

Kadick’s Resolution:
Using procedural design for the

development of a Web Game

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume I

July 1, 2019

Author: Manuel Gavilán Ortiz

Supervisor: Juan Carlos Amengual

ACKNOWLEDGMENTS

I would like to thank my Final Degree Work supervisor, Juan Carlos Amengual,
for his guidance and advices in order to make this project become real.

To my parents, for allowing me to follow my dreams.

To María Saborit Ribelles, as she is the one who shared this path by my side

being the best partner a man can wish for.

Lastly, I would like to thank my classmates and friends, for their friendship

and the priceless moments we shared and won’t be forgotten.

1

ABSTRACT

This document presents the end-of-degree project for the Bachelor’s Degree

in Design and Development of Video Games. The main idea for this project is to
develop a videogame for internet browsers.

Kadick’s Resolution is a Roguelike game imbued with cyberpunk style in 2D top

perspective. Its scenario is generated using automatic generation through
procedural design. This game uses Javascript as the main programming language
including the Phaser framework to improve and ease the development process.

This game is fully localized in English, Spanish and Valencian.

2

INDEX
ACKNOWLEDGMENTS 1

ABSTRACT 2

INDEX 3

FIGURES 6

1. INTRODUCTION 8
1.1. WORK MOTIVATION 8
1.2. MAIN GOALS 8
1.3. STATE OF THE ART IN PROCEDURAL DESIGN 9
1.4. TOOLS OF DEVELOPMENT 11
1.5. WHY PHASER 3? 11
1.6. PLOT AND SETTING 12
1.7. RELATED SUBJECTS 12

2. PLANNING 14
2.1. INITIAL PLANNING 14
2.2. FINAL PLANNING 15

3. DEVELOPMENT 20
3.1. PROCEDURAL GENERATION OF SCENARIO 20
3.2. ENEMY RANDOM DISPOSITION 23
3.3. SCENE RANDOM DISTRIBUTION 24
3.4. PLAYER MAIN GAMEPLAY 24
3.5. ENEMIES 25

3.5.1. SCANCATCHERS 26
3.5.2. JOLTS 26
3.5.3. COULOMBS 26
3.5.4. TRASHBOTS 27
3.5.5. WAVEBENDER 27

3.6. BOSS FIGHTS 28
3.6.1. STAGE 1 BOSS 28
3.6.2. STAGE 2 BOSS 29
3.6.3. STAGE 3 BOSS: ASIMOV 30

3.7. POWER UPS 31
3.7.1. MEDIKIT 31
3.7.2. ATTACK POWER UP 32
3.7.3. FIRE RATE POWER UP 32
3.7.4. MAX HEALTH POWER UP 32

3.8. GAME UI 32

3

3.9. LOCALIZATION (I18N) 34
3.10. GAME START 36
3.11. GAME FLOW 37
3.12. PROJECT DETAILS 39

4. RESULTS 40

5. FUTURE PLANS 44

6. TESTING 48
6.1. GENERATION TESTING 48
6.2. GAMEPLAY TESTING 49
6.3. USER TESTING 50

7. CONCLUSIONS 52

8. REFERENCES 54

9. BIBLIOGRAPHY 56

10. USER’S MANUAL 58

4

FIGURES
Fig. 1. Fight against an elite enemy Diablo III. Blizzard. 11
Fig. 2. Generating message in Minecraft and Terraria 11
Fig. 3. Random room. The Binding of Isaac. 12
Fig. 4. Kadick’s Resolution development timeline 16
Fig. 5. General Aspects Timeline 17
Fig. 6. Stage 1 Timeline 18
Fig. 7. Stage 2 Timeline 18
Fig. 8. Stage 3 Timeline 18
Fig. 9. 10x10 matrix of cells available 21
Fig. 10. Random picking of available rooms 22
Fig. 11. Array of nodes that conform the scenario 22
Fig. 12. Creating the boss chamber 23
Fig. 13. Randomly generated map. 23
Fig. 14. Limited areas for enemy spawn 24
Fig. 15. Scene random distribution example. Displayed obstacles. 25
Fig. 16. Player movement and shooting 25
Fig. 17. Player Controls 26
Fig. 18. Controls Screen 26
Fig. 19. Trashbot trails set on fire 28
Fig. 20. Stage 1 Boss Attack Patterns 29
Fig. 21. Stage 2 Boss attack patterns 30
Fig. 22. Left: Explosion pattern. Right: Timed Spray pattern 31
Fig. 23. Asimov Attack Patterns Phase 2 32
Fig. 24. Score detail 34
Fig. 25. Armor bar detail 34
Fig. 26. Health bar detail 34
Fig. 27. Keys picked detail 34
Fig. 28. Complete UI detail 35
Fig. 29. Minimap displayed over scene 35
Fig. 30. i18n files detail 36
Fig. 31. Language selection screen 36
Fig. 32. Main menu screen 37
Fig. 33. Introduction skip choice 37
Fig. 34. Settings screen 38
Fig. 35. Game Flow Diagram 39
Fig. 36. Continue Screen 39
Fig. 37. Localized textual content in Valencian 42
Fig. 38. Scenario distribution example 43
Fig. 39. Touhou gameplay 46

5

Fig. 40. Unitary tests: Finding weak points 49
Fig. 41. Collision testing: Enemies and Scenario Props 50
Fig. 42. Scenario distribution testing 50
Fig. 43. Initial Armor and health bars 51
Fig. 44. Legend of Zelda: Link’s Awakening 55
Fig. 45. The Binding of Isaac 55
Fig. 46. Metal Gear 55
Fig. 47. Legend of Zelda: A link to the past 55
Fig. 48. Battle Angel Alita 56
Fig. 49. Cyberpunk 2077 56
Fig. 50. Nier Automata 56
Fig. 51. Blade Runner 56

6

1. INTRODUCTION
In this section it is detailed the motivation behind this project and the

objectives that it is expected to fulfill. There is also a brief explanation about how
the procedural design is used nowadays to improve replayability.

1.1. WORK MOTIVATION
This project is the consummation of two different degrees: Technical

Engineering in Telecommunications and Design and Development of Video Games.
The author desires to combine his experiences during both his academic and
professional career.

As a technical engineer in telecommunications, the author has found love and

passion in developing tools for web applications and pages. For two years, the
knowledge acquired in web oriented languages has improved the author’s
perception of entertainment and easy-to-use environments. Thus, this project had
to be implemented into a web site.

As a game designer, the author found it of utmost importance to bring his

experiences -not just as a professional in the field but as a passionate player as
well- into this project. Being a player for more than twenty years brings up an
extensive variety of patterns for a game to be developed. However, it had to be
web-friendly. This means that many limitations had to be taken into account: lower
level programming, web performance, memory leakage and rendering limitations.
Fortunately, the author loves a great challenge.

 1.2. MAIN GOALS
● Design and create scenarios, characters and enemies taking into account the

cyberpunk reference.
● Design and develop animations for the main character, enemies, bosses and

power-ups.
● Develop and integrate a power-up system that improves the final experience

while playing the game.
● Develop a procedural system that generates a random scenario for each stage.
● Develop a random enemy spawn system.
● Develop an easy to understand visual interface.
● Create and manage the main data structure in order for it to be scalable and

also to perform localisation.
● Perform localisation in English and Spanish and manage an i18n file so new

languages can be added in the future.
● Develop a responsive movement set which implies the usage of keyboard and

mouse.

7

1.3. STATE OF THE ART IN PROCEDURAL DESIGN
Video games are widely considered a form of art. Their complexity is rooted in

merging a great plot into an interactive media that allows the player to become an
actor. This means that the user is no longer an outside observator but rather the
main character that manages the flow of the narrative.

For many years there has always been a limit to this kind of experience. To be

more precise, the main character had to perform on an scenario encapsulated by
predefined boundaries, with a limited amount of enemies set into predefined
locations. This eases the job of the main designer but results in lowering the
replayability and the sense of realism as the world and reality itself is relatively
aleatory. Deterministic values makes a game predictable. This fact does not mean a
game is necessarily bad at all if it is not randomly generated. It means that the
player will always know what lies ahead each time he replays the game.

Procedural generation is a method that implies a computer generating

pseudo-random content based in programmed basics. It means that every time the
player starts a new game there might be changes in the layout, loot, enemy spawn,
quantity and disposition. Thus, it is impossible for the player to know what awaits
on his path.

There is a vast catalogue of games that implement this procedure into their

code.

The Diablo [1] saga by Blizzard [2] performs a pseudo-random generation of its

scenario. Main locations as cities and emplacements are constants. However,
stepping into the wilderness or entering a secret basement or a dungeon means
facing the unknown. The distribution of every cave and dungeon is different. The
same goes for enemies spawn and disposition. Elite warriors are also randomly
generated and their special abilities are also random and displayed on the life gauge
as it is seen on Fig. 1.

Other games such as Minecraft [3] and Terraria [4] implement a world

procedural generation. This means that every new game consists on a new world
generated from the beginning following a set of rules and specified biome
configurations: forest, desert, ravines or oceans are some examples. These rules
also determine enemy spawns and NPC (Non Playable Characters) placements. As
seen on Fig. 2, the game displays a loading screen while the world is being built.

8

Fig. 1. Fight against an elite enemy Diablo III. Blizzard.

Fig. 2. Generating message in Minecraft and Terraria

Finally, there is one genre that has become famous over the years: The

roguelike. This genre can be defined by these characteristics.

● They are mostly single player games.
● The dungeons and scenarios are randomly generated.
● Playability is of utmost importance, surpassing graphic design.
● Simple plot.

The perfect example for this genre would be The binding of Isaac [5], which is

the game this project is more based in. This game performs random values for
almost everything. The disposition of the cells that conform the dungeon is
randomly generated. The size and form of each cell is also random, as it is the
enemy spawn, the power ups dropped by enemies and even the secret rooms. Fig. 4
shows an example of a randomly generated room.

9

Fig. 3. Random room. The Binding of Isaac.

The simple yet entertaining playability of The binding of Isaac along with the

main idea of generating a random scenario using procedural design inspired this
project.

1.4. TOOLS OF DEVELOPMENT
● Programming: Visual Studio Code.
● Art and animation: Photoshop
● Browsers: Google Chrome, Mozilla Firefox, Microsoft Edge.
● JS Framework: Phaser.

1.5. WHY PHASER 3?
Phaser 3 is a JavaScript high level video game oriented framework. It is the

newest version of the Phaser framework and allows ES6 scripting.

There are many reasons for choosing Phaser. First of all, it is really easy to get

started with. It has a really easy to understand API and a vast number of tutorials
and examples. There is a really helpful community that shares valuable knowledge
and experiences in order to grow as a game designer. Furthermore, Phaser supports
third party libraries and plugins.

10

1.6. PLOT AND SETTING

Kadick’s Resolution

Kadick is an android designed and developed by Asimov Industries. As one of
the highest ranks in the street guardian group, it must protect the citizen and
destroy the villain. During its last update a part of its operative system got
corrupted. Thus, the software that inhibits the functionality of its AI to question its
actions disabled itself. Tormented by its own nature, disregarding what its core tells
it to do, its motive is now clear: To get to Asimov, its creator, and get some answers.
This, however, will not be easy.

‘Why am I to destroy the ones I was created to protect? How do I know what I am

doing is right and not just what I was programmed to do?’ — Kadick.

Characters

Kadick: The main character. An android designed to maintain order in the
streets. Its AI fails causing him to consider its own actions.

Asimov: CEO of Asimov Industries. Self-declared philanthropist. Developed

the Street Guardian Force to maintain the order where the government could not.
His motto is: “Hit first, hit fast, hit hard and, by all means, be the last that hits”.

1.7. RELATED SUBJECTS
VJ1217: Web Game design and development is the main related subject. This

subject currently uses the Phaser 2 framework. This project pretends to take a step
further.

VJ1237: Video game localisation is indirectly related as one the main objectives
is to fully localize the game in order to reach a larger audience.

VJ1204: Artistic expression and VJ1223: Video game art form the main basis
for the art style.

VJ1224: Software engineering is related to the usage of git as the project
version control. It has also been helpful in order to divide the tasks in smaller ones
and to develop efficiently.

VJ1222: Video game conceptual design is directly related to the design and
development of the scenario and its characteristics.

VJ1215: Algorithms and data structures. The knowledge acquired in this
subject has been used to develop the procedural generation of the scenario and the
game data structure.

11

This page has been left intentionally in blank.

12

2. PLANNING
The initial planning for this project and its follow-up evolution will be very

clearly explained in this section.

2.1. INITIAL PLANNING
The planning for this project had to be very precise as the schedule had to allow

combining professional work with the final degree project development. This is the
first approximation established in order for the project to be completed in 300
hours:

Task Hours Main Aspect

Design first sketches of main character, power ups and enemies 10 Visual

Draw and animate visual elements 20 Visual

Define and write text elements: script, UI, buttons... 10 Visual

Define and design main menu 5 Visual / Program

Design and integrate UI 5 Visual / Program

Define, create and integrate the procedural system 30 Program

Design and integrate random enemy spawn 5 Program

Design and integrate player's move set 10 Program

Design and integrate POWER-UPS 15 Program

Design and integrate player's attack system 15 Program

Design and integrate UI variables and their reactions to the
gameplay 10 Program

Design and integrate enemies attack system 50 Program

Design and integrate boss attack system 40 Program

Game audio 10 Program

Writing Final Memory 50 Presentation

Preparing Final Presentation 15 Presentation

Final Estimated Time 300

Once the project started, this approximation had to be taken into consideration

and there had to be established an order of progression.

First, the development was to be focused on programming and developing the

basic functionality. This implied that the art design would be limited to just creating
the necessary sprites for each functionality and level. Animation and final art design
and details were decided to be integrated in later stages in development.

13

Development was divided into stages in order to progress consistently. These
stages were:

1. Stage 1: General Aspects. Basic gameplay elements were to be developed

during this stage: movement, attack, disposition of player and enemies,
scenario generation.

2. Stage 2: Corresponding to Level 1.
3. Stage 3: Corresponding to Level 2.
4. Stage 4: Corresponding to Level 3.
5. Stage 5: Corresponding to textual content and cinematics.
6. Stage 6: Corresponding to art and animation implementation.

2.2. FINAL PLANNING

The programming part was developed by dividing the whole project into stages
and developing each stage in order. Fig. 4 displays the distribution of stages in time.

Fig. 4. Kadick’s Resolution development timeline

General aspects include the basic functionality and the core of the game. This

stage represents the data structure, character movement and data, difficulty
settings, scenario procedural generation, prop disposition on scenes, basic user
interface and room functionality.

General aspects were divided into small tasks. This table represents the

amount of hours necessary to complete each task.

14

Task Estimated Final

Design first sketches of main character, power ups and enemies 10 10

Design and integrate UI 5 5

Define, create and integrate the procedural system 30 20

Design and integrate random enemy spawn 5 10

Design and integrate player's move set 10 5

Design and integrate POWER-UPS 15 15

Design and integrate player's attack system 15 10

Design and integrate UI variables and their reactions to the
gameplay 10 15

Final Estimated Time 100 90

Fig. 5. General Aspects Timeline

The random scenario generation took great part of the development due to its

complexity. Fig. 5 displays the distribution for each stage in time.

Dungeon functionality and the minimap represent the disposition and

functionality of the elements at the scene. Door position, door types, the basic
movement between different cells and the basic UI. The boss chamber is generated
after the scenario has finished its disposition. Lastly the enemy spawn and
disposition was implemented.

15

Fig. 6. Stage 1 Timeline

The stage 1 was decided to be easy in order for the player to get used to the

gameplay. The Scancatcher was the first enemy made. Its artificial intelligence is
very simple as its only job is to follow Kadick and hit him directly. The Jolt is the first
enemy that will shoot the player at sight and will display a force field after being
shot.

The bossfight was decided to perform three different attack patterns and was

harder to develop as seen on Fig. 6.

Fig. 7. Stage 2 Timeline

The stage 2 introduced two new enemies. The coulomb is a mechanical bull

that tackles the player until it reaches any kind of wall or obstacle. The trashbot is a
neutral enemy that will not hurt the player directly by approaching him. Instead, he
leaks oil on its movement and after some time it sets the oil on fire. Thus, the player
has to avoid getting on the oil trail while dodging hits and bullets. As seen on Fig. 7,
the trashbot was harder to create as the fire system was harder to recreate.

Fig. 8. Stage 3 Timeline

16

Stage 3 introduced the last minion: the Wavebender. Its name comes from its

capability to generate pulses of energy that will hurt the player on contact. The last
bossfight was the last enemy to implement. It was easy to implement its movement,
not so the attack pattern.

Task Estimated Final

Design and integrate enemies attack system 50 60

Design and integrate boss attack system 40 40

Final Estimated Time 90 100

Developing the textual content was a task that involved designing the system

to use the localization file in order to scalate it in future releases and make it easy to
integrate through the game. In this task also comes designing the final aspect of the
main menu, which included both the settings screen and the control screen

Task Estimated Final

Draw and animate visual elements 20 20

Define and write text elements: script, UI, buttons... 10 10

Define and design main menu 5 5

Final Estimated Time 35 35

Lastly the process of designing the animations and art details will run during

the stage of testing and fixing as they are not mutually excluding.

17

This page has been left intentionally in blank.

18

3. DEVELOPMENT

3.1. PROCEDURAL GENERATION OF SCENARIO

The procedural generation of the scenario forms the main core of the
application and has to fulfill these requirements:

1. The rooms must be disposed randomly both horizontally and vertically.
2. There has to be exactly 3 rooms where keys will appear once the enemies are

beaten.
3. The start room cannot be a key room.
4. The boss chamber cannot be a key room.
5. There has to be a boss room.

This algorithm is applied every time a stage is generated. The scenario is

represented inside a 10 x 10 matrix of cells and only those determined as playable
will be rendered.

Fig. 9. 10x10 matrix of cells available

The process of generating the scenario starts by selecting randomly a start

room in the central 8x8 matrix of nodes as seen on Fig. 9. Therefore, the start room
will always have available all four rooms vertically and horizontally.

19

Fig. 10. Random picking of available rooms

Once the start room has been set, it is pushed inside a node stack. After that,

the recursive method begins. This method takes out the first element inside the
stack and checks its adjacent rooms in four directions: top, bottom, left and right. As
seen on Fig. 10, the rooms at the corners are not reachable. Then it checks whether
they have already been visited by the algorithm or not. If a room has not been
visited, it is available. Once the available rooms have been evaluated, the algorithm
sets a random number of rooms between 1 and the number of available rooms and
picks them randomly. Those nodes are then pushed in order inside the stack and
this process repeats itself until there have been added a minimum amount of rooms
previously established.

Every time a room is taken out of the level stack is pushed inside a level array

that conforms the scenario. As soon as the recursive process finishes, this array
contains all the rooms that will conform the stage. It is now time to set the key
rooms.

Fig. 11. Array of nodes that conform the scenario

To pick the rooms that will generate a key the scenario array is now used. This

procedure selects three random rooms between the second position of the array and
the last one. This is easy to do as the start room will always be the first element and
cannot be a key room. See Fig. 11. Once the key rooms have been selected, what
remains is to generate the boss chamber.

20

In order to create the boss chamber, we pick the last element of the array and
check the available adjacent rooms. The first available room found will become the
boss chamber. Fig. 12 displays an example of this procedure.

Fig. 12. Creating the boss chamber

This is the last step of the scenario generation. This is the final aspect of a

random scenario. Orange squares represent the doors between rooms. Fig. 13 shows
an example of the map generated using this procedure.

Fig. 13. Randomly generated map.

Red room: Start room.
Blue rooms: Scenario hostile rooms.
Green rooms: Key rooms.
Golden room: Boss chamber.

In order to fully understand how the scenario is managed, this is the

information inside every room node:

21

Value Type

top Boolean Room has a room available to the top

right Boolean Room has a room available to the right

bottom Boolean Room has a room available to the bottom

left Boolean Room has a room available to the left

visited Boolean Room has been visited by the generation algorithm

isStart Boolean Room is the start room

isKey Boolean Room will generate key after beating the enemies inside

isBoss Boolean Room is the boss chamber

isClear Boolean Player has beaten all enemies in this room

keyIsTaken Boolean Player has taken the key from this room

distribution Number Obstacles distribution ID

whereIsBoss String Direction of the boss room. Empty if it is not adjacent.

3.2. ENEMY RANDOM DISPOSITION
The number of enemies displayed on scene depends entirely on the difficulty

settings. The harder the game is, the more enemies will appear on scene. Their
disposition depends on the position of the player as he enters the room. This
algorithm takes Kadick’s position and delimits an area that covers the part of the
room where the player is not at. As seen on Fig. 14, the red area is an example of this
available area. After that, there is a range of enemies of each time that will appear
on scene. This range is determined by the difficulty setting. Once created, they are
placed randomly inside that delimited area in order for the player to have time to
react and act accordingly.

Fig. 14. Limited areas for enemy spawn

22

3.3. SCENE RANDOM DISTRIBUTION
The scene distribution of obstacles is also random. These obstacles limit the

movement of the player and enemies. They also serve as covers from enemy bullets.
There are several types of distribution and they all are referred to relative positions
on the scene. These elements are stored inside a JSON file and loaded each time a
new room is started. Thus, the distribution and size of the room adapts itself to the
screen resolution as seen on Fig. 15. If the window were to be resized, the room
would reload. This causes the distribution to change and the enemies to respawn.

Fig. 15. Scene random distribution example. Displayed obstacles.

3.4. PLAYER MAIN GAMEPLAY
The movement of the player is limited to eight directions as it follows the same

moveset of a classic arcade game. The player will always aim at the cursor and shoot
pointing at its direction. The laser shot by Kadick has unlimited range and will only
disappear once it touches an obstacle or one of the walls.

Fig. 16. Player movement and shooting

23

The main controls are set to the WASD keys and Kadick will shoot by using the
left click. The control screen is available in the main menu for the user to check at
any time. Fig. 17 shows a part of the controls screen, seen on Fig. 18.

Fig. 17. Player Controls

Fig. 18. Controls Screen

3.5. ENEMIES
There are five types of minion enemies in Kadick's Resolution. Each one of

them has a different attack system and has an specific function as the player gains
power.

24

3.5.1. SCANCATCHERS

 Health Points: 60
Damage: 20

Attack System: Scancatchers follow the
player around the scene and hit him directly

Main objective: The player learns to move
around the scene while shooting

3.5.2. JOLTS

 Health Points: 80

Damage: 30

Attack System: Shoots the player

Main objective: The player learns to dodge
bullets while moving.

Jolts display a force field when hit in order
to protect themselves from the player’s
lasers

3.5.3. COULOMBS

 Health Points: 200
Damage: 35

Attack System: Rotates towards the player.
Then tackles him until it hits an obstacle.

Main objective: The player has to take them
into consideration while dodging direct
attacks

25

3.5.4. TRASHBOTS

Health Points: 200
Damage: 40

Attack System: Leaks oil and then sets it on
fire.

Main objective: The player must control its
position in order to avoid the fire as seen on
Fig. 19.

Fig. 19. Trashbot trails set on fire

3.5.5. WAVEBENDER

Health Points: 200
Damage: 40

Attack System: Creates pulses of energy
that hurt the player

Main objective: The player must avoid
corners as much as possible and never stop
moving.

26

3.6. BOSS FIGHTS
Boss fights have become one of the most necessary events on an action game.

Gigantic enemies throwing everything they have at the player. Kadick's Resolution
has three different bosses. Each of them has a different type of attack pattern.

3.6.1. STAGE 1 BOSS
The first boss is based on the Metal Gear Rex from the Metal Gear Saga [6]. It is

a gigantic robot that performs three different attack patterns. These attack patterns
are displayed on Fig. 20.

1. Aim and kill: The boss aims at the player and shoots at its position. Dodging

bullets becomes essential for survival. Fortunately, beating many Jolts on the
way to the boss has served as a great training.

2. Spread shooting: The boss’ turret shoot at the player using a spray pattern.
This means that the turrets will be rotating from -45º to 45º while aiming at
the player. This way it is better to keep calm and wait for the bullet to come
instead of just trying to dodge bullets.

3. Railgun. The boss aims with lasers at the player as it loads the railgun. Once it
has finished, it shoots two energy rays of energy at player’s position. It is
essential to keep moving. The rays are so radioactive that they keep on scene
for some time until they vanish.

Fig. 20. Stage 1 Boss Attack Patterns

27

3.6.2. STAGE 2 BOSS
Second boss performs two different attack patterns at the same time, displayed

on Fig. 21.

1. Electronic Boomerangs. Once the boss is presented, it deploys two
boomerangs that will follow player’s Y position on both right and left
margins. The boomerangs will pass through the room damaging the player if
they impact on him.

2. Curve Laser. There are two laser cannons displayed both on top and bottom
margins. They follow the player’s X position and every time the player passes
between them they load and shoot. That curve will remain on its position,
causing damage to the player as he passes through it. As the fight progresses,
there will always be two different laser curves on display. Every time the
cannon shoots, the first curve displayed will vanish and the new one will
display. This process will repeat itself until the boss is beaten. This laser is
made by generating a curve element which has several semi circumferences
attached one to another forming the wave pattern. After that, there is
generated a group of flares, the little balls of light that keep moving following
the curve. These elements are followers, a special type of object in Phaser 3.

Fig. 21. Stage 2 Boss attack patterns

This boss has been developed using Phaser 3 tween animations that allowed

designing fluid animations in outstanding performance without leaking memory.

28

3.6.3. STAGE 3 BOSS: ASIMOV

Asimov is the last boss of the game and is the most complex one. Its movement
has been developed using Phaser 3 Timeline animations instead of just tweens. Each
time Asimov reaches a keyframe, it deploys an specific attack pattern. Asimov is the
only boss that perform two different phases displayed on Fig. 22.

1. Phase 1. On this phase, Asimov moves from one corner of the room to another

while shooting. Its shots are limitless straight lines that form star-like
patterns. There are two kind of attacks of this type:

a. Explosion. This attack performs an eight direction array of lasers from
Asimov’s position. Those lasers move at an straight direction. To do
so, there has been generated an array of sprites and they have been
added a different angle and velocity.

b. Timed Spray. This attack performs several explosion attacks at certain
frequency with a rotation added. Thus, it performs a beautiful yet
deadly floral-like pattern. Each sprite has been added an offset angle
which increases for each timed iteration.

Fig. 22. Left: Explosion pattern. Right: Timed Spray pattern

2. Phase 2. On this phase, Asimov moves from one side to the other of the room

performing the same two attacks from phase 2 but adding another pattern:
Spiral explosion. It is similar to the basic explosion but bullets rotate around
the explosion point while expanding generating an spiral. In order to do so
there has been used a tween counter that performs a numeric increase in an
specific time range. This counter is applied to a circle game object. Each time
the game is updated, the circle increases its radius. In order for the bullets to
rotate, first they have to be generated and placed on the circle. After that,
they perform the RotateAroundDistance method that allows an item to orbit
around certain object. Combining both elements there is a circle that gets
larger while bullets rotate around its perimeter (Fig. 23). Thus, the spiral
effect is made.

29

Fig. 23. Asimov Attack Patterns Phase 2

3.7. POWER UPS

There are four kinds of pickable items in Kadick’s Resolution. Three of them

are permanent power ups and one is a medikit. There are two random elements that
affect the dropping of items.

1. Chance to drop item. There is a 30% chance for an enemy to drop any kind of

item after being beaten.

2. Drop rates. Drop rates for each power up depend entirely on a second rate.
a. Medikit: 70% rate.
b. Attack Power Up: 10% rate.
c. Fire Rate Power Up: 10% rate.
d. Max Health Power Up: 10%% rate.

3.7.1. MEDIKIT

The most common pickable item. Heals 50% of Kadick’s health.
Health will not surpass its maximum value

30

3.7.2. ATTACK POWER UP

It boosts up attack indefinitely.
It is accumulative.

3.7.3. FIRE RATE POWER UP

It boosts up the fire rate of Kadick indefinitely.
It is accumulative.
The more power ups picked of this type, the more shoots
per second

3.7.4. MAX HEALTH POWER UP

It boosts up maximum value for health and armor..
It is accumulative.

3.8. GAME UI
The UI was designed to be as simple as possible. While playing, there are four

different panels of information:

1. Score. The score is presented as plain text on top (Fig. 24). The score goes up
by hitting enemies or beating them.

a. Hitting an enemy increases the score by 20 points.
b. Beating an enemy increases the score by a certain amount of points.

Enemy Points Enemy Points

Scancatcher 350 Wavebender 1200

Jolt 600 Stage 1 Boss 5000

Trashbot 900 Stage 2 Boss 15000

Coulomb 1000 Stage 3 Boss 50000

c. If the player dies at any room and decides to start again, the score will
be divided by 2.

31

Fig. 24. Score detail

2. Armor bar. This bar represents Kadick’s armor capacity (Fig. 25). If the

player gets hit, it will lose armor. If the armor reaches zero, the player will
start losing health. The armor bar will refill itself when Kadick avoids getting
hit for certain amount of time. The time for total recovery depends on the
difficulty settings. The easier the game is, the faster the bar recovers.

Fig. 25. Armor bar detail

3. Health bar. This bar represents Kadick’s health capacity (Fig. 26). If the

player gets hit with no armor, the health bar will go down. If, at any given
time, Kadick’s life reaches zero, the game will be over and the continue
screen will load. To regain health the player must collect medikits dropped by
beaten enemies.

Fig. 26. Health bar detail

4. Keys picked. The keys picked by Kadick will be represented by a vertical

array of icons (Fig. 27).

Fig. 27. Keys picked detail

The complete UI looks as displayed on Fig. 28.

32

Fig. 28. Complete UI detail

There is a minimap available for the player to use (Fig. 29). It is hidden until

the player presses the TAB button. The red square represents the current room
where the player is at. White squares represent completed rooms. Blue squares
represent rooms that have not been visited yet. Green rooms represent rooms where
there is a key. The golden square represents the boss chamber. Doors that connect
rooms are displayed as orange squares.

Fig. 29. Minimap displayed over scene

3.9. LOCALIZATION (I18N)

One of the main objectives of Kadick’s Resolution is to reach as much audience

as possible by localization. When this project began its development, it was decided
to localize it in Spanish and English. Once the programming stage was finished and
the textual content stage began it was decided to include Valencian as a language as
a tribute to the Jaume I University.

33

To localize the game, a i18n folder is used, as seen on Fig. 30. There are three
different JSON files that contain a hierarchy of key-value pairs.

Fig. 30. i18n files detail

Selected language is shared during the game through the player data. If more

languages were to be added, it would be just a matter of adding another JSON file to
the i18n folder and allowing its selection on the language selection screen. Thus,
localization is dynamically scalable for future releases. The player selects the
language at the first screen (Fig. 31).

 Fig. 31. Language selection screen

34

3.10. GAME START
The user starts at the language selection screen. Once the language has been

confirmed, the main menu is loaded (Fig. 32).

 Fig. 32. Main menu screen

There are three options: New Game, Settings and Controls.

By pressing the New Game button, the player is offered the choice to see the

introduction of the game (Fig. 33). If the user chooses not to, the first screen will
load immediately.

 Fig. 33. Introduction skip choice

By pressing the Settings button, the player can select the difficulty settings for

the entire run. The difficulty is set to NORMAL as default (Fig. 34).

35

Fig. 34. Settings screen

The controls button shows how to control the player and basic information for

the run. See 3.4 Player Controls for more information.

3.11. GAME FLOW
The game flow starts once the page is loaded.

First of all, a language has to be selected in order to the textual content to be

translated. After that, the main manu will load giving us two options:

1. New game
2. Settings

Selecting the first one allows the player to start a new game. The player must

select whether he wants to skip the introduction or not. Skipping the intro takes the
player to the first level. Selecting not to starts the opening sequence. This is the
point where the story is told through text on screen.

Whenever the player dies or once the game is completed, he is taken to the

score screen, in which he is able to see his final score.

36

Fig. 35. Game Flow Diagram

The settings screen allows the player to change the difficulty at any moment.

Being killed at any moment takes the player to the continue screen (Fig. 36).

Fig. 36. Continue Screen

37

3.12. PROJECT DETAILS
The main characteristics of this project are displayed in the following table.

Lines of code 11244

Code Files 44

Sprites 83

Audio Files 19

38

11,24
4

4. RESULTS
It is expected that Kadick's Resolution game achieves the following results:

● Fully functional easy to use game.
● Responsive and attractive UI which allows the user to know at all time the

player’s status.
● Visual and extremely addictive gameplay with many enemies on screen
● Great Boss battles.
● Fully functional random scenario generated procedurally.
● Localized game with language selection.

In Kadick’s Resolution the main goal was to use procedural design to generate

pseudo-random content in order to improve the final experience for the user. The
scenario generation is transparent to the user and its performance is outstanding as
no memory leaks were found in the process. Thus, replayability is guaranteed as
every run is different from the other. The result is at plain sight using the minimap
UI, which allows the user not only to check at any moment the player’s current
location and main objectives but also to keep moving in the process. This capability
was not included at first, but was found remarkably useful and was included in the
development.

As this game is to be played on a web page, limitations in rendering and

computing processes were taken into account. Fluid gameplay has been one of the
main objectives since the beginning and the result is a player that moves fluently
across the screen while shooting. The frames per second rate is stable throughout
the full run.

Each enemy has a different pattern of attack and the player learns from them

in order to train for the boss fights. Furthermore, there have been used different
methods available from the Phaser 3 documentation to perform those patterns.
Random spawns make the game unpredictable and as the run progresses, the
feeling of gaining strength becomes tangible. The sense of awareness the first time
an enemy is seen is right there. Kadick's Resolution is a game designed to sharpen
the player’s senses of position, movement and timing. Each boss fight is different
from the other and requires extreme caution and attention to every single element
on the scene to survive.

It is noticeable the urge to explore each stage to farm power ups and become

more powerful. At this point the player faces two types of gameplay. The boss rush
or fast completion, that involves running straight to green rooms in order to obtain
keys as fast as possible and confront the boss fight with few power ups, which

39

makes them far more difficult. The other style suits better for the greedy player that
loves the feeling of obliterating the boss by gaining so much power that it feels even
unfair for them. Power up have been studied and designed to be likable to all kinds
of audience. The drop rate is high enough to foster exploration but not too high to
make the game boring. The variety of pickable items is enough to perform a
noticeable difference between different kinds of gameplay.

The data structure is efficient and performs nicely throughout the run. Scene

management performs fluently and the general gameplay is not affected by load
screens.

Localisation was one of the main goals as it is essential to reach more audience.

At the beginning of the development it was decided that localisation would
implement Spanish and English language. It does so and is perfectly integrated
inside the game data structure. Furthermore, the Valencian language has been
added and the localisation folder is prepared to scalate very easily by adding more
JSON language files. The effort to add a new language relays on adding another
option to the language selection screen. After that, the language is spreaded across
the game smoothly.

Fig. 37. Localized textual content in Valencian

The futuristic style has been taken into consideration at the design stage.

Enemies share a futuristic resemblance to those which appear on books and movies.
It was essential to create a cyberpunk-like atmosphere. By combining elements like
modern art-deco elements found in modern laboratories on the props the user is
transported to the next century. There have been used two types of typography: One
that resembles a computer console and the other that shows the softness of more
modern designs. Random distributions allow a rich display of different elements on
scene.

40

Fig. 38. Scenario distribution example

41

This page has been left intentionally in blank.

42

5. FUTURE PLANS
First of all, localisation would be one of the main goals for future releases.

Including Italian, German and French would be essential to reach European
audience and would be an easy task to complete.

The variety of enemies available at Kadick’s Resolution is one of its weak

points. There are five kind of minions and three bosses for three stages. It would be
perfect to accomplish at least 5 types of different enemies per stage. In such
manner, the player would not get bored of the same enemies over and over again
and the sense of unpredictability would improve.

For future releases a special enemy would make its appearance: The bounty

robot. This enemy would not hurt the player, but would try to flee from the room so
there would be a time limit for the player to beat it. It would appear in all stages
once and would always drop a power up and give a considerable amount of points
for the high score to go up.

Another of the main goals for future releases is to add more boss fights and

random mini-boss fights. This adds an extra difficult factor to the game.
Mini-bosses will always drop a random power up and give a considerable amount of
points for the high score to go up.

Asimov would still be the last boss but, it has been considered to set two fights

against him. The first would take place after the third stage. It would be the same
battle displayed on this project. However, Asimov would flee from the room after
being beaten and the player would follow him through a long corridor while
shooting and dodging bullets implementing a Touhou-like [7] gameplay (Fig. 39).
After that, the player would have to get through more stages in order to reach to its
hideout and beat him.

Laser turrets and traps have been designed but not implemented. Generating

maze like random rooms is another goal for future releases. These rooms would be
generated procedurally as well and would always drop a power up once completed.

Textual content relative to the plot is told by a sequence of text. It would be

desirable to add animations so the player feels more identified with the protagonist.

An original soundtrack would be desirable since only audio effects have been

implemented.
.

43

Fig. 39. Touhou gameplay

More mechanics would be implemented as well.

1. Weapon change. Kadick uses a blaster gun to defeat its enemies. However,
adding more weapons would make the game more enjoyable and would add
strategy to the mixture. To name some examples:

a. Shotgun: A high impact short range attack that would pull the
enemies back and would cause massive damage.

b. Charged shot: Keeping the shoot button pressed would charge a laser
bullet. The longer the charge, the more powerful the damage caused
would be.

c. Railgun: Massive shot with limited ammo. Would reload itself by
picking this special ammo from defeated enemies.

2. Bouncing bullets. During the development of Kadick’s Resolution the idea of
using bouncing walls came to mind. Those walls would be easily identified by
a color code and if they were hit, the bullet would bounce in angle. There
would be a boss that covers itself and the only way to hit it would be attacking
its back using the bouncing walls to do so.

44

3. Exploding barrels. These barrels would appear on screen and would explode
on contact to any kind of laser, no matter friend or foe. Thus, enemies could
be lured near them and then obliterated because of the explosion.

4. Interactive floor panels. The floor would have special kind of platforms that
interact with the player in different forms:

a. Electrified field. Would cause damage on contact.
b. Slippery platform. Would cause the player to slide through it unable to

control its movement.
c. Sticky platform. Limits player’s movement by certain factor.

45

This page has been left intentionally in blank.

46

6. TESTING
This section covers how this project has been tested. There is a brief

representation of how useful unitary tests have been to test the scenario generation.
User testing has been also absolutely decisive to improve the final experience.

6.1. GENERATION TESTING
The testing process began shortly after the start of development. In order to

determine whether generation of scenario was successful or not, there were scripted
some unitary tests. These unitary test work as a simulation that generates a new
scenario 25 times in a matter of seconds. This makes it very easy to find weak points
in the code and solve them. There were 4 main issues to take care of when
generating the scenario:

1. There had to be exactly 3 keys.
2. Start point could not be a key room.
3. The boss chamber had to be generated and accessible.
4. Keys had to be located in random rooms and none of them could be the start

room nor the boss chamber

These issues were evaluated individually every iteration (Fig. 40).

Fig. 40. Unitary tests: Finding weak points

47

6.2. GAMEPLAY TESTING
The gameplay testing consists on an iterative process that started when the

attack system for both enemies and player were developed. As the physics system
implemented in this game is Arcade, the bounding boxes are rectangular shaped. In
this context, there is a lot of trial and error process in order to adjust the bounding
box sizes and making them flow nicely with enemy movement and scenario
distribution. Taking into consideration that the gameplay is mostly based in
shooting, collisions between lasers coming from players and enemies had to be
tested. Lasers had to disappear when hitting walls, characters and props (Fig. 41).

Fig. 41. Collision testing: Enemies and Scenario Props

Scenario distribution had to be tested too, as the player had to move fluently

among props no matter what the resolution would be. In order to do so, the game
has been tried in rectangular screens and square screens (Fig. 42).

Fig. 42. Scenario distribution testing

Minor errors were solved during the process, specially the collision system

tended to fail with some types of enemy and was later improved. The supervisor of
this project also gave extremely helpful feedback as he tried the game from other
perspectives. The user experience was enhanced and some characteristics like the
dynamic resolution adaptation were introduced.

48

6.3. USER TESTING
After having solved these issues, it was clear that some other errors would be

avoided as the developer knows his code and where not to look. Thus, it was
essential to have other people try Kadick’s Resolution and learn from their feedback.

Some friends had been asked to try the game along the development process.

They were given finished tasks milestones and were told what to try but not how. As
the game kept advancing, many minor errors and bugs were found and solved.

Once the project was getting to it final stage, other group of people was told to

try the game. It was essential that they did not know anything about it so their
perspective was unaffected by experience. They were asked if they found the UI too
simple or too invasive and changes as the disposition of the armor and health bar
were made. They thought that its icons were barely visible (Fig. 43) so the bars were
disposed separately and at the final stage, as explained before, the armor bar
remains at the bottom left and the health bar at the bottom right of the screen.

Fig. 43. Initial Armor and health bars

Difficulty settings were tested with people that had little experience in video

games of this matter. Normal setting should be challenging but not too much as it is
the default option. Easy mode should not be too easy and Hard mode should make it
possible to complete the game.

Lastly, they were asked what they thought about the game in general

perspective. Their opinion overall is summarized in these points.

1. The game is not boring at all. It is interesting and pushes the player to
explore the stages.

2. Enemy fights are fair and possible to beat.
3. Boss fights are really interesting taking into consideration that they perform

attack patterns from different genres.
4. They were not interested in the plot at all.

49

This page has been left intentionally in blank.

50

7. CONCLUSIONS
The procedural generation of scenario using a JavaScript framework has been a

challenge that involved practical algorithms learned during the degree. It really is
inspiring to see the final result as it is available to check at any moment. Stages are
generated both horizontally and vertically and the distribution system adds depth to
the style of the game by offering cover.

The gameplay is as easy to understand as fluid. It allows dodging and attacking

perfectly. The performance of the browser is not affected even with dozens of
bullets at the same time.

Many types of gameplay coexist on the same game. Running straight to fight

bosses or gaining as much power as possible in order to humiliate the beasts are an
available choice for the player to make. The score system adds an extra challenge as
the player can try to surpass the previous high score and has to avoid dying to do so.
Death penalization adds an extra risk to the gameplay as the user has to traverse
through the dungeon all over again and loses half of the score points.

The enemy development was other challenge to take care of. Attack design

come from many references from arcade games and have been introduced smoothly.
From the easy ones like the Scancatcher that follows the player around to the
complex attack patterns of Asimov, each one of them has been carefully designed
and implemented in other to push Phaser 3 to its limits.

The power up system works like a charm as a game flow manager. It sets both

the sense of growth and the sense of challenge. Trying to pick every single power up
available at any stage reinforces the will for exploration.

The audio has been meticulously selected and edited to fit perfectly into the

plot and the main gameplay, generating an immersive atmosphere.

Kadick’s Resolution has become an instructive and challenging adventure. It

has gone beyond its initial expectations offering an immersive experience and
outstanding gameplay. Exploiting the limits of the Phaser 3 API has been really
interesting as new forms of confronting certain situations have been found and
tested.

51

This page has been left intentionally in blank.

52

8. REFERENCES
Kadick’s Resolution takes its references from authors of the world of

science-fiction and cyberpunk. The main character: Kadick, takes its name from
Philip K. Dick, author of “Do Androids Dream of Electric Sheep?”, “The Man in the
High Castle” and “Minority Report” among others.

The antagonist, Asimov, takes his name from Isaac Asimov, author of a vast

number of science-fiction futuristic books like “I, Robot” and the “Foundation”
serie. He is also the author of the three laws of robotics.

The gameplay is based in games such as “The Legend of Zelda: Link’s

Awakening” (Nintendo, 1993, Fig. 44), “The Legend of Zelda: A link to the past”
(Nintendo, 1991, Fig. 47), “The Binding of Isaac” (Edmund McMillen, 2011, Fig. 45)
and “Metal Gear” (Konami, 1987, Fig. 46).

Fig. 44. Legend of Zelda: Link’s Awakening Fig 45. The Binding of Isaac

 Fig 46. Metal Gear Fig 47. Legend of Zelda: A link to the past

53

The art references come from games like “Cyberpunk 2077” (CD Projekt, 2019,
Fig. 49) and “Nier Automata” (Platinum Games, 2017, Fig. 50). There are also
references from movies like “Blade Runner” (Fig. 51), based in “Do Androids Dream
of Electric Sheep?” (Philip K. Dick) and “Battle Angel Alita” (Manga version by Yukito
Kishiro, 1991 - 1995, Fig. 48).

 Fig. 48. Battle Angel Alita Fig. 49. Cyberpunk 2077

Fig. 50. Nier Automata Fig. 51. Blade Runner

54

9. BIBLIOGRAPHY

Programming

[1] Phaser API Documentation website:
https://photonstorm.github.io/phaser3-docs/
[2] Phaser 3 Examples website: https://labs.phaser.io/
[3] Stack overflow website: https://stackoverflow.com/

Software

[1] Visual Studio code website: https://visualstudio.microsoft.com/
[2] Photoshop website: https://www.adobe.com/es/products/photoshop.html

Videogames

[1] Diablo 3 website: https://eu.diablo3.com/es/
[2] Official Blizzard website: https://www.blizzard.com/es-es/
[3] Official Minecraft website: https://www.minecraft.net/es-es/
[4] Official Terraria website: https://terraria.org/
[5] Official The binding of isaac website: https://bindingofisaac.com/
[6] Official Metal Gear Solid website: https://www.konami.com/mg/mgs5/tpp/en/
[7] Touhou website: https://moriyashrine.org/

55

https://photonstorm.github.io/phaser3-docs/
https://labs.phaser.io/
https://stackoverflow.com/
https://visualstudio.microsoft.com/
https://www.adobe.com/es/products/photoshop.html
https://eu.diablo3.com/es/
https://www.blizzard.com/es-es/
https://www.minecraft.net/es-es/
https://terraria.org/
https://bindingofisaac.com/
https://www.konami.com/mg/mgs5/tpp/en/
https://moriyashrine.org/

This page has been left intentionally in blank.

56

10. USER’S MANUAL
1. To download this project, the user has to clone the project from the following

github URL:

Github url: https://github.com/ManuSenpai/KadicksResolution

2. Once cloned into the user’s computer, it must be opened using Visual Studio.
3. After being opened, the user has to install the “Live Server” extension.

4. Once the extension has been installed, the user must press the “Go Live”
button at the bottom right.

57

https://github.com/ManuSenpai/KadicksResolution

5. After that the game will load automatically.

6. If it does not load, the user must enter this direction into the internet
browser: http://127.0.0.1:5500/

7. Gameplay instructions:
● Move right: Key D.
● Move left: Key A.
● Move up: Key W.
● Move down: Key S.
● Minimap: Tab Button.
● Shoot: Left click.

8. This game is also available to play directly at this URL:

http://teseo.act.uji.es/~al315320/Kadicks%20Resolution/

9. This game works best on Google Chrome.

58

http://127.0.0.1:5500/
http://teseo.act.uji.es/~al315320/Kadicks%20Resolution/

