
Implementation of immersive technologies
with Virtual Reality to a video game

Antoni Arlandis Daviu

Advisor: Marta Martín Núñez

Final Degree Work

Bachelor´s Degree in Video Game Design and Development

Universitat Jaume I

May 20, 2019

1

 Acknowledgements

To begin with, I would like to thank my colleagues Joaquin Soler Tomás and
Daniel Castro Arjona who have developed the area of art and narrative for the
great effort that have been devoted throughout the development of the game,
without them it would not have been possible to get to where we are today. On
the other hand, I want to thank Marta Martin, who has helped us make this
work possible and to all the teachers that we have trained us throughout the
university degree. Finally, I want to thank my family for the great effort they have
made so that I can be where I am today.

2

Abstract

This document presents the fnal report of the Video Game Design and
Development project. The work consists in the implementation of game
mechanics to implement. From the simple mechanics such as the tracking of the
head and the drivers, to the more complex as can be the grip of adaptive. All
these mechanisms are implemented in the most effcient manner possible. Unity is
the game engine used, working in an immersive experience through the use of
sound, profles of post-processing and lighting designs with a result that is
optimized for the VR.

 Key words

Video game, Virtual Reality, Puzzle, Immersive technologies, Oculus Rift.

3

Index
Cover Page……………………………………………………………………………………1

 Acknowledgements..2

Abstract..3

 Key words..3

Index...4

Figure Index...5

1. Introduction..6

1.1 Work motivation...7

1.2 Objectives...7

1.3 Initial state..8

2 Planning..9

2.1 Related courses...11

2.2 Resorce Evaluation..11

3 Game design...11

3.1 Synopsis..11

3.2 Overview..12

3.2.1 Game Concept..12

3.2.2 Genre...12

3.2.3 Target audience..12

3.2.4 Look and feel / game experience...12

4 Work development...12

4.1 Principles of programming..12

4.2 Basic programming concepts...13

4.3 Tracking...14

4.4 Grabbing Objects..14

4.5 Special mechanics for objects:..16

4.5.1 Lantern...16

4.5.2 Matrioska...16

4.5.3 Teapot..17

4.5.4 Music box key..18

4.5.5 Monocular..18

4.5.6 Labyrinth box...18

4.6 Vornik special mechanics:...19

4.6.1 Answer mechanics using head movements...19

4.6.2 Pressing buttons with the index...20

4

4.6.3 Padlock with drag...20

4.7 Grab...21

4.7.1 Study of movement...21

4.7.2 Study for effective implementation..23

 4.7.2.1 Coordinaton iit oniroller pulse...23

 4.7.2.2 Collision deie tonn...23

 4.7.2.3 Iieratie iipleieniaton iit oniroller or re ursiie...................................25

4.7.3 Implementation...25

4.8 Movement...26

4.8.1 Movement with Joystick...26

4.8.2 Teleport..27

4.9 Physics and objects..28

5 Results..29

6 Conclusions..29

7 Future work..30

8 References...30

9 Bibliography...30

10 Appendix A – Additional documentation...31

5

Figure Index
 Figure 1n Gant tari..10

 Figure 2n Tra ker..14

 Figure 3n For e grip..22

 Figure 4n Pre ision grip..22

 Figure 5n Priiitie Colliders...24

 Figure 6n Ray asi..24

 Figure 7n Telepori..28

Figure 8n Rigidbody oiponeni..29

6

1. Introducton

1.1 Work motivation

At present, we can observe that within the world of video games, Virtual Reality
technology is booming, due to this and with the recent acquisition of this
technology we decided to explore it and exploit it. Looking at its great ability to
dive and its power in the feld of video games, we could see that we are facing a
growing market and an opportunity that we should take advantage of. It is for
this reason that we decided to implement a video game in which it is used,
specifcally we can qualify it within the genre of horror because we considered
that this genre is the most suitable for the extraordinary features of the
technology of Virtual Reality such as immersion, surround sound, visual impact,
among others.

1.2 Objectives

The work done here is part of a project developed by three students, with the aim
of using VR technology to make a complete video game. The project is divided
into three main parts, the programming that I will take care of, the art as part of
the work of my partner Joaquin Soler and fnally the narrative and lighting by
Daniel Castro. The part to be covered in this project is the part of programming,
that is to say, the one which carries the mechanics and the events. In particular,
this project is divided into three main parts:

- Special mechanical world of the VR

The frst and most basic is the mechanical movement that follows the devices of
VR, so that the hands and the head of the player follow the movement made by
the devices located in these parts of the body of the player.

Secondly, the most common actions in video games VR are the actions of capture
and drop/throw things, at the end of the project we must have a mechanism to
perform these actions effciently. These actions will be performed so that the code
is usable for all interactions with all objects without exception, thus being
reusable for other cases.

Thirdly, the actions of moving through the world of virtual reality, where the
movement is split into two variants. On the one hand, the movement with the
Teleport, which allow the player to move to a point of the scene by pressing a
button. And on the other hand, the movement with the joysticks on the remote
control so that one of the joysticks controls the rotation and the other one the
player progress.

7

- Mechanical hand movement

One of the things that you need to program and that most of the games of the VR
does not have is to have a grip dynamic of the protagonist’s hands. In this section,
we will schedule a natural hands movement when taking objects from our
environment, thus providing a greater accuracy to the game and a greater degree
of immersion. It is intended to make the fngers movement according to the press
of the power buttons, since these buttons are of decimal value, that is to say, from
0 to 1 by adding hundredths of a unit, the player will see as their fnger moves
forward in the grip progressively. For example, by receiving a button with a
pulsation value of 0.5, the player will see that their fngers are closed to 50%.
Another essential aspect is the hand adaptation to objects dynamically, that is to
say, that when they close your hand the objects are wrapped in the most natural
possible way. This is one of the most important aspects, because, currently, there
is a total absence of assets in the videogame engine Unity for this type of activity
and many of the games of the VR does not have it. So, it would be a great
practice and an interesting point.

- The puzzles and events

The puzzles will be accomplished individually. Each of them will have one or
several scripts that should be related to the script of grip to perform their
different functions. On the other hand, all the events of the game will be
programmed so that the story proceeds as planned. All of these events will be
carried out through different operations such as: the use of triggers with the user,
the collision of rays cast from the view of the protagonist, the distance from the
protagonist to a certain sector, among others. Any other not specifed
functionality but necessary for the proper functioning of the game will also be
part of the project.

1.3 Initial state

This is a job that is done from scratch, relying solely on the technology of VR,
Unity, and the integration of this technology into our game engine. Any kind of
test with this technology has been performed, so that it will be necessary to
collect information both on the technology as on the application of the same to
the engine of the video game. Moreover, it is a project that is part of a collective
project of two more people who are in charge of the design and the art of the
project, thus the level design, mechanics and events will be the decision of the
responsible for the design. I would also like to mention that the use of the active
integration of Oculus in Unity, will allow us to use the functionalities of the
technology VR, in our case Oculus.

8

2 Planning

For the proper resolution of the project the work has been divided into parts for
being each of these parts essential for the development of the next one.

First, we consider the performance of mechanisms such as the movement and the
grip of objects, which is essential for a game of VR. Prior to the execution of
these two activities, we searched for information about the technology and the
implementation of the same in the game engine in order to assure their optimal
use. The resolution of this part of the work is estimated to be around 100 hours.
This number of hours comes from the sum of 40 hours gathering information
about the technology and its interaction with the engine of the video games.
Other 20 hours of implementation of the movement with the joystick and
teleport. Adding 40 more hours to the execution of the grip, which is an
interaction combined between the objects and of the player controller.

Secondly, the main basis of the project is the dynamic grip, so in order to be able
to fulfl a dynamic effcient grip we will provide three types of implementation of
grip with two subvariants each of them and choose the most effcient and realistic
one. 120 hours will be required for the development of his work, embracing 30
hours of driver research and the physical internal of the engine Unity, adding 40
hours to the study and to tests performance on the different options of use for the
correct implementation of the mechanics. And fnally, 50 hours have been
devoted to its implementation and correction of possible faults that may arise.

The third part is concerned with the implementation of the different puzzles and
events that will shape up the video game. 60 hours will be lasted for the
aforementioned correct implementation of puzzles, secondary mechanical as the
lantern, secondary object animation, etc. On the other hand, it will take us 20
hours the implementation of events, such as activation of different situations or
events, modifcations of environment, etc.

9

Task Time

Research on the implementation of Oculus Rift in Unity 40

Haptic research and adaptive grip for the hands of Oculus 30

Interaction and grip adapt objects 40

Implementation of mechanics 60

Implementation of movement 30

Interaction of objects with environment 30

Adaptative grab 50

Final memory 10

Presentation work 10

Total 300

10

Figure 1: Gant hart

2.1 Related courses

VJ1203 – PROGRAMMING I

VJ1218 – PROGRAMMING II

VJ1222 – SOFTWARE ENGINEERING

VJ1227 – GAME ENGINES

2.2 Resorce Evaluation

In order to assess the necessary resources for the correct implementation of the
game Vornik I would like to highlight that the implementation of this game has
been made as a result of the collaboration between three people, therefore these
three people have made their own contribution in this project possible.

Individually my material costs are, the use of a computer powerful enough to
withstand without problems the Virtual Reality goggles and VR of Oculus
technology, including, in this case, the trackers, controls, goggles, etc., apart from
the videogame engine Unity with a free license to develop the game. In addition to
the effort to fnd and pick up additional information on this technology due to
our lack of experience it took us some time to get used to it because it is an
emerging technology and there is still some new information that do not work
properly as the SDK Oculus for Unity.

3 Game design

3.1 Synopsis

Horror Video game for Oculus Rift, whose main character is Zledic, a mysterious
fgure with a terrible background who we must control, throughout the game, the
player will have to solve different puzzles in order to understand the story of our
protagonist. The mechanic provided by the virtual reality will be used for the
resolution of these puzzles.

11

3.2 Overview

3.2.1 Game Concept

Vornik is a game of puzzles based on the memories of an old commander, in this
game we must go over various memories of our main character using the Virtual
Reality technology to discover its story. For this implementation, we will use the
technology, Oculus Rift in order to get a better immersion. The art style will be
realistic and volumetric with 3D sound implemented.

3.2.2 Genre

Horror, puzzles.

3.2.3 Target audience

Vornik is designed for players who like terror games and puzzles, who, in
addition, own the technology Oculus Rift.

3.2.4 Look and feel / game experience

The game is designed to achieve a high degree of immersion in the player. Using
an intuitive and realistic mechanical.

4 Work development

4.1 Principles of programming

Vornik is a horror video game that tells the story of a commander and his
evolution during and after the war. Our video game will have a simple but
realistic mechanical to improve the player’s immersion. We decided that this was
the most appropriate kind of mechanics to the genre whilst ensuring that is
different from the large number of games that already exist with a specifc
mechanical. This is the specifc part on which to base this project. For the correct
accomplishment and compliance of the objectives the code will be implemented in
a way that it is fully reusable in any VR game. This requires to follow the
programming guidelines based on SOLID.

12

SOLID, are guidelines for a proper programming, based on fve guidelines:

1- (S)PR or Principle of single-responsibility: the notion that an object
should cover only a liability.

2- (OR)CP or Principle of beginning/closed: where it is marked that the
scripts must be open for re-use but closed for modifcation.

3- (L-SD) or Principle of replacement Liskov: given an object, this object
can be substituted for a subpart of the same and work properly.

4- (I)SP or Principle of segregation of interfaces: supports that a general
interface is worse than many specifc client interfaces.

5- (D)IP or Principle of dependency inversion: based on that you should
not depend on implementations.

Throughout the project we will try to follow the principles of programming based
on SOLID, for the possible reuse of code, create an individual code with a smaller
number of dependencies, and a great power of re-use without modifying the
scripts.

4.2 Basic programming concepts

I would also like to mention a series of guidelines that will be followed
throughout the project to improve its performance.

In the frst place, in the game, the collision detection is carried out using colliders,
which is very expensive when you use meshColliders. Therefore, throughout the
work, we will use primitives’ colliders for the composition of the collision mesh
of the objects. In this way, the potential problems of in these meshes as removed
and resulting everything related to the collisions under better control. This is also
done through the use of x-rays for the detection of objects, because the raycast is
extremely more expensive if it has to be check collision with objects, whose
objects have meshCollider.

Another important aspect is the pairing of the objects using the hierarchy of Unity
and positioning and rotating the objects from its parent object. This means that
when we join one object with another, actually what we are doing is marking it
as child of the object to which we want to join it. In this way, with Unity, we will
facilitate the rotation and the positioning of the object in their respective
corresponding place. This is a good practice due to it is not very expensive for
Unity to have a very wide hierarchy, but it would be more expensive if you push
the rotation and position of the object following another, or even if we used a
physical union to do this as this would cause internal collisions with the object.

13

We also must, keep in mind that when an object, it becomes a total trigger, that is
to say, the collision is turned off. In this way we ensure that if two different
objects with rigidbodys collide at a fairly high-speed Unity will be able to be a
good representation of that collision, avoiding that weird effects, as to put the
object in an incorrect position or that the collision triggers a deformation in the
object and colliders of the objects, can happen.

4.3 Tracking

At this point I should like to add the importance in the mechanics tracking and
devices positioning used by the VR technology. To synchronize the controller’s
position and the virtual reality goggles we have used some components belonging
to the Unity package that applies the Oculus VR. This component is called the
Tracker Pose Provider.
Such a component performs the function of tracking the position of the chosen
device to the assigned object. It has variables for its operation, as a Boolean that
specifes whether to use a follow-up with position relative to the transformation
of the object, a pivot where you can put two of these traces, and an instance of
the Pose class that provides to the Pose Tracker Pose Provider the pose to be
taken by the object. Thanks to this component, the tracking is a very simple task.
Nevertheless, it turns into a disadvantage, since the Tracker Pose Provider is not
an internal package of Unity but a part of the Oculus VR asset, so it is not known
exactly if it would work with another device.

Figure 2: Tra ker

14

4.4 Grabbing Objects

The main mechanics of the game is what it is expected of a Virtual Reality game.
This mechanics consists of trapping, throwing and interacting with objects in one
way or another to achieve our goal. This mechanism has been implemented
through the creation of two scripts, one for the object to be capture and the other
one for the hand that is meant to capture the object, these two scripts work
independently.

The functionality of the hand is to spot when it collides with an object, in
addition, it detects the touch of a button, implemented as a grip button, when it
happens, it saves the reference of the object to know which object is being taken
and calls to the Grab() method of the object (which will be explained later). On
the other hand, the hand also provides the reverse detection, when the user
releases the button of the grip is also sensed and when this happens the action to
release the object will be delegated. With this we make the object implement all
its actions, consequently all what the hand has to do is call the Throw() function
of the object and agree that the object which being taken is nil, by specifying that
there is none.

With respect to the functionality of the object, it becomes a little more diffcult
due to it must implement functions that serve to any change that affects to this
object and for any other event. The object is composed by two main methods,
Grab() and Throw(), which will be explained below.

We will begin by explaining the Grab() method, the grab method is in charge of
linking the object with the hand, eliminating the physics of the object to avoid
unnecessary collisions between the hand and the object, by setting its great local
rotation for gripping and keeping the hand that keeps it, as a reference point.
When the object is related to the hand, the position and the rotation of the object
becomes relative to the hand, this means that when the hand moves or rotates,
the object will rotate with it. What is more, we modify its local rotation to
position the object with what we call a natural rotation, and with this we achieve
that the case of forced grip or an unnatural position disappears.

The second function of the script is the Throw() function, this function takes care
of releasing the object, to do this we need two steps. In the frst place, we activate
all of the physics as it is to use the gravity, update speed thanks to the current
position and the position in the last frame of the hand, with this, we get the speed
that has followed hand in hand in the last frame, and we set their colliders to re-
collide with the objects in the scene ensure that this not transpose walls and does
has a correct physical. In the second place, the object is set as no related to
anyone, this means that it will go to the highest part of the hierarchy and will not
belong to anyone. Any more, thanks to this we get a realistic functionality to
catch and throw objects due to that when objects are thrown, the gravity and the
speed at which the hand moves will be applied.

15

Prior to this implementation we have performed two tests with another type of
association of one object to another, without using the relationship.

The frst test was the use the tracking of objects, when you picking up an object,
it was tracked to the position of the pivot assigned inside the player hand. In this
case, such an implementation caused a lot of errors because the script was forced
to use the object Pose, which is an external library to Unity, thus the Unity
manual did not have all the information necessary for its proper function.
Wherewith errors of positioning of the object were displayed and when using of
two types of follow-up in the same object, the own and the of the hand, the
object started to make strange rotations due to the clashes of these two
components.

The second test was the use of an object Join in the hand which was tied to the
hand and the object through a physical articulation. But this practice turned out
to be a great failure as a collider and a rigid body was required in many of the
objects. These objects caused errors when colliding with the hands and it could be
noticed as the object trembled in contact with the hand due to the internal shocks
between the object and the hand.

4.5 Special mechanics for objects:

Another of the mechanics studied is the interaction with many different objects:
the player can interact with a large number of objects with entirely different
functions. This way the player will have to use each object in an appropriate way
to pass the various puzzles. In this section of the project different scripts have
been carried out, one for every single one of the features of the objects so that
each object will have a different script that will implement its functionality. Down
below, I will describe each one of the scripts of the project.

4.5.1 Lantern

The lantern is an object whose key function is to illuminate the stage, but to add
a note of realism, we have decided that it works in such a way that at the touch
of a button located on the thumb, it can be switched on and off as if it had a
switch turned on. The script has been implemented in a way that it senses that the
push of the thumb button will change the status of the on and off fashlight or
vice versa. The state of the fashlight goes on and off by activating and
deactivating the light emitting object which the fashlight, the operation of the
issuer follows the following logic: when you turn it on, it emits light and when
defusing it stops shining.

16

4.5.2 Matrioska

The matrioska is a set of objects that are located one within another. You have to
open the objects one-to-one, and at the end you will fnd the key of the music
box. This script hides a special functionality, because when it fnds the error of
placing the different objects of the matrioska one within the other with their
colliders and their respective rigidbodys (component that simulates the physics of
objects) these collide among themselves and move around the stage.

This situation led us to implement an extra functionality to the matrioska to keep
the reference of its inside object and when it was caught its physics could be
removed. Then the physics of the inside object would be activated so as to make
sure that there is not any failure in the physics.

The implementation has been carried out thanks to the relationship between this
code and the access code from which you can obtain information about whether
the matrioska is being collected or not at the time. So, this is an example of the
ease of apart from the effective use of the writing grip of the object.

4.5.3 Teapot

The teapot is the most complex puzzle. Its goal is to join the pieces of a teapot
which is broken in 4 pieces, when you post it, this will trigger a memory. For the
realization of the script of behaviour the main idea has been to give a level of
importance to each piece of teapot, following the logic of the piece with less
importance would join the piece with more importance.

But then there was a problem, because there are a lot of possible combinations
and it was diffcult to control the position and rotation of the object to attach the
piece. For this reason, the object has as many pivots as pieces below its level, so
that each pivot belongs to a part level. Therefore, each pivot will have its own
script that will store the information of what level corresponds to. Moreover,
each piece of the teapot will maintain its importance apart from its functionality
of union to the rest of the pieces.

17

The main functionality of the script is to detect the collision of the workpiece
with a pivot, to check if the pivot corresponds to the level of the piece, if so join
the pivot and mark it as its father and rotating to its default position. Research
has found that if by chance the parts were close and two of them collided into
each other, they joined without the player necessarily do anything. So, we added
an extra check by using the script of grip that provided information about
whether a piece is being taken by hand or not, and if so, it could be united. At the
end of this process the logic of the script is the following: If a piece collides with
its pivot, this piece will check whether it is being caught and if the piece that
contains its pivot too. If so, this will become the daughter of its pivot and
therefore it will join to this one and it will remove all the functionality to this
piece.

4.5.4 Music box key

The key of the music box is an object of placement, that is to say, it is an object
whose primary function is the detection of the collision with the object into which
it must ft. In other words, this object will detect collisions with the lock of the
music box and when colliding with it, the object will be positioned automatically
and perform the animation of rotation of 360 degrees, simulating that it is being
rolled up like old music boxes.

Furthermore, the script would also encourage the lid of the music box that would
open to 90 degrees. This script also uses the relationship with the object script of
grip, as when it senses the collision of the lock, it calls the hand script to release
the object and place it in the music box so that the key is completely free as well
as the hand. If it were not so, an error would occur in the game because when
trying to position an object that is already connected (with the hand) with
another one (the lock of the music box), the hand will not be updated and would
still be related to the object therefore when releasing the button to catch the key
such a hand would have null as a parent and would not be positioned correctly.

4.5.5 Monocular

The monocular has a very powerful function in the story, even though it has one
of the simplest capabilities. As with the fashlight, the monocular uses the object
script of grip to be activated. So, this will only be activated if you take it on and it
will be disabled when you drop it. The functionality of the monocular is part of
the project of another of my co-workers.

18

4.5.6 Labyrinth box

The box and the maze have two different functions. The frst function comes
from the relationship between the ball running through the maze. Inasmuch we
have to carry the ball through the maze, trying to lead it to the goal and it is at
that time when we must detect the collision, that is to say, we must verify that it
has reached the end. When this occurs, the second functionality, which is the
animation of opening the box, will start.

When it comes to the ball, we must consider that it has a rigid body, which
hampers its operation. This means that when making fast movements the object
can be ejected and it will have been achieved by restricting the gravity if the
object is not captured and will be checked by the object script of grip. In this way,
the verifcation will enable or disable the use of gravity in the rigid body of the
ball. In the second part we have a collider at the end of the labyrinth, which
detects the collision of the object, when colliding with the box will be opened by
following an animation provided by scripts where the cover will rotate 90 degrees
at a speed of 1 degree/frame.

For this puzzle another functionality for the ball has been implemented to avoid
possible failures in the physics. This is based on the fact that if the ball comes out
of the music box due to a bad collision, this will be returned to its initial position.

4.6 Vornik special mechanics:

 When we speak of RV special mechanics we are referring to the mechanics of
objects capture and launch, with the hands tracked and a tracked vision that
helps a lot in the immersion and interaction of hands with objects. Nonetheless
our game stay one step ahead and we have included special mechanics designed
for this game, such as, for example, to respond to questions with head
movements, and interact with a numeric keypad with the index fnger and not
with the whole hand, for a greater sense of realism to the simulation and the
manipulation of locks with this same fnger.

4.6.1 Answer mechanics using head movements

One of the unique mechanics to our game, is the responsiveness to the questions
by using only the player head movements. The possible answers are yes
(equivalent to a vertical movement repeated a minimum of two times) and no
(equivalent to a horizontal movement with the same repetition as above). Four
colliders placed above and to the sides of the head and two different types of
script have been used to this mechanic.

19

The logic of the mechanics is to use a raycast to detect collisions with the colliders
that are located in the four positions mentioned above. When a collision is
detected, the object with which it collides is stored in a list of objects to be able to
access it at any time. As soon as the list exceeds three objects, it is checked
whether the last three collisions form a correct answer. If so, the response will be
sent to the script of narration narrative implemented by Daniel Castro and this
script will be disabled.

The verifcation of the response is performed using the names of the colliders and
getting the four possible confgurations "Up, down, up", "Down, up, down, left,
right, left" or " right, left, right ". So, if the last three inserts do not form an
answer, this step will be repeated every time you answer is inserted. It has also
been added the condition that the frst insertion checked and the last have a
spacing between them less than a stipulated period of time so as not to confuse a
response of an observation of the environment. This is calculated by maintaining
at all times the time in which every iteration it has been performed and seeing the
period of time between the frst check and the last.

4.6.2 Pressing buttons with the index

It is a mechanical not very well developed in the virtual reality world since in the
vast majority of games we fnd the press of buttons by the collision with any part
of the hand. In our game it is different, the collision is special. The collision is
performed with a hadron collider located at the top of the index fnger so that
you only can press the object with this part of the fnger. The explanation of the
script is simple, if the button detects that it has been touched by an object whose
collider belongs to the label "index" it will be activated with the single touch of
the index fnger, otherwise it will not work.

4.6.3 Padlock with drag

This is another of the mechanics that we have not seen in any virtual reality
game. The mechanics consists on being able to move one of the wheels with the
numbers on the padlock when you pass a fnger on it. In other words, if we pass
the fnger down we will add a digit at the lock and the wheel will spin down,
otherwise, if it is upward, the wheel will rotate in this direction and one unit of
that digit padlock will be subtracted. For this mechanism two ways of interaction
and logic have been implemented. Both totally valid and with the same result.

20

The solution has been applied with two different colliders, one located at the top
and the other at the bottom of the object. In this way we detect when the fnger
hits a collider. When we collide with one of them we keep this collider as a
collider of insertion and, in the same way, if we already have the insertion one
and it re-collides again, it is saved as a collider of output. By having these two
colliders we understand that, if they are different then the movement has been
vertical, on the contrary, we will ignore the iteration. If we deal with a vertical
movement we fnd the direction by comparing the heights of the Transforms of
the colliders, and restore the direction.

The second script of operation follows a similar logic, but in this case, you only
use a single collider. This collider will detect the collision with the index fnger,
when this happens, it will keep the position in which the input collision has been
detected, and the location in which the output collision is detected. With these
two facts in mind we compare their heights, so that if the difference in height is
equal to the height of the collider this will mean that the movement has been
made up or down, so it will have been a right move. Thanks to the input and
output locations we can fnd the movement, since in the entry movement is
greater than the output one, it will be a downward movement, and if the entry is
less than the output, it will be an upward one.

4.7 Grab

This is the most relevant part of my project due to the large number of tests that I
have done and all the documentation that I had to fnd about the topic. This part
of the work is based on implementing a dynamic and adaptable grip to the
objects of the scene with which we interact. To better explain this part of the
project, I have divided it into three different parts. The parties will be explained
in chronological order.

4.7.1 Study of movement

The frst part has been based on the collection of information about the three
factors. First, the factor of the natural movements of the hand and familiarisation
with the concept of haptic. The haptic is the science that deals with the world of
touch, the relationship between any part of the body and its interaction with the
environment. As a result of this practice I discovered that the possible movements
of a hand are divided into three basic movements.

21

The frst of the movements is the force grip, so called because it is the bending of
all the joints of the fngers toward the inside of the hand so that the hand is
almost closed in the form of a fst. In this way, all the joints will spin towards the
centre of the hand until they collide with the object, and at this point they will be
stopped. This is the most common grip in nature.

Figure 3: For e grip

In second place we face the grip precision, that is the distinctive grip of a pen, a
pencil or even a key. This grip is characterized by a provision of the fngers with a
single rotation, in the frst joint of the fngers holding completely the rest of the
joints straight, this grip is called precision because you get a great accuracy of
movement due to all the force is focused at the tips of the fngers.

Figure 4: Pre ision grip

22

The third and last type of grip is the category of specifc or derivative grip that
includes all the grabs which are not included in the previous categories, such as
the grip when picking up a book to read, the grip of a console controller, etc.
This type of grip is independent for each of the objects to which it is addressed.

In summary, in nature there is a great variety of grabbing, but the most common
is the force grip. As a result of this research we decided that I would not have
time to implement separately the two types of general grabs and that we only
would focus on one of them and on the basis of the studies carried out and the
objects to interact with in the game, we decided that fnally we offer you the grip
strength.

4.7.2 Study for effective implementation

The second part of the implementation of a grip on the models of the hands for
our game, was to study which of the ways to carry it out was more favourable.
As a result, I decided to investigate the best methods to use this functionality and
carry out various tests in order to put it into practice. While researching a little
about this functionality, I realized that there was no information at the time of
implementing a grip dynamic based on the surface of the objects or any type of
asset on the Unity AssetStore that met this functionality. As a result, this
handicap was divided into different topics.

4.7.2.1 Coordination with controller pulse

To mark the percentage of grip we will use one of the buttons on the
controller that has a range of touch, and depending on the force with which it is
pressed, it will return a value between 0 and 1. Being 0 the lack of touch and 1
the total touch. After having checked these values it was decided to make a
maximum rotating for each joint of the fngers, and use this value in the
controller as a multiplier of the rotation. For example, if the button is pressed by
half, we obtain a value of 0.5, hence with a turnover of maximum 50, the
rotation at the point of 0.5 will be 25 degrees which is equivalent to 0.5 X-50.
This was our initial idea but when we put it into practice we realized that it was
wrong since when pushing the butting quickly in could not be updated with
suffcient value and with a quickly pulse the object went directly from 0 to 1 by
forcing us to close the hand suddenly without making any type of transition. So,
we decided that we would use the previous value as a target for the turn, and not
as a fnal turn. In this way, the rotation would advance each frame a specifc
number of degrees in order to reach the goal.

23

4.7.2.2 Collision detection:

For the detection of collisions, the two main detectors of Unity are the
colliders. They consist of geometries of collision which use the methods
OnTriggerEnter and OnTriggerExit to detect the collisions of the objects with
other colliders that hit them and also when they stop colliding. On the other
hand, there is the raycast which throwing a virtual lightning bolt to some distance
succeeds in detecting the collision with other objects. We implemented two types
of tests, with detection of raycast and another with colliders. At the time of the
test, we realized that the colliders were the best option by far due to two major
points.

Figure 5: Primitie Colliders

The frst error of the raycast is that they follow a special direction, and when it
detects the collision of an object that is in constant rotation this may be the case
that, at the time of the collision the raycast is not pointing to the correct side. Due
to this we observed that when catching different objects, we must detect the
collision in different directions, not only toward the inside of the hand. On the
other hand, this error does not affect the colliders because as it is a geometry of
the collision the incoming collisions can be detected from each of the points of the
edges of the geometry.

24

Figure 6: Ray ast

The second error is due to that there are two ways to detect a collision with the
raycast, the frst is to establish a close distance to the origin point, so that when
the object to collide is at this distance the raycast will detect it. Another way is to
establish a greater distance, and when the raycast detects that the object with
which it collides is at a distance less than the minimum it will perform the action
that may have been assigned. These two types of collision detection do not
achieve our goal, because our object will rotate instantly and iteratively a series of
angles to mimic a natural grip. Therefore, in both options there may be an
occasion in which this fails because if the rotation is so large as to enter the
object, the object will not be able to detect the collision and will not perform the
action. This happens when crossing the surface of the object is inserted in it and
does not detect collision with the surface. This does not happen with the colliders,
because even if one of them enters the collision will be detected without
problems.

4.7.2.3 Iterative implementation with controller or recursive

After several tests, I decided that the implementation would be a iterative
controller script. A script located in each of the joints of the fngers that it would
work individually informing the controller of their situation and that is updating
the state of the other if necessary. But later we agreed that there was no need for
a controller of this type, because with a simple reference between a script and its
predecessor in the fnger was more than enough. We did not decide to make a
recursive implementation as we do not fnd an effective way to check the collision
between two unions that are not connected, without the need of a reference to
each one of them, that would prove to be more expensive and less elegant.

25

4.7.3 Implementation

Finally, I will explain the implementation of the script that establish itself in each
of the joints of the fngers as it follows a bit diffcult but effective logic. Each joint
of the fngers is initialized with a script and a collider located at the same joint.
The logic of the script is explained below.

In a frst step, the script receives the user’s heart rate information, and estimates
the objective rotation of the fnger. Once calculated this information, the script is
divided into two parts that work the same way. If the objective rotation is lower
than the current one, fve unites will be rotated to detect the collision or reach the
maximum, if on the contrary is greater, will be rotated fve units but in reverse.
When a joint detects a collision, it warns the previous one to stop, but not to the
subsequent, so that if it collides with the tips of the fngers, the whole fnger will
stop, but if on the contrary, if it is an intermediate joint the tip of the fngers will
not stop. This way you can easily follow the times followed by the player.

On the other hand, there is another setback condition that is not applied to the
advancement of the rotation and in case the object collides, the rotation of the
collision is stored, and the recoil does not begin to recede if the rotation is not
smaller than the rotation of the collision.

4.8 Movement

The player can move through the setting in two different ways. First, we have the
teleport, the this will allow the player to move immediately through the setting by
selecting a point of emergence, that is to say, the player will mark with the driver,
a place that is in sight to teleport and when releasing the selection button their
will be teleported there.

4.8.1 Movement with Joystick

The rotation with joystick is the only type of rotation that can be used by the
player. The rotation follows the following logic, moving the joystick to the right
it will rotate 30 degrees to the right relative to the body at once, so that there can
be a case of concatenating too many times the rotation and cause dizziness
because the virtual reality is likely to cause this type of sensation. The same factor
is applied to the left rotation. This rotation will be in the position of the avatar
and all the transformation, which is the component that receives the information
of position and rotation. The rotation will be applied using the Rotate of the
component Transform function, which rotates the object to the values that are
assigned to and in the axis that is assigned to.

26

The movement implementation with joystick has been carried out by using the
joystick as a multiplier of movement. In other words, the joystick returns a value
for each axis of movement. In the frst place, the x-axis that covers the movement
to the left has a value of -1 to 0, and the movement to the right which has a range
of values from 0 to 1. The same way works the axis, it has two movements with
these ranges over 0 to 1 unit and below -1 to 0 units, respectively. These units
returned by the driver determine a 3D space direction.

With this in mind, an example of direction would be the tween to move the
joystick with a diagonal movement towards the upper right corner that we would
return the same direction. But this interpolation would refund to a value greater
than 1, so that we should standardize it. These directions would depend on where
the player is looking at, not on the direction to which it is positioned.

4.8.2 Teleport

The reciprocating motion is realized using a Teleport, this mechanism is
very simple, by pressing the button to teleport, a bolt of lightning could be
thrown to collide with a surface marked as tele transportable, a marker would
appear. When you release the teleport button if the marked position is correct,
the player would teleport to that position without changing its rotation. We
decided that the beam of the teleporter would not a simple straight line to mark
but it would be through a parable to simulate a jump into the space.
This we developed a script with a default number of rays that vary their angle
with respect to the vertical, that is to say, they pretend that the farther away they
are from the source, the more affected by gravity and the angle is lower. This only
serves to simulate the beam, which with the use of the component LineRenderer
makes the player observe at all times the parable that follows his Teleport.

In the same script is continuously updated within the Update function where it is
colliding the frst section of the curve that it detects a collision. Its role is to set a
layer of collision, and if the object with which it collides belongs to this layer is
activated, the right collision of the marker will be activated, and the button is
released here, the position of the avatar will be set as the position of the marker.
To do a teleport of all the avatar is we include the hands, head, and all that in
that moment belong to the son of the oriented avatar.

27

4.9 Physics and objects

The objects and the physics are infuenced by the type of scene in which we fnd
ourselves. When we fnd ourselves in a real scene, the objects will have a realistic
behaviour and when you lift them and launch them they will be affected by
realistic physics. On the contrary, when we are in the memory, the objects may
have behaviours that are unrealistic to warn the player that is in a state of mind
and not in reality. Some of these behaviours may be disappearing, anti-gravity,
dematerialization, etc.

All of the physics of the game has been set using the component Rigidbody,
which is a component used for the simulation of the physics. Most of their
variables have been used to extract all the potential of this component. Thanks to
variables such as isKinematic to anchor an object so that it does not move,
useGravity that activates and deactivates the gravity, mass that allows us to
choose the mass of the object, and many more variables have been implemented
easily in different confgurations for different behaviours of the objects. All of
these changes have been made from scripts in order to facilitate the understanding
of its operation and a better reading of the same.

28

Figure 7: Teleport.

29

Figure 8: Rigidbody omponent.

5 Results

The obtained results are a completely fnished and functional part of the game.
All the objectives have been successfully achieved. In the frst place, the result of
the implementation of a fully functional character, including the follow-up
features, grip objects, and the movement implemented in the two ways were
expressed at the start of the work. In the second place, it has implemented a
movement of adaptive grip in a satisfactory and functional way. Finally, all the
puzzles proposed by the designer of levels were implemented and they all work
according to the instructions.

The following links provide access to the project and to a video of the start of the
game:

-Github: https://github.com/danicas92/Vornik

-Executable: ttpsn//driie.google. oi/ile/d/1Zi0iAGuxle1NxKVKKVGG410bIixmBCgSZa/iie

-Youtube video : https://www.youtube.com/watch?v=o0g3VlglNdA

-Youtube video 2: https://www.youtube.com/watch?v=FR-EVspA608

-Mechanics video: https://www.youtube.com/watch?v=45XQgF_ikxA&t=2s

-Trailer: https://www.youtube.com/watch?v=kN0BrxNzex4

6 Conclusions

Vornik is the largest project we have done and one of the most interesting
challenges and self-learning for us. We have obtained an original product, with a
fully exclusive mechanical, a dynamic grip, an immersive storyline and a
spectacular design. I would also like to mention that we had no previous
experience in the feld of Virtual Reality and this has been a wonderful way to
learn about this and all what you have to offer. The experience has been very
benefcial both when working on a team and when working as an individual.
Thanks to the constant communication, the development of the game has been
very fuid.

7 Future work

The history of the video game Vornik continues to expand, and along with it will
expand the feld of the programming and the art will expand too. This way we
have already decided that this game will continue until it is terminated in its
entirety.

30

https://www.youtube.com/watch?v=FR-EVspA608
https://www.youtube.com/watch?v=45XQgF_ikxA&t=2s
https://www.youtube.com/watch?v=o0g3VlglNdA
https://www.youtube.com/watch?v=kN0BrxNzex4
https://drive.google.com/file/d/1Zm0iAGuxle1NxKVKEG410bIvxQBCgSZa/view
https://github.com/danicas92/Vornik

8 References

Unity User Manual. https://docs.unity3d.com/Manual/index.html?
_ga=2.228110229.944004910.1557852500-122365420.1557063783

Oculus Developer Center Documentation.
https://developer.oculus.com/documentation/unity/latest/

Courses documentation.

9 Bibliography

Unity Technologies. (2019). Unity User Manual. 2019, de
Unity Sitio web:

https://docs.unity3d.com/Manual/index.html

Unity Technologies. (2019). Unity Intermediate Couses.
2019, de Unity Sitio web: https://unity.com/learn/partner-
courses

Unity Technologies. (2018). Oculus Unity . 2018, de Unity
Sitio web: https://unity3d.com/es/partners/oculus

Jesse Glover, Jonathan Linowes. (2019). Complete Virtual Reality and
Augmented Reality Development with Unity. Packt: Packt.

Jonathan Linowes. (2015). Unity Virtual Reality Projects: Explore the
world of virtual reality by building immersive and fun VR projects using
Unity 3D. Packt: Packt.

31

10 Appendix A – Additional documentation

All codes in C# language.

public class ActivatePictureWithCup : MonoBehaviour

1.{

2. [SerializeField] private GameObject picture;
3. [SerializeField] private string nameToCollide;
4.
5. private bool _colocado = false;
6.
7. private void OnTriggerEnter(Collider other)
8. {
9. if (other.name == nameToCollide && !_colocado)
10. {
11. var objectGrabb = other.GetComponent<ObjectGrabber>();
12. objectGrabb.Throw(Vector3.zero,Vector3.zero,false);
13. objectGrabb.transform.SetPositionAndRotation(transform.position,
transform.rotation);

14. Destroy(objectGrabb);
15. _colocado = true;
16. ActivatePicture();
17. }
18. }
19.
20. private void ActivatePicture() { picture.SetActive(true); }
21.
22.}

public class ActivationScript : MonoBehaviour

1.{

32

2.
3. [SerializeField] private GameObject ObjectInf;
4.
5. private ObjectGrabber _og;
6.
7. private void Awake()
8. {
9. _og = GetComponent<ObjectGrabber>();
10. }
11.
12. private void Update()
13. {
14. if (_og.GetGrabbed())
15. {
16. ObjectInf.SetActive(true);
17. }
18. }
19.}

public class ButtonPressed : MonoBehaviour

1.{

2.
3. [SerializeField] private Transform falsoFondo;
4.
5. private bool _active = false;
6. private float _augmento = 0;
7.
8. private void OnTriggerEnter(Collider other)
9. {
10. if (!_active && other.CompareTag("Index"))
11. {
12. _active = true;
13. }
14. }
15.
16. private void Update()
17. {
18. if (!_active) return;
19.
20. if (_augmento < 0.4f)
21. {
22. falsoFondo.Translate(new Vector3(0, -0.001f, 0));
23. _augmento += 0.001f;
24. }
25. }
26.}

public class AgarreMano : MonoBehaviour

1.{

33

http://www.google.com/search?q=new+msdn.microsoft.com

2. [SerializeField] private string InputName;
3. [SerializeField] private Transform pivot;
4. [SerializeField] private bool isRight;
5.
6. private GameObject _currentObject;
7. private Vector3 _lastPosition;
8.
9. public bool GetMano() => isRight;
10.
11. void Update()
12. {
13. if (_currentObject !
=null && _currentObject.GetComponent<ObjectGrabber>() == null)

14. _currentObject = null;
15.
16. if (Input.GetAxis(InputName) <= 0.15f && _currentObject != null)
17. {
18. _currentObject.GetComponent<ObjectGrabber>().Throw(transform.position,
_lastPosition,true);

19. _currentObject = null;
20. }
21. _lastPosition = transform.position;
22. }
23.
24. public void OnTriggerStay(Collider colliderObject)
25. {
26. if (_currentObject !
= null || colliderObject.GetComponent<ObjectGrabber>() == null)

27. return;
28.
29.
 if (colliderObject.CompareTag("Grab") && Input.GetAxis(InputName) >= 0.15f && _c
urrentObject == null && !
colliderObject.GetComponent<ObjectGrabber>().GetGrabbed())

30. {
31. _currentObject = colliderObject.gameObject;
32. GetComponentInChildren<ControllerCollidersGrab>().ResetGrab();
33. _currentObject.GetComponent<ObjectGrabber>().Grab(pivot, isRight);
34. _currentObject.GetComponent<Rigidbody>().useGravity = false;
35. }
36. }
37.}

public class BolaLaberinto : MonoBehaviour

34

1.{

2. [SerializeField] private ObjectGrabber laberintoObjectGrabber;
3. [SerializeField] private GameObject tapa;
4. [SerializeField] private GameObject taza;
5.
6. private Rigidbody _rbBola;
7. private Vector3 _positionInitial;
8. private bool _haveRigidbody;
9. private bool _open = false;
10. private float _rotacion = 0;
11.
12. private void Awake()
13. {
14. _rbBola = GetComponent<Rigidbody>();
15. _positionInitial = transform.localPosition;
16. }
17.
18. void Update()
19. {
20.
21. if (laberintoObjectGrabber.GetGrabbed() && !_haveRigidbody)
22. {
23. StartCoroutine(nameof(AddRigidbody));
24. _haveRigidbody = true;
25. }
26. else if(!laberintoObjectGrabber.GetGrabbed())
27. {
28. Destroy(GetComponent<Rigidbody>());
29. _haveRigidbody = false;
30. }
31.
32. if (_open && _rotacion < 90)
33. {
34. if (!taza.activeSelf)
35. {
36. taza.SetActive(true);
37. taza.transform.parent = null;
38. }
39. tapa.transform.Rotate(-1, 0, 0);
40. _rotacion++;
41.
42. }
43. else if (_rotacion >= 90)
44. {
45. Destroy(this.gameObject);
46. }
47. }

35

http://www.google.com/search?q=nameof+msdn.microsoft.com

48.
49. IEnumerator AddRigidbody()
50. {
51. yield return new WaitForSeconds(0.3f);
52. gameObject.AddComponent<Rigidbody>();
53. }
54.
55. private void OnTriggerEnter(Collider other)
56. {
57. if (other.CompareTag("Ball"))
58. {
59. _open = true;
60. }
61. }
62.
63. private void OnTriggerExit(Collider other)
64. {
65. if (other.CompareTag("Laberinto"))
66. {
67. if (transform.localPosition !
= _positionInitial) transform.localPosition = _positionInitial;

68. }
69. }
70.}

public class ButtonInfo : MonoBehaviour

1.{

2. [SerializeField] private bool _isRight;
3. [SerializeField] private ControladorCandado controladorCandado;
4.
5. private void OnTriggerEnter(Collider other)
6. {
7. if (other.CompareTag("Index"))
8. {
9. controladorCandado.Rota(_isRight);
10. }
11. }
12.}

public class ColliderInfo : MonoBehaviour

1.{

2. [SerializeField] private int colliderIndentificador;
3.
4. public int GetColliderIdentificador() { return colliderIndentificador; }
5.}

36

http://www.google.com/search?q=new+msdn.microsoft.com

public class ComportamientoObjetos : MonoBehaviour

1.{

2. private ObjectGrabber _scriptObjectGrabber;
3. private Rigidbody _rb;
4. private VLB_Samples.Rotater rotater;
5. private bool _grabbed;
6. private bool _firstInteraction = false;
7.
8.
9. private void Awake()
10. {
11. _scriptObjectGrabber = GetComponent<ObjectGrabber>();
12. rotater = GetComponent<VLB_Samples.Rotater>();
13. _rb = GetComponent<Rigidbody>();
14. }
15.
16. private void Update()
17. {
18. if (!_firstInteraction && rotater.enabled)
19. {
20. _firstInteraction = true;
21. }
22.
23. _grabbed = _scriptObjectGrabber.GetGrabbed();
24. if (_grabbed)
25. {
26. rotater.enabled = false;
27. }
28. else if(_firstInteraction)
29. {
30. rotater.enabled = true;
31. _rb.isKinematic = true;
32. _rb.useGravity = false;
33. }
34. }
35.}

public class ControladorCandado : MonoBehaviour

1.{

37

2. [SerializeField] private ControladorRueda controladorRueda;
3. [SerializeField] private int posCorrect;
4. [SerializeField] private ButtonInfo[] buttons;
5.
6. private int _actualPos = 0;
7. private bool _imCorrect = false;
8.
9. public bool GetCorrent() => _imCorrect;
10.
11. public void Rota(bool direccion)
12. {
13. _actualPos += direccion ? _actualPos==3? -3:1 : _actualPos == 0 ? 3 : -1;
14. transform.Rotate(new Vector3(0,direccion? 90:-90,0));
15. CheckISCorrect();
16. controladorRueda.Check();
17. }
18.
19. private void CheckISCorrect()
20. {
21. if (posCorrect == _actualPos)
22. _imCorrect = true;
23. else
24. _imCorrect = false;
25. }
26.
27. private void OnDisable()
28. {
29. foreach (var button in buttons)
30. {
31. button.enabled = false;
32. }
33. }
34.}

public class ControladorRueda : MonoBehaviour

1.{

38

http://www.google.com/search?q=new+msdn.microsoft.com

2. [SerializeField] private ControladorCandado[] controladoresCandado;
3. [SerializeField] private GameObject Matrioshka;
4. [SerializeField] private GameObject Jarron;
5. [SerializeField] private AudioSource audio;
6.
7. private int _contador;
8.
9. public void Check()
10. {
11. audio.Play();
12. foreach (var controlador in controladoresCandado)
13. {
14. if (controlador.GetCorrent()) _contador++;
15. }
16. if (_contador == 3)
17. {
18. transform.Rotate(new Vector3(0,0,-90));
19. Matrioshka.tag = "Grab";
20. Jarron.tag = "Grab";
21. this.enabled = false;
22. }
23. _contador = 0;
24. }
25.
26. private void OnDisable()
27. {
28. foreach (var controlador in controladoresCandado)
29. {
30. controlador.enabled = false;
31. }
32. }
33.}

public class ControllerCollidersGrab : MonoBehaviour

39

http://www.google.com/search?q=new+msdn.microsoft.com

1.{

2. private Collider[] colliders;
3. private StopFinger[] stopFingers;
4.
5. private void Awake()
6. {
7. colliders = GetComponentsInChildren<Collider>();
8. stopFingers = GetComponentsInChildren<StopFinger>();
9. }
10.
11. public void ForcedThrow()
12. {
13. foreach (var fingerScript in stopFingers)
14. fingerScript.PlayThisFinger();
15. }
16.
17. private void OnEnable()
18. {
19. foreach (var collider in colliders)
20. collider.enabled = true;
21. }
22.
23. private void OnDisable()
24. {
25. foreach (var collider in colliders)
26. collider.enabled = false;
27. foreach (var finger in stopFingers)
28. finger.Reset();
29. }
30.
31. public void ResetGrab()
32. {
33. foreach (var finger in stopFingers)
34. finger.ResetRotation();
35. }
36.}

public class DesactivaPared : MonoBehaviour

40

1.{

2. [SerializeField] private Transform puerta;
3. [SerializeField] private GameObject fotoZledic;
4.
5. private bool _collide = false;
6.
7. private void OnTriggerEnter(Collider other)
8. {
9. var trozoTetera = other.GetComponentInChildren<TrozoTetera>();
10. if (!_collide && trozoTetera != null && trozoTetera.GetHijos()==3)
11. {
12. DisableGrabbing(other.gameObject);
13. _collide = true;
14. }
15. }
16.
17. private void DisableGrabbing(GameObject tetera)
18. {
19. tetera.GetComponent<ObjectGrabber>().Throw(Vector3.zero,
Vector3.zero, false);

20.
tetera.transform.SetPositionAndRotation(transform.position,transform.rotation);

21. Destroy(tetera.GetComponent<ObjectGrabber>());
22. puerta.Rotate(0, 0, -82);
23. fotoZledic.SetActive(true);
24. }
25.
26.}

41

public class JarronScript : MonoBehaviour

1.{

2. [SerializeField] private GameObject jarronTrozos;
3.
4. private Rigidbody _rb;
5. private ObjectGrabber _objectGrabber;
6. private bool _destroyed = false;
7.
8. private void Awake()
9. {
10. _rb = GetComponent<Rigidbody>();
11. _objectGrabber = GetComponent<ObjectGrabber>();
12. }
13.
14. private void OnCollisionEnter(Collision collision)
15. {
16. if (!_destroyed && !_objectGrabber.GetGrabbed() && GoodVelocity() > 0.3f)
17. {
18. _destroyed = true;
19. Instantiate(jarronTrozos,transform.position,transform.rotation);
20. Destroy(gameObject);
21. }
22. }
23.
24. private float GoodVelocity()
25. {
26. var aux = _rb.velocity.x + _rb.velocity.y + _rb.velocity.z;
27. return aux;
28. }
29.}

42

public class Linterna : MonoBehaviour

1.{

2. [SerializeField] private Transform pivote;
3. [SerializeField] private GameObject light;
4. [SerializeField] private GameObject marker;
5.
6. private ObjectGrabber _objectGrabber;
7. private bool _active = false;
8. private string _buttDer = "Oculus_CrossPlatform_Button2";
9. private string _buttIzq = "Oculus_CrossPlatform_Button4";
10.
11. private void Awake()
12. {
13. _objectGrabber = GetComponent<ObjectGrabber>();
14. }
15.
16. private void Update()
17. {
18. if (_objectGrabber.GetGrabbed())
19. {
20. marker.SetActive (false);
21. var hand = _objectGrabber.GetHandGrabbing;
22.
 if ((Input.GetButtonDown(_buttDer) && hand.GetComponent<AgarreMano>().GetMano())
|| (Input.GetButtonDown(_buttIzq) && !hand.GetComponent<AgarreMano>().GetMano()))

23. {
24. _active = !_active;
25. light.SetActive(_active);
26. }
27. return;
28. }
29. marker.SetActive(true);
30.
31.
32. if (transform.position != pivote.position)
33. {
34. transform.position = pivote.position;
35. transform.rotation = Quaternion.Euler(90,0,0);
36. _active = false;
37. light.SetActive(false);
38. }
39. }
40.}

43

public class LlaveCajaMusica : MonoBehaviour

1.{

2. [SerializeField] private Transform pivoteInsert;
3. [SerializeField] private Vector3 rotation = new Vector3(0, 0, 270);
4. [SerializeField] private Transform tapa;
5. [SerializeField] private GameObject taza;
6. [SerializeField] private GameObject UI;
7. [SerializeField] private AudioSource audioSource;
8.
9. private Vector3 _posInit;
10. private Quaternion _rotInic;
11. private bool _rotate = false;
12. private bool _activate = false;
13. private float _keyRotation = 0;
14. private bool _open;
15. private float _tapRotation = 0;
16.
17. private void Awake()
18. {
19. _posInit = transform.position;
20. _rotInic = transform.rotation;
21. audioSource = GetComponent<AudioSource>();
22. }
23.
24. private void Update()
25. {
26. if (!_activate && GetComponent<ObjectGrabber>().GetGrabbed())
27. _activate = true;
28.
29. if (_activate && !_rotate && !_open && transform.position != _posInit && !
GetComponent<ObjectGrabber>().GetGrabbed())

30. {
31. transform.SetPositionAndRotation(_posInit, _rotInic);
32. GetComponent<Rigidbody>().velocity = Vector3.zero;
33. }
34.
35. if (_rotate && _keyRotation < 360)
36. {
37. transform.Rotate(0, 2, 0);
38. _keyRotation += 2;
39. _open = _keyRotation == 360? true : false;
40. taza.SetActive(true);
41. Destroy(UI);
42. }
43.
44. if (_open && _tapRotation < 90)
45. {

44

http://www.google.com/search?q=new+msdn.microsoft.com

46. tapa.Rotate(-1, 0, 0);
47. _tapRotation++;
48. }
49.
50. }
51.
52. private void OnTriggerEnter(Collider other)
53. {
54. if (other.CompareTag("MusicBox") && !_rotate)
55. {
56.
GetComponent<ObjectGrabber>().Throw(this.transform.position,this.transform.positi
on, false);

57. GetComponent<Rigidbody>().isKinematic = true;
58. transform.parent = pivoteInsert;
59. transform.localPosition = Vector3.zero;
60. transform.localRotation = Quaternion.Euler(rotation);
61. Destroy(GetComponent<ObjectGrabber>());
62. _rotate = true;
63. audioSource.Play();
64. //
65. }
66. }
67.}

45

public class Monoculo : MonoBehaviour

1.{

2. [SerializeField] private Camera camera;
3.
4. private ObjectGrabber _objectGrabber;
5.
6. private void Awake()
7. {
8. _objectGrabber = GetComponent<ObjectGrabber>();
9. }
10.
11.
12. private void Update()
13. {
14.
15. if (_objectGrabber.GetGrabbed() && !camera.enabled)
16. {
17. camera.enabled = true;
18. return;
19. }
20. else if(!_objectGrabber.GetGrabbed())
21. {
22. camera.enabled = false;
23. }
24.
25. }
26.}

27.

46

public class ObjectGrabber : MonoBehaviour

1.{

2. [SerializeField] private Vector3 rotacionAgarreDer;
3. [SerializeField] private Vector3 rotacionAgarreIzq;
4.
5. private bool _isGrabbed;
6. private Quaternion _pivotRotationInic;
7. private Vector3 _lastPosition;
8. private GameObject handGrabbing;
9.
10. private float MultiplyVeloc = 1.25f;//Multiplicador de la velocidad de
lanzamiento

11.
12. public GameObject GetHandGrabbing => handGrabbing;
13.
14. public void Update()
15. {
16. _lastPosition = transform.position;
17. }
18.
19. public bool GetGrabbed() { return _isGrabbed; }
20.
21. public void Grab(Transform pivot, bool derecha)
22. {
23. handGrabbing = pivot.parent.gameObject;
24. transform.parent = pivot;
25. transform.SetPositionAndRotation(pivot.position,pivot.rotation);
26. var rot = derecha ? rotacionAgarreDer : rotacionAgarreIzq;
27. //Debug.Log(rot);
28. transform.Rotate(rot);
29. Rigidbody rb = GetComponent<Rigidbody>();
30. rb.useGravity = false;
31. rb.isKinematic = true;
32. SetCollidersTrigger(true);
33. _isGrabbed = true;
34. }
35.
36. public void Throw(Vector3 hand, Vector3
handLastPosition, bool activeRigidBody)//Se usa la pos de la mano para dejar el
objeto ahy, la ultima pos de la mano para calcular la vel y la rotación para
dejarlo con la rotaión actual de la mano

37. {
38. _isGrabbed = false;
39.
handGrabbing.GetComponentInChildren<ControllerCollidersGrab>().ForcedThrow();

40. handGrabbing = null;
41. Rigidbody rb = GetComponent<Rigidbody>();

47

42. if (activeRigidBody)
43. {
44. rb.useGravity = true;
45. rb.isKinematic = false;
46. Vector3 CurrentVelocity = (hand - handLastPosition) / Time.deltaTime;
47. rb.velocity = CurrentVelocity * MultiplyVeloc;
48. }
49. SetCollidersTrigger(false);
50. transform.parent = null;
51. }
52.
53. private void SetCollidersTrigger(bool set)
54. {
55. var colliders = GetComponents<Collider>();
56. var colliderChildren = GetComponentsInChildren<Collider>();
57. foreach (var collider in colliders)
58. collider.isTrigger = set;
59.
60. }
61.
62.}

48

public class StopFinger : MonoBehaviour {

1.
2. [SerializeField] private Transform indexAnt;
3. [SerializeField] private string triggerButton;
4. [SerializeField] private List<StopFinger> fingersAnt;
5. [SerializeField] private bool _isThumb;
6.
7. private float _multiplyer;
8. private float _multiplyerAnt = 0;
9. private float _maxRotacion;
10. private Vector3 _rotInic;
11. private bool _collisionDetected;
12. private bool _otherCollided;
13.
14. private float _maxThumb = -0.4f;
15.
16. private void Awake()
17. {
18. _rotInic = indexAnt.transform.localRotation.eulerAngles;
19. }
20.
21. private bool CheckThumb()
22. {
23.
 if (indexAnt.transform.localRotation.eulerAngles.z < _rotInic.z + 0.1f && indexA
nt.transform.localRotation.eulerAngles.z > _rotInic.z - 0.1f)

24. return false;
25. return true;
26. }
27.
28. private void Update()
29. {
30. _multiplyer = Input.GetAxis(triggerButton);
31. if (_isThumb)
32. {
33. if (_multiplyer == 1 && !_collisionDetected && !
_otherCollided && _multiplyerAnt < _multiplyer)//Avanza

34. {
35. indexAnt.Rotate(0, 0, -0.05f * 50);
36. _multiplyerAnt += 0.05f;
37. }
38. else if(_multiplyer == 0 && _multiplyerAnt> _multiplyer)
39. {
40. indexAnt.Rotate(0, 0, 0.05f * 50);
41. _multiplyerAnt -= 0.05f;
42. }

49

43. }
44. else
45. {
46. if (_multiplyer > _multiplyerAnt && _maxRotacion == 0)//Avanza
47. {
48. if (!_collisionDetected && !_otherCollided)
49. {
50. if (_multiplyer - _multiplyerAnt < 0.05f) return;
51. indexAnt.Rotate(0, 0, -0.05f * 50);
52. _multiplyerAnt += 0.05f;
53. }
54. }
55. else if (_multiplyer < _multiplyerAnt)//Retrocede
56. {
57. if ((_maxRotacion == 0 || _multiplyer < _maxRotacion) /*&&
indexAnt.transform.localRotation.z < rotInic.normalized.z*/)

58. {
59. if (_multiplyer - _multiplyerAnt > -0.05f) return;
60.
61. indexAnt.Rotate(0, 0, 0.05f * 50);
62. _multiplyerAnt -= 0.05f;
63. }
64. }
65. else if (_multiplyer == 0)
66. {
67. indexAnt.localRotation = Quaternion.Euler(_rotInic);
68. }
69. }
70. }
71.
72. private void OnTriggerEnter(Collider other)
73. {
74. if (other.gameObject.CompareTag("CollisionFingers"))
75. {
76. _collisionDetected = true;
77. _maxRotacion = indexAnt.transform.localRotation.z;
78. StopLastFingers();
79. }
80. }
81.
82. private void OnTriggerExit(Collider other)
83. {
84. if (other.gameObject.CompareTag("CollisionFingers"))
85. {
86. _collisionDetected = false;
87. _maxRotacion = 0;
88. if (_isThumb) _maxThumb = -0.4f;

50

89. PlayLastFingers();
90. }
91. }
92.
93. private void StopLastFingers()
94. {
95. foreach (var finger in fingersAnt)
96. {
97. finger.StopThisFinger();
98. }
99. }
100.
101. private void PlayLastFingers()
102. {
103. foreach (var finger in fingersAnt)
104. {
105. finger.PlayThisFinger();
106. }
107. }
108.
109. public void PlayThisFinger()
110. {
111. _otherCollided = false;
112. _collisionDetected = false;
113. }
114.
115. public void StopThisFinger()
116. {
117. _otherCollided = true;
118. }
119.
120. public void Reset()
121. {
122. _multiplyerAnt = 0;
123. _maxRotacion = 0;
124. _maxThumb = -0.4f;
125. _collisionDetected = false;
126. }
127.
128. public void ResetRotation()
129. {
130. indexAnt.localRotation = Quaternion.Euler(_rotInic);
131. Reset();
132. }
133.}

51

public class TrozoTetera : MonoBehaviour

1.{

2. public EventsSystem eventSystem;
3.
4. [SerializeField] private int identificador;
5.
6. private int _hijos = 0;
7. private bool _todoUnido;
8. public int GetHijos() => _hijos;
9. public void SetHijos(int hijosSum) => _hijos += hijosSum;
10. public int GetIdentificador() { return identificador; }
11.
12. private void OnTriggerEnter(Collider other)
13. {
14.
 if (other.CompareTag("TeapotPiece") && other.GetComponent<ColliderInfo>().GetCol
liderIdentificador() == identificador)

15. {
16.
17.
 if (other.GetComponentInParent<TrozoTetera>().GetIdentificador() > identificador
) return;

18.
19. if (!GetComponent<ObjectGrabber>().GetGrabbed() || !
other.GetComponentInParent<ObjectGrabber>().GetGrabbed()) return;

20.
21. other.gameObject.GetComponentInParent<TrozoTetera>().SetHijos(_hijos+1);
22.
GetComponent<ObjectGrabber>().Throw(transform.position,transform.position,false);

23. Destroy(GetComponent<ObjectGrabber>());
24. Destroy(GetComponent<Rigidbody>());
25. Destroy(GetComponent<VLB_Samples.Rotater>());
26. Destroy(GetComponent<ComportamientoObjetos>());
27. transform.parent = other.transform;
28. transform.localPosition = Vector3.zero;
29. transform.localRotation = Quaternion.Euler(Vector3.zero);
30.
31. RemoveCollidersHijos();
32. RemoveCollsionWithFingers();
33. }
34.
35. if (identificador == 1 && _hijos == 3 && !_todoUnido)
36. {
37. Destroy(GetComponent<VLB_Samples.Rotater>());
38. Destroy(GetComponent<ComportamientoObjetos>());
39. eventSystem.DesactivateToys();
40. _todoUnido = true;

52

41. }
42.
43. }
44.
45. private void RemoveCollidersHijos()
46. {
47. var colliders = GetComponentsInChildren<Collider>();
48. foreach (var coll in colliders)
49. Destroy(coll);
50. }
51.
52. private void RemoveCollsionWithFingers()
53. {
54. var fingersCollision = GetComponentsInChildren<Transform>();
55. foreach (var collisionGO in fingersCollision)
56. {
57. if (collisionGO.CompareTag("CollisionFingers"))
58. {
59. collisionGO.tag = "Untagged";
60. }
61. }
62. }
63.}

public class UIObjectScript : MonoBehaviour

1.{

2. [SerializeField] private GameObject UI;
3.
4. private ObjectGrabber _objectGrabber;
5.
6. private void Awake()
7. {
8. _objectGrabber = GetComponentInParent<ObjectGrabber>();
9. }
10.
11. private void Update()
12. {
13. if (_objectGrabber.GetGrabbed())
14. {
15. Destroy(transform.gameObject);
16.
17. }
18. }
19.
20.
21.}

53

54

	Acknowledgements
	Abstract
	Key words
	Index
	Figure Index
	1. Introduction
	1.1 Work motivation
	1.2 Objectives
	1.3 Initial state

	2 Planning
	2.1 Related courses
	2.2 Resorce Evaluation

	3 Game design
	3.1 Synopsis
	3.2 Overview
	3.2.1 Game Concept
	3.2.2 Genre
	3.2.3 Target audience
	3.2.4 Look and feel / game experience

	4 Work development
	4.1 Principles of programming
	4.2 Basic programming concepts
	4.3 Tracking
	4.4 Grabbing Objects
	4.5 Special mechanics for objects:
	4.5.1 Lantern
	4.5.2 Matrioska
	4.5.3 Teapot
	4.5.4 Music box key
	4.5.5 Monocular
	4.5.6 Labyrinth box

	4.6 Vornik special mechanics:
	4.6.1 Answer mechanics using head movements
	4.6.2 Pressing buttons with the index
	4.6.3 Padlock with drag

	4.7 Grab
	4.7.1 Study of movement
	4.7.2 Study for effective implementation
	4.7.2.1 Coordination with controller pulse
	4.7.2.2 Collision detection:
	4.7.2.3 Iterative implementation with controller or recursive

	4.7.3 Implementation

	4.8 Movement
	4.8.1 Movement with Joystick
	4.8.2 Teleport

	4.9 Physics and objects

	5 Results
	6 Conclusions
	7 Future work
	8 References
	9 Bibliography
	10 Appendix A – Additional documentation

