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Abstract

Identifying causal relationships between variables remains an essential problem across various scientific

fields. Such identification is particularly important but challenging in complex systems, such as those involv-

ing human behaviour, sociotechnical contexts, and natural ecosystems. By exploiting state space reconstruc-

tion via lagged embeddings of time series, convergent cross mapping (CCM) serves as an important method

for addressing this problem. While powerful, CCM is computationally costly; moreover, CCM results are

highly sensitive to several parameter values. Current best practice involves performing a systematic search

on a range of parameters, but results in high computational burden, which mainly raises barriers to practical

use. In light of both such challenges and the growing size of commonly encountered datasets from complex

systems, inferring the causality with confidence using CCM in a reasonable time becomes a biggest challenge.

In this thesis, I investigate the performance associated with a variety of parallel techniques (CUDA,

Thrust, OpenMP, MPI and Spark, etc.,) to accelerate convergent cross mapping. The performance of each

method was collected and compared across multiple experiments to further evaluate potential bottlenecks.

Moreover, the work deployed and tested combinations of these techniques to more thoroughly exploit available

computation resources. The results obtained from these experiments indicate that GPUs can only accelerate

the CCM algorithm under certain circumstances and requirements. Otherwise, the overhead of data transfer

and communication can become the limiting bottleneck. On the other hand, in cluster computing, the

MPI/OpenMP framework outperforms the Spark framework by more than one order of magnitude in terms

of processing speed and provides more consistent performance for distributed computing. This also reflects

the large size of the output from the CCM algorithm. However, Spark shows better cluster infrastructure

management, ease of software engineering, and more ready handling of other aspects, such as node failure

and data replication. Furthermore, combinations of GPU and cluster frameworks are deployed and compared

in GPU/CPU clusters. An apparent speedup can be achieved in the Spark framework, while extra time

cost is incurred in the MPI/OpenMP framework. The underlying reason reflects the fact that the code

complexity imposed by GPU utilization cannot be readily offset in the MPI/OpenMP framework. Overall,

the experimental results on parallelized solutions have demonstrated a capacity for over an order of magnitude

performance improvement when compared with the widely used current library rEDM. Such economies in

computation time can speed learning and robust identification of causal drivers in complex systems.

I conclude that these parallel techniques can achieve significant improvements. However, the performance

gain varies among different techniques or frameworks. Although the use of GPUs can accelerate the appli-

cation, there still exists constraints required to be taken into consideration, especially with regards to the

input data scale. Without proper usage, GPUs use can even slow down the whole execution time. Convergent

cross mapping can achieve a maximum speedup by adopting the MPI/OpenMP framework, as it is suitable to

computation-intensive algorithms. By contrast, the Spark framework with integrated GPU accelerators still

offers low execution cost comparing to the pure Spark version, which mainly fits in data-intensive problems.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Detecting Causality using Convergent Cross Mapping

The detection of causality in complex systems has been studied for many years, in light of its importance

for scientific study, design of models, decision-making, and other needs. Complex systems are referred to

the systems whose behaviour is difficult to understand due to the fact that system behaviour is not directly

understandable through understanding each component of the system in isolation. For such systems – where

the “whole is greater than the sum of the parts”, behaviour exhibits non-linear relationships on system states

and depends heavily on hidden dependencies or unknown interactions caused by the inside (parts of the

systems) or outside factors (environment) of the systems. However, systems involving various interacting

variables and potential states are fundamental to the natural and social sciences.

The authentic causal understanding of such systems through their behaviours plays an essential role given

the need to making effective decisions, especially including policy and financial domains [58]. In traditional

analysis – inspired by linear systems – identification of correlation and covariation between variables has

been widely applied in hopes of identifying causality in stationary time series. By contrast, complex non-

linear system variables can be positively linked at specific time windows, while at other time windows, such

variables can appear unrelated or even negatively linked. Such conflicting evidence will often arise when

traditional metrics like correlation and covariation are applied. Analysis using correlation or covariation

becomes more difficult to justify with increasing recognition that nonlinear dynamics are ubiquitous in chal-

lenging decision-making and policy contexts. Although linear dynamic analysis is a well-developed technique

with elegant theoretical underpinnings, most real-world systems manifest themselves in a much broader spec-

trum of possible complex behaviours. Possibilities include intermittency, discontinuous motion, and history

dependence, including sensitivity to initial states. All of these seeming chaotic behaviours make complex

systems unpredictable and challenging to understand. Furthermore, the methods, which are designed based

on the linear systems, can lead to incorrect or even contradictory evidence regarding causality in nonlinear

systems. Increasing recognition of the importance of such behaviour calls for a better criterion to evaluate

causal connections in complex systems.
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Different approaches have been pursued to overcome the difficulty associated with causal inference in

complex systems. Firstly, controlled experimentation or investigation of underlying mechanisms have been

applied to investigate causal relations among variables. The first of these requires a substantial investment of

time and financial resources. For contexts in which we seek to understand human behaviour, the pursuit of

controlled experiments frequently poses ethical concerns, due to the risk of imposing harm on subjects. The

limits of such controlled studies – such as Randomized Controlled Trials (RCTs) – are particularly notable

in the context of complex systems, which commonly exhibit reciprocal feedbacks, delays and non-linearities

[38].

While research seeking to elucidate underlying mechanisms and causal pathways (e.g., biological pathways

underlying certain types of cancer, or diseases such as Type 2 Diabetes) are ubiquitous in science, the time

required to secure great progress in such studies is commonly measured in decades.

The limitations of such traditional routes to identifying causal linkages have driven investigation into

alternatives. [26] sought to take advantage of Granger causality (GC) theory as a mechanism for testing

nonlinear causality in time series. But this approach can be problematic, especially in weak to moderate

coupling systems [53]. The method exhibits particular limitation on account of its assumption of separa-

bility. While separability [36] is characteristic of completely stochastic systems, in complex systems with

the capability of displaying broad coupling, separability typically does not hold. Separability represents the

perspective that the systems can be reconstructed piece-by-piece rather than as a whole, which flies in the

face of the emergent behaviour routinely seen in complex systems. The assumptions of the GC method apply

only under the condition that completely stochastic is the nature of the real world. However, most of the

systems in the real world contain strong deterministic governing components, which behave with patterns.

As such, dynamic systems theory can be fruitfully introduced to analyze principles underlying the dynamics

of complex, non-linear systems, and to reason about their long-term qualitative behaviour.

1.1.2 Dynamical System Theory

Dynamical system theory [2] is a scientific area, generally employing mathematical methods such as differential

or difference equations, to describe and understand the behaviour of complex systems. At any timepoint,

a dynamical system has a state characterizable by a vector, which can be alternatively viewed as a point

with finite dimensions in accompanying state space. In dynamic system theory, such states can evolve under

certain deterministic or stochastic rules that provide guidelines as to how current state evolves into future

state. Mathematical characterization of state and its time evolution (behaviour) form the foundation of this

theory.

To the extent that the system is deterministic and dynamics are not entirely random, there will be an

underlying manifold controlling the dynamics. As such, this theory introduces the concept of an attractor.

Causally linked time-series variables share a common attractor manifold M , which means that the coordinate

for one state space coordinate will typically be closely covarying with another, and the information associated

2



with one variable can be recovered from variables that it drives within the dynamics of the common attractor.

Hence, reconstruction of nonlinear state space M ′ can serve as an important possible tool when seeking to

infer causality in a dynamic system.

1.1.3 Takens’ Embedding Theorem

In 1981, Takens’ Theorem [55] demonstrated and proved the manner in which lagged coordinates formed by

a time series could be employed as substitute variables to reconstruct the shadow manifold of the underlying

dynamic system. Assuming M is a compressed manifold of a m-dimension state space, so a dynamical system

actually can be thought as a diffeomorphism φ determining the trajectories on the compressed manifold M

under the discrete time intervals in Takens’ Theorem [13]. The reference to the diffeomorphism refers to

the invertible function that maps two smooth manifolds whilst preserving similarity on local topology. In

mathematics, given φ and M , an observation function y : M −→ R can be applied to construct an embedding

M ′ ofM in 2m+1 dimensions. The complete transformation form in Takens’ Theorem is Φ(φ,y) : M −→ R2m+1,

where Φ(φ,y)(X) =< y(X), y(φ(X)), y(φ2(X)), ..., y(φ2m(X)) > [13]. Here, the components on the right side

of the equation represent the time-lagged variables of the original dynamics on M . As we can observed from

the equation, such mappings (in the observation function) involve a single time series, which only represents a

subset of possible mappings when considering the number of time series and lagged values. The reconstructed

embedding may not preserve the global topology information of original manifold M . But still, the every local

neighbourhood in the topology of the original manifold can be preserved, which remains a useful conceptual

stepping stone for information recovery by searching nearest neighbours of reconstructed embedding manifold

M ′.

Projection | Sampling Delay Embedding

Time Series

Diffeomorphism

X(t) X(t-r)

X(t-2r)Rz

Rx Ry

Figure 1.1: This diagram demonstrates the methodology of attractor reconstruction via delay em-
bedding. The true attractor is projected into a time series by some measurement functions, from which
an image of the attractor can be formed by delay reconstruction, up to some diffeomorphism.

As shown in Figure 1.1, the real attractor M , usually characterized as a surface or manifold, is defined

by the trajectories in three-dimensional space. For simplicity, a manifold can be considered as a generalized,
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E-dimensional surface embedded in some higher dimensional space, where the dimension of the manifold may

be irregular and fractal. In equation (1.1), the time series X (where T is maximum index) can be viewed as

sequential projections of the motion or samples with a certain time interval on the real attractor M in the

dynamic system, as follows.

X =< x1, x2, ..., xT > (1.1)

Takens’ Theorem above states that mathematically valid and equivalent reconstructions M ′ of the at-

tractor can be created using lags of just a single time series (a sequential projection) by substituting those

lagged values for unknown or unobserved variables, as each time series is a function of the system state and

in general is driven by – and thus contains information regarding – several state variables. In equation (1.2),

E = 2m+ 1 is the reconstruction embedding dimension and τ (τ > 0) is the general delay as lagged value.

−→xt =< xt, xt−τ , ..., xt−(E−1)τ > (1.2)

1.1.4 Convergent Cross Mapping

Convergent cross mapping [53], proposed by Dr. George Sugihara in 2012, is a statistical test based on

Takens’ Theorem that can be used to detect and help quantify the relative strength of unidirectional and

bidirectional causal relationships between two variables X and Y drawn from the same coupled complex

system. Essentially, to investigate whether Y is causally influencing X, we determine whether the shadow

manifold MX encodes information about Y . To do so, we take advantage of the fact that if Y is govern-

ing/driving/influencing X, the value of Y is part of the state of the system underlying X. By the definition

of state space, information concerning the state (and, thus, value) of Y would need to be captured (encoded)

by the location in the state space of the system driving X. By contrast, if Y is not driving X, Y does not

form an element of the state space of X, and the location in state space of the system driving X should

not encode any more information about the value of Y than mere statistical dependence on another aspect

of state. Then we assess whether (and to what degree) it is possible to estimate (infer) the value of Y at a

given time t using information from the observation of Y associated with the closest points within shadow

manifold MX reconstructed from the delay embedding X. If the ability to use X to recover Y rises as one

considers shadow manifolds of additional density – and reconstructed from longer time series – it suggests

that Y is driving X. By contrast, a merely statistical dependence of Y on an element of the system state

underlying X or X itself would not lead to a notable rise in the ability to predict Y with shadow manifold

density.

More specifically, the algorithm uses lag embedding of time series X to reconstruct the shadow manifold

MX [31]. To rebuild a state space of dimensionality E – including unobserved (latent) variables within the

system – from a time series X, we can substitute each (non-boundary censored) point of that time series by

an E-dimensional vector whose elements are successive lagged values drawn from that time series separated
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by time index τ , per equation (1.2). Within the CCM algorithm, in order to assess if variable X is causally

governed by variable Y , we attempt to predict the value of Y on the basis of the state space reconstructed

from X (see below); for statistical reliability, this must be performed over a large number R of realizations.

To assess causality, we examine whether these results converge as we consider a growing number L of data

points – and thus a greater manifold density – within X within our reconstruction (see below).

Overall, the results of CCM are sensitive to the parameters below (the overall notation of CCM is listed

in Appendix A):

E: This parameter is the estimated embedding dimension of the dynamic system. For simplex projection, E

will typically range from 1 to 10. Eckmann [16] demonstrated the fundamental limitations for estimating

dimensions of dynamic systems in 1992. The difficulty of accurately estimating E requires researchers

testing and running CCM for different possible values of E.

τ : This fundamental parameter represents the embedding delay used in shadow manifold reconstruction. If

appropriate lags are used, the reconstruction preserves the essential mathematical properties of the

original system: Reconstructed states will map one-to-one to actual system states, and nearby points

in the reconstruction will correspond to similar system states. In the presence of high autocorrelation

between successive measured values in X, smaller values of τ will lead to successive coordinates in

the embedding vector holding highly similar values; by contrast, larger values of this parameter will

yield embedding vector elements less subject to autocorrelation. However, the estimation of the most

favorable embedding delay is often unclear, and current practice explores a variety of possible values.

L: Another parameter central to the definition of CCM, L counts the size of the subsequence of the embed-

ded library extracted from the time series for the purposes of state space reconstruction. In general, a

prediction skill that initially increases along with rising L and then converges with a positive plateau

value implies a causal relationship. With more data, the trajectories defining the attractor fill in, result-

ing in closer nearest neighbours and declining estimation error (corresponding to a higher correlation

coefficient) as L increases.

R: This parameter – whose notation is less standardized in the literature – refers to the count of random

subsamples (realizations) taken of a given size L. To enhance statistical reliability, the value of R is

commonly set to 250 or larger. By determining the statistical confidence associated with the tests, this

parameter is an important feature of any empirical study and statistical measurement. In the algorithm,

multiple random realizations for a given library size L can reduce bias, produce more accurate estimates,

and better reveal trends with growing L. Alternatively with researchers using larger sample sizes, higher

values of this parameter impose elevated levels of computational burden in the form of longer running

times and elevated space consumption for CCM output.

Running CCM across a wide range of different parameter settings is necessary to obtain a reliable causal

reference (hyperparameter tuning), and thus imposes a relatively high computational overhead. As for
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various data science tasks, parallel and distributed processing can enhance the computational performance

and shorten the execution latency.

In this thesis, following additional background on CCM and the literature of parallel techniques, we de-

scribe different versions of CCM parallel implementation which take advantages of contemporary parallel and

distributed processing techniques. For instance, the CUDA framework [37] provided by NVIDIA GPUs, the

MapReduce framework [12] provided by Apache Spark (henceforth, “Spark”) and the hybrid [50] framework

provided by MPI/OpenMP will be studied and applied on CCM. The thesis then presents an informal perfor-

mance evaluation and comparison of these frameworks. We conclude from the experiments that, with parallel

techniques and cloud computing support, researchers can use CCM to confidently infer causal connections

between larger time series in far less time than is required by extant libraries implementing the general CCM

algorithm.

1.2 Research Goals

As mentioned earlier, Convergent Cross Mapping is an algorithmic technique based around the idea of

shadow manifolds reconstructed via lag coordinate embedding. In order to estimate the causal relationship

with confidence, proper parameters E, τ for the dynamic systems should be applied. Another limitation of

CCM concerns the library size L and sample size R. Inference of the causal relationship is based on how ρ

changes along with L, as judged by a sample of R such values for each value of L. Determining the ensemble of

such values of ρ imposes a heavy computation workload. CCM has been restricted in its range of application

because of the high computational complexity; for example, while the length of modern time series may run

into the millions, use of rEDM with values of L in the range of just 5000 can require overnight computation.

To address the computational disadvantages of CCM, variants for the algorithm have been considered and

offer significant results. However, these studies suffer from other limitations, and they do not offer a general

solution.

This thesis seeks to investigate means of supporting scientifically reliable causal inference and prediction in

a reasonable time by applying multiple levels of parallelism on convergent cross mapping. In consideration of

the increasing availability of affordable computer hardware supporting parallel computation in recent years,

various algorithms have been redesigned to take full advantage of computational resources. For example,

the application of deep learning has been made more accessible on account of the fact that the matrix-

based networks can be accelerated using GPUs. Additional Big Data related topics have become popular

following the decreasing cost of computer hardware, and the introduction of cluster computing. The thesis

being investigated here is that, subject to availability of sufficient computational resources, the parallel

implementation of CCM will dramatically reduce the computation time required to conduct the analyses of

causality.
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1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 provides background regarding both convergent cross mapping

and several parallel processing techniques. This chapter includes a literature review on the foundational

papers characterizing the CCM technique, as well as current work which improves the performance of CCM in

certain conditions, and its related applications. Chapter 3 introduces possible methods for GPU acceleration

and optimization when performing CCM on a single machine. The performance comparison between CPU

and GPU will be presented. The concluding section of the chapter will summarize the advantages and

limitations of GPU acceleration. Chapter 4 follows the emphasis on parallel implementation by extending

the parallel techniques to take advantage of clusters of machines in which implementations based on MPI

and Apache Spark will be discussed and compared. Chapter 5 combines the parallel techniques proposed in

Chapter 3 and chapter 4 to more fully exploit multiple levels of parallelism. However, the use of multiple

parallel technologies elevates code complexity and imposes performance bottlenecks. Also, this chapter lays

out an evaluation and discusses possible solutions. Finally, chapter 6 provides a concluding summary of this

research and discusses the contributions of this thesis as well as promising prospects for future work.
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Chapter 2

Background

2.1 Literature Review

There are two subareas of the literature relevant to the research purpose of this thesis: Convergent Cross

Mapping and parallel and distributed programming techniques. Convergent Cross Mapping basics covered

here focus on the essentials of the theory and recent applications. Past work on CCM improvements will be

listed and compared based on their advantages and disadvantages. The coverage of background on parallel

techniques introduces the reader to a subset of prominent existing parallel models and frameworks affording

ready application to convergent cross mapping to improve the computation speed. Parallel methods covered

relate to two primary types of resources: The hardware architecture (which we call parallel computers) and

its corresponding parallel software models. The resulting parallelization is achieved with the support of both

hardware and software implementation.

2.1.1 Convergent Cross Mapping Basics

In 2012, Sugihara [53] built on ideas from Takens’ Theorem [55] to propose convergent cross mapping (CCM)

to test causal linkages between non-linear time series observations. This approach has enjoyed diverse appli-

cations. For example, Luo [39] successfully revealed underlying causal structure in social media and Verma

[57] studied cardiovascular and postural systems by taking advantages of this algorithm.

In empirical dynamic modeling, time series – samples on the time axis – reflect the system states or

behaviors, and can be understood as sequential projections of the underlying state of the associated complex

system. In accordance with the theory of time series embedding, such a time series encodes information

about the aspects of the system state that govern this variable. By Takens’ theorem, to reconstruct a state

space of dimensionality E – including unobserved (latent) variables within the system –, we can substitute

each point of that time series by an E-dimensional vector whose elements are τ lagged values drawn from

that time series. In order to assess if variable X is causally governed by variable Y in CCM, we attempt

to predict the value of Y on the basis of the state space reconstructed from X (see below). For statistical

reliability, this prediction must be repeated over a large number R of realizations. To assess causality, we

examine whether these results “converge” as we consider a growing number L of data points within X within

our reconstruction (also see below).
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We provide here a brief intuition for why and how CCM works. Consider two variables X and Y , each

associated with eponymous time-series and – further – where X depends on Y . For example, consider a case

where for each time point X measures the count of hares, and Y that of lynx. If X (hares) causally depends

on Y (lynx), the dynamics of X (e.g., a rapid rise or persistent drop in the hare population) will often tell

us much about the state of other areas of the system that governs it, including Y (e.g., that there are likely

to be few or many lynx around, respectively). The converse is true as well, if Y (lynx) causally depends on

X (hares), observing the values of Y over time (e.g., a steep drop or a plateauing in lynx numbers) tells us

about the state of governing factors, including X (here, the fact that the number of hares is too small to feed

the lynx population effectively, or that they are roughly in balance with lynx, respectively). An implication

of the first of these cases, where X depends on Y – captured by Takens’ Theorem – is that information on the

state of Y is encoded in the state space reconstructed from X, meaning that points that are located nearby

within X’s reconstructed state space will be associated with similar values for Y , and can thus be used to

make accurate (skillful) prediction of the value of Y . In most cases, such prediction of one variable (e.g., Y )

within the reconstructed state space of another (X) can be achieved by nearest neighbor forecasting using

simplex projection [54] – that is, by considering the contemporaneous value of Y associated with the nearest

neighbours to the point being considered in shadow manifold MX . Pearson’s correlation coefficient between

observed and predicted values of Y can be applied over a “library” of a given length L to measure prediction

skill. Details regarding the CCM algorithm can be found in Section 2.3.

Simplex Projection

Simplex projection, employed by convergent cross mapping, can be a valuable tool to distinguish chaotic

time series from random noise. The central idea behind this tool is that the behavior of similar events in the

past can directly forecast the events in the future. For the sake of simplicity, it involves tracking the evolving

forward pattern among nearby points in the embedding manifold we reconstruct using lagged values. So, it

belongs to a kind of nearest-neighbor forecasting algorithm with relatively high computational complexity.

There are two parameters associated with the simplex projection stage of CCM: Embedding dimension

E and lag τ to create lagged-coordinate vectors for the manifold MX . A high-fidelity one-to-one map will

be presented between the reconstructed attractor and original attractor if the appropriate parameters are

chosen. If the estimation of E is smaller than the appropriate one, the reconstructed states will directly

overlap with each other, as they exhibit separation and structure higher dimension that may project to the

same region of lower embedding dimension. As such, poor estimation of the parameter E can lead to poor

forecast performance, and, as a result, the system behaviors cannot be captured within the reconstructed

shadow manifold. Sugihara & May [54] use prediction skill as an indicator to identify whether E is the

optimal embedding dimension. In this paper, the author argues that if we observe that forecast skill peaks

at E = 2, it indicates that the real attractor manifold underlying input time series are unfolded best in

2 dimensions, which means E should be 2 to best approximate the real embedding dimension. Another
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similar concept relates the actual dimensionality of the dynamic systems, which is not an exact equivalent

to the embedding dimension. Estimation of the actual dimension of the corresponding dynamic systems

should consider additional factors, including observational error, process noise, and time series length, and

the system modes. Notably, the actual dimensionality of a dynamic system is often determined by the

underlying state variables associated with it, while the dimensionality of the manifold E is the dimension

that gives the highest prediction skill, which generally smaller than the actual dimensionality of the state

space in complex systems [39].

Pearson’s Correlation Coefficient

When applied to a sample, Pearson’s correlation coefficient – also called the sample Pearson correlation

coefficient, or simply put as the sample correlation coefficient – is commonly represented by rxy or ρxy. This

metric is widely used across various domains to measure the relation between observations. In CCM, the

(Pearson) correlation coefficient between a sample predicted and a sample of observed values is treated as the

prediction accuracy (skillfulness), which primarily serves as testing the degree to which information regarding

Y is captured within the state space of X. Closely resemblant local topological structures suggest a causal

connection between time series Y and X. With the correlation coefficient, evaluating such prediction skill

becomes less computationally intensive and is relatively straightforward. Given two sequences in any of the

sample, predicted values py and corresponding values y of equal length E+ 1 (representing the E+ 1 nearest

neighbors found in BF kNN search), the Pearson’s correlation coefficient between two sequences is defined

as the covariance of the two sequences divided by the product of their standard deviations. That is, given

paired data {(py1, y1), . . . , (pyE+1, yE+1)} consisting of (E + 1) pairs, rpy,y is defined as:

rpy,y =

∑E+1
i=1 (pyi − py)(yi − y)√∑E+1

i=1 (pyi − py)2
√∑E+1

i=1 (yi − y)2
(2.1)

Where py and y are the sequence mean for py and y, respectively. However, the standard correlation

coefficient is just one of several alternative measures of the agreement between predicted and observed values.

There are some other methods that have been applied to measure the prediction accuracy. Mean absolute

error of predictions (MAE) and root mean squared error of predictions (RMSE) serve as alternative measures

to the Pearson correlation coefficient metric when measuring skillfullness. The reporting of skillfulness using

such metrics can be supported by the Sugihara research group’s contributed public library rEDM. However,

among these metrics, the Pearson’s correlation coefficient remains the most commonly used, and the parallel

implementations in this thesis only consider this measurement in producing reliable prediction results across

an ensemble of R different samples.
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Identify Causality

A key need within CCM is to distinguish causal dependence of one variable on another from purely statistical

dependence (e.g., due to covariation) – which might also support high prediction skill within a given recon-

structed manifold. The two can be distinguished by assessing how prediction skill changes as the number data

points used in the embedding – the so-called library size L – rises. To assess whether X is causally governed

by Y , we evaluate how successively larger counts L of data points in X change the skill with which values of

Y can be predicted. If such prediction skill rises monotonically with L, it indicates that Y is causally driving

X (putting aside certain exceptional cases). By contrast, the presence of a merely statistical dependence

of X on Y may lead to a high level of prediction skill even in small libraries, but will not lead to such

convergence as L rises – with a monotonic rise in prediction skill to some plateau. In order to confidently

assess this convergence with rising L in light of stochastic selection of the library, the prediction skill must

be assessed over R random subsamples of the time series for each value of L. The speed of convergence and

the magnitude of the achieved prediction skill for large L indicates the existence and strength of the causal

dependence of X on Y in the context of the assumed values for E and τ .

2.1.2 Past work in CCM Performance Improvement

Despite the fact that CCM is increasingly widely applied, there remain pronounced computational challenges

in applying the tool for the moderate and large time series that are prominent features of the “big data” era.

At the same time, securing confidence in inferences regarding causality in the dynamic systems makes highly

desirable not just use of appropriate parameter values, but also a least a moderately long time series are

required for the original CCM [45] – a time series with length well into the hundreds, if not the thousands of

observations. As such, since CCM’s first appearance in 2012, a number of modifications and improvements

have been proposed to handle this drawback. In 2014, Ma et al. [41] developed cross-map smoothness (CMS)

based on CCM, which has the advantage of allowing for a shorter time series. Compared to original CCM,

CMS can be used for time-series of length in the order of T = 10, whereas CCM arguably requires time-series

of length in the order of T = 103 to yield reliable results.

Additionally, works [7], [54], [31], [33] investigated and introduced mathematical methods to properly

estimate parameters required by CCM (embedding dimension E, time delay τ and library length L). For

example, from the previous study of CCM, estimation of the embedding dimension method in nonlinear theory

from the underlying attractor often begins with the reconstruction the state space, and then a calculation of

the dimension of the putative attractor using some variant of the Grassberger Procaccia algorithm [15]. A

correlation integral is calculated in this algorithm to estimate the dimension E. Such work expanded CCM-

related research and also provided methods for quickly inferring causality in certain circumstances. However,

previous research has not sought to accelerate CCM using parallel techniques. With the growing prevalence

of hardware and software support for effective parallelization, it is worthwhile to investigate the opportunities
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for elevating performance, including by parallelizing the hyperparameter tuning process. As with many other

machine learning algorithms, through effective use of parallel techniques, exhaustive searches on discrete

parameter grids can be performed and compared without explicit empirical estimation of different CCM

parameters.

2.2 Introduction of Parallel Methodologies

2.2.1 Overview and Categories

Parallel processing involves the simultaneous execution of multiple computational processes. Application of

such techniques generally reduces the total computational time but requires support in the form of parallel

algorithms, programming languages with the backing of parallel algorithms, multitasking operating systems

and often multi-core hardware [47]. As such, hardware platform and software environments should be taken

into consideration together to exploit computation performance benefits from parallel computing [34] effec-

tively.

According on the feature of the instruction and data stream, computers can be categorized into four

classes based on Flynn’s taxonomy [17]:

• Single instruction stream and single data stream computers are simplified as SISD.

• Single instruction stream and multiple data streams computers are simplified as SIMD.

• Multiple instruction streams and single data stream computers are simplified as MISD.

• Multiple instruction streams and multiple data streams computers are simplified as MIMD.

SISD has no parallel capability, and it is believed that MISD does not physically exist in the industry.

Most parallel techniques and programs rely instead on SIMD and MIMD computers, which can support

parallelization.

SIMD computers contain one control unit and multiple processing units. In today’s context, such multiple

processing units often refer to GPU many-core architecture. In GPUs, every thread in a thread block executes

the same instruction simultaneously on different data.

By contrast, many MIMD systems can be characterized according to the memory model employed. In

shared-memory systems, multiple CPUs share the same physical memory. On the other hand, message-passing

systems are typically featuring distributed CPUs with independent memory for different sets of CPUs, such

as those encountered in contemporary computational clusters, with communication taking place via message-

passing mechanisms. As such, in this section, three types of modern parallel computers and the basics of the

corresponding program paradigms will be discussed.
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2.2.2 GPU architecture and CUDA programming

Graphics processing units (GPUs) [6] were initially designed to satisfy the demand for higher quality graphics

in video games, so as to create a more realistic 3D environment. In the past decade, GPUs have gradually

evolved to highly influential parallel processing platforms, offering high throughput on account of the enor-

mous number of cores. Unlike multi-core machines, only with the ability to run just a few threads in parallel

at one time – for example, four threads at the same time on a quad core machine – GPUs can run hundreds or

thousands of threads concurrently. Although various restrictions apply, the high potential that such devices

provide for performance enhancement is the fundamental reason underlying their popularity.

NVIDIA CUDA architecture consists of a large set of streaming multiprocessors (SMs), where each such

SM includes some streaming processors (SPs). One SP can execute precisely one thread [43], and one SM can

run groups of threads in lockstep. As such, the SM/SP hierarchy addresses synchronization mechanisms for

independent subsets of data on the GPU device. Only SPs can be synchronized by means of critical section

mechanisms, such as via declaring synchronization barriers. By contrast, the independence of threads in

distinct SMs means that the hardware can run faster if the algorithms have specific independent chunks which

can be assigned to different SMs. Parallel invocations of kernel functions to be undertaken concurrently are

grouped into blocks, which are then distributed among available SMs. Each block has up to three dimensions

– reflecting its original use in processing 3D images for video games – and contains a maximum of 1024

threads. GPU devices must be attached to a CPU host to operate. The communication between host and

GPU is via a PCI-Express bus. Each GPU has its own memory, which is associated with a memory space

disjoint from that of host memory. To work with GPUs, data and instructions have to be copied back and

forth between memory in hosts and GPUs through the PCI-Express bus. As such, the data transfer overhead

can serve as the main bottleneck for the performance. Also, each GPU consists of different types of memory.

For instance, the device memory – referred to as global memory when using CUDA API function cudaMalloc

– is large and accessible by all threads in different blocks, but has lower throughput. By contrast, shared

memory, allocated by declaring variables using CUDA API function shared , is small but fast, but is only

allocated for the corresponding thread block. Figure 2.1 depicts the memory structure associated with GPUs,

but omits other types of memory, such as registers and caches.

To facilitate efficient general purpose computing on GPUs, NVIDIA has developed the Compute Unified

Device Architecture (CUDA) language [37] as a vehicle for programming on their GPUs. Syntactically, the

language essentially serves as a slight extension of C and aims to provide a uniform interface that works with

multi-core machines in addition to GPUs. A CUDA program consists of two portions: the code to be run

on the host (CPU part) and the code to run on the (GPU) device (GPU part). A function that is called by

the host to execute on the device is called a kernel function, which is identified by global keyword. The

same kernel function is typically performed by thousands of threads, which are grouped into blocks. Two

CUDA structures, threadIdx (thread index) and blockIdx (block index), are used in combination to associate

a thread with a different piece of data for parallel data computation. And the threads in the same block can
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Figure 2.1: GPU device architecture overview.

synchronize their operation, using the syncthreads() keyword.

2.2.3 Multi-core machine architecture and multithreaded programming

A standard contemporary MIMD computer is the shared-memory multi-core machine [14], which has mul-

tiple CPUs, as shown in Figure 2.2. Parallel execution on this kind of machine is typically achieved via

multithreading. A thread is similar to an operating system (OS) process, but with much less overhead, and

without a large dedicated space. Most current programming languages, including C++, Java and Golang,

support multithreaded programming. Efficient parallel execution of a program requires parallel accessing of

memory. This task is facilitated by dividing memory into separate modules or banks. This way accesses to

different memory elements can be undertaken in parallel. However, the conflict of memory access (read or

write operation) by different threads can lead to data inconsistency. Critical section operations are intro-

duced to address this problem. Such barriers enforce the constraint that more than one thread is not allowed

to execute the code simultaneously. To achieve a certain degree of synchronization, several methods (lock,

mutex) [44] should be applied in multithreaded programming. However, a critical section typically serves

as a potential bottleneck in a parallel program, as this part is serial instead of parallel. Another potential

bottleneck is imposed by designated barriers, which are places in the code that all threads must reach before

continuing. The existence of such obstacles may result in some threads being idle, while other threads still

have a large amount of work.

CPU CPU CPU
Disk

System Bus

Memory

Figure 2.2: Shared memory system architecture overview.

The Open Multi-Processing (OpenMP) library [11] in C++ offers researchers a higher-level of threading
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by hiding lower-level details. It primarily includes a collection of compiler directives and callable routines

to express shared-memory parallelism. In order to support designing parallel algorithms without handling

threads, this library provides developers with pragma descriptive commands such as parallel, barrier, critical,

etc..

Apache Spark [64] with the local mode is another framework which can exploit parallelism implicitly on

a multi-core machine through Java Virtual Machine (JVM). Spark shows better data management in the

cluster and introduces the transformation pipelines on the immutable in-memory data structures (Resilient

Distributed Dataset) [63]. Overall, these popular parallel techniques can be applied to the multi-core machine

conveniently to improve algorithm execution speed as a whole.

2.2.4 Cluster architecture and distributed programming

Another popular MIMD computational framework consists of distributed multiple machines with network-

based connections – a configuration referred to as a cluster. However, the network is a notable weak point

in this kind of systems. The nodes would have separate copies of the data to process in parallel as the

distributed memory model. Due to the distributed memory model and network latency, the scatter or gather

operations will increase the overall latency of the cluster. Such network communication and data transfer

can be a central bottleneck for computation performance. However, the cluster can be efficiently scaled out

by adding more nodes (computation resources). Another apparent advantage is that the execution time can

decrease dramatically as more workers share the workload for particular jobs.

CPU

Memory

CPU

Memory

CPU

Memory

High-Speed Network

Figure 2.3: Distributed memory system architecture overview.

At present, the Message Passing Interface (MPI) [29] and Apache Spark platform on Yarn [56] each

offer powerful interfaces for performing applications at scale across computational clusters. As such, we will

compare the performance of these two methods in scaling the Convergent Cross Mapping algorithm.

The APIs in the MPI framework utilize an in-memory and in-place programming model. So the computa-

tions and communications take place in the identical process under the same scope, which means that different

processes execute the same code and communicate to one another in the same group (MPI COMM WORLD)

with standard MPI protocols [30].

By contrast, the Big Data framework Apache Spark in Yarn mode, has adopted a directed acyclic graph
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(DAG) transforming workflow and execution model in order to process large amounts of data. In this kind of

programming model, operators are applied on distributed data sets which produce different distributed data

sets in the cluster. This concept provides robust yet straightforward programming APIs. These APIs are

usually written following functional programming principles [49], making them less error prone and easy to

program. A DAG transforming execution model separates the communications and computations by allowing

computing to occur in self-contained tasks, and not permitting communication within task execution. The

jobs undertake stateless computations on the data. More importantly, Apache Hadoop Yarn offers schedule

and resource manager services within the cluster. Without explicit coding, Yarn can perform its scheduling

function based on the resource requirements of the submitted job. This stands in contrast to MPI, which

represents static resource allocation without any automation. As such, Yarn can fully take advantages of

cluster resources and improve their utilization.

Overall, there are three popular architectures whose performance is investigated in this thesis: GPUs,

shared-memory systems and message-passing systems. Each different parallel system has its performance ad-

vantages and bottlenecks. Pronounced bottlenecks for the shared-memory system arise from critical sections

and barriers, while notable bottlenecks associated with message-passing system mainly come from network

communication. As for GPUs, the overhead of allocating memory and loading data between CPU memory

and GPU memory through the PCI-Express bus is often a central bottleneck, as it requires data to be trans-

ferred for operations on GPU cores. In this thesis, different parallel techniques are adopted to lower the

bottlenecks and delay in the parallel version of the CCM application to minimize execution time.

2.3 CCM Algorithm Analysis

2.3.1 Public Library of CCM: rEDM

Empirical dynamic modeling, often referred to as EDM, is an advancing non-parametric method for modeling

nonlinear dynamic systems. The rEDM package [61] in the R statistical package includes several EDM

methods, including convergent cross mapping, and is published by the research group of the author of

CCM, the Sugihara Lab (University of California San Diego, Scripps Institution of Oceanography). This

free package from the R CRAN repository can be readily installed on any machine with R by running the

command install.packages(”rEDM”). to perform causal inference by invoking the ccm API function. The

rEDM functions are designed to accept and generate data in common R data formats. The library is available

in an open source capacity on Github. The rEDM library author used the performance-limited technique of

C++ single threading to implement convergent cross mapping algorithms: the ccm function. This library is

implemented using C++ single threads with an R language interface, which can only be executed on a single

machine.
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2.3.2 Parallel Design of CCM Algorithm and Comparison

The main motivation behind developing parallel algorithms lay in the motivation to reduce the computation

time of an algorithm using parallel machines. Thus, evaluating the execution time and corresponding time

complexity of an algorithm is extremely important in evaluating the success of these efforts. In the analysis

of parallel algorithms, the number of processes n (n > 1) is normally introduced when considering time

complexity. Also, there are several additional parameters involved for the CCM algorithm, which are listed in

Table 2.1 – LSet, ESet and TauSet. A detailed analysis of the time complexity will be presented afterwards.

Table 2.1: Notation

X,Y Two variables in the form of time series

X̂t The time-lagged vector at time t in time series X

MX The shadow manifold reconstructed using time lags in X

Ŷt|MX The estimate of variable Y obtained by cross mapping using the shadow manifold MX

LSet The set of subsequences lengths (hyper parameter candidates)

L The length of subsequences

ESet The embedding dimensions set (hyper parameter candidates)

E The embedding dimensions of shadow manifolds

TauSet The τ set (hyper parameter candidates)

τ The embedding delay used in the shadow manifold reconstruction

T The full length of the input time series

R The number of realizations (samples)

n The number of processes

As mentioned earlier, CCM is based on simplex projection. The simplex projection belongs to a nearest-

neighbor searching algorithm that estimates kernel density using exponentially weighted distances on the

reconstructed shadow manifold. Consider two time series of length T as input, X = {X1, X2, ..., XT } and

Y = {Y1, Y2, ..., YT } and the design parameter L ∈ LSet, E ∈ ESet, τ ∈ TauSet and R. CCM begins

by constructing the lagged-coordinate vectors X̂t =< Xt, Xt−τ , Xt−2τ , ..., Xt−(E−1)τ > for the range of

t ∈ {1 + (E − 1)τ, T}. This set of lagged-coordinate vectors is often referred to as the shadow manifold MX .

In order to produce the cross-mapped estimate of target value Yt, denoted by Ŷt|MX , for each sample ∈ R,

randomly draw L embedding vectors from the full time series. The next step consists of locating, for each

embedded point associated with time t, the corresponding lagged-coordinate vector X̂t on MX and finding

its E+1 nearest neighbors. Next, sort the indices based on the distance from X̂t in ascending order to obtain

top E + 1 nearest neighbors. Note that E + 1 is the minimum number of points required to bound a simplex

projection in an E-dimensional space. The equation below is then applied to obtain the estimate Ŷt|MX of
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variable Y:

Ŷt|MX =
∑

wiYti (2.2)

Where the index i ∈ [1, E + 1] from the sorted indices list and the exponential weight wi is based on the

distance between point X̂t and its ith nearest neighbor:

wi =
ui∑
uj
, j = 1...E + 1 (2.3)

ui = exp

−d[X̂t,X̂ti
]

d[X̂t,X̂t1
] (2.4)

where d[X̂t, X̂ti ] represents the Euclidean distance between two lag vectors. Finally, Pearson’s correlation

coefficient is applied to evaluate the similarity of the estimated sequence (predicted) Ŷt|MX and target

sequence Yt over all points in the library. The coefficient value indicates how skillful they match.

Serial Version

The serial algorithm pseudocode in Algorithm 1 presents how CCM in rEDM evaluates the existence and

strength of a possible causal connection: Y => X. As is clear from the listing, there are several nested loops,

which can be parallelized in accordance with the dependencies associated with the calculation.

Algorithm 1 CCM serial algorithm

1: INITIALIZE ρ = ∅

2: for E in ESet, τ in TauSet, separately do

3: Construct shadow manifold MX for embedding dimension E and delay τ on X

4: for L in LSet do

5: for sample = 1,...,R do

6: Seq ← randomly draw sampled lagged vectors of length L from Mx with replacement.

7: for query point q in Seq do

8: DistSeq ← calculate Euclidean distances to q for R ∈ Seq.

9: Seqsort ← sort Seq based on DistSeq.

10: K ← find top E + 1 indices in Seqsort.

11: ρ← calculate correlation ρE,τ,Lsample between Yt and Ŷt|MX with indices t ∈ K.

12: end for

13: end for

14: end for

15: end for

Generally, there are two steps in the serial implementation. The first step lies in constructing the shadow

manifold Mx for all combination of parameters E and τ . The time complexity is O(|ESet|×|TauSet|×E×T ).

While in the second stage, state space searching, the time complexity is O(|ESet| × |TauSet| × |SetL| ×R×
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L2 × log(L)) when we consider the time complexity of the sort operation as generally being O(klogk) for

problem size k.

Parallel Version

As we can observe from the serial version of CCM adhered to by the rEDM package above, repeated calculation

of distances and sorting operations can be significant performance bottlenecks. As such, a parallel design

of CCM is proposed in this thesis, one which trades added space consumption for a reduction in execution

time. To the end, a global sorted distance matrix can be calculated and memoized for further need. Such

an approach can pave the way for GPUs or clusters to process the data-intensive task, the derivation of the

sorted distance matrix, in a more efficient way. The pseudocode of the CCM parallel algorithm is presented

in Algorithm 2.

Algorithm 2 CCM parallel algorithm

1: INITIALIZE ρ = ∅

2: for E in ESet, τ in TauSet, separately do

3: Construct shadow manifold MX for embedding dimension E and delay τ on X

4: for i in T in parallel do

5: GDistSeq ← calculate Euclidean distances of i to q ∈ T .

6: GSeqsort ← sort point index based on GDistSeq.

7: end for

8: for L in LSet do

9: for sample = 1,...,R in parallel do

10: Seq ← randomly draw sample from Mx with replacement L times (yielding a L-length vector).

11: for query point q in Seq do

12: K ← find top E + 1 indices for q in GSeqsort.

13: ρ← calculate correlation ρE,τ,Lsample between Yt and Ŷt|MX with indices t ∈ K.

14: end for

15: end for

16: end for

17: end for

For the parallel version, the first preprocessing step takes time O( |ESet|×|TauSet|×T
2×logT

n ). As such, the

overall time complexity of the state space searching with the preprocessed data isO( |ESet|×|TauSet|×|LSet|×R×L
2

n ) <

O( |ESet|×|TauSet|×R×T×Ln ) as L < T < |LSet| × L̄. The total input time series length is larger than the sub-

sample sequence L but for regularly sampled values of L up to size T , always smaller than the average length

of the subsample sequence times the number of testing sets for L: |LSet|×L̄. In this case, the time complexity

is determined by the preprocessing step. As such, the overall time complexity is O( |ESet|×|TauSet|×T
2×logT

n ),
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which is smaller than that for the serial version O(|ESet| × |TauSet| × |LSet| × R × L2 × logL) even when

n is 1. When we apply the parallel version in the cluster, the power of parallel execution (as captured by n)

is expected to dramatically decrease the overall execution time of CCM.

2.4 Summary

Previous improvements on CCM typically trade off potential accuracy for relatively fast execution, and the

assumptions in some methods cannot be safely maintained in specific contexts, such as noisy time series

observations. However, the computational performance of the original sequential CCM can be improved by

the introduction of parallel computing or heterogeneous computing techniques. With a parallel design for

the CCM algorithm, the overall execution time can be significantly reduced using GPU devices or other

distributed computing frameworks such as MPI or Spark [42], [51]. Most notably, use of a global distance

matrix and sorting operation as a preprocessing stage can be a good fit for GPU computing or cluster

techniques. GPU devices are excellent for massive data-parallel workloads, which are integrated as the leading

accelerators for deep learning based algorithms and image-related process tasks. Also, cluster parallel methods

can dramatically improve algorithmic performance by effectively exploiting cluster-based or heterogeneous

computational capacity. In light of the established opportunities for such performance enhancement, a parallel

version of CCM should be implemented to allow researchers to evaluate the existence and strength of causal

connections between the measured time series in a robust and lower-latency fashion.
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Chapter 3

Exploiting GPU Acceleration of Convergent Cross

Mapping

3.1 Introduction

Reliable causal inference via CCM as to whether one time series variable (e.g., Y ) is causally driving another

time series variable (e.g., X) requires estimation of the degree to which, given a particular time series point

t, prediction of the value of Yt can be made on the basis of the closest points to the embedded vector

corresponding to Xt within the reconstructed shadow manifold MX in embedding dimension E. There are

several steps related to this estimation. The first step takes advantage of Takens Theorem [55] establishing

that mathematically valid and equivalent reconstructions of an attractor can be created using lags of just

a single time series. In a second major step, nearest neighbour forecasting in simplex projection [54] given

the library size L can be applied on the reconstructed attractor to identify the unique states. Finally,

Pearson’s correlation coefficient equation can be utilized to estimate the prediction accuracy on the basis of

the information of the nearest neighbours in the reconstructed state space MX .

In this process, k nearest neighbours searching, which can be framed in terms of an instance of the general

k nearest neighbour (kNN) problem, has been used to define the similarity in reconstructed embedding space

between two variables. Unfortunately, these estimations are computationally intensive, since they rely on

searching neighbours among large sets of E-dimensional embedding vectors. Generally, this computational

burden can be reduced by pre-structuring the data, e.g., using KD trees as proposed by the approximated

nearest neighbour library [46] or using Morton ordering to preprocess it in parallel [9]. Yet, the opening of

graphics processing units (GPU) to general-purpose computation by means of the CUDA API and competing

platforms such as OpenCL offers researchers a robust platform with notable parallel calculation capabilities.

Garcia [19] proposed a CUDA implementation of kNN search and compared its performance to that of several

CPU-based implementations, demonstrating a speed increase by up to one or two orders of magnitude.

A further possible improvement for CCM is to implement the GPU-based Pearson’s correlation coefficient

for multiple samples R. Work such as Chang [8] studied and compared the performance between CPU-based

and GPU-based implementation of the Pearson’s correlation coefficient function, and their results show an

approximately 40x speedup for large input data size with the support of powerful GPUs.
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3.2 Methodology

3.2.1 Brute Force kNN Search

Principle

The kNN search is a common topic in similarity-related problems and the most common metrics to describe

closeness is Euclidean distance. Considering the background of CCM, it can be characterized as follows: Let

RP = rp1, rp2, ..., rpT be a set of T reference points (lagged vectors) with values in embedding space RE , and

let QP = qp1, qp2, ..., qpT be a set of T (the length of time series) query points in the same embedding space.

The kNN search problem requires identification of the k (k = E + 1) nearest neighbours of each query point

qpi ∈ QP in the reference set RP , given a specific distance metric to describe the similarity. Commonly, the

Euclidean distance is used, and two sets (the query set and reference set) are the same in CCM, with the

proviso that the k nearest neighbours to a specific reference and query point rpi cannot include the reference

point at index i itself. Figure 3.1 gives an overview of kNN search as a part of the CCM algorithm with

k = 4 and for a point set with values in RE .

One straightforward approach to address kNN search is the brute force (BF) algorithm. For each query

point qpi, the BF algorithm is the following:

1. For each query point qpi (the red one in Figure 3.1), do:

2. - Compute all the distances qpi and rpj , j ∈ [1, T ].

3. - Sort the points based on the computed distances.

4. - Select the k reference points corresponding to the k smallest distances after excluding itself [j! = i].

5. Repeat above steps for all query points QP .

Figure 3.1: Image adapted from [53] illustrates the kNN search problem given the embedding di-
mension parameter E = 3, which means that k is 4, in the reconstructed state space. The blue points
refer to the points in RP set while the red points are in QP set. Reflecting the fact that k = 4, the
circle gives the distance between the query point and the fourth closest reference point.
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The main issue of this algorithm lies in its high computational complexity: O(T 2E) for the distance

computations and O(T 2logT ) for the sorting operation. Several kNN algorithms have been proposed in the

literature [21], [40], [10] to reduce the computation time. However, some methods involve preprocessing these

points and maintaining a kind of structure to query which is not readily parallelizable on GPUs. Also, other

algorithms are designed with the support of recursion, which is not suitable for GPU architecture. Actually,

the first two steps of the BF algorithm are already highly-parallelizable as they can be formed as matrix-based

calculation. With the support of powerful GPUs, research such as [20] demonstrates that the BF algorithm

can generally be faster than a corresponding CPU-based implementation by up to a factor 10.

Parallel pairwise distance calculation description

The computation of this matrix was fully parallelized, reflecting the fact that the distances between pairs

of points are independent: Each thread computed the distance between a given query point qpi ∈ QP and

a given reference point rpj ∈ RP . Particular in CCM algorithm, both points set QP , and RP refer to

the lagged-vector in reconstructed shadow manifold space MX , where it contains T lagged points with E

embedded dimension in total. To achieve such parallelism on GPU, the distance calculation work should be

divided into CUDA programming threads, and then the GPU work distributor will automatically allocate

thread blocks to Streaming Multiprocessors in GPU. Threads are then divided into groups, which contain

32 threads as a warp, and these wraps will be dispatched to execution units. It is worthwhile to note that

padding is required when the input data is not divisible by 32. This is the constraint brought by the attribute

of GPU architecture.

Parallel sort algorithm description

Along with the increasing popularity of GPU programming, various algorithms are designed and implemented

for GPU architectures. In 2009, Satish et al. [52] introduced several efficient parallel sorting algorithms for

manycore GPUs, taking advantages of the full programmability offered by CUDA. The most efficient one is

radix sort, which reduces the complexity of sorting n input records to O(n), as it uses a counting sort rather

than a comparison sort approach.

Radix sort relies on the reinterpretation of a k-bit key as a sequence of d-bit digits, which are considered

one at a time. The basic idea is that splitting the k bits of the keys into smaller d-bit digits results in a small

enough radix r = 2d, such that the keys can efficiently be partitioned into r distinct chunks. Figure 3.2 is an

illustration of radix sort given the input array (7, 2, 9, 0, 1, 2, 0, 9, 7, 4, 4, 6, 9, 1, 0, 9, 3, 2, 5, 9) of length n = 20.

In order to rearrange them in ascending order, the radix sort algorithm adopts three steps for each chunk as

a pass:

1. Count the occurrences of each number (as the key) to fill the Count Table.

2. Prefix sum scan over the count table to fill an Offset Table.
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7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9

3 2 3 1 2 1 1 2 0 5Count Table

Key 0 1 2 3 4 5 6 7 8 9

0 3 5 8 9 11 12 13 15 15Offset Table

0 0 0 1 1 2 2 2 3 4 4 5 6 7 7 9 9 9 9 9

Count Step

Prefix Scan Step

Reorder Step

Input Buffer

Output Buffer

Figure 3.2: An example of a pass in the radix sorting operation on one chunk of length n = 20 within
4-bit digits, which means that the maximum value is less than 24 = 16.

3. Reorder the number based on the Offset Table.

The prefix sum is the sum of all values in preceding locations in the sequence: In this case, those to the

left of the current location. These values are treated as the beginning addresses of the corresponding keys in

the output buffer.

01010001
00000001
11010000
00001111
11001000
10101010
01010101
01000100

11010000
01010001
00000001
01000100
01010101
11001000
10101010
00001111

00000001
00001111
01000100
01010001
01010101
10101010
11001000
11010000

First
Pass

Second
Pass

Figure 3.3: An illustration of applying the radix sort to sort k = 8-bit integers by 2 passes of three
steps aforementioned on d = 4-bit integers from the least significant bits to the next higher significant
bits, and so on.

Given input data of size n, radix sort performs k/d passes of three steps each, and each pass takes O(n+2d)

time in a SISD architecture. Hence, the total time complexity for the input data with any integer d > 0

which contains k bits can be represented as O((k/d)(n + 2d)). This algorithm can perform better under a

GPU SIMD architecture. Since the primary performance bottleneck in the kNN search problem – the sort

operation – can be addressed using radix sort with GPU acceleration, the computation time required for

CCM can be dramatically reduced.
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3.2.2 Pearson’s Correlation Coefficient

In CCM, given two sequences in any of the sample, predicted values py and corresponding values y of equal

length E + 1 (the E + 1 nearest neighbours found in BF kNN search), Pearson’s correlation coefficient

between two sequences is defined as the covariance of the two sequences divided by the product of their

standard deviations. That is, given paired data {(py1, y1), . . . , (pyE+1, yE+1)} consisting of (E + 1) pairs,

rpy,y is defined as:

rpy,y =

∑E+1
i=1 (pyi − py)(yi − y)√∑E+1

i=1 (pyi − py)2
√∑E+1

i=1 (yi − y)2
(3.1)

Where py and y are the sequence mean for py and y, respectively. In CCM, the correlation coefficient

rxy is calculated for the actual and predicted values of y, which is based on the exponential-weighting of the

E+1 nearest neighbour search results according to the distance. Also, the rpy,y will be calculated repeatedly

for R realizations to obtain reliable results. These values can be readily formed, as X with each row i is py,

and Y with each row i is y for realization ri. Hereby, the independence of row-based calculations makes it

possible for a thread of CUDA kernel to process a pair of sequences at a time and produce a 1 × R output

matrix.

3.3 CUDA Implementation

NVIDIA released the CUDA language in 2008 [37], which is an extension of C. Briefly, the Single Program

Multiple Data (SPMD) code is written using a CUDA kernel function, the data to be operated on are copied

from CPU RAM to the global memory of the device, and the C program running on the CPU initiates the

data-parallel computation via a kernel function call. A GPU kernel function contains the code that will be

executed simultaneously by the GPU processors, and CUDA uses the function type qualifier global to

declare that a function is a GPU kernel function at compile time. As such, the implementation covered here

was written using the CUDA API and was composed of three kernels (CUDA functions) in the CCM which

are executed on the GPU device.

• The first kernel calculates the pairwise Euclidean distance matrix of size T ×T containing the distances

among the T lagged points in reconstructed shadow manifold and the same lagged points, where each

point actually is an E-dimensional lagged vector.

• The second kernel performs the radix sort given the distances between any query point and all T

E-dimensional reference points, where such distances serve as the output of the first kernel.

• The third kernel computes the Pearson’s correlation coefficient between two R-length sequences (predict

sequence and corresponding target sequence), where each sequence contains E + 1 nearest neighbours

generated by the kNN search step.
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3.3.1 Pairwise Distance Calculation Kernel

IN (T x E) OUT (T x T)

BlockDim*bx

BlockDim*by

BlockDim*bx

BlockDim*by

MX Pairwise Distance Matrix

Figure 3.4: The parallel algorithm for pairwise distance calculation. Each block computes one sub-
matrix of OUT, and the threads work on one pair of aligned sub-matrices of IN, as is illustrated as
the figure.

The kernel input, a T×E matrix (reconstructed shadow manifold) in which each row is the E-dimensional

lagged point, is stored at device memory for SP to access. The kernel computes the pairwise distances among

these points (different pair of rows) and produces a T × T symmetric matrix as output, which is stored at

device memory too.

The CUDA version for pairwise Euclidean distance algorithm, as shown in Figure 3.4, uses one thread

for one entry in the OUT matrix, which means there are T 2 threads. The threads are organized into

BlockDim×BlockDim two-dimensional blocks, which will be run on the GPU cores. And these blocks are

organized into the T
BlockDim ×

T
BlockDim sub-matrix format. Generally, BlockDim is supposed to be 16 for

Maxwell or more advanced GPU architectures, while it is supposed to be 4 for Kepler or older architecture.

A thread orients itself through its block and thread indices in the following way:

bx = blockIdx.x; by = blockIdx.y;

tx = threadIdx.x; ty = threadIdx.y.
(3.2)

With the above coordinate system, a thread is responsible for calculating the entry in the matrix OUT

at row BlockDim ∗ by+ ty and column BlockDim ∗ bx+ tx. Let us assume that a thread needs to calculate

the entry (i, j) in the OUT matrix. It will first load the two sub-matrices of IN anchored by the variable

y and x at the corresponding upper left corners. The synchronization function syncthreads() needs to

be called for imposing a barrier before accumulating its own partial Euclidean distance in a temp variable.

Then the threads have to be synchronized again before processing the next pair of sub-matrices in IN. These

procedures continue to be executed until all blocks finish the calculation on the corresponding entry.
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3.3.2 Radix Sort Operation Kernel

3 2 3 1 2 1 1 2 0 5Count Table

0 3 5 8 9 11 12 13 15 15Offset Table

Prefix Scan Step 
On GPU (SIMD) 

0 3 2 3 1 2 1 1 2 0

0 3 5 5 4 3 3 2 3 2

0 3 5 8 9 8 7 5 6 4

0 3 5 8 9 11 12 13 15 12

Figure 3.5: The parallel prefix scan algorithm. The interval is changed from 1 to interval log2n.

The radix sort applied on each chunk includes three stages: count, prefix scan, and reorder. For the

counting stage, the input is an array of keys, and the output is a matrix of counts of each value in the

input. The straightforward implementation is taking advantage of shared memory with an atomic increment

operation on the counter of keys for each block. Then the count matrix for the entire input represents the

summation of the individual tables in each block. Threads can be used to sum up all the count values and

write them to the global memory. As for the prefix scan stage, the traditional sequential scan algorithm is

poorly suited to GPUs because it does not take advantage of GPU data parallelism. The parallel version of

the prefix scan is based on the algorithm presented by Hillis and Steele [27] and demonstrated for GPUs by

Harris [25]. Figure 3.5 illustrates this operation. Although the parallel prefix scan performs O(nlogn) addition

operations, it takes O(logn) time complexity to finish which can be a huge improvement in performance. The

last stage is to write the data back to the appropriate location in global memory. For example, if the size

of the block is 16× 16 = 256, the GPU takes two steps to finish the reordering process. Firstly, block reads

256 keys and sorts locally. The system then writes them back to global memory. The corresponding global

index address of value n is calculated by:

ci = i− lon + gonb (3.3)

where i is the local start index in the block, lon is the local offset, and gonb is the global offset of the value n

processed by block index b. The above stage will be repeated for d chunks (c1, c2, ..., dd) from least significant

bits to the next significant bits, and so on. In the kernel, the Thrust library [3] thrust :: sort by key is used

to implement the sort operation as it contains the CUDA code of the radix sort function. At a general level,

Thrust is a productivity-oriented library for CUDA, as it is an analog of C++ standard template library.
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3.3.3 Pearson’s Correlation Coefficient Kernel

As shown in Figure 3.6, Pearson’s correlation coefficient kernel takes two sub-matrices and outputs the

corresponding value in the buffer of the output matrix.

X (R x [E+1])

BlockDim*bx+tx

Y (R x [E+1]) OUT (R x 1)

Figure 3.6: The parallel algorithm for R samples, (E+1)-dimension vectors, of Pearson’s correlation
coefficient calculation. Each thread computes one row of OUT, which takes one pair of the same row
of X and Y.

As applied here, the Pearson’s correlation coefficient measures the linear correlation between two sequences

x and y. In order to achieve the parallelism on GPU, R realizations in CCM of predicted values x and

corresponding y, each of them is in E + 1 dimension, form the matrix-like input X and Y , with the size

assuming to be R × (E + 1). A single thread on CUDA works on the input (Xi and Yi, which are the

same row) to produce the corresponding ρ in the output matrix OUT . A similar coordinate system to that

used in the parallel pairwise distances calculation can be applied in this algorithm. In CUDA, the thread

i is identified by BlockDim × bx + tx. It only processes the corresponding sequences (row) Xi and Yi and

generates the ρi in the OUT matrix at position i.

3.4 Experiments

This section evaluates the performance of the GPU-based parallel algorithms in a set of experiments, and

baseline C++ implemented algorithms are executed on the CPU host for comparison.

3.4.1 Setup

In the first experiment, a performance comparison between GPU implementations and CPU implementations

is conducted with the following hardware and software setup. The hardware specification of the desktop

machine consists of a Dell Inspiron 3.60GHz with 4 Intel i3-8100 CPUs and 4GB of DDR3 memory. The

graphics card used on this machine is an NVIDIA GeForce GT 710 with 192 cores (12 SMs × 16 SPs or

cores) and 2GB of DDR3 memory, which supports a PCI Express 2.0 port. The desktop operating system is
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Ubuntu 16.04, and the C/C++ and CUDA code is compiled by CUDA Toolkit 10. The computation time

for GPU CUDA includes the data transfer between the GPU card and CPU RAM but does not include the

time spent on random data generation. The CPU code is single-threaded and is drawn from the rEDM public

library on Github.

The second experiment conducts a performance comparison between different GPUs, evaluating the per-

formance gain by upgrading the GPU hardware. There are two NVIDIA GPU configurations considered,

corresponding to GeForce GT 710 and GeForce GT 730. The first one contains 192 cores, while the second

carries twice that number: 384 cores.

3.4.2 Results

Performance comparison of three kernel functions

This chapter investigates the results of the GPU optimization of CCM in light of the three implemented

CUDA kernel functions: The pairwise distance matrix calculation, radix sorting of the distance matrix and

Pearson’s correlation coefficients. The first two kernel functions belong to the kNN search BF method. The

third kernel function takes the predicted results and observations from multiple realizations R of given library

size L to compute the correlations ρ. As noted in earlier chapters, causality can be inferred examining how

the ensembles of ρ change with rising L.

Figure 3.7: The performance comparison of the pairwise Euclidean distances under different dimen-
sion E and the input sequence length T (Notably, then input matrix is T × E).

Figure 3.7 shows the computation time comparison of the pairwise Euclidean distance under different
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Figure 3.8: The performance comparison of the radix sort operation in kNN search when applying
the distances calculated from previous step. Sort can be performed either on local library size L or
global time series T .

values of parameters E for both CPU and GPU implementation. For this experiment, the number of points

varies from 16 to 8192, which is uniformly generated in E dimensional space (E = 2, 4, 8). The computation

times for CPU code are plotted for comparison with those using GPU code at a specific problem size. Given

input sequence T with small length, communication, and data transfer become the main bottleneck. As such,

the advantage of manycore GPU computation power can only be demonstrated when most of the work is

spent on computation, instead of copying data back and forth. The embedding dimension E has a profound

impact on the calculation of the pairwise distance for CPU code. However, when executing kernel functions

on the GPU, dimension E becomes less critical, and the computation time does not in the marked fashion

seen in the CPU code. Also, we have observed that significant speedup can be achieved by using GPUs when

the sequences T and dimensions E are particularly large. The performance of the distance matrix calculation

can achieve approximately 3x performance speedup over CPU-based implementation using GeForce GT 710

with T = O(103). In addition, the intersection between the GPU and CPU curves on Figure 3.7 demonstrate

that the running time can be accelerated by GPU even when the input matrix size is small.

As shown in Figure 3.8, the radix sort performance comparison between CPU and GPU reveals the same

broad pattern as for the pairwise distance calculation. However, the intersection between two curves shows

that the GPU outperforms the CPU under a certain length of the input data, which demonstrates that the
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Figure 3.9: The performance comparison of Pearson’s correlation coefficient computation for two
R× [E + 1] matrices given a certain library size L.

performance advantage of GPU relative to CPU is not as pronounced as for the pairwise distance kernel.

The most significant difference is the complexity of the work. Radix sorting requires cutting multiple chunks,

and for each chunk, three steps are involved. By contrast, the pairwise distance calculation only applies a

Euclidean formula for each entry. The difference in the intersection point reflecting the work complexity

serves as a reminder of the fact that GPUs are offered particularly pronounced benefits when accelerating

computations involving massive data being processed with simple operations.

Moreover, the relative computational powers of CPUs and GPUs can influence the intersection point as

well. For more advanced GPU architecture (Maxwell or later), GPU can perform better than CPU even when

sequence length is small. (This part is discussed in the GPUs performance comparison experiment). The

cost of data transfer on PCI-Express between RAM and device memory gradually becomes less important,

and the benefit of sharing work by many GPU cores dominates the whole computation.

Pearson’s correlation coefficient implemented by the CUDA kernel demonstrates a slight improvement

when comparing CPU code and GPU code in Figure 3.9. The lines of GPU and CPU intersect at a high

sequence length (sample size) R = O(103). However, the realization R frequently smaller than 1000. Unless

the dimension of inputs E is large, or more advanced GPU architectures are adopted, the kernel of the

Pearson’s correlation coefficient is unable to bring any strong performance improvement in CCM.
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Performance comparison of different GPUs

The performance depends on many factors. Although GeForce GT 730 contains approximately twice the

number of cores of the GT 710, the results in Figure 3.10 do not show proportional speedup in execution

time. For simplicity of exposition, we can characterize the GPU computations as taking place in three stages.

Memory allocation and data transfer is the first block. As such, the bandwidth and device memory plays

an essential role in this stage. In comparison, GT 710 and GT 730 are similar in bandwidth and device

memory, reflecting the fact that they were released in the same year. The second stage consists of on-core

computation. In this stage, the most direct factor is the count of GPU cores; the more cores an architecture

contains, the more computational power it possesses. As mentioned above, GeForce GT 730 contains twice

as many cores as GT 710. At this stage and for this workload, GT 730 should, in theory, have roughly twice

the computational capacity as the GT 710.

Figure 3.10: Among three kernel functions, the pairwise distance calculation kernel takes much
longer time, which can be utilized as the benchmark to compare the performance of different GPUs.

However, Figure 3.10 emphasizes that the number of cores is not the only measurement of performance, but

there are many other factors, such as bandwidth and device memory, which determine the overall performance.

Nonetheless, the result suggests that upgrading GPU hardware configuration is likely to make a substantial

difference in some CCM scenarios.

3.5 Conclusion

GPU-enabled acceleration of CCM suffers from some architectural disadvantages. Firstly, GPU computation

can be slightly different from CPU results as the floating point computations are not assured of producing the

same results across any set of processor architectures. Furthermore, the data-parallel feature of GPU directly

leads to the different operations or code organization compared to sequential programming paradigm when
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implementing similar algorithms. Besides, insufficient memory on GPU is often the primary performance

bottleneck, sometimes causing unexpected results. More importantly for this implementation, input time

series whose length exceeds a certain threshold can lead to a system error when the machine allocates and

transfers the data into the GPU device. Obviously, the last kernel function is useless using current GT 710

as R generally smaller than 1000, which is slower than the CPU-based code from experiment results. Finally,

GPU acceleration can only be fruitfully applied for certain problems amenable to characterization with SIMD

algorithms. The operations related to recursion or complex data structures show substantial difficulty both

in parallelization and implementation.

Although GPUs have been proven to implement a smaller range of data-parallel algorithms efficiently –

such as matrix-based or vector-based algebra problems – they still remain useful over a much broader class

of problems and provide practical methods to accelerate some specific functions for CCM implementation.

The results of the experiments shown above indicate that the GPU can achieve significant performance

acceleration under some conditions, such as for larger sequences of input data and for certain GPU hardware

configurations. The experiments demonstrate three possible ways to accelerate key algorithm used in the

CCM application. In most cases, the GPU will outperform the CPU at a particular input data scale,

and it is important to identify at what scale we should bring GPU acceleration into the application. The

underlying reasons for many of the tradeoffs and limitations can be found in the architecture of GPUs. GPUs

are dramatically fast in terms of theoretical, computational power (FLOPS, Floating Point Operations Per

Second). But they are often throttled down by the effective memory bandwidth. Limitations in memory

transfers and overhead limit the situations that can benefit from pronounced GPU acceleration. Under

current GeForce GT 710 hardware configuration, the CCM acceleration enabled by GPU implementation

(only including first two kernel functions) with time series input length T on the order of n = 103 and when

parameters R = 250, τ = 1 and E = 2 is approximately 1.7x faster than for the single-threaded rEDM

version. Such results must be considered in light of the fact that the low quality of GeForce GT 710 product,

which only contains 192 cores.
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Chapter 4

Exploiting Cluster Parallelism of Convergent Cross

Mapping

4.1 Introduction

The growth in distributed processing frameworks in recent decades has been driven in substantial part by

the rise in extant dataset size and the computational demands of algorithms. The execution performance

can be enhanced with High-Performance Computing frameworks through support by multiple machines

featuring interconnected networks. As a large fraction of contemporary process jobs is both data-intensive

and computation-intensive, two distributed computing frameworks, Apache Spark and MPI, are frequently

adopted to scale algorithms in cluster-based environments.

MPI is a C++ message passing library specification which defines a message passing model for parallel

and distributed programming, which was laid out in early 1996 by Gropp [23]. MPI extends from a serial

program executed by a single process within a single machine to multiple processes distributed across a

cluster of nodes. MPI utilizes the resources of all of those nodes at once by facilitating the communication

between them across the network. MPI standard includes several communication primitives such as to

send, receive, scatter, gather, etc. In 2002, an MPI implementation, MPICH2 [22], was launched that

provides remarkably great performance via minimizing the data transfer latency and corresponding network

injection rate, and concurrently maximizing the bandwidth and maintaining a balance of resource utilization.

Currently, MPICH2 packages are available in many UNIX distributions and Windows platforms.

On the other hand, MapReduce and its variants have been highly successful in implementing large-scale

and data-intensive algorithms and applications. Specifically, the Apache Spark [64] platform can support

such variants in a memory-conserving fashion, while preserving the scalability and fault tolerance inherited

from MapReduce. In addition, Spark further offers a powerful interface for performing both interactive

and batch analyses and a simple, scalable application programming interface. The widespread usage of the

Spark framework relies on its functional programming style, highly abstract APIs and support for various

distributed storage architectures.

In this chapter, two frameworks are adopted to parallelize CCM in cluster environments. The performance

of each is compared in the experiments. The chapter concludes with an analysis and discussion.
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4.2 Parallelizing CCM using Hybrid MPI/OpenMP Framework

Large-scale cluster system trends motivate the consideration of hybrid programming models. HPC systems

are rapidly increasing in scale in terms of numbers of nodes and numbers of cores per node. These hardware

settings encourage the use of shared-memory models, with nodes equipped to exploit fine-grain parallelism to

achieve better load balance and memory utilization, and the use of message-passing models among nodes to

simplify communication and data partition overhead. Most hybrid programming models exploit coarse-grain

parallelism at the task level and fine-grain parallelism at the loop level. The hybrid MPI/OpenMP framework

typically follows the same rules to achieve multiple levels of parallelism. To parallelizing CCM, the hybrid

MPI and OpenMP parallel programming can support a higher degree of parallelism on the cluster compared

to the use of either MPI or OpenMP alone. Still, the implementation challenges of Hybrid MPI/OpenMP

programming lie in its flexibility and high customizability. Developers have to handle threads, partitioning

data and allocate tasks with primitive message communication protocols directly.

Iterative parallel computation dominates the execution of scientific applications, especially for CCM. Fig-

ure 4.1 depicts the iterative hybrid MPI/OpenMP computation scheme, which partitions the computational

space for the parameters E and τ into subdomains, with each subdomain being handled by an MPI task.

Also, it is notable that there can be different phases involved in hybrid MPI/OpenMP programming. The

communication phase (MPI operations) exchanges subdomain boundary data or computation results among

tasks. And the computation phases are parallelized with OpenMP constructs following the communication

phases.

MPI CCM Task i

Ei taui

loop over R
{

OpenMP Threads

MPI Comm

}

MPI CCM Task j

Ej tauj

loop over R
{

MPI Comm

}

Messages

MessagesMPI Comm MPI Comm

Instance x Instance y

OMP Phase 1
....

OMP Phase n

OMP Phase 1
....

OMP Phase n

Figure 4.1: Simplified typical hybrid MPI/OpenMP scheme applied on CCM.

To achieve a parallel version with MPI/OpenMP, several operations need to be introduced. The collective

communication protocols in MPI allows the program to exchange data across all processes. There are mainly

three types of collective communication suited for use by the CCM algorithm:

Broadcast: one process sends a message to every other process. The related MPI API function is MPI Bcast.

For example, some common data – such as input time series or distance matrices – should be broad-

casted to all processes.
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Scatter: A single process (master) partitions the data to send pieces to every other process. The task can

execute under different parameter combinations for each process by invoking the scatter operation. The

associated function is MPI API is MPI Scatter.

Gather: A single process (master) assembles the data from different processes in a buffer. This operation

serves as the function to collect results after computation. The MPI API employed is similar to that

for the MPI Scatter operation: MPI Gather.

With these collective operations, MPI can allocate workload to different nodes in the cluster by partition-

ing the parameter sets and assigning each task to a unique combination of E, τ , and L. When it comes to

the computation phase on a single node, some OpenMP operations take responsibility for parallelizing CCM

in a fine-grain way. In OpenMP, most of these operations are expressed via pragmas, i.e., directives. For

example, the parallel directive is used to create a group of threads. And work sharing directives (such as for

and sections) are used to distribute units of work among threads in the group. Also, the directives related

to the synchronization (critical and barrier) play an important role in maintaining data consistency in the

shared-memory programming model. Because the loop over R realizations is independent, forking a group

of threads, where one thread only runs one realization in CCM, is implemented by adding #pragma omp

parallel for above the iterations of the loop. At the same time, #pragma omp critical is used to collect

the prediction skills produced by each thread in a serial way.

The hybrid programming model employed here utilizes a combination of MPI and OpenMP. MPI mainly

governs the inter-node communication, data partition and task allocation in the cluster. By contrast,

OpenMP is responsible for the shared-memory multithreading inside of each node, which represents the

second degree of parallelism. Although the mixed techniques cannot address load balancing issues, this

scheme for parallelizing CCM is capable of accelerating the whole execution speed by up to a factor of 10 in

the cluster. While, some studies [50] demonstrate that a pure MPI implementation can be even faster than

an MPI/OpenMP hybrid framework, for CCM, the hybrid model can be a good fit, as MPI can handle the

high-level parallelism of the CCM hyperparameter tuning over parameter grid, and OpenMP can handle the

low-level parallelism associated with the subsamples in different L. The pure MPI framework has to apply

the same message communication protocol inside the node, which will cause unnecessary communication

overhead. Also, without OpenMP, parallelizing multiple realizations will become a challenging issue in the

implementation.

4.3 Parallelizing CCM Using Apache Spark Framework

Compared to Hybrid MPI/OpenMP framework, it is convenient to implement using the Spark framework

without explicitly handling threads. To achieve a parallel version with Spark, two core concepts have to be

introduced: the Spark Resilient Distributed Dataset (RDD) [63] and Pipeline. The former is the immutable

data structure that can be operated in a distributed manner, which brings significant benefits for concurrently
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draw R subsamples of time series to assess Cross-Mapping convergence. As for the Pipeline, it is specified

as a sequence of stages, and each stage transforms the original RDD to another RDD accordingly. These

stages will run in order, and the input can be transformed as it passes through each stage. In summary, the

definition of Pipeline supports an elegant design for a parallel CCM algorithm manipulating RDDs in Spark.

Figure 4.2: An example of the pipeline running distributed on Spark.

CCM Transform Pipeline

[6,...,7] 

RDD: Parameters & Input Subsamples

Construct 
Manifolds [0.10, 0.27, ..., 0.89]

[0.06, 0.12, ..., 0.91] 

[0.11, 0.18, ..., 0.84] 

[0.07, 0.13, ..., 0.88] 

RDD: Prediction Skills

Parallel CCM Transform Pipeline

Input L E Tau
100 2 1

[6,...,7]  200 2 2

[6,...,7]  300 2 4

[6,...,7]  400 1 1

Sequence

Shadow Mainfolds Neighbor Lists

Mx
Mx1

Mx2

Mx3

Mx4

N
N1

N2

N3

N4

Search
Neighbors
by Sorting

Compute
Correlations 

Figure 4.3: A diagram of CCM RDD transformation which takes multiple realizations as input and
outputs prediction skills.

Consider applying CCM to test if the variable associated with time series Y is being driven by the

variable associated with time series X. In the corresponding transform pipeline, the parallel version of CCM

is implemented as several stages to transform the RDD of R random subsamples of the time series to the RDD

of prediction skills for a given (τ , E, L) tuple. To start the transformation, an input RDD is created, which

includes a pair of subsamples of lengths L of each of the time series, and values for each of two parameters
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(τ , E). The output of the CCM transform pipeline is an RDD of sequences of prediction skills. In the whole

procedure, Spark operates the complete transformation in parallel without extra coding, as shown in Fig. 4.3.

Distance Indexing Table Pipeline

The CCM transform pipeline above achieves the aim of running CCM concurrently on multiple realizations

R. However, there is still considerable potential for further optimization for this Pipeline. Apparently, the

most time-consuming part in the CCM computation lies in the E + 1 nearest neighbor searching for every

lagged-coordinate vector (τ) in the shadow manifold. For every point in the input RDD, the CCM transform

pipeline computes the distances to all lagged-coordinate embedded vectors of subsamples, sorts them and,

finally, takes the top E+1 as the nearest neighbors. This process is inefficient because of its repeated sorting

and calculation for all R realizations. It is particularly notable that, as the length of subsamples L used for

computation increases, the running time will grow superlinearly.

Figure 4.4: An illustration of the dependencies of two pipelines. After the distance indexing table
is constructed in parallel, Spark will broadcast it to all nodes. In the next pipeline, the executors can
look up in the table and fetch the E + 1 nearest neighbours quickly.

One way of lowering the computational costs involved is to break down the nearest neighbors searching

of CCM transformations into two parts: Construction of a distance indexing table, and nearest neighbors

searching based on the constructed table. The first part can be achieved by setting another Pipeline as a

preprocessing step before applying the CCM transform pipeline. After building the distance indexing table,

Spark can broadcast this table to each worker node on the cluster a single time, rather than sending a copy

of it every time they need it, as shown in Figure 4.4. The Pipeline for constructing the distance indexing

table will be executed concurrently on the entire input time series, and compiling it also reduces a significant

amount of repeated calculation in the CCM transform pipeline. From the experiment results, it is clear that

the total computation time decreases in a pronounced fashion. As the library size, L grows, the time spent

on searching for the nearest neighbors increases correspondingly, and pre-building the distance indexing table

secures increasing benefit. The algorithm details can be found in the time complexity analysis section.
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As mentioned in the above, examining prediction skill for differing values of L is essential for quantifying

prediction skill in a fashion that reveals whether convergence – the hallmark of a causal connection – occurs.

Thus, experimenting with a wide range of L is important in assessing the causality. Considering that two

other parameters (E and τ) are typically small values (commonly less than or equal to 10) used in simplex

projection, speeding up this algorithm for large counts of distinct values of L is of great importance.

Asynchronous Pipelines

In Spark, the Action operation of the Pipeline triggers the job submission. The driver will send it to all

executors, and then each job will be partitioned into many tasks. The next job is unable to be executed until

all tasks of this job are completed. The Asynchronous Pipeline permits the execution of multiple jobs on the

cluster, which better exploits the computational resources available.

Figure 4.5: A diagram of Spark executing asynchronous pipelines.

After a pipeline is created to run Convergent Cross Mapping, a job is generated in the master node and

then submitted to the cluster and partitioned into many tasks running in the executors of worker nodes.

The CCM parameter settings are defined in the job submission and are, in general, constant. The next

job cannot be generated until the application finishes the current job; the executions of these two jobs are

always performed in a synchronous fashion. If we perform two pipelines one after other, they always execute

sequentially.

As such, we adopt some asynchronous mechanisms to increase parallelism and execute different pipelines

concurrently. FutureAction is one of the means to undertake asynchronous job submission in Spark. It

provides a native way for the program to express concurrent pipelines without having to deal with the detail

complexity of explicitly setting up multiple threads. A specific pipeline is parameterized explicitly by its

own CCM parameter settings to generate prediction skills. In this way, we can achieve running various

combinations of the parameters (L, τ , and E) in parallel by executing multiple concurrent pipelines.

4.4 Experiments

The baseline scenario of CCM parameters, as shown in Table 4.1, is set for the comparison in the experiments.

The experiments on different clustering framework will be configured and conducted separately. And the
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overall comparison among different parallel versions will be presented in the next chapter.

Table 4.1: Baseline setting

Parameter Value

Time series (T) 4000

R 500

LSet [500, 1000, 2000]

ESet [1, 2, 4]

TauSet [1, 2, 4]

4.4.1 MPI/OpenMP

In the following experiments, the MPI/OpenMP hybrid version of CCM will be tested on a cluster of three

HPC machines. The master node contains eight cores while the other two machines have four cores. Unlike

the Spark cluster, the master node in an MPI/OpenMP cluster still counts as a computation node. In order

to collect the output CSV files, the Network File System (NFS) has been installed on the master node, and

a shared directory has been created, to which each node enjoys access.

Performance Comparison

Figure 4.6: The 3-node cluster contains 3 machines, which has been labelled from 0 to 2. Node 0 is
the master node in the cluster and the machine which runs rEDM for comparison.

This experiment only compares the performance of MPI/OpenMP implementation with the currently

existing public library rEDM R package, where rEDM will be tested on a single machine – the master node

with 8 cores. Since rEDM is single-threaded, the number of CPU cores has no impact on its performance.
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As shown in Figure 4.6, the results indicates that MPI/OpenMP parallel implementation can achieve an

approximately 10.5x speed when compared with rEDM for the baseline scenario on a 3-node cluster [including

output CSV files], when we view the maximum response time as the finishing time of the cluster program.

Obviously, the parallel version can perform more favorably with a more powerful cluster (vertical scaling) or

adding more workers (horizontal scaling).

4.4.2 Apache Spark

In the following experiments, the Spark parallel version of CCM will be run three times on the Google Cloud

Platform (GCP) to obtain the average computation time. GCP can change cluster settings (the type or count

of workers) more easily, and it configures the Yarn cluster in advance; the only thing remaining is submitting

the jar file and starting the job. The cluster setting used here consists of one master node and five worker

nodes with four cores CPU and 15 GB Memory.

Overview of Improvements

This experiment compares the performance improvement of different implementations on the baseline sce-

nario. These different versions of CCM in Table 4.2, implemented using Scala Spark, are submitted in Yarn

Mode and Local Mode, separately. Yarn Mode – or cluster mode – will exploit all the worker nodes existing

in the cluster, while Local Mode only runs applications on a single machine – the master node.

Table 4.2: Implementation Levels

Implementation Level

Case A1 Single-threaded CCM (no RDD & Pipeline)

Case A2 Synchronous CCM Transform Pipelines

Case A3 Asynchronous CCM Transform Pipelines

Case A4 Synchronous Distance Indexing Table & CCM Transform Pipelines

Case A5 Asynchronous Distance Indexing Table & CCM Transform Pipelines

The results are shown in Fig 4.7. Several conclusions can be drawn from the experimental results for

different levels of parallel implementation. Firstly, the single-threaded version of CCM imposes a heavy

computational cost, and there is no difference between two modes as they do not utilize the worker nodes in

the cluster. Next, asynchronous pipelines can only reduce computation time in Yarn mode. Comparison of

the CPU utilization rates indicates that the asynchronous pipelines cannot offer more parallelization when the

CPU utilization already reaches full throttle. However, when running with Yarn, the worker nodes still have

room to improve utilization rates. Also, as seen from the results, the Spark full parallel version (Case A5 )

offers approximately 1.2% the running time of the single-threaded version. Ultimately, the most significant

improvement of marginal computation performance lies in adding the distance indexing table pipeline based
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on the CCM Transform pipeline. It reduces the computation time cost by over 80% relative to the baseline.

Such marked improvement shows the parallel version of CCM benefits strongly from establishing the distance

indexing table globally for the nearest neighbors searching Pipeline.

Figure 4.7: Yarn Mode utilizes all worker nodes in the cluster, while Local Mode only runs experi-
ments on the master node. Yarn Mode significantly diminishes the average computation time of the
parallel version of CCM with the help of worker nodes.

When compared to what is most likely the most popular existing public CCM implementation – the

rEDM R package created by Hao Ye et al. [61] using the lower level language C++ – our Spark parallel

implementation (Case A5 ) is approximately 15x faster than rEDM for the baseline scenario on current cluster

setup on Google Compute Platform [excluding output CSV files]. Moreover, it is clear that the parallel version

will be able to perform more favorably with a more powerful cluster (vertical scaling) or by adding more

workers (horizontal scaling).

Elasticity Analysis

Table 4.3: Elasticity Analysis

Parameter varied parameter Case B1 Case B2 Case B3

LSet
LSet [500] [1000] [2000]

others the same as baseline scenario

ESet
ESet [1] [2] [4]

others the same as baseline scenario

TauSet
TauSet [1] [2] [4]

others the same as baseline scenario
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Figure 4.8: The parallel version uses all of the optimization methods with five 4-core workers in the
cluster, while the single-threaded version is only executed on the master node without any parallel
optimization.

As a grid of parameter settings been looped over for the best results to infer causality, testing the elasticity

of running time with respect to a change in a given parameter value is valuable. Two versions of CCM will

be tested with the parameter settings as shown in Table 4.3. Specifically, we investigate the performance

of the maximally parallel version (Case A5 ), and the single-threaded version in the implementation of Case

A1, which has not implemented any pipeline.

Intuitively, each of these cases varies only one parameter from the baseline for comparison. When doubling

parameter L, the average run time increases 4.06x using the Spark single-threaded version, and 1.11x using

the Spark parallel version. Similarly, doubling parameter τ and E has almost no impact on running time in

the parallel version. However, doubling τ indeed increases the running time to 1.13x in the single-threaded

version surprisingly, while doubling E only increases a little bit on the total running time. Actually, both

E and τ are supposed to influence the reconstruction process of shadow manifold Mx, which is a small part

of overall computation time. However, the shape of Mx space may impact the nearest neighbor searching.

Also, the inconsistency of performance on JVM could be another possible underlying reason.

Given the experiment results, library size L imposes a relatively significant impact on the computation

time for the single-threaded version. As depicted directly in Fig 4.9, the computation time grows superlinearly

for the single-thread version with rising library size L. But in the parallel versions, especially with the distance

indexing table, the computation time grows slowly and linearly, as the time complexity of nearest neighbors

searching is O(n). Also, parallel implementation minimizes growth rates of execution time on E and τ . In

summary, the values of these parameters, especially for L, do influence execution time for both the single-

threaded and parallel versions. However, with current optimization of the parallel methods, the impact of

growth in parameter values shrinks, which make testing relatively large parameters for causality assessment
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Figure 4.9: The single-threaded version without using Spark consumes little time to finish when
library size L is small. However, with increasing L, the time to search for nearest neighbors in a larger
shadow manifold and the time to complete grows superlinearly.

a reality.

Vertical and Horizontal Scalability

The capacity to submit a job in a cloud cluster platform like GCP paves the way for researchers to analyze

scaling related performance issues. GCP provides simple APIs to add or delete nodes in the cluster, or even

to change the number of CPU cores per node. Scaling can work either vertically or horizontally. In vertical

scaling, more components (like CPU, RAM) are added to one node. This will eventually reach a limit and

does not ensure fault tolerance. By contrast, in horizontal scaling, more relatively weak nodes are added to

a cluster. There is a master node which controls how tasks are split across the worker nodes, which leads to

fault tolerance.

To fully comprehend the influence of similar changes on the context of computational clusters, we con-

ducted this experiment with respect to 5 different cluster configurations, as depicted in Table 4.4.

For this experiment, the baseline scenario is tested in all cases in Table 4.4 using the aforementioned

parallel methods. All of the clusters are set up on Google Dataproc running Apache Spark and use Yarn

as the resource manager. Yarn [56] is a software rewrite that decouples MapReduce’s resource management

and scheduling capabilities from the data processing component, enabling Hadoop to support more varied

processing approaches and a broader array of applications. It provides a robust and convenient means of

increasing the scalability of Spark programs. For each case, there is one master node and multiple worker

nodes, with the same machine types within the management of Yarn; each machine has a certain amount

of cores and memory, where a ’core’ is implemented as a single hardware hyper-thread on an Intel Skylake

Xeon 2.0 GHz processor.
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Table 4.4: Cluster Configurations

Worker Nodes Cores per Machine Memory per Machine

Case C1 5 4 15 GB

Case C2 4 4 15 GB

Case C3 3 4 15 GB

Case C4 2 4 15 GB

Case C5 2 6 22.5 GB

Case C6 2 8 30 GB

Case C7 2 10 37.5 GB

Figure 4.10: The average running time can be reduced when more computational resources are
available in the cluster. Under the same total computational resources, the computation time is larger
with more inferior worker nodes given the rising time cost of networking I/O.

We take Case C1 as the baseline cluster configuration setup. Cases C2, C3, C4 change the count of worker

nodes, and Cases C5, C6, C7 change the number of cores in each worker node so that we can compare the

efficiency with the availability of different proportional computational resources in the cluster. By contrast,

Cases C1 and C7, Cases C2 and C6, Cases C3 and C5 utilize the same total count of CPU cores within each

pair, but each item within the pair exhibits a different count of worker nodes. Decreasing the number of

workers, which limits the extent to which computation can be distributed across machines, also reduces the

amount of network I/O required.

The results of these configuration cases are demonstrated and compared in Fig 4.10. The computation

time drops in the expected fashion with growing levels of computational resources – namely, CPU cores –

are added into the cluster, but the marginal utility of worker nodes in the cluster is decreasing. From Case

C1 to Case C4, by removing one worker node, the computation time does not increase proportionally; the

increased percentages are 6.72%,10.45%, and 27.76%, respectively. The results make sense, as it takes time

to schedule and distribute the jobs across these worker nodes through the network. With more worker nodes
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added in the cluster, the time required for scheduling and distributing becomes the bottleneck for the cluster.

A similar situation obtains when maintaining the same count of workers invariant, but changing the count

of cores per worker (and the total count of cores). This point demonstrates that the total computation time

will not always be reduced as more computation resources become available.

Compared to these cases, the network I/O cost should not be neglected when considering the same

computation resources. The computational capacity of worker nodes matters if we have the same computation

resources. However, the time difference is not enormous, and similar efficiencies can be achieved with more

inferior worker nodes.

4.4.3 Discussion

The MPI/OpenMP framework comes from the low-level language C++, which only supports the communi-

cation protocols for parallel computing. It requires explicitly handling the assignment of tasks and threads.

Moreover, the MPI standard does not currently support fault tolerance and automatic garbage collection.

The headache of developing the MPI/OpenMP parallel version of CCM accurately and robustly becomes the

main challenge issue. However, MPI is currently the dominant model used in high-performance computing

among parallel programs running on distributed memory systems, while OpenMP is becoming the standard

for shared memory parallel programming account of its high performance. The combination of two standards

has the ability to secure high execution speed when compared to other prominent frameworks.

By comparison, the Spark framework provides relatively convenient APIs to exploit parallelism in algo-

rithms such as CCM without handling threads or processes. This work conducted experiments demonstrating

the performance benefits of exploiting the parallelism in the CCM algorithm using Spark and comparing the

performance difference for the different scaling methods. The scalability of Spark offers considerable benefits

in accelerating the execution with the support of clusters, allowing for a significant reduction in running time

when adding more worker nodes into the cluster. Of critical importance for the robust application of Spark,

these performance gains make this algorithm a valuable modeling tool to assess causality with confidence

in an abbreviated time. Such gains are particularly important in the context of high-velocity datasets in-

volving human behavior and exposures, such as are commonly collected in human social and sociotechnical

systems. While it demonstrated the potential for marked speedups, this work suffers from some pronounced

limitations. Construction of the distance indexing table trades off higher space consumption for savings in

computation time; for large shadow manifolds from a large value of L, the indexing table can require large

quantities of system memory. However, as previous study [41] shows, CCM can produce reliable results when

input time-series length is on the order of n = 103, for which the required memory space lies well within the

range of what most current hardware can offer.
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4.5 Conclusion

Results obtained from experiments show hybrid MPI/OpenMP framework indeed outperform Spark frame-

work by more than one degree of magnitude in terms of execution speed. More importantly, hybrid MPI/OpenMP

can offer more consistent performance as Yarn will handle the scheduling service at run time. CCM algo-

rithm is not a good fit for the MapReduce model in Spark. The intensive computation mainly comes from

the complexity of searching nearest neighbors rather than from the scale of the time series. In addition,

when required to output massive CSV files, Spark becomes dramatically slow in terms of gathering data and

disk I/O operations. The experiments on GCP only contains the CCM computation part, which is quite effi-

cient in the cluster. The results show better performance on MPI/OpenMP environment than Spark mainly

because of the following reasons.

Firstly, in MPI framework, the freedom of the programmer to choose the memory requirements, in terms

of the mutable data structures, supports better performance. By contrast, in Spark, the memory allocation

and task scheduling are purely under the control of the Spark on Yarn processing framework, and intervention

is impossible. Although it reduces coding complexity by automatically making decisions, this inflexibility

offers lower performance advantages. Secondly, C++ is relatively lower-level programming language than

Scala, which means it secures additional economies by being closer to the hardware – using native code

rather than within the JVM. However, MPI lacks a common runtime for large data processing environments.

Hence, bridging the gap between big data processing and HPC by incorporating MPI with the integrated I/O

management and fault tolerance is one possible motivating scientific study. In the cluster implementation of

parallel CCM, the challenges come from the complexity of the algorithm, rather than from the input time

series scale. From these experiment results, the MPI framework exhibits comparable advantage to Spark

framework in parallelizing such computation-intensive algorithm.
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Chapter 5

Exploiting Cluster Parallelism with GPU Accelera-

tion of Convergent Cross Mapping

5.1 Introduction

As introduced in previous chapters, GPUs have been leveraged as accelerators in speeding up complex numer-

ical workloads, in part due to the density of the cores and power efficiency. While formidable parallelization

tools for certain needs, the performance is bounded by the limited memory bandwidth, which cannot process

large sets of data at once. On the other hand, CPU-based cluster computing frameworks such as MPI and

Spark can partition and distribute large sets of data and tasks in parallel. Even given such partitioning,

complex algorithms applied to the data unit within a single node can still consume a large number of CPU

cycles. As a result, the combination of GPU and CPU-based cluster computing frameworks offers particularly

attractive prospects for resolving both big data and intensive computation problems.

Recently, large heterogeneous GPU/CPU clusters have gained increasing popularity in the scientific com-

puting community, as applying analytic algorithms on big data sets requires tremendous computational

capacities. With the extensive usage of machine learning and – especially – deep learning algorithms, GPU

acceleration in the cluster can significantly boost the performance with limited hardware modification. For

instance, Jacobsen et al. [29] implemented mixed MPI-CUDA application in 2010 by transferring data over

MPI and computing on the GPUs. Li et al. [35] contributed to the HeteroSpark framework in 2015 by inte-

grating GPU acceleration into the current Spark framework to leverage data parallelism and gain promising

benefits. Work such as [5], [60], [62] did similar experiments for large image/video datasets on GPU-enabled

clusters by applying different frameworks. All of them achieve multiple levels of parallelism by assigning a

less computationally intensive part to CPUs (coarse-grained parallelism), and more intensive parts to GPUs

(fine-grained parallelism).

However, parallel programming using hybrid GPUs and cluster computing frameworks still remains a

challenging problem, as a large number of issues have to be resolved to manage system complexity. To

develop such applications or algorithms, which can run both on GPUs and multi-core CPU clusters, efforts

for efficient distribution of workloads should be undertaken not only across cluster nodes but also among

multiple CPUs and GPUs. Furthermore, the relative performance of operations on GPUs and CPUs needs to
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be compared and incorporated into scheduling decisions. On top of these challenges, data copy and exchange

principles have to be redesigned to minimize overhead for the communication stage. These issues frequently

lead to underutilization of the resources in hybrid GPU/CPU clusters and thus, require extra coding and

algorithm redesign to address them in order to release the power of hybrid parallel programming. Overall,

taking advantages of hybrid platforms is challenging but often worthwhile.

MasterNode

GPU
CPU

CPU
Node

GPU

CPU

CPU

Node

GPU

CPUCPU

Figure 5.1: An overview of the GPU-enabled cluster.

In this chapter, a new parallelization strategy for CCM is proposed, which can execute on hybrid

GPU/CPU cluster systems. The related optimizations include efficient allocation of workloads across multi-

ple nodes as well as coordinated use of GPUs and CPUs on a computing node. Applying these optimizations

makes it possible to process the CCM algorithm in an efficient way. A comparison between performance using

a CPU only cluster framework and a hybrid CPU/GPU cluster framework is presented in the experiments

section to demonstrate the overall improvements brought by GPUs.

5.2 Integrating GPU accelerators into Spark

5.2.1 Methodology

Apache Spark is a robust distributed computing and big data processing framework, whose tasks are only

traditionally performed on CPU. For some problems, a low degree of parallelism and power inefficiency may

restrict cluster performance and scalability. Heterogeneous accelerators, such as FPGAs, GPUs, and MICs

exhibit more efficient performance advantages. However, these heterogeneous accelerators can only be applied

using certain languages and compilers, particularly for GPU programming. Although NVIDIA GPUs power

millions of machines, workstations and supercomputers around the world, and accelerate computationally-

intensive tasks for many researchers and developers, NVIDIA CUDA doesn’t offer strong support for either

Scala language or Apache Spark framework, in part because they are both written using different technology

stacks. The most feasible method to integrate GPU accelerators within the existing Spark framework is
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through utilizing the pipe method for RDDs, which can resolve the gaps between GPU programming and

the Spark framework. ScalaNLP [24], the most popular machine learning and numerical computing libraries

using Scala, employs this method to leverage GPU CUDA computation power within the Spark framework.

In addition, Tensorflow, a popular deep learning framework, adopts the pipe operator to deploy a neural

network pipeline running with GPU accelerators. These implementations pave the way for us to investigate

GPU-enabled Spark programming.

The implementation of the pipe method in Spark will invoke the system call (Runtime.getRuntime.exec())

to execute the external process/program in the system. Each process has three streams associated with it:

InputStream, OutputStream and ErrorStream. The pipe operator utilizes exactly these streams to commu-

nicate with the external process. More specifically, it will redirect the data in Resilient Distributed Dataset

(RDD) as the InputStream to the external program. Afterward, any output generated by the external pro-

cess/program will be redirected back to Spark context via OutputStream and saved as records in a separate

output RDD. The external process/program can be implemented in any language, but it has to meet the

condition that the program should be compiled and put in a shared directory accessible by each node (the

executable file path is required to be passed through pipe operator). In order to use the pipe operator

correctly in a distributed system, the Network File System (NFS), which offers users on machine access to

files over a computer network much as local storage is accessed, should be configured in the Yarn cluster

beforehand.
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Figure 5.2: A comparison of pure Apache Spark and Apache Spark with external program imple-
mentation.

As shown in Figure 5.2, the pipe operator allows the developer to process the data in an RDD with the

external programs. As OpenMP, CUDA and Thrust [3] techniques would be employed in the development

of the CCM application to achieve parallelism, the pipe operator becomes the primary tool to achieve

heterogeneous computing on the Spark platform. In the early stages of developing the parallel Spark version
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of CCM application, the different combination of parameters in CCM was populated into one Spark RDD.

Then the driver of the program submitted the pipe operator to the yarn cluster, and the scheduler assigned

different tasks to the executors in the corresponding worker machines. In each task, C++ with OpenMP is

used to parallelize R subsamples of prediction skill calculation based on the RDD column R.

By contrast, the pure Spark implementation generated multiple RDDs with R columns. The pure Spark

would then automatically parallelize each sample over the mapping function, or transformation, stage. The ex-

ecution of multiple RDDs (containing different combinations of parameters E, L and τ) are mainly conducted

sequentially or concurrently (as has been introduced in the previous chapter when we use FutureAction).

Overall, the Spark works as a distributor for different tasks among all nodes in the cluster, where each task

has a unique combination of CCM parameters. The task is handled by the C++ OpenMP external program.

5.2.2 Performance issues

However, the running time of the integrated Spark CCM with pipe operator does not decline inversely

with the number of workers added in the cluster. The poor performance not only stems from the network

communication overhead (scatter and gather operations) but also reflects unbalanced task execution times

[59]. Adopting pipe operator can directly cause Yarn resource manager malfunction as scheduling becomes

difficult when invoking the system call. The bottleneck of data partitioning and network communication

is native to message-passing systems, occur as the significant overheads for using this model with cluster

computing. By contrast, for CCM, the other bottleneck – unbalanced task execution time – is mainly caused

by heterogeneity in the L parameter (L specifies the library size for the input time series in a realization,

where that library is used for manifold reconstruction). When it comes to the stage of generating shadow

manifolds, for larger L, the greater the computational item required to search for the top k nearest neighbors

(the kNN search problem). As explained in the previous chapter, for each of the R realizations, the task

is supposed to sort the lagged points based on Euclidean distance in the embedded space, with execution

time that varies in marked ways for different values L. Such heterogeneity will result in poor load balancing

problems, which lead to system underutilization. This implication is evident in the results shown in Figure

5.3. The CPU utilization metrics are collected using Grafana [4]. After the job is submitted, of all tree

workers in the cluster, node 3 exhibits a long idle time after finishing the task with small L, while node 1 is

still running at full capacity. The idle time in node 3 directly leads to inefficiency and poor performance in

cluster computing. The color in the heatmap represents the degree of CPU utilization during the 10-second

window for each worker. The current integrated framework fails to exploit the computation capacity of each

node fully. Some jobs have already been completed, while other jobs assigned heavier workload are still in

execution. Inappropriate job scheduling leads to waste of computation resources.

The bottleneck identified above can be addressed in two primary ways considered here. The first strategy

lies in customizing the scheduling policies of the Yarn resource manager in Hadoop, which will assign the

tasks based on the value of L in the RDD. In this way, the workload can be distributed more uniformly among
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Figure 5.3: CPU utilization plot in the cluster for three workers.

all the workers. However, modifying the scheduling policies at the bottom level of the Yarn implementation is

challenging and time-consuming. A second feasible strategy is to optimize the CCM algorithm by eliminating

the association between the execution time and parameter L. The second strategy is based on the similar

idea introduced in the previous chapter: breaking down the nearest neighbor searching into two parts:

construction of a global distance-sorted matrix before undertaking the R realizations, and querying that

table when computing the nearest neighbors for those realizations. As this strategy only optimizes at the

application algorithm level and offers the possibility of introducing GPU accelerators, the next section will

focus on its implementation details.

5.2.3 Integrating GPU accelerators
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Figure 5.4: Overall methodology of integrating GPU with Spark framework.

As explained above, the first part of this strategy (pairwise distance matrix calculation and row-based

radix sorting on the calculated matrix) is treated as a preprocessing step and can be accelerated through

GPUs. The second part can be stimulated using OpenMP over multithreading for R realizations. In this

way, the overhead of up-front matrix construction trades off with the query efficiency for each realization.

The overall methodology of this integrated implementation is depicted in Figure 5.4.

Within this implementation, Apache Spark invokes a C++ application through pipe operator by passing
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a JSON-format string (encoded from the data in RDD) as the input parameters of the C++ main function.

In the external C++ program, the time series and related CCM parameters E, τ , R can be correspond-

ingly decoded based on the JSON format. The output generated by the external application will then be

transferred back in the Spark master node. In this process, Spark serves as the data partitioning and task

scheduling tool, while the C++ application with CUDA implements the main body of the CCM algorithm.

After accelerating C++ using GPUs in the integrated implementation, an experiment was conducted to in-

vestigate the performance gain associated with introducing the preprocessing step. The maximum running

time determines the response time for the entire application. As a result, the distribution of running time

for different tasks becomes smaller and more uniform and is far less strongly affected by the parameter L.

Figure 5.5: Bottleneck elimination and performance comparison after introducing GPU into external
application.

As shown in Figure 5.5, after optimizing the kNN search strategy using GPUs in a C++ multithreading

stage, the time spent on the process of computing with the reconstructed shadow manifolds (constructing

the global pairwise distance matrix and sorting based on rows) may increase, but the time for querying has

dramatically declined. Meanwhile, the running time of a task has become less dependent on the parameter L,

which makes the distribution of task execution time more uniform, thereby reducing distributed computing

bottlenecks.

5.3 Integrating GPU accelerators into MPI

5.3.1 Methodology

Use of regular MPI with CUDA embedded programming procedure is typically undertaken by compiling C

extension files and CUDA extension files separately, and then integrating those files into the target executable

application. In this process, the MPI paradigm only covers the communication among different processes

while, the CUDA implementation focuses on leveraging the computational workload to the GPU device for
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acceleration. As mentioned earlier, MPI only offers the basic communication standard APIs, without any

fault-tolerant check. The implementation challenge dramatically increases, especially after adding CUDA

kernel functions to accelerate part of computation within a single process, and overall complexity of regular

MPI with CUDA embedded remains the biggest factor in causing potential errors when dynamical allocating

or releasing memory on host and device. The need to manage the complexity of the distributed memory

model in message-passing systems and heterogeneous memory model inside each node imposes a pronounced

risk for the robustness of the entire application.
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Figure 5.6: The comparison between pure MPI with CUDA and CUDA-Aware MPI architecture.
Obviously, CUDA-Aware MPI provides a layer to unify the memory space between host and device.

In 2013, [32] introduces a brand-new strategy, CUDA-Aware MPI, to embed GPU CUDA programming

into cluster frameworks such as MPI. This strategy unifies the host memory space and the device memory

space in MPI and frees the programmer from precise CPU-GPU data movement and CPU/GPU buffer

management. This means that the MPI library can send and receive GPU buffers directly and without

explicitly allocating memory and copying data between the host and device. As a result, this feature alleviates

the overall coding complexity by warping a unified virtual addressing layer behind the MPI communication

APIs. Furthermore, it paves the way to solve problems characterized by a large data size to process or

requiring long response time on data-parallel tasks. Currently, this feature is then integrated into several

popular implementations: the OpenMPI 1.7 series or MVAPICH2 series. Figure 5.6 compares the basic

difference between pure MPI with CUDA embedded and CUDA-Aware MPI. Particularly in CUDA-Aware

MPI, the Unified Virtual Addressing (UVA) works as a hidden layer, which can detect the memory type

automatically. When the MPI runtime executes any MPI call, it will first check the memory type of send

or receive buffers passed by the program. The memory type check and data transferring mechanism are

managed by CUDA-Aware MPI itself without extra effort.

Compared to regular MPI with CUDA embedded, the CUDA-Aware MPI runtime directly controls the

allocation, utilization, and management of this memory with accelerated communication over network and

GPU devices. In detail, the buffer called vbuf will be allocated and freed inMPI Init() andMPI Finalize(),

respectively. Once vbuf is allocated, it will be divided into blocks and organized as a buffer pool. In the
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next section, a CUDA-Aware MPI implementation of CCM and corresponding comparison with previous

MPI/OpenMP implementation will be presented.

5.3.2 Integrating GPU accelerators

In the application of GPU-Aware MPI design to CCM, the first consideration concerns the place where

GPU accelerator can be introduced in the MPI version of CCM. As illustrated in Chapter 3, the traditional

kNN search part can be reduced to a vectorized distance calculation and sorting problem for each lag query

point in shadow manifold Mx, where the GPU can offer its computational power to speed such processes up.

Specifically, there is a corresponding shadow manifold Mx,i for any unique combination of parameter Ei and

τi. So if the parameter grid, where the program performs an exhaustive search, is large enough, it can impose

a massive workload on GPU. However, these can be highly leveraged with the GPU/CPU cluster. In this

way, GPU acceleration can be scaled out like CPU cores horizontally. The primarily remaining challenge is

the memory limit.
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Figure 5.7: Simplified hybrid CUDA-Aware MPI/OpenMP scheme applied on CCM.

For many practical problems, the large output of vectorized nearest neighbors for different Mx,i will

exceed the maximum memory capacity of every single node. As shown in Figure 5.7, Network File System

(NFS) hereby takes care of this challenge by persistence storage into the shared directory. Compared with

MPI/OpenMP when applied in a pure CPU-based cluster, a different type of task will be launched before

the CCM computation task. It is quite similar to the two pipelines used in the Scala Spark implementation

(Chapter 4). The primary difference lies in the way that we handle the preprocessed tables (or matrices).

In Scala Spark, a broadcast mechanism has been adopted to share the data or variables across the whole

cluster. By contrast, in CUDA-Aware MPI, there is no such mechanism inside the MPI framework, and the
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best strategy is to persist these tables into a shared directory like NFS. This step is expected to bring extra

I/O cost in return for introducing a certain degree of parallelism using GPU. In essence, the performance

gain can only be achieved when the benefit of GPU computation on vectorized nearest neighbors offsets the

extra time cost of the requisite disk I/O operations.

To summarize, CUDA-Aware MPI is becoming an increasingly popular programming paradigm to combine

different parallel devices to scale computation-intensive algorithms. The GPU hardware quality in the clusters

is a key determinant as to whether such a paradigm can secure a net performance gain. When integrating GPU

computation power into MPI, the extra data partitioning, transferring and memory allocation on devices,

counting as the overhead of introducing another degree of complexity, should be taken into consideration.

And these time costs are necessary to achieve multiple degrees of the parallelism on CCM. By redesigning

the operations in MPI and introducing one more stage before simplex projection in CCM, the CUDA-Aware

MPI version definitely can handle large distance matrices as GPUs of the whole cluster support much more

device memory. But still, the overall execution time and related performance require further investigation

and comparison. In the next section, the experiment is conducted, and its results will be shown.

5.4 Experiment

5.4.1 Setup

GPU-enabled Cluster

As the Google Cloud Platform cannot support GPU-enabled clusters with customized kernel function exe-

cution, a 4-node HPC cluster, which is configured and prepared in the CEPHIL lab, was used to evaluate

the performance of the proposed GPU-enable Spark or MPI/OpenMP framework with the hardware config-

uration shown in Table 5.1. The network connecting these nodes is a 1000Mbps high-speed LAN. Each node

is installed with the GNU/Linux Ubuntu 16.04 system, Java 1.8, GCC/g++ 5.4.0, CUDA 10.0 and Spark

2.3.0.

Table 5.1: Hardware configuration of the hybrid cluster

Node Specification

master 8 cores CPU, 8 GB memory, No GPU (dedicated Spark master)

worker 1 4 cores CPU, 8 GB memory, GeForce GT 710 (192 cores)

worker 2 4 cores CPU, 8 GB memory, GeForce GT 730 (384 cores)

worker 3 8 cores CPU, 16 GB memory, GeForce GT 730 (384 cores)
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Table 5.2: CCM baseline parameters setting

CCM-related Notation Parameters sets

T 10000

R 250

LSet range is [100, 1000], interval is 100

ESet [1, 2, 4]

TauSet [1, 2, 4]

CCM hyperparameters

The baseline scenario for CCM parameters, as shown in Table 5.2, is set for the comparison in the experiments

comparing multi-level parallelism. Time series generated by an Anylogic agent-based model serves as the

input to CCM. In the following experiments, the implemented parallel CCM application will be run using

these configurations in the aforementioned cluster to obtain the overall computation time. All distributed

versions will be tested and compared on the same cluster with the same CCM parameter grid. Afterward,

the average computation time can be the metric to compare the efficiency in different cases.

5.4.2 Results

Table 5.3: Implementation Levels

Implementation Level

Case 1 Spark with optimized external C++ & GPU implementation

Case 2 Spark with external C++ implementation

Case 3 Pure Scala Spark implementation (introduced in chapter 4)

Case 4 MPI/OpenMP implementation (introduced in chapter 4)

Case 5 CUDA-Aware MPI/OpenMP implementation

For this experiment, the baseline scenario is tested on all cases in Table 5.3 using the parallel methods

introduced in section 5.2.1. All of the clusters are set up on local machines running Apache Spark and use

Yarn as the resource manager. The results of these configuration cases are demonstrated and compared

in Fig 5.8. Three Spark related implementations will be compared to evaluate the performance gain after

introducing GPU accelerators into the Spark cluster.

Several conclusions can be extracted from this experiment results. Firstly, considering Case 1 Case 2

and Case 3, the pure Scala Spark implementation imposes a heavy cost in terms of disk I/O operation. This

reflects the fact that the master node has to gather all prediction skills calculated in different workers and

then write the output into the disk (CSV format files). The associated overhead constitutes approximately
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Figure 5.8: This experiment is conducted in the cluster setup described in the Table 4.1. The
computation part and disk I/O part are separately measured to compare with respect to differences
in each.

50% of the whole execution time. Secondly, the job of the Spark version without optimization does not

fully utilize CPU resources, as unbalanced tasks are scheduled among three workers. Following optimization

via precomputing the distance table, the duration of such tasks are markedly less heterogeneous, and the

system overcomes the performance bottleneck and offers more computational resource support, allowing the

utilization rate of CPUs for each node to reach almost 100% during the computation time. However, when

comparing the pure Scala Spark version with the PySpark version which calls C++ external application, the

experiments demonstrate the computation efficiency brought by the programming language. Scala utilizes

the objects almost everywhere and the boxing and unboxing operations, which are the processes of converting

a value type back or to any interface type implemented by this value type, significantly reduce the efficiency

of the pure Scala implementation. Within, with the C++ external application in Pyspark, Spark only

takes care of distributing the parameters and input time series, and a C++ external application handles

the core computation of CCM. Without doubt, C++ language has advantages in terms of high efficiency

and performance compared to Scala. These results lead to a performance difference of close to 3 times in

runtime, despite the overhead of converting the distributed data using a JSON-format string. Also, the

programming language efficiency serves as a major reason why MPI/OpenMP framework can achieve much

faster execution time compared with the Spark framework even accelerated by GPU. As seen from the results,

the computation time for MPI/OpenMP with GPU accelerated distributed version is approximately faster

by 30%. With the support of three workstations and their GPU devices, the parallel implementation of CCM

for the current cluster setting can achieve approximately 9x speedup when compared to the public library

rEDM for baseline parameter combinations. The execution will be further shortened by adding more workers

n or upgrading GPU devices in the cluster. As the CCM algorithm is not fully embarrassingly parallel, the
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external network communication, serial execution part, and disk I/O operations can be a factor influencing

the full execution time.

When only considering Case 4 and Case 5, which mainly adopt the MPI framework to distributed tasks

among workers in the cluster, both implementations are faster than any version using the Spark framework.

A different node may take different time on the CCM computation and I/O operation. Figure 5.8 only

demonstrates the average time among three workers in the GPU/CPU cluster. But surprisingly, CUDA-

Aware MPI is slower than pure MPI implementation, even for the core CCM computation part. Disk I/O is

much more intensive as this version has to generate the massive preprocessed tables in the first stage and load

them in the second stage. As for the CCM computation part, one possible reason behind is that two different

task types make the whole program execute in a more serial way. As a result, the benefit of GPU accelerators

cannot offset the unexpected time cost. In order to analyze the potential factors, we even choose different

input time series I and a number of combination of hyperparameters Ei, τi to compare Case 4 and Case 5.

The result shows similar patterns. It appears that the introduction of GPU accelerators to the MPI/OpenMP

framework brings another degree of complexity, which cannot be offset by GPU acceleration (with current

architecture). As CUDA-Aware MPI is capable of automatically managing the data transferring between

GPU devices and hosts, the underlying reason why it causes the performance issue still remains unclear.

Currently, pure MPI/OpenMP framework outperforms all other distributed CCM versions.

Overall, as explained in the previous chapter, the MPI framework has a strong performance advantage in

parallelizing computation-intensive algorithms compared to the Spark framework. Particularly compared to

the performance gain under GPU acceleration, Spark framework achieves better performance gain compared

to MPI framework, likely also due to the fact that Spark undertakes a system call on the C++ (low-level

language) external application. The pure Scala Spark, as a high-level framework, involves extra overheads like

Task Initiation, Scheduler Delay, Task Deserialization and Garbage Collection. These additional overheads

directly slow down the overall execution time. As such, when comparing the total execution time, the MPI

framework has a substantial advantage with/without GPU acceleration in terms of execution latency. By

contrast, from a software engineer’s point of view, the time spent on creating MPI-version program is almost

10-fold than Spark-version one. To implement the CCM algorithm, approximately 1200 lines of C++ and

CUDA code are created when comparing to less than 200 lines of Scala Spark code. The difference directly

leads to the prevalence of Spark framework in the industry. Currently, Spark is the most popular framework

and widely adopted by engineers to scale algorithms and data-driven business, while MPI framework only

remains as a primary tool in the scientific area.

5.5 Conclusion

There are many available techniques to increase the degree of parallelism: OpenMP, CUDA, Thrust, Spark,

and MPI. The idea behind parallelization is to always take full advantage of the computing resources available.
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Particularly in this chapter, experiments were conducted to demonstrate the benefits of redesigning the Cross

Convergent Mapping using a mixture of parallel techniques. Such redesign not only offers support to deal

with a high volume of data but also provides greater mechanisms to shorten response latency. Of critical

importance for the robust application of the parallel CCM, these performance gains make it possible for

the application of the parallel CCM to be applied to a broad set of parameter combinations within in an

abbreviated time. Of equal importance, they can make feasible truly interactive exploration of CCM results,

where batch computation was previously required.

Still, this work is encumbered by some important limitations. The bottleneck of many parallel comput-

ing applications on the message-passing system is the communication and scheduling cost; by contrast, the

bottleneck of the shared-memory system is the critical section. CCM is not a typical embarrassingly parallel

algorithm, and there remain many challenges to make it parallel at different levels. This chapter introduces a

way to parallelize the CCM application using a mixture of parallel techniques and eliminating bottleneck by

redesigning the algorithm. As shown from the experiment results, only the Spark framework with CUDA em-

bedded application achieves good performance and dramatically shortens CCM execution latency comparing

pure Spark framework. This approach may also shed light on tradeoffs associated with the implementation of

other similar parallel algorithms, which are increasingly sought within the sphere of large-scale data analysis.

Finally, this chapter provides a method and demonstrates its efficiency in addressing poor load balancing

in parallel application by redesigning the algorithm. For some problems – such as here – this operation can

reduce time complexity and reduce the heterogeneity in task cost. At the same time, it is clear that frequently

the disadvantage of this method lies in the extra cost for communication and data transfer. However, similar

to what happened in GPU acceleration, the communication overhead can be offset if the execution time saved

in the computational task is large enough. In addition, the mapping algorithm to address the load balancing

issue is often straightforward and effective. In summary, by resolving inherent communication bottlenecks

and load balancing performance issues, parallel versions of CCM can be accelerated markedly when compared

to the sequential implementation.
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Chapter 6

Conclusion

6.1 Discussion and Conclusion

In this thesis, various parallel techniques have been explored and studied to accelerate CCM from different

directions. As these experiments demonstrate in the above chapters, any parallel technique is hardly a

panacea. Various factors are influencing the performance with parallelization.

In Chapter 3, three CUDA kernel functions are proposed and implemented to accelerate three parts of

the Convergent Cross Mapping algorithm (CCM). These parts frame elements of the algorithm into a certain

matrix or vector based problem to fit into the data-parallel characteristics required for GPU acceleration.

When the input data scale reaches a certain threshold, GPU kernel functions outperform corresponding

CPU-based implementation as the computational power of (many-core) GPU can offset the overhead as-

sociated with the added memory allocation and data transfer. In addition, the experiment comparing the

performance of different GPU architectures shows that, by upgrading the GPUs, such threshold and the

overall execution time can be explicitly shortened.

In Chapter 4, two cluster frameworks, Apache Spark and Hybrid MPI/OpenMP, are adopted and com-

pared to evaluate the cluster parallelism in CCM. Apache Spark provides high-level functional programming

APIs and immutable data structures like RDD, DataFrame and DataSet, to parallelize data-intensive

tasks without the need for application programmer handling of threads or (frequently) data partitions. Fur-

thermore, Yarn, as the main resource manager, even offers the support of scheduling policies to enlarge

the resource utilization without too much effort. As such, Apache Spark framework offer adequate perfor-

mance in the industry on Big Data related problems, while reducing software engineering complexity for

data scientist users. By contrast, while the Hybrid MPI/OpenMP framework exhibits several fold higher

performance in handling computation-intensive tasks. MPI only formulates a set of data point-to-point

and collective communication standards in the cluster. All implementations of MPI only provide the corre-

sponding lower-level functions like MPI Bcast, MPI Scatter and MPI Gather. With limited primitive

functions, implementing a complex algorithm like CCM via MPI can be tricky and time-consuming. However,

most computation-intensive algorithms indeed benefit from such flexibility, and the overall execution latency

offers significant time savings over that for Apache Spark.

In Chapter 5, the marriage of GPU acceleration and cluster frameworks have been explored to accelerate
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CCM further in GPU/CPU clusters. In the Spark framework, the pipe operator is employed to combine

CUDA programming with a JVM framework. However, at the same time, the introduction of the pipe

operator eliminates the advantages of the automatic scheduling service provided by Yarn. As a result,

the unbalanced work allocation, which is mainly caused by library size L, becomes the main bottleneck.

Hence, GPU acceleration is hereby integrated into external applications to address CPU underutilization

by executing pairwise distances matrix and row-wise sorting kernels. In this way, the preprocessing step

dramatically reduces the impact of parameter L and makes the overall execution time far closer to the

uniform. By contrast, in the Hybrid MPI/OpenMP framework, the CUDA-Aware MPI is widely applied,

as the API is straightforward to use. The CUDA-aware MPI utilizes UVA, a single address space technique,

to automatically manage data transfer between CPU and GPU device. However, in order to use GPU kernel

functions, the massive row-wise sorted distance matrices have to be “cached” persistently to the disk (here,

using the Network File System), which will generate extra overhead associated with disk I/O operations.

Furthermore, from the experiment results, the overall execution latency of CUDA-Aware MPI/OpenMP

version is slower than the pure MPI/OpenMP version. It appears that the benefit introduced by these kernel

functions cannot offset the extra overhead brought by the coding complexity, especially for the CUDA-aware

MPI technique.

Figure 6.1: The best speedup of Parallel CCM achieved in this thesis, when compared to rEDM.

Overall, different parallel versions can accelerate or scale CCM in different proportions (see Figure 6.1).

Compared to the rEDM package, the C++ single-threaded version with GPU acceleration (excluding the

Pearson correlation coefficient kernel) on a single machine can be around 1.7x faster on the order of input

time series T = 103. But after implementing OpenMP to run multiple realizations in parallel, the best

parallel version can run 3.5x faster than rEDM on a single machine with GPU. When considering the cluster

environment with GPU devices, pure MPI/OpenMP is the most efficient version to scale CCM in term of

both the computation and disk I/O stages among all cluster versions, and can achieve a speed of 10.6x when
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compared to rEDM on the single machine. Apache Spark framework can be accelerated using GPU with the

pipe operator, but to a large extent, the extra efficiency is contributed by the efficiency of external C++

applications. Pure Scala Spark version can be relatively easy for data scientists to implement in a functional

style. But generating CSV output files on HDFS remains a central challenge, as the output of large ensembles

of prediction skills ρ for different values L – the key to identifying the causal connections – must be generated.

The fact that CCM is associated with not just a large input, but often an even larger output distinguishes

this problem from many others addressed via the Spark framework and requires careful consideration of the

I/O requirements.

6.1.1 Summary

As noted in this thesis, effectively undertaking parallel techniques requires the support of hardware, program-

ming languages and associated libraries or frameworks, and parallel algorithms. This thesis explores different

parallel methods on different parallel platforms to implement a parallel version of the CCM algorithm and

investigates the performance implications of combinations of alternative approaches. The experiments in

chapters 3, 4, 5 demonstrate overall performance advantages compared to current single-threaded implemen-

tation of rEDM. By making it easier to investigate a larger range of library sizes, a denser set of such library

sizes, and a broader set of values of parameters E and τ , the acceleration of CCM can support speedier and

more accurate and insightful causality inference for dynamic systems, which paves the way for systems mod-

eling for policy insight and other applications. Such parallel techniques offer broad prospects for application

to other sequential machine learning or data mining algorithms to accelerate the development of artificial

intelligence in different spheres. The parallel implementations of convergent cross mapping explored in this

thesis, which accelerate the causality inference process, offers the potential to further serve as a valuable

reference and guidance for developers and researchers.

6.2 Future Work

There are several directions in this thesis which have not been further investigated.

Firstly, CCM can be potentially optimized at the algorithm level, especially in terms of the central

mechanism of searching for nearest neighbors. The nearest neighbors problem is the core component of a

variety of applications, usually involving similarity searching. Hence, the optimization of this problem has

been widely studied in past literature, including by [1], [18] and [28]. In this research, one of the approximate

nearest neighbors algorithm, which is based on locality-sensitive hashing (LSH), has been demonstrated to be

efficient in high dimensional spaces. The approximate solutions trade off a certain accuracy for performance.

As the statistical measurement in CCM takes hundreds to thousands of samples and the causal effect can

only be observed from the change in the ρ ensemble as library size L increases, we suspect that the algorithm

is likely to still work with minimal impact if there is substitution of approximate E + 1 nearest neighbors
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for the exact E + 1 nearest neighbors in CCM. The general idea of LSH is to utilize a family of functions

to hash lag points into buckets so that the points near each other are located in the same buckets with high

probability. By hashing into different buckets, LSH can be easily parallelized, and the time complexity will

be reduced to O(n) from O(nlogn). However, the validity of approximate nearest neighbors still requires

mathematical proof, and this method may be sensitive to noise in the time series, or the structure of the

state space.

Another potential research direction lies in accelerating CCM through the use of FPGA devices. FPGA

vendors have contributed an increasingly popular hardware platform alternative to GPU devices to process

computational-intensive algorithms, with particular attractiveness in light of FPGA flexibility and customiz-

ability. FPGAs are still in their early stage in development in accelerating machine learning and Big Data

related algorithms, and only a few companies have released commercial FPGA products to accelerate the

next generation of AI, especially targeting the mobile 5G era. Works such as [48] demonstrate the potential

high efficiency when FPGAs are applied to image classification tasks when integrating with Deep Neural

Networks (DNNs). As such, FPGA platforms serve an interesting alternative to GPUs for CCM implemen-

tation. FPGA-based solutions are generally energy-saving and can be embedded into smart devices even

without the need for mediation by a host CPU. However, the character of FPGAs also imposes a certain

degree of difficulty in algorithmic implementation for developers. For instance, the hardware description

language (HDL) is required to manipulate/reconfigure the logic blocks inside FPGAs in order to implement

complex digital computations. By contrast, the C-like CUDA language in GPU programming is more likely

to be more familiar to – and consequently more quickly acquired by – developers.

Finally, it is necessary to consider how to deal with the output of CCM, in which most researchers are ap-

plying CCM seeks to observe the pattern of how prediction skills converge along with library size. Within this

task, evidence suggests that a density plot is necessary to analyze the causality connecting input time series

reliably. However, the code carrying out the core CCM analysis is often not most convenient or appropriate

drawing figures such as histograms. The implementation considered here only achieves writing CSV files to

the disk, allowing a script is written in an analysis and visualization tool – such as the statistical package R –

will parse the data from CSV files and automatically convert them into plots. The output of the consequent

massive data requires time-consuming disk I/O. Two attractive methods addressing this performance issue

lie in building a machine learning classifier to distinguish causal from non-causal dependencies within the

computer notes automatically, or implementing local plot generation functions co-located with the analysis

code. The former option is more intelligent but carries a risk that classification tools such as deep learning

will be unable to recognize the patterns, while the latter option offers greater freedom but requires a less

flexible analysis and visualization framework. Both methods have their advantages and weaknesses, which

cannot become a panacea for all scenarios.
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6.3 Contributions

This thesis offers several primary contributions.

The first contribution of this thesis lies in improving the usability of convergent cross mapping by paral-

lelizing this algorithm using different parallel techniques without sacrificing prediction accuracy. Moreover,

different implementations explored can be flexibly chosen according to the hardware resources and software

configurations available and desirable to accelerate the causality inference procedure. For instance, the GPU

acceleration can be added if GPU hardware support is detected, and the choice of cluster mode or local mode

could be determined by the argument passed by the researchers. Furthermore, if an advanced GPU-enabled

cluster has already been configured and prepared, it is possible to achieve a high degree of parallelism to run

a parallel version of CCM. Such performance achievements accelerate the speed of learning with regards to

the causal structure of the underlying dynamic systems and can open up additional time for modeling and

other studies – advances which pave the way for the real practice using this algorithm.

Secondly, this thesis provides implementations and associated findings for parallelizing existing sequential

algorithms. Currently, machine learning and data mining algorithms often involve carrying out complex in-

structions on large data scales. Given this, findings and implementations from the thesis offer generalization

opportunities for application to other similar algorithms. Notably, the nearest neighbors searching and Pear-

son correlation coefficient calculation in CCM are of vital importance in various fields to define the similarity

of objects or structures. This work has implemented such algorithms using popular parallel techniques such

as GPUs, MPI/OpenMP, and Spark described in chapter 3, 4, and 5. More importantly, this thesis offers

implementation mechanisms for parallelization of sequential iterative algorithms and performance findings

for the system that includes such mechanisms. For example, in CUDA programming, n-column vectors are

formatted as a matrix in order to fit into the data-parallel programming paradigm. Also, setting the data

transformation pipeline using a functional programming style in Spark provides another possible method

for performing parallel iterative algorithms without the need for explicit thread handling. Furthermore, the

scatter and gather operations in the distributed memory model offer a clear path to assign tasks for parallel

execution. The mechanisms can be treated as effective elements for speeding up other machine learning or

data analysis algorithms at scale.

The last – but not the least – contribution is that this thesis evaluates performance bottlenecks, and shares

some possible directions to address these limitations in parallelizing algorithms. Parallel programs are not

ensured a marked speedup on parallel hardware systems. Sometimes parallelized algorithms can be slower

than the original sequential one when inappropriate parallel designs are applied when parallelizing the original

algorithms [43]. During this process, a common mistake lies in not considering the recurring performance

issues: Communication bottlenecks and load balancing. Only under embarrassingly parallel applications are

such issues unlikely to be raised. The term embarrassingly parallel generally refers to an algorithm with low

communication needs, which can be parallelized very easily by subdividing the data or tasks and assigning
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to different processors. The resulting performance will increase linearly along with the number of processors.

However, most algorithms require significant interaction between different items of data produced – such as

those seen in sorting – or other interactions that are not embarrassingly parallel. Such algorithms can be

parallelized but in a more complex, less obvious manner. The challenge lies in how to redesign the algorithms

to enable parallel execution while balancing utilization of CPUs, GPUs, network, and resource constraints.

Within the work of parallelizing CCM considered here, the need for effective load balancing represents the

most central performance issue in the Spark framework with GPU embedded applications – i.e., keeping all

processors busy as much as possible. This problem recurs prominently in discussions of parallel processing,

often reflecting the fact that the workload of each thread or process handled may not always be uniform, with

some tasks remaining idle while others are busy nearly all the time. Poor load balancing can be observed

through collecting the performance utilization metrics and addressing accordingly. In this way, parallel

algorithms can fully take advantage of computational power in parallel computers. Particularly in this thesis,

the unbalanced workload mainly comes from the library size L in each subsample. L determines the windows

size employed, and the corresponding state space size. The computational workload (include sorting) becomes

more massive when the window size becomes relatively larger. However, after incorporating preprocessing of

the distance matrix tables, the workload became more uniform, and the central load balancing issues were

addressed.

6.4 Publications Related to the Thesis

A forthcoming paper – accepted in April 2019 – will be presented at and published in the Proceedings of the

International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior

Representation in Modeling and Simulation (SBP-BRiMS 2019), based on the content of chapter 4. The

citation is as follows in vancouver style:

Pu B, Duan L, Osgood ND. Parallelizing Convergent Cross Mapping Using Apache Spark. InInternational

Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation

in Modeling and Simulation 2019 Jul 9 (pp. 133-142). Springer, Cham.
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Appendix A

Documentation

A.1 Codebase

The project and related code is on the GitHub repository:
https://github.com/ALexanderpu/ParallelCCM

A.2 Sample Configuration File

The file name is ccm.cfg in the codebase:

[paths]
input=/home/bo/cloud/CCM-Parralization/TestInputCSVData/test float 1000.csv
exteralProgram=/home/bo/cloud/CCM-Parralization/SparkVersion/sparkc
output=/home/bo/cloud/CCM-Parralization/Result
[inputs]
x=lynx
y=wolf
[parameters]
E=2,3 // ESet
tau=1,2 // tauSet
num samples=250 // R
LStart=100 // LSet
LEnd=800
LInterval=100
[options]
GPUAcceleration=1
GenerateOutputCSV=1
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