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Abstract 

Robotic mechanisms refer to mechanisms that include at least one varying speed motor 

(servomotor). Dynamic balancing is a critical issue in designing robotic mechanisms, which 

affects their accuracy and efficiency. The force and moment from robotic mechanisms can 

cause vibration motions on the base, which is called the shaking force and shaking moment 

(including torque), while at the same time causes “small” vibration motions on the body of 

the mechanism. Several well-known methods are available for decades for balancing the 

shaking force and shaking moment, including the counter-weight (CW) method, add-of-

spring (AOS) method, add-of-linkage (AOL), and adjusting kinematic parameter (AKP). 

AKP was developed in our group in 1990s; however, it is only applicable to planar robotic 

mechanisms.  

 

The primary objective of this thesis was to extend AKP to spatial robotic mechanisms. A 

spherical parallel robotic mechanism, which is a type of spatial robotic mechanisms, was 

chosen as a study vehicle due to their relatively simple kinematics and dynamics. The 

mechanism is symmetrical consisting of three legs and one mobile platform, where the end 

effector (e.g., camera orienting device) is mounted. Each leg contains a lower link and an 

upper link. The equations for force balancing using AKP were derived by (1) writing the 

position vectors of the COM of mechanisms with respect to the reference point ‘O’, (2) 

writing the expression of the COM into a form that includes the time-dependent term (Bi) 

and the non time-dependent term (Ai), and (3) letting all Bi be zero, i.e., Bi=0, which are the 

equations for force balancing. Simulation was performed by the software called SPACAR 

developed at TU Delft. The simulation results showed the effectiveness of the AKP approach 
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to spatial spherical mechanisms for force balancing.  

 

Another objective of this thesis was to use a combination of AKP and CW to dynamic 

balance a spherical mechanism. Dynamic balancing includes both force and moment 

balancing. The condition of moment balancing is that the total angular momentum of the 

mechanism with respect to a reference point remains zero.  The equations for moment 

balancing were derived with three steps: (1) letting the angular momentum of the mechanism 

with respect to the center point to zero, which results into an equation; (2) writing this 

equation into a format that the time-dependent term (Bi) and the term (Ai) that includes the 

dimension and mass distribution are separate, like A0 + A1B1+A2B2+…+AnBn; (3) letting all 

Ai be zero. Using SPACAR as the simulation tool, the results again showed the effectiveness 

of the AKP approach to dynamic balancing for spatial mechanisms.  

 

The final objective was to optimize the mechanism which has been force balanced for the 

minimal shaking moment; this problem is also called partial shaking moment balancing. The 

problem was formulated by considering the minimization of shaking moment as an objective 

function while the force balancing equation as a constraint equation. The variables in the 

optimization problem are the masses and lengths of the links. The function ‘fmincon’ from 

the MATLAB optimization toolbox was employed for solving this optimization problem. 

Using the SPACAR software, a simulation was conducted to show the effectiveness of the 

approach to partial dynamic balancing of spherical mechanisms.  

 

The main contributions of this thesis lie in the field of balancing of robotic mechanisms. 
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Specifically, the thesis extends the AKP approach to spatial robotic mechanisms, which 

provides more means to balancing of spatial robotic mechanisms. It is noted that each 

method has its pros and cons, and a combined use of several methods is a strategy for 

improvement of the quality of balancing. For the first time, the thesis provides a combined 

AKP and CW approach to fully dynamic balancing a spatial mechanism.  Finally, the thesis 

demonstrates the feasibility of optimal moment balancing when the mechanism has already 

been force balanced with the combined AKP and CW approach.   
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Chapter 1 

Introduction 

1.1. Concept of Balancing 

A machine or mechanism is composed of moving components. A mechanism is driven by a motor 

and is subjected to a load. A mechanism is a device that performs motion and force transfer (Zhang, 

1994). Shaking force is defined as the force that is transmitted to the ground from the mechanism 

with its inertia only (Herder, 2001), and shaking moment is defined as the moment that is 

transmitted to the ground from the mechanism with its inertia only (Wijk, 2014). Force balancing 

is a process that cancels the shaking force (Ouyang, 2002), and dynamic balancing is a process 

that cancels both the shaking force and shaking moment (Wijk, 2014). When a mechanism is in 

operation, there is a driving torque on the motor. If the motor runs at constant speed, the torque 

has fluctuation, and vice versa. Torque balancing is a process to reduce the fluctuation (Sun, 

Zhang, Huang & Zhang, 2010; Sun, Zhang, Cheng & Zhang, 2011). In the following, the word 

‘balanced’ refers to ‘fully balanced’ otherwise the word ‘partially balanced’ will be used.  

 

Based on Newtonian dynamics, a force balanced mechanism will have a constant linear 

momentum (mv, where m is the mass, and v is velocity), and a dynamic balanced mechanism will 

have both a constant linear momentum and a constant angular momentum (Iω, where I is the 

moment of inertia, and ω is the angular velocity) (Wijk, 2014). 

 

There is another balancing situation, that is, the gravity of a mechanism does not contribute to the 

relative motion among components, or a mechanism can be at rest in any position or the gravity 

of a mechanism does not create any additional force or torque on linear motor or rotary motor. In 
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this situation, we say that a mechanism is static balanced (Wijk, 2014). It can be proved that a 

force balanced mechanism must be a static balanced mechanism, but reverse may not be correct. 

A narrative proof can be outlined as follows. 

 

Proof: according to the definition of static balance, the gravitational potential energy is constant. 

This implies that the linear momentum in the y-direction is constant. Notice that a force-balanced 

mechanism has a constant linear momentum, that is, the linear moment in the y-direction is 

constant. However, a constant linear momentum in the y-direction does not imply a constant linear 

momentum in the x-direction. Hence, a static balanced mechanism may not be a force-balanced 

mechanism. End of Proof. 

 

It is noted that a balance may be partial in that there are still shaking force, shaking moment on the 

ground but they are very small. A partial balance is thus defined as the minimization of shaking 

force, shaking moment, or torque fluctuation (Sun, Zhang, Cheng & Zhang, 2011). 

 

1.2. Principle of Balancing 

The principle of balance refers to the knowledge that explains why a mechanism is balanced. For 

force-balanced mechanisms, there are three principles and they are outlined below: 

o Principle I: the total shaking force is zero.  

o Principle II: the total linear momentum is constant. 

o Principle III: the total center of mass (COM) is stationery. 

 



3 

 

In the above, Principle I drives Principle II, and Principle II derives Principle III. We denote these 

principles as Principle I (II, III)-F for brevity (where F: force) for subsequent discussions in this 

thesis. For dynamic balanced mechanisms, we denote the principle as Principle I (II, III)-D. There 

are three principles for dynamic-balanced mechanisms, and they are as follows: 

o Principle I-D: Principle I-F plus the total shaking moment being zero. 

o Principle II-D: Principle II-F plus the total angular momentum being constant. 

o Principle III-D: Principle III-F plus the total shaking moment being zero.  

 

1.3. Methods of Balancing 

1.3.1. The Principle of Method 

The method of balancing refers to how an unbalanced mechanism can be balanced by both external 

and internal means with a minimum effort. The minimum effort refers to the least number of 

interventions to be imposed on a mechanism. In literature, in most of the cases, the external means 

make sense except the work of Wijk (2014) in which they proposed a concept that is to design a 

mechanism which is balanced at the design stage and they called such a mechanism the inherent 

balanced mechanism. In this thesis, only the external means were concerned. The well-known 

methods that need some external means are: 

• Counterweight (CW) approach, 

• Adjusting kinematic parameter (AKP) approach, 

• Auxiliary devices (AD) approach, and  

• Hybrid approach (CW and AKP, CW-AKP for short). 
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The CW approach was first proposed using a four-bar linkage as an illustrative (Talbourdet & 

Shepler, 1941). The method was termed as ‘static balancing method’ but was used for the complete 

force balancing of linkage. It was proposed as a mathematical solution applicable to four-bar 

linkage. In this approach masses or counterweights were added to the linkage to make the center 

of mass of mechanism stationary (see Principle III-F before). However, many problems were 

associated with this approach. Based on the contour theorem proposed by Tepper and Lowen 

(1972), this method was used for the complete force balancing of planar mechanisms with revolute 

joints only. 

 

The AKP approach was first proposed for real-time controllable (RTC) mechanisms (Wang, 

2000). This approach was developed for a five-bar planar mechanism which has two degrees of 

freedom (DOF) but the approach is suitable to any mechanism with DOF greater than one and 

with one servomotor or programmable or varying speed motor. The force balance conditions were 

derived with the links, where their COM is located on its kinematic axis (Wang, 2000). Later, this 

approach was improved by Ouyang (2002) as the extended AKP approach, where links with their 

COM are possibly off their kinematic axis. In the extended AKP or just AKP without confusion in 

this document, the masses of revolute joints were also considered (Ouyang, 2002). It is noted that 

with the AKP approach, when the force balance condition is applied, the task specification (e.g., 

the end-effector trajectory following) will be changed, but using the controller of the servomotor 

this change can be annulled (Ouyang & Zhang, 2005). For this reason, this approach is suitable for 

the mechanism which has programmable motors or actuators. Further, using this approach both 

the reaction forces in revolute joints and the task performance (e.g., trajectory tracking) can be 
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improved (Ouyang, Zhang & Wu, 2002). The AKP approach will be explained in detail in Section 

2.3 of this document. 

 

A combined CW and AKP approach (called hybrid approach and CW-AKP for short) was reported 

in literature (Huang, Ouyang, Cheng & Zhang, 2010). The applicability of this approach is the 

same as that of the AKP approach. By hybrid, it is meant that the combination of CW and AKP 

makes them complimentary to each other (Ouyang, Zhang & Huang, 2016). A more detailed 

explanation of the CW-AKP approach will be provided in Section 2.3 of this document. 

 

The AD approach is to add additional devices (instead of masses) to the original unbalanced 

mechanism. The devices may be passive or active. The latter case means a device that has its own 

actuator along with its controller. The AD approach can balance shaking force, shaking moment 

and driving torque fluctuation. The first method of the AD approach is to add a servomotor to the 

original unbalanced mechanism for complete dynamic balancing as proposed by Kochev (1992) 

but is not practically tested due to technical problems. The added servomotor is also “on-fly”, 

indicating that it is not on the ground. This will increase the weight of the entire system 

considerably.   

 

The so-called partially redundant servomotor (PRSM) method is another AD approach and was 

developed with a four-bar linkage driven by a servomotor (Sun, Zhang, Huang & Zhang, 2010; 

Sun, Zhang, Cheng & Zhang, 2011). The PRSM method does not add any new motor but makes 

use of the redundant capability (i.e., changing the velocity and thus changing the inertial force of 

a linkage) of a servomotor to perform partial balancing of mechanisms, which makes sense of 
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redundancy with the servomotor. Out of the three redundancy design principles (RDP) that was 

proposed by Sun et al. (2010) viz. physical redundancy (RDP-I), function redundancy (RDP-II) 

and “good” side role (RDP-III), the PRSM approach is based on RDP-III. It is noted that the 

redundant servomotor concept proposed by Nahon & Angeles (1989) for dynamic balancing is in 

fact a kind of RDP-II. Various other approaches used a servomotor for dynamic balancing, but 

they did not use the redundancy concept of RDP as proposed.   

 

Another method of the AD approach is based on the idea of adding a counter-mass device and 

making it rotate and is called ACRCM (active counter-rotary counter-mass) by Wijk and Herder 

(2008). The counter-mass device is to balance the shaking force while its moment of inertia is used 

to balance shaking moment by actively controlling its angular velocity. For ACRCM, an additional 

actuator is needed to be installed on the base to control this angular velocity of the counter-mass 

device. This device rotates in the opposite direction of the motion of the links in the mechanism to 

achieve moment balancing. 

 

Using Principle III-F along with the AD approach, a novel force balancing method for serial 

manipulators was proposed in the literature (Boisclair et al., 2017). In this method, the torque was 

generated from the Halbach cylinders fitted in the revolute joint between the links. The Halbach 

cylinders are integrated in the fabrication or retrofitted at a later stage. Some drawbacks with this 

approach include that building the magnet assembly is expensive, demagnetization is possible over 

time, and there is a difficulty in predicting the output torque produced by the Halbach cylinder.  

One benefit of AD is that it can balance mechanisms with loads1.  

 
1 In the standard text of mechanisms, balancing only considers the inertia of a mechanism, so no load is considered. 

However, the load affects the shaking force and moment.  
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Five design strategies for force-balancing of the serial linkages with revolute joints were reviewed 

on a 1-DOF/ 3-DOF linkages (De Jong & Herder, 2015). 

• Strategy I: CWs were re-positioned to match the shifted COM. For 1-DOF one prismatic 

joint and for 3-DOF linkage four prismatic joints were used for re-positioning. Strategies 

I, II & III used Principle II-F along with the CW approach. 

• Strategy II: the revolute joint was re-positioned to match the shifted COM. For 1-DOF, 

two prismatic joints and for 3-DOF, twelve revolute joints were used. 

• Strategy III: CWs were added or removed to maintain force balancing. For 3-DOF linkage 

mass was changed by pumping fluid to CWs from a stationary tank. The flow amount was 

calculated from the condition equations.  

• Strategy IV: linkages were added at the base to form a reaction mechanism that moves the 

mechanism back into its force-balanced position. For 3-DOF mechanism, a 2-DOF reaction 

mechanism was added at the base. Strategies IV & V used principle II-F along with the AD 

approach. 

• Strategy V: In this redundant joint strategy links were added to the mechanism to provide 

additional DOF. These DOF’s were controlled such that COM remains stationary. For 1-

DOF and 3-DOF, two additional redundant joints were added. 

 

The main drawback with the AD method, especially active AD methods, includes design 

complexity, difficulty in implementation and large balancing mass, increased size of the balanced 

mechanism, and cost increase (due to additional components and operations at the singularity 

position, causing additional energy consumption). 
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1.3.2. Balancing Equations 

The methods of balancing will need eventually to appear in form of mathematical equations. Such 

equations are called balancing equations. In the balancing equations, the variables capture the 

concepts in the methods. For instance, for the CW approach to force balancing, the added mass 

and its location need to be determined given a force-unbalanced mechanism, and thus variables 

are needed to represent the added mass and its location. By determining these variables in the 

balancing equations, one finds what and where to put an added mass. In short, the balancing 

equation describes the balancing method mathematically.  

 

For example, it makes sense to develop the balancing equation for the CW approach along with 

the principle of balancing P-III-F. It is noted that the general goal of deriving the balancing 

equation is to make a minimum effort toward balancing. For instance, the minimal effort of the 

CW approach refers to the minimal number of links of a mechanism (force-unbalanced), on which 

external masses are added. Techniques can be developed to derive such a minimal number of 

equations, e.g., the technique called LIV (linearly independent vectors) method (Berkof & Lowen, 

1969; Tepper & Lowen, 1972; Lowen, Tepper & Berkof, 1983).  Details of the LIV technique can 

be found in Appendix A of this report. The minimal number of balancing equations is also called 

the sufficient balancing equation (Gosselin, 2008).  

 

1.4. Research Motivation 

The research motivation was represented by raising questions and why the raised questions make 

sense to the reduction of vibration of a machinery in general. A preliminary literature review (see 
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later for a more detailed discussion) has made the author with the following observations along 

with the questions. 

 

Observation 1: The AKP approach for force balancing is only for planar mechanisms. A question 

(Question 1) thus arises whether the AKP approach can be extended to force balancing for spatial 

mechanisms. 

 

Observation 2: The AKP and hybrid approaches are currently valid only for force-balanced 

mechanisms. A question (Question 2) is therefore raised whether AKP and hybrid AKP-CW can 

contribute to the moment balancing or partially moment balancing. 

 

This thesis was motivated to answer the above two questions. 

 

1.5. Research Objectives 

Objective 1: to develop the balancing equations for AKP for the force balancing of spherical 

mechanisms. It is noted that the spherical mechanism is chosen because it has a relatively simple 

kinematics and dynamics yet without missing the characteristics of spatial configurations. It is 

also noted that one servo-motor must be among the motors. 

                                                      

Objective 2: to develop the balancing equations for AKP-CW for dynamic balancing of spatial 

spherical mechanisms.  
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Objective 3: to extend the AKP-CW approach to optimizing the force-balancing of mechanisms 

with the goal that the shaking moment is made as minimum. 

 

Research with Objective 1 will answer Question 1, and research with Objectives 2-3 will answer 

Question 2.  

1.6. Research Methodology for Objective 1 

This thesis took the special Agile Eye manipulator as a case for the study. This is a parallel 3-RRR 

spherical mechanism with 3-DoF as shown in figure 1-1. The mechanism contains nine revolute 

joints in total and operates by using three servomotors fixed at its base. The end effector is a 

triangular plate with three ends, where each end is attached by one RRR linkage2. In this linkage 

all nine revolute joint axes meet at a common point which is its center of rotation (Gosselin & 

Hamel, 1994; Gosselin, Pierre & Gagne, 1996). 

 

Figure 1-1. 3-RRR 3-DOF SPR mechanism at ECUST lab, China. 

 
2 In this thesis, the term ‘mechanism’ and the term ‘linkage’ are used interchangeably. 

Mobile platform 

Upper linkage 

Bottom platform 

Servomotor 

RRR linkage  

Lower linkage 
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The AKP developed by Ouyang (2002) was taken as a starting point. The same procedure as 

derived for planar mechanisms was employed to develop the balancing equations for spatial 

spherical mechanisms.  

1.7. Research Methodology for Objective 2 

The CW-AKP developed by Huang (2010) was taken as a starting point. This approach was applied 

to derive the force balancing condition equations by writing the position vectors of the mechanism 

and its links and kinematic loop equation of the mechanism. For the moment balance condition 

equations, the angular momentum at the base point was considered and equations were written 

down. For verification, simulation was taken by using the CAD model of the spherical mechanism. 

The CAD model is similar to the model at the ECUST laboratory and is shown in figure 1-2. The 

simulation using SPACAR3 was carried out to verify the approach by combining AKP and CW. 

 

Figure 1-2. SPR top view using Solidworks v2015 CAD model.   

 
3 SPACAR is software for modeling and simulation of multi flexible body dynamics, developed at TU Delft.  
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1.8. Research Methodology for Objective 3 

The CW-AKP developed by Huang (2010) was taken as a starting point; however, Huang (2010) 

did not perform optimization for moment balancing, which was performed in this thesis. The 

objective function in the optimization model was the shaking moment. The optimal variables were 

those in the balancing equation of the combined CW and AKP, e.g., the added masses along with 

their locations. For validation, the simulation by SPACAR on the spherical mechanism was taken. 

Figure 1-3 shows the CAD model in another position of the spherical mechanism for a better 

understanding. 

 

Figure 1-3. SPR CAD model in another orientation. 

 

1.9. Organization of Thesis 

This thesis is organized into six Chapters. Chapter 1 discusses the principles and methods of 

balancing, along with the research motivation, objectives and methodologies. Chapter 2 

summarizes the literature and the preliminary work completed at our research laboratory. In 

Chapter 3, the force balancing equations for the spatial spherical mechanism are derived for AKP 
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approach. In Chapter 4, the dynamic balancing equations for the spatial spherical mechanism are 

derived for the combined AKP and CW approach. In Chapter 5, the force-balanced mechanism is 

optimised for minimizing the shaking moment. Finally, in Chapter 6 conclusions, contributions 

and future work are presented.  
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Chapter 2 

Background and Literature Review 

2.1. Introduction 

In this chapter, the literature review of balancing of robotic mechanisms is presented. This also 

includes the previous work on the subject of force balancing of planar mechanisms in our research 

laboratory at the University of Saskatchewan. Finally, the literature review on the spherical parallel 

robotic mechanism is discussed. 

 

2.2. Balancing of Spatial Mechanisms 

In literature, there have been many methods developed for force balancing of spatial mechanisms. 

However, the situation remains to be that no one method can achieve the total balancing (i.e., 

dynamic balancing plus torque balancing) in a cost effective and power effective manner. A 

reasonable strategy may thus be to combine different methods by following the engineering 

hybridization principle (Zhang, Ouyang & Sun, 2010).  

 

AKP has never been explored for dynamic balancing. As mentioned before, dynamic balancing of 

spatial mechanisms or robots is still based on the additional components to an unbalanced 

mechanism, which is costly (owing to the additional components). 

 

A novel spatial mechanism called reactionless parallelepiped 3-DOF mechanism was designed 

using revolute joints, spherical joints, counter-rotating-gears and concentric multi-link spherical 

joints (Wu & Gosselin, 2005). A 6-DOF parallelepiped mechanism was also designed using three 
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3-DOF parallelepiped mechanisms as legs and limiting 1-DOF from each mechanism (Wu & 

Gosselin, 2005). Using Principle I-F along with the CW approach, force-balancing conditions were 

derived. The moment-balancing conditions were derived using Principle II-D along with the AD 

approach (counter-rotating gear mechanism was added). The mechanism was dynamic balanced 

for two case studies involving three rotary actuators. The first case study involves two actuators 

rotating along the z-axis and the third actuator along the x-axis. In the second case study, the three 

actuators rotate along the x, y and z axes, respectively. The balanced conditions were derived in 

both cases. Based on the balanced condition equations, optimization was performed, which takes 

the minimum of the weight of the link including the counterweight and its position vector as an 

objective function. 

 

However, there are few drawbacks in the approach of (Wu & Gosselin, 2005). First, the weight of 

the mechanism increases still significantly, which may subsequently increase the driving torque. 

Second, the concentric multi-link spherical joint used in the mechanism is of distinctive design 

(Hamlin & Sanderson, 1994). The joints and driving motors will experience large payloads after 

balancing. The speed and the workspace of the mechanism will thus reduce. Finally, additional 

components added to form a parallelepiped structure increase the complexity of the whole 

mechanism, which challenges the practicality of the mechanism. 

 

2.3. Previous Work in Our Research Laboratory 

The AKP force balancing approach was proposed by Wang (2000) and Ouyang (2002) in the 

advanced engineering design laboratory (AEDL) at the University of Saskatchewan. The AKP 

approach is applicable to RTC (real time controllable) mechanisms with 2-DOF or more and with 
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one of them being a controllable varying speed motor. Using the AKP approach, force balancing 

can be achieved by adjusting the kinematic parameters (link length) of the RTC mechanism. The 

AKP approach is currently only applicable to planar robotic mechanisms.  

 

A combined CW-AKP approach to force balancing of a five-bar closed-loop mechanism with 2-

DOF (Huang, Ouyang, Cheng & Zhang, 2010) was developed. This hybrid approach used 

Principle I-F. This novel approach is based on the notion of intelligent mechatronics systems, 

specifically the hybrid engineering design principle (Zhang, Ouyang, Gupta & Sun, 2010). Using 

this approach, the trajectory tracking performance and workspace area are both improved as 

compared to using the AKP approach or CW approach alone. 

 

For the five-bar mechanism, using the CW-AKP approach, two links out of five do not need to 

undergo any change, namely the base link and one of the coupler links. The remaining three links, 

two cranks and the remaining coupler need to be modified for force balancing. The modifications 

are based on the equations for force balancing, picked up from both the equation for AKP and 

equation for CW, accordingly. If a particular link is modified with the CW approach, mass re-

distribution to this link will follow the corresponding equation for CW, and otherwise will follow 

the corresponding equation for AKP. In case study I, the first crank link was modified using the 

CW approach and the remaining crank and coupler links were modified using the AKP approach. 

This balancing scheme was represented as 1CW+3/4AKP. In case study II, the first crank link was 

modified using the AKP approach and remaining crank and coupler links were modified using the 

CW approach. This balancing scheme was represented as 1AKP+3/4CW. SPACAR / MATLAB 
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software was used for evaluation of different balancing schemes through simulation. The 

simulation results showed that the case I performed better than the case II.  

 

A future study on the AKP approach was expected to apply it to spatial mechanisms and to examine 

its usefulness by combining with other balancing approaches for dynamic balancing. The 

optimization of the balancing parameters for partial moment balancing was also expected as a 

future study (Ouyang, Zhang & Huang, 2016). 

 

2.4. Previous Work on Spherical Parallel Robot (SPR)  

2.4.1. Kinematic Model and Workspace 

Studies on kinematic modeling of SPR have been extensively reported.  A solution for a SPR based 

on its direct or forward kinematics was studied by Innocenti (1993) and an eighth order polynomial 

equation was proposed as a solution. Eight positions of the SPR are possible for the given lengths 

of the links. The main drawback of the proposed solution is that it cannot be used in the real-time 

applications. Gosselin et al. (1996) studied the kinematics of a SPR named as the agile eye. This 

mechanism has a special geometry with 3-DOF. A closed form solution was found that can work 

for real-time applications. (Appendix B gives the relationship between curved link and straight 

link). 

 

Another work on kinematic analysis of a SPR was proposed by Bai et al. (2009) and about the 

forward displacement analysis of SPR in particular. A closed-loop four-bar-linkage was formed 

with two upper links and one mobile platform. Using two such loops, the input-output 

trigonometric equations with joint angles were derived and solved using a semi graphical method. 
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Zhang et al. (2014) studied kinematic analysis of a SPR with a novel design. In this new design, 

on the fixed base platform, the three revolute joint axes are orthogonal to each other. Again on the 

mobile platform the three revolute joint axes were orthogonal to each other. Using this method, a 

shoulder joint design was proposed. More studies are required to further analyze this new design.  

 

For research on SPR workspace, Bai (2010) studied the optimum design for a given workspace. 

The design parameters are its link dimensions and other constraints. A SPR that has the maximum 

rotational mobility was proposed using a numerical method of optimization but involved 

generalization of its equations. SPR embodiment design for maximum workspace using a novel 

approach was presented by Gao et al. (2015). Three principles for the embodiment design were 

proposed to reduce the interference between parts (or links) on a common motion plane, common 

plane with and without joint consideration. The embodiment design parameters considered are the 

link sizes, SPR radius and links layout. The proposed design showed that the loss in system 

workspace was less.   

2.4.2. Force and Dynamic Balancing 

Studies on force balancing of the parallel mechanisms have been reported. Arakelian et al. (2015) 

studied the force balancing of planar 3-RRR parallel manipulator using principle III-F and CW 

approach. Instead of complete force balancing the system using multiple CWs, only three CWs 

were added, resulting in the partial balancing of the system. The location of the counterweights is 

adjustable that makes this system adaptive in nature. Between an unbalanced and a partially 

balanced system, the shaking forces are shown to be reduced by 35%.  
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Acevedo et al. (2012) studied the dynamic balancing of 3-DOF spatial parallel manipulator using 

a combined CW and AD approach and principle III-D. A total of six counter-rotating-

counterweights (CRCW) and three counterweights were added to the system. Results showed that 

complete force balance and partial moment balance were achieved. However, increase in the total 

mass of the balanced mechanism was not reported. 

 

Gosselin (2008) studied dynamic balancing of the spatial parallel mechanism with six legs. The 

mechanism consists of six lower links, six upper links, a mobile platform and eighteen revolute 

joints. The links were straight and not curved. A total of thirty-six balancing conditions were 

derived and the force balancing was achieved by using the principle III-F and the CW approach. 
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Chapter 3 

Force Balancing of the SPR using the AKP Approach  

3.1. Introduction 

In this chapter the first objective is set to derive the force balance equations for SPR using AKP. 

Ouyang (2002) derived the force balance equations for a planar closed-loop five bar mechanism 

using AKP and this will be extended to spatial mechanisms. SPACAR software will be used as 

simulation tool for the verification of the balancing.  

 

3.2. Kinematic Model 

Figure 3-1 shows the 3D CAD model of the mechanism using the software called Solidworks. The 

mechanism is symmetrical consisting of three legs and a mobile platform, where the end effector 

is mounted. Each leg contains a lower link and an upper link, where the lower link is driven by a 

servomotor, and the upper link is connected to the mobile platform. At each connection, the 

revolute joint provides rotation between two respective components about the joint axis, and all 

these axes intersect to one point (i.e., the center O of the sphere). In total, the mechanism consists 

of three servomotors, three lower links, three upper links, a mobile platform, nine revolute joints 

and a ground bottom platform. The three legs (each consisting of the lower link and upper link) 

are identical. The three servomotors are mounted on the bottom platform and distributed by an 

angle 𝛿𝑖=120°. According to the definition of the spherical mechanism, there is a center point of 

spherical surface, denoted as O, and this point is stationery, acting as the common intersecting 

point for all the axes.  
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(a)                                                                (b) 

Figure 3-1. SPR Mechanism (a) Kinematic Model (b) Components. 

 

Now let us define the coordinate system for each link of the mechanism based on the D-H notation 

(see Appendix C). Denote i for the i-th leg (i=1-3), u for the upper link, l for the lower link, li  for 

the joint axis between the upper link and the mobile platform, ni for the joint between the upper 

link and lower link, and mi for the joint axis between the lower link and bottom platform (figure 

3-1a). Note that li, mi, and ni are unit vector, but no bold face is written for them in the following 

discussion for simplicity but without any confusion. Since all three legs are identical and they are 

symmetrical to the point O, it is sufficient to take one particular leg as an example to define the 

coordinate system for the mechanism. Consider initially the mobile platform is in a horizontal 

state. Define Zo towards the mobile platform and perpendicular to it when it is at the initial time. 

Define Xo as perpendicular to Zo and parallel to one of the three edges that connect three motors 

on the bottom platform. Define Yo by following the right-hand rule to Xo and Zo. The coordinate 

system O-Xo(Yo)Zo is fixed to the ground and taken as a global reference coordinate system (figure 

3-1b, O-X(Y)Z). A note is taken of that in the following only Z and X are defined, as Y can always 

be defined after X and Z. 
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Now let us define a local coordinate system to each moving link (lower link, upper link, and mobile 

platform). Define Zil along the li axis, Zim on the mi axis, and Zin on the ni axis. Xim is defined as 

common perpendicular to Zim and Zin, and the origin of the frame4 Xim(Yim)Zim is located at O, 

denoted as Oim. Xin is defined as common perpendicular to Zin (ni) and Zil (li), and the origin of the 

frame Xin(Yin)Zin located at O, denoted as Oin. θi is defined as the angle about Zi0 as well as Zim 

(mi), rotating from Xi0 and Xim as shown in figure 3-2. Define Xi0 such that it makes θi be zero 

initially (which corresponds that the mobile platform is at the horizontal state). The origin of the 

frame Xi0(Yi0)Zi0 is Oi0, which is located at O. 

    

Figure 3-2. For SPR Mechanism defining Ɵi for lower link. 

Define µi as the angle about Zin, rotating from Xim to Xin as shown in figure 3-3.  From the foregoing 

discussion, it can be seen that the frame Oim-XimYimZim is fixed on the lower link, and Oin-XinYinZin 

is fixed on the upper link. Both frames are moving frames, while the frame Xi0Yi0Zi0 is fixed to 

the ground, or stationary. For the convenience of later discussions, denote the frame Oim-XimYimZim 

 
4 Frame means coordinate system in this document. 
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Frame L (moving frame), the frame Oin-XinYinZin Frame U (moving frame), and the frame Oi0-

Xi0Yi0Zi0 Frame O (fixed frame).  

     

Figure 3-3. For SPR Mechanism defining µi for upper link. 

Note that for each leg i, there are the foregoing three frames corresponding to it. Define a local 

coordinate system O'-X'Y'Z' on the mobile platform as shown in figure 3-4. 

    

Figure 3-4. SPR Mechanism with mobile platform details. 
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Specifically, O' is on the center of the platform. The axis Z' is defined as perpendicular to the 

mobile platform. The Y' axis is defined as perpendicular to Z' axis and passes through the point Pi
' 

of the mobile platform. For the convenience of later discussions, let us call this local coordinate 

system Frame M (moving frame).  Let 𝛽1 stand for the angle between the mi (Zi0) and ni (Zin); 𝛽2 

for the angle between ni (Zin) and li (Zi); 𝛾1 for the angle between the Z0 and mi (Zi0); 𝛾2 for the angle 

between Z’ and li, as shown in figure 3-1. It is noted that these four angles are identical to each leg 

(containing the lower link and the upper link). 

 

Table 3-1 shows the D-H parameters of the lower link and upper link (respectively), which are 

associated with the three coordinate systems: Oi0-Xi0Yi0Zi0 (Frame O), Oim-XimYimZim (Frame L) 

and Oin-XinYinZin (Frame U). Finally, there are additional three parameters that need to be 

mentioned, that is, di0 (the distance between Oil and O0), d0 (the distance between the O and O’ at 

the initial time), and θi0 (the angle between the Xim and Xi0). It is noted that the local coordinate 

system (O'-X'Y'Z') on the mobile platform does not follow the D-H notation, and for this reason, 

the parameters that describe the relation of the frame O'-X'Y'Z' with respect to the other moving 

links are not included in Table 3-1.  

 

Table 3-1. D-H parameters for the ith lower and upper links (i: i-th leg, i = 1, 2 & 3)   

 αi ai di Ɵi  

Lower Link β1 0 0 Ɵi 

Upper Link β2 0 0 µi 

    

 



25 

 

3.3. Transformation Matrix 

The transformation matrix for the lower link (i.e. from Frame O to Frame L) using the 

parameters from Table 1-1 can be written as 

𝑇𝑙𝑖 = [

𝑐𝜃𝑖

𝑠𝜃𝑖

−𝑠𝜃𝑖𝑐𝛽1

𝑐𝜃𝑖𝑐𝛽1

0
0

𝑠𝛽1

0

𝑠𝜃𝑖𝑠𝛽1

−𝑐𝜃𝑖𝑠𝛽1

𝑐𝛽1

0

0
0
0
1

]                                       (3.1) 

The transformation matrix for the upper link (i.e. from Frame L to Frame U) using parameters 

from Table 1-1 can be written as 

𝑇𝑢𝑖 = [

𝑐𝜇𝑖

𝑠𝜇𝑖

−𝑠𝜇𝑖𝑐𝛽2

𝑐𝜇𝑖𝑐𝛽2

0
0

𝑠𝛽2

0

𝑠𝜇𝑖𝑠𝛽2

−𝑐𝜇𝑖𝑠𝛽2

𝑐𝛽2

0

0
0
0
1

]            (3.2) 

 

3.4. COM of SPR 

In this section the COM of the SPR is written using the position vector and mass of the lower 

link, upper link and mobile platform. 

 

3.4.1 Position Vector Representation 

.Lower Link: 

• Using the lower link transformation matrix Tli, the rotation matrix (3×3), which is a subset of 

Tli, is formed by eliminating the fourth row and fourth column. The rotation matrix is denoted 

as 𝑹𝒍𝒊. 

• Oril represents the position of the COM of the lower link with respect to the global reference 

frame (O-xoyozo), see figure 3-5. 



26 

 

 

Figure 3-5. SPR Mechanism with lower link details. 

Upper Link: 

• Using the upper link transformation matrix Tui, the rotational matrix (3×3), which is a subset 

of Tui, is formed by eliminating the fourth row and fourth column. The rotational matrix is 

denoted as 𝑹𝒖𝒊. 

• Oriu represents the position of the COM of the lower link with respect to the global reference 

frame (O-xoyozo), see figure 3-6. 

 

Figure 3-6. SPR Mechanism with upper link details. 

Mobile Platform: 

• The rotation matrix Rli represents the relationship of the mobile platform with reference to the 

global reference frame and is determined by the angles 𝛿𝑖  and 𝛾2. The details of Rli will be 

given later. 
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• The tilt and torsion rotation matrix RTT used to represent the orientation of the mobile platform 

with respect to the global reference frame is determined by the angles φ, σ & ψ. 

• The point Mcp represents the COM of the mobile platform w.r.t. its local coordinate frame 

(MP); see the previous discussion and figure 3.3. 

• Orp represents the position of the COM of the mobile platform w.r.t. the global reference frame.   

Equation for the Global COM of the mechanism: 

• The global COM equation of the mechanism w.r.t. the reference frame O-Xo(Yo)Zo is written 

using the position vectors Oril, Oriu & Orp and its respective masses.  

• Using principle III-F, the total center of mass (COM) remains stationery if all time dependent 

terms vanish. 

• The force balance conditions are derived by equating the coefficients of the time dependent 

terms to be zero. 

• The non-time-dependent terms rx, ry and rz defines the stationary COM of the mechanism 

making the mechanism force balanced (Principle III-F).   

• The masses of the nine revolute joints in the mechanism are ignored.  

3.4.2 COM of the Lower Link 

The rotation matrix for the lower link considering angle δi  and equation (3.1) is given as 

𝑅𝑙𝑖 = [

𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖 −𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖

𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖 −𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖

0 𝑠𝛽1 𝑐𝛽1

]                          (3.3) 

where 𝛿𝑖 =
2(𝑖−1)𝜋

3
  implies that the three motor axes are separated by 120°.    

 

Let Oril  be the position vector of the COM of the lower link with respect to the global reference 

frame (for i=1, 2 & 3) and li1 represent link length, then Oril can be written as  
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𝒓𝒊𝒍
𝑶 = 𝑂𝑖𝑚

𝑂 + 𝑅𝑚𝑖 𝑐𝐿
𝑖1                                                                                                           (3.4) 

𝑂𝑖𝑚
𝑂 = [

𝑥𝑖𝑜

𝑦𝑖𝑜

𝑧𝑖𝑜

]       𝑐𝐿
𝑖1 = [

𝑥𝑖𝑐

𝑦𝑖𝑐

𝑧𝑖𝑐

]     i=1, 2 & 3                                                                            (3.5) 

where  

• 𝑂𝑖𝑚
𝑂  is the point of Oim (figure 3-1) w.r.t. the global reference frame; 

• 𝑅𝑙𝑖 is the rotation matrix of the local frame on the lower link w.r.t. the global reference 

frame; 

• 𝑐𝐿
𝑖1 represents the COM of the lower link with respect to the local frame (L). 

 

By combining equations (3.3) (3.4) and (3.5), we can write 

𝒓𝒊𝒍
𝑶 =

[

𝑥𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)
𝑦𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)

𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1

]       

    (3.6) 

Equation (3.6) represents the position vector of the COM of the lower link w.r.t. the global 

reference frame. 

3.4.3. COM of the Upper Link 

The rotation matrix for the upper link is given as 

𝑅𝑢𝑖 = [

𝑐𝜇𝑖 −𝑠𝜇𝑖𝑐𝛽2 𝑠𝜇𝑖𝑠𝛽2

𝑠𝜇𝑖 𝑐𝜇𝑖𝑐𝛽2 −𝑐𝜇𝑖𝑠𝛽2

0 𝑠𝛽2 𝑐𝛽2

]                                    (3.7) 

Let OOin be the intersecting point between lower link and upper link (for i=1, 2 & 3), see figure 3-

1, and liu represent link length of the upper link, then OOin can be written as  

𝑂𝑖𝑛
𝑂 = 𝑂𝑖𝑚

𝑂 + 𝑅𝑙𝑖𝐼𝑖𝑙                           (3.8) 
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where 𝐼𝑖𝑙 = [
0
0
𝑙𝑖1

]  and 𝑙𝑖1 is the distance between points Oim and Oin of the lower link.            (3.9) 

𝑂𝑖𝑛
𝑂 = [

𝑥𝑖𝑜

𝑦𝑖𝑜

𝑧𝑖𝑜

] + [

𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖 −𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖

𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖 −𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖

0 𝑠𝛽1 𝑐𝛽1

] [
0
0
𝑙𝑖1

] 

        = [

𝑥𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)
𝑦𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)

𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1

]                (3.10) 

Let Oriu  be the position vector of the COM of the upper link with respect to the global reference 

frame (for i=1, 2 & 3) and liu represents the link length of the upper link, then Oriu can be written 

as 

𝒓𝒊𝒖
𝑶 = 𝑂𝑖𝑛

𝑂 + 𝑅𝑢𝑖 𝑐𝐿
𝑖𝑢                                                                                                          (3.11) 

𝑐𝐿
𝑖𝑢 = [

𝑥𝑖𝑢𝑐

𝑦𝑖𝑢𝑐

𝑧𝑖𝑢𝑐

]     i=1, 2 & 3                                                                                    (3.12) 

where  

• 𝑅𝑢𝑖 is the rotation matrix w.r.t. the global reference frame; 

• 𝑐𝐿
𝑖𝑢 represents the COM of the upper link with respect to its local frame U. 

 

By combining equations (3.7) (3.10) (3.11) and (3.12), we can obtain 

𝒓𝒊𝒖
𝑶 = [

𝑥𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖 − 𝑦𝑖𝑢𝑐𝑠𝜇𝑖𝑐𝛽2 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2

𝑦𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑠𝜇𝑖 + 𝑦𝑖𝑢𝑐𝑐𝜇𝑖𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑐𝜇𝑖𝑠𝛽2

𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1 + 𝑦𝑖𝑢𝑐𝑠𝛽2 + 𝑧𝑖𝑢𝑐𝑐𝛽2

]      (3.13) 

Equation (3.13) represents the position vector of the COM of the upper link w.r.t. the global 

reference frame. 
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3.4.4. COM of the Mobile Platform 

Point Pi
' is the joint point between the upper link and the mobile platform.  The joint is a revolute 

joint, and its joint axis is represented by the unit vector li and 𝛾2 is the semi-cone angle formed by 

the mobile platform (Gao et al., 2015).     

                                                                                      

The rotation matrix for the mobile platform considering angle δi  is given as 

                 𝑅𝑙𝑖 = [
𝑐𝛿𝑖 −𝑠𝛿𝑖𝑐𝛾2 −𝑠𝛿𝑖s𝛾2 
𝑠𝛿𝑖 𝑐𝛿𝑖c𝛾2 𝑐𝛿𝑖𝑠𝛾2

0 −𝑠𝛾2 𝑐𝛾2

]               (3.14) 

where 𝛿𝑖 =
2(𝑖−1)𝜋

3
  implies that the three motor axes are separated by 120°.        (3.15) 

 

Calculating Rotation Matrix 𝑅𝑇𝑇 using Tilt &Torsion (T&T) Angles (φ, σ, ψ) 

Angles φ, σ & ψ are used to interpret the orientation of mobile platform (Bonev, 2002) with 

respect to the global reference frame at ‘O’.  

T&T rotation 𝑅𝑇𝑇 = 𝑅𝑇𝑇𝑧(φ)𝑅𝑇𝑇𝑦(σ) 𝑅𝑇𝑇𝑧(−φ) 𝑅𝑇𝑇𝑧(ψ)  

                               =  𝑅𝑇𝑇𝑧(φ)𝑅𝑇𝑇𝑦(σ) 𝑅𝑇𝑇𝑧(ψ − φ)                                                     (3.16)     

Along the z-axis, the rotation (anticlockwise direction) is φ 

𝑅𝑇𝑇𝑧(φ) = [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0 
𝑠𝑖𝑛𝜑 cos𝜑 0

0 0 1
]                 (3.17) 

Along the y-axis, the rotation (clockwise direction) is σ 

𝑅𝑇𝑇𝑦(σ) = [
𝑐𝑜𝑠𝜎 0 𝑠𝑖𝑛𝜎 

0 1 0
−𝑠𝑖𝑛𝜎 0 𝑐𝑜𝑠𝜎

]             (3.18) 

Along the z-axis along, φ & ψ (anticlockwise direction)  

𝑅𝑇𝑇𝑧(ψ − φ) = [
𝑐𝑜𝑠 (𝜑 − 𝜓) −𝑠𝑖𝑛 (𝜑 − 𝜓) 0 
𝑠𝑖𝑛 (𝜑 − 𝜓) 𝑐𝑜𝑠 (𝜑 − 𝜓) 0

0 0 1

]                               (3.19) 
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Combining equations (3.17), (3.18) & (3.19) yields to 

𝑅𝑇𝑇 = [

𝑐𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) − 𝑠𝜑𝑠(𝜑 − 𝜓) −𝑐𝜑𝑐𝜎𝑠(𝜑 − 𝜓) − 𝑠𝜑𝑐(𝜑 − 𝜓) 𝑐𝜑𝑠𝜎 

𝑠𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) + 𝑐𝜑𝑠(𝜑 − 𝜓) −𝑠𝜑𝑐𝜎 𝑠(𝜑 − 𝜓) + 𝑐𝜑𝑐 (𝜑 − 𝜓) 𝑠𝜑𝑠𝜎

−𝑠𝜎𝑐(𝜑 − 𝜓) 𝑠𝜎𝑠(𝜑 − 𝜓) 𝑐𝜎

]     (3.20) 

 

Let Orp be the position vector of the COM of the mobile platform with respect to the global 

reference frame and for i=1, 2 & 3  

𝒓𝑶
𝒑 = 𝑂′𝑂 + 𝑅𝑙𝑖  𝑅𝑇𝑇 𝑐𝑀

𝑝                                                                                                     (3.21) 

𝑐𝑀
𝑝 = [

𝑥𝑝

𝑦𝑝

𝑧𝑝

] , 𝑂′𝑂 = [
𝑥
𝑦
𝑧
]                                           (3.22) 

where 

• 𝑂′𝑂  represents the origin of the frame M with respect to the global reference frame; 

• 𝑅𝑙𝑖𝑅𝑇𝑇 represent the orientation of the mobile platform with respect to the global 

reference frame; 

• 𝑐𝑀
𝑝 represents the COM of the mobile platform with respect to Frame M.  

Combining equations (3.14) & (3.19) yields to 

𝑅𝑙𝑖𝑅𝑇𝑇 =  [
𝑐𝛿𝑖 −𝑠𝛿𝑖𝑐𝛾2 −𝑠𝛿𝑖s𝛾2 
𝑠𝛿𝑖 𝑐𝛿𝑖c𝛾2 𝑐𝛿𝑖𝑠𝛾2

0 −𝑠𝛾2 𝑐𝛾2

] 

[

𝑐𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) − 𝑠𝜑𝑠(𝜑 − 𝜓) −𝑐𝜑𝑐𝜎𝑠𝑖 𝑛(𝜑 − 𝜓) − 𝑠𝜑𝑐(𝜑 − 𝜓) 𝑐𝜑𝑠𝜎 

𝑠𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) + 𝑐𝜑𝑠(𝜑 − 𝜓) −𝑠𝜑𝑐𝜎 𝑠(𝜑 − 𝜓) + 𝑐𝜑𝑐 (𝜑 − 𝜓) 𝑠𝜑𝑠𝜎

−𝑠𝜎𝑐(𝜑 − 𝜓) 𝑠𝜎𝑠(𝜑 − 𝜓) 𝑐𝜎

] 

         (3.23) 

               = [
𝑅11 𝑅12 𝑅13 
𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

]                                           (3.24) 

where 
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𝑅11 = 𝑐𝛿𝑖(𝑐𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) − 𝑠𝜑𝑠(𝜑 − 𝜓)) − 𝑠𝛿𝑖𝑐𝛾2(𝑠𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) + 𝑐𝜑𝑠(𝜑 − 𝜓))

+ 𝑠𝛿𝑖s𝛾2 𝑠𝜎𝑐(𝜑 − 𝜓) 

 

𝑅21 = 𝑠𝛿𝑖(𝑐𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) − 𝑠𝜑𝑠(𝜑 − 𝜓)) + 𝑐𝛿𝑖c𝛾2(𝑠𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) + 𝑐𝜑𝑠(𝜑 − 𝜓))

− 𝑐𝛿𝑖𝑠𝛾2(𝑠𝜎𝑐(𝜑 − 𝜓)) 

 

𝑅31 = −𝑠𝛾2(𝑠𝜑𝑐𝜎 𝑐(𝜑 − 𝜓) + 𝑐𝜑𝑠(𝜑 − 𝜓)) − 𝑐𝛾2(𝑠𝜎𝑐(𝜑 − 𝜓)) 

𝑅12 = −𝑐𝛿𝑖(𝑐𝜑𝑐𝜎𝑠𝑖 𝑛(𝜑 − 𝜓) − 𝑠𝜑𝑐(𝜑 − 𝜓)) + 𝑠𝛿𝑖𝑐𝛾2(𝑠𝜑𝑐𝜎 𝑠(𝜑 − 𝜓) + 𝑐𝜑𝑐 (𝜑 − 𝜓))

− 𝑠𝛿𝑖s𝛾2(𝑠𝜎𝑠(𝜑 − 𝜓)) 

 

𝑅22 = −𝑠𝛿𝑖(𝑐𝜑𝑐𝜎𝑠𝑖 𝑛(𝜑 − 𝜓) − 𝑠𝜑𝑐(𝜑 − 𝜓)) − 𝑐𝛿𝑖c𝛾2(𝑠𝜑𝑐𝜎 𝑠(𝜑 − 𝜓) + 𝑐𝜑𝑐 (𝜑 − 𝜓))

+ 𝑐𝛿𝑖𝑠𝛾2(𝑠𝜎𝑠(𝜑 − 𝜓)) 

𝑅32 = 𝑠𝛾2(𝑠𝜑𝑐𝜎 𝑠(𝜑 − 𝜓) + 𝑐𝜑𝑐 (𝜑 − 𝜓) ) + 𝑐𝛾2(𝑠𝜎𝑠(𝜑 − 𝜓)) 

𝑅13 = 𝑐𝛿𝑖(𝑐𝜑𝑠𝜎) − 𝑠𝛿𝑖𝑐𝛾2(𝑠𝜑𝑠𝜎) − 𝑠𝛿𝑖s𝛾2(𝑐𝜎) 

𝑅23 = 𝑠𝛿𝑖(𝑐𝜑𝑠𝜎) + 𝑐𝛿𝑖c𝛾2(𝑠𝜑𝑠𝜎) + 𝑐𝛿𝑖𝑠𝛾2(𝑐𝜎) 

𝑅33 = −𝑠𝛾2(𝑠𝜑𝑠𝜎) + 𝑐𝛾2(𝑐𝜎)                 (3.25) 

Combining equations (3.21), (3.22) & (3.23) yields to  

𝒓𝑶
𝒑 = ∑ [

𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝

𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝

𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝

]3
𝑖=1                                                                               (3.26) 

Equation (3.26) represents the position vector of the COM of the mobile platform w.r.t. the 

global reference frame. 

3.4.5 COM of the SPR 

The global COM of the SPR w.r.t. the global reference frame is   

𝑴𝒓 = 𝒎𝒑 𝒓𝒑
𝑶 + ∑ (𝒎𝒊𝒍 𝒓𝒊𝒍

𝑶 + 𝒎𝒊𝒖 𝒓𝒊𝒖
𝑶 )𝟑

𝒊=𝟏                       (3.27) 

where 

• M is the total mass of SPR;   

• mp is the mass of the mobile platform; 

• miu is the mass of the upper link of the ith leg; 
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• mil is the mass of the lower link of the ith leg; 

• 𝒓𝒑
𝑶  is the position vector of the COM of the mobile platform w.r.t. the global reference 

frame; 

• 𝒓𝒊𝒖
𝑶  is position vector of the COM of the upper link of the ith leg w.r.t. the global reference 

frame; 

• 𝒓𝒊𝒍
𝑶  is position vector of the COM of the lower link of the ith leg w.r.t. the global reference 

frame. 

and 

𝑀 = 𝑚𝑝 + ∑ (𝑚𝑖𝑙 + 𝑚𝑖𝑢)3
𝑖=1                                (3.28) 

 

Combining equations (3.6), (3.12), (3.26) and (3.27) and for i=1, 2 &3 yields to 

 Mr =    

[𝑚𝑝 [

𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝

𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝

𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝

] +

𝑚𝑖𝑙 [

𝑥𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)
𝑦𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)

𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1

] +

𝑚𝑖𝑢 [

𝑥𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖 − 𝑦𝑖𝑢𝑐𝑠𝜇𝑖𝑐𝛽2 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2

𝑦𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑠𝜇𝑖 + 𝑦𝑖𝑢𝑐𝑐𝜇𝑖𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑐𝜇𝑖𝑠𝛽2

𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1 + 𝑦𝑖𝑢𝑐𝑠𝛽2 + 𝑧𝑖𝑢𝑐𝑐𝛽2

]]     

  (3.29) 

Let 𝑟 = [

𝑟𝑥
𝑟𝑦
𝑟𝑧

]                                       (3.30) 

𝑀𝑟𝑥 = ∑ (𝑚𝑝(𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝) +3
𝑖=1 𝑚𝑖𝑙(𝑥𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖) −

𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)) + 𝑚𝑖𝑢(𝑥𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 +

𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖 − 𝑦𝑖𝑢𝑐𝑠𝜇𝑖𝑐𝛽2 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2)))             (3.31) 
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𝑀𝑟𝑦 = ∑ (𝑚𝑝(𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝) + 𝑚𝑖𝑙(𝑦𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖) −3
𝑖=1

𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)) +𝑚𝑖𝑢(𝑦𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 −

𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑠𝜇𝑖 + 𝑦𝑖𝑢𝑐𝑐𝜇𝑖𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑐𝜇𝑖𝑠𝛽2)))                                                             (3.32) 

 

𝑀𝑟𝑧 = ∑ (𝑚𝑝(𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝) +3
𝑖=1 𝑚𝑖𝑙(𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1) + 𝑚𝑖𝑢(𝑧𝑖𝑜 +

𝑙𝑖1𝑐𝛽1 + 𝑦𝑖𝑢𝑐𝑠𝛽2 + 𝑧𝑖𝑢𝑐𝑐𝛽2))                   (3.33) 

 

Using Principle III-F, the global centre of mass of the mechanism is stationary (fixed) for any 

configuration of the mechanism if the coefficients of the time dependent terms are equated to zero.  

From equation (3.31), along the X-direction, equating the time dependent terms to zero leads to 

∑(𝑚𝑝(𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝) + 𝑚𝑖𝑙(𝑥𝑖𝑐(𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖)

3

𝑖=1

− 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)))

+ 𝑚𝑖𝑢(𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖 − 𝑦𝑖𝑢𝑐𝑠𝜇𝑖𝑐𝛽2 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2) = 0  

  (3.34) 

Rearranging the terms, 

∑[𝑥𝑚𝑝 + 𝑥𝑝𝑚𝑝𝑅11 + 𝑦𝑝𝑚𝑝𝑅12 + 𝑧𝑝𝑚𝑝𝑅13

3

𝑖=1

+ 𝑐𝜃𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑦𝑖𝑐𝑐𝛽1𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑠𝛽1𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑙𝑖1𝑠𝛽1𝑠𝛿𝑖)

− 𝑠𝜃𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑦𝑖𝑐𝑐𝛽1𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑧𝑖𝑐𝑠𝛽1𝑐𝛿𝑖 − 𝑚𝑖𝑢𝑙𝑖1𝑠𝛽1𝑐𝛿𝑖)

+ 𝑐𝜇𝑖(𝑥𝑖𝑢𝑐𝑚𝑖𝑢) − 𝑠𝜇𝑖(𝑦𝑖𝑢𝑐𝑚𝑖𝑢𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑚𝑖𝑢𝑠𝛽2)] = 0 

(3.35) 

From equation (3.32), along the Y-direction, equating the time dependent terms to zero 

∑(𝑦𝑚𝑝 + 𝑥𝑝𝑚𝑝𝑅21 + 𝑦𝑝𝑚𝑝𝑅22 + 𝑧𝑝𝑚𝑝𝑅23

3

𝑖=1

+ 

𝑚𝑖𝑙(𝑥𝑖𝑐(𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)) 

+ 𝑚𝑖𝑢(𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑚𝑖𝑢𝑠𝜇𝑖 + 𝑦𝑖𝑢𝑐𝑚𝑖𝑢𝑐𝜇𝑖𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑚𝑖𝑢𝑐𝜇𝑖𝑠𝛽2)) = 0 

  (3.36) 
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Rearranging the terms 

∑[𝑦𝑚𝑝 + 𝑥𝑝𝑚𝑝𝑅21 + 𝑦𝑝𝑚𝑝𝑅22 + 𝑧𝑝𝑚𝑝𝑅23

3

𝑖=1

+ 𝑐𝜃𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑦𝑖𝑐𝑐𝛽1𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑧𝑖𝑐𝑠𝛽1𝑐𝛿𝑖 − 𝑚𝑖𝑢𝑙𝑖1𝑠𝛽1𝑐𝛿𝑖)

+ 𝑠𝜃𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑦𝑖𝑐𝑐𝛽1𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑠𝛽1𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑙𝑖1𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑚𝑖𝑢𝑠𝜇𝑖

+ 𝑐𝜇𝑖𝑚𝑖𝑢(𝑦𝑖𝑢𝑐𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑠𝛽2)] = 0  

(3.37) 

From equation (3.33), along the Z-direction, equating the time dependent terms to zero 

𝑟𝑧 = ∑(

3

𝑖=1

𝑚𝑝(𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝)) = 0 

(3.38) 

Rearranging the terms 

∑[𝑧𝑚𝑝 + 𝑥𝑝𝑚𝑝𝑅31 + 𝑦𝑝𝑚𝑝𝑅32 + 𝑧𝑝𝑚𝑝𝑅33]

3

𝑖=1

= 0 

(3.39) 

 

Gathering all the non-time dependent terms from equations (3.31), (3.32) & (3.33) 

𝑀𝑟𝑥 = ∑(𝑚𝑖𝑙𝑥𝑖𝑜 + 𝑚𝑖𝑢

3

𝑖=1

𝑥𝑖𝑜) 

  (3.40) 

𝑀𝑟𝑦 = ∑(𝑚𝑖𝑙𝑦𝑖𝑜 +

3

𝑖=1

𝑚𝑖𝑢𝑦𝑖𝑜) 

  (3.41) 

𝑀𝑟𝑧 = ∑(𝑚𝑖𝑙(𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1) + 𝑚𝑖𝑢(𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1 + 𝑦𝑖𝑢𝑐𝑠𝛽2 + 𝑧𝑖𝑢𝑐𝑐𝛽2)

3

𝑖=1

) 

  (3.42) 
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From equations (3.40), (3.41) & (3.42) the global COM will be stationary when  

𝑀𝑟𝑥 = 𝑚1𝑙𝑥1𝑜 + 𝑚1𝑢𝑥1𝑜 + 𝑚2𝑙𝑥2𝑜 + 𝑚2𝑢𝑥2𝑜 + 𝑚3𝑙𝑥3𝑜 + 𝑚3𝑢𝑥3𝑜 

                                  (3.43) 

𝑀𝑟𝑦 = 𝑚1𝑙𝑦1𝑜 + 𝑚1𝑢𝑦1𝑜 + 𝑚2𝑙𝑦2𝑜 + 𝑚2𝑢𝑦2𝑜 + 𝑚3𝑙𝑦3𝑜 + 𝑚3𝑢𝑦3𝑜 

  (3.44) 

𝑀𝑟𝑧 = 𝑚1𝑙(𝑧1𝑜 + 𝑦1𝑐𝑠𝛽1 + 𝑧1𝑐𝑐𝛽1) + 𝑚1𝑢(𝑧1𝑜 + 𝑙11𝑐𝛽1 + 𝑦1𝑢𝑐𝑠𝛽2 + 𝑧1𝑢𝑐𝑐𝛽2)

+ 𝑚2𝑙(𝑧2𝑜 + 𝑦2𝑐𝑠𝛽1 + 𝑧2𝑐𝑐𝛽1) + 𝑚2𝑢(𝑧2𝑜 + 𝑙21𝑐𝛽1 + 𝑦2𝑢𝑐𝑠𝛽2 + 𝑧2𝑢𝑐𝑐𝛽2)

+ 𝑚3𝑙(𝑧3𝑜 + 𝑦3𝑐𝑠𝛽1 + 𝑧3𝑐𝑐𝛽1) + 𝑚3𝑢(𝑧3𝑜 + 𝑙31𝑐𝛽1 + 𝑦3𝑢𝑐𝑠𝛽2 + 𝑧3𝑢𝑐𝑐𝛽2) 

  (3.45) 

From equations (3.43), (3.44) & (3.45), the global COM is stationary at the point ( 𝑟𝑥, 𝑟𝑦 & 𝑟𝑧) 

𝑟𝑥 =
𝑚1𝑙𝑥1𝑜 + 𝑚1𝑢𝑥1𝑜 + 𝑚2𝑙𝑥2𝑜 + 𝑚2𝑢𝑥2𝑜 + 𝑚3𝑙𝑥3𝑜 + 𝑚3𝑢𝑥3𝑜

𝑀
 

(3.46) 

𝑟𝑦 =
𝑚1𝑙𝑦1𝑜 + 𝑚1𝑢𝑦1𝑜 + 𝑚2𝑙𝑦2𝑜 + 𝑚2𝑢𝑦2𝑜 + 𝑚3𝑙𝑦3𝑜 + 𝑚3𝑢𝑦3𝑜

𝑀
 

(3.47) 

𝑟𝑧 =
𝑚1𝑙

𝑀
(𝑧1𝑜 + 𝑦1𝑐𝑠𝛽1 + 𝑧1𝑐𝑐𝛽1) +

𝑚1𝑢

𝑀
(𝑧1𝑜 + 𝑙11𝑐𝛽1 + 𝑦1𝑢𝑐𝑠𝛽2 + 𝑧1𝑢𝑐𝑐𝛽2)

+
𝑚2𝑙

𝑀
(𝑧2𝑜 + 𝑦2𝑐𝑠𝛽1 + 𝑧2𝑐𝑐𝛽1) +

𝑚2𝑢

𝑀
(𝑧2𝑜 + 𝑙21𝑐𝛽1 + 𝑦2𝑢𝑐𝑠𝛽2 + 𝑧2𝑢𝑐𝑐𝛽2)

+
𝑚3𝑙

𝑀
(𝑧3𝑜 + 𝑦3𝑐𝑠𝛽1 + 𝑧3𝑐𝑐𝛽1) +

𝑚3𝑢

𝑀
(𝑧3𝑜 + 𝑙31𝑐𝛽1 + 𝑦3𝑢𝑐𝑠𝛽2 + 𝑧3𝑢𝑐𝑐𝛽2)  

(3.48) 

 

3.5 Loop Equation 

It is noted that the above derived equations for force balancing is only the necessary condition. To 

reach both the necessary and sufficient condition, the loop equation for the mechanism needs to 
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be derived. There are two independent loop equations for the SPR according to the literature (Basu 

& Ghosal, 1997; Wang & Gosselin, 1999).  The two loop equations are: 

𝑂𝑖𝑚
𝑂 + 𝑅𝑙𝑖𝑙𝑖1 + 𝑅𝑢𝑖𝑙𝑖𝑢 + 𝑅𝑙𝑖𝑅𝑇𝑇𝑙𝑝 = 𝑂3𝑚

𝑂 + 𝑅𝑙3𝑙31 + 𝑅𝑢3𝑙32     (For i=1 & 2)               (3.49) 

 

The lengths of the lower link, upper link and mobile platform are 

𝐼𝑖𝑙 = [
0
0
𝑙𝑖1

]  and 𝑙𝑖1 is the length of the lower link              (3.50) 

 𝐼𝑖𝑢 = [
0
0
𝑙𝑖𝑢

]  and 𝑙𝑖𝑢 is the length of the upper link                   (3.51) 

𝐼𝑝 = [

0
0
𝑙𝑝

]  and 𝑙𝑝 is the length of the mobile platform                 (3.52) 

The two loops (loop-I, loop II) equations are: 

𝑂1𝑚
𝑂 + 𝑅𝑙1𝑙11 + 𝑅𝑢1𝑙12 + 𝑅𝑚𝑝1𝑅𝑇𝑇𝑙𝑝 = 𝑂3𝑚

𝑂 + 𝑅𝑙3𝑙31 + 𝑅𝑢3𝑙32                                    (3.53) 

𝑂2𝑚
𝑂 + 𝑅𝑙2𝑙21 + 𝑅𝑢2𝑙22 + 𝑅𝑚𝑝2𝑅𝑇𝑇𝑙𝑝 = 𝑂3𝑚

𝑂 + 𝑅𝑙3𝑙31 + 𝑅𝑢3𝑙32                   (3.54) 

For Loop-I, by combining equations (3.6), (3.12), (3.26), (3.50), (3.52), (3.53) & (3.54) and  

a𝑡 𝛿1 = 0, 𝑐𝛿1 = 1 & 𝑠𝛿1 = 0 and a𝑡 𝛿3 = 240°, 𝑐𝛿3 =
1

2
 & 𝑠𝛿3 =

√3

2
, we can obtain 

𝑂1𝑚
𝑂 + 𝑅𝑙1𝑙1𝑙 + 𝑅𝑢1𝑙1𝑢 + 𝑅𝑚𝑝1𝑅𝑇𝑇𝑙𝑝 = [

𝑥10 + 𝑠𝜃1𝑠𝛽1𝑙1𝑙 + 𝑠𝜇1𝑠𝛽2𝑙1𝑢 + 𝑅13𝑙𝑝
𝑦10 − 𝑐𝜃1𝑠𝛽1𝑙1𝑙 − 𝑐𝜇1𝑠𝛽2𝑙1𝑢 + 𝑅23𝑙𝑝

𝑧10 + 𝑐𝛽1𝑙1𝑙 + 𝑐𝛽2𝑙1𝑢 + 𝑅33𝑙𝑝

] 

             (3.55) 

𝑂3𝑚
𝑂 + 𝑅𝑙3𝑙3𝑙 + 𝑅𝑢3𝑙3𝑢 =

[
 
 
 
 
 𝑥3𝑜 +

𝑠𝜃3𝑠𝛽1𝑙3𝑙

2
+

√3𝑐𝜃3𝑠𝛽1𝑙3𝑙

2
+ 𝑠𝜇3𝑠𝛽2𝑙3𝑢

𝑦3𝑜 +
√3𝑠𝜃3𝑠𝛽1𝑙3𝑙

2
−

𝑐𝜃3𝑠𝛽1𝑙3𝑙

2
− 𝑐𝜇3𝑠𝛽2𝑙3𝑢

𝑧3𝑜 + 𝑐𝛽1𝑙3𝑙 + 𝑐𝛽2𝑙3𝑢 ]
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         (3.56) 

By combining equations (3.55) and (3.56) and equating the matrices, we obtain  

𝑙1𝑢 =
2(𝑥3𝑜 − 𝑥10) + 𝑙3𝑙𝑠𝛽1(𝑠𝜃3 + √3𝑐𝜃3 − 2𝑠𝜃1) − 2𝑅13𝑙𝑝

2𝑠𝛽2(𝑠𝜇1 − 𝑠𝜇3)
 

         (3.57) 

𝑙1𝑢 =
2(𝑦3𝑜 − 𝑦10) + 𝑙3𝑙𝑠𝛽1(√3𝑠𝜃3 − 𝑐𝜃3 + 2𝑐𝜃1) − 2𝑅23𝑙𝑝

2𝑠𝛽2(𝑐𝜇3 − 𝑐𝜇1)
 

         (3.58) 

𝑧10 − 𝑧3𝑜 = −𝑅33𝑙𝑝              (3.59) 

 

For Loop-II, by combining equations (3.6), (3.12), (3.26), (3.50), (3.51), (3.53) & (3.54) and  

a𝑡 𝛿2 = 120°, 𝑐𝛿2 = −
1

2
 & 𝑠𝛿2 =

√3

2
 and a𝑡 𝛿3 = 240°, 𝑐𝛿3 =

1

2
 & 𝑠𝛿3 =

√3

2
, we can obtain 

 

𝑂2𝑚
𝑂 + 𝑅𝑙2𝑙2𝑙 + 𝑅𝑢2𝑙2𝑢 + 𝑅𝑚𝑝2𝑅𝑇𝑇𝑙𝑝

=

[
 
 
 
 
 𝑥2𝑜 −

𝑠𝜃2𝑠𝛽1𝑙2𝑙

2
+

√3𝑐𝜃2𝑠𝛽1𝑙2𝑙

2
+ 𝑠𝜇2𝑠𝛽2𝑙2𝑢 + 𝑅13𝑙𝑝 

𝑦2𝑜 +
√3𝑠𝜃𝑖𝑠𝛽1𝑙2𝑙

2
+

𝑐𝜃𝑖𝑠𝛽1𝑙2𝑙

2
− 𝑐𝜇2𝑠𝛽2𝑙2𝑢 + 𝑅23𝑙𝑝 

𝑧2𝑜 + 𝑐𝛽1𝑙2𝑙 + 𝑐𝛽2𝑙2𝑢 + 𝑅33𝑙𝑝 ]
 
 
 
 
 

 

         (3.60) 

By combining equations (3.56) and (3.60) and equating the matrices, we obtain 

𝑙2𝑢 =
2(𝑥3𝑜 − 𝑥2𝑜) + 𝑠𝛽1𝑙3𝑙(𝑠𝜃3 + √3𝑐𝜃3 − √3𝑐𝜃2 + 𝑠𝜃2) − 2𝑅13𝑙𝑝

2𝑠𝛽2(𝑠𝜇2 − 𝑠𝜇3)
 

         (3.61) 

𝑙2𝑢 =
2(𝑦3𝑜 − 𝑦2𝑜) + 𝑠𝛽1𝑙3𝑙(𝑐𝜃3 − √3𝑠𝜃3 + √3𝑠𝜃𝑖 + 𝑐𝜃𝑖) + 2𝑅23𝑙𝑝

2𝑠𝛽2(𝑐𝜇2 − 𝑐𝜇3)
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         (3.62) 

𝑧2𝑜 − 𝑧3𝑜 = −𝑅33𝑙𝑝         (3.63) 

Considering the two loops formed by the SPR’s three legs as described above, equations (3.57), 

(3.58 ), (3.61), (3.62) give the upper link equation related to the lower link in terms of both time-

dependent and non-time dependent terms. This equation is used in the modification of the upper 

link using the AKP approach. 

 

3.6 Force Balancing Equations 

From equations (3.35), (3.37) and (3.39), the force balancing equation are: 

Equations 1 to 6 

𝑚1𝑙𝑥1𝑐 = 0                                      (3.64) 

𝑚1𝑙𝑦1𝑐𝑐𝛽1 − 𝑚1𝑙𝑧1𝑐𝑠𝛽1 − 𝑚1𝑢𝑙11𝑠𝛽1 = 0                                     (3.65) 

√3𝑚2𝑙𝑥2𝑐 − 𝑚2𝑙𝑦2𝑐𝑐𝛽1 + 𝑚2𝑙𝑧2𝑐𝑠𝛽1 + 𝑚2𝑢𝑙21𝑠𝛽1 = 0          (3.66) 

−𝑚2𝑙𝑥2𝑐 − √3𝑚2𝑙𝑦2𝑐𝑐𝛽1 + √3𝑚2𝑙𝑧2𝑐𝑠𝛽1 + √3𝑚2𝑢𝑙21𝑠𝛽1 = 0          (3.67) 

√3𝑚3𝑙𝑥3𝑐 + 𝑚3𝑙𝑦3𝑐𝑐𝛽1 − 𝑚3𝑙𝑧3𝑐𝑠𝛽1 − 𝑚3𝑢𝑙31𝑠𝛽1 = 0           (3.68) 

𝑚3𝑙𝑥3𝑐 − √3𝑚3𝑙𝑦3𝑐𝑐𝛽1 + √3𝑚3𝑙𝑧3𝑐𝑠𝛽1 + √3𝑚3𝑢𝑙31𝑠𝛽1 = 0           (3.69) 

 

Equations 7 to 9  

𝑥1𝑢𝑐𝑚1𝑢 = 0                                     (3.72) 

𝑥2𝑢𝑐𝑚2𝑢 = 0                   (3.73) 

𝑥3𝑢𝑐𝑚3𝑢 = 0                          (3.74) 

 

Equations 10 to 12  
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𝑦1𝑢𝑐𝑚1𝑢𝑐𝛽2 − 𝑧1𝑢𝑐𝑚1𝑢𝑠𝛽2 = 0                      (3.75) 

𝑦2𝑢𝑐𝑚2𝑢𝑐𝛽2 − 𝑧2𝑢𝑐𝑚2𝑢𝑠𝛽2 = 0                   (3.76) 

𝑦3𝑢𝑐𝑚3𝑢𝑐𝛽2 − 𝑧3𝑢𝑐𝑚3𝑢𝑠𝛽2 = 0                (3.77) 

 

Equations 13 to 15 

𝑥𝑚𝑝 = 0                                                  (3.78) 

𝑦𝑚𝑝 = 0                 (3.79) 

𝑧𝑚𝑝 = 0              (3.80) 

 

Equations 16 to 18   

𝑥𝑝𝑚𝑝 = 0                                 (3.81) 

𝑦𝑝𝑚𝑝 = 0                     (3.82) 

𝑧𝑝𝑚𝑝 = 0                (3.83) 

 

3.7. AKP Approach for Lower and Upper Links 

Considering the link shape, the COM of each link lies on its link axis as in the in-line situation as 

described by Ouyang (2002) and Ouyang & Zhang (2005). In such a case, only one end of the link 

pivot adjustment is required.  

 

Let the lengths of the unbalanced lower link be 𝑙1𝑙
° , 𝑙2𝑙

° & 𝑙3𝑙
°  and that of the balanced lower links 

be l1l,l2l & l3l. The length of link adjustment is given by 𝑣𝑖𝑙.    

𝑙𝑖𝑙 = 𝑙𝑖𝑙
° − 𝑣𝑖𝑙               (3.84) 

𝑣𝑖𝑙 = 𝑙𝑖𝑙
° − lil                (3.85) 
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Using equation (3.65), the lower link equation is written as     

𝑙11 =
𝑚1𝑙𝑦1𝑐𝑐𝛽1 − 𝑚1𝑙𝑧1𝑐𝑠𝛽1

𝑚1𝑢𝑠𝛽1
 

         (3.86) 

The length of link adjustment is given by 𝑣1𝑙 

𝑣1𝑙 = 𝑙1𝑙
° − l1l = 𝑙1𝑙

° −
𝑚1𝑙𝑦1𝑐𝑐𝛽1 − 𝑚1𝑙𝑧1𝑐𝑠𝛽1

𝑚1𝑢𝑠𝛽1
 

         (3.87) 

Also 𝑣1𝑙 = 𝑣2𝑙 = 𝑣3𝑙 = 𝑣𝑖𝑙 (because of the symmetry of the mechanism)                   (3.88) 

 

Let the length of the unbalanced upper link be 𝑙1𝑢
° , 𝑙2𝑢

° & 𝑙3𝑢
°  and balanced upper links be 

l1u,l2u & l3u. The length of the link adjustment is given by 𝑣𝑖𝑢 

liu = 𝑙𝑖𝑢
° − 𝑣𝑖𝑢               (3.90) 

𝑣𝑖𝑢 = 𝑙𝑖𝑢
° − liu                (3.91) 

 

From equations (3.57) & (3.58), the balanced upper link length after neglecting the time 

dependent terms is given as 

𝑙3𝑢 =
2(𝑥1𝑜 − 𝑥30)

2𝑠𝛽2
 𝑜𝑟 𝑙3𝑢 =

2(𝑦1𝑜 − 𝑦30)

2𝑠𝛽2
 

           (3.92) 

Using equation 

𝑙1𝑢 = 𝑙2𝑢 = 𝑙3𝑢 =
𝑦1𝑜 − 𝑦30

𝑠𝛽2
 

         (3.93) 

Using equation (3.93), the upper link length adjustment is given as 
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𝑣1𝑢 = 𝑣2𝑢 = 𝑣3𝑢 = 𝑙1𝑢
° −

𝑦1𝑜 − 𝑦30

𝑠𝛽2
  

           (3.94) 

Equations (3.86), (3.87) & (3.88) give the lower link length adjustments and (3.93) & (3.94) give 

the upper link length adjustments.  

 

3.8. Validation 

Validation of the equations for force balancing of SPR with AKP was conducted through the 

simulation by using SPACAR. The SPACAR is the name of software for flexible multibody 

dynamics simulation available in MATLAB R2017a environment. The software was developed at 

the engineering mechanical automation laboratory at the University of Twente and was partly 

based on the initial development carried out at the Delft University of Technology. It is available 

for free download from its internet website https://www.utwente.nl/en/et/ms3/research-

chairs/WAoud_niets_uit_wissen_aub/software/spacar/2015/download/. 

 

Out of the five modules available in the SPACAR, the INVDYN module that is for the inverse 

manipulator dynamics module was used, in particular “mode=2 command” was used. The input 

specification is done at the end-effector, which includes the displacement, velocity and 

acceleration. The output motion (i.e., the motion at the actuators) is found by the software (Jonker, 

2007). The SPR mechanism was defined using a data file (.dat), which is the input file to the 

software, containing specific SPACAR keywords and parameters (called SPACAR model). The 

input file was activated in MATLAB using the command ‘spacar (mode,‘filename’) that was 

written as spacar (2, ‘filename’). The elements used in the analysis were spatial HINGE and 

https://www.utwente.nl/en/et/ms3/research-chairs/WAoud_niets_uit_wissen_aub/software/spacar/2015/download/
https://www.utwente.nl/en/et/ms3/research-chairs/WAoud_niets_uit_wissen_aub/software/spacar/2015/download/
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BEAM elements. The SPACAR SPR model consists of nine hinge and nine beam elements for 

SPR.  

 

The input file contains the details of kinematic data, dynamics data, inverse dynamics data, input 

data and data for SPAVISUAL, which is the visualization tool in SPACAR for displaying the 

simulation result. In the results file ‘fxtot’ command determines the reaction forces and moments 

that need to be examined. Appendix D gives the SPACAR input file. The specific SPR of figure 

1-1 was used for this purpose; specifically, 𝛽1 = 90°, 𝛽2 = 90°, 𝛾1 = 45° and 𝛾2 = 60° (Guo et 

al., 2015).  

 

Figure 3-7. SPR mechanism linkage data. 

 

In Table 3-2, rows 1 and 2 give details of the length and mass of the lower link. Rows 3, 4 and 5 

show the values of the coordinate points 𝑂1m, 𝑂2m, 𝑂3m considered with respect to the frame O.  



44 

 

Table 3-2. CAD data of  SPR mechanism  

S.No. Unbalanced Linkage  Value Units 

1 Length (Lower Link) 313 Millimeters 

2 Mass (Lower Link) 641.6 Grams 

3 Point 𝑂1𝑚 (0.0, 162.1, -64.3) X,Y,Z @ fixed frame O 

4 Point 𝑂2𝑚 (-140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 

5 Point 𝑂3𝑚 (140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 

6 Length (Upper Link) 243 Millimeters 

7 Mass (Upper Link) 483.5 Grams 

8 Point 𝑂1𝑛 (-16.8, -149.3, -37.1) X,Y,Z @ fixed frame O 

9 Point 𝑂2𝑛 (129.8, 74.9, -37.1) X,Y,Z @ fixed frame O 

10 Point 𝑂3𝑛 (-129.8, 74.9, -37.1) X,Y,Z @ fixed frame O 

11 Length (Mobile Platform) 189.7 Millimeters 

12 Mass (Mobile Platform) 313 Grams 

13 Point 𝑃1
′𝑂  (0.0, -109.5, 202.5) X,Y,Z @ fixed frame O 

14 Point 𝑃1
′𝑂′  (𝑥1

′ , 𝑦1
′ , 𝑧1

′) (0.0, -105.1, 86.1) X,Y,Z @ local frame M 

15 Point 𝑃2
′𝑂  (94.8, 54.8, 202.5) X,Y,Z @ fixed frame O 

16 Point 𝑃2
′𝑂′  (𝑥2

′ , 𝑦2
′ , 𝑧2

′ ) (91.1, 52.6, 86.1) X,Y,Z @ local frame M 

17 Point 𝑃3
′𝑂  (-94.8, 54.8, 202.5) X,Y,Z @ fixed frame O 

18 Point 𝑃3
′𝑂′  (𝑥3

′ , 𝑦3
′ , 𝑧3

′ ) (-91.1, 52.6, 86.1) X,Y,Z @ local frame M  

19 Point 𝑃𝑂   (0.0, 0.0, 0.202) X,Y,Z @ fixed frame O 

20 Length 𝑙𝑖𝑐 123 Millimeters 
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The values are extracted using Solidworks CAD model of the SPR. These three points represent 

the positions of the three revolute joints that connect the servomotors with the lower links, 

respectively. Figure 3-7 shows the details of these points. Rows 6 and 7 give details of the length 

and mass of the upper link. Rows 8, 9 and 10 show the values of the coordinate points 𝑂1n, 𝑂2n, 

𝑂3n considered with respect to the frame O. These three points represent the positions of the three 

revolute joints that connect the lower links with the upper links respectively. Rows 11 and 12 give 

details of the length and mass of the mobile platform. Rows 13, 15 and 17 show the values of the 

coordinate points 𝑃1
′𝑂 , 𝑃2

′𝑂 , 𝑃3
′𝑂  considered with respect to the frame O. These three points 

represent the positions of the three revolute joints that connect the upper links with the mobile 

platform respectively. Rows 14, 16 and 18 show the values of the coordinate points 𝑃1
′𝑂′ , 𝑃2

′𝑂′ , 𝑃3
′𝑂′  

considered with respect to the local frame M of the mobile platform. The points 𝑃1
′𝑂 , 𝑃2

′𝑂 , 𝑃3
′𝑂  and 

the points 𝑃1
′𝑂′ , 𝑃2

′𝑂′ , 𝑃3
′𝑂′   represent the three revolute joint points on the mobile platform, 

respectively, while the former points are considered with respect to the frame O and the latter with 

respect to the local frame M. Row 19 shows the position of the end effector in terms of its 

coordinate point 𝑃𝑂  considered with respect to the frame O. Row 20 gives the length of COM of 

the upper link considered from its intersecting point with the lower link.  

 

The INVDYN module performs the inverse kinematics and dynamics and the inputs are 

represented by defining trajectory path and velocity profile. Aarts et al. (2011) describes the syntax 

for using the TRAJECT command. The trajectory path is described using five TRAJECT 

commands at four points (see Appendix D). For point oP, as shown in figure 3-7, the velocity 

profile is specified using the TRAJECT. Two velocity profiles were defined, one at low speed and 

the other at high speed. Low speed in this thesis refers to the time for the end-effector to move 
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over the distance between the two neighboring TRAJECT points, 0.1 seconds in this case. The 

high speed in this thesis refers to the time for the end-effector to move over the distance between 

the two neighboring TRAJECT points, 0.03 seconds in this case.  

 

According to the method of AKP as discussed before, both the lower link and the upper link were 

modified. Figure 3-8 shows the Spavisual diagram of SPACAR. The lower link was balanced by 

using equations (3.86), (3.87) & (3.88). Equations (3.87) and (3.88) give the link adjustment using 

AKP while equation (3.86) gives the value of the modified length of the lower link. The values in 

these equations were taken using rows 1 and 2 of Table 3-2. 

 

 Points 𝑂1m , 𝑂2m , 𝑂3m  as shown in figure 3-7 give the coordinate values. The length of the 

balanced link was calculated to be 207 mm as shown in equation (3.95) and the AKP link 

adjustment was calculated as 106 mm. Though the lower link length was modified its mass remains 

the same as per the AKP. 

 

The upper link was balanced by using equations (3.93) and (3.94). Using equation (3.94), the upper 

link was balanced using the AKP approach and its value was calculated as 𝑙𝑖𝑢 = 162.1 + 81.1 =

= 0.243 𝑚. Table 3-3 shows the values of SPR geometry modified using the AKP approach. 

Though the length of the upper link was modified its mass remains the same as per the AKP 

approach. 
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(a)                                                           (b)                                                   (c) 

Figure 3-8. (a) Low speed simulation model position of SPR at time interval t=0 (b) The position 

of the rotated mechanism at t=0.2s (c) The position of the rotated mechanism at t=0.4s. 

 

 

In Table 3-3, rows 1 and 2 give details of the length and mass of the lower link. Rows 3, 4 and 5 

show the values of the coordinate points 𝑂1m, 𝑂2m, 𝑂3m considered with respect to the frame O. 

The values are extracted using Solidworks CAD model of the SPR. These three points represent 

the positions of the three revolute joints that connect the servomotors with the lower links 

respectively. Figure 3-7 shows the details of these points. Rows 6 and 7 give details of the length 

and mass of the upper link which was modified using AKP. Rows 8, 9 and 10 show the values of 

the coordinate points 𝑂1n, 𝑂2n, 𝑂3n considered with respect to the frame O. These three points 

represent the positions of the three revolute joints that connect the lower links with the upper links 

respectively. Rows 11 and 12 give details of the length and mass of the mobile platform. Rows 13, 

14 and 15 show the values of the coordinate points 𝑃1
′𝑂 , 𝑃2

′𝑂 , 𝑃3
′𝑂  considered with respect to the 

frame O. These three points represent the positions of the three revolute joints that connect the 

upper links with the mobile platform, respectively.  
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Table 3-3. CAD data of force balanced SPR using AKP 

S.No. AKP modified Linkage  Value Units 

1 Length (Lower Link) 207 Millimeters 

2 Mass (Lower Link) 641.6 Grams 

3 Point 𝑂1𝑚 (0.0, 162.1, -64.3) X,Y,Z @ fixed frame O 

4 Point 𝑂2𝑚 (-140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 

5 Point 𝑂3𝑚 (140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 

6 Length (Upper Link) 243.2 Millimeters 

7 Mass (Upper Link) 483.5 Grams 

8 Point 𝑂1𝑛 (-36.6, -61.9, -33.8) X,Y,Z @ fixed frame O 

9 Point 𝑂2𝑛 (71.9, -0.7, -33.8) X,Y,Z @ fixed frame O 

10 Point 𝑂3𝑛 (-35.4, 62.7, -33.8) X,Y,Z @ fixed frame O 

11 Length (Mobile Platform) 189.7 Millimeters 

12 Mass (Mobile Platform) 313 Grams 

13 Point 𝑃1
′′𝑂  (8.40, -20.2, 83.5) X,Y,Z @ fixed frame O 

14 Point 𝑃2
′′𝑂  (13.3, 17.4, 83.5) X,Y,Z @ fixed frame O 

15 Point 𝑃3
′′𝑂  (-21.7, 2.8, 83.5) X,Y,Z @ fixed frame O 

 

Figure 3-9 shows the SPACAR Spavisual model of the SPR mechanism modified by the AKP 

approach at various time intervals at low speed. 
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(a)                                             (b)                                                    (c) 

Figure 3-9. (a) Low speed simulation model of SPR, modified using the AKP approach, at time 

interval t=0; (b) The position of the rotated mechanism at t=0.2s; (c) The position of the rotated 

mechanism at t=0.4s. 

 

The reaction forces of the SPR in the X, Y and Z directions are shown in figures 3-10, 3-11 and 3-

12, respectively. From figure 3-10, no reaction force in the x-direction is found at both low speed 

and high speed for the balanced SPR mechanism. It is noted that for the unbalanced SPR 

mechanism, the reaction force in the x-direction was very small, so the results for both the balanced 

and unbalanced mechanisms are overlapping in the plot. From figure 3-11 it can be seen that the 

reaction forces of the balanced SPR are nearly zero at both low and high speeds, but there are 

significant reaction forces in the y-direction for the unbalanced mechanism. Tables 3-4 and 3-5 

shows the values of the reaction forces at different time intervals for both the low speed and high 

speed. From figure 3-12, it can be seen that the reaction force in the z-direction for the balanced 

(i.e., in the gravity direction) is nearly zero. It is noted that the reaction force in the z-direction for 

the unbalanced mechanism is very small, so the two results are overlapping in the plot. 
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(a)            (b)                                                

Figure 3-10. X reaction force of the SPR for unbalanced and AKP-balanced at (a) Low 

speed (b) High speed. 

 

 

(a)            (b) 

Figure 3-11. Y reaction force of the SPR for unbalanced and AKP-balanced at (a) Low 

speed (b) High speed. 

 

Table 3-4. The reaction force in the Y-direction at low speed at various time intervals  

time, t [sec]→ t=0.005 t=0.01 t=0.02 t=0.2 t=0.3 t=0.45 t=0.55 t=0.65 

Unbalanced, Fy [N] -898 -823 -587 346 344 -1611 0 2 

AKP, Fy [N] 0 0 0 4 4 -4 0 2 
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Table 3-5. The reaction force in the Y-direction at high speed at various time intervals 

time, t [sec]→ t=0.005 t=0.01 t=0.02 t=0.2 t=0.3 t=0.45 t=0.55 t=0.65 

Unbalanced, Fy [N] -898 -823 -587 186 -56 -948 1 1 

AKP, Fy [N] 0 0 0 2 -2 -2 0 0 

 

 

 

(a)                                                                             (b) 

Figure 3-12. Z reaction force of the SPR for the unbalanced and AKP-balanced at: (a) 

Low speed (b) High speed. 

    

3.9. Conclusion 

The main conclusion of this chapter is that the AKP approach can be extended to force balancing 

of SPR, and in fact it can be extended to force balancing of any spatial mechanisms, as the 

derivation of the balancing equations is not restricted by the special structural feature with SPR. 

The following specific conclusions can be drawn: (1) the total number of the force balancing 

equations with the AKP approach for the SPR is 18 while the total number of the force balancing 

equations with the CW approach is 16; (2) the total number of the loop closure equations is 6; (3) 

force balancing can be achieved by adjusting the lower link and upper link only.  
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Chapter 4 

Dynamic Balancing of SPR using AKP-CW 

4.1. Introduction 

In this chapter, the AKP will be extended to combine it with the CW in the ACRCM approach 

(Wijk and Herder, 2008) to dynamic balancing of SPR. Section 4.2 will briefly discuss the idea. 

Section 4.3 will introduce the general methodology for dynamic balancing of SPR. Section 4.4 

will present the principle of dynamic balancing of SPR. Section 4.5 will present the angular 

momentum of SPR. Section 4.6 will present the principle of the balancing of shaking moment. 

Section 4.7 will present the equations for moment balancing. Section 4.8 will present the equation 

for the CW adjustment of the lower link. Section 4.9 will present the equation for the AKP 

adjustment of the upper link.  

 

4.2. ACRCM for Dynamic Balancing 

As reviewed in Section 1.3, one of the AD approaches, ACRCM, includes a gear mechanism and 

additional actuator with a controller to control the rotation of counterweight added on the 

mechanism. The counterweight generates the additional moment of inertia to balance shaking 

moment. The ACRCM approach can perform the full dynamic balancing of mechanisms. On the 

other hand, the hybrid approach in literature combines two different approaches such as AKP and 

CW (CW-AKP for short) to perform force balancing of mechanisms (Huang et al., 2010). The idea 

in this thesis was to combine AKP with the CW part of ACRCM to perform dynamic balancing of 

SPR. 
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4.3. Methodology for Deriving the Dynamic Balancing Equation 

The combined CW and AKP approach (CW-AKP for short) developed by Huang et al. (2010) is 

taken as a starting point. This approach is applied to derive the force balance equations by writing 

the position vectors of the mechanism and its components with respect to the global reference 

frame. Principle III-F in Section 1.2 is used in deriving the force balancing equations. For the 

moment balancing equations, the angular momentum of the mechanism along with its components 

is written with respect to the global reference frame. According to the principle of the angular 

momentum, the time rate of the change of the angular momentum is equal to the sum of the external 

moments, where both are considered with respect to the same point. In other words,  

 

∑M𝑜 = 𝐿𝑜̇                                                                      (4.1) 

 

where Mo is the sum of the external moment at a reference point O and 𝐿𝑜 is the total angular 

momentum considered at the same reference point (Wu & Gosselin, 2005). The principle III-D in 

Section 1.2 is used in deriving the moment balancing equations. 

  

4.4. The Principle for Dynamic Balancing of SPR 

For the SPR mechanism, 

(i) the COM of the mechanism, denoted by r, should remain stationary (Force Balancing) 

𝑑𝑟

𝑑𝑡
= 0               (4.2) 

(ii) the total angular momentum must remain constant (zero) with respect to a fixed point 

(Moment Balancing), or 

𝑑𝐿𝑜

𝑑𝑡
= 0              (4.3) 
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4.5. Angular Momentum of SPR 

The angular momentum of the SPR with respect to its center point ‘O’ and for i=1, 2 & 3  

𝐿𝑜 = 𝑚𝑝(𝑟𝑝  ×  𝑟̇𝑝) + (𝐿𝑖𝑙 + 𝑚𝑖𝑙(𝑟𝑖𝑙  ×  𝑟̇𝑖𝑙)) + (𝐿𝑖𝑢 + 𝑚𝑖𝑢(𝑟𝑖𝑢  ×  𝑟̇𝑖𝑢)) − 𝐼𝑖
∗𝜃̇𝑖  (4.4) 

where 

o 𝐿𝑜 is the total angular momentum of the SPR with respect to point ‘O’; 

o 𝑟𝑝 is the position vector of the mobile platform w.r.t ‘O’; 

o 𝐿𝑖𝑙 is the angular momentum of the lower links w.r.t. its COM; 

o 𝐿𝑖𝑢 is the angular momentum of the upper links w.r.t. its COM; 

o 𝑟𝑖𝑙 is the position vector of the COM of lower links w.r.t. ‘O’; 

o 𝑟𝑖𝑢 is the position vector of the COM of upper links w.r.t. ‘O’; 

o Ii
∗
 is the effective inertia of the counterrotations (ACRCM) attached to each servomotor;  

o 𝜃̇𝑖 is the rotational velocity of SPR 

 

Substituting equation (3.27) in Section 3.6.3, equation (3.13) in Section 3.5.2 and equation (3.34) 

in Section 3.7 to equation (4.4) yields (for i=1, 2 & 3) 

 

𝐿𝑜 = 𝑡𝑒𝑟𝑚 I + term II + term III + term IV + term V          (4.5) 

 

where 

𝑡𝑒𝑟𝑚 𝐼 = 𝑚𝑝 [

𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝

𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝

𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝

] x

[
 
 
 
 𝑥𝑝

𝑑(𝑅11)

𝑑𝑡
+ 𝑦𝑝

𝑑(𝑅12)

𝑑𝑡
+ 𝑧𝑝

𝑑(𝑅13)

𝑑𝑡

𝑥𝑝
𝑑(𝑅21)

𝑑𝑡
+ 𝑦𝑝

𝑑(𝑅22)

𝑑𝑡
+ 𝑧𝑝

𝑑(𝑅23)

𝑑𝑡

𝑥𝑝
𝑑(𝑅31)

𝑑𝑡
+ 𝑦𝑝

𝑑(𝑅32)

𝑑𝑡
+ 𝑧𝑝

𝑑(𝑅33)

𝑑𝑡 ]
 
 
 
 

          (4.6) 
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𝑡𝑒𝑟𝑚 𝐼𝐼 = 𝑚𝑖𝑙𝑘𝑖𝑙
2 𝜃̇𝑖 [

0
0
1
] +

𝑚𝑖𝑙 [

𝑥𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑐𝛿𝑖 − 𝑠𝜃𝑖𝑠𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖)

𝑦𝑖𝑜 + 𝑥𝑖𝑐(𝑐𝜃𝑖𝑠𝛿𝑖 + 𝑠𝜃𝑖𝑐𝛿𝑖) − 𝑦𝑖𝑐(𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖) + 𝑧𝑖𝑐(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖)

𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1

] × 

[

𝑥𝑖𝑐(−𝑠𝜃𝑖𝑐𝛿𝑖𝜃̇𝑖 − 𝑐𝜃𝑖𝑠𝛿𝑖𝜃̇𝑖) − 𝑦𝑖𝑐(𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖𝜃̇𝑖) + 𝑧𝑖𝑐(𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖)

𝑥𝑖𝑐(−𝑠𝜃𝑖𝑠𝛿𝑖𝜃̇𝑖 + 𝑐𝜃𝑖𝑐𝛿𝑖𝜃̇𝑖) − 𝑦𝑖𝑐(𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖𝜃̇𝑖) + 𝑧𝑖𝑐(𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖)

0

]   

              (4.7) 

𝑡𝑒𝑟𝑚 𝐼𝐼𝐼 = 𝑚𝑖𝑢𝑘𝑖𝑢
2 𝜃̇𝑖 [

0
0
1
]                  (4.8) 

𝑡𝑒𝑟𝑚 𝐼𝑉 = 

𝑚𝑖𝑢 [

𝑥𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖 + 𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖 − 𝑦𝑖𝑢𝑐𝑠𝜇𝑖𝑐𝛽2 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2

𝑦𝑖𝑜 + 𝑙𝑖1(𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖 − 𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖) + 𝑥𝑖𝑢𝑐𝑠𝜇𝑖 + 𝑦𝑖𝑢𝑐𝑐𝜇𝑖𝑐𝛽2 − 𝑧𝑖𝑢𝑐𝑐𝜇𝑖𝑠𝛽2

𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1 + 𝑦𝑖𝑢𝑐𝑠𝛽2 + 𝑧𝑖𝑢𝑐𝑐𝛽2

] 

×  [

𝑙𝑖1(𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖) − 𝑥𝑖𝑢𝑐𝑠𝜇𝑖𝜇̇𝑖 − 𝑦
𝑖𝑢𝑐

𝑐𝜇𝑖𝑐𝛽2𝜇̇𝑖 + 𝑧𝑖𝑢𝑐𝑐𝜇𝑖𝑠𝛽2𝜇̇𝑖

𝑙𝑖1(𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖𝜇̇𝑖 − 𝑦
𝑖𝑢𝑐

𝑠𝜇𝑖𝑐𝛽2𝜇̇𝑖 + 𝑧𝑖𝑢𝑐𝑠𝜇𝑖𝑠𝛽2𝜇̇𝑖

0

] 

                        (4.9) 

term V = 𝐼𝑖
∗𝜃̇𝑖 [

0
0
1
]                (4.10) 

 

The above equation including all the terms is expanded as  

𝐿𝑜 = 𝑚𝑝 ∑[

(𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝)(𝑥𝑝𝑅̇31 + 𝑦𝑝𝑅̇32 + 𝑧𝑝𝑅̇33)

(𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝)(𝑥𝑝𝑅̇31 + 𝑦𝑝𝑅̇32 + 𝑧𝑝𝑅̇33)

(𝑥 + 𝑅11𝑥𝑝 + 𝑅12𝑦𝑝 + 𝑅13𝑧𝑝)(𝑥𝑝𝑅̇21 + 𝑦𝑝𝑅̇22 + 𝑧𝑝𝑅̇23)

3

𝑖=1

 

−(𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝)(𝑥𝑝𝑅̇21 + 𝑦𝑝𝑅̇22 + 𝑧𝑝𝑅̇23)

−(𝑧 + 𝑅31𝑥𝑝 + 𝑅32𝑦𝑝 + 𝑅33𝑧𝑝)(𝑥𝑝𝑅̇11 + 𝑦𝑝𝑅̇12 + 𝑧𝑝𝑅̇13)

−(𝑦 + 𝑅21𝑥𝑝 + 𝑅22𝑦𝑝 + 𝑅23𝑧𝑝)(𝑥𝑝𝑅̇11 + 𝑦𝑝𝑅̇12 + 𝑧𝑝𝑅̇13)

] 
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+[

0
0

𝑚𝑖𝑙𝑘𝑖𝑙
2 𝜃̇𝑖

] 

+∑𝑚𝑖𝑙 [
0
0
𝑎𝑏

3

𝑖=1

 

−(𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1)(𝑥𝑖𝑐(−𝑠𝜃𝑖𝑠𝛿𝑖𝜃̇𝑖 + 𝑐𝜃𝑖𝑐𝛿𝑖𝜃̇𝑖) − 𝑦𝑖𝑐(𝑐𝜃𝑖𝑐𝛽1𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑐𝛽1𝑐𝛿𝑖𝜃̇𝑖) + 𝑧𝑖𝑐(𝑐𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖))

−(𝑧𝑖𝑜 + 𝑦𝑖𝑐𝑠𝛽1 + 𝑧𝑖𝑐𝑐𝛽1)(𝑥𝑖𝑐(−𝑠𝜃𝑖𝑐𝛿𝑖𝜃̇𝑖 − 𝑐𝜃𝑖𝑠𝛿𝑖𝜃̇𝑖) − 𝑦𝑖𝑐(𝑐𝜃𝑖𝑐𝛽1𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑐𝛽1𝑠𝛿𝑖𝜃̇𝑖) + 𝑧𝑖𝑐(𝑐𝜃𝑖𝑠𝛽1𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑠𝛽1𝑠𝛿𝑖𝜃̇𝑖))

−𝑐𝑑

] 

+[

0
0

𝑚𝑖𝑢𝑘𝑖𝑢
2 𝜃̇𝑖

] 

+∑𝑚𝑖𝑢 [
0 −
0 −
𝑒𝑓 −

3

𝑖=1

 

(𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1
+ 𝑦

𝑖𝑢𝑐
𝑠𝛽

2
+ 𝑧𝑖𝑢𝑐𝑐𝛽2

)(𝑙𝑖1(𝑐𝜃𝑖𝑠𝛽1
𝑠𝛿𝑖𝜃̇𝑖 + 𝑠𝜃𝑖𝑠𝛽1

𝑐𝛿𝑖𝜃̇𝑖) + 𝑥𝑖𝑢𝑐𝑐𝜇𝑖
𝜇̇

𝑖
− 𝑦

𝑖𝑢𝑐
𝑠𝜇

𝑖
𝑐𝛽

2
𝜇̇

𝑖
+ 𝑧𝑖𝑢𝑐𝑠𝜇𝑖

𝑠𝛽
2
𝜇̇

𝑖
)

(𝑧𝑖𝑜 + 𝑙𝑖1𝑐𝛽1
+ 𝑦

𝑖𝑢𝑐
𝑠𝛽

2
+ 𝑧𝑖𝑢𝑐𝑐𝛽2

)(𝑙𝑖1(𝑐𝜃𝑖𝑠𝛽1
𝑐𝛿𝑖𝜃̇𝑖 − 𝑠𝜃𝑖𝑠𝛽1

𝑠𝛿𝑖𝜃̇𝑖) − 𝑥𝑖𝑢𝑐𝑠𝜇𝑖
𝜇̇

𝑖
− 𝑦

𝑖𝑢𝑐
𝑐𝜇

𝑖
𝑐𝛽

2
𝜇̇

𝑖
+ 𝑧𝑖𝑢𝑐𝑐𝜇𝑖

𝑠𝛽
2
𝜇̇

𝑖
)

𝑔ℎ

] 

-𝐼𝑖𝑙
∗ 𝜃̇𝑖 [

0
0
1
] 

                      (4.11) 

 

4.6. Moment Balancing 

By using equation (4.3) and separating the time-dependent parameters with other geometrical and 

inertial parameters and equating the terms to zero, we obtain  

 

In X-direction: 

𝑅̇31𝑦𝑥𝑝 + 𝑅̇32𝑦𝑦𝑝 + 𝑅̇33𝑦𝑧𝑝−𝑅̇21𝑧𝑥𝑝 − 𝑅̇22𝑧𝑦𝑝 − 𝑅̇23𝑧𝑧𝑝 + (𝑅̇31𝑅21 − 𝑅̇21𝑅31)𝑥𝑝
2 + (𝑅̇31𝑅22 

−𝑅̇21𝑅32 + 𝑅̇32𝑅21 − 𝑅̇22𝑅31)𝑥𝑝𝑦𝑝 + (𝑅̇31𝑅23 − 𝑅̇21𝑅33 + 𝑅̇33𝑅21 − 𝑅̇23𝑅31)𝑥𝑝𝑧𝑝 + (𝑅̇32𝑅22 
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−𝑅̇22𝑅32)𝑦𝑝
2 + (𝑅̇32𝑅23 − 𝑅̇22𝑅33 + 𝑅̇33𝑅22 − 𝑅̇23𝑅32)𝑦𝑝𝑧𝑝 + (𝑅̇33𝑅23 − 𝑅̇23𝑅33)𝑧𝑝

2 − 𝑠𝜃𝑖𝜃̇𝑖 

(𝑚𝑖𝑙𝑧𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑥𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑥𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑦𝑖𝑢𝑐) − 

𝑐𝜃𝑖𝜃̇𝑖(𝑚𝑖𝑙(𝑥𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 + 𝑧𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑥𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 + 𝑧𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖) + 𝑚𝑖𝑢(𝑧𝑖𝑜𝑠𝛿𝑖𝑙𝑖1 + 𝑦𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1)) 

−𝑐𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑦𝑖𝑢𝑐) − 𝑠𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑦𝑖𝑢𝑐) = 0 

                (4.12) 

In Y-direction: 

𝑅̇31𝑥𝑥𝑝 + 𝑅̇32𝑥𝑦𝑝 + 𝑅̇33𝑥𝑧𝑝 − 𝑅̇11𝑧𝑥𝑝 − 𝑅̇12𝑧𝑦𝑝 − 𝑅̇13𝑧𝑧𝑝 + (𝑅̇31𝑅11 − 𝑅̇11𝑅31)𝑥𝑝
2 + 

(𝑅̇32𝑅12 − 𝑅̇12𝑅32)𝑦𝑝
2 + (𝑅̇33𝑅13 − 𝑅̇13𝑅33)𝑧𝑝

2 + (𝑅̇31𝑅12 + 𝑅̇32𝑅11 − 𝑅̇11𝑅32 − 𝑅̇12𝑅31) 

𝑥𝑝𝑦𝑝 + (𝑅̇31𝑅13 + 𝑅̇33𝑅11 − 𝑅̇11𝑅33 − 𝑅̇13𝑅31)𝑥𝑝𝑧𝑝 + (𝑅̇32𝑅13 + 𝑅̇33𝑅12 − 𝑅̇12𝑅33 − 𝑅̇13𝑅32) 

𝑦𝑝𝑧𝑝 + 𝑠𝜃𝑖𝜃̇𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑥𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑠𝛿𝑖𝑧𝑖𝑜𝑙𝑖1 + 

𝑚𝑖𝑢𝑠𝛿𝑖𝑦𝑖𝑢𝑐𝑙𝑖1) − 𝑐𝜃𝑖𝜃̇𝑖(𝑚𝑖𝑙(𝑧𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 − 𝑥𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑧𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 − 𝑥𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖) + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑜 

+𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑦𝑖𝑢𝑐) + 𝑠𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑦𝑖𝑢𝑐) − 𝑐𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑦𝑖𝑢𝑐) = 0 

  (4.13) 

In Z-direction: 

𝑅̇21𝑥𝑥𝑝 + 𝑅̇22𝑥𝑦𝑝 + 𝑅̇23𝑥𝑧𝑝 − 𝑅̇11𝑦𝑥𝑝 − 𝑅̇12𝑦𝑦𝑝 − 𝑅̇13𝑦𝑧𝑝 + (𝑅̇21𝑅11 − 𝑅̇11𝑅21)𝑥𝑝
2 + (𝑅̇22 

𝑅12 − 𝑅̇12𝑅22)𝑦𝑝
2 + (𝑅̇23𝑅13 − 𝑅̇13𝑅23)𝑧𝑝

2 + (𝑅̇21𝑅13 + 𝑅̇23𝑅11 − 𝑅̇13𝑅21 − 𝑅̇11𝑅23)𝑥𝑝𝑧𝑝 

+(𝑅̇21𝑅12 + 𝑅̇22𝑅11 − 𝑅̇12𝑅21 − 𝑅̇11𝑅22)𝑥𝑝𝑦𝑝 + (𝑅̇22𝑅13 + 𝑅̇23𝑅12 − 𝑅̇13𝑅22 − 𝑅̇12𝑅23)𝑦𝑝𝑧𝑝 

+𝑠𝜃𝑖𝜃̇𝑖(𝑚𝑖𝑙(𝑥𝑖𝑜𝑧𝑖𝑐𝑐𝛿𝑖 − 𝑥𝑖𝑜𝑥𝑖𝑐𝑠𝛿𝑖 + 𝑦𝑖𝑜𝑥𝑖𝑐𝑐𝛿𝑖 + 𝑦𝑖𝑜𝑧𝑖𝑐𝑠𝛿𝑖) + 𝑚𝑖𝑢𝑥𝑖𝑜𝑐𝛿𝑖𝑙𝑖1 + 𝑚𝑖𝑢𝑦𝑖𝑜𝑠𝛿𝑖𝑙𝑖1) 

+𝑐𝜃𝑖𝜃̇𝑖(𝑚𝑖𝑙(𝑥𝑖𝑜𝑥𝑖𝑐𝑐𝛿𝑖 + 𝑥𝑖𝑜𝑧𝑖𝑐𝑠𝛿𝑖 − 𝑦𝑖𝑜𝑧𝑖𝑐𝑐𝛿𝑖 + 𝑦𝑖𝑜𝑥𝑖𝑐𝑠𝛿𝑖) + 𝑚𝑖𝑢𝑥𝑖𝑜𝑠𝛿𝑖𝑙𝑖1 − 𝑚𝑖𝑢𝑦𝑖𝑜𝑐𝛿𝑖𝑙𝑖1) 

+𝑐𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑥𝑖𝑜𝑥𝑖𝑢𝑐 − 𝑚𝑖𝑢𝑦𝑖𝑜𝑧𝑖𝑢𝑐) 

+𝑠𝜇𝑖𝜇̇𝑖(𝑚𝑖𝑢𝑥𝑖𝑜𝑧𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑦𝑖𝑜𝑥𝑖𝑢𝑐) + 𝑠𝜇𝑖𝜇̇𝑖𝑠𝜃𝑖(𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐) 

+𝑐𝜇𝑖𝜇̇𝑖𝑐𝜃𝑖(𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐) + 𝑐𝜃𝑖𝜃̇𝑖𝑐𝜇𝑖(𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑐𝛿𝑖𝑙𝑖1) 

+𝑠𝜇𝑖𝜇̇𝑖𝑐𝜃𝑖(𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐 − 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐) + 𝑐𝜇𝑖𝜇̇𝑖𝑠𝜃𝑖(𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐 − 𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐) 

+𝜇̇𝑖(𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑥𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑧𝑖𝑢𝑐) + 𝑠𝜃𝑖𝜃̇𝑖𝑐𝜇𝑖(𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑐𝛿𝑖𝑙𝑖1 − 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1) 

+𝑐𝜃𝑖𝜃̇𝑖𝑠𝜇𝑖(𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1 − 𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑐𝛿𝑖𝑙𝑖1) + 𝑠𝜃𝑖𝜃̇𝑖𝑠𝜇𝑖(𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑐𝛿𝑖𝑙𝑖1 + 𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1) 
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+𝜃̇𝑖(𝑚𝑖𝑙𝑥𝑖𝑐𝑥𝑖𝑐 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑧𝑖𝑐 + +𝑚𝑖𝑢𝑙𝑖1𝑙𝑖1 + 𝑚𝑖𝑙𝑘𝑖𝑙
2 + 𝑚𝑖𝑢𝑘𝑖𝑢

2 − 𝐼𝑖
∗) = 0 

  (4.14) 

 

4.7. Moment Balancing Equations 

Separating the coefficients from the time dependent terms, seventeen equations are obtained: 

𝑚𝑖𝑙𝑧𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑥𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑥𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑦𝑖𝑢𝑐 = 0 

  (4.15) 

𝑚𝑖𝑙𝑥𝑖𝑐𝑧𝑖𝑜𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑧𝑖𝑜𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑥𝑖𝑐𝑦𝑖𝑐𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑧𝑖𝑐𝑦𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑧𝑖𝑜𝑠𝛿𝑖𝑙𝑖1 + 𝑚𝑖𝑢𝑦𝑖𝑢𝑐𝑠𝛿𝑖𝑙𝑖1 = 0 

  (4.16) 

𝑚𝑖𝑙𝑥𝑖𝑜𝑧𝑖𝑐𝑐𝛿𝑖 − 𝑚𝑖𝑙𝑥𝑖𝑜𝑥𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑙𝑦𝑖𝑜𝑥𝑖𝑐𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑦𝑖𝑜𝑧𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑥𝑖𝑜𝑐𝛿𝑖𝑙𝑖1 + 𝑚𝑖𝑢𝑦𝑖𝑜𝑠𝛿𝑖𝑙𝑖1 = 0 

  (4.17) 

𝑚𝑖𝑙𝑥𝑖𝑜𝑥𝑖𝑐𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑥𝑖𝑜𝑧𝑖𝑐𝑠𝛿𝑖 − 𝑚𝑖𝑙𝑦𝑖𝑜𝑧𝑖𝑐𝑐𝛿𝑖 + 𝑚𝑖𝑙𝑦𝑖𝑜𝑥𝑖𝑐𝑠𝛿𝑖 + 𝑚𝑖𝑢𝑥𝑖𝑜𝑠𝛿𝑖𝑙𝑖1 − 𝑚𝑖𝑢𝑦𝑖𝑜𝑐𝛿𝑖𝑙𝑖1 = 0 

  (4.18) 

𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑦𝑖𝑢𝑐 = 0            (4.19) 

𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑧𝑖𝑜 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑦𝑖𝑢𝑐 = 0            (4.20) 

𝑚𝑖𝑢𝑥𝑖𝑜𝑥𝑖𝑢𝑐 − 𝑚𝑖𝑢𝑦𝑖𝑜𝑧𝑖𝑢𝑐 = 0            (4.21) 

𝑚𝑖𝑢𝑥𝑖𝑜𝑧𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑦𝑖𝑜𝑥𝑖𝑢𝑐 = 0            (4.22) 

𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐 = 0            (4.23) 

𝑚𝑖𝑢𝑠𝛿𝑖𝑙𝑖1𝑧𝑖𝑢𝑐 − 𝑚𝑖𝑢𝑐𝛿𝑖𝑙𝑖1𝑥𝑖𝑢𝑐 = 0            (4.24) 

𝑚𝑖𝑢𝑥𝑖𝑢𝑐𝑥𝑖𝑢𝑐 + 𝑚𝑖𝑢𝑧𝑖𝑢𝑐𝑧𝑖𝑢𝑐 = 0            (4.25) 

𝑚𝑖𝑙𝑥𝑖𝑐
2 + 𝑚𝑖𝑙𝑧𝑖𝑐

2 + +𝑚𝑖𝑢𝑙𝑖𝑙
2 + 𝑚𝑖𝑙𝑘𝑖𝑙

2 + 𝑚𝑖𝑢𝑘𝑖𝑢
2 − 𝐼𝑖

∗ = 0                                  (4.26) 

𝑥𝑥𝑝 = 𝑥𝑦𝑝 = 𝑥𝑧𝑝 = 0            (4.27) 

𝑦𝑥𝑝 = 𝑦𝑦𝑝 = 𝑦𝑧𝑝 = 0            (4.28) 
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𝑧𝑥𝑝 = 𝑧𝑦𝑝 = 𝑧𝑧𝑝 = 0            (4.29) 

𝑥𝑝𝑥𝑝 = 𝑥𝑝𝑦𝑝 = 𝑥𝑝𝑧𝑝 = 0            (4.30) 

𝑦𝑝𝑦𝑝 = 𝑦𝑝𝑧𝑝 = 𝑧𝑝𝑧𝑝 = 0            (4.31) 

 

4.8. CW Approach for the Lower Link 

In Section 3.7, the force balancing equation used in the modification of the lower link is listed as 

follows: 

Using equation (3.65), the lower link equation is written as     

𝑙11 =
𝑚1𝑙𝑦1𝑐𝑐𝛽1 − 𝑚1𝑙𝑧1𝑐𝑠𝛽1

𝑚1𝑢𝑠𝛽1
 

         (4.32) 

The length of link adjustment is given by 𝑣1𝑙 

𝑣1𝑙 = 𝑙1𝑙
° − l1l = 𝑙1𝑙

° −
𝑚1𝑙𝑦1𝑐𝑐𝛽1 − 𝑚1𝑙𝑧1𝑐𝑠𝛽1

𝑚1𝑢𝑠𝛽1
 

         (4.33) 

Also 𝑣1𝑙 = 𝑣2𝑙 = 𝑣3𝑙 = 𝑣𝑖𝑙 (because of the symmetry of the mechanism)                   (4.34) 

 

4.9. AKP Approach for the Upper Link 

In Section 3.7 it was shown to use the AKP method of adjustment of the link for the upper link 

and the equations were listed as follows: 

Using equation (3.93) 

𝑙1𝑢 = 𝑙2𝑢 = 𝑙3𝑢 =
𝑦1𝑜 − 𝑦30

𝑠𝛽2
 

         (4.35) 
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Using equation (3.94), the upper link length adjustment was given as 

𝑣1𝑢 = 𝑣2𝑢 = 𝑣3𝑢 = 𝑙1𝑢
° −

𝑦1𝑜 − 𝑦30

𝑠𝛽2
  

           (4.36) 

The above equations (4.32), (4.33) & (4.34) give the link mass redistribution based on the CW 

approach for the lower links while equations (4.35) & (4.36) give the length of the link adjustments 

using the AKP approach for the upper links.  

 

4.10. Validation 

Validation of the equations developed for both force balancing and moment balancing of the SPR 

was conducted through the simulation by using SPACAR. Information regarding SPACAR and 

the simulation is explained in detail in section 3.8. The simulation was performed at both low 

speed and high speed. Data specified in the input file is related to the modified SPR using CW-

AKP. The CW added to the SPR is used for force balancing, and this CW is rotated so that it can 

balance shaking moment as well. Section 4.2 gives information on ACRCM with CW-AKP. The 

input file data of the SPACAR SPR model is listed in Appendix E.  

 

The initial angles of the unbalanced mechanism were described in Section 3.8. All the units of 

measurement for length is in millimeter and mass in grams.  

Solving for l1l using the force balancing equation (4.32)                                                        

𝑙11 =
𝑚1𝑙𝑦1𝑐(𝑐𝛽1 = 0) − 𝑚1𝑙𝑧1𝑐(𝑠𝛽1 = 1)

𝑚1𝑢𝑠𝛽1
=

641.6 ∗ 156 (𝑚𝑚)

483.5
= 207mm 

               (4.37) 

Solving for m1l using the force balancing equation (3.66) from Chapter 3, we have 
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√3𝑚2𝑙𝑥2𝑐 − 𝑚2𝑙𝑦2𝑐𝑐𝛽1 + 𝑚2𝑙𝑧2𝑐𝑠𝛽1 + 𝑚2𝑢𝑙21𝑠𝛽1 = 0                                                       (4.38) 

m1l = (𝑚2𝑢𝑙21𝑠𝛽1)/𝑧2𝑐𝑠𝛽1 = 414 𝑔𝑚𝑠                          (4.39)    

The upper link is balanced using equation (4.35) as follows: 

𝑙𝑖𝑢 = 162.1 + 81.1 = 0.243 𝑚                         (4.40) 

The mass and length of the CW (ACRCM) were calculated using the moment balancing equation 

(4.26) as shown: 

𝐼𝑖
∗ = 𝑚𝑖𝑙𝑥𝑖𝑐

2 + 𝑚𝑖𝑙𝑧𝑖𝑐
2 + +𝑚𝑖𝑢𝑙𝑖𝑙

2 + 𝑚𝑖𝑙𝑘𝑖𝑙
2 + 𝑚𝑖𝑢𝑘𝑖𝑢

2                          (4.41) 

 

where   𝐼𝑖
∗ is the moment of inertia of the ACRCM 

             𝑘𝑖𝑙 is the radius of gyration of the lower link, 𝑘𝑖𝑙
2 = (

𝑙𝑖𝑙
2

12
) 

            𝑘𝑖𝑢 is the radius of gyration of the upper link and, 𝑘𝑖𝑢
2 = (

𝑙𝑖𝑢
2

12
) 

 

Inputs to equation (4.40) are taken from rows 1,2 6, 7, 20 of table 4-1   

𝐼1
∗ = 𝐼2

∗ = 𝐼3
∗ = 0.0273 𝑘𝑔/𝑚2                      (4.42) 

 

For the gear component (ACRCM) that is a solid disc with radius Ri, thickness ti, mass 𝑚𝑖
∗, inertia 

𝐼𝑖
∗ and made of steel material, the equations are (Wijk, 2008) 

𝑚𝑖
∗ = 𝜌𝜋𝑡𝑖𝑅𝑖

2             (4.43) 

𝐼𝑖
∗ =

𝑚𝑖
∗𝑅𝑖

2

2
 

    (4.44) 



62 

 

𝐼𝑖
∗ =

𝑚𝑖
∗2

2𝜌𝜋𝑡𝑖
 

                (4.45) 

From equations (4.41) and (4.44), consider ti = 0.010 m and density of steel 𝜌=7800 kg/m3 

𝑚1
∗ = 𝑚2

∗ = 𝑚3
∗ = 3.7 𝑘𝑔               (4.46) 

 

From equations (4.42) and (4.45) 

𝑅1 = 𝑅2 = 𝑅3 = 0.122 m                     (4.47) 

 

Wijk (2008) showed that the gear component with mass, 𝑚𝑖
∗, is mounted to the link l* and is 

calculated using force balancing equation. 

𝑚𝑖
∗𝑙𝑖

∗ = 𝑚𝑖𝑙𝑙𝑖𝑙                           (4.48) 

From equations (4.45), (4.47) and using values from rows 1, 2 of table 4-1:   

𝑙1
∗ = 𝑙2

∗ = 𝑙3
∗ = 0.023 m                         (4.49) 

 

Table 4-1. CAD data of force and moment balanced SPR using CW-AKP 

S.No. CW-AKP mod. Linkage  Value Remarks 

1 Length (Lower Link) 207 mm Measured using CAD 

2 Mass (Lower Link) 414 gms Measured using CAD 

3 Point 𝑂1𝑚 (0.0, 162.1, -64.3) X,Y,Z @ fixed frame O 

4 Point 𝑂2𝑚 (-140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 

5 Point 𝑂3𝑚 (140.3, -81.1, -64.3) X,Y,Z @ fixed frame O 
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6 Length (Upper Link) 243 mm Measured using CAD 

7 Mass (Upper Link) 483.5 gms Measured using CAD 

 O8 Point 𝑂1𝑛 (-52.1, -149.8, -37.6) X,Y,Z @ fixed frame O 

9 Point 𝑂2𝑛 (129.8, 74.9, -37.6) X,Y,Z @ fixed frame O 

10 Point 𝑂3𝑛 (-129.8, 74.9, -37.6) X,Y,Z @ fixed frame O 

11 Length (Mobile Platform) 189.7 mm Calculated 

12 Mass (Mobile Platform) 313 gms Measured using CAD 

13 Point 𝑃1
′′′𝑂  (8.7, -109.5, 90.5) X,Y,Z @ fixed frame O 

14 Point 𝑃2
′′′𝑂  (94.8, 54.8, 90.5) X,Y,Z @ fixed frame O 

15 Point 𝑃3
′′′𝑂  (-94.8, 54.8, 90.5) X,Y,Z @ fixed frame O 

16 Point @ ACRCM leg-1 (0.2, 162.1, -23.5) X,Y,Z @ fixed frame O 

17 Point @ ACRCM leg-2 (-140.4, -80.9, -23.5) X,Y,Z @ fixed frame O 

18 Point @ ACRCM leg-3 (140.4, -81.1, -23.5) X,Y,Z @ fixed frame O 

19 Length 𝑙𝑖2 123 mm Measured from CAD 

20 xic, yic, zic (i=1, 2 & 3) 0.0, -134.05, -80.5 Measured from CAD 

 

In Table 4-1, rows 1 and 2 give details of the length and mass of the lower link. Rows 3, 4 and 5 

show the values of the coordinate points 𝑂1m, 𝑂2m, 𝑂3m, considered with respect to the frame O. 

The values are extracted using Solidworks CAD model of the SPR. These three points represent 

the positions of the three revolute joints that connect the servomotors with the lower links 

respectively. Rows 6 and 7 give details of the length and mass of the upper link, which were 

modified using AKP. Rows 8, 9 and 10 show the values of the coordinate points 𝑂1n, 𝑂2n, 𝑂3n, 
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considered with respect to the frame O. These three points represent the positions of the three 

revolute joints that connect the lower links with the upper links, respectively. Rows 11 and 12 give 

details of the length and mass of the mobile platform. Rows 13, 14 and 15 show the values of the 

coordinate points 𝑃1
′𝑂 , 𝑃2

′𝑂 , 𝑃3
′𝑂 , considered with respect to the frame O. These three points 

represent the positions of the three revolute joints that connect the upper links with the mobile 

platform, respectively. Rows 16, 17 and 18 show the values of the coordinate points of 

counterweights (ACRCMs), considered with respect to the frame O. Row 19 gives the length of 

COM of upper link, considered from its intersecting point with the lower link. Row 20 shows the 

coordinate point 𝐶𝑖𝑙
𝐿  of the COM of the lower link, considered with respect to the frame L.  

 

Table 4-2 lists the calculated values of ACRCM from equations (4.46) and (4.49). Row 1 gives 

details of the counterweights (ACRCMs). Row 2 gives the distance between the counterweights 

and the revolute joints, described by points  𝑂1m, 𝑂2m and 𝑂3m. 

 

Table 4-2. Calculated ACRCM data   

S.No. CW-AKP mod. Linkage  Value Remarks 

1 ACRCM (Lower Link) 3.7 kg Calculated value 

2 Length (ACRCM) 23.5 mm Calculated value 

 

Figure 4-1 shows the SPACAR Spavisual simulation of the combined model CW-AKP for the 

SPR mechanism at time intervals when t=0, t=0.2s and t=0.4s. The ACRCM lengths are also 

visible from the three plots with the extended lengths. The simulation was performed by moving 

the SPR from one coordinate point to next coordinate point using a specified trajectory command. 
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A total of the five trajectory commands using four different coordinate points were used in this 

simulation.           

   

(a)                                                 (b)                                               (c) 

Figure 4-1. (a) Low speed simulation model position of SPR at time interval t=0; (b) The position 

of the rotated mechanism at t=0.2s; (c) The position of the rotated mechanism at t=0.4s. 

 

 

(a)        (b) 

Figure 4-2. The reaction force of the SPR (unbalanced and dynamically balanced with the CW-

AKP approach) at low speed: (a) X-direction (b) Z-direction. 

 

Figure 4-2 shows the reaction force of the SPR in both the x and z directions. In the x- and z- 

directions, no reaction force exists in the plot. It is noted that for the unbalanced SPR mechanism, 
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the reaction force in both directions was very small, so the results for both the balanced and 

unbalanced  mechanisms are overlapping in these plots. Even at high speed, the plots in both the 

x- and z- directions remain the same as compared to the plots at low speed. 

 

Figure 4-3 shows the reaction forces in the y-direction of the SPR at low speed. The reaction force 

of the dynamical balanced SPR using CW-AKP shows improved performance. Table 4-3 shows 

the values of the forces at low speed at different time intervals. 

 

 

Figure 4-3. The reaction force of the SPR in the Y-direction for both unbalanced and 

dynamically balanced with CW-AKP at low speed. 

 

Table 4-3. The reaction force in the Y-direction at various time intervals 

time, t [sec]→ t=0.01 t=0.025 t=0.05 t=0.2 t=0.3 t=0.45 t=0.55 t=0.65 
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Unbalanced, Fy [N] -823 890 -1616 346 344 -1611 -2 2 

CW-AKP, Fy [N] 0 0 31 29 31 -45 0 0 

 

 

In figure 4-4 shaking moment of the SPR is plotted for the unbalanced and CW-AKP balanced 

SPR. The unbalanced SPR shows wide fluctuations of shaking moment as compared to CW-AKP 

balanced SPR. The plot showed better performance of CW-AKP approach in terms of fluctuation 

of the shaking moment. Table 4-4 shows the values of the shaking moment at low speed at different 

time intervals. 

 

Figure 4-4. Shaking moment of SPR for both unbalanced and dynamically balanced with CW-

AKP at low speed.  

Table 4-4. The shaking moment at various time intervals 

time, t [sec]→ t=0.01 t=0.05 t=0.2 t=0.25 t=0.3 t=0.45 t=0.55 t=0.65 

Unbalanced, τ [Nm] -6 5 0.25 0.25 0.2 0.6 0 0 
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CW-AKP, τ [Nm] 0 0 0 0 0 0 0 0 

 

 

Figure 4-5. The reaction force of the SPR in the Y-direction for both unbalanced and 

dynamically balanced with CW-AKP at high speed. 

 

Table 4-5. The reaction force in the Y-direction at various time intervals 

time, t [sec]→ t=0.01 t=0.025 t=0.05 t=0.2 t=0.28 t=0.45 t=0.55 t=0.65 

Unbalanced, Fy [N] -832 871 -5396 185 1189 -948 1 1 

CW-AKP, Fy [N] 0 0 18 95 104 -26 0 0 

 

Figure 4-5 shows the reaction forces of the SPR at high speed in the y-direction. Plots in the figure 

indicate that the CW-AKP approach has a better performance when SPR is dynamic balanced. 

Table 4-5 shows the values of the forces at high speed at different time intervals.  
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Figure 4-6. Shaking moment of the SPR for both unbalanced and dynamically balanced with 

CW-AKP at high speed. 

 

In figure 4-6 shaking moment of the SPR at high speed is shown for the unbalanced SPR (which 

is both force and moment unbalanced) and dynamically balanced SPR with CW-AKP. The 

unbalanced SPR shows wide fluctuations. The dynamic-balanced SPR shows nearly zero shaking 

moment, which validates the CW-AKP approach. Table 4-6 shows the values of the shaking 

moment at high speed at different time intervals. 

Table 4-6. The shaking moment at various time intervals 

time, t [sec]→ t=0.01 t=.025 t=0.2 t=0.25 t=0.3 t=0.45 t=0.55 t=0.65 

Unbalanced, τ [Nm] -6 7 -0.1 0.7 -0.1 0.3 0 0 

CW-AKP, τ [Nm] 0 0 0 0 0 0 0 0 
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4.11. Conclusion 

This chapter presented the work of dynamically balancing SPR with a combined AKP and CW 

approach, which is further based on the ACRCM approach to dynamic balancing of mechanisms. 

This new approach is called CW-AKP for short. Specifically, in the CW-AKP approach, the CW 

was added on the lower link, which serves for both force balancing and moment balancing, and 

the AKP was applied to the upper link, which serves for force balancing only. As a result for 

dynamic balancing SPR, there are seventeen moment balancing equations and eighteen force 

balancing equations. The simulation-based experiment (with SPACAR software) shows that the 

CW-AKP is effective.  
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Chapter 5 

Optimizing the SPR for Partial Moment Balancing 

5.1. Introduction 

In this chapter the CW-AKP is extended to optimize the SPR for partial moment balancing or 

miniaturization of shaking moment. The mathematical expression for shaking moment is derived 

from writing the angular moment equation at the center point ‘O’. The relation between shaking 

moment and angular momentum is described in Section 4.1. This shaking moment is considered 

as the objective function for miniaturization. In the optimization process the problem is solved by 

searching for the variables that minimize the objective function. The CW-AKP developed by 

Huang (2010) is taken as a starting point. The optimal variables are: the added masses, their 

locations, and the length of the link of AKP. For the purpose of validation of the work, the 

simulation by SPACAR software is used.  

 

5.2. Optimization Methodology 

• Optimize the force-balanced mechanism for minimalizing shaking moment (also called 

partially moment balancing).  

• Objective function is shaking moment. 

• Write the moment equation for the mechanism with respect to a fixed point on the base. 

• Objective function, Min F = F(m, l) in terms of shaking moment.  

• Constraint equation is the derived force balance equation. 

• Optimization variables are mass (m) and link length (l). 
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5.3. Objective Function 

As described in Section 4.3 for shaking moment balance, ∑M = 𝐿𝑜̇ = 0, where M was the sum of 

external moment at a reference point and 𝐿𝑜 was the total angular momentum considered at the 

same reference point. If this shaking moment is not completely balanced but made a minimum, we 

can use the selected terms of time rate change of the angular momentum equation for optimization. 

The selection was based on the optimization or decision variables, i.e. link mass and length, and 

the shaking moment was considered as the objective function to be minimized. A simplified 

shaking moment equation was used as an objective function in this optimization problem.   

 

From Section 4.5, equation (4.4) describes the angular momentum of the mechanism with respect 

to point ‘O’, which is revised here: 

 

𝐿𝑜 = 𝑚𝑝(𝑟𝑝  ×  𝑟̇𝑝) + ∑ [(𝐿𝑖𝑙 + 𝑚𝑖𝑙(𝑟𝑖𝑙  ×  𝑟̇𝑖𝑙)) + (𝐿𝑖𝑢 + 𝑚𝑖𝑢(𝑟𝑖𝑢  ×  𝑟̇𝑖𝑢))]3
𝑖=1             (5.1) 

 

where 

o 𝐿𝑖𝑙 is the angular momentum of the lower links w.r.t. its COM. 

o 𝐿𝑖𝑢 is the angular momentum of the upper links w.r.t. its COM. 

𝐿𝑖𝑙 and 𝐿𝑖𝑢 can be written as 

𝐿𝑖𝑙 = 𝑚𝑖𝑙𝑘𝑖𝑙
2 𝜃̇𝑖𝑙                  (5.2) 

𝐿𝑖𝑢 = 𝑚𝑖𝑢𝑘𝑖𝑢
2 𝜃̇𝑖𝑢               (5.3) 

 

where  𝑘𝑖𝑙 is the radius of gyration of the lower link and where  𝑘𝑖𝑢 is the radius of gyration of the 

upper link and 
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𝑘𝑖𝑙
2 = (

𝑙𝑖𝑙
2

12
)  𝑎𝑛𝑑 𝑘𝑖𝑢

2 = (
𝑙𝑖𝑢
2

12
)                (5.4) 

Using equations (5.2), (5.3), (5.4), we can write equation (5.1) as 

𝐿𝑜 = 𝑚𝑝(𝑟𝑝 𝑥 𝑟̇𝑝) + ∑(𝑚𝑖𝑙(𝑟𝑖𝑙 𝑥 𝑟̇𝑖𝑙))

3

𝑖=1

+ ∑(𝑚𝑖𝑢(𝑟𝑖𝑢 𝑥 𝑟̇𝑖𝑢))

3

𝑖=1

+ ∑(
𝑚𝑖𝑙𝑙𝑖𝑙

2 𝜃̇𝑖𝑙

12
)

3

𝑖=1

+ ∑(
𝑚𝑖𝑢𝑙𝑖𝑢

2 𝜃̇𝑖𝑢

12
)

3

𝑖=1

 

    (5.5) 

From equation (5.5), the shaking moment in scalar form can be written as 

𝐿𝑜̇ = 𝑚𝑝𝑟𝑝
2𝜃̈𝑝 + ∑𝑚𝑖𝑙𝑟𝑖𝑙

2𝜃̈𝑖𝑙

3

𝑖=1

+ ∑𝑚𝑖𝑢𝑟𝑖𝑢
2 𝜃̈𝑖𝑢

3

𝑖=1

+ ∑ (
𝑚𝑖𝑙𝑙𝑖𝑙

2 𝜃̈𝑖𝑙

12
)

3

𝑖=1

+ ∑(
𝑚𝑖𝑢𝑙𝑖𝑢

2 𝜃̈𝑖𝑢

12
)

3

𝑖=1

 

    (5.6) 

From Appendix-B using the value of 𝑟𝑖𝑙, substituting the values of  
𝛽1

2
= 45° 

∑𝑟𝑖𝑙 =
𝑙𝑖𝑙

2sin (
𝛽1

2 )

3

𝑖=1

= 0.3536 𝑙𝑖𝑙 

    (5.7) 

∑𝑟𝑖𝑢 =
𝑙𝑖𝑢

2sin (
𝛽2

2 )

3

𝑖=1

= 0.3536 𝑙𝑖𝑢 

    (5.8) 

Using equations (5.7), (5.8), we can write equation (5.6) as 

𝐿𝑜̇ = 𝑚𝑝𝑟𝑝
2𝜃̈𝑝 + ∑0.125𝑚𝑖𝑙𝑙𝑖𝑙

2 𝜃̈𝑖𝑙

3

𝑖=1

+ ∑0.125𝑚𝑖𝑢𝑙𝑖𝑢
2 𝜃̈𝑖𝑢

3

𝑖=1

+ ∑(
𝑚𝑖𝑙𝑙𝑖𝑙

2 𝜃̈𝑖𝑙

12
)

3

𝑖=1

+ ∑(
𝑚𝑖𝑢𝑙𝑖𝑢

2 𝜃̈𝑖𝑢

12
)

3

𝑖=1

 

    (5.9) 
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As the optimization variables are mass and length of the link, only the last four terms of equation 

(5.9) are considered, as they contain the mass and length of links.  

 

The Objective Function can be simplified and written as (Acevedo et al. 2012): 

𝑓 = ∑(0.208 𝑚𝑖𝑙𝑙𝑖𝑙
2)

3

𝑖=1

+ ∑(0.208 𝑚𝑖𝑢𝑙𝑖𝑢
2 )

3

𝑖=1

 

              (5.10)  

 

                                                                     

5.4. Constraint Equations 

The force balancing equations derived in Chapter 3 are used as the constraint equation for 

optimization. Equations (3.86) and (3.92) describe the constraint equations selected for this 

optimization problem.   

𝑚𝑖𝑙𝑦𝑖𝑐𝑐𝛽1 − 𝑚𝑖𝑙𝑧𝑖𝑐𝑠𝛽1 − 𝑚𝑖𝑢𝑙𝑖1𝑠𝛽1 = 0                                                 (5.11) 

𝑙3𝑢𝑠𝛽2 = (𝑦1𝑜 − 𝑦30)                                             (5.12) 

 

Using equation (3.28) from Chapter 3, the total mass of SPR in terms of its components and for i= 

1, 2 & 3 

𝑀 = 𝑚𝑝 + 𝑚𝑖𝑙 + 𝑚𝑖𝑢 =>  𝑚𝑖𝑢 = 𝑀 − 𝑚𝑝 − 𝑚𝑖𝑙                                      (5.13) 

From Table 3-2 in Section 3.8, substituting the values of 𝑀 and 𝑚𝑝 

𝑚𝑖𝑢 = 1.125 − 𝑚𝑖𝑙             (5.14) 

 

From section 3.8, substituting the values of  zic = half length of lower link = 157 mm and β1 =

90°  into equation (5.11) and further simplifying it with equation (5.15) gives the constraint 

equation (g1), as shown later in section 5.5. From table 3-2 from rows 3 and 5, substituting the 
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values of  y10 = 162.1  y30 = −81.1 and β1 = 90°  into equation (5.12) gives the constraint 

equation (g2), as shown later in section 5.5. Substituting equation (5.14) into equation (5.10), miu 

is eliminated and the number of variables in the objective function is reduced to three. The 

optimization problem using the three variables is formulated later in section 5.5. 

 

5.5. Optimization Problem Formulation 

Substituting all values as described in Section 5.4 and data from Table 3-2 in Section 3.8 the 

problem is formulated as 

 

Minimize 𝑓(𝑚𝑖𝑙, 𝑙𝑖𝑙, 𝑙𝑖𝑢) = 0.208𝑚𝑖𝑙𝑙𝑖𝑙
2 + 0.234𝑙𝑖𝑢

2 − 0.208𝑚𝑖𝑙𝑙𝑖𝑢
2  

𝑓 = ∑(0.208 𝑚𝑖𝑙𝑙𝑖𝑙
2)

3

𝑖=1

+ ∑(1.125 − 𝑚𝑖𝑙) 0.208 𝑙𝑖𝑢
2

3

𝑖=1

 

Subject to 

ℎ1: 0        

𝑔1: 0.157mil + 1.125𝑙𝑖𝑙 − 𝑚𝑖𝑙𝑙𝑖𝑙 = 0                   

𝑔2: 𝑙𝑖𝑢 − 0.243 = 0                                                                                          (5.15) 

 

5.6. Solving using MATLAB Toolbox 

For solving the optimization problems, MATLAB optimization toolbox functions or solvers were 

used for maxima or minima solutions. These problems involve writing the objective and the 

constraint functions. These problems are solvable when the functions representing it are 

continuous, discontinuous or stochastic. In MATLAB toolbox, ‘fmincon’ command was used as 

an optimizing function for solving the problem. The ‘fmincon’ function uses four different 
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algorithms, of which the sequential quadratic programming (SQP) algorithm was used here. SQP 

is one of the best algorithms available in Matlab as it has fast convergence rate and has a strong 

theoretical basis. By following the syntax, the problem was formulated. The syntax also has 

options to calculate the Hessian of the Lagrangian (User’s, M. G. O. T., 2012). 

 

Using equation 5.16 as described in Section 5.5 the optimization problem was solved using 

‘fmincon’ syntax. Using equation (5.16), two *.m files were written, one as the objective function 

and one as the constraint equations. The objective function is smof.m file while the constraint 

equations are csteq.m file. The complete syntax of ‘fmincon’ command used is found in the 

appendix E. Using SQP solver the optimized results were found to be mil = 475.6 𝑔𝑚𝑠, lil = 115 

mm and  miu = 243.3 𝑚𝑚. The results were verified for local minima using different starting 

points and using interior-point solver. The results showed that the value of the ‘exitflag’ using 

fmincon was the one which represents that the first order optimality conditions were satisfied. The 

minimum shaking moment value was found to be 0.0093 Nm. Appendix F lists the complete 

optimization program including the objective function, the constraint equations, ‘fmincon’ 

function syntax and the results calculated. 

 

5.7. Validation  

Validation was carried out using the SPACAR simulation. Appendix G lists the input program file 

that was used in the simulation. The input file is similar to the file used in Section 4.11. The input 

dynamic data for specifying the trajectories and nodes data remain the same for all simulations. 

The initial angles of the unbalanced mechanism were described in Section 3.8. Table 3-2 in Section 
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3.8 specifies the input data. All units of measurement for length are in millimeter and mass in 

grams.  

 

Using the optimized values for mass mil = 475.6 𝑔𝑚𝑠 and length lil = 115 𝑚𝑚 for the balanced 

lower link, the CW that is a solid disc with radius Ri, thickness ti =0.010 m, mass 𝑚𝑖
∗, inertia 𝐼𝑖

∗ 

and made of steel material with density 7800 kg/m3 were calculated using the equations (4.40), 

(4.41) (4.42, (4.43), (4.44) and (4.47). Table 5-1 lists the calculated values of CW from the above 

equations. The mass of the upper link remains unchanged for the optimization. 

𝑚𝑖𝑐
∗ = 2.5 𝑘𝑔                  (5.16) 

𝑅𝑖 = 100 𝑚𝑚                      (5.17) 

𝑙𝑖𝑐
∗ = 22.2 𝑚𝑚                    (5.18) 

 

Table 5-1. Data of the optimized SPR    

S.No. CW-AKP mod. Linkage  Value Remarks 

1 CW 2.5 kg From optimization & equ. (4.40) 

2 CW Location 22.2 mm From optimization & equ. (4.47) 

3 Length of Upper Link 243.3 mm From Optimization 

 

The simulation was performed using the trajectory path described by the five points and by using 

the TRAJECT command to describe the path in SPACAR. 
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.  

Figure 5-1. The reaction force of the SPR in the Y-direction for optimized and non-optimized, 

dynamically balanced with CW-AKP at low speed. 

      

Figure 5-1 shows the reaction forces in the y-direction of the SPR at low speed. The comparison 

plot shows that the forces are reduced for the optimized linkage using CW-AKP. Table 5-2 shows 

the values of the forces of the SPR at low speed at different time intervals. 

 

Table 5-2. The reaction force in the Y-direction at various time intervals 

time, t [sec]→ t=0.01 t=0.05 t=0.2 t=0.25 t=0.3 t=0.45 t=0.55 t=0.65 

Optimized, Fy [N] 0 0 21 18 20 -30 0 0 

Non-Optimized, Fy [N] 0 0 31 28 31 -44 0 0 

 

Figure 5-2 shows the shaking moment of the SPR at low speed. Table 5-3 shows the values of the 

shaking moment at low speed at different time intervals. 
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Figure 5-2. Shaking moment of optimized and non-optimized, dynamically balanced SPR with 

CW-AKP at low speed. 

 

Table 5-3. The shaking moment at various time intervals 

time, t [sec]→ t=0.01 t=0.05 t=0.2 t=0.25 t=0.3 t=0.45 t=0.55 t=0.65 

Optimized, τ [Nm] 0 0 0.03 0.03 0.02 0 0 0 

Non-Optimized, τ [Nm] 0 0 0.01 0.02 0 0.03 0 0 
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Figure 5-3. The reaction force of the SPR in the Y-direction for optimized and non-optimized, 

dynamically balanced with CW-AKP at high speed. 

 

Figure 5-3 shows the reaction forces in the y-direction of the SPR at high speed. Similar to the low 

speed the comparison plot shows reduced forces for the optimized linkage. Table 5-4 shows the 

values of the forces of the SPR at high speed at different time intervals. Figure 5-4 shows the 

shaking force in the y-direction of the SPR at high speed. Table 5-5 shows the values of the shaking 

moment of the SPR at high speed at different time intervals. 

Table 5-4.  The reaction force in the Y-direction at various time intervals 

time, t [sec]→ t=0.01 t=0.05 t=0.2 t=0.27 t=0.3 t=0.45 t=0.55 t=0.65 

Optimized, Fy [N] 0 0 12 65 -9 -17 0 0 

Non-Optimized, Fy [N] 0 0 18 100 -14 -26 0 0 
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Figure 5-4. Shaking moment of optimized and non-optimized, dynamically balanced SPR with 

CW-AKP at high speed. 

 

Table 5-5. The shaking moment at various time intervals 

time, t [sec]→ t=0.01 t=0.05 t=0.2 t=0.25 t=0.3 t=0.45 t=0.55 t=0.65 

Optimized, τ [Nm] 0 0 0.02 0.09 -0.03 0 0 0 

Non-Optimized, τ [Nm] 0 0 0.01 0.06 -0.03 0.02 0 0 

 

 

5.8. Conclusion 

The chapter presented an approximate approach to partially balancing the shaking moment of SPR 

while at the same time the SPR is fully force balanced. To each leg, there are three decision or 

optimization variables, namely the length of the upper link, the CW and its location. The 

optimization problem model is that the shaking moment of SPR was taken as an objective function, 
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and the force balancing equation is the constraint equation. The objective function is a quadratic 

form by approximation. This approach is shown to be effective based on the simulation.  
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Chapter 6 

Conclusion and Future Work 

6.1. Overview and Conclusions  

The primary objective of this thesis was to extend the AKP approach to balancing of spatial robotic 

mechanisms. The spherical parallel robotic mechanism was chosen as a study vehicle. In Section 

1.5 the research objectives and Section 1.6 the research methodology were explained. The three 

objectives as proposed have been achieved. 

 

In Chapter 3, it was shown that the AKP approach was extended to force balance the SPR using 

the force balancing principle III. A total of the eighteen balancing equations were derived. Using 

the loop-closure equations relates the lower link and the upper link in terms of its coordinates, 

rotation matrix, its parameters and time-dependent variables. For the SPR mechanism the lower 

link and the upper link were modified using the AKP approach. The simulation has confirmed the 

effectiveness of the extended AKP approach for complete force balancing of the SPR.     

 

The dynamic balancing equations of the SPR using a combined approach of AKP and CW was 

derived in Chapter 4. The mechanism was dynamic balanced by force balancing first and then 

moment balancing. Specifically, the SPR can be forced balanced using the AKP approach for the 

upper links and the CW approach for the lower links. Then it can be moment balanced by using an 

active counter-rotating counter mass (ACRCM) with a servomotor to rotate it for the lower links. 

Its mass acts as counterweights during force balancing and ACRCM acts as balancer during 

moment balancing and using this method is advantageous. A total of the seventeen-moment 
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balance equations was derived. The simulation with SPACAR has confirmed the effectiveness of 

this approach to complete dynamic balancing of the SPR. 

 

The third objective of this thesis was to extend the CW-AKP approach in the partial moment 

balancing of mechanisms with the goal that the shaking moment was made as a minimum. In 

Chapter 5, the work towards this objective was described, and the problem was modelled as an 

optimization problem and solved using the optimization toolbox in MATLAB. From the 

simulation, 12% reduction in shaking moment was achieved.  

 

  6.2. Contributions 

There are several contributions in the area of balancing of mechanisms. First, the AKP approach 

has been shown to be applicable to spherical parallel robotic mechanisms. Since SPRs and general 

spatial mechanisms are similar in that bodies in them exercise a spatial motion, the AKP approach 

is applicable to general spatial mechanisms. Second, the new approach to dynamic balancing of 

mechanisms is developed, which combines AKP and ACRCM. The benefit of this approach is that 

the torque fluctuation on the actuator is reduced in comparison with the ACRCM approach due to 

the replacement of CW by AKP. Finally, the combined AKP and CW approach for fully force 

balancing of mechanisms is extended to partial moment balancing for SPRs.  

 

6.3. Future Work 

One of the problems with the combined AKP and ACRCM approach is the need of additional 

transmission and control systems that control the rotation of the CW. It is worthwhile to study 

whether AKP may contribute to the so-called inherent balancing of mechanisms, the moment 
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balancing in this case. The nature of AKP is similar to the concept of the inherent balancing (Wijk, 

2014). So it is feasible to see how much AKP can contribute to moment balancing of mechanisms. 

Another idea surrounding AKP is to make AKP active in such a way that the translation actuator 

is put in place to change the length of the link, which is a foundation for the balancing of machines 

with consideration of loading.  It is noted that the load effect to balancing of machines is important 

especially to the so-called soft machine or soft robot. The definition of soft robots is referred to 

the paper (Chen et al., 2017). 
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Appendix A. LIV Technique or Method 

Linearly independent vectors (LIV) method was proposed by Berkof & Lowen (1969) for force-

balancing a four and six-bar planar linkage. The four-bar linkage is shown in Figure A1. The force 

balancing principle is based on the total center of mass (COM) of the mechanism is made 

stationary. The force balance conditions are derived by writing the position vectors of the 

mechanism and its links and the kinematic closed-loop relation of the mechanism. By equating the 

time dependent terms to zero, the condition equations are formed. The equations of time-dependent 

term are condition equations. The shaking forces are balanced by adding CWs on links i.e. by mass 

redistribution. In this method all the joints of the mechanism contain revolute joints only (Tepper 

& Lowen, 1972). 

 

Figure A-1. Mechanism with four links and arbitrary COM locations. 

The equation for a mechanism’s COM by the position vector rv is: 

𝒓𝑣 = 
1

𝑀
∑ 𝑚𝑖𝒓𝑖

3
𝑖=1                                                                                                        (A-1) 
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where mi is the mass of link i, ri is the position vector of COM of link i, and M is the total mass 

of the mechanism.  

The position vectors for the individual links can be written as 

𝒓𝟏 = 𝑟1𝑒
𝑖(𝜑1+𝛼1)                                                                                                         (A-2) 

𝒓𝟐 = 𝑙1𝑒
𝑖𝜑1 + 𝑟2𝑒

𝑖(𝜑2+𝛼2)                                                                         (A-3)  

𝒓𝟑 = 𝑙4𝑒
𝑖𝜑4 + 𝑟3𝑒

𝑖(𝜑3+𝛼3)                                                                                     (A-4) 

The kinematic closed-loop equation using unit vectors 𝑒𝑖𝜑1, 𝑒𝑖𝜑2, 𝑒𝑖𝜑3 and 𝑒𝑖𝜑4 for the four-bar 

link is written as: 

 𝑙1𝑒
𝑖𝜑1 + 𝑙2𝑒

𝑖𝜑2 − 𝑙3𝑒
𝑖𝜑3 − 𝑙4𝑒

𝑖𝜑4 = 0                                                                  (A-5) 

From equation (A-5), substituting for 𝑒𝑖𝜑2  in equation A-1 and making the time dependent terms 

i.e. 𝑒𝑖𝜑1 and 𝑒𝑖𝜑3 equal to zero, we have 

 𝒓𝑣 = 
1

𝑀
(𝑚3𝑙2 + 𝑚2𝑟2𝑒

𝑖∝2)
𝑙4

𝑙2
𝑒𝑖𝛼4                                                                         (A-6) 

𝑚1𝑟1𝑒
𝑖𝛼1 + 𝑚2𝑙1 − 𝑚2

𝑙1

𝑙2
𝑟2𝑒

𝑖𝛼2 =  0                                                              (A-7) 

𝑚3𝑟3𝑒
𝑖𝛼3 + 𝑚2

𝑙3

𝑙2
𝑟2𝑒

𝑖𝛼2 =  0                                                                                (A-8) 

Equation A-6 shows that the total COM of the mechanism is made stationary. Equations A-7 and 

A-8 are two force balance condition equations derived for the four-bar closed loop linkage. For 

the six-bar linkage, three equations are derived as the condition equations. Using the force balance 

condition equations on a four-bar linkage, two of its links are modified while the configurations 

of the other two links remain unchanged. Of the two, one is moving link while the other is the 

mechanism’s base. On a six-bar linkage, three of its links must be modified using CW.   
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Appendix B. Spherical Link Length and Its Chord 

Let s1 be the spherical length of link-i, b1 is its chord length; r is its radius and 𝛽1 be the link angle 

(Chiang, 1988; Polyanin & Manzhirov, 2006).  

 

Figure A-2. Spherical link length, its chord and radius. 

From the above figure, the length of the arc is given by: 

𝒔1 = 𝑟𝜷1                                                                                                           (A-9) 

Where 𝜷1 is in radians and the lengths are in similar units.  

From the figure, we can also write 

sin (
𝜷1

2
) =

(
𝑏1
2

)

𝑟
                                                                                                         (A-10) 

From equations (A-1) & (A-2), substituting for 𝑟  in equation A-1  

 𝑏1 = 𝒔1

sin(
𝜷1
2

)

(
𝜷1
2

)
                                                                            (A-11) 

Equation A-3 shows the relationship between the spherical length of the link in terms of its chord 

and radius.  
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Appendix C. Denavit-Hartenberg (D-H) notation 

Mechanism’s link i is denoted kinematically using D-H method (Craig, 2005) that describes the 

four parameters as shown in figure C-1. The geometrical parameters of the general link are: 

ai  = mutual perpendicular distance from axis(i) to axis(i+1) i.e. link length 

αi = link twist from axis(i) to axis(i+1) 

di = link offset from axis a(i-1) to axis a(i) along axis Zi 

Ɵi = joint angle from axis(i-1) to axis(i) 

ai and αi describes the link while di and Ɵi describes the link's relation to its adjoining link. 

  

Figure C-1. D-H notation (Wikipedia, 2019). 
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Appendix D. Force Balancing Program for SPACAR/MATLAB  

D.1. *.dat file representing unbalanced data at low speed 

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

 

X 3   0.0     0.1621 -0.0643 

X 4  -0.0168 -0.1493 -0.0371 

X 7   0.0    -0.1095  0.2025 

X 10  0.0     0.0     0.2055 

X 12  0.0948  0.0548  0.2025 

X 15  0.1298  0.0749 -0.0371 

X 18 -0.1403 -0.0811 -0.0643 

X 21 -0.0948  0.0548  0.2025 

X 24 -0.1298  0.0749 -0.0371 

X 27  0.1403 -0.0811 -0.0643 

 

FIX 1   

FIX 3 

INPUTX 10 1 

INPUTX 10 2  

INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 

RLSE 3 1  

 

END  

HALT 
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XM 3 1.25 

XM 20 1.25 

XM 29 1.25 

EM 4 2.05 

EM 5 1.99 

EM 6 1.72 

EM 7 1.72 

EM 9 1.99 

EM 11 2.05 

EM 13 1.72 

EM 15 1.99 

EM 17 2.05 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.202  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.2016 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.2016 

TRVMAX 10 0.1 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.2014 

TRVMAX 10 0.1 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 

TRANS 10 0.0 0.0 0.2020 

TRTIME 0.05 100 

 

NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 

NOMS 4 8 1 

NOMS 5 10 1 



100 

 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 

REFX 33 10 3 

 

END 

END 

 

VISUALIZATION  

BEAMVIS 0.01 0.01  

HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  
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HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 

D.2. *.dat file representing AKP-balanced data at low speed  

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

 

X 3 0.000 0.1621 -0.0643 

X 4 -0.0318 -0.0492 -0.0211 

X 7 0.0537 -0.0359 0.2007 

X 10 0.0 0.0 0.2007 

X 12 0.0043 0.0645 0.2007 

X 15 0.0585 -0.0029 -0.0121 

X 18 -0.1404 -0.0809 -0.0643 

X 21 -0.0579 -0.0285 0.2007 

X 24 -0.0267 0.0521 -0.0211 

X 27 0.1404 -0.0811 -0.0643 

FIX 1   

FIX 3 

INPUTX 10 1 

INPUTX 10 2  

INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 

RLSE 3 1  

 

END  
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HALT 

 

XM 3 1.25 

XM 20 1.25 

XM 29 1.25 

EM 4 2.05 

EM 5 3.93 

EM 6 1.72 

EM 7 1.72 

EM 9 3.93 

EM 11 2.05 

EM 13 1.72 

EM 15 3.93 

EM 17 2.05 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.2007 

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.2005 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.2005 

TRVMAX 10 0.1 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.2003 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 

TRANS 10 0.0 0.0 0.2007 

TRTIME 0.05 100 

 

NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 
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NOMS 4 8 1 

NOMS 5 10 1 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 

REFX 33 10 3 

 

END 

END 

 

VISUALIZATION  

BEAMVIS 0.01 0.01  
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HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  

HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 

D.3. *.dat file representing unbalanced SPR data at high speed  

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

 

X 3   0.0     0.1621 -0.0643 

X 4  -0.0168 -0.1493 -0.0371 

X 7   0.0    -0.1095  0.2025 

X 10  0.0     0.0     0.2055 

X 12  0.0948  0.0548  0.2025 

X 15  0.1298  0.0749 -0.0371 

X 18 -0.1403 -0.0811 -0.0643 

X 21 -0.0948  0.0548  0.2025 

X 24 -0.1298  0.0749 -0.0371 

X 27  0.1403 -0.0811 -0.0643 

 

FIX 1   

FIX 3 

INPUTX 10 1 

INPUTX 10 2  

INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 
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RLSE 3 1  

 

END  

HALT 

 

XM 3 1.25 

XM 20 1.25 

XM 29 1.25 

EM 4 2.05 

EM 5 1.99 

EM 6 1.72 

EM 7 1.72 

EM 9 1.99 

EM 11 2.05 

EM 13 1.72 

EM 15 1.99 

EM 17 2.05 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.202  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.2016 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.2016 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.2014 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 

TRANS 10 0.0 0.0 0.2020 

TRTIME 0.05 100 
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NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 

NOMS 4 8 1 

NOMS 5 10 1 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 

REFX 33 10 3 

 

END 

END 
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VISUALIZATION  

BEAMVIS 0.01 0.01  

HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  

HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 

D.4. *.dat file representing AKP-balanced data at high speed  

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

 

X 3 0.000 0.1621 -0.0643 

X 4 -0.0318 -0.0492 -0.0211 

X 7 0.0537 -0.0359 0.2007 

X 10 0.0 0.0 0.2007 

X 12 0.0043 0.0645 0.2007 

X 15 0.0585 -0.0029 -0.0121 

X 18 -0.1404 -0.0809 -0.0643 

X 21 -0.0579 -0.0285 0.2007 

X 24 -0.0267 0.0521 -0.0211 

X 27 0.1404 -0.0811 -0.0643 

 

FIX 1   

FIX 3 

INPUTX 10 1 

INPUTX 10 2  
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INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 

RLSE 3 1  

 

END  

HALT 

 

XM 3 1.25 

XM 20 1.25 

XM 29 1.25 

EM 4 2.05 

EM 5 3.93 

EM 6 1.72 

EM 7 1.72 

EM 9 3.93 

EM 11 2.05 

EM 13 1.72 

EM 15 3.93 

EM 17 2.05 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.2007 

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.2005 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.2005 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.2003 

TRVMAX 10 0.03  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 
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TRANS 10 0.0 0.0 0.2007 

TRTIME 0.05 100 

 

NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 

NOMS 4 8 1 

NOMS 5 10 1 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 

REFX 33 10 3 
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END 

END 

 

VISUALIZATION  

BEAMVIS 0.01 0.01  

HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  

HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 
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Appendix E. Dynamic Balancing Program for SPACAR/MATLAB 

E.1. *.dat file representing balanced SPR using CW-AKP at low speed 

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

BEAM 19 3 2 30 31 0 1 0 

HINGE 20 31 32 0 -1 0  

BEAM 21 18 19 33 34 0 1 0 

HINGE 22 34 35 0 -1 0 

BEAM 23 27 28 36 37 0 1 0 

HINGE 24 37 38 0 -1 0 

 

X 3 0.000 0.1621 -0.0643 

X 4 -0.0521 -0.1498 -0.0376 

X 7 0.0087 -0.1095 0.0905 

X 10 0.0 0.0 0.0905 

X 12 0.0948 0.0548 0.0905 

X 15 0.1298 0.0749 -0.0376 

X 18 -0.1404 -0.0809 -0.0643 

X 21 -0.0948 0.0548 0.0905 

X 24 -0.1298 0.0749 -0.0376 

X 27 0.1404 -0.0811 -0.0643 

X 30 0.0002 0.1621 -0.0235 

X 33 -0.1404 -0.0809 -0.0235 

X 36 0.1404 -0.0811 -0.0235 

 

FIX 1   

FIX 3 

INPUTX 10 1 
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INPUTX 10 2  

INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 

RLSE 3 1  

 

END  

HALT 

 

XM 3 0.5294 

XM 20 0.5294 

XM 29 0.5294 

EM 4 0.69 

EM 5 3.93 

EM 6 1.72 

EM 7 1.72 

EM 9 3.93 

EM 11 0.69 

EM 13 1.72 

EM 15 3.93 

EM 17 0.69 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.0905  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.0903 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.0903 

TRVMAX 10 0.1 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.0901 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   
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TRAJECT 5 

TRANS 10 0.0 0.0 0.0905 

TRTIME 0.05 100 

 

NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 

NOMS 4 8 1 

NOMS 5 10 1 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 
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REFX 33 10 3 

 

END 

END 

 

VISUALIZATION  

BEAMVIS 0.01 0.01  

HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  

HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 

E.2. *.dat file representing optimized SPR using CW-AKP at high speed 

With respect to *.dat file at low speed, the dynamic data of traject function as described below will 

be replaced for high speed *.dat file with all other data remaining the same 

TRAJECT 1 

TRANS 10 0.0 0.0 0.0905  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.0903 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.0903 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.0901 

TRVMAX 10 0.03  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 

TRANS 10 0.0 0.0 0.0905 

TRTIME 0.05 100 
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Appendix F. Optimization program using MATLAB toolbox 

F.1. smof.m Objective function    

function fm = smof(x) 

fm=0.208*x(1)*x(2)*x(2)+0.234*x(3)*x(3)-0.208*x(1)*x(3)*x(3); 

end 

%x(1)= 𝑚𝑖𝑙 

%x(2)= 𝑙𝑖𝑙 

%x(3)= 𝑙𝑖𝑢 

F.2. csteq.m Constraint Equations 

function [c,ceq] = csteq(x) 

c=0; 

ceq=[0.157*x(1)+1.125*x(2)-x(1)*x(2);x(3)-.243]; 

end 

F.3. ‘fmincon’ Function 

options=optimoptions('fmincon','Algorithm','SQP','Display','Iter') 

Starting Point used = [0.001; 0.002; 0.002] 

% Other starting points used for checking for global solution =  

                                                [0.009; 0.009; 0.009], [0.1; 0.2; 0.2], [0.1; 0.1; 0.1], [0.7; 0.7; 0.7] 

[xfinal,fval,exitflag,output]=fmincon(@smof,[0.01;0.02;0.02],[],[],[],[],[],[],@csteq,options) 

F.4. ‘fmincon’ Results 

Iter  Func-count Fval   Feasibility   Step Length Norm of First-order                                                                         

step    optimality 

    0           4    9.360000e-05     2.230e-01     1.000e+00     0.000e+00     9.277e-03   

    1           8    1.372635e-02     5.444e-05     1.000e+00     2.240e-01     1.193e-01   

    2          12    1.357929e-02     1.970e-05     1.000e+00     1.209e-02     1.205e-02   

    3          16    1.284752e-02     5.169e-04     1.000e+00     6.037e-02     1.191e-02   

    4          21    9.753581e-03     2.867e-03     1.000e+00     2.883e-01     6.457e-03   

    5          27    9.307071e-03     6.266e-04     7.000e-01     1.161e-01     9.258e-03   
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    6          31    9.283563e-03     1.028e-05     1.000e+00     6.496e-03     2.431e-04   

    7          35    9.283922e-03     6.801e-09     1.000e+00     1.261e-04     1.512e-05   

    8          39    9.283922e-03     1.945e-10     1.000e+00     2.335e-05     4.348e-07   

Local minimum found that satisfies the constraints. 

Optimization completed because the objective function is non-decreasing in feasible directions, to 

within the value of the optimality tolerance, and constraints are satisfied to within the value of the 

constraint tolerance. 

<stopping criteria details> 

x =   0.4756   -0.1150    0.2430 

fval =    0.0093 

exitflag =     1 

output =  

struct with fields: 

iterations: 8 

funcCount: 39 

algorithm: 'sqp' 

message: '↵Local minimum found that satisfies the constraints.↵↵Optimization completed because 

the objective function is non-decreasing in ↵feasible directions, to within the value of the 

optimality tolerance,↵and constraints are satisfied to within the value of the constraint 

tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order 

optimality measure, 4.348227e-07,↵is less than options.OptimalityTolerance = 1.000000e-06, and 

the relative maximum constraint↵violation, 1.945151e-10, is less than options. 

ConstraintTolerance = 1.000000e-06. 

constrviolation: 1.9452e-10 

stepsize: 2.3354e-05 

lssteplength: 1 

firstorderopt: 4.3482e-07 
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Appendix G. Optimized SPR Program for SPACAR/MATLAB 

G.1. *.dat file representing optimized SPR using CW-AKP at low speed 

HINGE 1 1 2      0 1 0 

BEAM 4 3 2 4 5   0 1 0 

HINGE 2 5 6      0 1 0 

BEAM 5 4 6 7 8   0 1 0 

HINGE 3 8 9      1 0 1 

BEAM 6 7 9 10 11 0 1 0 

BEAM 7 10 11 12 13 0 1 0 

HINGE 8 13 14 1 0 1 

BEAM 9 12 14 15 16 0 1 0 

HINGE 10 16 17 0 1 0 

BEAM 11 15 17 18 19 0 1 0 

HINGE 12 19 20 0 1 0 

BEAM 13 10 11 21 22 0 1 0 

HINGE 14 22 23 1 0 1 

BEAM 15 21 23 24 25 0 1 0 

HINGE 16 25 26 0 1 0 

BEAM 17 24 26 27 28 0 1 0 

HINGE 18 28 29 0 1 0 

BEAM 19 3 2 30 31 0 1 0 

HINGE 20 31 32 0 -1 0  

BEAM 21 18 19 33 34 0 1 0 

HINGE 22 34 35 0 -1 0 

BEAM 23 27 28 36 37 0 1 0 

HINGE 24 37 38 0 -1 0 

 

X 3 0.000 0.1621 -0.0643 

X 4 -0.0521 -0.1498 -0.0376 

X 7 0.0087 -0.1095 0.0905 

X 10 0.0 0.0 0.0905 

X 12 0.0948 0.0548 0.0905 

X 15 0.1298 0.0749 -0.0376 

X 18 -0.1404 -0.0809 -0.0643 

X 21 -0.0948 0.0548 0.0905 

X 24 -0.1298 0.0749 -0.0376 

X 27 0.1404 -0.0811 -0.0643 

X 30 0.0002 0.1621 -0.0222 

X 33 -0.1404 -0.0809 -0.0222 

X 36 0.1404 -0.0811 -0.0222 

 

FIX 1   

FIX 3 

INPUTX 10 1 
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INPUTX 10 2  

INPUTX 10 3 

RLSE 1 1 

RLSE 2 1 

RLSE 3 1  

 

END  

HALT 

 

XM 3 0.3198 

XM 20 0.3198 

XM 29 0.3198 

EM 4 1.24 

EM 5 3.93 

EM 6 1.72 

EM 7 1.72 

EM 9 3.93 

EM 11 1.24 

EM 13 1.72 

EM 15 3.93 

EM 17 1.24 

 

END 

HALT 

 

TRAJECT 1 

TRANS 10 0.0 0.0 0.0905  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.0903 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.0903 

TRVMAX 10 0.1 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.0901 

TRVMAX 10 0.1  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   
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TRAJECT 5 

TRANS 10 0.0 0.0 0.0905 

TRTIME 0.05 100 

 

NOMS 1 1 1 

NOMS 2 2 1 

NOMS 3 3 1 

NOMS 4 8 1 

NOMS 5 10 1 

NOMS 6 12 1 

NOMS 7 14 1 

NOMS 8 16 1 

NOMS 9 18 1 

 

REFE 1 1 1 

REFE 2 2 1 

REFE 3 3 1 

REFE 4 8 1 

REFE 5 10 1 

REFE 6 12 1 

REFE 7 14 1 

REFE 8 16 1  

REFE 9 18 1 

REFEP 10 1 1 

REFEP 11 2 1 

REFEP 12 3 1 

REFEP 13 8 1 

REFEP 14 10 1 

REFEP 15 12 1 

REFEP 16 14 1  

REFEP 17 16 1 

REFEP 18 18 1 

REFEDP 19 1 1 

REFEDP 20 2 1 

REFEDP 21 3 1 

REFEDP 22 8 1 

REFEDP 23 10 1 

REFEDP 24 12 1 

REFEDP 25 14 1 

REFEDP 26 16 1 

REFEDP 27 18 1 

REFX 28 10 1 

REFX 29 10 2 

REFX 30 10 3 

REFX 31 10 1 

REFX 32 10 2 



120 

 

REFX 33 10 3 

 

END 

END 

 

VISUALIZATION  

BEAMVIS 0.01 0.01  

HINGEVIS 1 0.01 0.03  

HINGEVIS 2 0.01 0.03  

HINGEVIS 3 0.01 0.03  

LIGHT 1  

TRANSPARENCY 0.6  

TRAJECT 1  

TRAJECTNODE 10 

G.2. *.dat file representing optimized SPR using CW-AKP at high speed 

With respect to *.dat file at low speed, the dynamic data of traject function as described below will 

be replaced for high speed *.dat file with all other data remaining the same 

TRAJECT 1 

TRANS 10 0.0 0.0 0.0905  

TRTIME 0.05 100 

TRAJECT 2 

TRANS 10 0.0002 -0.0001 0.0903 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400  

TRAJECT 3 

TRANS 10 0.0002 0.0 0.0903 

TRVMAX 10 0.03 

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400 

TRAJECT 4 

TRANS 10 -0.0001 0.0 0.0901 

TRVMAX 10 0.03  

TRFRONT 10 0.0 

TRM 10 0.015 

TRTIME 0.2 400   

TRAJECT 5 

TRANS 10 0.0 0.0 0.0905 

TRTIME 0.05 100 


