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Abstract 

Background: Binding affinity for human serum albumin (HSA) is one of the most important 

factors affecting the distribution and free blood concentration of many ligands. The effect of 

fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 

3-dimensional structure of HSA, molecular simulation approaches have been applied to 

studies of the structure-function relationship of HSA-FA binding. 

Scope of review: We review current insights into the effects of FA binding on HSA, focusing 

on the biophysical insights obtained using molecular simulation approaches such as docking, 

molecular dynamics (MD), and binding free energy calculations. 

Major conclusions: Possible conformational changes on binding of FA molecules to HSA 

have been observed through MD simulations. High- and low-affinity FA-binding sites on 

HSA have been identified based on binding free energy calculations. The relationship 

between the warfarin binding affinity of HSA and FA molecules has been clarified based on 

the results of simulations of multi-site FA binding that cannot be experimentally observed. 

General significance: Molecular simulation approaches have great potentials to provide 

detailed biophysical insights into HSA as well as the effects of the binding of FAs or other 

ligands to HSA. 
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1. Introduction 

Human serum albumin (HSA) is the most abundant protein in blood plasma and has 

ligand-binding and enzymatic properties. HSA is a transporter and depot protein for numerous 

endogenous compounds (e.g., fatty acids [FAs]) and exogenous compounds, and is also 

capable of binding to many commonly used drugs. Binding to HSA is one of the factors 

influencing drug disposition [1-3]. Recently, interactions between HSA and environmentally 

hazardous substances such as carbon nanoparticles [4] and PCB153 [5] have been also 

reported. 

Since the first report of the 3-dimensional structure of HSA in 1992 [6], more than 70 such 

structures of HSA have been deposited in the Protein Data Bank (PDB). X-ray 

crystallography [6-30] and nuclear magnetic resonance (NMR) spectroscopy [31, 32] have 

revealed not only the structure of HSA but also those of its ligand-binding modes. Based on 

these structures, additional significant insights, such as the dynamic properties of HSA, have 

been revealed using molecular simulation approaches. Molecular dynamics (MD) simulation 

is a well-established method for the analysis of macromolecular conformations, especially 

focusing on the dynamic nature of macromolecules. Currently, MD simulations are playing a 

larger role in the study of macromolecules as a result of continuous improvements in 

algorithms, software and hardware [33-35]. In this review, we describe current insights into 

the conformation and function of HSA obtained with molecular simulation approaches, such 

as MD, molecular docking, and binding free energy calculations, focusing on the effects of 

FA binding. 

 

2. FA binding to HSA: experimental approaches 

2.1 Interaction between HSA and FA 

FAs play critical roles in energy metabolism and the synthesis of membrane phospholipids. 

In the body, FAs are transported via the lymphatic and vascular systems. Owing to their low 

solubility in water, FAs require a transporter to increase their concentration in vascular and 

interstitial compartments. HSA is the main FA-binding protein in extracellular fluid [36]. 

Under normal physiological conditions, HSA binds with approximately 0.1–2 mol FA per 

mole protein [37]. The FA/HSA molar ratio increases to 6 during fasting or maximum 

exercise [38, 39] or under pathological conditions such as diabetes [40, 41] and cardiovascular 

disease [42]. 

Interaction between HSA and FAs has long been studied. Early affinity constants of HSA 

reported for FAs indicated that multiple FA-binding sites exist on HSA [43-47]. Later, the 

presence of 7 FA-binding sites on the protein was elucidated through X-ray crystallographic 

studies (Figure 1). These FA-binding sites are common for medium-/long-chain or 

monosaturated/polysaturated FAs [7, 10, 11, 48]. The FA-binding affinity (high/low) of each 

site has been also identified with 
13

C NMR spectroscopy [49, 50] and site-directed 

mutagenesis of HSA [51] (Figure 1). Comparison of the 3-dimensional structures of defatted 

HSA and HSA-FA complexes has revealed that the binding of FA molecules to HSA causes a 

relative rearrangement at the I-II and II-III domain interfaces [7, 10, 52] and conformational 

changes of the side chains of subdomain IIA [17]. 

 

2.2 Effect of FA on HSA-ligand binding 
Ligand-binding affinity for HSA is among the most important factors affecting the 

distribution and free concentration of many ligands, and the binding affinity is likely to be 

influenced by the binding of FAs to HSA, because some of the FA-binding sites overlap with 

ligand-binding sites [17]. Table 1 shows the ligands that bind to FA-binding sites, which have 

been revealed by X-ray crystallography. FA-binding site 7 (subdomain IIA), and sites 3 and 4 

(subdomain IIIA) are known as major drug-binding sites I and II, respectively [17, 53]. In 
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general, bulky heterocyclic anions bind preferentially to FA-binding site 7, while sites 3 and 4 

are preferred by aromatic carboxylates with an extended conformation [52, 54]. FA-binding 

site 1 is also a major ligand-binding site, especially for endogenous compounds such as heme 

[13, 15], bilirubin [21], and prostaglandins [23]. The binding of heme to this site has been 

reported to reduce the affinity of ligands for drug-binding site I [52]. Few ligands have been 

reported that bind to FA-binding sites 2, 5, and 6. Sites 5 and 6 have been identified as the 

sites with highest and low FA affinities, respectively [50]. The binding of FA to site 2, as well 

as the binding of heme to site 1, has been reported to stabilize the rotated conformation of 

domain I relative to domain II [7, 10, 52, 55]. Details on an expected correlation between 

preferred binding sites and classes of bound ligands are well summarized in recent reviews [3, 

52, 54]. Numerous experimental studies have also indicated that ligand-binding affinity to 

HSA can be modulated through simultaneous binding of FAs [55-68]. The modulation is 

caused by competitive binding between a ligand and an FA at the same binding site [17] or 

allosteric effects from the binding of FAs [62, 66-68]. 

 

3. Molecular simulation of HSA and its application to HSA-FA binding studies 

3.1 Molecular simulation studies of HSA to date 

X-ray crystallography and NMR spectroscopy have made significant contributions to the 

structural analyses of HSA. In addition to these experimental techniques, molecular 

simulation approaches have become feasible for further structural-functional analyses of HSA. 

In this section, we review docking, MD, and binding free energy calculation studies of HSA. 

 

3.1.1 Molecular modeling studies using electrostatic potential calculation or molecular 

docking simulations 

The electrostatic potential around HSA has been analyzed using the determined HSA 

structure to find ligand-binding sites on HSA and bound conformations of ligands. 

Grymonpré et al. [69] have predicted the binding site of hyaluronic acid from the calculated 

electrostatic potential around HSA. Song and Gunner [70] have analyzed the binding of 

chloride ions using multi-conformation continuum electrostatics. 

Molecular docking approaches have been widely used for the molecular modeling of 

HSA-ligand binding. Although more than 70 HSA structures on PDB database have given 

insights into ligand-binding sites on HSA and bound conformations of many ligands [3, 52, 

54], it is still difficult to predict the exact binding modes (ligand-binding site and bound 

conformation) of unknown HSA-ligand complexes, because of the existence of multiple 

ligand-binding sites on HSA and flexible amino acid side chains at those sites. Docking 

simulations have been performed to estimate HSA-ligand binding modes computationally. 

Currently, more than 60 HSA-ligand docking studies have been reported (Table 2). The 

binding modes obtained in these studies can help further structural-functional analyses of 

HSA. 

The results of docking simulation are generally reported along with experimental studies 

such as equilibrium dialysis, circular dichroism, fluorometry, calorimetry, and spectroscopy 

[5, 63, 67, 71-124]. In spite of this, choosing the correct target for docking can sometimes be 

difficult owing to the existence of multiple ligand-binding sites on HSA [3, 17, 54]. Hence, 

the results of such studies should be interpreted with caution. In the case of bilirubin, for 

example, docking simulation has been carried out for subdomain IIA (drug-binding site I) of 

HSA [125]. Although the study reported that bilirubin was docked to subdomain IIA in a 

robust manner, X-ray crystallography identified that bilirubin binds to subdomain IB instead 

[21]. Many of the experimental studies have examined only subdomains IIA and IIIA 

(drug-binding site II) as target sites for docking, because these sites are primary drug-binding 
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sites [53]. Experiments that examine the binding of a ligand at sites other than drug-binding 

sites I and II may be useful to select the correct site for docking simulations. 

 

3.1.2 MD simulations for analyzing conformations of HSA or HSA-ligand complexes 

The first MD simulation of HSA was reported in 2001, and it analyzed the influence of the 

protonation states of Lys195 and Lys199 on HSA conformation [126]. Simulations of the 

binding of divalent cations (Co
2+

, Cu
2+

, Ni
2+

 and Cd
2+

) to the N-terminus of HSA were 

reported in 2004 [127]. These simulations used part of the HSA molecule. The MD simulation 

of the whole HSA molecule was first published in 2005 and reported that inter-domain motion 

of the unliganded HSA molecule was observed in a 2-ns MD simulation [128]. Fujiwara and 

Amisaki [129] later carried out 10-ns MD simulations of defatted and FA-bound HSA to 

analyze the conformational changes of HSA brought about by the binding of FA molecules, 

as described in section 3.2.1. The interaction of HSA with macromolecules has also been 

analyzed using MD simulations with a chrysotile surface [130], a carbon nanotube surface 

[131], self-assembling monolayers [132], poly(amidoamine) dendrimers [133], and 

HSA-HSA adsorption [134]. 

Three-dimensional structures of HSA obtained with X-ray crystallography are used in 

common for starting structures for MD simulations. HSA-ligand structures obtained through 

docking simulations have been also used for MD to confirm the stability of docked complexes 

[80, 84, 87, 90, 100, 104, 119, 120, 135-138]. Some of the HSA-ligand structures obtained 

using docking and MD simulations have been applied to quantum mechanics calculations of 

the excitation energies [138] and quantitative structure-activity relationship analyses of 

HSA-ligand binding affinity [139]. In addition, longer time scale (≥100 ns) MD simulations 

have been recently performed for analyses of the HSA-aspirin complex [140], the HSA-heme 

complex [141], the structural role of disulfide bridges in HSA [142], and the conformational 

flexibility of the unliganded HSA [119]. Thus, MD simulations are playing an increasingly 

important role in structural-functional studies of HSA. 

 

3.1.3 HSA-ligand binding free energy calculations based on MD trajectory data 

An MD trajectory of ligand-bound structures is a collection of estimated equilibrium 

conformations. Trajectory data have been used for the calculation of HSA-ligand binding free 

energy as well as conformational analyses. The HSA-ligand binding free energy (binding 

affinity) correlates with percentage plasma protein binding [143]. To date, calculated binding 

free energies have been reported for Gd-AAZTA complex (AAZTA = 

6-amino-6-methylperhydro-1,4-diazepine tetraacetic acid)  zidovudine and its 

derivatives [63], FAs (see section 3.2.2) [145], levamlodipine [76], flavones [78], 

perfluorooctanoic acid and perfluorooctane sulfonate [146], 

warfarin [147]. Fujiwara and Amisaki 

[147] have calculated binding free energies under various FA/HSA molar ratios, as described 

in section 3.2.3 were consistent with those from 

experimental approaches, indicating the appropriateness of the calculations. 

 

3.2 Applications of molecular simulations to HSA-FA binding 

As of Febrary 2013, eight studies have been published that report the application of 

molecular simulations to HSA-FA binding. In this section, we review these published studies 

concerning (1) conformational changes of HSA caused by FA binding [129], (2) conformation 

and binding affinity of an FA molecule at each FA binding site [145, 148], and (3) effect of 

FA binding on HSA-ligand interaction [63, 72, 144, 147, 149]. 

 

3.2.1 MD studies of conformational changes in HSA caused by binding of FA molecules 
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  Fujiwara and Amisaki [129] carried out conformational analyses of the unliganded HSA 

and the HSA-FA complex with 10-ns MD simulations. The radius of gyration of MD 

simulations of the unliganded HSA was almost the same that of the experimental value, 

indicating that the equilibrium state of HSA molecules in aqueous solution was reproduced 

well in the MD simulations. The main differences between the unliganded HSA and the 

HSA-FA complex were observed in the primary internal motions characterized by the first 3 

principal components at domains I and III (Figure 2). The directional motion projected on the 

first principal component of the unliganded HSA was conserved in the HSA-FA complex as 

the third principal directional motion with higher frequency. Thus, their MD study provides 

insights into the possible conformational changes of HSA caused by the binding of FA 

molecules on a scale of 10-ns. A method to obtain a full impression of the conformational 

freedom of HSA is to perform simulations over longer time periods. Continuing 

improvements in MD algorithms and software, and enhanced hardware performance will 

enable longer MD simulations, which may provide further insights into the effect of FA 

binding on the conformation of HSA. 

 

3.2.2. Identification of high-affinity FA binding sites on HSA by molecular simulations 

When considering the interaction between FA molecules and other ligands, the 

identification of high-affinity FA-binding sites on HSA is very important (see section 2.2). 

Seven possible FA-binding sites have been revealed with X-ray crystallography [10, 11]. 

High- and low-affinity FA binding sites have also been experimentally determined with 
13

C 

NMR spectroscopy [49, 50]. 

Rizzuti et al. [148] have analyzed the structural basis of high-affinity FA-binding site 5 

using MD simulations. They observed that Lys525 was important because the residue 

anchored FA head-groups. Fujiwara and Amisaki [145] have quantitatively examined the 

HSA-FA affinity at each FA-binding site using MD simulations and binding free energy 

calculations. The calculated value of each absolute binding free energy deviated greatly from 

the experimental binding free energies as estimated using the HSA-FA affinity constants [45] 

(Figure 3). However, the spectrum of the affinity (high/low) over FA binding sites was 

successfully identified. They identified FA-binding sites 5, 4, and 2 as high-affinity sites, and 

1, 3, 6, and 7 as low-affinity sites, identical to those of the experimental approaches [50] (see 

Figure 1). Binding free energy calculation may be useful for comparison of the relative 

stabilities of HSA-ligand complexes, although the accurate calculation of absolute binding 

free energy is one of the challenges to be tackled in theoretical studies. 

 

3.2.3. Effect of FA molecules on HSA-ligand binding 

The published X-ray structures of HSA-ligand-FA complexes have given insights into the 

effect of FA on HSA-ligand binding [17, 54]. However, the number of the structures is not 

nearly large enough to cover the binding modes of the complexes, because of the existence of 

multiple ligand-binding sites on HSA and flexible amino acid chains at those sites. As the 

second best approach, molecular simulations have been performed to analyze the effect of FA 

molecules on HSA-ligand binding. One of the advantages of molecular simulation approaches 

is that conditions that are not observed experimentally can be simulated computationally. The 

effects of FA molecules on the interaction between HSA and ligands have been analyzed 

through docking simulations. Paal and Shkarupin [149] have reported reduced binding 

affinities of paclitaxel, in comparison to the defatted HSA, at paclitaxel-binding sites on the 

HSA-FA complex. Gianolio et al. [144] have observed that Gd-AAZTA binds with different 

affinities to defatted (low affinity) and FA-bound HSA (high affinity) as a consequence of the 

conformational changes upon FA binding. Fanali et al. [72] have performed docking analyses 

of 3 anti-HIV drugs in 4 of the 7 FA-binding sites to compare intermolecular energies of the 
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drugs at each site. Quevedo et al. [63] have observed that reduced affinities of zidovudine 

derivatives in the presence of FAs were caused by an intense electrostatic repulsion between 

FA and ligands with negative charges. 

An approach focusing on the number of FA molecules bound to HSA has been also 

reported. Fujiwara and Amisaki [147] have analyzed the relationship between HSA-warfarin 

binding affinity and the positions of bound FA molecules. Based on the affinity at each 

FA-binding site (section 3.2.2), they constructed 11 “virtual” HSA-warfarin-FA complexes, 

each with different FA molecule positions. These virtual complexes were used for MD 

simulations and binding free energy calculations for HSA-warfarin binding (Figure 4). The 

results indicate that unfavorable steric effects on HSA-warfarin binding affinity (in terms of 

the van der Waals energy contribution) were caused by the binding of an FA molecule to 

FA-binding site 2, which is closest to the warfarin-binding site (see Figure 1). Conversely, the 

magnitude of HSA-warfarin binding free energy was discovered to be largest (i.e., the 

HSA-warfarin binding affinity was strongest) when 3 FA molecules were bound to the 

high-affinity sites. The relationship between HSA-warfarin binding affinity and the number of 

bound FA molecules (Figure 4) coincided with the previous observations [59]. This study 

clarified the structural and energetic properties of these steric/allosteric effects of FAs on 

HSA-warfarin binding affinity. The molecular simulation approach described above may be 

applicable to binding studies of interactions between other ligands and HSA. 

 

4. Conclusions 

We reviewed recent molecular simulation studies to analyze the structure-function 

relationship of HSA, focusing on the HSA-FA binding. Differences in the directional motions 

of domains I and III between the unliganded HSA and the HSA-FA complex have been 

analyzed with MD simulations (see section 3.2.1). High- and low-affinity FA-binding sites on 

HSA have been identified quantitatively with MD simulations and binding free energy 

calculations (see section 3.2.2). In addition, HSA-ligand binding free energies were calculated 

with respect to the positions of FA molecules bound to HSA (see section 3.2.3). Such 

approaches will continue to evolve in themselves in terms of simulation theory and computer 

technology. For example, MD studies on millisecond time scales are now available [150]. To 

date, MD simulations on nanosecond time scales (≥100 ns) have been reported for HSA. 

Longer-time-scale MD calculations may elucidate unknown conformational characteristics of 

HSA. 

One of the characteristics of HSA-FA binding is the binding of multiple FA molecules. We 

expect that HSA is useful as a model of multiple-ligand-binding proteins, and that additional 

advances in molecular simulation approaches may lead to the elucidation of the relationship 

between conformation and function of HSA. 
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Table 1. Ligands bound to FA-binding sites on human serum albumin (HSA). 

Site 
a
 Bound ligand identified by X-ray crystallography 

1 Azapropazone [17], AZT
b
 [20], bilirubin-IX [21], dansyl-L-asparagine [26], 

dansyl-L-arginine [26], dansyl-L-glutamate [26], fusidic acid [21], heme [13, 15], 

indomethacin [17], iophenoxic acid [27], naproxen [19], 
12

-prostaglandin J2 [23], 

salicylic acid [18, 20], triiodobenzoic acid [7] 

2 Halothane [9] 

3, 4 CMPF
c 

[17], dansyl-L-asparagine [26], dansyl-L-norvaline [26], 

dansyl-L-phenylalanine [26], dansyl-L-sarcosine [26], diazepam [17], diflunisal [17], 

halothane [9], ibuprofen [17], indoxyl sulfate [17], iophenoxic acid [27], propofol [9] 

5 Fusidic acid [21], oxyphenbutazone [17], propofol [9] 

6 DAUDA
d
 [29], diflunisal [17], halothane [9], ibuprofen [17] 

7 Aspirin [18], azapropazone [17], AZT
b
 [20], citric acid [16], CMPF

c
 [17], 

dansyl-L-arginine [26], dansyl-L-asparagine [26], dansyl-L-glutamate [26], 

dansyl-L-phenylalanine [26], DAUDA
d
 [29], diflunisal [17], halothane [9], 

indomethacin [17], indoxyl sulfate [17], iodipamide [17], iophenoxic acid [27], 

lysophosphatidylethanolamine [22], oxyphenbutazone [17], phenylbutazone [17], 

salicylic acid [18, 20], triiodobenzoic acid [7], warfarin [12, 17] 
a
 The numbering of the FA binding sites was sourced from Bhattacharya et al. [10]. 

b 
3'-Azido-3'-deoxythymidine. 

c
 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid. 

d 
11-(Dansylamino) undecanoic acid. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Table 2. HSA-ligand docking simulations reported as of Febrary 2013. 

Year Ligand docked to HSA 

2006 Formononetin [71] 

2007 Anti-HIV drugs (abacavir, nevirapine, atazanavir) [72], bilirubin [125], eupatilin 

[73], paclitaxel [149],  

2008 Noble gas [151], zidovudine and its derivatives [63] 

2009 Daunorubicin [74], deoxyuridine [75], levamlodipine [76], 

2010 Angiotensin II receptor blockers [136], anti-Parkinson’s disease drugs (apomorphine 

and benserazide) [77], flavones [78], flavonoids [67], glucose [135], 

metsulfuron-methyl [79], perfluorooctanoic acid and perfluorooctane sulfonate [146], 

-sitosterol [80], sulfometuron-methyl [152]  

2011 Anthraquinone dye [81], cyclophosphamide hydrochloride and aspirin [82], diazepam 

and △9-tetrahydrocannabinol [83], hen egg white lysozyme and triacetylchitotrioside 

[84], isoniazid and rifampicin [85], lomefloxacin [86], titanocene [153], warfarin 

(docked to methylglyoxal-modified HSA) [87] 

2012 2-aminobenzothiazole [88],  amodiaquine [90], 

anthraquinone dye [91], anti-breast cancer drugs (fluoxymesterone, 

cyclophosphamide) [92], benzoxazole [93], betulinic acid [137], ilirubin [94], 

catechin [95], chlorpyrifos [96], daphnin [97], daunorubicin analog [98], ethyl maltol 

[99]  extrinsic fluorescent probe [100], flavins [101], flavokawain B [102], 

guaijaverin [103], harmalol [104], hesperidin [105], 

merocyanine 540 [107] 6-mercaptopurine [108], metalaxyl [109], mexiletine [110], 

nitrofurazone [111], virstatin [114], 

water soluble copper(II) complex [115] 

2013 Acridine yellow and proflavin [138], [2,2’-bipyridyl]-3,3’-diol [116], demeclocycline 

[117], furosemide [118], hydroxyquinoline derivatives [119], PCB153 [5], Schiff 

base complex [120], strictosamide [121], tetracycline hydrochloride [122], 

tyramine-based anthraquinone analogue [123], water-soluble tungstenocene 

derivatives [124]  
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Figure legends 

 

Figure 1. Ribbon model of the human serum albumin (HSA)-palmitate complex derived from 

X-ray crystallography (PDB ID: 1E7H). HSA is composed of 3 homologous domains, I-III, 

each is divided into subdomains A and B. The 7 palmitate molecules are shown in blue 

(identified as high-affinity fatty acid [FA] binding sites) or yellow (identified as low-affinity 

FA-binding sites) in a space-filling representation [50]. The numbering of the FA binding 

sites was sourced from Bhattacharya et al. [10]. Molecular graphics images were prepared 

with VMD (version 1.9.1) [154]. 

Figure 2. Directional motions of the unliganded HSA and the HSA-FA complex projected on 

the first, second, and third principal components (PCs 1-3). The arrows in the figure indicate 

the approximate directions of cooperative motions of C atoms. The directional motion 

projected on PC1 of the unliganded HSA is similar to that projected on PC3 of the HSA-FA 

complex. Molecular graphics images were prepared with VMD (version 1.9.1) [154]. This 

figure was reproduced and adapted from Fig. 8 of PROTEINS: Structure, Function, and 

Bioinformatics 64 (2006) 730-739 [129]. 

Figure 3. Relationship between experimental and calculated HSA-FA (myristate, palmitate) 

binding free energy for 3 high-affinity FA binding sites (sites 5, 4, 2). Affinity constants (K1, 

K2, K3) were taken from Ashbrook et al. [45]. The experimental binding free energy 

(Gbind,expt) was calculated using the equation Gbind,expt = RT ln K, where R and T are the 

gas constant and the absolute temperature, respectively. The calculated values of absolute 

binding free energies deviated considerably from the experimental binding free energies (red 

lines). This figure was reproduced and adapted from Fig. 4 of Biophysical Journal 64 (2008) 

95-103 [145], with permission from Elsevier. 

Figure 4. Four of the 11 “virtual” HSA-warfarin-myristate complexes and the relationship 

between calculated HSA-warfarin binding free energies (ΔGbind) and the number of bound FA 

(myristate) molecules. Based on molecular dynamics simulations of the 11 virtual 

HSA-warfarin-myristate complexes, ΔGbind was calculated for each complex. In the graph, the 

position of bound FA molecules is also indicated. This figure was reproduced in part with 

permission from Chemical and Pharmaceutical Bulletin Vol. 59 No.7 [147]. Copyright 2011 

The Pharmaceutical Society of Japan.  
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Highlights 

 

•  Binding of FA molecules to HSA can modulate ligand binding affinity to HSA. 

•  Molecular simulation approaches have been applied to structural analyses of HSA. 

•  Possible conformational changes of HSA-FA binding were analyzed by MD simulations. 

•  Binding free energy calculations identified high/low affinity FA binding sites. 

•  Molecular simulation analyzes conditions that cannot be experimentally observed. 

 


