] Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J., 2015. shiny:
Web Application Framework for R. R package version 0.12.2.
https://CRAN.R-project.org/package=shiny.

[6] Cutler, A., Breiman, L., 1994. Archetypal Analysis. Technometrics 36 (4),
338–347, http://dx.doi.org/10.2307/1269949.

[7] Dai, X., Hadjipantelis, P., Ji, H., Mueller, H.-G., Wang, J.-L., 2016.
fdapace: Functional Data Analysis and Empirical Dynamics. R package
version 0.2.5.
https://CRAN.R-project.org/package=fdapace.

[8] D’Esposito, M. R., Palumbo, F., Ragozini, G., 2012. Interval Archetypes:
A New Tool for Interval Data Analysis. Statistical Analysis and Data Min-
ing 5 (4), 322–335, http://dx.doi.org/10.1002/sam.11140.

[9] Di Battista, T., Fortuna, F., 2017, Functional confidence bands for lichen
biodiversity profiles: A case study in Tuscany region (central Italy). Sta-
tistical Analysis and Data Mining: The ASA Data Science Journal 10 (1),
21–28, https://doi.org/10.1002/sam.11334.

[10] Dokumentov, A., 2016. Smoothing, decomposition and forecasting of
multidimensional and functional time series using regularisation. Ph.D.
thesis, Monash University. Faculty of Business and Economics. Econo-
metrics and Business Statistics, http://arrow.monash.edu.au/vital/

access/manager/Repository/monash:165926.

22

http://dx.doi.org/10.1080/01621459.2014.909317
http://dx.doi.org/10.1080/01621459.2014.909317
http://dx.doi.org/10.1111/j.1467-9876.2012.01046.x
http://dx.doi.org/10.1111/j.1467-9876.2012.01046.x
http://dx.doi.org/10.1080/01621459.2016.1141685
https://CRAN.R-project.org/package=shiny
http://dx.doi.org/10.2307/1269949
https://CRAN.R-project.org/package=fdapace
http://dx.doi.org/10.1002/sam.11140
https://doi.org/10.1002/sam.11334
http://arrow.monash.edu.au/vital/access/manager/Repository/monash:165926
http://arrow.monash.edu.au/vital/access/manager/Repository/monash:165926


[11] Dokumentov, A., Hyndman, R. J., 2016. Low-dimensional decompo-
sition, smoothing and forecasting of sparse functional data, http://

robjhyndman.com/papers/ROPES.pdf. Working paper, 1-31.

[12] Elmore, R., 2018. ballr: Access to Current and Historical Basketball
Data. R package version 0.1.1.
https://CRAN.R-project.org/package=ballr.

[13] Epifanio, I., 2016. Functional archetype and archetypoid analysis. Com-
putational Statistics & Data Analysis 104, 24–34, http://dx.doi.org/
10.1016/j.csda.2016.06.007.
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[42] Vračar, P., Strumbelj, E., Kononenko, I., 2016. Modeling basketball
play-by-play data. Expert Systems with Applications 44, 58–66, http:

//dx.doi.org/10.1016/j.eswa.2015.09.004.

[43] Wakim, A., Jin, J., 2014. Functional Data Analysis of Aging Curves in
Sports, http://arxiv.org/abs/1403.7548, 1-25.

[44] Yao, F., Müller, H.-G., Wang, J.-L., 2005. Functional Data Analysis for
Sparse Longitudinal Data. Journal of the American Statistical Association
100 (470), 577–590, http://dx.doi.org/10.1198/016214504000001745.

[45] Zorita, E., Von Storch, H., 1999. The Analog Method as a Simple Statis-
tical Downscaling Technique: Comparison with More Complicated Meth-
ods. Journal of Climate 12, 2474–2489, http://dx.doi.org/10.1175/

1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

[46] Zimmermann, A., 2016. Basketball predictions in the NCAAB and NBA:
Similarities and differences. Statistical Analysis and Data Mining: The
ASA Data Science Journal 9, 350–364, http://dx.doi.org/10.1002/

sam.11319.

26

https://doi.org/10.18637/jss.v077.i06
https://doi.org/10.18637/jss.v077.i06
https://doi.org/10.1007/s10618-017-0514-1
https://doi.org/10.1007/s10618-017-0514-1
http://dx.doi.org/10.1016/j.csda.2015.01.018
http://dx.doi.org/10.1016/j.csda.2015.01.018
http://dx.doi.org/10.1016/j.eswa.2015.09.004
http://dx.doi.org/10.1016/j.eswa.2015.09.004
http://arxiv.org/abs/1403.7548
http://dx.doi.org/10.1198/016214504000001745
http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2
http://dx.doi.org/10.1002/sam.11319
http://dx.doi.org/10.1002/sam.11319

	Introduction
	Methodology
	ROPES
	PACE
	ADA
	ADA for sparse data with FDA


	Data
	Results
	Selection of parameters
	Comparison with other methods
	Projections of future performance with ROPES and the method of analogues
	Case study: Joel Embiid
	Discussion with respect to CARMELO and the web application


	Conclusions
	Acknowledgements
	Data Accessibility

