
Statistical and Computational Models
for Whole Word Morphology

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig angenommene

Dissertation
zur Erlangung des akademischen Grades
Doctor rerum naturalium

(Dr. rer. nat.)
im Fachgebiet Informatik

vorgelegt von
Maciej Janicki, M. Sc.

geboren am 10.08.1989 in Wrocław, Polen

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Gerhard Heyer (Universität Leipzig)

2. Prof. Dr. Uwe Quasthoff (Universität Leipzig)

3. Dr. Krister Lindén (Universität Helsinki)

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 13. August 2019 mit dem Gesamtprädikat

magna cum laude.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/228344014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

The purpose of this thesis is to provide an unsupervised machine learning approach
for language morphology, in which the latter is modeled as string transformations
on whole words, rather than the segmentation of words into smaller structural
units.

The choice of a transformation-based morphology model is motivated mainly
by the realization that most Natural Language Processing methods treat words
as basic units of language, and thus the application of morphological analysis is
usually centered at describing relations between words, rather than processing sub-
word units. On the other hand, segmentational approaches sometimes require an-
swering questions that are both difficult and irrelevant for most applications, such
as whether to segment the German word fähig ‘able’ into fäh-ig or the English sui-
cide into sui-cide. Furthermore, non-concatenative phenomena like German umlaut
are not covered by segmentational approaches.

The whole-word-based model of morphology employed in this work is rooted
in linguistic theories rejecting the notion of morpheme, particularly Whole Word
Morphology. In this theory, it is words that are minimal elements of the language
combining form and meaning. Morphology is expressed in terms of patterns de-
scribing a regular interrelation in form and meaning within pairs of words. Such
formulation naturally results in a representation of the lexicon as a graph, in which
words are vertices and pairs of words related via a productive, systematic pattern
are connected with an edge.

The contribution of the present thesis is twofold. Firstly, I provide a computa-
tional model for Whole Word Morphology. Its foundation is a formal definition of
morphological rule as a function mapping strings to sets of strings (as the applica-
tion of a rule to a word may result in multiple outcomes or no outcome). The rules
are formulated in terms of patterns, which consist of alternating constant elements
– describing parts of the word that are affected by the rule – and variable elements,

iii

iv

which stand for parts of the word unaffected by the rule. For example, the rule
mapping the German word HausN.sg ‘house’ to HäuserN.pl ‘houses’ has the form:
/X1aX2/N.sg → /X1äX2er/N.pl, where X1 and X2 are variables, which can be in-
stantiated with any string. The rules formulated this way can be easily expressed
as Finite State Transducers, which enables us to use readily available, performant
algorithms for tasks like disjunction of rules or application of a rule to a word or set
of words. For the task of rule induction, i.e. extracting rules from pairs of similar
words, I propose an approach based on modified versions of algorithms related to
edit distance (Fast Similarity Search and the Wagner-Fischer algorithm).

Secondly, I propose a statistical model for graphs of word derivations. It is
a generative model defining a joint probability distribution over the vertices and
edges of the graph. The model is parameterized by a set of rules, as well as a vector
of numeric parameters, from which the probability of application of a particular
rule to a particular word can be computed. Of the two inference problems for this
model – fitting consisting of finding optimal values for the numeric parameters and
model selection corresponding to selecting an optimal set of rules – especially fitting
is considered in detail. It is realized by the Monte Carlo Expectation Maximization
algorithm, which iteratively maximizes the expected log-likelihood of the graph.
In order to approximate expected values over all possible configurations of graph
edges, a sampler based on Metropolis-Hastings algorithm is developed.

Once trained, the model can be applied to a variety of tasks. The experiments
presented in the thesis include inducing lexemes (sets of word forms corresponding
to the same lemma) by means of graph clustering, predicting new words to reduce
out-of-vocabulary word rates and predicting part-of-speech tags for unknown words
after unsupervised training on a tagged dataset. Although developed for unsuper-
vised training, the model can also be trained in a supervised setting, producing
reasonable results in tasks like lemmatization or inflected form generation. How-
ever, its main strength lies in a direct description and generalization of regularities
amongst words encountered in unlabeled data, without referring to any linguistic
notion of ‘morphological structure’ or ‘analysis’.

Contents

1 Introduction 1
1.1 Theories of Morphology . 2

1.1.1 Segmentational Morphology 3
1.1.2 Limitations of Segmentational Morphology 6
1.1.3 Word-Based Theories . 9

1.2 Morphology in Natural Language Processing 16
1.3 Goals and Contributions of This Thesis 20

2 A Review of Machine Learning Approaches to Morphology 23
2.1 Recognition of Morph Boundaries 24
2.2 Grouping Morphologically Related Words 27
2.3 Predicting the Properties of Unknown Words 29
2.4 Discussion . 31

3 Morphology as a System of String Transformations 33
3.1 Formalization of Morphological Rules 33
3.2 Finite State Automata and Transducers 36

3.2.1 Preliminaries . 37
3.2.2 Compiling Morphological Rules to FSTs 40
3.2.3 Binary Disjunction . 42
3.2.4 Computing the Number of Paths in an Acyclic FST 45
3.2.5 Learning Probabilistic Automata 47

3.3 Rule Extraction . 51
3.3.1 Finding Pairs of Similar Words 51
3.3.2 Extraction of Rules from Word Pairs 54
3.3.3 Filtering the Graph . 61
3.3.4 Supervised and Restricted Variants 61

4 Statistical Modeling and Inference 63
4.1 Model Formulation . 63

4.1.1 The Basic Model . 64
4.1.2 Distributions on Subsets of a Set 65
4.1.3 Penalties on Tree Height . 65
4.1.4 Part-of-Speech Tags . 66

v

vi Contents

4.1.5 Numeric Features . 67
4.2 Model Components . 68

4.2.1 Root Models . 69
4.2.2 Edge Models . 70
4.2.3 Tag Models . 71
4.2.4 Frequency Models . 72
4.2.5 Word Embedding Models . 73

4.3 Inference . 75
4.3.1 MCMC Methods and the Metropolis-Hastings Algorithm . . 76
4.3.2 A MCMC Sampler for Morphology Graphs 79
4.3.3 Sampling Negative Examples 83
4.3.4 Fitting the Model Parameters 84
4.3.5 Model Selection . 86
4.3.6 Finding Optimal Branchings 87

5 Learning Inflectional Relations 89
5.1 Datasets . 90
5.2 Unsupervised Clustering of Inflected Forms 91
5.3 Unsupervised Lemmatization . 95
5.4 Supervised Lemmatization . 96
5.5 Supervised Inflected Form Generation 99

6 Semi-Supervised Learning of POS Tagging 103
6.1 A General Idea . 104

6.1.1 Intrinsic and Extrinsic Tag Guessing 104
6.1.2 Applying Tagged Rules to Untagged Words 105

6.2 The Method . 106
6.2.1 The Forward-Backward Algorithm for Trees 108
6.2.2 Modifications to the Sampling Algorithm 111
6.2.3 Extending an HMM with New Vocabulary 114

6.3 Evaluation . 115
6.3.1 Experiment Setup . 115
6.3.2 Evaluation Measures . 116
6.3.3 Results . 117
6.3.4 Remarks . 120

7 Unsupervised Vocabulary Expansion 123
7.1 Related Work . 124
7.2 The Method . 124

7.2.1 Predicting Word Frequency 125
7.2.2 Computing Word Costs from Edge Probabilities 126

7.3 Evaluation . 128
7.3.1 Experiment Setup . 128
7.3.2 Results . 129

Contents vii

8 Conclusion 137

Bibliography 141

viii Contents

List of Figures

1.1 An example analysis of relied in two-level morphology. 17
1.2 A typical segmentational analysis of the German word beziehung-

sunfähiger. The information contained in the inner nodes (shown in
gray) is lost in the segmentation. 18

3.1 A scheme for converting morphological rules into FSTs. 41
3.2 The transducer corresponding to rule (3.3). 41
3.3 The transducer corresponding to rule (3.9). 41
3.4 A comparison of running times for different disjunction strategies. . 44
3.5 The transducer S1 for generating a deletion neighborhood. 52
3.6 The filter S2 ensuring, that no more than the half of a word is deleted. 53
3.7 Matrices D, Ξ, X, Y and aligned sequences u, v after executing Al-

gorithm 3.8 on the word pair (trifft, getroffen). The shaded cells
correspond to the optimal alignment, which is extracted by Algo-
rithm 3.9. 56

3.8 Rules extracted from the pair (trifft, getroffen) by Algorithm 3.10
and their corresponding masks, sorted by generality. 59

4.1 An example tree of word derivations. 64
4.2 A ‘bad’ tree caused by the lack of a constraint on tree height. . . . 66
4.3 NN architecture for the edge model. 71
4.4 NN architecture for the root tag model. 72
4.5 The difference in log-frequencies between words on the left and right

side of the rule /Xen/→ /Xes/ in German. The dashed line is the
best-fitting Gaussian density. 73

4.6 NN architecture for the root vector model. 74
4.7 NN architecture for the edge vector model. 75
4.8 The two variants of the ‘flip’ move. The deleted edges are dashed

and the newly added edges dotted. The goal of the operation is to
make possible adding an edge from v1 to v2 without creating a cycle. 80

4.9 The trajectory of the graph sampler expressed as the cost (negative
log-likelihood) of the graph at a given iteration. The top plot shows
all 10 million sampling iterations, while the bottom plot shows iter-
ations from 4 million onward. The acceptance rate in this run was
0.12. 82

ix

x List of Figures

4.10 Convergence of MCEM fitting. The cost at the first iteration is far
beyond the scale (around 1.6 · 106). 86

4.11 The number of rules and possible edges during model selection. . . 88

6.1 Two possible morphology graphs corresponding to the words machen,
mache, macht. What does each of them tell us about the possible
tags of those words according to (6.1)? 106

6.2 The Forward-Backward computation for a linear sequence in an
HMM. αv6,t = P (v1, . . . , v6, T6 = t), whereas βv6,t = P (v7, v8, v9|T6 =
t). 108

6.3 The Forward-Backward computation for a tree. Also here, αv6,t =
P (v1, . . . , v6, T6 = t) and βv6,t = P (v7, v8, v9|T6 = t). 109

6.4 Adding or removing the edge (v, v′, r). 112
6.5 Exchanging an edge to another with the same target node. The

change can take place within one tree (a) or involve two separate
trees (b). 113

6.6 In case of a ‘flip’ move, the smallest subtree containing all changes
is the one rooted in v3. The deleted edges are dashed, while the
newly added edges are dotted. In order to obtain the new βv3 , we
recompute the backward probabilities in the whole subtree. αv3 is
not affected by the changes. (The node labels are consistent with
the definition in Fig. 4.8.) . 113

6.7 A special case of the ‘flip’ move, which changes the root of the tree.
(a) – the tree before the move (the edge to delete is dashed, while
the edge to be added is dotted); (b) – the tree after the move. The
node labels agree with the ones in Fig. 4.8, with v4 = v2, v5 = v1

and v3 not existing. The difference between the two variants of ‘flip’
is neutralized in this case. 113

7.1 Predicted log-frequency of the hypothetical word *jedsten, as de-
rived from jedes via the rule /Xes/ → /Xsten/. The frequency
model predicts the mean log-frequency µ = 4.24 (corresponding
to the frequency around 69) with standard deviation σ = 0.457.
The probability of the word not occurring in the corpus (i.e. fre-
quency < 1) corresponds to the area under the curve on the interval
(−∞, 0), which is approximately 10−20. 125

7.2 Predicted log-frequency of aufwändigsten, as derived from aufwändiges
via the rule /Xes/→ /Xsten/. The probability of log-frequency be-
ing negative (i.e. the frequency being < 1) is here around 0.863
(µ = −0.5, σ = 0.457). 126

List of Tables

3.1 Commonly used semirings. ⊕log is defined by: x⊕log y = − log(e−x+
e−y). 38

3.2 Example rules extracted from the German Wikipedia. 60

5.1 Results of unsupervised clustering. 94
5.2 Results of unsupervised lemmatization. 97
5.3 Size (number of types) of the datasets used for supervised lemmati-

zation. 97
5.4 Results of supervised lemmatization. 100
5.5 Results of supervised inflected form generation. 101

6.1 Different setups of the HMM tagger used in the tagging experiment. 116
6.2 Lexicon evaluation with coarse-grained tags. 118
6.3 Lexicon evaluation with fine-grained tags. 118
6.4 Tagging evaluation with coarse-grained tags. 119
6.5 Tagging evaluation with fine-grained tags. 120

7.1 The datasets used for evaluation. 129
7.2 Token-based OOV reduction rates for various numbers of generated

words. 130
7.3 Type-based OOV reduction rates for various numbers of generated

words. 131
7.4 Type-based OOV reduction as the percentage of the maximal re-

duction at a given size. 134

xi

xii List of Tables

List of Algorithms

3.1 Binary disjunction. 43
3.2 Computing the number of paths in an acyclic DFST. 46
3.3 STOCHASTIC-MERGE. 48
3.4 STOCHASTIC-FOLD. 49
3.5 ALERGIA-TEST. 49
3.6 ALERGIA-COMPATIBLE. 50
3.7 ALERGIA. 50
3.8 Aligning similar words with minimum number of edit operations. . . 55
3.9 Extract-alignment. 55
3.10 Extracting rule candidates from pairs of similar words. 58

4.1 A single iteration of the Metropolis-Hastings algorithm. 79
4.2 Proposing the next branching in the sample. 81
4.3 Sampling negative examples of edges. 84

xiii

xiv List of Algorithms

Acknowledgments

As is the case with every dissertation, also this one would not have been possible
without support and good will of many people. First and foremost, I would like to
thank my supervisors, Prof. Uwe Quasthoff and Prof. Gerhard Heyer. While they
always supported me with advice and feedback, they also gave me a tremendous
amount of freedom and trust in pursuing my own ideas. Furthermore, they secured
the financial resources, including a three-year scholarship, which gave me a plenty
of time to work on this topic. I also thank my colleagues, especially Dr. Ingmar
Schuster, Max Bryan and Dr. Christoph Teichmann, for valuable discussions and
introducing me to some topics, notably neural networks and Markov Chain Monte
Carlo. I thank Dr. Giuseppe G. A. Celano for the consultation on Latin and Ancient
Greek, as well as Christopher Schröder for proofreading. Finally, I thank all the
colleagues that have worked in the office P818 over the years for contributing to a
friendly and productive work environment.

This thesis was completed entirely using free software. The methods described
here were implemented in Python. All the work was done under GNU/Linux sys-
tems and the text was typeset using LATEX. I could not imagine efficient work
without tools like the various tiling window managers or the Vim text editor. I
owe much to the free software community. As to the more specialized software, I
would like to thank the developers of OpenFST, HFST and Keras for their excellent
work.

I also thank Michał Śliwiński, a teacher from my high school, for introduc-
ing me to the International Linguistics Olympiad and awakening my interest in
theoretical and computational linguistics, which has shaped my whole professional
career. Further thanks to the rock band Linie 7ieben, of which I was a member for
the past 4 years, for providing me with pleasant distraction and a tempting career
alternative.

The period of work on this thesis saw a wedding, as well as an abrupt breakup
of the marriage two years later. I am deeply grateful to all the people who supported

xv

xvi Acknowledgments

me through 2018, which was the most difficult year of my life. I particularly want
to mention my parents Anna and Andrzej, my brother Marek, and my friends from
Leipzig: Agata Barcik, Basia Kubaińska and Cyprian Zajt. Needless to say, they
were great company in better times as well.

Chapter 1

Introduction

Every good work of software starts by

scratching a developer’s personal itch.
Eric Raymond, The Cathedral and the Bazaar

This thesis is concerned with the topic of machine learning of language mor-
phology. The focus lies on unsupervised learning, i.e. learning from raw, observable
language data, without any additional labeling. This contrasts with supervised
learning, i.e. learning from data labeled by human experts, as well as rule-based
approaches, in which the language processing relies on manually constructed re-
sources, like dictionaries and grammars. While the early history of Natural Lan-
guage Processing (NLP) was dominated by rule-based approaches grounded in for-
mal linguistic theories, the recent two or three decades have seen a nearly complete
shift towards machine learning methods.

Despite their relatively low reliability (as compared to the two other ap-
proaches), unsupervised language learning methods have been a topic of active re-
search for the entire history of NLP. Their roots lie in the linguistic structuralism
of the early 20th century, which placed emphasis on deriving grammatical notions
directly from observable language data. Concrete algorithms were presented as far
back as 1950s [Harris 1955]. More recently, the rise of shared tasks like Multilingual
Parsing from Raw Text to Universal Dependencies [Hajič and Zeman 2017] attests
the increasing practical significance of unsupervised methods and high expectations
placed on them by the research community.

In addition to the practical benefits of unsupervised learning, like rapid adap-
tation to new languages and domains, or the possibility of processing resource-
scarce languages, for which human experts are unavailable, the research on un-
supervised methods also poses interesting theoretical questions. An unsupervised

1

2 Chapter 1. Introduction

learning algorithm is expected to derive a knowledge representation from unanno-
tated data, without any clue from a human annotator about what kind of represen-
tation is expected – apart from the clues contained in the design of the algorithm
itself, in isolation from the data. Therefore, unsupervised learning requires an es-
pecially careful consideration of what should be learnt and how it can be derived
from observable data. It thus stimulates the research on finding plausible repre-
sentations of linguistic knowledge which are as near to electronically available,
machine-readable language data as possible.1 Furthermore, it might also shed light
on the process of first language acquisition by humans, which is similar (although
not entirely analogical) to unsupervised learning.

Correspondingly, the thesis begins by addressing the question of what repre-
sentation should be learnt and how it relates to observable data. In Section 1.1, I
review different approaches to morphology found in theoretical linguistics. Section
1.2 describes how those theories are applied to derive representations of morphol-
ogy used in NLP and what kinds of morphological analysis are expected in practical
applications. It turns out that the widely adopted segmentational view suffers from
discrepancies: both between its strictly concatenative model of morphology and the
reality of morphological phenomena, and between its objective and the use cases
for morphological analysis in NLP. Those considerations lead to the motivation for
the current thesis, which is adapting for the purposes of NLP an apparently un-
derexplored and promising theory which takes a relational (rather than structural)
view on morphology. This goal is elaborated in Sec. 1.3.

1.1 Theories of Morphology

Morphology is the part of language grammar concerned with individual words. As
explained by an introductory text (emphasis original):

In linguistics morphology refers to the mental system involved in
word formation or to the branch of linguistics that deals with words,
their internal structure and how they are formed.

[Aronoff and Fudeman 2004, p. 2]

Morphology is usually divided into inflection, derivation and compounding,
which are treated differently by many theories. However, it is difficult to formulate
1For example, the research on unsupervised parsing, as well as machine learning of parsing

in general, recently contributed to the wide popularity of dependency grammar in the NLP
community.

1.1. Theories of Morphology 3

a clear definition distinguishing inflection from derivation. In a commonly used un-
derstanding, inflection is responsible for providing the word with features required
by the syntactic context (like e.g. case or number), whereas derivation forms new
words with new meanings. The term compounding is used for the process of creating
a new word from more than one base word (like lighthouse ← light + house).

The above quote of Aronoff and Fudeman mentions two subjects: the internal
structure of words and the process of word formation. A view shared by a large
majority (but not all) of grammar theorists is that a theory of morphology is
supposed to describe both of them and that the process of word formation is
tightly related to the internal word structure. The latter is usually described in
terms of morphemes, which constitute the basic building blocks for words. Some of
the most influential theories based on this assumption are described in Sec. 1.1.1.

Although the assumption of internal word structure seems intuitive, there
are certain phenomena in morphology which are very difficult to describe this way.
Extending the basic theory to account for such cases results in a very abstract and
vaguely defined notion of morpheme, which is only remotely related to the original
idea. In Sec. 1.1.2, we look into details of such problems and how they are typically
handled.

Finally, in Sec. 1.1.3, we turn to different theories of morphology, which make
little or no assumptions about the internal structure of words and instead focus
entirely on the process of word formation or structural similarities between words.
Such theories provide the motivation and linguistic foundation for the current
thesis.

1.1.1 Segmentational Morphology

The concept of a word being composed out of smaller, meaning-bearing units dates
back to the ancient Indian grammar tradition, especially to Pān. ini’s grammar of
Sanskrit [Gillon 2007]. In contrast, the older European grammar tradition con-
centrated on the study of words and paradigms, treating words as basic units
of meaning. The notion of morpheme as a minimal meaningful unit of language
was popularized by the American structuralist school in the first half of the 20th
century in the following formulation:

A linguistic form which bears no partial phonetic-semantic resem-
blance to any other form, is a simple form or morpheme.

[Bloomfield 1933, p. 161]

4 Chapter 1. Introduction

This definition is part of the structuralist approach to language. The struc-
turalist school aimed to derive linguistic descriptions strictly from the structural
properties of language. The most important criterion was the distribution of various
elements of the language and its influence on the meaning. Contrary to older tra-
ditions, the structuralist school put emphasis on the spoken language, rather than
written, as the subject of linguistic analysis [Bloomfield 1933, p. 21]. The struc-
turalist approach to morphology was further elaborated in works such as [Nida
1949] and [Harris 1951].

Later interpretations of the above definition state that morphemes are min-
imal signs of the language. The notion of sign, introduced by de Saussure [1916],
is essential in structuralist linguistics. A sign is an entity consisting of form and
meaning, in which the connection between the two is arbitrary, i.e. one cannot
be predicted from the other. Language is thus a system of signs, as every spoken
utterance has a meaning, which is related to its phonetic form only by means of
the convention of a particular language.

The usefulness of morphemes as means of predicting the relationship between
form and meaning of words can be illustrated by the following example:

Example 1.1. Finnish
lentokoneissanikin

lento kone i ssa ni kin
flight machine pl iness 1sg too

‘in my aeroplanes, too’

It is not very likely for a Finnish speaker to ever have heard exactly this word.2

After all, hardly anybody possesses multiple aeroplanes. However, understanding
it will not pose any problems to the speaker, because it contains parts known
from many other words, like -i- (plural), -ssa ‘in’, -ni ‘my’ (possessive suffix) and
-kin ‘too’. Even the word lentokone ‘aeroplane’, which is probably known to all
Finnish speakers, is composed in a transparent way, so that one could understand
it without having heard it before.

It can be seen from Example 1.1 that Finnish morphology is (mostly) agglu-
tinative: each unit of meaning or grammatical function corresponds to one mor-
pheme. The morphemes are concatenated to form words. On the other hand, we
speak of fusional morphology if multiple grammatical functions are fused in a sin-
gle morpheme. For example, the Polish equivalent of ‘in planes’ is w samolotach,

2A Web search with DuckDuckGo finds no results for this word. (accessed on Jan 16, 2019)

1.1. Theories of Morphology 5

where the suffix -ach contains both ‘plural’ and ‘locative’ features, which cannot
be isolated. Languages with fusional morphology typically display fewer morphs
per word, more homophony of functional morphemes (called syncretism) and more
non-concatenative phenomena.

The two fundamental models of morphology that emerged in the mid-20th cen-
tury were the Item-and-Arrangement (IA) and the Item-and-Process (IP) model
[Hockett 1954]. Especially the former is tightly related to the notion of morpheme:
words (and ultimately, all linguistic constructions) are arrangements of morphemes.
The arrangement encompasses more than just the linear ordering: also a kind of
constituent structure is postulated. Morphology in this formulation is thus some-
what similar to syntax, but operating below the word level. This analogy has been
explored in more detail by, among others, Selkirk [1982].

In a simplified view, the IA model could be characterized as follows:

w = µ1µ2 . . . µk (1.1)

In this formulation, a word w is simply a sequence of morphemes µi. The
morphemes are realized by strings of phonemes called morphs and the concatena-
tion operation is realized by grammar-wide morphophonological rules, which can
change the shape of morphs depending on their context. In order to account for
the hierarchical structure, one could additionally introduce a bracketing on the
sequence of morphemes. Note that, in general, morphs are not allowed to con-
tain any additional phonological information besides the string of phonemes (e.g.
‘alternation markers’).

The IA model is a static description: it concentrates on identifying and de-
scribing the internal structure of words. The regular similarity in form and meaning
of words can then be explained by the common elements of the internal structure.

On the other hand, the Item-and-Process model describes the structure of
words in dynamic terms: words are derived from other words (or from more ab-
stract lexical items, like stems or roots) by means of processes. This model may, but
does not have to, involve the notion of morpheme. However, there is a widespread
agreement that a process typically encompasses adding some phonological mate-
rial, called process markers. The naming of some processes, like affixation (i.e. the
addition of an affix) indicates though, that morphemes are implicitly present in
most IP descriptions as well.

A schematic formulation of the IP model, analogously to (1.1), would thus

6 Chapter 1. Introduction

be the following:
w = πk(πk−1(. . . π1(r) . . .)) (1.2)

A word w is derived from a root r through a series of processes πi, each of
which takes the output of the previous process as its input. In contrast to the IA
model, in which everything was a morpheme, the roots and the processes in the IP
model are fundamentally different entities.

The main problem with the IP model is that it is very difficult to define what
exactly a process may and may not do. Allowing arbitrary rewrite rules is clearly
too strong, while restricting the processes to addition of phonological material is
clearly too weak. Besides, it is not clear what exactly is the input of a process.
In addition to complete existing words, ‘incomplete words’ (stems) are normally
allowed and it is difficult to define such entities precisely, as well as prove that
language speakers possess an internal representation of them.

1.1.2 Limitations of Segmentational Morphology

While the intuition that stands behind the notion of morpheme is clearly seen in
a case like Example 1.1, there are many kinds of similarities between words that
cannot be easily analyzed using morphemes. This usually leads to workarounds
and extensions to the basic theory: in case of the IA model, either the morphs are
allowed to contain abstract, transformation-related information (which, as [Hockett
1954, p. 224] points out, undermines the whole idea of Item-and-Arrangement),
or too much burden is put on morphophonological rules, which are expected to
‘fix’ the discrepancy between the model and the reality. In case of the IP model,
the flexible notion of ‘process’ is used to encompass more and more sophisticated
transformations. In both cases, the result is a, in my opinion, vague theory with
unclearly defined concepts.

In the following, I present a few fairly common phenomena, which pose prob-
lems for segmentational morphology, as well as for NLP applications built upon a
segmentational theory of morphology.

Stem alternation. Stem alternation is probably the most common non-conca-
tenative phenomenon in morphology: a certain sound inside the stem (often the
stressed vowel) undergoes a regular transformation. Example 1.2 shows German

1.1. Theories of Morphology 7

plural formation which exhibits the well-known umlaut.

Example 1.2. German
a. Haus /haU

“
s/ ‘house.nom.sg’

Häuser /hOY
“
z5/ ‘house.nom.pl’

b. Buch /bu:x/ ‘book.nom.sg’
Bücher /by:ç5/ ‘book.nom.pl’

c. Vater /fA:t5/ ‘father.nom.sg’
Väter /fE:t5/ ‘father.nom.pl’

Sound changes at morph boundaries. Some affixes trigger sound changes af-
fecting the nearby phonemes. It is unclear whether the resulting alternation should
be modeled as part of the affix or as stem alternation. In Example 1.3, -a is the
nominative suffix of many Polish feminine nouns. The locative suffix is something
like -je, where the first element triggers a regular consonant change. (Note that
it is not even exactly a palatalization marker in the phonological sense, since the
sequences /kje/ and /gje/ are possible in Polish.) It is difficult to mark morph
boundaries here, as, strictly speaking, a part of the stem and a part of the suffix
melt into a single phoneme.

Example 1.3. Polish
a. droga /drOga/ ‘way-nom.sg’

drodze /drO
>
dzE/ ‘way-loc.sg’

b. ręka /rENka/ ‘hand-nom.sg’
ręce /rEn

>
tsE/ ‘hand-loc.sg’

c. strata /strata/ ‘loss-nom.sg’
stracie /stra

>
tCe/ ‘loss-loc.sg’

d. woda /vOda/ ‘water-nom.sg’
wodzie /vO

>
dýe/ ‘water-loc.sg’

e. zupa /zupa/ ‘soup-nom.sg’
zupie /zupje/ ‘soup-loc.sg’

f. żaba /Zaba/ ‘frog-nom.sg’
żabie /Zabje/ ‘frog-loc.sg’

Zero morphs. It is often convenient to tie some grammatical categories, like e.g.
plural, to a particular morpheme that occurs in the respective form. In Example
1.4b, the ‘plural’ feature is associated with the suffix -s, while the stem house
does not carry any number feature. In case of 1.4a, the word consists of only

8 Chapter 1. Introduction

one morpheme, which is supposed to be the same stem as in 1.4b. However, the
word also contains the feature ‘singular’, which would have to be located in this
only morpheme. There are two possible conclusions for the segmentational analysis:
either the stems in 1.4a and 1.4b are homophonic, but distinct morphemes, one with
the singular feature and one without (which seems absurd), or the widely accepted
statement that the word from 1.4a contains another morpheme: a ‘singular suffix’
with null phonological realization.3 Many analyses tend to the latter option, thus
allowing phonologically null morphs.

Example 1.4. English
a. house ‘house.sg’
b. house-s ‘house-pl’

Cranberry morphs. The term ‘cranberry morph’ was coined by Aronoff [1976].
It describes a morph that occurs only in one word, like the first part of words in
Example 1.5a. The rationale behind isolating such morphs is dubious, because no
well-defined meaning can be attributed to them – their meaning is inseparably tied
to the meaning of the word they occur in. For example, the only statement that
can be made about the meaning of cran- is that it turns a generic berry into a
cranberry. However, berry is clearly a morph, as can be seen from the words listed
in 1.5b.

Example 1.5. English
a. cranberry boysenberry huckleberry
b. strawberry blueberry blackberry gooseberry

[Aronoff 1976, p. 10]

Case studies like that of Rainer [2003], who analyzes in detail the Spanish
derivational suffix -azo, show that attributing meanings to derivational affixes is
difficult as well. Instead, he suggests to treat meaning as a property of word. The
meaning of newly coined words is attributed by analogy to one or more already
existing words derived with the same affix. However, the general meaning of an
affix does not have to be specified and once the words are coined, their meaning
may evolve in an idiosyncratic way.

3In fact, there are more possible explanations: for example that the plural feature overrides
the singular. While it seems to be a plausible explanation of the example, it is very difficult to
convert it into a general principle: what is overridden by what, why and when? Is the singular
feature part of the stem or is it assigned as default if no number is explicitly marked? As each of
such explanations raises further questions, the notion of ‘zero morph’ is widespread.

1.1. Theories of Morphology 9

Words of foreign origin. A frequent source of borderline cases for segmentation
are borrowings, in which some morphological structure of the source language is
still visible. This is well exemplified by words of Greek and Latin origin in many
European languages, especially English. Example 1.6a shows words that must have
been borrowed into English already as compounds, as their first part is not a proper
English morpheme. 1.6b lists words that correspond to valid Latin compounds,
but might be English word formations as well. Finally, the words listed in 1.6c
are clearly English formations, demonstrating that the suffix -cide is productive in
English.4 Any consistent segmentation of all three groups is going to be disputable.

Example 1.6. English
a. — deicide

— regicide
— suicide

b. bacterium bactericide
herb herbicide
infant infanticide

c. computer computercide
robot roboticide
squirrel squirrelcide
weed weedicide

The examples presented in this section are only a modest selection of ‘prob-
lematic’ phenomena. In my opinion, those pose the most problems for automatic
processing, at least of European languages, which are the focus of this thesis. Fur-
ther such phenomena include e.g. subtraction, reduplication, transfixation or mor-
phologically conditioned stress and tone alternations. They are covered in detail in
linguistic literature, especially introductory works like [Aronoff and Fudeman 2004]
or monographies critical of the notion of morpheme reviewed in the next section.

1.1.3 Word-Based Theories

The problems with the notion of morpheme are well-known in theoretical linguis-
tics. To my knowledge, the first thorough critique of morpheme as a ‘minimal
meaningful unit’, combined with a theory of morphology based on rewrite rules,

4For references to sources attesting the words computercide, roboticide and squirrelcide, see
the Wiktionary pages for those words (accessed on Jan 11, 2019).

10 Chapter 1. Introduction

was proposed by Aronoff [1976]. It is rooted in the tradition of Generative Gram-
mar and builds upon the treatment of morphology of, among others, Chomsky
[1970] and Halle [1973].

After reviewing problems with the notion of morpheme as a minimal sign,
especially ‘cranberry morphs’, Aronoff postulates a word-based theory of morphol-
ogy by formulating a very important principle, which will apply to other theories
as well:

Hypothesis: All regular word-formation processes are word-based.
A new word is formed by applying a regular rule to a single already
existing word. [. . .]

[Aronoff 1976, p. 21]

Thus, rules are always applied to already existing words. However, Aronoff’s theory
is only concerned with word formation (i.e. derivation), as it views inflection to be
a part of syntax. Correspondingly, what is referred to as ‘word’ is in fact ‘word
minus inflectional markers’. Moreover, despite the criticism, Aronoff upholds the
concept of morpheme as motivated, albeit not essential for a theory of morphology
and under a different, extremely vague, definition:

A morpheme is a phonetic string which can be connected to a lin-
guistic entity outside that string.

[Aronoff 1976, p. 15]

Aronoff [2007] reiterates his criticism of the decomposition of morphologically com-
plex words and provides arguments showing that complex words are usually lexi-
calized and their meaning cannot be predicted from their postulated structure.

Another theory rejecting the notion of morpheme which is rooted in Genera-
tive Grammar is A-morphous Morphology [Anderson 1992]. It views lexicon as
consisting of stems, which are again defined as ‘word minus inflectional material’.
Inflection and derivation are treated as fundamentally different phenomena: while
inflection is thought of as part of syntax, derivation operates inside the lexicon.
Those phenomena are realized by two kinds of rewrite rules: Word Formation Rules
generate words (inflected forms) from stems and constraints on morphosyntactic
features provided by the syntactic structure, whereas Stem Formation Rules gen-
erate stems from other stems and exchange no information with the syntax. The
notion of morpheme is explicitly rejected. Moreover, it is emphasized that both

1.1. Theories of Morphology 11

kinds of rules create no internal word structure which would be available to other
parts of grammar. However, in the analysis of compounding, Anderson makes some
concessions towards segmentational morphology (which are reviewed and criticized
in detail by Starosta [2003]).

The notion of morpheme and internal word structure continues to be a topic
of debate in more recent research. Hay and Baayen [2005] provide a comprehen-
sive overview of the discussion. They take an interesting intermediary position:
while internal word structure is motivated, it is best seen as a gradient (i.e. fuzzy)
structure, rather than discrete. This in turn fits into the larger-scale idea of incor-
porating the notions of probability, uncertainty and fuzziness into grammar theory,
which is comprehensively presented by [Bod et al. 2003].

Hudson [1984] proposes a theory named Word Grammar, which accounts for
all major levels of linguistic representation (i.e. phonology, morphology, syntax
and semantics). Although it takes a concatenative, Item-and-Arrangement view
on morphology, it is interesting here for a different reason. Firstly, it displays an
approach that came to be called pan-lexicalism: all information relevant for produc-
ing valid utterances of the language is stored in the lexicon. There is no ontological
distinction between lexical entries and rules : rules (e.g. of syntax) are also modeled
as lexical entries. Secondly, the lexicon (together with all the grammatical infor-
mation) is modeled as a network (i.e. graph), which, according to Hudson, is part
of an even larger ‘cognitive network’. Both ideas – pan-lexicalism and the repre-
sentation of lexicon as a graph – are fundamental to the theories of morphology
presented further below and to the model of morphology adopted by this thesis.

Whole Word Morphology mentioned in the title of this thesis is a theory
proposed by Ford et al. [1997]. It regards words as minimal meaning-bearing units
of language. By words, it means whole, inflected word forms just as they are uttered
in the language, rather than abstract lexical entities (like ‘word without inflection’).
No distinction is made between inflection and derivation.

Systematic similarities in form and meaning between pairs of words are ex-
pressed by rules (Morphological Strategies in WWM’s original formulation) of the
form:

/X/α ↔ /X ′/β (1.3)

In the above representation, X and X ′ are both words whereas α and β are mor-

12 Chapter 1. Introduction

phosyntactic categories (‘part-of-speech tags’ in the language of NLP). The bidi-
rectional arrow expresses that if a word fitting to the pattern on the left side of
the rule exists, then the existence of a counterpart matching the right side is pos-
tulated, and vice versa. The rule has no privileged direction and none of the words
is said to be ‘derived’ from the other or morphologically ‘more complex’ than the
other.

An example rule reflecting the relationship between French masculine and
feminine nouns like (chanteur, chanteuse) is expressed as follows:5

/Xœr/N.masc ↔ /Xøz/N.fem (1.4)

Thus, WWM provides a different answer to the fundamental question ‘what
is morphology?’:

Morphology is the study of formal relationships amongst words.

[Ford et al. 1997, p. 1]

The internal structure of words is not a subject of study here.
A theory very similar to WWM was proposed as part of a larger theory of

dependency grammar called Lexicase [Starosta 1988]. The similarity was noted by
the authors of both theories, which resulted in a jointly edited volume [Singh and
Starosta 2003], in which the common theory was renamed to Seamless Morphology.
Starosta frequently cites Hudson and pan-lexicalism as an inspiration for his theory,
which can also be seen as pan-lexicalist. In Lexicase syntax, there are no rules of
syntax separate from the lexicon. Instead, the information about how words can be
combined to form utterances is contained in the lexical entries: each word contains
a frame of possible dependents (in the sense of dependency grammar).6 Rules like
‘every noun can have an adjective dependent on its left’ emerge only as a method
of ‘compression’: to store redundant information efficiently, so that it does not
have to be memorized explicitly in every entry. The rules are thus not necessary
for the functioning of the grammar and what exactly is covered by rules might be
left unclear. Starosta argues that the pan-lexicalist formulation is a more accurate
model of human language processing than the traditional generative grammar:
5The presentation given here follows exactly the one of [Ford et al. 1997]. In my opinion, it is

slightly misleading: X seems to have different meanings in (1.3) and in (1.4). Nevertheless, the
intended meaning is apprehensible, at least from the example. My own version of the definition
of rule is given in Sec. 3.1.
6This can be seen as an extreme counterpart of generative Phrase Structure Grammar, in

which the lexicon is contained in the grammar in form of rules generating terminals from non-
terminals.

1.1. Theories of Morphology 13

[Psychological experiments] indicate that memory is far more im-
portant in actual speech processing than most generative grammarians
had hitherto believed possible and the lexicon bears a much greater
burden in this respect than the rules which many of us have dedicated
our professional lives to constructing.

[Starosta 1988, p. 41]

The same approach is applied to morphology: although every word could be
stored in the lexicon as a separate entry, it is more efficient to capture regularities
in form of rules, which generate words from other words. The rules are formulated
very similarly to those in WWM.

Compounding

Although compounding might seem to be the most articulate example of the con-
catenative character of morphology, the authors of WWM make important points
there as well. An analysis of compounding as putting two words together to form
at third one, like (1.5), is rejected:

/X/+ /Y/↔ /XY/ (1.5)

Instead, the authors note that compounds come in clusters, in which at least one
of the parts is known from multiple compounds:

Facts of ‘compounding’ from various languages indicate quite clearly
that ‘compounds’ come in sets, each set anchored in some specific con-
stant.

[Singh and Dasgupta 2003, p. 78]

A word that is not generally known as ‘compound-forming’ is unlikely to form
a compound, even if there seems to be no reason to prevent it. This phenomenon

14 Chapter 1. Introduction

can be illustrated by the following example:7

Example 1.7. English
a. oldtown *oldcity
b. downtown *downcity
c. boomtown *boomcity
d. Chinatown *Chinacity
e. Koreatown *Koreacity

Although town and city are generally synonyms (certainly in this context),
only town is allowed in the listed compounds. This is difficult to explain using a
general model of compounding like (1.5). The analyses presented by both Singh
and Dasgupta [2003] and Starosta [2003] would instead postulate that those words
are related to a single word through a rule like:

/X/N/Adj ↔ /Xtown/N (1.6)

-town is thus a morphological constant, or what would have been called an ‘affix’
in other theories. The productivity of compounding with -town, together with the
impossibility of replacing it with -city, can be explained with the assumption that
no similar rule for -city is active in the morphology.

There remains an open question: how to account for the evident relatedness
between the word town and the rule (1.6). As neither of the two articles cited
above provides an explicit answer to this question, I propose my own extension to
WWM: second-order rules. Those are rules relating a word to a rule. The general
formulation of the second-order rule responsible for the pair (town, /X/N/Adj ↔
/Xtown/N) would then be:

/Y/N ↔ (/X/N/Adj ↔ /XY/N) (1.7)

Semantically, this forms a hyponym or meronym of Y which is additionally spec-
ified by X. Some further instances of this pattern include (berry, /X/N/Adj ↔
/Xberry/N) (blackberry, gooseberry) or (light, /X/N/Adj ↔ /Xlight/N) (gaslight,
backlight).

The difference between (1.5) and (1.7) is that (1.7) divides the compounding
process into two stages: deriving an ‘affixing rule’ from one of the parts and then
applying this rule to the second part. If no rule arises, no compounds are produced.

7This particular example is my invention, but it follows the argumentation of Singh and
Dasgupta [2003].

1.1. Theories of Morphology 15

If a rule is created, it typically becomes productive. This accounts for the ‘many
or none’ character of compounds.

Mathematical associations

Graphs. The relational model of morphology provided by WWM is naturally
expressed in terms of graph theory: words are vertices and morphologically related
words are linked by an edge. This fits well into the wider tendency of modeling
language structures using graphs, which is most commonly displayed in depen-
dency grammar. Hudson [1984] even modeled the complete language grammar,
from phonology all the way up to semantics, using graphs (albeit adopting a con-
catenative model of morphology). From the point of view of mathematics and
computer science, graphs are well-understood data structures. This greatly simpli-
fies the formalization of WWM and developing algorithms for it. The research on
graph-based NLP offers some well-developed generic methods (like Chinese Whis-
pers clustering) [Biemann 2007a,b] which can be transferred to morphology thanks
to adopting a theory like WWM.

Pan-lexicalism and Minimum Description Length. The idea of ‘pan-lexica-
lism’, prominently displayed by Starosta [1988], but attributed by him to Hudson
[1984], shows a highly interesting parallel to the mathematical and philosophical
idea of Minimum Description Length [Rissanen 1978, 2005; Grünwald 2007], which
in turn has been used as a theoretical foundation for several unsupervised learning
algorithms reviewed in Chap. 2. According to the pan-lexicalists, all information
needed to form valid utterances of the language is stored in the lexicon. This
includes especially syntax, expressed as constraints on dependency relations of
a word. The ‘grammar’, rather than being a component additional and external
to the lexicon, is merely a method of compressing the information stored in the
lexicon by capturing regularities and eliminating redundancies. In the language of
information theory, the lexicon is the ‘data’ and the grammar is the ‘code’ used
to encode the data efficiently. The MDL principle provides a formal criterion for
selecting ‘good’ codes by analyzing the tradeoff between the length of the encoded
data and the complexity of the code. The capability of the grammar to predict
new data arises naturally from its compression capability.

This view on the relationship between lexicon and grammar also explains the
uncertainty about which information is stored explicitly in the lexicon and which
generated by rules. The traditional assumption that the lexicon is minimal and the

16 Chapter 1. Introduction

grammar captures all regularities seems not to be psychological reality, as noted
by the Starosta quote above. In the pan-lexicalist formulation, the answer to this
question is less categorical: all information is stored in the lexicon, but different
speakers might use different near-optimal ‘codes’ (i.e. grammars) in order to encode
their lexicon efficiently. Such codes typically do not capture all redundancies. The
single optimal grammar (in the MDL sense) is probably not used by anyone and
might even not exist.8

With respect to morphology, this reasoning leads to a lexicon being a list
of existing words (known to a certain speaker or occurring in a certain corpus)
and a grammar being a ‘code’ for encoding such lists with little redundancy. This
is the underlying concept of the probabilistic model presented in Chapter 4. I
believe that the combination of pan-lexicalism and MDL is a fascinating topic for
further research as a solid theoretical foundation for unsupervised language learning
algorithms. The possibilities provided by this approach are barely scratched on the
surface with the current thesis.

1.2 Morphology in Natural Language Processing

The morphological analysis in Natural Language Processing almost always follows
the Item-and-Arrangement model. Arguably the most important reason for this
fact is that such formulation provides a clear task definition: segmenting a word into
some smaller units, which are thought to be well defined and understood. Part of
the explanation might also be that computational approaches to morphology were
developed especially for the goal of processing highly agglutinating languages, like
Finnish or Turkish, which seem to fit the idealized Item-and-Arrangement model
very well. On the other hand, in the processing of English, or even languages with
a more sophisticated fusional morphology, like German or French, morphology is
often not taken into account, because the number of possible forms is manageable

8More specifically, a notion like ‘the optimal grammar of English’ might be ill-defined, as
every speaker has their own lexicon, corresponding to words and utterances that they know, with
frequency information reflecting the sample of the language that they have encountered. The
grammar learnt by an individual speaker reflects the compression they perform to manage the
large amount of information contained in the language sample known to them. The information-
theoretic optimality of the grammar is thus local to the representation of the language as known
by a certain speaker, rather than a global property of the language. Of course, as the knowledge
of large portions of language data is shared among many speakers, so are many grammatical
generalizations, so it is perfectly reasonable to speak of ‘the grammar of English’ reflecting the
widely shared language competence. However, such grammar is not expected to be optimal to
any single speaker in the information-theoretic sense.

1.2. Morphology in Natural Language Processing 17

Lexical representation: r e l y + e d
Surface representation: r e l i E e d

Figure 1.1: An example analysis of relied in two-level morphology.

even if every word form is treated separately. In processing Germanic languages,
like German or Dutch, the only part of morphology that cannot be tackled by
listing all forms is compounding, which is perfectly concatenative, so most effort
is usually invested to address this phenomenon.

The segmentational morphological analysis fits well into a more general frame-
work of NLP: segmenting the text into structural units on various levels (syllables,
morphemes, words, phrases, sentences) and labeling the units with some addi-
tional information (tagging). Furthermore, the distribution of each structural unit
in the context can be analyzed. This kind of analysis is highly inspired by the
structuralist school of linguistics. Bordag and Heyer [2007] presented a formal-
ized framework, in which various linguistic notions are related either by means of
concatenation or abstraction. In this formulation, morphemes constitute a layer
between phonemes/letters and word forms.

Two-level morphology. Computational linguists have noticed early that, even
in an agglutinative language like Finnish, morphological phenomena do not strictly
follow the idealized concatenative model. Especially phonologically or orthographi-
cally conditioned alternations at morpheme boundaries are a frequent phenomenon
that had to be accounted for by a computational model. The solution that has set
the standards for a long time is two-level morphology [Koskenniemi 1983; Kart-
tunen et al. 1992; Beesley and Karttunen 2003]. It views words on two levels of
representation: the surface level, which is exactly how the word is spelled, and the
lexical level, at which the word is represented as a concatenation of morphs (Fig.
1.1). The mapping between the two levels is usually more complicated than the
obvious deletion of morph boundary symbols. It is described by a special kind of
rules, which can be compiled into a finite-state transducer. Examples of mature,
open-source two-level morphological analyzers include Omorfi for Finnish [Pirinen
2015], Morphisto for German [Zielinski and Simon 2008] and TRMorph for Turkish
[Çöltekin 2010].

Although two-level morphology was designed specifically with agglutinat-
ing morphology in mind, attempts have also been made to extend it to non-
concatenative morphology. In particular, Kiraz [2001] adapted the formalism to the
Semitic root-and-pattern morphology by using transducers with multiple tapes.

18 Chapter 1. Introduction

beziehungsunfähiger

beziehungsunfähigADJ

erNOM.SG.MASC

BeziehungN

s

unfähigADJ

beziehV

ungNbe ziehV un

fähigADJ

fäh? igADJ

Figure 1.2: A typical segmentational analysis of the German word beziehung-
sunfähiger. The information contained in the inner nodes (shown in gray) is lost
in the segmentation.

Figure 1.2 shows an example of morphological analysis based on a segmenta-
tional theory. The German word beziehungsunfähiger is an inflected form of the
adjective beziehungsunfähig ‘incapable of relationships’. This in turn is a compound
of Beziehung ‘relationship’ and unfähig ‘incapable’. The former is derived from the
verb stem bezieh- ‘to relate’, which is a concatenation of the root zieh- ‘to pull,
drag’ and a derivational prefix be-, the meaning of which is obscure. The adjective
unfähig is derived from fähig ‘capable’ with the negative prefix un-. The analysis
of fähig is disputable: it clearly contains a common adjectival derivational suffix
-ig, but the corresponding root, *fäh-, is missing from modern German.9 This is
another example of a ‘cranberry morph’. In the NLP context, such cases, which
are not as rare as they might seem, require arbitrary decisions by human anno-
tators. Those influence noticeably the reference datasets and evaluation results of
automatic segmentation algorithms.

A complete morphological analysis of the word beziehungsunfähiger consists
of the whole tree depicted in Fig. 1.2. However, the output of an automatic mor-
phological analyzer (e.g. based on two-level morphology) is most often going to
be the sequence of leaf nodes of the tree: morphs labeled with some grammatical
symbols. It is very difficult to reconstruct any meaning out of such sequence: zieh-
means ‘to pull’, the meaning of be- is unspecified, un- is negation, but it is not clear
what is negated. The inner nodes of the tree (shown in gray) contain information
on relationships between the analyzed word and other existing words. This infor-

9Diachronically, it was derived from the verb whose modern form is fangen ‘to catch’. Orig-
inally being similar to the paradigm gehen-ging-gegangen, the paradigm of fangen was rebuilt
based on past forms [Kluge 1989].

1.2. Morphology in Natural Language Processing 19

mation is crucial for the proper understanding of the analyzed word. However, it is
lost if the task of morphological analysis is defined as segmentation into morphs.10

In contrast to the focus of morphological research, which is mostly on segmen-
tation, other areas of NLP generally view words as minimal units of language and
are hardly ever interested in any information below the level of word forms. This is
especially true for statistical language models nowadays employed throughout the
field of NLP, from POS tagging and parsing [Manning and Schütze 1999; Kübler
et al. 2009], through machine translation and speech recognition [Koehn 2010; Je-
linek 1997], to topic modeling and text mining [Feldman and Sanger 2007; Blei
2012]. In result, most tools developed for morphological analysis are difficult to
plug into larger pipelines and make use of.

From an application point of view, morphology is often understood in a very
reduced way: for example as compound splitting or lemmatization and inflectional
analysis. Experiments with modeling linguistically motivated subword units, like
[Creutz et al. 2007; Virpioja et al. 2007; Botha and Blunsom 2014], are rare, and
even such models often ultimately aim at predicting the occurrence of words. The
inclusion of morphology in a task like statistical machine translation usually has
the character of pre- or post-processing and amounts to inflectional analysis and/or
compound splitting [Nießen and Ney 2000; Amtrup 2005; Popović et al. 2006;
Dyer 2007]. Attempts to include productive derivational morphology in the lexicon
component, like [Cartoni 2009], are very rare.

Turning back to Figure 1.2, the most important information is contained in
the top part of the tree, i.e. in the branching of the root node into the lemma and
the inflectional suffix, and then the splitting of the compound. Further branchings
become less and less relevant the deeper we descend in the tree. Arguably, this
prioritization should be reflected in the design of computational approaches to
morphology, as well as their evaluation metrics.

Spoken vs. written language. While discussing theoretical linguistic founda-
tions for natural language processing, it is important to keep in mind a significant

10Analyzers based on two-level morphology sometimes cope with this problem by including
complex stems into their lexica. For example, Morphisto [Zielinski and Simon 2008] lists multiple
segmentation alternatives for beziehungsunfähiger, some of them containing words like Beziehung
or unfähig as single lexicon items, and some segmenting them further into morphs. This ap-
proach helps retain relationships between words, but it introduces new problems: it leads to a
combinatorial explosion of possible analyses and the segmentation items are in general no longer
morphs.

20 Chapter 1. Introduction

difference between the two disciplines: theoretical linguistics aims to describe the
language as it is spoken, while NLP methods almost always work with written rep-
resentations. This leads to another discrepancy: the annotation of gold standards
and training data often tries to follow guidelines based on linguistic theory, which
originally describe the spoken form, but the structures have to be reflected in the
written form – in case of machine learning approaches, often by marking morph
boundaries directly in the surface forms of words.

For example, it is a common case that simple concatenative phenomena ap-
pear non-concatenative in writing. For example, the English pairs (embed, em-
bedded) or (sit, sitting) exhibit ‘gemination’, while pairs like English (rely, relies)
or Dutch (lezen, lees) ‘vowel alternation’, that are solely artifacts of orthography.
Thus, because we are dealing with written language, non-concatenative morphol-
ogy might be an even more common and significant issue than the traditional
grammar would predict. Furthermore, in cases like Example 1.3, the written forms
motivate a different segmentation than the spoken forms (Locative suffix -ie in
most cases) due to phonological issues. It is unclear which segmentation should
be considered correct (e.g. zup-ie or zupi-e). Even in a case like English (house,
houses), the spelling suggests the segmentation house-s, while the pronunciation
(/haU

“
s/, /haU

“
zIz/) would rather speak for hous-es.

Regarding evaluation and gold standard annotation, this problem is addressed
by metrics such as EMMA [Spiegler and Monson 2010], which do not evaluate the
segmentation of the surface form, but rather the sequence of morphs attributed to
the word, regardless of their labeling.

1.3 Goals and Contributions of This Thesis

The primary goal of this thesis is the application of a word-based theory of mor-
phology (inspired mostly by Ford et al.’s Whole Word Morphology) in the field
of Natural Language Processing, with emphasis on unsupervised learning of mor-
phology.

In Chapter 3, I formalize the string transformations constituting morpholog-
ical rules in WWM and integrate them into the Finite State Transducer calculus.
Furthermore, I propose efficient algorithms for discovering morphological relations
in raw lists of words. In Chapter 4, I present a generative probabilistic model for
trees of word derivations. This is, to my knowledge, the first probabilistic model

1.3. Goals and Contributions of This Thesis 21

explicitly mentioning Whole Word Morphology as a linguistic foundation.11 The
model is formulated as a framework with several replaceable components. In addi-
tion to the model, I propose an inference method based on Markov Chain Monte
Carlo sampling of branchings (directed spanning trees) of the full morphology
graph. The model is not designed with a particular task in mind (like e.g. lemma-
tization). Instead, it is a general model of ‘morphological competence’ in the WWM
formulation. It can be applied to various tasks and trained under various degrees
of supervision. Its minimal input data are a list of words, but in case further in-
formation is available, like e.g. POS tags or word embeddings, it can be optionally
used.

As I started working on this thesis, the state-of-the-art in machine learning
of morphology was dominated by segmentation. Therefore, one of the goals was to
look for alternative tasks for evaluating morphology learning, which would be suit-
able for segmentational and non-segmentational approaches alike and ideally be
designed with concrete applications in mind. This situation has changed in the re-
cent years: tasks like vocabulary expansion or learning tree representations are now
present in mainstream literature independently of my modest effort. Nevertheless,
in Chapters 5, 6 and 7, I propose various methods of evaluating ‘morphological
competence’ without referring to the internal structure of words. In Chap. 5, I
describe experiments related to the learning of relational descriptions of inflection,
like lemmatization or clustering of words belonging to the same lemma. Chapter 6
describes a method for guessing POS tags of words unseen in a corpus and using
it to improve part-of-speech tagging. Finally, Chap. 7 evaluates the model on the
task of vocabulary expansion.

Non-goals. It should be emphasized that, despite the somewhat polemic pre-
sentation in Sec. 1.1, the goal of this thesis is not to argue for the ‘right’ theory of
morphology. The choice of WWM is dictated by the fact that it has received little
attention, while seemingly being able to solve some well-known problems of the
more common approaches. In addition, the minimalism of WWM in postulating
structures and entities and the strict, uncompromising approach of describing only
the directly observable, fits well to the unsupervised learning paradigm.

The goal of the experiments in Chapters 5-7 is not to solve every single task

11The only computational experiment based on WWM that I am aware of is Neuvel and Fulop
[2002], which consists of only rule discovery. However, an increasing number of recent papers
(like e.g. Luo et al. [2017]) adopt a similar view on morphology without mentioning any linguistic
theory explicitly.

22 Chapter 1. Introduction

with the highest possible accuracy, but rather to assess how well they can be solved
by a unified, whole-word-based model of ‘morphological competence’. Models spe-
cialized on a single task, like supervised lemmatization, might well achieve higher
evaluation scores, but are less interesting from a wider theoretical point of view.

Own previous work. A part of the material included in this thesis has been
published as conference papers [Janicki 2015; Sumalvico 2017]. The basic idea of
basing the unsupervised learning of morphology on Whole Word Morphology was
pursued already in my MSc thesis [Janicki 2013, 2014].

Chapter 2

A Review of Machine Learning
Approaches to Morphology

In this chapter, I provide a brief review of the literature on machine learning of
morphology. ‘Machine learning’ is understood here in a broad sense, meaning all
methods that learn a description from data. This includes both the typical machine
learning methods, like classification or probabilistic models, and approaches based
on problem-specific heuristics. Because the present thesis is mainly concerned with
the development of unsupervised learning methods, so will also be the focus of the
presentation in this chapter. However, many unsupervised approaches can easily be
reused in a supervised or semi-supervised setting, so for the sake of comparison, a
small amount of space will also be given to a review of purely supervised methods.

An exhaustive survey on the unsupervised learning methods has been given
by Hammarström and Borin [2011]. It is not my purpose here to replicate this
work, as this would be clearly redundant. Hence, in the following overview, I will
restrict myself to highlighting some research directions which are especially relevant
for this thesis, as well as completing the picture with the more recent important
developments.

The positions in the following presentation are grouped by the key idea on
what it means to ‘learn morphology’. The three major task formulations considered
here are: recognition of morph boundaries (Sec. 2.1), grouping morphologically
related words (Sec. 2.2) and predicting properties of unknown words (Sec. 2.3).
This classification is somewhat arbitrary: especially the grouping of related words
is often used as a preprocessing step for segmentation. In such cases, the decision
will be made according to whether the grouping or the segmentation method is the
most important contribution of the respective algorithm. The chapter concludes

23

24 Chapter 2. A Review of Machine Learning Approaches to Morphology

with a short discussion (Sec. 2.4), including a summary of the recent developments
and trends.

2.1 Recognition of Morph Boundaries

Recognition of morph boundaries is the oldest and most common formulation of
the morphology learning task. It consists of marking morph boundaries in surface
forms of words and is usually evaluated by reporting the precision and recall of
morph boundary detection.

Harris [1955, 1967] is usually cited as the first attempt to learn morphology
from a corpus using statistical methods. It is directly inspired by the structuralist
grammar: the underlying assumption is that morphemes can be discovered from
the statistical peculiarities in the distribution of phonemes in words or utterances.
The measure employed for this purpose is Letter Successor Variety (LSV): the
number of different letters that can follow a letter at a given position. It is expected
to be low inside morphemes, but high at morpheme boundaries, as the different
possibilities for the next morpheme make the next letter more unpredictable. This
approach has inspired a lot of further research: the measure has been refined several
times and tested on various languages in addition to English. Those methods are
referenced and reviewed thoroughly by [Hammarström and Borin 2011, sec. 3.2.1].

Linguistica [Goldsmith 2006; Lee and Goldsmith 2016] is a toolbox for
unsupervised learning of language structures, with special emphasis on morphology.
The morphology of a language is encoded in two parts: a set of signatures (sets of
suffixes that can be attached to a given stem) and a pairing between stems and
signatures. As a criterion for selecting the best description, the authors employ the
Minimum Description Length principle for the stem-signature coding. The search
for the best hypothesis begins by suggesting splits into stem and suffix using LSV
and proceeds by trying to improve the description length with various heuristics.
The method takes a strongly simplified view on morphology: a word is assumed to
be a concatenation of a stem and a single (possibly null) suffix.

Bordag [2006, 2007, 2008] presents a line of research based on a refined version
of the LSV measure. The score for a given word is computed not on entire corpus,
but only on a set of context-similar words. A combination of various weightings is
proposed to adjust the LSV measure to various criteria (like the general letter and

2.1. Recognition of Morph Boundaries 25

letter n-gram frequency). Furthermore, the results of this procedure are used as
training data for a supervised learning method (PATRICIA tree classifier), which
generalizes the learned splitting schemes. Finally, an additional compound splitting
algorithm is applied in the last publication.

Morfessor [Creutz and Lagus 2005a,b; Virpioja et al. 2013] is a tool
for unsupervised segmentation that has been considered state-of-the-art for many
years and still serves as a point of reference for other methods. The basic idea is
to treat words as sequences of morphs chosen independently from a lexicon. The
lexicon consists of a list of morphs and a probability for each morph. In addition
to the corpus probability (the joint probability of all words given the lexicon),
a prior probability of the lexicon is also taken into account. The latter is based
on a character-level unigram model. The model is trained by means of Maximum
A-Posteriori Likelihood estimation, combining the likelihood of the data and the
prior probability of the lexicon. Simple morphotactics was subsequently added,
consisting of ‘prefix’, ‘stem’ and ‘suffix’ morph types modeled by a Hidden Markov
Model [Creutz and Lagus 2005b; Grönroos et al. 2014]. Semi-supervised training
with a small amount of labeled training data is also possible [Kohonen et al. 2010].

Morfessor in its different varieties has been widely used as a baseline refer-
ence for morphological segmentation, as well as a source of unsupervised morph
segmentation in further applications, like [Botha and Blunsom 2014; Varjokallio
and Klakow 2016]. It has also been applied in speech recognition [Creutz et al.
2007] and machine translation [Virpioja et al. 2007].

Poon et al. [2009] propose a log-linear model for computing the probabili-
ties of word segmentations. An important point of the model is the inclusion of
morph context features: the left and right neighbors of a morph are taken into
account while computing the probability of a concatenation. Priors on the number
of morphs in the lexicon and the number of morphs per word are used to control
the learning process. The inference is done using a method called Contrastive Esti-
mation [Smith and Eisner 2005]: the objective is to shift as much of the probability
mass as possible from an artificially generated neighborhood to the observed ex-
amples. A combination of Gibbs sampling and deterministic annealing is used for
an efficient search in the space of possible segmentations. The learning algorithm
can be easily adjusted to the task of supervised or semi-supervised learning: the
training segmentations are simply held fixed, instead of being sampled.

26 Chapter 2. A Review of Machine Learning Approaches to Morphology

Can [2011] uses a Dirichlet process to model the distributions of stems and
suffixes in a simplified model of morphology, in which words consist of a stem and
a single suffix. The learnt segmentations are subsequently generalized by employing
a probabilistic hierarchical clustering algorithm to induce sets of related suffixes,
which correspond to morphological paradigms.

Spiegler [2011] presents a generative probabilistic model of words and their
segmentations, where the latter are treated as a latent variable. The model can be
trained either in the supervised setting using Maximum Likelihood estimation, or in
the unsupervised using the Expectation Maximization algorithm. Its main assump-
tion is the dependence between the presence or absence of a morph boundary and
character transitions at various points in a word. It thus models morph boundaries
without modeling morphs explicitly – an approach which is designed especially to
deal with small training data and extensive data sparsity. Those problems occur
for the language that is the main point of interest of Spiegler’s thesis – Zulu. The
model also achieved very good results in Arabic, scoring first in MorphoChallenge
2009.

Botha and Blunsom [2013] and [Botha 2014, chap. 5] propose a segmen-
tation method based on learning mildly context-sensitive grammars. Although the
basic objective of the model is segmentation into morphs, it is specifically designed
to capture non-concatenative phenomena (as discontinuous morphs), targeting es-
pecially Semitic root-and-pattern morphology. In order to establish the learning
method, the Bayesian framework of Adaptor Grammars, originally designed for
context-free grammars, is extended to handle mild context-sensitivity. The infer-
ence method utilizes a sampler based on the Metropolis-Hastings algorithm. The
model is evaluated on Arabic and Hebrew data.

MorphoChallenge [Kurimo et al. 2010] was a yearly competition taking
place between 2005 and 2010, which provided standardized tasks, datasets and
evaluation measures for unsupervised morphological segmentation. In addition to
recognizing morph boundaries, the task involved also the labeling of morphs, which
required a correct identification of allomorphs and differentiation of homonymic
morphs. For unsupervised learning algorithms, this step is actually much more
challenging than the segmentation itself and many approaches omit it entirely.

2.2. Grouping Morphologically Related Words 27

Supervised and semi-supervised morphological segmentation has also
been approached using general-purpose classifiers, like Memory-Based Learning
[van den Bosch and Daelemans 1999] or Conditional Random Fields [Ruokolainen
et al. 2013; Würzner and Jurish 2015]. The usual setup is to classify each let-
ter or gap between letters in a word. The features needed for classification are
extracted from neighboring letters. The set of classes might be binary (morph
boundary present/absent) or more sophisticated, distinguishing different types of
morph boundaries. On the other hand, Cotterell et al. [2015] present a method
for joint supervised learning of morphological segmentation, morph labeling and
morphotactics using a semi-Markov Conditional Random Field.

2.2 Grouping Morphologically Related Words

An alternative formulation of the morphology learning task is to aim at a relational
description which groups related words together without making claims about their
internal structure. The concept of morphological relatedness usually encompasses
inflected forms of the same lemma, but may be also extended to include whole
derivational families. The algorithms used for such tasks often involve distance or
similarity measures on words, which typically combine different kinds of similarity
(e.g. orthographical and contextual) into one measure. The evaluation of such
approaches is problematic because of a lack of standardized datasets and evaluation
procedures, as well as an unclear definition of ‘morphological relatedness’. Some
authors apply their method as a step towards learning segmentation and use the
latter task for evaluation.

Schone and Jurafsky [2000] propose an algorithm for learning the stem-suffix
segmentation involving Latent Semantic Analysis. Candidates for suffixes and pairs
of related words are extracted by inserting the words into a trie and looking for
nodes, at which a branching occurs. Additionally, LSA is used to compute a vector
of distributional features for each word. By means of statistical analysis of the
cosine similarities of the vectors, the candidate pairs can be scored according to
distributional similarity. Only pairs with a statistically significant similarity are
kept. The evaluation is done by converting the results into sets of related words
and comparing them to sets extracted from a gold standard segmentation (CELEX)
by means of a clustering evaluation measure.

28 Chapter 2. A Review of Machine Learning Approaches to Morphology

Yarowsky and Wicentowski [2000]; Wicentowski [2002] propose a model
for unsupervised alignment between inflected forms and lemmas. The model uses
a combination of similarity metrics, involving orthographic and distributional sim-
ilarity, word frequency ratio and a probabilistic model of word transformations.
The evaluation is particularly focused on handling irregular, non-concatenative
patterns, like English irregular past tense formation. A further contribution of this
work is a supervised, trie-based model, which learns inflection patterns from the
aligned pairs.

Baroni et al. [2002] attempt to find pairs of morphologically related words us-
ing a combination of orthographic similarity (expressed in terms of edit distance)
and distributional similarity (measured by the mutual information of word occur-
rence). The authors mention that the approach does not rely on the concatenative
model of morphology and is able to identify pairs related by non-concatenative
operations.

Neuvel and Fulop [2002] present an approach directly inspired by Whole Word
Morphology. They attempt to learn word formation strategies by extracting align-
ments from word pairs and generalizing them to patterns. The method is non-
statistical: all extracted patterns with frequency larger than some fixed threshold
are considered to be morphological strategies. The extracted patterns are used to
suggest new words. In the evaluation section, the authors report only the preci-
sion of the word generation experiment, stating that a plausible recall metric is
impossible to compute.

[Chan 2008, chap. 5] presents an algorithm for identifying transformations
between bases and inflected forms of words. The algorithm consists of grouping
morphologically related words and identifying the base word, from which all other
forms are most easily derived. A simple stem+suffix model of morphology is as-
sumed. The grouping of similar words is done by means of stripping word final
character n-grams of various sizes and comparing the resulting hypothetical stems.

Kirschenbaum et al. [2012]; Kirschenbaum [2013, 2015] employs a combi-
nation of orthographic and distributional similarity to identify groups of potentially
related words. Such groups are then segmented using a multiple sequence align-
ment algorithm borrowed from bioinformatics. The segmentation model trained
this way is subsequently used to segment infrequent words, for which the method

2.3. Predicting the Properties of Unknown Words 29

based on distributional similarity does not work because of the scarcity of statis-
tically significant co-occurrences.

Narasimhan et al. [2015] and Luo et al. [2017] assume a process-based
model of morphology operating on whole existing words. Related words are grouped
into derivational chains [Narasimhan et al. 2015] or trees [Luo et al. 2017]. The
edges in such graphs correspond to transformational rules turning one word into
another. A log-linear model combining orthographical and distributional features
is used to predict edge probabilities. The distributional features involve word em-
beddings obtained from the word2vec tool [Mikolov et al. 2013a]. Similarly to Poon
et al. [2009], Contrastive Estimation is used for inference. The induced graphs are
not evaluated directly: they are rather used as input for further tasks, especially
segmentation into morphs. The latter relies on the assumption that the morpho-
logical rules operate by adding or removing affixes, so the strings of phonemes that
are affected by a rule can be used directly to mark morph boundaries.

Supervised methods. The supervised equivalent of grouping morphologically
related words is mainly the learning of lemmatization. Chrupała et al. [2008]
demonstrate how lemmatization can be formulated as a classification task and
employ a Maximum Entropy classifier to solve it. An alternative to classification
is presented by Clark [2002]. It consists of learning the mapping between lem-
mas and inflected forms with a stochastic transducer trained with the Expectation
Maximization algorithm. Another transducer-based model for learning mappings
between lemmas and inflected forms was proposed by Lindén [2008, 2009]; Lindén
and Tuovila [2009].

2.3 Predicting the Properties of Unknown Words

This section presents approaches that utilize some representation of morphology in
order to solve tasks related to unknown (out-of-vocabulary) words. This represents
a shift in focus compared to the approaches presented in previous sections: the
representation of morphological knowledge is now only a means, rather than a goal
in itself. In consequence, the only selection criterion for a morphology model is
how well it captures regularities in the given dataset, regardless of its linguistic
plausibility.

The methods presented here might be seen as either supervised or unsuper-
vised. They are supervised in that the training data are labeled with additional

30 Chapter 2. A Review of Machine Learning Approaches to Morphology

information (e.g. POS tag or word embedding) and the goal of a trained model is to
predict the same kind of information for further data. However, the representation
of morphology used for prediction is learnt in an unsupervised way: the training
data contain no information about the morphological relationships between words.

Mikheev [1997] approaches the task of predicting POS-tags for out-of-lexicon
words. He proposes a method for learning word-based prefix and suffix substitution
rules that capture systematic tag correspondences between words differing with an
affix (e.g. present and past tense verbs or infinitives and gerunds). The rules are
induced from the lexicon of a POS tagger. The probability of a rule generating a
word included in the lexicon, given the conditions in which the rule can apply, is
taken as a measure of reliability of the rule. An additional statistical confidence
analysis is carried out to take account of the frequency of the rules (infrequent
rules are less trustworthy). The induced rules are subsequently applied to propose
possible tags for out-of-vocabulary words. The evaluation shows an improvement
in tagging performance in cases where this method is used.

Botha and Blunsom [2014] and [Botha 2014, chap. 4] present a method for
factorizing word vectors in a continuous space language model to obtain vectors for
single morphs. They utilize word segmentations provided by Morfessor-CatMAP.
The experiments conducted by the authors show that modeling sub-word units
contributes to lower language model perplexity and improvements in both machine
translation and word similarity tasks. The factorization method can also be applied
to other word decompositions than morph segmentation (e.g. lemma+inflection).

Soricut and Och [2015] observe that the regularities in the space of word
embeddings can be used to learn morphological rules. For example, the difference
vector between car and cars is very similar to the difference between dog and dogs.
The rules are learnt by extracting candidate prefix and suffix substitutions and
scoring them according to how well they predict the vector of the target word. The
discovered sets of morphologically related words are presented in form of graphs.
The evaluation is done by using the method to predict vectors for low-frequency
and OOV words and computing the correlation of word similarities obtained from
such vectors with the human-annotated semantic similarity. Thus, the focus of this
work lies on learning to predict the meaning of rare words, represented by a word
embedding, by applying morphological transformations leading to known words.

2.4. Discussion 31

Faruqui et al. [2016] employ a graph-based label propagation algorithm in or-
der to predict part-of-speech and inflectional tags for unknown words based on sys-
tematic word similarities. The morphological patterns are represented as a graph,
in which words are nodes and related words are linked with an edge. The authors
apply a broad understanding of morphological relatedness: e.g. pairs of words shar-
ing a common affix are also linked with an edge.

2.4 Discussion

General conclusions. The above overview of the state-of-the-art in unsuper-
vised learning of morphology enables us to draw the following conclusions:

1. The research on unsupervised learning of morphological segmentation started
with heuristics like LSV, but gradually shifted to probabilistic models. The
heuristic-based approaches seem to be no longer developed.

2. Although generative models (especially Morfessor) have been successful, the
recent work tends to discriminative models, which are more flexible with
respect to the features that they can incorporate.

3. Many approaches tried to learn morphology only from the string form of
words. It turns out that such data do not provide enough information (e.g.,
as Soricut and Och [2015] point out, there is no way to distinguish pairs like
bold-boldly from on-only).

4. Because of 3., it became common to incorporate distributional information
into the training data. Recently, word embeddings became popular as a con-
cise description of the word context distribution. Such information is useful
for learning morphology and helps overcome the limitations of learning from
string forms only.

5. Segmentation into morphs remains the main evaluation task, even for meth-
ods that do not target segmentation as the primary goal in learning mor-
phology (like Luo et al. [2017]). A widely accepted method of evaluation for
non-segmentational approaches is still missing, as are standardized datasets.

Influences on the present work. Inspired by the success of Morfessor and
related approaches, Chapter 4 of this thesis presents a generative model for vocab-
ularies, which involves morphology to account for structural similarities between

32 Chapter 2. A Review of Machine Learning Approaches to Morphology

words. However, instead of focusing on morph segmentation, the model presented
here is going to learn whole-word transformations. Considering the recent research,
a shift in this direction is observable. The importance of incorporating distribu-
tional information, especially in form of word embeddings, will be accounted for.
Additionally, the model is supposed to optionally make use of POS tags and if
trained this way, be able to suggest POS tags and lemmas for unknown words.
Finally, as is the case with many probabilistic models, also semi-supervised and
supervised training will be possible in case the plausible training data are available.

Chapter 3

Morphology as a System of String
Transformations

We begin the computational adaptation of word-based morphology by formulating
a formal definition of morphological rule as a string transformation (Sec. 3.1). Fur-
thermore, I present an implementation of such rules as Finite State Transducers,
which provides us with a solid algorithmic basis for dealing with such transfor-
mations (Sec. 3.2). Finally, in Sec. 3.3, algorithms for discovering morphological
rules in raw text are introduced, which constitutes the first step towards learning
transformation-based morphology from data.

3.1 Formalization of Morphological Rules

The Morphological Strategies of WWM are defined as patterns that capture struc-
tural similarities between pairs of words. An appropriate formal realization of this
idea would be an undirected binary relation on words. However, with the genera-
tive probabilistic model of Chapter 4 in mind, we aim at a dynamic description of
words ‘being derived from’ other words, rather than a static description of words
‘being related to’ other words. For this reason, we are going to use directed rules.
As rules might have multiple outcomes, or no outcome, each rule is a function
r : Σ+ 7→ 2Σ+ mapping non-empty strings onto sets of non-empty strings.1

Obviously, morphological rules may not be arbitrary functions. Just like Mor-
phological Strategies in WWM, they have to be expressed in terms of patterns,
consisting of constant elements, which have to be matched exactly, and variable

1As usual in the automata and string-related literature, Σ denotes a finite alphabet.

33

34 Chapter 3. Morphology as a System of String Transformations

elements (wildcards), which stand for a string preserved by the morphological rule,
but varying from pair to pair.

More specifically, a morphological rule with n variables will be expressed as
follows:

/a0X1a1X2a2 . . . Xnan/ 7→ /b0X1b1X2b2 . . . Xnbn/ (3.1)

The elements ai and bi are constants (literal strings), which usually represent
the differing parts of words on the left-hand and right-hand side of the rule.2 The
elements Xi are variables (wildcards), which represent the part that is preserved by
the rule, but varies from pair to pair. Additionally, the following conditions must
be satisfied:

1. The variables must be retained in the same order on both sides of the rule.

2. For 0 < i < n, either ai or bi has to be non-empty.

Example 3.1. The transformation between German word pairs like (singen, gesun-
gen), (ringen, gerungen), (trinken, getrunken) or (winken, gewunken) can be ex-
pressed by the following rule:

/X1iX2/ 7→ /geX1uX2/ (3.2)

The rule could also contain more constant elements to express the necessary con-
ditions for its application:

/X1inX2en/ 7→ /geX1unX2en/ (3.3)

Example 3.2. The following pattern:

/X1aX2/ 7→ /X2aX1/ (3.4)

does not constitute a valid morphological rule, because the variables are not re-
tained in the same order on both sides of the rule. The corresponding string trans-
formation – swapping two parts of a word separated by an ‘a’ – is unlikely to be
part of morphology of any natural language.
2However, the constants ai, bi for a given position i do not have to differ. By being equal or

containing a common part, they might also represent the context necessary for the rule to apply.
For example, in the rule /Xate/ 7→ /Xation/, both constants contain the common prefix ‘at’.
Formulating this rule as /Xe/ 7→ /Xion/ would correspond to the same string transformation,
but would extend its coverage to a few further cases, like (deplete, depletion).

3.1. Formalization of Morphological Rules 35

Example 3.3. The following pattern:

/X1iX2X3/ 7→ /geX1uX2X3/ (3.5)

does not constitute a valid morphological rule, because both a2 and b2 are empty
(and n = 3). The corresponding transformation can be expressed more concisely
as /X1iX2/ 7→ /geX1uX2/.

As a conclusion from the notation (3.1), we can represent a rule with n

variables as a vector of 2n + 2 strings: 〈a0, a1, . . . , an, b0, b1, . . . , bn〉. The variables
are implicit in this representation. In practice, we will almost always use rules with
one or two variables. A case of rule with zero variables, having form: /a0/→ /b0/,
is also possible. This corresponds to a whole-word substitution, which is a handy
way of handling irregular correspondences and suppletion in the same formalism
(although it violates the precondition that a rule expresses a systematic pattern).

With each rule, we can associate a function r, which transforms a word fitting
to the left-hand side of the rule into a set of corresponding words fitting to the
right-hand side:

r(v) = {b0X1b1 . . . Xnbn : X1, . . . , Xn ∈ Σ+ ∧ v = a0X1a1 . . . Xnan} (3.6)

Note that the outcome of the rule application is a set of words, rather than
a single word. In general, the rule application might result in multiple different
words, because there might be different ways of splitting the word into the sequence
a0X1a1 . . . Xnan. For example, the application of the rule /X1aX2/→ /X1äX2e/ to
the German word Kanal results in the set: {Känale,Kanäle}. In case the word does
not fit to the left-hand side of the rule, the rightmost condition is never fulfilled
and the result is an empty set. Thus, the function r is defined on the whole of Σ+.

Definition 3.4. Given a rule r and a set of words V , we define the derivation
relation of r on V as follows:

derr(V) = {(v, v′) : v ∈ V ∧ v′ ∈ r(v)} (3.7)

Following Ford et al. [1997] and Neuvel and Fulop [2002], we observe that
syntactic features (like the part-of-speech) are important information in determin-
ing whether a rule can apply to a given word. Thus, we extend our definition of a
morphological rule to optionally include the part-of-speech information wherever

36 Chapter 3. Morphology as a System of String Transformations

it is available. This is expressed in the following notation (cf. 3.1):

/a0X1a1X2a2 . . . Xnan/α 7→ /b0X1b1X2b2 . . . Xnbn/β (3.8)

In this notation, α and β are labels expressing part-of-speech, inflectional
information, or other syntactic features relevant for morphology. They are called
‘tags’ and are sequences of symbols from a predefined, finite set of tags T . For
example, a tag like N.gen.pl, meaning ‘noun genitive plural’, is composed of three
symbols: N, gen and pl. In the above rule notation, α and β are fully specified
tags: no wildcards are allowed.3

Example 3.5. If the word pairs given in Example 3.1 are labeled with part-of-
speech information, e.g. (singenV.Inf, gesungenV.PP), we can reformulate the rule
(3.2) accordingly:

/X1iX2/V.Inf 7→ /geX1uX2/V.PP (3.9)

Because we are dealing with written language, some peculiarities of the or-
thography might also be relevant for morphology. An example would be the Ger-
man verb nominalization: in a pair like (machenV.Inf, MachenN.nom.sg), the noun is
homophonic with the verb infinitive, the only difference being the capitalization in
writing. A rule like /mX1/V.Inf 7→ /MX1/N.nom.sg does not reflect this phenomenon
properly: a separate rule would be needed for every initial letter. In such cases, it is
beneficial to isolate the capitalization feature and treat it as a separate symbol of
the alphabet. Thus, instead of MachenN.nom.sg, we will write {CAP}machenN.nom.sg,
where the multi-character symbol {CAP} reflects the capitalization of the next let-
ter and is itself treated as a letter and thus part of the string. In general, we will
denote multi-character symbols in string representations by writing them inside
curly brackets. A plausible rule can then be formulated as follows:

/X1/V.Inf 7→ /{CAP}X1/N.nom.sg (3.10)

3.2 Finite State Automata and Transducers

Finite State Automata (FSAs) and Finite State Transducers (FSTs) are widely
known theoretical devices for describing algorithms that manipulate strings. FSAs

3Allowing for wildcards in the tag transformation could allow for more powerful general-
izations, e.g. employing the same rule for the genitive plural formation of nouns and adjectives.
However, it would also make the computational model, as well as the machine learning algorithms
that utilize it, more complex. Therefore, this possibility is not explored here.

3.2. Finite State Automata and Transducers 37

constitute the theoretical foundation for the common solutions of tasks like reg-
ular expression matching or efficient text search. For a thorough introduction to
automata theory and its applications, see for example Hopcroft et al. [2006].

FSTs are an extension of FSAs: in addition to the input tape, they also con-
tain an output tape. Thus, they reflect a relation on pairs of strings. Thanks to a
well-developed calculus of standard operations, FSTs are the tool for modeling, as
well as efficient and modular implementation of complex string transformations.
In the area of language processing, they have been applied to, among others, mor-
phology (two-level morphology mentioned in Sec. 1.2), computational phonology
[Kaplan and Kay 1994; Carson-Berndsen 1998], speech processing [Mohri et al.
1996, 2002; Rybach 2014], statistical machine translation [Vogel 2005] and spelling
correction [Pirinen 2014; Silfverberg et al. 2016].

There exist multiple software packages and libraries for manipulating au-
tomata and transducers. The typical functionality involves compiling regular ex-
pressions to automata, algebraic operations (disjunction, intersection, composition
etc.), optimization (determinization, minimization, ε-removal etc.) and lookup. The
Xerox Finite State Tools (XFST) [Beesley and Karttunen 2003] was a widely used
software package including a command language for transducer manipulation, a
compiler of lexicon descriptions (lexc) and a compiler for two-level rules (twolc).
The Stuttgart Finite State Transducer Tools (SFST) [Schmid 2005] is another
toolkit, which includes a compiler for a language for building transducers, which is
especially well suited for developing morphological analyzers. OpenFST [Allauzen
et al. 2007] is a C++ library and a set of command-line tools dedicated to the
manipulation of weighted transducers. Finally, HFST [Lindén et al. 2011] is a soft-
ware library and set of command-line tools providing a unified interface to different
transducer libraries, including SFST and OpenFST. An own transducer format is
also provided: an immutable transducer optimized for the lookup operation [Silfver-
berg and Lindén 2009]. Furthermore, HFST is released as free software, provides
official and well-developed Python bindings and includes a re-implementation of
the whole XFST functionality, extending it further to weighted transducers. All of
the automata processing described in this thesis was done using the HFST Python
API, either with OpenFST backend or using HFST’s optimized lookup format.

3.2.1 Preliminaries

This section introduces the concept of a weighted finite-state transducer, along
with the common algebraic operations. The following presentation is based mainly

38 Chapter 3. Morphology as a System of String Transformations

Semiring Set ⊕ ⊗ 0̄ 1̄
Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪ {+∞} + × 0 1
Log R+ ∪ {−∞,+∞} ⊕log + +∞ 0
Tropical R+ ∪ {−∞,+∞} min + +∞ 0

Table 3.1: Commonly used semirings. ⊕log is defined by: x⊕logy = − log(e−x+e−y).

on Mohri [2009] and may contain literal quotes thereof.
The set of weights of a weighted transducer must have the algebraic structure

of a semiring, which is defined as follows:

Definition 3.6. A system (S,⊕,⊗, 0̄, 1̄) is a semiring if (S,⊕, 0̄) is a commutative
monoid with identity element 0̄, (S,⊗, 1̄) is a monoid with identity element 1̄, ⊗
distributes over ⊕, and 0̄ is an annihilator for ⊗.

The ⊗ operation is used to compute the weight of a path from the weights
of single transitions along this path. ⊕ is used to combine the weights of different
possible paths into a weight of a string mapping.

Table 3.1 lists the semirings commonly used as transducer weights. In the
Boolean semiring, the weight simply denotes the existence of a transition or path.
The probability semiring is used to combine probabilities, while the log semiring is
suitable for computation involving minus log-probabilities. The tropical semiring is
a variant of the log semiring applying the Viterbi approximation: the sum of path
weights is approximated by the weight of the best path.

Definition 3.7. A weighted transducer T over a semiring (S,⊕,⊗, 0̄, 1̄) is a 7-
tuple T = (Σ,∆, Q, q0, F, E, ρ), where Σ is a finite input alphabet, ∆ a finite
output alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q the
set of final states, E a finite set of transitions, which are elements of Q × (Σ ∪
{ε})× (∆ ∪ {ε})× S ×Q, and ρ : F 7→ S is a final weight function.4

In the above definition, ε denotes the empty symbol, which is the identity
element of string concatenation.

A path π of a transducer T is an element of E∗ with consecutive transitions
(i.e. the target state of each transition in the sequence equals the source state of

4The definition given here differs from Mohri [2009] in two points. Firstly, the initial state is
assumed to be unique and there is no initial weight associated with it (or the initial weight is
assumed to be 1̄). Secondly, no multiple transitions between the same pair of states with the same
symbol pair are allowed. As Mohri [2009] states, every transducer not fulfilling those assumptions
can be converted to an equivalent one that does. The definition in the form given here is also
encountered e.g. in Jurish [2010] and is the basis for the transducer class implemented by HFST.

3.2. Finite State Automata and Transducers 39

the following transition). We denote by p[π] the source state and by n[π] the target
state of the path. A path π is called a cycle if p[π] = n[π]. We also define:

• PT (Q1, Q2) as the set of all paths π with p[π] ∈ Q1 ∧ n[π] ∈ Q2,

• PT (Q1, x,Q2) as the subset of PT (Q1, Q2) with input label x,

• PT (Q1, x, y,Q2) as the subset of PT (Q1, x,Q2) with output label y.

The weight T [π] of a path π is defined as the ⊗-product of the weights of its
transitions. The weight of a string pair (x, y) is defined as follows:

T (x, y) =
⊕

π∈P ({q0},x,y,F)

T [π]⊗ ρ(n[π]) (3.11)

Two transducers are called equivalent if they attribute the same weights to
each pair of strings. Note that if no path in T corresponds to a pair (x, y), then
T (x, y) = 0̄.

An unweighted transducer can be regarded as a weighted transducer over
the Boolean semiring, in which every transition and final state has weight 1̄. A
weighted automaton can be regarded as a weighted transducer, in which the input
and output symbol of every transition are equal. The recognition of a language is
then equivalent to mapping this language onto itself.

An ε-transition is a transition with ε as both input and output symbol. A
transducer is called ε-free if it contains no ε-transitions. Every transducer can be
converted into an equivalent ε-free transducer by an operation called ε-removal.5

A transducer is deterministic if it contains no two transitions with equal
source state, input and output symbol. Every transducer can be converted into an
equivalent deterministic transducer by the determinization operation. As the worst-
case complexity of the determinization algorithm is exponential in the number of
states [Hopcroft et al. 2006], the computational cost of this operation may be
prohibitive for some transducers. However, most transducers used in practice are
possible to determinize within reasonable time and space.

A transducer is called minimal if no equivalent transducer with a smaller
number of states exists. Every transducer can be converted into a minimal trans-
ducer by the minimization algorithm.

5For a description of algorithms realizing the operations mentioned here, see Mohri [2009]. All
described operations are implemented in the HFST library and its backend libraries.

40 Chapter 3. Morphology as a System of String Transformations

The result of a disjunction of transducers T1 and T2 is a transducer T1 ∪ T2

with following weights:

(T1 ∪ T2)(x, y) = T1(x, y)⊕ T2(x, y) (3.12)

The concatenation T1 · T2 of two transducers is defined as follows:

(T1 · T2)(x, y) =
⊕

x=x1x2
y=y1y2

[T1(x1, y1)⊗ T2(x2, y2)] (3.13)

The composition T1 ◦ T2 of two transducers is obtained by taking the output
of T1 as input for T2. The resulting transducer is described as follows:

(T1 ◦ T2)(x, y) =
⊕
z

[T1(x, z)⊗ T2(z, y)] (3.14)

The inversion of a transducer is obtained by swapping input and output
symbols of each transition. The resulting transducer is defined as follows:

T−1(x, y) = T (y, x) (3.15)

The input/output projection of a transducer T , denoted with πin(T) and
πout(T), respectively, yields an automaton recognizing the input or output strings
from the language recognized by T :

(πin(T))(x, x) =
⊕
y

T (x, y) (3.16)

(πout(T))(y, y) =
⊕
x

T (x, y) (3.17)

Finally, if T1 is a weighted automaton, T2 an unweighted automaton and
L(T2) denotes the language recognized by T2, then we define the difference of T1

and T2 as:

(T1 \ T2)(x, x) =

T1(x, x) if x /∈ L(T2)

0̄ otherwise
(3.18)

3.2.2 Compiling Morphological Rules to FSTs

A morphological rule represented in the notation (3.1) can be easily converted
to an FST. A general scheme of the resulting transducer is shown in Figure 3.1.
Each block in this scheme represents a smaller transducer and the arrows repre-

3.2. Finite State Automata and Transducers 41

a0 : b0 X1 a1 : b1 . . . Xn an : bn

Figure 3.1: A scheme for converting morphological rules into FSTs.

start
0:g 0:e ?

?

i:u n:n ?

?

e:e n:n

Figure 3.2: The transducer corresponding to rule (3.3).

sent concatenation. The smaller transducers are of two different kinds: transducers
mapping the corresponding constants (like a0 : b0) or transducers representing the
variables.

Each pair of corresponding constants is converted to a one-to-one alignment
by padding the shorter constant with epsilon symbols. With an efficient lookup in
mind, we follow the principle of matching the input early and giving the output
late: therefore, the input sequence is padded at the end and the output sequence
at the beginning.

The transducers representing the variables correspond to the parts of the
words which are unspecified by the rule and remain unchanged by the rule applica-
tion. Thus, they are simple universal language acceptors, mapping every character
onto itself and containing a loop. It should be noted however, that those transduc-
ers must not match the empty sequence: therefore, in addition to the loop, they
also contain one non-loop transition.

Figure 3.2 shows the transducer corresponding to the rule (3.3). Following
the notation of Beesley and Karttunen [2003], 0 denotes the epsilon symbol and ?
denotes mapping an arbitrary symbol onto itself.

In case tags are used, they are attached at the end of the string represen-
tations. Figure 3.3 shows an FST corresponding to the rule (3.9). Note that the
identity symbol (?) should not match any tag symbols.

start
0:g 0:e ?

?

i:u ?

?

V:V Inf:PP

Figure 3.3: The transducer corresponding to rule (3.9).

42 Chapter 3. Morphology as a System of String Transformations

3.2.3 Binary Disjunction

In further applications, we will often use a transducer corresponding to the dis-
junction of all known morphological rules. While building large transducers using
disjunction, we have to be careful about when to minimize. On one hand, it is
desirable to operate on minimized transducers as often as possible. On the other
hand, minimization can be a costly operation – especially for large transducers
due to its high theoretical complexity6 – so we should try to keep the number of
times it has to be called low and the size of the transducers it is called on small.
Hence, the following two straightforward strategies for disjuncting a large number
of transducers are both inefficient:

1. Applying all disjunctions first and minimizing the resulting transducer.

2. Disjuncting with one transducer at a time and applying minimization after
each disjunction.

Instead, I propose a strategy inspired by the well-known algorithm of binary
exponentiation. The idea is to always apply minimization on a disjunction of two
minimized transducers of equal size in order to obtain a minimal transducer twice
that size. By ‘size’, I mean the number of elementary transducers (from the input
data) contained in the given transducer.

Algorithm 3.1 presents the binary disjunction procedure. It utilizes two stacks:
S1 for storing intermediary transducers, and S2 for storing their corresponding
sizes. Note that the sizes are always powers of two, because a disjunction of two
transducers of equal size yields a transducer twice as large. At each step of the
iteration, we check whether the top of the stack contains two transducers of equal
size (we assume that the functions First and Second return the top and next-
to-top element without removing it from the stack). If so, we remove them from
the stack and replace them with their minimized disjunction (lines 6-7). If not, we
push an additional transducer from the input data to the stack with size 1 (lines
10-12). In case there are no more transducers left, the loop terminates.

After executing the loop in lines 4-17, S1 contains transducers, the sizes of
which are different powers of two (together they make up the binary representation
of n). The resulting transducer is a disjunction of all that are left on the stack.
This disjunction is computed in lines 19-21. As it typically involves only several
transducers, it is sufficient to minimize only once after performing all disjunctions.
6By minimization, I mean here the operation that yields a minimal deterministic transducer

equivalent to the given one. Determinization is thus implicitly part of minimization. The worst-
case complexity of determinization is exponential.

3.2. Finite State Automata and Transducers 43

Algorithm 3.1: Binary disjunction.
Input: Transducers T1, T2, . . . , Tn to disjunct.
Output: T =

⋃
i Ti

1 S1 ← Stack() ;
2 S2 ← Stack() ;
3 i← 1 ;
4 while True do
5 if Size(S2) 2 ∧ First(S2) = Second(S2) then
6 Push(S1,Minimize(Pop(S1) ∪Pop(S1))) ;
7 Push(S2,Pop(S2) +Pop(S2)) ;
8 else
9 if i ¬ n then
10 Push(S1, Ti) ;
11 Push(S2, 1) ;
12 i← i+ 1 ;
13 else
14 break ;
15 end
16 end
17 end
18 T ← Pop(S1) ;
19 while ¬Empty(S1) do
20 T ← T ∪Pop(S1) ;
21 end
22 T ←Minimize(T) ;
23 return T

44 Chapter 3. Morphology as a System of String Transformations

100 200 300 400 500 600 700 800 900 1000

0

20

40

Number of transducers

D
is

ju
nc

ti
on

ti
m

e
(s

ec
.)

naive-1 (minimize once)
naive-2 (minimize every time)

binary

1000 2000 3000 4000 5000 6000 7000 8000 9000

0

2,000

4,000

Number of transducers

D
is

ju
nc

ti
on

ti
m

e
(s

ec
.)

naive-1 (minimize once)
naive-2 (minimize every time)

binary

Figure 3.4: A comparison of running times for different disjunction strategies.

3.2. Finite State Automata and Transducers 45

Figure 3.4 presents computation times of the two näıve strategies and the
binary disjunction for different numbers of transducers. The difference is very clear:
for the largest input, which consisted of 8970 transducers (each corresponding to
a morphological rule), binary disjunction needed only 31.8 seconds, compared to
5080 sec. and 968 sec. for the two näıve strategies.

3.2.4 Computing the Number of Paths in an Acyclic FST

For the purpose of the probabilistic model developed in Sec. 4.1, we will need to
be able to compute the number of distinct paths in an acyclic7 transducer. As this
task is not covered in the standard libraries and extracting all paths in order to
count them is clearly wasteful, we will develop a dynamic programming algorithm
for this purpose.

Let si,q denote the number of distinct paths of length i ending in state q. This
number can be computed using the following recursive formula:

s0,q =

1 if q = q0

0 otherwise
(3.19)

s(i+1),q =
∑

(q′,a,b,w,q′′)∈E
q′′=q

si,q′ (3.20)

The number of paths of length i+1 ending in state q is thus the number of paths of
length i leading to states, from which q can be reached by one transition, multiplied
by the number of transitions leading from such states to q. The number of paths
npaths can be obtained by summing si,q for all final states:

npaths =
∑
i

∑
q∈F

si,q (3.21)

In practice, we do not need to keep all the values si,q. At each iteration, we
only need the values from the previous iteration. We thus denote the value for
state q from the previous iteration with sq and the value computed at the current
iteration with s′q.

Algorithm 3.2 presents the complete pseudocode. As we do not know the
maximum path length, the iteration proceeds until s′q = 0 for every state. We
denote the set of transitions leaving state q of the transducer T with TrT (q) and
the target state of a transition t with tgt(t).

7This question is not relevant for cyclic transducers, as they have an infinite number of paths.

46 Chapter 3. Morphology as a System of String Transformations

Algorithm 3.2: Computing the number of paths in an acyclic DFST.
Input: An acyclic DFST T = (Σ,∆, Q, q0, F, E, ρ).
Output: npaths = |PT ({q0}, F)|.
npaths ← 0 ;
sq0 ← 1 ;
changed← true ;
sq ← 0 for each q ∈ Q \ {q0} ;
while changed do
changed← false ;
s′q ← 0 for each q ∈ Q ;
for q ∈ Q do

if sq > 0 then
for t ∈ TrT (q) do

z ← tgt(t) ;
s′z ← s′z + sq ;
changed← true ;

end
end

end
for q ∈ F do

npaths ← npaths + s′q ;
end
sq ← s′q for each q ∈ Q ;

end
return npaths

3.2. Finite State Automata and Transducers 47

The time complexity of the algorithm is O(nm), where n is the number of
states and m is the maximum path length. This holds under the assumption that
the function Tr(·) operates in constant time, which can be achieved by hashing.
The space complexity is O(n), as we store the values sq and s′q for every state.

3.2.5 Learning Probabilistic Automata

Probabilistic automata, i.e. weighted automata over the probability semiring, de-
fine probability distributions over regular languages. The learning of such automata
is a statistical inference problem, in which the automaton is reconstructed from a
sample from its distribution. This section presents one particular algorithm suited
for this task, called ALERGIA [de la Higuera and Thollard 2000; de la Higuera
2010].

ALERGIA is a representative of the group of state-merging algorithms : it
begins by constructing an automaton exactly reflecting the sample distribution, the
so-called prefix tree acceptor. Then, pairs of similar states are identified and merged,
which results in a generalization of the distribution. In order to identify whether the
states can be merged, the so-called ALERGIA test (Algorithm 3.5) is used, which
checks whether the differences in transition probabilities are statistically significant.
Provided that the sample is indeed generated from a probabilistic automaton,
ALERGIA is proven to identify the ‘true’ automaton in the limit (i.e. for arbitrarily
large sample sizes) with probability one [de la Higuera and Thollard 2000].

The following presentation of the ALERGIA algorithm is based on de la
Higuera [2010]. We will start by defining a frequency automaton, which can be
used to reflect a multiset of strings:

Definition 3.8. A deterministic frequency finite automaton (DFFA) is a tuple
A = (Σ, Q, Ifr,Ffr, δfr) where Σ is the alphabet, Q is a finite set of states, Ifr :
Q 7→ N is the initial state frequency function, Ffr : Q 7→ N is the final state
frequency function, and δfr : Q×Σ×Q 7→ N is the transition frequency function.

A frequency automaton is similar to a weighted automaton in that each
transition and final state is labeled with a weight, in this case a natural number
representing frequency. The following property requires that the sum of frequencies
entering a state equals the sum of frequencies leaving it, which is necessary if the
weights are supposed to reflect frequency:

Definition 3.9. A DFFA A = (Σ, Q, Ifr,Ffr, δfr) is said to be well defined if
∀q ∈ Q : Ifr(q) +

∑
q′∈Q
a∈Σ

δfr(q′, a, q) = Ffr(q) +
∑
q′∈Q
a∈Σ

δfr(q, a, q′).

48 Chapter 3. Morphology as a System of String Transformations

A DFFA can be easily converted into a probabilistic automaton by dividing
the frequency of each transition or final state by the sum of frequencies leaving the
state (including its final frequency). The latter value will be called state frequency
and written as FREQ(q).

The sample, from which the distribution will be learned, will be represented
by a special kind of automaton, called frequency prefix tree acceptor, which is
defined as follows:

Definition 3.10. Let S be a multiset of strings from Σ∗ and Pref(S) denote the
set of prefixes of strings from S. The frequency prefix tree acceptor FPTA(S) is the
DFFA (Σ, Q, Ifr,Ffr, δfr) where:

• Q = {qu : u ∈ Pref(S)},

• Ifr(qε) = |S|,

• ∀ua ∈ Pref(S), δfr(qu, a, qua) = |S|uaΣ∗ ,

• ∀u ∈ Pref(S),Ffr(qu) = |S|u.

The key element of a state-merging algorithm is merging a pair of states
which are deemed to be indistinguishable. This is realized by the STOCHASTIC-
MERGE operation (Algorithm 3.3). The state q′ is merged into q by transferring
the incoming transition, together with its frequency, to q. Then, the subtree rooted
in q′ has to be merged with the one rooted in q. This is realized by the recursive
operation STOCHASTIC-FOLD (Algorithm 3.4).

Algorithm 3.3: STOCHASTIC-MERGE.
Input: a DFFA A, 2 states q, q′ to be merged
Output: A updated, with q and q′ merged
Let (qf , a) be such that δA(qf , a) = q′;
n← δfr(qf , a, q′);
δA(qf , a)← q;
δfr(qf , a, q)← n;
δfr(qf , a, q′)← 0;
return STOCHASTIC-FOLD(A, q, q′)

We use the algorithm ALERGIA-COMPATIBLE (Algorithm 3.6) to deter-
mine whether two states can be merged. The algorithm calls ALERGIA-TEST
(Algorithm 3.5) on the final frequencies of the states and on the frequencies of

3.2. Finite State Automata and Transducers 49

Algorithm 3.4: STOCHASTIC-FOLD.
Input: a DFFA A, 2 states q and q′

Output: A updated, where subtree in q′ is folded into q
Ffr(q)← Ffr(q) + Ffr(q′);
for a ∈ Σ such that δA(q′, a) is defined do

if δA(q, a) is defined then
δfr(q, a, δA(q, a))← δfr(q, a, δA(q, a)) + δfr(q′, a, δA(q′, a));
A ← STOCHASTIC-FOLD(A, δA(q, a), δA(q′, a));

else
δA(q, a)← δA(q′, a);
δfr(q, a, δA(q, a))← δfr(q′, a, δA(q′, a))

end
end
return A

each outgoing transition. The test states whether the difference between frequen-
cies is statistically insignificant. The theoretical foundation for the formula is the
Hoeffding bound [de la Higuera 2010, p. 199]: if the frequencies f1, f2 are generated
from the same Binomial distribution, the test is passed with probability at least
(1−α)2. Two states can be merged if the test is passed for all frequencies. Smaller
values of α mean laxer bounds on the difference between frequencies generated
from the same distribution, and thus easier merging.

Algorithm 3.5: ALERGIA-TEST.
Input: f1, n1, f2, n2, α > 0
Output: a Boolean indicating whether f1

n1
and f2

n2
are sufficiently close

γ ←
∣∣∣ f1
n1
− f2

n2

∣∣∣;
return

[
γ <

(√
1
n1

+
√

1
n2

)
·
√

1
2 ln 2

α

]

We can now turn to the description of the ALERGIA algorithm (Algorithm
3.7). Given a sample S of strings, it starts by building a prefix tree acceptor for
this sample. Subsequently, certain states are marked as Red or Blue. The Red
states are the ones which are certainly going to be part of the resulting automaton.
The Blue states are candidates for merging with a Red state. Initially, the set
of Red states consists only of the initial state, corresponding to the empty prefix,
while the set of Blue states consists of all the children of the initial state.

The algorithm proceeds by iteratively choosing a Blue state qb and attempt-
ing to merge it with one of the Red states. If no merge is possible, qb is ‘promoted’,
i.e. it becomes itself a Red state. At the end of each iteration, the set of Blue

50 Chapter 3. Morphology as a System of String Transformations

Algorithm 3.6: ALERGIA-COMPATIBLE.
Input: an FFA A, two states qu, qv, α > 0
Output: qu and qv compatible?
Correct← true;
if ¬ALERGIA-TEST(FPA(qu),FREQA(qu),FPA(qv),FREQA(qv), α) then

Correct← false;
end
for a ∈ Σ do

if ¬ALERGIA-TEST(δfr(qu, a),FREQA(qu), δfr(qv, a),FREQA(qv), α)
then

Correct← false;
end

end
return Correct

states is updated to include all children of Red states, which are not Red states
themselves. The loop terminates if there are no Blue states left.

The parameter t0 denotes the minimum frequency of a state to be considered
for merging. For states with low frequency, we assume to have too little information
to make any statistically informed decision on whether to merge them. In order to
avoid overgeneralization, we leave such states out.

Algorithm 3.7: ALERGIA.
Input: a sample S, α > 0, t0
Output: an FFA A
A ← FPTA(S) ;
Red← {qε} ;
Blue← {qa : a ∈ Σ ∩Pref(S)} ;
while CHOOSE qb from Blue such that FREQ(qb) t0 do

if ∃qr ∈ Red : ALERGIA-COMPATIBLE(A, qr, qb, α) then
A ← STOCHASTIC-MERGE(A, qr, qb)

else
Red← Red ∪ {qb}

end
Blue← {qua : ua ∈ Pref(S) ∧ qu ∈ Red} \Red

end
return A

3.3. Rule Extraction 51

3.3 Rule Extraction

The first step to learning systematic structural correspondences between words is
the extraction of candidate patterns from pairs of words which are likely to be
morphologically related, i.e. sufficiently similar in terms of string edit distance.
This task will be achieved in two stages: finding pairs of similar words (Sec. 3.3.1)
and extraction of rules from word pairs (Sec. 3.3.2). The result of those two steps
combined is a directed graph, in which words are vertices and the postulated mor-
phological relations edges. A filtering of the graph according to some simple criteria
(Sec. 3.3.3) removes a lot of noise and greatly diminishes the density of the graph.
Placing further restrictions on admissible graph edges can introduce a certain de-
gree of supervision, up to fully supervised training (Sec. 3.3.4).

3.3.1 Finding Pairs of Similar Words

For the task of finding pairs of similar words, we employ a slightly modified version
of the FastSS algorithm [Bocek et al. 2007]. In its original version, the algorithm
finds all pairs of words with Levenshtein distance8 at most k in a given word
list. It works by creating a deletion neighborhood for each word, consisting of all
substrings obtainable by performing up to k deletions on the given word. The words
are subsequently grouped according to the substrings (e.g. by sorting or hashing).
Finally, the Levenshtein distance is computed for each pair of words sharing a
substring. For small k (¬ 3), the algorithm has been shown to outperform several
alternative approaches, like Neighborhood Generation or n-gram cosine similarity,
among others.

For the purpose of discovering potential morphological rules, it is reasonable
to modify the notion of edit distance. Firstly, morphological rules usually oper-
ate on groups of consecutive letters, rather than single letters independently, so
deletion or substitution of a segment of consecutive letters should yield higher sim-
ilarity than deletion or substitution of the same number of non-consecutive letters.
Secondly, although we are going to permit word-internal alternations, more change
should be permitted at the beginning and at the end of words, since that is where
most morphological rules operate. Bearing in mind the representation (3.1), let laffix

denote the maximum length of a morphological constant at the beginning or the

8The Levenshtein distance, a.k.a. string edit distance [Levenshtein 1966; Wagner and Fischer
1974] between two strings is the minimum number of elementary edit operations, i.e. deletions,
insertions or substitutions of a single symbol, needed to transform one of the strings into the
other.

52 Chapter 3. Morphology as a System of String Transformations

0start 1 2 3 4 5

6789

10 11 12 13 14 15

?:δ ?:δ ?:δ ?:δ ?:δ

0

0

0

0

0

?

?

?:δ?:δ?:δ

0

0

0?

?

?:δ ?:δ ?:δ ?:δ ?:δ

0

0

0

0

0

Figure 3.5: The transducer S1 for generating a deletion neighborhood.

end of a word (a0, b0, an, bn in (3.1)), linfix the maximum length of a morphological
constant inside the word (ai, bi for 0 < i < n in (3.1)) and kmax the maximum
number of variables. In order to generate pairs which are related by a rule satisfy-
ing this constraint, we obtain the following constraints on a deletion environment:
deleting up to laffix consecutive letters at the beginning and end of the word, and
up to linfix consecutive letters in at most kmax − 1 slots inside the word. The usual
setting for those parameters, which covers a vast majority of morphological rules
encountered in practice, is laffix = 5, linfix = 3, kmax = 2.

Such settings allow for deletion of up to 13 letters in total, so that even for
middle-length words it would consider all pairs to be similar. In order to prevent
this, we introduce an additional constraint: the total amount of deleted characters
must be smaller than half of the word’s length. In this way, we can consider long
affixes, but only if enough of the word is still left to form a recognizable stem.

With all those constraints, computing a deletion neighborhood of a word becomes
a complex operation. It is therefore helpful to visualize and implement it using
transducers. We will construct the transducer S mapping words to their deletion

3.3. Rule Extraction 53

start

. . .

. . .

????

?

?

? ? ? ?

δ:0δ:0δ:0δ:0

δ:0

δ:0

δ:0 δ:0 δ:0 δ:0

Figure 3.6: The filter S2 ensuring, that no more than the half of a word is deleted.

neighborhoods as a composition of two simpler transducers: S = S1 ◦ S2. The
transducer S1 (Fig. 3.5) performs the deletions, substituting a special symbol δ
for each deleted character. The transducer consists of segments, corresponding to
the deleted sequences: states 0-5 represent the prefix, 10-15 the suffix and 7-9 the
infix. Between each pair of segments, an arbitrary number of identity mappings is
performed (state sequences 5-6 and 9-10). The epsilon transitions, for example from
states 0-4 to 5, correspond to a less-than-maximum number of deletions in a given
slot. It can easily be seen that changing e.g. the parameter laffix simply corresponds
to altering the length of the top and bottom chains, just as linfix correspond to the
length of the middle chain and kmax − 1 to the number of such middle chains.

The transducer S2 (Fig. 3.6) takes the output of S1 and checks whether the
number of deletions is smaller than the number of remaining characters. As the
general formulation of this problem cannot be solved by a finite-state machine, it
requires a bound on word length. In my implementation, I restrict the maximum
word length to 20 characters, but it is easy to change this parameter. The states of
S2 correspond to the difference between the number of letters and the number of
deletions seen so far. The states above the initial state correspond to positive, and
the ones below to negative values. Furthermore, S2 removes the deletion symbols
and returns the substring consisting of the remaining letters.

The composition S1 ◦S2 and a subsequent determinization and minimization
yield a significantly more complex transducer S, with 129 states and 240 transi-
tions. Thanks to the FST algebra, we do not have to understand this one.

54 Chapter 3. Morphology as a System of String Transformations

We can now generate all pairs of similar words from a lexicon automaton L by
performing the following composition:

P = (L ◦ S) ◦ (L ◦ S)−1 (3.22)

There are various ways to implement this in practice. Computing the composition
directly is usually not feasible because of high memory complexity. One possibility
is to use S for substring generation, but otherwise proceed as in the original FastSS
algorithm: store the words and substrings in an index structure, either on disk or
in memory, then retrieve words for each substring. Another possibility is to use
S to generate substrings for a given word and then look the substrings up in
the transducer (L ◦ S)−1 to obtain similar words. The latter composition can be
computed statically. While the second approach is significantly slower, it has an
advantage in providing a way to retrieve all words w′ similar to a given word w at
once. It is thus better suited for parallelization, especially in case the pairs (w,w′)
are subject to further processing.

3.3.2 Extraction of Rules from Word Pairs

Given a pair (w,w′) of string-similar words, we want to extract morphological rules
modeling the difference between those words. For this purpose, we first align the
words on character-to-character basis and then attribute each character mapping
either to a morphological constant or a variable.

Algorithm 3.8 is used to compute the optimal alignment between two words.
It is a variant of the well-known dynamic programming algorithm for computing
edit distance [Wagner and Fischer 1974]. In addition to the distance matrix D,
three further matrices are used. Ξ remembers the last edit operation at each point.
It can be used to reconstruct the optimal alignment after having computed the edit
distance. Beginning in the bottom right corner, the arrows in Ξ show the optimal
path. The matrices X and Y contain the character that is consumed respectively
from word w or w′ by the current edit operation.

After building the matrices D,Ξ, X, Y , the function Extract-alignment
(Algorithm 3.9) walks the path from the bottom right to the top left corner by
following the arrows in matrix Ξ. At each step, a pair of characters from the
corresponding cells in matrices X and Y is picked as an element of the alignment.

The workings of Algorithm 3.8 are illustrated in Figure 3.7. In an actual
implementation, there is no need to store the matrices Ξ, X, Y explicitly, as the

3.3. Rule Extraction 55

Algorithm 3.8: Aligning similar words with minimum number of edit
operations.

Input: w,w′ – string-similar words
Output: u, v – sequences of characters representing the optimal alignment
d0,0 ← 0 ; x0,0 ← ε ; y0,0 ← ε ; ξ0,0 ← ‘?’ ;
for i← 1 to |w|+ 1 do

d0,i ← d0,(i−1) + 1 ; xj,i ← wi ; yj,i ← ε ; ξj,i ← ‘← ’ ;
end
for j ← 1 to |w′|+ 1 do

dj,0 ← d(j−1),0 + 1 ; xj,i ← ε ; yj,i ← w′j ; ξj,i ← ‘ ↑ ’ ;
for i← 1 to |w|+ 1 do

dj,i ← min
[
d(j−1),i + 1, dj,(i−1) + 1, d(j−1),(i−1) + δ(wi, w′j)

]
;

if dj,i = d(j−1),(i−1) + δ(wi, w′j) then
xj,i ← wi ; yj,i ← w′j ; ξj,i ← ‘↖ ’ ;

else if dj,i = dj,(i−1) + 1 then
xj,i ← wi ; yj,i ← ε ; ξj,i ← ‘← ’ ;

else
xj,i ← ε ; yj,i ← w′j ; ξj,i ← ‘ ↑ ’ ;

end
end

end
u, v ← Extract-alignment(X, Y,Ξ, |w|, |w′|) ;
return u, v

Algorithm 3.9: Extract-alignment.
Input: X, Y,Ξ, n,m
Output: u, v – alignment
i← n ; j ← m ; k ← 0 ;
while i > 0 or j > 0 do

uk ← xj,i ; vk ← yj,i ; k ← k + 1 ; i′ ← i ;
if ξj,i ∈ {↖,←} then

i← i− 1 ;
end
if ξj,i′ ∈ {↖, ↑} then

j ← j − 1 ;
end

end
return reverse(u),reverse(v)

56 Chapter 3. Morphology as a System of String Transformations

D =

t r i f f t

0 1 2 3 4 5 6
g 1 1 2 3 4 5 6
e 2 2 2 3 4 5 6
t 3 2 3 3 4 5 5
r 4 3 2 3 4 5 6
o 5 4 3 3 4 5 6
f 6 5 4 4 3 4 5
f 7 6 5 5 4 3 6
e 8 7 6 6 5 4 4
n 9 8 7 7 6 5 5

Ξ =

t r i f f t

? ← ← ← ← ← ←
g ↑ ↖ ↖ ↖ ↖ ↖ ↖
e ↑ ↖ ↖ ↖ ↖ ↖ ↖
t ↑ ↖ ↖ ↖ ↖ ↖ ↖
r ↑ ↑ ↖ ← ↖ ↖ ↖
o ↑ ↑ ↑ ↖ ↖ ↖ ↖
f ↑ ↑ ↑ ↖ ↖ ↖ ←
f ↑ ↑ ↑ ↖ ↖ ↖ ←
e ↑ ↑ ↑ ↑ ↑ ↑ ↖
n ↑ ↑ ↑ ↑ ↑ ↑ ↖

X =

t r i f f t

ε t r i f f t
g ε t r i f f t
e ε r r i f f t

t ε t r i f f t
r ε ε r i f f t

o ε ε ε i f f t

f ε ε ε i f f t

f ε ε ε i f f t

e ε ε ε ε ε ε t

n ε ε ε ε ε ε t

Y =

t r i f f t

ε ε ε ε ε ε ε
g g g g g g g g

e e e e e e e e

t t t t t t t t
r r r r ε r r r
o o o o o o o o

f f f f f f f ε

f f f f f f f ε

e e e e e e e e
n n n n n n n n

()u = ε ε t r i f f ε t
()v = g e t r o f f e n

Figure 3.7: Matrices D, Ξ, X, Y and aligned sequences u, v after executing Algo-
rithm 3.8 on the word pair (trifft, getroffen). The shaded cells correspond to the
optimal alignment, which is extracted by Algorithm 3.9.

3.3. Rule Extraction 57

values on the optimal path can be easily reconstructed while walking through D.
However, they are shown here for the purpose of presentation and simplifying the
pseudocode.

Given the alignment, we construct rules by turning sequences of identity map-
pings into variables. As identity mappings may also be parts of constants (describ-
ing the context in which a rule applies), many different rules can be extracted
from a single pair. In order to compute them, we will use an auxiliary object called
mask. A mask is a sequence of dashes and asterisks, like --**-**--. Applied to an
alignment, it expresses that mappings at a position marked with a dash are parts
of a constant, while mappings at a position marked with an asterisk are parts of
a variable. Thus, applied to the mapping (u, v) from Figure 3.7, the above mask
yields the rule /X1iX2t/→ /geX1oX2en/.

Algorithm 3.10 extracts the rules from a pair of words using the alignment
algorithm described above. As converting a mask to a rule, realized by the func-
tion Make-Rule-From-Mask, is straightforward, the description of this step is
skipped. Thus, the algorithm describes computing the different masks from a given
alignment. The parameters kmax, laffix, linfix are used with the same meaning as in
previous section.

The masks are computed incrementally on prefixes of the alignment. A pri-
ority queue is used to store the unfinished masks. Each queue item is a sextuple
〈s, i, k, lx, ly, z〉, with s being the current mask prefix, i the position in the alignment
to be considered next, k the current number of variables (consecutive sequences of
asterisks), lx and ly the lengths of the currently constructed constants (respectively
on the left and right side) and z a Boolean variable stating, whether the currently
constructed constant is a suffix (i.e. if z = True, no more asterisks are allowed).

Initially, the queue contains one item, corresponding to an empty mask (line
3). In each iteration, one element is taken from the queue and considered. If i > |u|,
the whole alignment has been processed and s contains a complete mask. In this
case, the resulting rule is added to the result set (line 7). Otherwise, the next
character pair in the alignment (ui, vi) is considered and either a dash or an asterisk
is appended to the mask. As there might be multiple possible results of this step,
each possibility is added to the queue for further processing. The various cases arise
from the requirement on the mask to comply with the restrictions kmax, laffix, linfix.

First, let us consider the case where ui = vi (lines 9-27). The pair (ui, vi)
can then be added either to a constant or to a variable. The first two subcases
consider appending the pair to either a prefix (lines 10-12) or a suffix (lines 13-15).

58 Chapter 3. Morphology as a System of String Transformations

Algorithm 3.10: Extracting rule candidates from pairs of similar words.
Input: w,w′ – string-similar words; kmax – max. number of variables;

linfix, laffix – max. length of infixes/affixes.
Output: R – a set of rules extracted from (w,w′)

1 u, v ← Align(w,w′);
2 q ← Queue(); R← ∅;
3 Enqueue(q, 〈ε, 1, 0, 0, 0,False〉);
4 while not Empty(q) do
5 〈s, i, k, lx, ly, z〉 ← Dequeue(q);
6 if i > |u| then
7 R← R ∪ {Make-Rule-From-Mask(u, v, s)};
8 else
9 if ui = vi then
10 if k = 0 ∧max{lx, ly} < laffix then
11 Enqueue(q, 〈s · ‘-’, i+ 1, k, lx + 1, ly + 1, z〉);
12 end
13 if k > 0 ∧max{lx, ly} < laffix then
14 Enqueue(q, 〈s · ‘-’, i+ 1, k, lx + 1, ly + 1,True〉);
15 end
16 if not z then
17 if k > 0 ∧max{lx, ly} < linfix then
18 Enqueue(q, 〈s · ‘-’, i+ 1, k, lx + 1, ly + 1, z〉);
19 end
20 if si−1 6= ‘*’ then
21 if k < kmax then
22 Enqueue(q, 〈s · ‘*’, i+ 1, k + 1, 0, 0, z〉);
23 end
24 else
25 Enqueue(q, 〈s · ‘*’, i+ 1, k, 0, 0, z〉);
26 end
27 end
28 else
29 if (k = 0 ∧max{lx, ly} < laffix) ∨max{lx, ly} < linfix then
30 Enqueue(q, 〈s · ‘-’, i+ 1, k, lx + 1− δ(ui, ε), ly + 1− δ(vi, ε), z〉);
31 else if max{lx, ly} < laffix then
32 Enqueue(q, 〈s · ‘-’, i+ 1, k, lx + 1− δ(ui, ε), ly + 1−

δ(vi, ε),True〉);
33 end
34 end
35 end
36 return R

3.3. Rule Extraction 59

u ε ε t r i f f ε t
v g e t r o f f e n

/X1iX2t/→ /geX1oX2en/ – – * * – * * – –
/X1ifX2t/→ /geX1ofX2en/ – – * * – – * – –
/X1iX2ft/→ /geX1oX2fen/ – – * * – * – – –
/X1riX2t/→ /geX1roX2en/ – – * – – * * – –
/tX1iX2t/→ /getX1oX2en/ – – – * – * * – –
/tX1iX2ft/→ /getX1oX2fen/ – – – * – * – – –
/X1riX2ft/→ /geX1roX2fen/ – – * – – * – – –
/X1rifX2t/→ /geX1rofX2en/ – – * – – – * – –

/Xifft/→ /geXoffen/ – – * * – – – – –
/triXt/→ /getroXen/ – – – – – * * – –

/tX1ifX2t/→ /getX1ofX2en/ – – – * – – * – –
/triXft/→ /getroXfen/ – – – – – * – – –
/tXifft/→ /getXoffen/ – – – * – – – – –

Figure 3.8: Rules extracted from the pair (trifft, getroffen) by Algorithm 3.10 and
their corresponding masks, sorted by generality.

Furthermore, it can also be added to an infix (lines 17-19) or to a variable (lines
20-27). The latter two subcases are only possible if z is false, as an infix must
be followed by a variable (otherwise it would be a suffix) and the last subcase
itself extends a variable, i.e. adds an asterisk to the mask. In the last subcase, we
also distinguish whether the variable has to be newly created (lines 21-23), or an
already existing variable is extended (lines 24-26).

The second major case is ui 6= vi (lines 28-34). Then, the pair (ui, vi) can only
be added to a constant. The two subcases ensure that the currently constructed
constant does not exceed the maximum length. The first subcase (lines 29-30)
accounts for a prefix or an infix and the second (lines 31-32) for a suffix.

In lines 30 and 32, δ(·, ·) denotes the Kronecker delta, which is 1 if both
arguments are equal and 0 otherwise. This is due to the fact that adding an epsilon
to a constant does not increase its length (as nothing is added). Those terms can
be skipped in the case ui = vi, because the alignment must not contain pairs (ε, ε).

As the case ui = vi has two possible outcomes (adding either a dash or an
asterisk), concern may arise whether the algorithm has exponential complexity.
However, the limitation of at most kmax sequences of consecutive asterisks and at
most linfix consecutive dashes between asterisks greatly constrain the number of
possibilities, especially as those parameters are typically set to very small values
(kmax = 2, linfix = 3). With such settings, no runtime problems arise.

Figure 3.8 illustrates the results of Algorithm 3.10 for the pair (trifft, getrof-

60 Chapter 3. Morphology as a System of String Transformations

rank rule frequency example

1 /Xn/→ /X/ 8555 Epoche → Epochen
2 /X/→ /Xn/ 8555 Epochen → Epoche
3 /Xen/→ /Xe/ 7465 aufgehenden → aufgehende
4 /Xe/→ /Xen/ 7465 aufgehende → aufgehenden
5 /Xen/→ /X/ 6030 Abkürzungen → Abkürzung
6 /X/→ /Xen/ 6030 Abkürzung → Abkürzungen
7 /Xe/→ /X/ 5640 niedrige → niedrig
8 /X/→ /Xe/ 5640 niedrig → niedrige
9 /Xs/→ /X/ 4917 Erdbebens → Erdbeben

10 /X/→ /Xs/ 4917 Erdbeben → Erdbebens
. . .

53 /Xen/→ /Xt/ 1194 nutzen → nutzt
54 /Xen/→ /Xes/ 1194 einfachen → einfaches

. . .
746 /X1aX2/→ /X1oX2/ 196 unterbrachen → unterbrochen
747 /X1tX2/→ /X1mX2/ 195 warten → warmen
748 /X1nX2/→ /X1lX2/ 195 Zähnen → Zählen
749 /X1mX2/→ /X1tX2/ 195 warmen → warten
750 /X1lX2/→ /X1nX2/ 195 Zählen → Zähnen
751 /X1geX2t/→ /X1X2en/ 195 zugefügt → zufügen
752 /{CAP}X1X2/→ /X1schX2/ 195 Allergie → allergische
753 /X1schX2/→ /{CAP}X1X2/ 195 allergische → Allergie
754 /X1äX2er/→ /X1aX2/ 195 Häuser → Haus
755 /X1aX2/→ /X1äX2er/ 195 Haus → Häuser
756 /gX/→ /ausgX/ 194 gegraben → ausgegraben
757 /ausgX/→ /gX/ 194 ausgegraben → gegraben

Table 3.2: Example rules extracted from the German Wikipedia.

fen). The parameter values are set to laffix = 5, linfix = 3, kmax = 2. All rules
satisfying those requirements are extracted. The rules describe the transformation
within the word pair with various degrees of generality: the more asterisks a mask
contains, the more general is the resulting rule.

Table 3.2 shows example rules extracted from a corpus of 1 million sentences
from German Wikipedia, where only word types with frequency of at least 8 were
considered. It can be seen in the bottom of the table that patterns consisting of
a single letter substitution and corresponding to accidental word similarity can
be fairly frequent and get mixed with correct and important morphological rules,
like the one deriving Häuser from Haus. For this reason, frequency alone is not a
good criterion for determining whether a pattern is truly morphological. This is the
motivation for the probabilistic model that will be presented in the next chapter.

3.3. Rule Extraction 61

3.3.3 Filtering the Graph

The graph extracted by the above two steps contains a lot of noise. Infrequent
patterns either correspond to accidental string similarity, or are very specific, like
the last rule in Fig. 3.8. For learning morphology however, only highly regular,
general and frequent patterns are of interest. In order to filter out most of the
noise, the criteria listed below are applied.

Minimum rule frequency. In order to be considered candidate for a morpho-
logical rule, a pattern has to be supported by a sufficient number of examples.
Especially patterns occurring only once are poor candidates. In my experiments, I
usually set this threshold to a value between 3 and 10.

Maximum number of rules. In many practical cases, capturing all rules is not
really important. The number of rules (or, equivalently, edges) may however affect
the runtime and resource usage of statistical inference algorithms used in further
processing. For this reason, it is beneficial to keep the number of rules bounded.
The rules are selected according to frequency: restricting the maximum number
to n results in keeping only the n most frequent rules. This parameter is usually
set to 10, 000, which results in acceptable processing times, while the likelihood of
missing an important morphological rule is still very low. However, the plausible
value might depend on the size of the training data.

Maximum number of edges per word pair. As Figure 3.8 illustrates, one
word pair can yield many rules, most of them being too specific and thus useless. In
case the overspecific rules are frequent, they may survive the two previous filtering
steps and even have harmful effects on further processing, by taking irrelevant
details into account. In order to prevent that, we allow only the top-n rules for
each word pair, ordered by frequency. This parameter is usually set to between
3 and 5. For supervised learning, slightly higher values may be appropriate in
order to capture irregularities and exceptions. On the other hand, higher values
for unsupervised learning result in harmful random overfitting.

3.3.4 Supervised and Restricted Variants

Supervised training. The approach for extracting candidate edges described
so far can be easily modified for the task of supervised learning. In this variant,
instead of a plain list of words, we obtain a list of word pairs (w,w′), where w′ is

62 Chapter 3. Morphology as a System of String Transformations

supposed to be derived from w. We then simply skip the FastSS step and apply
Algorithm 3.10 directly to the pairs provided by the training data. The result is a
list of triples (w,w′, r), with (w,w′) belonging to the training data and r being a
rule.

Left and right restrictions. The supervised training approach described above
is equivalent to placing a restriction on admissible edges. Only edges (w,w′, r), for
which (w,w′) belong to the training data, are allowed.

A similar, but more lax restriction can also be formulated: let VL denote the
set of words which are allowed on the left side of rules, and VR the set of words
which are allowed on the right side. Then, we can filter the extracted edges by
allowing only edges (w,w′, r) satisfying: w ∈ VL ∧ w′ ∈ VR. A canonical example
for this variant is learning lemmatization from an unlemmatized corpus, when an
additional list of lemmas is provided, as it is done in Sec. 5.3. In this case, VL is the
list of lemmas and VR are the word forms from the corpus that are not contained
in VL.

Chapter 4

Statistical Modeling and Inference

The purpose of this chapter is to define a generative probabilistic model of vo-
cabularies (sets of words) together with their morphological analysis, much like it
is done by Morfessor [Creutz and Lagus 2005a]. However, instead of segmenting
words, the morphological relationships will be expressed as an application of a
whole-word rule. In consequence, the morphological analysis takes the form of a
directed graph – more specifically, a branching, i.e. a directed forest. The model
is inspired by the Minimum Description Length1 principle: high probability is at-
tributed to analyses that make use of morphological rules to eliminate redundancies
among related words.

In Sec. 4.1 I provide a high-level description of the model. For some of its
components, multiple functions are possible – proposals for them are described in
Sec. 4.2. Finally, in Sec. 4.3, I describe inference methods used to fit the model
parameters to the data.

4.1 Model Formulation

Our present aim is to introduce a probabilistic model defining a probability dis-
tribution over graphs such as the one depicted in Figure 4.1, which describe the
derivation relation between words. The vertices of the graph are words, while the
edges are triplets consisting of a source word, a target word and a rule. The model
thus defines a joint probability of vertices and edges.

The graph illustrates a view on the structure of the lexicon, in which only

1However, the use of continuous parameter spaces makes it difficult to apply MDL directly,
so the actual inference is based on the somewhat related methods of Maximum Likelihood and
Maximum A-Posteriori likelihood.

63

64 Chapter 4. Statistical Modeling and Inference

relation related relate

relates

relations

relational

correlation

relatedness

/Xtion/→ /Xted/ /Xed/→ /Xe/

/Xed/→ /Xes/

/X/
→ /Xs/

/X/→ /Xal/

/X/→
/corX/

/X/
→ /Xness/

Figure 4.1: An example tree of word derivations.

the root words are listed explicitly. The edges correspond to the information that
a rule applies to a certain word. From an information-theoretic perspective, this
results in a compression of information compared to the case where each word had
to be listed explicitly and independently. The redundancy arising from structural
similarities between related words is thus avoided.

4.1.1 The Basic Model

Let V denote the set of vertices of the graph, R the set of known morphological
rules, E ⊂ V × V × R the set of labeled edges and V0 ⊆ V the set of root nodes.
Furthermore, let θ = 〈θroot, θedge〉 denote parameters of the model components,
which will be explained in Sec. 4.2. The joint probability of vertices and edges
given rules and model parameters is defined as follows:

P (V,E|R,θ) ∝
∏
v∈V0

λV Proot(v|θroot)

×
∏
v∈V

∏
r∈R

∏
v′∈r(v)

pedge(v, v
′, r|θedge) if (v, v′, r) ∈ E

1− pedge(v, v′, r|θedge) if (v, v′, r) /∈ E

(4.1)

The model consists of two components: a root distribution Proot and an edge
probability function pedge. The root distribution is a probability distribution over
strings, defined over whole of Σ+. It is used to generate the root words in the
graph. Each word in the graph generates a set of possible edges, which may arise
by applying a known rule to the word in consideration to derive a new word.
The edge probability function pedge assigns a probability to a possible edge. Note
that pedge is not itself a probability distribution: it does not sum to one over all

4.1. Model Formulation 65

possible edges. Rather, for each possible edge (v, v′, r), pedge generates a Bernoulli
distribution with success probability pedge(v, v′, r|θedge). λV is a hyperparameter
corresponding to the expected number of root nodes. Its inclusion is explained in
Sec. 4.1.2.

4.1.2 Distributions on Subsets of a Set

Let A be a countable set and f : A 7→ [0, 1] be a probability distribution function
on A. Then we can define a probability distribution g on finite subsets of A in the
following way:

g(A) ∝ P (S = |A|) · |A|! ·
∏
a∈A

f(a) (4.2)

The model consists of drawing a size S of the set and then drawing S elements
according to f . The factorial term is due to the fact that the elements can be chosen
in any order. Note that the right side of (4.2) does not sum to one over all finite
subsets, because the set elements are drawn with replacement, but multisets are
not included in the domain. However, for our purposes it is sufficient to know the
distribution up to a normalizing constant.

If we assume that the set size S has Poisson distribution, the formula further
reduces to:

g(A) ∝ e−λ
λ|A|

|A|!
· |A|! ·

∏
a∈A

f(a) ∝
∏
a∈A

λf(a) (4.3)

with λ being the expected set size. In this formulation, we can also view λ as an
arbitrarily defined marginal cost of adding one more element to the set. Especially
if we want to model a preference of small sets (e.g. when modeling the set of mor-
phological rules), even λ < 1 might be a reasonable choice. In this interpretation,
it obviously does not have to reflect the expected set size in real data. Rather, as
usual in Bayesian statistics, we use the hyperparameters to control the behavior of
the model and drive it into the desired direction.

4.1.3 Penalties on Tree Height

The model defined by (4.1) contains one serious flaw: the edge probability is inde-
pendent of the depth in the tree, at which the edge occurs. Thus, while Fig. 4.1
presents a desirable picture of a tree with small height, the trees actually produced
by the model too often resemble the one depicted in Fig. 4.2: the derivations are
arranged almost in a chain, producing a tree with unnecessarily large height and

66 Chapter 4. Statistical Modeling and Inference

relation relations relational correlation

related relates relate

relatedness

/X/→ /Xs/ /Xs/→ /Xal/ /Xal/→ /corX/

/corXion/→ /Xed/

/Xed/→ /Xes/ /Xs/→ /X/

/X/→
/Xness/

Figure 4.2: A ‘bad’ tree caused by the lack of a constraint on tree height.

small mean node degree. There is no incentive for the model to prefer the tree from
Fig. 4.1 over the one from Fig. 4.2. While this may not matter for some applications
(like vocabulary expansion), it might be fatal for others, especially those involving
graph clustering.

The solution proposed here is, admittedly, going to be an ad-hoc one. It
consists of introducing an additional parameter (let us call it α), which is a number
between 0 and 1. For each node in the graph being at depth d, there is a probability
(1 − αd), that this node is a leaf. Thus, if the node contains outgoing edges, an
additional factor αd has to be included in the calculations.

4.1.4 Part-of-Speech Tags

The model formulated so far takes only string forms of words into account. There
are two different ways to modify the model so that it includes POS tags, as shown
in rule (3.9). For both of them, let T denote a finite set of possible tags. The
presumably most obvious way is to treat pairs (v, t) of a word (character string)
v ∈ Σ+ and a tag t ∈ T as graph vertices. The rules are then functions Σ+×T 7→
2Σ+×T and the edges are quintuples 〈v, t, v′, t′, r〉 representing the derivation of a
tagged word (v′, t′) from (v, t) with the rule r. Let θ contain all numeric parameters,
i.e. in this case θ = 〈θroot, θroottag, θedge〉. The model is then formulated as follows:

P (V,E|R, θ) =
∏

(v,t)∈V0

Proot(v|θroot)Proottag(t|v, θroottag)

×
∏

(v,t)∈V

∏
r∈R

∏
(v′,t′)∈r(v,t)

pedge(v, t, v
′, t′, r|θedge) if (v, t, v′, t′, r) ∈ E

1− pedge(v, t, v′, t′, r|θedge) if (v, t, v′, t′, r) /∈ E
(4.4)

4.1. Model Formulation 67

Proottag is an additional model component: a distribution of tag given the string
form of a word, provided that it is a root in the graph. The tags of non-root nodes
are determined by the rule that derives the respective node. Note that the model in
this formulation permits tag ambiguity: each pair of a word form and a tag yields
a different node. All tagged models employed in Chap. 5 use this formulation.

Another way of formulating a model with tags is to group the tags of all words
in a separate variable, named T . In this variant, nodes and edges are defined as in
(4.1), i.e. there is one graph node per word form (i.e. string). The rules, however,
are tagged as in (4.4). T ∈ T V is a vector indexed by elements of V , attributing
a tag to each word. Thus, Tv denotes the tag of word v. The graph probability is
computed in the same way as previously, yielding the following formula:

P (V, T,E|R, θ) ∝
∏
v∈V0

Proot(v|θroot)Proottag(Tv|v, θroottag)

×
∏
v∈V

∏
r∈R

∏
(v′,t′)∈r(v,Tv)

t′=Tv′

pedge(v, v
′, r|θedge) if (v, v′, r) ∈ E

1− pedge(v, v′, r|θedge) if (v, v′, r) /∈ E

(4.5)

Although this formulation might seem less intuitive, it is useful if tags are to be
treated as latent variables, as in the approach developed in Sec. 6.2. Contrary to
the previous variant, no tag ambiguity is allowed here: the graph contains one node
per word and T assigns one tag to each node.

4.1.5 Numeric Features

Also numeric word features can be incorporated into the generative model. The
two features easily obtainable from unannotated corpora are word frequency and
word embeddings.

Let K ∈ NV be a vector of frequencies for words from V . To simplify the
notation, we will denote the frequency of words v, v′ with k, k′ (instead of Kv, Kv′).
Then, K has the following probability distribution:

P (K|V,E, θrootfreq, θedgefreq) =
∏
v∈V0

Prootfreq(k|θrootfreq)

×
∏

(v,v′,r)∈E
Pedgefreq(k′|k, r, θedgefreq)

(4.6)

Similarly, for word embeddings, let us assume that each word v has an asso-
ciated d-dimensional vector of real numbers. Let X ∈ RV×d be a matrix of feature

68 Chapter 4. Statistical Modeling and Inference

values and x, x′ the feature vectors associated with words v, v′, respectively. The
probability density for X is expressed as follows:

f(X|V,E, θrootvec, θedgevec) =
∏
v∈V0

frootvec(x|θrootvec)
∏

(v,v′,r)∈E
fedgevec(x′|x, r, θedgevec)

(4.7)

In case further numeric features are available, they could be included using
the same pattern. In general, we always need two distributions: one for modeling
the feature values of root nodes and another for modeling the feature values of
derived nodes given the value of the respective feature for the source node and the
deriving rule. Because the model introduced here is generative, the feature values
of derived nodes have to be modeled explicitly. Discriminative models, like the one
of Luo et al. [2017], allow more flexibility in this regard, as it is possible to model a
one-dimensional similarity measure (like cosine similarity) of the source and target
vector, instead of modeling whole vectors.

High-dimensional numeric features correspond to the product of a large num-
ber of one-dimensional densities, which may yield very small likelihoods. Therefore,
it is sometimes beneficial to multiply their contribution to the overall log-likelihood
by a weight, which reduces the influence of the feature. For example, 30-dimensional
word embeddings are weighted in the experiments with weight 0.1, so that their
contribution is equivalent to a three-dimensional feature.

4.2 Model Components

The model introduced in the previous section consists of various component func-
tions, like Proot, pedge etc. For each of those functions, multiple alternatives can be
considered. As each of the components can be changed independently of others,
this produces a large number of possible configurations. Thus, not all of them are
evaluated in the subsequent chapters.

Some of the models utilize neural networks to model complex transformations
in a flexible, trainable way. Those should be understood as ‘näıve’, proof-of-concept
models. Not much work was invested in the network architectures, as this would
inflate the scope of this thesis. The networks were implemented using the keras2

library in Python.

The neural network models for edge probabilities and edge word embeddings
produce embeddings for morphological rules, which could be interesting on their

2www.keras.io

www.keras.io

4.2. Model Components 69

own. Similar rule embeddings in the edge model correspond to rules that are ap-
plied to similar groups of words, which could be used to learn paradigms. Similar
rule embeddings in the edge vector model mean rules that conduct a similar trans-
formation on the word embedding, which could be used to detect groups of rules
with equivalent function (e.g. regular and irregular past tense formation). Those
hypotheses were however not examined in the present work and remain topic for
further research.

4.2.1 Root Models

The root models define the probability distribution Proot(v|θroot) of drawing the
word v as a root of a tree. It is a distribution over arbitrary strings and it provides
a general model of how the words of the language in question look like: which char-
acters are used, character frequencies, basic phonotactics etc., while simultaneously
avoiding to model morphology in any way.

Unigram Root Model

The simplest idea for a root model is to define a probability of each character
independently. The probability of a character sequence (i.e. a word) is then the
product of the probabilities of their characters. In order to obtain a valid probability
distribution, we have to use a special symbol ‘#’ as an end marker. The resulting
model is defined formally as follows:

Θroot = ∆Σ∪{‘#’} (4.8)

Proot(v = c1c2 . . . cn|θroot) = θroot(‘#’)
n∏
i=1

θroot(ci) (4.9)

Θroot is the parameter space of the model – in this case, it is equal to ∆Σ∪{‘#’}, i.e.
a simplex indexed with the characters from the alphabet. Each parameter value
θroot is a vector of probabilities for each character, summing to 1.

For practical reasons, it is useful to introduce a special symbol in the alphabet
corresponding to an ‘unknown’ symbol and attribute some small probability to it.
While computing the probabilities, all symbols from outside the alphabet in the
string are converted to this unknown symbol. In this way, the model assigns nonzero
probability to any character sequence.

70 Chapter 4. Statistical Modeling and Inference

ALERGIA Root Model

A probability distribution that makes statistically plausible generalizations from
the training vocabulary can be obtained by applying the ALERGIA algorithm
(Sec. 3.2.5). The resulting θroot is a Deterministic Probabilistic Automaton (DPA)
defining a distribution over strings. The parameter space Θroot is in this case the
space of all DPAs over the given alphabet.

Although the ALERGIA algorithm generalizes from the given sample, the
resulting automaton still places a lot of restrictions on the possible words, i.e. it
might attribute zero probabilities even to well-formed words of the learnt language.
It is thus helpful to interpolate it with the unigram model, using a very small
weight (e.g. 0.01) for the latter. This again ensures that every character sequence
is assigned a non-zero probability.

4.2.2 Edge Models

The edge models define a function pedge : V × V × R 7→ [0, 1], which attributes a
‘success’ probability to each edge. This is the only model component that is not a
probability distribution.

Simple Edge Model

The ‘simple’ edge model attributes a fixed probability to each rule, independent of
the word to which the rule is applied. It is thus formulated as follows:

Θedge = [0, 1]R (4.10)

pedge(v, v′, r) = θedge(r) (4.11)

Neural Network Edge Model

A slightly more sophisticated idea for an edge model is to take into account the
features of the source word (i.e. the word, to which the rule is applied), in addition
to the rule. The source word is represented by a binary vector of letter n-gram fea-
tures. The resulting edge probability is predicted by a small neural network shown
in Fig. 4.3. The n-grams used as features are usually the top-100 most frequent
word-initial or word-final n-grams across the whole corpus. The dimensionality of
the internal layers (shown in brackets) is intentionally very small in order to avoid
overfitting. Note that in a trivial case of using the embedding layer of size 1 and

4.2. Model Components 71

n-grams
of v

r id

DENSE(5)

EMBEDDING(5)

DENSE(5)

DENSE(1)

Figure 4.3: NN architecture for the edge model.

skipping the n-gram part, the NN model reduces to the ‘simple’ model. θedge are
in this case the weights of the network.

4.2.3 Tag Models

The tag models are responsible for the distribution Proottag(t|v, θroottag) of a POS
tag t given the string form of the word v. Only a distribution for the tags of the root
nodes is needed, as the tags of derived words are determined by the deriving rule.
The tag is not decomposed into single tag symbols, e.g. <NN><NOM><FEM><SING> is
one tag. The set of all possible tags is denoted by T .

Simple Tag Model

The simple tag model attributes a fixed probability to each possible tag, regardless
of the string form of the word:

Θedge = [0, 1]T (4.12)

Proottag(t|v, θroottag) = θroottag(t) (4.13)

RNN

The RNN tag model uses a neural network with a recurrent layer (Fig. 4.4) to
predict the tag probabilities from the string form of the word. It consumes the
characters of the word one by one, embeds them and feeds them to the recurrent
layer. The softmax-activated layer at the end produces a probability distribution
over tags. θroottag are the weights of the network.

72 Chapter 4. Statistical Modeling and Inference

letter

EMBEDDING(10)
SIMPLE-RNN(10)
(relu)

DENSE(|T |)
(softmax)

Figure 4.4: NN architecture for the root tag model.

4.2.4 Frequency Models

Zipf Root Frequency Model

The probability of some word type achieving a certain frequency in a corpus can
be modeled using Zipf’s law [Heyer et al. 2008, p. 91]. This results in the following
parameter-less distribution:

frootfreq(k) =
1

k(k + 1)
(4.14)

Log-Normal Edge Frequency Model

Yarowsky and Wicentowski [2000] observed that the difference of log-frequencies
(or equivalently, the logarithm of the frequency ratio) of word pairs following a
morphological pattern forms a bell curve (Fig. 4.5). Without going into much
theoretical detail, we can fit a Gaussian distribution (the default choice for bell
curves, especially if outliers are unwelcome) to this data. For an edge v r→ v′, if
k and k′ denote respectively the absolute frequencies of v and v′, we obtain the
following log-normal model of k′ given k and the parameters (µr, σ2

r) fitted for the
rule:

Θedgefreq = (R× R+)R (4.15)

fedgefreq(k′|k, r, θedgefreq) = fN (log k − log k′;µr, σ2
r) (4.16)

with fN being the Gaussian density:

fN (x;µ, σ2) =
1√

2πσ2
e−
(x−µ)2

2σ2 (4.17)

More exactly, the distribution should be discretized, which would yield the follow-
ing formula: fedgefreq(k′|k, r, θedgefreq) =

∫ k′+1
k′ fN (log k − log t;µr, σ2

r)dt. However,
in order to simplify the calculations, we assume that log k′ and log(k′ + 1) are

4.2. Model Components 73

−8 −6 −4 −2 0 2 4 6 8

0

0.1

0.2

0.3

0.4

Landen:Landes

Kreuzen:Kreuzes

abrupten:abruptes

dichten:dichtes kurzen:kurzes

fertigen:fertiges

gleichen:gleiches

log k − log k′

P
ro

ba
bi

lit
y

de
ns

it
y

Figure 4.5: The difference in log-frequencies between words on the left and right
side of the rule /Xen/ → /Xes/ in German. The dashed line is the best-fitting
Gaussian density.

sufficiently close that the Gaussian density at both those points is roughly equal.

4.2.5 Word Embedding Models

The inclusion of word embeddings in the model is motivated by the observation
that some morphological transformations (e.g. plural or comparative formation)
correspond to a regular shift of the word vector [Mikolov et al. 2013b].

Gaussian Root Vector Model

The simplest way to model our uncertainty about some vectors of real values is
to use a multivariate Gaussian distribution. The string form of the word is not
taken into account. The model is then defined by the formulas given below, with
θrootvec = 〈µ, σ2〉, both µ and σ2 being d-dimensional vectors.

Θrootvec = Rd × Rd
+ (4.18)

frootvec(x|v, θrootvec) = fMN (x;µ, diag(σ2)) (4.19)

with fMN being the multivariate Gaussian density:

fMN (x;µ,Σ) =
1√

det(2πΣ)
e−
1
2 (x−µ)Σ−1(x−µ) (4.20)

74 Chapter 4. Statistical Modeling and Inference

letter

EMBEDDING
SIMPLE-RNN
(relu)

DENSE
(tanh)

DENSE
(linear)

Figure 4.6: NN architecture for the root vector model.

As the components of an embedding vector are the outcome of dimensionality
reduction, it is reasonable to assume their independence of each other. Thus, we
use a diagonal covariance matrix, which simplifies the calculations significantly.

Gaussian Edge Vector Model

The underlying assumption of the Gaussian edge vector model is that applying a
rule r to a word with embedding vector x yields a shifted vector x+µr, where µr is
the constant shift attributed to the rule. The difference between the observed and
the expected vector is modeled as a Gaussian variable with zero mean and variance
σ2. In order to avoid overfitting (especially for rare rules), the variance is global to
the whole model, rather than local for each rule. Thus, θedgevec = 〈{µr : r ∈ R}, σ2〉.
This yields the following model:

Θedgevec = (Rd)R × Rd
+ (4.21)

fedgevec(x′|x, r, θedgevec) = fMN (x′ − x;µr, diag(σ2)) (4.22)

RNN Root Vector Model

The RNN root vector model models the distribution of embedding vectors for root
words using the neural network architecture depicted in Fig. 4.6. The vector is
predicted from the string form of the word, which is fed to the network letter by
letter.

In order to convert the predicted vector into a distribution, we again use
a multivariate Gaussian distribution. The ‘error’, i.e. the difference between the
predicted and the observed vector, is modeled as a Gaussian variable with zero
mean and covariance matrix diag(σ2). The model parameters θedgevec thus consist
of the weights of the network and the variance vector σ2.

4.3. Inference 75

x

r id

EMBEDDING(100)

DENSE
(linear)

Figure 4.7: NN architecture for the edge vector model.

Neural Network Edge Vector Model

The NN edge vector model (Fig. 4.7) is a way to model more sophisticated trans-
formations carried out on word embeddings by morphological rules. The input to
the network is the vector of the source word, as well as the rule, which is embedded
into a 100-dimensional vector space. The predicted output vector is computed by
a single linear layer from both those values. In this way, instead of simple addition,
more sophisticated ways of combining both values can be represented. The differ-
ence between the predicted and the observed vector is modeled as above, with a
zero-mean Gaussian.

4.3 Inference

The inference methods on the model presented here are based on sampling from
the distribution of graph edges, as the edges are a latent variable. In general,
this problem fits into the framework of learning in presence of hidden data, which
is formulated as follows: let X be the observed data, Y be the latent variable
corresponding to the hidden data, and θ be the model parameter. The model
defines the joint distribution P (X, Y |θ). If X and Y are discrete, like in the case
of graph structures, the likelihood is expressed as follows:

L(θ;X) = P (X|θ) =
∑
Y

P (X, Y |θ) (4.23)

A usual goal is finding a parameter θ that maximizes the likelihood. This can
be achieved by the Expectation Maximization (EM) algorithm [Dempster et al.
1977], which is based on the statement that maximizing the likelihood of the ob-

76 Chapter 4. Statistical Modeling and Inference

served data is equivalent to maximizing the following expected value:

EY |X,θ logP (X, Y |θ) (4.24)

The maximization can be achieved by picking a θ0 at random and iterating the
following computation:

θi = arg max
θ

EY |X,θi−1 logP (X, Y |θ) (4.25)

In many cases, computing the expected value directly is not possible, because
it requires summing over all possible values of Y , which might be computationally
prohibitive. Therefore, sampling approaches are often used to approximate the ex-
pectation. In particular, Markov chain Monte Carlo (MCMC) methods, that com-
pute the next point of the sample from the previous point, are useful for complex
models.

Sec. 4.3.1 contains a theoretical introduction to MCMC methods with focus
on the Metropolis-Hastings (MH) algorithm. In Sec. 4.3.2, I develop a sampler
based on the MH algorithm which can be used to draw samples of morphology
graphs in the model presented in Sec. 4.1. As some model components may require
negative examples, i.e. possible edges leading to non-existent vertices, for fitting,
I describe a method of sampling such examples in Sec. 4.3.3. The graph sampler
can be used for optimizing the model parameters (Sec. 4.3.4), as well as for model
selection, i.e. finding the optimal set of morphological rules needed to explain the
data (Sec. 4.3.5). Section 4.3.6 briefly mentions a different inference procedure,
which is based on finding a single best graph, instead of computing expectations.

4.3.1 MCMC Methods and the Metropolis-Hastings Algo-

rithm

The following introduction is based on Robert and Casella [2005]. Some definitions
and theorems contain references to their direct counterparts in the source work.
The proofs of the theorems are skipped here, as they can be found in the references.
However, for the purposes of this thesis, we will consider only the case of Markov
chains with a finite state space. This is sufficient for our applications and greatly
simplifies the presentation of the theoretical foundations.

Let X be a finite set of states and f be a probability distribution over X .
In the following, we will be interested in drawing large samples x(0), x(1), . . . , x(n),
which are representative of f . In particular, we will use the sample to approximate

4.3. Inference 77

expected values of the form:

Efh(X) =
∑
x∈X

f(x)h(x) ≈ 1
n

n∑
i=0

h(x(i)) (4.26)

In order to achieve a good approximation, the sample need not necessarily
be independent. In fact, we will work with samples, in which each point depends
on the previous one. Such sample is the outcome of a Markov chain.

Definition 4.1. Given a transition matrix K, a sequence X0, X1, . . . , Xn, . . . of
random variables is a Markov chain, denoted by (Xn), if, for any t, the conditional
distribution of Xt given Xt−1, Xt−2, . . . , X0 is the same as the distribution of Xt

given Xt−1; that is:

P (Xt|X0, X1, . . . , Xt−1) = P (Xt|Xt−1) = K(Xt−1, X) (4.27)

In the case of a finite state space,K is simply a matrix of dimensions |X |×|X |.
However, I will use the notation K(x, y) instead of kxy for better readability. As
K(x, y) is the probability of a transition from x to y, it has to satisfy the condition
∀x∈X

∑
y∈X K(x, y) = 1

Definition 4.2. A (discrete) Markov chain (Xn) is irreducible if all states com-
municate, namely if:

P (τy <∞|X0 = x) > 0 ∀x, y ∈ X (4.28)

τy being the first time y is visited.

Definition 4.3. A probability distribution π over X is called the stationary dis-
tribution of a Markov chain with transition matrix K if it satisfies the following
condition for every x ∈ X :

π(x) =
∑
y∈X

π(y)K(y, x) (4.29)

The stationary distribution gives the chain the following property: if Xn ∼ π,
then also Xn+1 ∼ π. In particular, if X0 ∼ π, it follows by induction that all X’s
are distributed according to π.

Definition 4.4. A Markov chain with transition matrix K satisfies the detailed

78 Chapter 4. Statistical Modeling and Inference

balance condition if there exists a function f satisfying:

K(y, x)f(y) = K(x, y)f(x) (4.30)

for every (x, y).

Theorem 4.5 (Robert and Casella 2005, Th. 6.46, adjusted to the finite case).
Suppose that a Markov chain with transition matrix K satisfies the detailed bal-
ance condition with π a probability distribution. Then, the distribution π is the
stationary distribution of the chain.

Definition 4.6 (Robert and Casella 2005, Def. 7.1). A Markov chain Monte Carlo
(MCMC) method for the simulation of a distribution f is any method producing
an ergodic Markov chain (Xn) whose stationary distribution is f .

In great simplification, a Markov chain with finite state space is ergodic if the
stationary distribution exists and is independent of the starting point. The details
of this concept are not further relevant here, because in the following we are going to
consider one particular MCMC method. Summarizing the above introduction, the
foundation of MCMC methods is the convergence of an irreducible Markov chain
to a stationary distribution, which justifies using the chain for drawing samples
from this distribution.

We will now turn to a very general MCMC method called the Metropolis-Hastings
(MH) algorithm [Metropolis et al. 1953; Hastings 1970]. This algorithm can be
used to construct a Markov chain having an arbitrary probability distribution f

as its stationary distribution. The main advantage is that sampling directly from
f is not at all necessary. Instead, sample points are sampled from an instrumental
distribution q(·|x), which might be completely unrelated to f .

Algorithm 4.1 presents a single iteration of the MH algorithm, computing
the t+ 1-st point of the sample from the previous one. The proposed new point is
sampled from the instrumental distribution q(·|x(t)). Then, the algorithm decides
randomly whether to accept it. In case of rejection, the chain stays at the current
state.

The acceptance probability α is the key point of the algorithm, which com-
bines the distributions f and q. Importantly, it does not require knowing f exactly:
as it only involves ratios, it is sufficient that f is known up to a multiplicative con-
stant. In case q is symmetric, i.e. q(x|y) = q(y|x), the second ratio is dropped
completely.

4.3. Inference 79

Algorithm 4.1: A single iteration of the Metropolis-Hastings algorithm.
Generate Yt ∼ q(y|x(t)) ;

α← min
{
f(Yt)
f(x(t))

q(x(t)|Yt)
q(Yt|x(t)) , 1

}
;

Generate U ∼ Bernoulli (α) ;
if U = 1 then

x(t+1) ← Yt
else

x(t+1) ← x(t)

end

Theorem 4.7 (Robert and Casella 2005, Th. 7.2). The Markov chain induced by
the Metropolis-Hastings algorithm satisfies the detailed balance condition wrt. the
target distribution f .

Corollary 4.8. The distribution f is stationary wrt. the Markov chain induced
by the Metropolis-Hastings algorithm.

4.3.2 A MCMC Sampler for Morphology Graphs

The graph sampler described in this section has been proposed in [Sumalvico 2017].
It is inspired by similar approaches for dependency parsing [Mareček 2012; Teich-
mann 2014], which also use MCMC samplers for graphs. The key idea is to con-
struct a proposal distribution which conducts a small change in the graph, like
adding or removing a single edge.

Let E denote the set of all possible edges that were found in the preprocessing
step described in Sec. 3.3. We will be interested in subsets E ⊆ E forming branch-
ings, i.e. directed forests. The well-formedness conditions for a branching are that
the graph contains no cycles and every node has at most one incoming edge.

Let E(t) denote the t-th branching in the sample. We will now formulate the
proposal distribution q(·|E(t)), which can be used to propose the next branching.
The main idea is to choose an edge from E with uniform probability and change its
status in E, i.e. remove it if it is present, or add it if it is absent. Removing an edge
always preserves the branching properties: the target node of the removed edge
simply becomes a root. However, adding an edge can create a cycle or break the
property of every node having at most one incoming edge. In this case, additional
changes shall be proposed to repair the branching properties.

Let v1 denote the source node and v2 the target node of the edge that is
supposed to be added. Furthermore, let v3 denote the current parent of v2, if it

80 Chapter 4. Statistical Modeling and Inference

v3 v2 v5 . . . v4 v1 v3 v2 v5 . . . v4 v1

Figure 4.8: The two variants of the ‘flip’ move. The deleted edges are dashed and
the newly added edges dotted. The goal of the operation is to make possible adding
an edge from v1 to v2 without creating a cycle.

exists. If v2 already contains an incoming edge, but v1 is not a descendent of v2, the
proposal is to add the edge v1 → v2 and remove the edge v3 → v2. Note that in some
settings, the same pair of vertices might be connected with multiple edges, labeled
by different rules. In this case, v3 might be equal to v1. The procedure remains the
same: the newly added edge is simply exchanged for the current incoming edge of
v2.

If v1 is a descendent of v2, adding an edge v1 → v2 would create a cycle. In
order to avoid that, I propose a change called ‘flip’, which is illustrated in Fig. 4.8.
Here, v4 denotes the parent of v1 and v5 denotes the direct child of v2 on the path
leading to v1. As in the previous case, the overlapping of some of those nodes does
not change the procedure. The move has two variants, each of which consisting of
adding and removing two edges. In the first variant, we ‘cut out’ v1 (together with
the whole subtree rooted in it) from its current place and insert it between v3 and
v2. In the second variant, we ‘cut out’ v2 and move it (together with all its children
except v5) in a proper place to be the child of v1.

Algorithm 4.2 presents the procedure for proposing the next branching. If a
‘flip’ operation is required, the variant is chosen randomly with equal probability.
Note that a ‘flip’ move might be impossible if the other edge to be added (v3 → v1

in the first and v3 → v5 in the second variant) is not available in E . In this case,
the functions FLIP-* leave the current branching unchanged.

The choice of the next branching is uniquely determined by the choice of the
edge (v1, v2, r) to be changed and, in case of the ‘flip’ move, the value of U . A move
that adds or removes a single edge can be reversed by selecting the same edge again.
A move that exchanges edges can be reversed by selecting the previously removed
edge to be added again. Finally, each ‘flip’ move can be reversed by another ‘flip’
move. FLIP-1 is reversed by selecting v4 → v1 to be added and applying FLIP-2,
while variant 2 can be reversed by selecting v2 → v5 and applying FLIP-1. In
conclusion, the proposal distribution is symmetric.

4.3. Inference 81

Algorithm 4.2: Proposing the next branching in the sample.
Input: E(t) – current branching; E – set of all possible edges
Output: Y (t) – a proposal for the next branching
Choose an edge (v1, v2, r) randomly from E ;
if (v1, v2, r) ∈ E(t) then

Y (t) ← E(t) \ {(v1, v2, r)} ;
else if v2 is ancestor of v1 then

Generate U ∼ Bernoulli(1
2) ;

if U = 1 then
Y (t) ← FLIP-1(E(t), E , v1, v2, r) ;

else
Y (t) ← FLIP-2(E(t), E , v1, v2, r) ;

end
else if parent(v2) 6= nil then

Let v3, r
′ be so that (v3, v2, r

′) ∈ E(t) ;
Y (t) ← E(t) ∪ {(v1, v2, r)} \ {(v3, v2, r

′)} ;
else

Y (t) ← E(t) ∪ {(v1, v2, r)} ;
end
return Y (t)

The acceptance probability is thus calculated as follows:

α∗ = exp
[
c(E(t))− c(Y (t))

]
(4.31)

= exp

 ∑
(v1,v2,r)∈E(t)\Y (t)

c(v1, v2, r)−
∑

(v1,v2,r)∈Y (t)\E(t)
c(v1, v2, r)

 (4.32)

with the final acceptance probability being: α = min{α∗, 1}.
Note that the chain constructed this way is irreducible, because every branch-

ing can be reached from every other with nonzero (albeit very small) probability
by first deleting all edges of the old branching and then adding all edges of the
new branching.

Proposing the next branching has very low computational complexity: O(h),
where h is the maximum height of a tree in the branching. The only operation that
is not performed in constant time is checking for cycles and determining v5. If the
tree height is kept low (for which, as described in Sec. 4.1.3, there are good reasons),
the time complexity of proposing the next branching is as good as constant. This
enables us to draw large samples in the order of magnitude of millions or billions
branchings independently of |E|, and thus input data.

82 Chapter 4. Statistical Modeling and Inference

Figure 4.9: The trajectory of the graph sampler expressed as the cost (negative
log-likelihood) of the graph at a given iteration. The top plot shows all 10 million
sampling iterations, while the bottom plot shows iterations from 4 million onward.
The acceptance rate in this run was 0.12.

4.3. Inference 83

Figure 4.9 illustrates the cost of the graphs obtained during sampling on a Ger-
man dataset of 100, 000 words. In total, 10, 000, 000 iterations of sampling were
computed, preceded by 100, 000 ‘warm-up’ iterations, which were not counted into
the computed expected value and are not shown in the graphs. The top graph
shows the complete sample: it can be seen that the sampler converges towards
branchings with high probabilities. The bottom graph is a magnifying picture of
the long tail of the top graph: from the iteration number 4, 000, 000 onwards. It
can be seen that once the sampler reaches branchings with high probabilities, it
does not stay in one optimum, but rather oscillates in this area, still performing
significant changes. The line thickness of both curves is equal – if the bottom curve
appears much thicker, it is because of many small jumps back and forth all along
the curve. If a small interval of this curve is magnified, a similar picture arises.

It can thus be seen that the sampler does not get locked in local optima,
but rather is able to accept changes which temporary raise the cost of the graph,
even in larger, mid-term trends. This guarantees that the sample space is properly
explored. The acceptance rate in this sampling process was 0.12: roughly one move
proposal in eight was accepted. Given the complexity of the graph model and,
compared to that, the simplicity of the proposal distribution, it is definitely a
satisfactory result.

A generally difficult problem with MCMC methods is finding a plausible
stopping criterion: when does the distribution reach stationarity and when is the
sample large enough to be representative for the purpose of computing expecta-
tions? In the experiments, I always used a fixed number of iterations (typically 10
million). The minimum number of iterations was tied to the number of possible
edges (multiplied by a factor of between 2 and 10), so that there are reasonable
chances of each possible edge being proposed at least once.

4.3.3 Sampling Negative Examples

Fitting the edge model requires negative examples, i.e. edges leading to non-existent
nodes via one of the known rules. In case the edge probability is independent of
the source node, like in the simple edge model, it is sufficient to count the negative
examples, which can be achieved using Algorithm 3.2. However, the neural network
model requires a more exact knowledge of each edge, i.e. the features extracted from
the source node. Because of the large number of such edges, computing all of them
is intractable. However, it might be sufficient to use a randomly selected sample of
negative examples for training of the neural network. Algorithm 4.3 shows a simple

84 Chapter 4. Statistical Modeling and Inference

method to generate such a sample. The number of generated edges (n) is usually
a multiple of the number of possible edges (|E|), typically twice as much.

Algorithm 4.3: Sampling negative examples of edges.
Input: V,R, E , n
Output: S – a sample of random edges from outside E
S ← ∅;
while |S| < n do

Choose v randomly from V ;
Choose r randomly from R;
if r(v) 6= ∅ then

Choose v′ randomly from r(v);
if (v, v′, r) /∈ S ∧ (v, v′, r) /∈ E then

S ← S ∪ {(v, v′, r)};
end

end
end
return S

Because we are using only a subset of negative edges for training the neural
network, they have to be weighted accordingly to the number of edges they repre-
sent. If kr is the number of generated edges labeled with rule r, nr is the number
of possible edges (from E) labeled with r and mr is the total number of times
r can be applied, each negative edge obtains the weight mr−nr

kr
. Algorithm 4.3 is

quite a näıve sampling approach: it is easy to see that the probability of selecting
a particular edge is not uniform (as it depends on |r(v)|).

4.3.4 Fitting the Model Parameters

Using the sampler introduced in Sec. 4.3.2, we can generate samples E(1), E(2), . . .

from the conditional distribution P (E|V,R, θ). Such samples can be used to ap-
proximate expected values of functions over E. This enables us to apply the Monte
Carlo Expectation Maximization (MCEM) algorithm [Wei and Tanner 1990] to find
the maximum likelihood estimates of the model parameters. We aim to iteratively
maximize the following expected value (cf. 4.25):

θi = arg max
θ

EE|V,R,θi−1 logP (V,E|R, θ) (4.33)

In the expectation step, besides the global log-likelihood, we also compute the
expected relative frequency of each edge, i.e. the fraction of branchings in which

4.3. Inference 85

this edge appears. Those values constitute the edge weights used for fitting. The
root weights can be easily obtained from the edge weights: the root weight of node
v, i.e. the fraction of branchings in which it is a root, is one minus the sum of
weights of all its incoming edges.

In the maximization step, the parameters of each model component are fit
to maximize the likelihood of the sample. This is easy in case of most models.
In the simple edge model, the ML estimate for rule probability is n

m
, where n is

the expected frequency of the rule (in this case, the sum of weights of all edges
labeled with this rule) and m is the number of times the rule can be applied.
The latter can be computed by applying Algorithm 3.2 to the composition of the
lexicon and rule transducer. The Gaussian models can be fit to weighted samples
by using weighted averages in estimation and the neural network models accept
weighted samples as training data as well. In the latter case, the fitting consists of
a complete, multi-epoch neural network training.

For fitting the neural edge model, we use the edge weights as targets, rather
than sample weights. The training objective of the network is to predict for each
edge the probability that it is included in a branching. In order to do it correctly,
we also need to generate a weighted sample of non-existent edges with the method
described in Sec. 4.3.3 and include it in the training data passed to the network.

The only model that poses problems for weighted fitting is the ALERGIA root
model: it can only accept integer weights (interpreted as frequencies). However, the
root model does not change significantly across fitting iterations, so we skip the
maximization step for it.

The initial parameter value θ0 is usually chosen randomly in the EM algo-
rithm. However, in this case, we can easily guess a more-or-less reasonable value:
it is the value fit to the full graph, i.e. when all edge and root weights are set to 1.
We call this a ‘näıve fit’. Using this value as θ0 speeds up the convergence of the
algorithm, because we already start in a region yielding relatively high likelihood.

Figure 4.10 shows the expected branching costs (minus log-likelihoods) ob-
tained during the MCEM estimation. The first iteration, which is out of scale in
the graph’s Y axis, uses the parameters obtained via näıve fitting. The algorithm
converges quickly: there is not much change after the 10th iteration, compared
to the first 10. As I could not decide for any stopping criterion, and in order to
maintain greater control of the duration of the estimation, I use a fixed number of
iterations (typically 5) in the experiments.

86 Chapter 4. Statistical Modeling and Inference

2 4 6 8 10 12 14 16 18 20
1.06

1.07

1.08

1.09

1.1

1.11
·106

Iteration

E
xp

.
gr

ap
h

co
st

Figure 4.10: Convergence of MCEM fitting. The cost at the first iteration is far
beyond the scale (around 1.6 · 106).

4.3.5 Model Selection

In addition to finding optimal parameters θ for a given rule set R, we can also
attempt to optimize the rule set itself by deleting unnecessary rules. This would
correspond to finding the following maximum:

R̂ = arg max
R′⊆R

∫
Θ
EE|V,R′,θ logP (V,E|R′, θ)dθ (4.34)

In [Sumalvico 2017], I proposed to search for the optimal rule set using simu-
lated annealing [Kirkpatrick et al. 1983; Besag 2004]. For each rule, a score was com-
puted based on the expected contribution of this rule to the graph log-likelihood.
Those scores were used to propose the next rule set, so that rules with low scores
had smaller chances of surviving to the next iteration. Then, the expected log-
likelihood of the graph given the next rule set was computed and the rule set was
either accepted or rejected.

Although this approach improved the evaluation results in [Sumalvico 2017],
further experiments led to the conclusion that it is much too complicated for the
benefit that it offers. Furthermore, its theoretical foundation is dubious: because
each iteration requires a complete run of MCMC graph sampler, only a few iter-
ations of annealing can be executed – typically up to 20, which is much too little
to expect convergence of the annealing algorithm. Finally, the integration over Θ

4.3. Inference 87

is only tractable for the simple edge model and even there it is quite complicated
to implement. Thus, I decided to abandon this approach.

Model selection can be also done in a simpler, although less theoretically sound
way. To begin with, we replace the integral in (4.34) with a maximum. In this
way, we can use regular fitting and sampling to evaluate a rule set. Furthermore,
instead of attempting to search for the optimal rule set, we restrict ourselves to
deletion of rules that appear useless after each sampling and fitting iteration. For
this purpose, we define the score of a rule as follows:

score(r) = − log λRPrule(r)+
∑

e=(v,v′,r)∈E
we [logProot(v′|θroot)− log pedge(v, v′, r|θedge)]

(4.35)
The first term is a new model component: a rule model, defining a probability
distribution over arbitrary rules. We use a very simple unigram model over pairs of
input-output symbols in the subsequent transitions of the rule’s FST. The term λR

is due to the fact that we draw sets of rules from this distribution (see Sec. 4.1.2).
The second term is the log-likelihood we gain by using the rule r to derive words,
rather than having those words as roots. we is the sample weight of edge e. After
each iteration, the rules with negative scores are deleted. The rule model introduces
a cost of having an additional rule in the model, which has to be compensated by
this rule’s usefulness.

Figure 4.11 illustrates the outcomes of model selection after each iteration.
The rule set is typically reduced to roughly half its original size. The edges la-
beled with the deleted rules are also deleted from E . The number of possible edges
decreases more slowly than the number of rules because the deleted rules are typi-
cally infrequent. However, the set E of possible edges is also substantially reduced.
For most experiments, evaluation results are virtually unaffected by model selec-
tion, but the net benefit of applying it is a smaller model, and therefore faster
computation times.

4.3.6 Finding Optimal Branchings

Previous sections described drawing large samples of branchings and using them
to estimate model parameters. This corresponds to the variant of the Expectation
Maximization algorithm often called ‘soft EM’, which utilizes full expected values.
Another commonly used variant is ‘hard EM’ [Samdani et al. 2012], in which
the inference would be based on a single optimal graph. Although I previously

88 Chapter 4. Statistical Modeling and Inference

0 2 4 6 8 10 12 14 16 18 20
0

2,000

4,000

6,000

8,000

Iteration

ru
le

s

0

0.2

0.4

0.6

0.8

1
·106

ed
ge

s

rules edges

Figure 4.11: The number of rules and possible edges during model selection.

experimented with the hard-EM algorithm [Janicki 2015], I found that taking a
single optimal graph is insufficient. Especially for rare rules, the difference between
frequencies 0, 1 or 2 was very significant, but no intermediary values were possible.
However, as the edge costs in the model are local and independent of each other,
the optimum branching can be found using Chu-Liu-Edmonds algorithm [Tarjan
1977].

Chapter 5

Learning Inflectional Relations

In order to assess the practical usability of the model described in the previous
chapter, I evaluate it on several different tasks related to inflection. Although the
morphology learning method developed in this thesis is not especially targeted
towards inflection – in fact, the evaluation results of the unsupervised experiments
presented in this chapter suffer from the confusion of inflection and derivation,
which is a consequence of Whole Word Morphology’s theoretical assumptions –
there are practical reasons for evaluating the quality of inflectional analysis.

The first and most important reason is that inflectional analysis is a well-
defined task. In the most common formulation, it consists of assigning a lemma
and an inflectional tag (a bundle of values of inflectional features, like case, number,
person etc.) to words in text. This chapter concentrates especially on lemmatiza-
tion and related tasks, like generating inflected forms from lemmas or identifying
inflected forms of the same lemma. For such kind of problems, methods based
on string transformations on word types seem appropriate. Inflectional tagging
requires a different kind of approach: it is best done on the token basis, taking
the local context of a token into account. A method targeting the tagging task in
combination with morphology is presented in Chap. 6.

Another reason for an evaluation on inflection-related tasks is the availabil-
ity of datasets. Lemmatized and tagged corpora are easily available. In contrast,
there is no standardized task and annotation scheme for learning derivation, or
inflection combined with derivation, especially in a relational formulation, i.e. fo-
cusing on relations between words, rather than internal word structure.1 Finally,

1The tree annotation provided by the CELEX lexical database [Baayen et al. 1995] comes
close to being the right annotation for this kind of problems. Unfortunately, it is only available
for three closely related languages (English, German and Dutch), all exhibiting a fairly simple
inflectional and derivational morphology.

89

90 Chapter 5. Learning Inflectional Relations

lemmatization is the kind of morphological analysis most often used in downstream
applications, like parsing, text mining etc. Learning derivation, while theoretically
interesting, has much less practical relevance.

5.1 Datasets

Most experiments are conducted on seven different languages: Finnish, German,
Latin, Latvian, Polish, Romanian and Russian. For those languages, suitable re-
sources (described below) are easily obtainable.

Finding lemmatized and tagged corpora for a wide variety of languages in a
uniform, easy-to-use format has become straightforward thanks to the Universal
Dependencies project.2 They provide corpora corpora in CoNLL format (a plain
text format containing tab-separated columns) with multiple layers of annotation,
up to a dependency tree. For the experiments conducted in this chapter, three
kinds of annotation are especially relevant: lemma, tag according to the UPOS
tagset and inflectional features. In order to utilize the UD corpora for tasks related
to the learning of inflection, I made several simplifying assumptions, which do not
always hold:

1. The coarse-grained tag is always the same for the lemma and the inflected
form, as it should correspond to the part-of-speech, which is not changed by
inflection. The reason why this assumption is important is because the mor-
phology model needs tags for lemmas as well, but they are usually not pro-
vided by the datasets. This principle is violated e.g. in the German dataset,
where vorgesehenADJ is lemmatized as vorsehen (a verb infinitive), although
it is tagged as an adjective. In general, participles are the most common
source of such problems.

2. The lemma must itself be an existing word. While this assumption seems
obvious, it does not hold for some datasets:

• German – in ambiguous cases, all possible lemmas are provided, with
no disambiguation from context. For example, geboten lemmatizes to
bieten|gebieten.

• Finnish – compound splitting is additionally provided for lemmas, e.g.
yliopiston lemmatizes to yli#opisto.

2www.universaldependencies.org

www.universaldependencies.org

5.2. Unsupervised Clustering of Inflected Forms 91

• Latin – additional disambiguation information is provided for lemmas,
e.g. occides lemmatizes to occido#1.

While the latter two cases seem to provide useful additional information,
the proper conversion of the datasets would require some effort and exper-
tise – e.g. on the first sight it is unclear whether the Finnish lemmas can
always be converted to real words just by deleting the separator, or whether
the distinction in Latin data is relevant to morphology or only semantic. In
general, I decided against language-specific preprocessing and excluded those
languages from lemmatization experiments.

3. A word that is lemma of other words is also its own lemma, i.e. lemmatiza-
tion does not form chains or cycles. This is again violated in German, e.g.
vorgeseheneADJ is lemmatized to vorgesehen, but vorgesehenADJ to vorsehen.
Other datasets contain similar cases.

As a source of plain, unannotated corpora employed for fully unsupervised train-
ing, I utilize the Leipzig Corpora Collection3 [Biemann et al. 2007]. For the most
languages, the standard-sized corpora of 1 million sentences coming from Wikipedia
are used. Exceptions are Latin, where the full Wikipedia is used, and Latvian,
where a 1 million sentence corpus of news crawled from the Internet is used in-
stead. Both exceptions are due to small sizes of Wikipedias in those languages
(both around 300k sentences).

5.2 Unsupervised Clustering of Inflected Forms

Given only an unannotated corpus or a list of words, the only kind of inflectional
analysis that can be realistically expected is the clustering of inflected forms coming
from the same lemma. As the choice of a certain inflectional form as citation form
is more or less arbitrary (e.g. verb infinitive in many languages, but 1st person
singular in Latin and Greek, 3rd person singular in Hungarian etc.), it is, in my
opinion, not possible to establish reliable criteria allowing for automatic discovery
of lemmas.4

3corpora.uni-leipzig.de
4Attempts have been made to determine the lemma based on, for example, the frequency of

inflectional categories [Chan 2008] or efficiency of a grammar deriving inflected forms from a
lemma [Albright 2002]. However, the former concentrates on identifying some base form, from
which other forms can be derived, but which is not necessarily the lemma accepted in the lan-
guage’s grammar. The latter concentrates on theoretical linguistic aspects and does not provide

corpora.uni-leipzig.de

92 Chapter 5. Learning Inflectional Relations

Experiment setup. In order to identify clusters of morphologically related
words (which will mostly be different inflected forms of the same lemma), I employ
the Chinese Whispers graph clustering algorithm [Biemann 2006].

As weights of the edges in the morphology graph, I use the expected edge
frequencies determined during sampling. They have a useful property: the sum
of weights of all incoming edges in a node, plus the expected frequency of that
node being a root, equals one. In other words, the incoming edges are mutually
exclusive events. This gives a straightforward probabilistic interpretation to the
weight-adding done by Chinese Whispers: it corresponds to the event of the parent
node of the considered node being in a certain cluster. Furthermore, the event of a
node being a root is treated as a loop edge: it contributes its weight to the proposal
of staying in the current cluster. In this way, nodes that have incoming edges can
still remain singletons (which would have been impossible without loops).

The experiments were carried out in several different variants in order to
assess the influence of various model configurations on the overall performance.
All experiments employ the ALERGIA root model. The labels ‘single’ and ‘neural’
correspond to the edge model used, ‘-freq’ to an additional frequency model and
‘-emb’ to an additional word embedding model (word embeddings with 30 dimen-
sions were trained with word2vec). The models used for embeddings were the ones
based on neural networks, Gaussian models were left out of the evaluation.

All experiments consisted of 5 iterations of model selection followed by an-
other 5 iterations of fitting. A single sampling step consisted of 100,000 warm-up
iterations and 10,000,000 sampling iterations while training. The final sampling,
which determines the expected frequencies of edges using the trained model, con-
tained 100,000,000 sampling iterations. Apart from the variants using an embed-
ding model, all other variants used a parameter α = e−2 to control the tree height
(see Sec. 4.1.3). The variants with embeddings used no such functionality (i.e.
α = 1), as the tree height is sufficiently limited by the expensive, unpredictable
changes in word embeddings.

Experiments for all languages were done using the same parameter values,
which were mostly guessed before the experiments as reasonable defaults. I delib-
erately avoided the fine-tuning of parameters to each dataset separately.

Baselines. As I am not aware of any publicly available algorithm implementation
solving exactly the same task, the usefulness of the approach developed here will be
demonstrated through a comparison to simple baselines. The most näıve approach

empirical results on corpora.

5.2. Unsupervised Clustering of Inflected Forms 93

possible is to place every word in a separate cluster, which is called ‘bl-singleton’.
The other baseline, ‘bl-logfreq’, consists of applying the Chinese Whispers algo-
rithm to a morphology graph, in which the edges are weighted by the logarithm
frequency of the rule. This roughly corresponds to the approach taken by Janicki
[2013].5

Evaluation measure. As a clustering evaluation measure, I use BCubed [Amigó
et al. 2009], which provides results in the usual form of precision, recall and F1-
score. Note that the reason why ‘bl-singleton’ sometimes achieves apparently good
results (especially for German) is that the gold standard contains many singleton
clusters. For once, many rare words occur in the corpus only in one inflected form.
Furthermore, there are many types, which do not correspond to real words of the
language (e.g. numbers, foreign words, abbreviations etc.). I deliberately did not
exclude such cases from the test data.

Results. The results are shown in Table 5.1. In general, no consistent improve-
ment over the ‘bl-logfreq’ baseline can be observed. The results range from a sig-
nificant improvement (Latvian, Russian) over slight improvement (German, Ro-
manian), no difference (Polish) up to a slight decrease (Latin). On the other hand,
the good performance of the singleton baseline for German is an exception, as for
all other datasets this baseline performs poorly.

Most results suffer from low precision, meaning that the clusters tend to be
too large. The main reason for this is the inability of the model to distinguish
between inflection and derivation. Especially in cases where there is not enough in-
flected forms to form a stable cluster, words related through derivation are clustered
together instead. However, in Latin, a language with particularly large inflectional
paradigms, a contrary trend is observed: some paradigms are so large that they are
split into several clusters. A further reason for low precision are accidental similar-
ities between short words. The probabilistic model helps to rule out some of such
patterns (especially through model selection), but not all of them. Such similarities
can form ‘bridges’ between unrelated clusters, leading to their merging.

No significant difference can be observed between the simple and the neural

5Janicki [2013] contained an additional step consisting of clustering the outgoing edges of
each node and splitting nodes according to edge clusters. This step greatly improved the results
(especially precision). However, it is a feature of the clustering algorithm, which could be applied
regardless of the weighting. The main point of the evaluation provided here is to compare the
weights obtained in sampling to log-frequencies, so the details of the clustering algorithm are
orthogonal to this comparison.

94 Chapter 5. Learning Inflectional Relations

Language Model Prec. Rec. F1

German

bl-singleton 100.0 % 81.2 % 89.6 %
bl-logfreq 70.5 % 97.4 % 81.8 %
simple 78.6 % 95.9 % 86.4 %
simple-freq 77.7 % 96.2 % 86.0 %
neural 77.9 % 95.9 % 86.0 %
simple-emb 70.8 % 97.0 % 81.9 %
neural-emb 69.6 % 97.3 % 81.1 %

Latin

bl-singleton 100.0 % 27.9 % 43.7 %
bl-logfreq 74.4 % 74.0 % 74.2 %
simple 80.0 % 61.1 % 69.3 %
simple-freq 79.1 % 61.7 % 69.3 %
neural 80.3 % 61.2 % 69.5 %
simple-emb 67.3 % 67.7 % 67.5 %
neural-emb 68.5 % 67.4 % 68.0 %

Latvian

bl-singleton 100.0 % 48.2 % 65.0 %
bl-logfreq 46.5 % 80.2 % 58.9 %
simple 76.8 % 82.9 % 79.7 %
simple-freq 76.2 % 82.6 % 79.3 %
neural 77.1 % 83.5 % 80.1 %
simple-emb 69.4 % 86.5 % 77.0 %
neural-emb 69.2 % 87.0 % 77.1 %

Polish

bl-singleton 100.0 % 47.7 % 64.6 %
bl-logfreq 76.0 % 86.0 % 80.7 %
simple 81.2 % 80.4 % 80.8 %
simple-freq 80.7 % 80.8 % 80.7 %
neural 81.0 % 80.5 % 80.7 %
simple-emb 80.6 % 80.8 % 80.7 %
neural-emb 80.7 % 80.7 % 80.7 %

Romanian

bl-singleton 100.0 % 50.0 % 66.7 %
bl-logfreq 73.0 % 92.0 % 81.4 %
simple 79.5 % 87.8 % 83.4 %
simple-freq 78.3 % 88.4 % 83.0 %
neural 79.8 % 88.3 % 83.8 %
simple-emb 71.5 % 90.0 % 79.7 %
neural-emb 71.9 % 90.2 % 80.0 %

Russian

bl-singleton 100.0 % 34.7 % 51.6 %
bl-logfreq 51.8 % 76.3 % 61.7 %
simple 78.5 % 84.8 % 81.5 %
simple-freq 76.4 % 85.2 % 80.6 %
neural 78.2 % 84.8 % 81.4 %
simple-emb 68.7 % 86.1 % 76.4 %
neural-emb 70.3 % 85.8 % 77.3 %

Table 5.1: Results of unsupervised clustering.

5.3. Unsupervised Lemmatization 95

edge model, as well as between the variant with and without a frequency model.
The models with word embeddings perform slightly worse because of their lack of
penalty on tree height – the assumption that using the embeddings as an additional
feature can restrict the tree height equally well, does not hold.

5.3 Unsupervised Lemmatization

As justified in the previous section, I do not think that a completely unsupervised
lemmatization is possible, as the choice of lemmas is to a certain degree arbitrary.
However, an experiment with very little supervision is possible: in addition to an
unlemmatized corpus, we provide the algorithm with a list of lemmas. The list is
not necessarily complete: lemmas for some forms from the corpus may be missing.
The task of the algorithm is to assign the inflected forms from the corpus to the
correct lemma from the provided list (if the correct lemma is available), then to
learn lemmatizing rules from those assignments and finally to apply the learnt rules
to generate missing lemmas.

Experiment setup. I use whole Universal Dependencies corpora for both train-
ing and testing. For training, the list of unlemmatized types from the corpus is
provided, either without part-of-speech tags or with coarse-grained tags. The list
of lemmas provided additionally contains only words that themselves appear in
the corpus as tokens, so a fair amount of lemmas is missing. For training, I use
the ‘left and right’ restrictions described in Sec. 3.3.4: only edges leading from a
lemma to an inflected form (i.e. a form appearing in the corpus which is not itself
a lemma) are allowed. I use the ALERGIA root model and either simple or neural
edge model. For the experiments with tagged data, the simple root tag model is
used.

Back-formation. A trained model can generate missing lemmas through back-
formation. The idea is that the root cost (i.e. the negative log-probability according
to the distribution Proot) of an inflected form might be larger that the cost of a
lemma plus the cost of an edge deriving the inflected form from the lemma. This
is especially likely if POS tags are used: the training data contain mostly roots
with tags characteristic to lemmas, so the distribution Proottag will attribute high
probabilities to such tags and very low probabilities to tags characteristic to in-
flected forms. Therefore, for each inflected form that is supposed to be lemmatized,
the learnt rules are applied to generate all possible lemmas. The cost of an edge

96 Chapter 5. Learning Inflectional Relations

corresponding to each rule is computed. Furthermore, if the lemma is not present
in the training vocabulary, its cost as a root is added to the cost of the analysis.
Formally:

lemma(v) = arg min
r∈R

v′∈r−1(v)

[− ln pedge(v′, v, r|θedge)− (1− 1V (v′)) lnProot(v′|θroot)]

(5.1)
1V (·) is the indicator function of set V , i.e. 1 if the argument belongs to V and
0 otherwise. In case a tagged model is used, the last term must be additionally
multiplied by Proottag(t′|v′, θroottag).

Baseline. The baseline of this experiment consists of extracting candidate rules
between lemmas and inflected forms and using the most frequent rule for each
form to match it to a lemma. Inflected forms, for which no rules are extracted (e.g.
because the true lemma is missing) are left unmatched. Using the most frequent
rule is superior to using the rule with minimum edit distance, because the latter
method would be prone to accidental word similarities (like substituting the first
letter) which are not common patterns.

Results. The evaluation results are shown in Table 5.2. While the results on
untagged datasets are mixed, on tagged datasets at least the simple edge model
provides a consistent slight improvement (with the exception of Latvian, where
the result is equal to the baseline). The neural edge model performs in general
significantly worse. This is not surprising: in the unsupervised setting, where the
training data are not reliable, a more flexible model runs more into the risk of
overfitting to wrong examples.

5.4 Supervised Lemmatization

In the supervised lemmatization experiment, a lemmatized corpus is split into
two parts: the training and testing data. The training corpus is used to learn a
morphology model, which is then applied to lemmatize words from the testing
corpus. For supervised training, we use the method described in Sec. 3.3.4.

For the experiments described in this section, 30% of the corpus (more ex-
actly: the first 30% running tokens)6 is taken as training data. From the remaining

6The split is deterministic on purpose. A random split would have made the evaluation much
more expensive, because each experiment would have to be repeated multiple times. As the split

5.4. Supervised Lemmatization 97

Language Model untagged coarse

Latvian
baseline 47.1 % 46.4 %
simple 39.8 % 46.4 %
neural 42.7 % 44.8 %

Polish
baseline 46.4 % 44.7 %
simple 41.7 % 48.4 %
neural 45.2 % 43.8 %

Romanian
baseline 62.8 % 63.0 %
simple 64.5 % 65.1 %
neural 50.9 % 63.5 %

Russian
baseline 60.0 % 59.4 %
simple 69.2 % 62.1 %
neural 52.4 % 60.9 %

Table 5.2: Results of unsupervised lemmatization.

Language Dataset untagged coarse fine

Ancient Greek
training 25,615 28,254 22,993
evaluation 22,520 24,190 26,104

Latvian
training 15,927 18,788 19,112
evaluation 12,467 14,855 15,709

Polish
training 14,644 24,128 24,796
evaluation 14,373 16,853 18,876

Romanian
training 19,018 25,964 26,248
evaluation 12,973 17,293 17,902

Russian
training 74,012 85,301 91,574
evaluation 52,162 59,688 70,055

Table 5.3: Size (number of types) of the datasets used for supervised lemmatization.

70%, we remove all types occurring in the training data, so that only lemmatization
of unknown words is evaluated. We are not interested in the ability of the model to
reproduce lemmatizations encountered in the training data, because those could be
easily memorized. The resulting size of training and testing vocabularies is roughly
equal, as shown in Table 5.3.

For each language, we conduct experiments with three different variants of
POS tagging (untagged, coarse-grained, fine-grained). Additionally, each experi-
ment is conducted in two variants (‘–Lemmas’ and ‘+Lemmas’ in Table 5.4). In
the latter, all lemmas needed to lemmatize the testing data are known in advance
(i.e. added to the training vocabulary), so that the model does not need to gen-

is done on token basis and the whole experiment concerns types, there is no reason to expect a
significant difference between the type lists of various splits – and thus an influence of the split
on the results.

98 Chapter 5. Learning Inflectional Relations

erate lemmas on its own, only choose the right one. The former case corresponds
to ‘normal’ supervised training, i.e. nothing from the testing dataset is known in
advance. In this case, the model attempts to generate the missing lemmas through
back-formation. The model configurations used in the experiments are same as in
the previous section.

Baseline. Supervised lemmatization can be formulated as a classification prob-
lem, as shown for example by Chrupała et al. [2008]. In this formulation, the class
is the lemmatizing rule (or, equivalently, the rule deriving the inflected form from
the lemma). The features used to predict the class are the word’s POS tag and
letter n-grams.

As the system described by Chrupała et al. [2008] was geared towards joint
lemmatization and POS tagging, it would have been incompatible with my exper-
iments: it operated on token basis and made use of local context features. Instead,
I apply a heavily simplified version of this approach as baseline: I use a Maximum
Entropy classifier7 to predict the word’s lemmatizing rule from the POS tag (if
present) and n-grams at the beginning and at the end of the word of lengths from
1 to 5. In order to restrict the number of features to a manageable size, I use the
1000 most frequent n-grams.

Results. The type-based accuracy of various setups is shown in Table 5.4. Apart
from the untagged case without knowing lemmas in advance, all setups clearly
outperform the baseline. The former case shows that an unlabeled string form of a
word is usually not enough for reliable lemmatization. The presence of POS-tags,
even coarse-grained, improves the situation significantly.

As in other experiments, also here it turns out that the neural edge model
offers no benefit over the simple edge model. This is unexpected, as the greater
flexibility of the neural model ought to be an advantage especially in supervised
learning, where tighter fitting of the model to the training examples is beneficial.

The results for Ancient Greek are a clear outlier. Perhaps the most important
reason for this is the polytonic orthography, which, together with accent shifts in
morphological paradigms, greatly complicates the inflection.8 Moreover, the An-
cient Greek verb morphology is complicated compared to other considered lan-
guages: the paradigms are large and many possible transformations are rare or not
7More specifically, I use the classifier LogisticRegression implemented in the Python pack-

age scikit-learn. This is identical to the baseline I used in [Janicki 2015].
8In addition to accent shifts in morphological paradigms, even the same word form can occur

with different accent types depending on its context in the sentence [Smyth 1920, p. 37].

5.5. Supervised Inflected Form Generation 99

present in training data at all. Also suppletion seems to be more common than
in the other languages. Finally, it seems to me that some irregularities are due to
non-standard historical spellings: for example, the word Θρῄκης ‘Thrace.gen’ is
lemmatized as Θρᾴκη, instead of Θρῄκη postulated by the model. Wiktionary9 ex-
plains that the former is the standard form and the latter is a ‘poetic’ variant. The
annotators of the corpus seemingly decided to use standard spellings for lemmas in
cases where inflected forms are spelled in a non-standard way. This is understand-
able from the point of view of corpus annotation, but it makes inflection appear
more irregular than it actually is.

In the variant where the lemmas are not known in advance (the left half
of the table), the results with fine-grained tags are significantly higher than for
coarse-grained tags. It turns out that coarse-grained tags are not enough to lem-
matize properly as inflectional affixes may be ambiguous. For example, the Polish
masculine animate noun kot ‘cat’ has following forms: kot ‘cat-nom.sg’, kota ‘cat-
gen.sg’, koty ‘cat-nom.pl’. Compare this to the paradigm of lina ‘rope’, which is
a feminine noun: lina ‘rope-nom.sg’, liny ‘rope-gen.sg’, lin ‘rope-gen.pl’. Thus,
only knowing that the word is a noun ending in -a does not provide enough clue
to determine the lemma.

The right half of the table shows the results in the case where all lemmas are
known in advance. The results illustrate an important difference between my model
and the baseline classifier: there is no straightforward way to make the classifier
benefit from knowing the lemmas in advance. On the other hand, my model directly
benefits from it by changing the costs computed by (5.1) accordingly, which has
a high impact on the performance. Thus, the graph-based model provides an easy
way to boost up the accuracy of the lemmatizer by feeding it with additional lexical
resources.

5.5 Supervised Inflected Form Generation

Inflected form generation is the reverse of lemmatization: given a lemma and desired
tag, for example (machen<VERB>, <VERB><PART>), the model is supposed to produce
the suitable inflected form, in this case gemacht. As the desired inflected form has
to be exactly specified, only fine-grained tags make sense in this context. Then,
the learnt rules are used to generate all possible inflections from the given lemmas.

9https://en.wiktionary.org/wiki/%CE%98%CF%81%E1%BF%84%CE%BA%CE%B7 accessed on
Dec 11, 2018.

https://en.wiktionary.org/wiki/%CE%98%CF%81%E1%BF%84%CE%BA%CE%B7

100 Chapter 5. Learning Inflectional Relations

Language Model
–Lemmas +Lemmas

untagged coarse fine untagged coarse fine

Ancient
Greek

baseline 26.2 % 30.9 % 35.5 % 26.2 % 31.0 % 35.4 %
simple 24.0 % 33.2 % 35.6 % 36.2 % 41.7 % 39.2 %
neural 23.1 % 25.4 % 32.0 % 35.0 % 40.1 % 39.0 %

Latvian
baseline 52.1 % 61.5 % 71.7 % 52.3 % 61.3 % 72.0 %
simple 45.0 % 60.7 % 77.2 % 76.8 % 83.7 % 80.3 %
neural 47.7 % 56.8 % 74.8 % 76.6 % 83.4 % 80.1 %

Polish
baseline 54.0 % 60.9 % 69.2 % 54.1 % 60.9 % 69.1 %
simple 55.1 % 69.9 % 79.2 % 81.6 % 87.7 % 82.7 %
neural 57.3 % 63.1 % 77.1 % 82.3 % 87.5 % 82.7 %

Romanian
baseline 57.7 % 70.7 % 74.3 % 58.4 % 70.4 % 74.1 %
simple 61.4 % 74.0 % 82.7 % 83.1 % 92.5 % 90.6 %
neural 64.2 % 72.1 % 81.9 % 83.7 % 92.3 % 90.6 %

Russian
baseline 60.2 % 65.7 % 74.9 % 60.1 % 65.7 % 75.0 %
simple 58.5 % 72.0 % 79.1 % 80.4 % 87.5 % 84.9 %
neural 57.9 % 69.6 % 78.6 % 80.9 % 87.5 % 84.6 %

Table 5.4: Results of supervised lemmatization.

The obtained list is filtered to include only the entries matching the desired POS
tag.

The baseline is similar to the one used in the previous experiment: a maximum
entropy classifier utilizing prefix and suffix character n-grams and POS tag. The
difference is that the n grams are now extracted from the lemma, while the tag
used for classification is the tag of the desired word.

Results The results of the experiment are shown in Table 5.5. Because of the
problems described in the previous section, Ancient Greek was excluded from this
experiment. The results show a slight advantage of my model (especially with the
simple edge model) over the baseline, with the exception of Russian. Bearing in
mind that the Russian corpus is significantly larger than others, this difference
might be a characteristic of the size of the training data rather than language.
Nevertheless, the results of all methods are similar.

Note that while a classifier has to be trained for each task separately, the
graph-based models used to solve this task are exactly the same as those used
for lemmatization. It is satisfactory to see that a general model of ‘morphological
competence’ achieves similar, or even slightly better scores, than baseline models
dedicated to a single task.

5.5. Supervised Inflected Form Generation 101

Language Model Accuracy

Latvian
baseline 70.9 %
simple 73.4 %
neural 72.4 %

Romanian
baseline 85.8 %
simple 88.9 %
neural 84.1 %

Polish
baseline 80.1 %
simple 82.8 %
neural 81.5 %

Russian
baseline 87.0 %
simple 85.4 %
neural 84.9 %

Table 5.5: Results of supervised inflected form generation.

102 Chapter 5. Learning Inflectional Relations

Chapter 6

Semi-Supervised Learning of
POS Tagging

Part-of-speech tagging is nowadays commonly thought of as a solved problem, with
accuracy scores easily achieving 95% or more. However, such results are typically
reported for English or other resource-rich European languages, for which large
amounts of high-quality training data are available. Those languages also tend
to have a simple morphology and utilize small to mid-sized tagsets. However, for
many other languages, the reality is different: training data are expensive or not
available, more fine-grained tagsets are needed and complex morphology accounts
for large numbers of OOV words in corpora. Straka and Straková [2017] present
a contemporary evaluation of state-of-the-art POS tagging for a very wide variety
of languages. The scores for tagging with UPOS1 tagset lie below 90% for many
languages. The lack of sufficient amounts of training data is undoubtedly one of
the main reasons for such results.

In this chapter, I attempt to improve the POS tagging in a setting where
only a small amount of labeled training data is available, as well as a significantly
larger corpus of unlabeled text. I train a bigram Hidden Markov Model on the
labeled part of the corpus and subsequently apply Baum-Welch estimation on the
unlabeled part. Additionally, I use the labeled corpus to learn morphological rules,
which are then applied to guess the possible tags of the words from the unlabeled
part. For the latter step, I modify the graph sampler developed in Sec. 4.3.2 to
treat the unknown tags as latent features which influence edge probabilities.

The choice of a bigram HMM for tagging is clearly suboptimal. However,

1The tagset used in the Universal Dependencies project. It is very coarse-grained, containing
e.g. only a single tag for nouns and verbs, respectively.

103

104 Chapter 6. Semi-Supervised Learning of POS Tagging

improving the state-of-the-art in tagging is beyond the scope of this thesis. The
evaluation presented in this chapter merely intends to show that tagging perfor-
mance can benefit from guessing tags for unknown words based on morphological
criteria. The choice of an HMM is dictated by the fact that it is easy to implement,
fairly simple and well interpretable in its workings, possible to train on unlabeled
data (using the Baum-Welch algorithm) and that it is possible to extend an ex-
isting model with new vocabulary without re-training. Furthermore, the closely
related trigram HMMs used to be state-of-the-art for a long time and are still used
in popular tools like HunPos [Halácsy et al. 2007; Megyesi 2009].

A similar problem was recently approached by Faruqui et al. [2016]. They
employ a label propagation algorithm on a graph of words. However, their approach
differs in many details from the one presented here. Firstly, the edges in the graph
do not necessarily correspond to morphological transformations, but rather to a
more general concept of ‘morphological relatedness’, which may also involve such
relations as sharing a common affix. Secondly, the inflectional tags are decomposed
into single features which are treated independently. While such approach allows for
more powerful generalizations, it may also lead to inconsistent labels (like marking
a noun for tense), which have to be corrected in a separate post-processing step.

In Sec. 6.1, I introduce the idea in an informal fashion, based on examples.
The method is formalized in Sec. 6.2. Finally, I present empirical evaluation results
in Sec. 6.3. The material presented in this chapter has not been published before.

6.1 A General Idea

6.1.1 Intrinsic and Extrinsic Tag Guessing

How can we guess possible tags for a word before seeing its occurrences in a text?
In general, there are two possible answers to this question. Intrinsically, we can try
to recognize parts of the word as known inflectional or derivational affixes, which
would be characteristic for a certain part-of-speech. Or maybe some words just
‘sound like’ belonging to a certain category, although it is hard to explain why.
On the other hand, an extrinsic approach would take into account the presence or
absence of certain other, morphologically related words.

It is easy to find examples showing that a purely intrinsic approach is insuf-
ficient in many cases. For example, consider the following German words: Fichten
‘spruce.N.pl’, richten ‘judge.V.inf’, rechten ‘right.Adj.nom.pl.def’.2 Phonet-
2All cited words are ambiguous in their inflectional form. The glosses shown here are picked

6.1. A General Idea 105

ically and orthographically they are very similar and all include an inflectional
suffix -en, which is highly ambiguous in German. The knowledge that German
nouns are always capitalized does not provide much of a clue, because words
belonging to any other part-of-speech may also occur capitalized. Even worse,
many further similar words are ambiguous in their meaning and part-of-speech,
e.g. Dichten (‘density.N.pl’ or capitalized ‘dense.Adj.nom.pl.def’ or ‘compose
(e.g. a poem).V.inf’), schlichten (‘simple.Adj.nom.pl.def’ or ‘mediate.V.Inf’).

The situation becomes diametrically different if we take into account mor-
phologically related words. For example, we might observe words like richtet or
richtete, which together with richten look unambiguously like a verb paradigm.
Similarly, the occurrence of a form like rechtes can convince us that rechten is an
adjective, because verbs do not take the suffix -es. For ambiguous forms, we will
likely find parts of different paradigms, for example schlichtet (verb) and schlichtes
(adjective), which will allow us to notice the ambiguity. Of course, in order to con-
duct such analysis, we have to know which affix configurations are characteristic
for which part of speech. This is the part that we are going to learn from labeled
data.

6.1.2 Applying Tagged Rules to Untagged Words

Let us assume that we have learned a morphology model on tagged data. Now we
are presented with a new set of words, possibly containing many words not present
in the original training set. In this section, we will show how the trained model can
be applied to derive guesses for tags in the new vocabulary. The approach follows
the idea sketched in the previous section: the tag of the word will be determined
by the neighboring words, together with the knowledge about the morphology
contained in tagged rules.

To illustrate the approach with a minimal example, let us assume that our
tagset consists of only three tags:NN,VVINF andVVFIN, and that the untagged
vocabulary consists of the German words machen, mache, macht. We compute the
edge probabilities for every edge that is possible according to the model, under
every tagging. For example, the model might determine that the following three
edges are possible (i.e. the corresponding tagged rules are included in the model)

as examples.

106 Chapter 6. Semi-Supervised Learning of POS Tagging

(a) machen mache

macht

(b) machen mache

macht

/Xen/ → /Xe/ /Xen/ → /Xe/

/Xen/ → /Xt/

Figure 6.1: Two possible morphology graphs corresponding to the words machen,
mache, macht. What does each of them tell us about the possible tags of those
words according to (6.1)?

and give following probabilities for them:

pedge(machenNN,macheNN, /Xen/NN → /Xe/NN) = 0.3

pedge(machenVVINF,macheVVFIN, /Xen/VVINF → /Xe/VVFIN) = 0.01 (6.1)

pedge(machenVVINF,machtVVFIN, /Xen/VVINF → /Xt/VVFIN) = 0.2

Using those values, we can reason about the possible taggings based on an untagged
graph. Consider the two graphs shown in Fig. 6.1. What does each of them say
about the possible taggings?

Graph 6.1a is consistent with either {machenNN, macheNN} or {machenVVINF,
macheVVFIN}, since the only edge in this graph is possible with both labelings. Note
that the edge containing noun labels has much higher probability, so this graph
suggests a strong preference for the noun hypothesis. It does not say anything
about the possible tags of macht. On the other hand, the only tagging consistent
with the graph 6.1b is {machenVVINF, macheVVFIN, machtVVFIN}, since the edge
between machen and macht is only possible if machen is a verb infinitive. It is
important to notice that adding an edge between machen and macht diametrically
changed the possible taggings for mache, although it is not touched by the edge
in question. This illustrates how the graph model captures dependencies between
the tags across a whole paradigm, although the edge probabilities are local.

6.2 The Method

Recall from Sec. 4.1.4 that a morphology model trained on tagged data defines a
probability distribution P (V, T,E|R, θ) over tagged graphs, consisting of words V ,
edges E and tag assignments T = {Tv : v ∈ V }, given the rulesR and model param-
eters θ. The tags of root nodes are predicted by a distribution Proottag(t|v, θroottag),
which takes into account the string form of the word, v, and distribution parameters
θroottag.

6.2. The Method 107

Let τv,t denote the probability of word v having a tag t, which is supposed
to be predicted by our morphology model. Obviously, ∀v

∑
t τv,t = 1. Furthermore,

let u(·) be a ‘rule untagging’ function, which converts tagged rules into untagged
ones. For example, u(/Xen/NN → /Xe/NN) = /Xen/→ /Xe/. Formally:

v′ ∈ (u(r))(v)↔ ∃t,t′∈T (v′, t′) ∈ r(v, t) (6.2)

Given an untagged vocabulary V , a set of (tagged) rules R and a tagset T , we
derive the set of possible untagged edges E as follows:

E = {(v, v′, u(r)) : {v, v′} ⊆ V ∧ r ∈ R ∧ ∃t,t′∈T (v′, t′) ∈ r(v, t)} (6.3)

That is, E contains edges between words from V obtainable by assigning to them
some tags from T and applying a rule from R. Summing over all possible tag
assignments T ∈ T V and all possible edge sets E ⊆ E , we can compute τv,t as
follows:

τv,t =
∑
T,E

P (V, T,E|R, θ)
P (V |R, θ)

δ(Tv, t) (6.4)

=
∑
E

[
P (V,E|R, θ)
P (V |R, θ)

∑
T

P (V, T,E|R, θ)
P (V,E|R, θ)

δ(Tv, t)
]

(6.5)

= EE|V,R,θ
[
ET |V,E,R,θδ(Tv, t)

]
(6.6)

In the above formula, Tv denotes the tag of the word v in a concrete graph and
δ(·, ·) denotes the Kronecker delta. Thus, the computation involves taking two
expectations: over the possible graph structures and over the taggings in a fixed
graph. Then we simply count the possible graphs and taggings, in which the word
v has tag t.

The inner expectation can be computed exactly by a variant of Forward-
Backward algorithm introduced in Sec. 6.2.1. In order to approximate the outer
expectation, we will use Markov Chain Monte Carlo sampling over untagged graphs
as developed in Sec. 4.3.2. However, the sampling algorithm will need some mod-
ifications, as the edge probabilities will no longer be independent of the graph
structure. I describe those modifications in Sec. 6.2.2. Finally, the computed val-
ues of τv,t will be fed to an already pre-trained HMM to provide it with guesses for
the tags of unknown words, before it is reestimated on untagged text. I describe
this procedure in detail in Sec. 6.2.3.

108 Chapter 6. Semi-Supervised Learning of POS Tagging

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 6.2: The Forward-Backward computation for a linear sequence in an HMM.
αv6,t = P (v1, . . . , v6, T6 = t), whereas βv6,t = P (v7, v8, v9|T6 = t).

6.2.1 The Forward-Backward Algorithm for Trees

In order to compute τv,t = ET |V,E,R,θδ(Tv, t) for a fixed graph (V,E), let us recall the
well-known Forward-Backward algorithm used for Hidden Markov Models.3 The
HMMs employed for POS tagging operate on sentences, which are linear sequences
of words (Fig. 6.2). The summing over all possible tag sequences is tackled by
introducing the so-called forward probability (usually written as α) and backward
probability (β), which are defined as follows:

αvi,t = P (v1, . . . , vi, Ti = t) (6.7)

βvi,t = P (vi+1, . . . , vn|Ti = t) (6.8)

It is easy to see that the product of both, αvi,tβvi,t, gives us the probability of
the whole sequence and the node vi having tag t. This can be used to derive τvi,t:

τvi,t =
αvi,tβvi,t∑
t′ αvi,t′βvi,t′

(6.9)

The point of forward-backward computation is that, due to the Markov prop-
erty of HMMs, the forward and backward probability can be computed with recur-
sive formulas, thus avoiding the combinatorial explosion caused by summing over
all possible tag sequences:

αvi,t =
∑
t′
αvi−1,t′P (t|t′)P (vi|t) (6.10)

βvi,t =
∑
t′
P (t′|t)P (vi+1|t′)βvi+1,t′ (6.11)

The general idea of forward-backward computation can be extended beyond
linear sequences, which are a special case of trees, to arbitrary trees.4 In this case,
the backward probability of a node is the probability of the subtree rooted in it,

3See for example Manning and Schütze [1999] or Jelinek [1997] for an introduction to HMMs
and the Forward-Backward algorithm.
4I was unable to find any publications describing a generalization of Forward-Backward com-

putation to tree models. I do not believe that this is my innovation, though. I would be grateful
for any hints on this topic from reviewers and readers.

6.2. The Method 109

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 6.3: The Forward-Backward computation for a tree. Also here, αv6,t =
P (v1, . . . , v6, T6 = t) and βv6,t = P (v7, v8, v9|T6 = t).

given a tag, while the forward probability is the probability of the rest of the tree
and the tag (Fig. 6.3). Note that the forward probability involves not only the
path leading from the root to the node in question (v1, v2, v4, v6 in Fig. 6.3), but
also all side branches sprouting from this path (v3, v5).

In order to derive recursive formulas similar to (6.10)–(6.11) for the tree case,
let us introduce a concept of transition matrix in this case. A transition matrix
T (v,v′,r) associated with an untagged edge (v, v′, r) is a matrix corresponding to
edge probabilities for every possible tagging of the source and target node. More
specifically:

T
(v,v′,u(r))
t,t′ =

pedge(v, t, v′, t′, r)
1− pedge(v, t, v′, t′, r)

(6.12)

Continuing the example from 6.1.2, the probabilities in (6.1) yield the follow-
ing transition matrix:

T (machen,mache,/Xen/→/Xe/) =

NN VVINF VVFIN

NN
0.3

1−0.3 0 0
VVINF 0 0 0.01

1−0.01

VVFIN 0 0 0

(6.13)

Furthermore, let λv,t be the probability that the node v with tag t is a leaf,
i.e. it has no outgoing edges. This value can be computed as follows:5

λv,t =
∏
r∈R

∏
(v′,t′)∈r(v,t)

[1− pedge(v, t, v′, t′, r)] (6.14)

5Two things can be said about the λ-values: they are extremely expensive to compute, because
they involve a product over all hypothetical edges, also those leading to non-existent words, and
they are of virtually no importance, since they tend to differ only slightly from tag to tag. As the
terms of the product are mostly numbers very close to 1, although they are many, the result is
still going to be fairly close to 1. Thus, although I include this value in the formulas for the sake
of soundness of the theory, I actually ignored it in experiments, setting λv,t = 1 everywhere.

110 Chapter 6. Semi-Supervised Learning of POS Tagging

Now we can turn to computing the backward probability. A trivial observation
is that βv,t = λv,t for leaf nodes. For a non-leaf node v, the backward probability will
be equal to the product of backward probabilities of all children of v, multiplied by
the probability of all outgoing edges of v. This has to be summed over all possible
taggings of the child nodes. For example, taking the node v6 in Fig. 6.3, we would
have:

βv6,t = λv6,t
∑
t7

∑
t8

T
(v6,v7,r)
t,t7 βv7,t7T

(v6,v8,r′)
t,t8 βv8,t8

= λv6,t(
∑
t7

T
(v6,v7,r)
t,t7 βv7,t7)(

∑
t8

T
(v6,v8,r′)
t,t8 βv8,t8)

The term λv6,t is due to the fact that v6 contains no further outgoing edges
apart from the two mentioned explicitly. The elements of the transition matrix
contain ‘one minus edge probability’ in the denominator in order to remove this
term from the product introduced by λ for edges that are present. The second line
is due to a simple transformation:

∑
i

∑
j aibj = (

∑
i ai)(

∑
j bj). r and r′ are simply

the rules corresponding to the respective edges.

Using matrix and vector notation, let βv and λv be |T |-dimensional vectors.
Further, let outG(v) be the set of outgoing edges of v in graph G (which is our
current graph). A general formula for the backward probability can be expressed
as follows:6

βv = λv ∗
∏

(v,v′,r)∈outG(v)

T (v,v′,r)βv′ (6.15)

The vague idea for computing the forward probability is to take the forward
probability of the parent node and multiply it by the probability of the edge leading
to the node in question. However, the parent node might also have other children,
which are not included in its forward probability. Looking at Fig. 6.3, the forward
probability of v2 must involve not only the forward probability of v1 and the edge
leading from v1 to v2, but also the subtree rooted in v3. Thus, the general formula
is as follows:

αv =
∏

(v′,v,r)∈inG(v)

αv′ ∗ ∏
(v′,v′′,r′)∈outG(v′)

v′′ 6=v

T (v′,v′′,r′)βv′′

 · T (v′,v,r) (6.16)

inG(v) denotes the set of incoming edges of v. Note that the set notation

6In the matrix formulas, the asterisk denotes element-wise multiplication and the dot or no
symbol denotes dot product.

6.2. The Method 111

and the outer product is only for notational convenience, as the set is always a
singleton. In this case, it means: ‘pick v′, that is the parent node of v’. The inner
product goes over all children of v′ except for v and includes the edges leading to
them and the probabilities of the subtrees rooted in them. Finally, the last product
corresponds to the edge leading from v′ to v.

The last remaining issue is the forward probability of root nodes. It is simply
equal to the probability of the root node defined by the model, which we call ρv,t
and compute as follows:

ρv,t = Proot(v|θroot)Proottag(t|v, θroottag) (6.17)

Thus, αv = ρv for root nodes.

6.2.2 Modifications to the Sampling Algorithm

As we have seen in the analysis of Fig. 6.1, adding an edge typically has conse-
quences for the whole subtree, in which the edge is added. The values τv for all
nodes in the subtree may change, which in turn changes the probability of all edges
in the subtree. This behavior constitutes a significant difference compared to the
general sampling algorithm, in which the edge probabilities were independent of
the graph structure and the cost of a change could be easily computed from the
cost of added and removed edges (cf. 4.32). Nevertheless, we can apply the same
sampler as the one developed in Sec. 4.3.2.

Observe that for every node v, the value
∑
t αv,tβv,t is the probability of whole

subtree, to which v belongs. This property – being able to compute the probability
of a whole subgraph using the values of a single node – is crucial in evaluating the
sampler moves.

Adding or removing a single edge. Consider the graph in Fig. 6.4, to which
the edge (v, v′, r) is supposed to be added. Without this edge, we have two separate
trees with a total probability expressed by (

∑
t αv,tβv,t)(

∑
t αv′,tβv′,t). After adding

this edge, we obtain a single tree. As v obtains a new child node, βv will change.
Let β′v denote the new value, which can be computed as follows:

β′v = βv ∗ T (v,v′,r)βv′ (6.18)

Note that neither αv nor βv′ is affected by adding this edge. The probability of the
new tree is simply

∑
t αv,tβ

′
v,t. If the move is accepted, the β values of all nodes on

112 Chapter 6. Semi-Supervised Learning of POS Tagging

.

.

.

v

.

v′

.

.

.

.

.
.

r

Figure 6.4: Adding or removing the edge (v, v′, r).

the path from the root to v have to be updated, as well as the α values of all nodes
except for this path.

Deleting an edge involves a very similar computation. In this case, the prob-
ability of the graph before deletion is

∑
t αv,tβv,t, whereas the probability after

deletion is (
∑
t αv,tβ

′
v,t)(

∑
t ρv′,tβv,t). Here, β′v,t is the updated backward probability

of v excluding the deleted edge.

Other moves. When exchanging a single edge to another one with the same
target node, we already need to be careful, as two distinct cases arise: either the
change takes place within one tree, or it involves two separate trees (Fig. 6.5).
If we proceeded as in the previous paragraph, those cases would require different
formulas. Instead of conducting such a detailed analysis of the changes, we apply
a more general (and, admittedly, more computationally expensive) approach, that
covers the ‘flip’ moves as well.

First, we group all edges that are to be changed (added or deleted) according
to the tree, to which they belong (more specifically, according to the root of the
tree, to which the edge’s source node currently belongs). In each tree, we look for a
minimum subtree that contains all the changes (Fig. 6.6). We build a copy of this
subtree with all changes applied and recompute the forward probability for its root
and the backward probabilities for the whole subtree. Finally, we use the (newly
computed) forward and backward probability of the subtree root to determine the
probability of the whole tree after changes.

Note that the ‘flip’ move can change the root of a tree (Fig. 6.7). It is thus
important to correctly recognize the root of the modified tree and to recompute
its forward probability, as it changes is this case.

A note on numerical issues. As the computation of acceptance probabilities
now involves probabilities of whole trees, the numbers are typically very small.
Furthermore, the occurrence of addition and dot product in formulas means that

6.2. The Method 113

(a) .

v3

v1

v2

(b) .

v3

v1

v2

Figure 6.5: Exchanging an edge to another with the same target node. The change
can take place within one tree (a) or involve two separate trees (b).

.

v3

.

v2

.

v5

v4

.

v1

.

.
.

Figure 6.6: In case of a ‘flip’ move, the smallest subtree containing all changes is the
one rooted in v3. The deleted edges are dashed, while the newly added edges are
dotted. In order to obtain the new βv3 , we recompute the backward probabilities
in the whole subtree. αv3 is not affected by the changes. (The node labels are
consistent with the definition in Fig. 4.8.)

(a) v2 v1 (b) v1 v2

Figure 6.7: A special case of the ‘flip’ move, which changes the root of the tree.
(a) – the tree before the move (the edge to delete is dashed, while the edge to be
added is dotted); (b) – the tree after the move. The node labels agree with the
ones in Fig. 4.8, with v4 = v2, v5 = v1 and v3 not existing. The difference between
the two variants of ‘flip’ is neutralized in this case.

114 Chapter 6. Semi-Supervised Learning of POS Tagging

the operations cannot be carried out on log-probabilities instead. This means that
at some point (with sufficiently large trees) the floating point computations will
eventually result in zeros, although in theory the tree probability is nonzero.

If a probability of the proposed graph is zero, it does not pose much of a
problem: such graph simply will not be accepted, as the acceptance probability
will be zero. A problem arises if the probability of the current graph turns out
to be zero. In this case, we obtain a zero in the denominator of the formula for
acceptance probability (see Algorithm 4.1) regardless of the proposed tree. This
situation can arise when multiplying the probabilities of two separate trees. Even
though probabilities of both trees are nonzero (otherwise they would not have been
accepted), their product may be zero, i.e. smaller than the machine epsilon.7 To
solve this problem, we introduce an artificial bound on the probability of trees:
trees with a total probability smaller than some ε are never accepted. ε is chosen
to be at least the square root of the machine epsilon, so the product of probabilities
of two trees is still always greater than 0.

6.2.3 Extending an HMM with New Vocabulary

The guessed tag probabilities τv,t are fed to a Hidden Markov Model before re-
estimating its parameters on untagged text. Recall that an HMM possesses three
kinds of parameters: initial probabilities (probability of starting in a given state),
transition probabilities (probability of a state given the previous state) and emis-
sion probabilities (probability of emitting a certain output symbol given the current
state). Only the emission probabilities are affected by the extension of the vocab-
ulary.

The emission probabilities in an HMM are the probabilities8 P (w|t) of a
word w given a tag t. First, we convert the values in an already trained HMM to
probability of tag given a word, i.e. P (t|w), using the Bayes formula:

P (t|w) =
P (w|t)P (t)∑
t′ P (w|t′)P (t′)

(6.19)

7The machine epsilon is the smallest number greater than zero that can be represented as a
floating-point number at a given precision. When using double precision, like the type float64
in the NumPy library, this number equals 5 · 10−324.
8This presentation takes a shortcut by calling HMM parameters directly probabilities. I as-

sumed that the reader is already familiar with HMMs and statistical modeling in general, so no
confusion should arise. However, such simplifications should be used with caution, especially when
introducing statistical models, because they can obscure the understanding of what probability
actually is.

6.3. Evaluation 115

The probability P (t) of seeing a tag t at a random position in the corpus can be
computed from tag frequencies during the fitting of the HMM on labeled train-
ing data. In this way, we obtain the probability of a tag given word, P (t|w), for
the words known to the tagger. For newly added words, we use the guesses ob-
tained from the morphology component, i.e. τw,t. As especially the extrinsic guess-
ing approach often yields sparse vectors with many zeros, we apply an additional
smoothing step using a parameter α.

P (t|w) := (1− |T |α)τw,t + α (6.20)

In this way, the guesses are used to guide the tagger in a certain direction, but
it still has the opportunity to apply different taggings if the context motivates it.
Furthermore, zero sentence probabilities can be avoided this way. I set α to 10−10

in the experiments, so it has negligible influence.

Finally, we apply the Bayes formula again to obtain the new emission prob-
abilities:

P (w|t) =
P (t|w)∑
w′ P (t|w′)

(6.21)

Note that the terms P (w) are missing in the latter formula. This is because they
are simply word frequencies, which are independent of the tagging. Thus, it does
not influence the HMM estimation if we initially assume that all words have equal
frequency. During estimation, the values will be automatically fitted to reflect the
word frequencies in the corpus.

6.3 Evaluation

6.3.1 Experiment Setup

I conducted evaluation experiments for 9 languages: German, Finnish, Gothic, An-
cient Greek, Latin, Latvian, Polish, Romanian and Russian, using the Universal
Dependencies corpora. I chose languages that displayed sufficient morphological
complexity for the approach to make sense (e.g. English is excluded for this rea-
son) and for which sufficiently large corpora were available. The chosen languages
exhibit diversity in genetic classification (Finnic, Germanic, Slavic, Italic, Baltic),
complexity of morphology (from simple fusional in German, through complex fu-
sional in Russian and Latin, to complex agglutinating in Finnish) and alphabet
(Latin, Cyryllic, Greek). The datasets vary also in size, as shown in Tables 6.2 and

116 Chapter 6. Semi-Supervised Learning of POS Tagging

1 Fitting on the training set.
2 1 + estimation on the development set.
3 2 + extension of the vocabulary with random initialization.
4 2 + extension of the vocabulary with intrinsic tag guesses.
5 2 + extension of the vocabulary with extrinsic tag guesses.
6 2 + extension of the vocabulary with gold standard tag guesses.

Table 6.1: Different setups of the HMM tagger used in the tagging experiment.

6.3.
Each corpus is randomly split into training, development and testing dataset

in proportions 10%:80%:10%. An HMM tagger is fitted to the (labeled) training
data using ML estimation. The training dataset is also used to learn tagged mor-
phological rules. Then, we remove the labels from the development corpus and
re-estimate the HMM on this corpus using Baum-Welch algorithm. This step is
performed in several configurations: either with or without vocabulary expansion.
In the latter case, all types occurring in the development corpus, but not known
to the HMM (i.e. not occurring in the training corpus) are added to the vocabu-
lary before the estimation. Finally, the tagging accuracy is assessed on the testing
dataset. The details of the possible configurations are shown in Table 6.1.

For each corpus, two kinds of datasets are prepared: with coarse-grained and
fine-grained tags. In the former case, the UPOS tagset is used, which amounts to
around 15 tags for every language. In the latter, all inflectional information pro-
vided by the corpus annotation is additionally included. For example, in the Latin
corpus, we have tokens like beati<ADJ> in the coarse-grained and beati<ADJ>
<NOM><POS><MASC><PLUR> in the fine-grained case.

The extrinsic tag guessing approach developed in the previous section is com-
pared to intrinsic guesses. Those are provided directly by the distribution Proottag,
which, in this case, uses a character-based recurrent neural network to predict the
word’s tag from its string form (see Sec. 4.2.3).

6.3.2 Evaluation Measures

Two kinds of evaluation are performed: lexicon and tagging evaluation. In the first
case, the quality of tag guesses for unknown words, τv, is measured directly. It
is desirable for those values to not only predict the correct tag for unambiguous
words, but also to handle ambiguity correctly, which means providing probabilities
that correspond to the expected frequency of a word with the certain tag. We
derive the gold standard data from the labels in the development set using the

6.3. Evaluation 117

following formula:
τ̂v,t =

nv,t∑
t′ nv,t′

(6.22)

with nv,t being the number of occurrences of word v with tag t in the development
set. This way, true ambiguities (with roughly equal frequency of different taggings)
are treated differently than rare taggings, which may result from tagging errors or
some obscure, infrequent meanings. The accuracy is computed as follows:

accuracy =
1
|V |

∑
v∈V

∑
t

min{τv,t, τ̂v,t} (6.23)

It is intentionally a very demanding measure: it achieves 100% for a given word
only if the probability mass is distributed exactly according to the corpus frequency
of the tagging variants, which is virtually impossible for ambiguous words. Hence,
low scores according to this measure are not surprising and do not necessarily
represent a bad-quality tagging. I decided for this measure, because it is easier to
interpret than e.g. KL-divergence.

In the tagging evaluation, we evaluate the impact of providing tag guesses
on a real POS-tagging task. The evaluation measure used there is the standard
accuracy, i.e. the percentage of correctly tagged tokens.

6.3.3 Results

Tables 6.2 and 6.3 show the results of the lexicon evaluation, as well as some
information about the sizes of the datasets. The first three columns show the
number of distinct tags found in the training set, the size (number of types) of the
training set and the size of the development set. Note that the sizes for the same
language in both tables differ slightly: firstly, fine-grained tags would yield more
types from the same corpus because of more possible taggings per word. Secondly,
the tables describe distinct experiments with different random splits of the data.
Thus, the datasets in Table 6.3 are typically slightly larger, but the reverse case is
also possible.

The results show clearly that the extrinsic method outperforms the intrinsic
in predicting possible tags for a given word type. Probably the most important
reason for that is that the intrinsic method always makes unsharp predictions –
it never attributes the whole probability mass to a single tag. On the other hand,
the extrinsic method often makes unambiguous predictions because of the absence
of rules allowing for alternatives (a phenomenon illustrated in Fig. 6.1). Thus, the

118 Chapter 6. Semi-Supervised Learning of POS Tagging

Language #tags #train #devel Intrinsic Extrinsic
Ancient Greek 14 7.7k 34k 60.7 % 66.0 %
Finnish 15 10k 49k 50.7 % 64.3 %
German 16 10k 45k 61.6 % 67.6 %
Gothic 13 2.1k 7.6k 48.3 % 66.1 %
Latin 14 7k 26k 54.4 % 70.4 %
Latvian 17 5.1k 23k 50.6 % 64.6 %
Polish 15 5.6k 28k 58.7 % 69.5 %
Romanian 16 7.8k 30k 54.0 % 70.5 %
Russian 16 30k 110k 68.2 % 76.9 %

Table 6.2: Lexicon evaluation with coarse-grained tags.

Language #tags #train #devel Intrinsic Extrinsic
Ancient Greek 481 8.2k 34k 22.9 % 30.0 %
Finnish 906 10k 48k 25.5 % 41.1 %
German 519 11k 45k 15.4 % 21.0 %
Gothic 333 2k 7.7k 15.7 % 30.8 %
Latin 632 7.5k 26k 23.6 % 44.8 %
Latvian 501 5.1k 23k 24.0 % 36.8 %
Polish 394 5.9k 28k 19.6 % 31.5 %
Romanian 185 7.7k 30k 24.1 % 30.1 %
Russian 597 33k 110k 33.0 % 52.2 %

Table 6.3: Lexicon evaluation with fine-grained tags.

6.3. Evaluation 119

Language 1 2 3 4 5 6
Ancient Greek 66.9 % 74.2 % 73.2 % 78.9 % 79.1 % 85.7 %
Finnish 60.6 % 74.4 % 72.8 % 79.5 % 82.3 % 83.8 %
German 77.1 % 75.5 % 83.1 % 84.9 % 85.1 % 83.6 %
Gothic 76.8 % 77.0 % 80.3 % 81.9 % 82.8 % 86.5 %
Latin 74.3 % 80.8 % 81.6 % 82.5 % 86.6 % 85.6 %
Latvian 67.0 % 72.3 % 73.1 % 79.6 % 80.3 % 84.8 %
Polish 71.5 % 78.7 % 74.5 % 78.1 % 84.2 % 82.9 %
Romanian 78.5 % 84.6 % 85.3 % 88.0 % 88.4 % 87.0 %
Russian 80.9 % 87.7 % 87.7 % 90.3 % 90.5 % 91.4 %

Table 6.4: Tagging evaluation with coarse-grained tags.

latter achieves better scores especially on correctly tagged unambiguous words.

The comparison of tagging accuracies is shown in Tables 6.4 and 6.5. The
columns correspond to the tagger configurations explained in Table 6.1. In general,
a rise of the score from left to right is to be expected.

The difference between columns 1 and 2 illustrates the influence of reesti-
mating the trained model on unlabeled data without adding the OOV words to
the vocabulary. Interestingly, this results in an improvement in case of the coarse-
grained tagset, but in a decline when using the fine-grained tagset, both significant.
However, adding the OOV words from the development set to the vocabulary, even
with randomly initialized probabilities (column 3), further improves the accuracy
(with a few exceptions), so that the result is consistently better than column 1.
Column 4 introduces intrinsic tag guessing as initial probabilities for newly added
words, rather than random values. This results in a further improvement, espe-
cially significant for Finnish, Ancient Greek and Latvian (both coarse-grained and
fine-grained).

The most important comparison in this evaluation is between column 4 and
5. This illustrates the benefit of using extrinsic tag guessing (column 5), rather
than intrinsic. This results in a consistent improvement, ranging from very slight
to significant. The most significant improvements are shown in bold. Finally, col-
umn 6 displays what one might expect to be the upper bound on the accuracy: the
one that would be achieved if tags were guessed perfectly (i.e. as τ̂v). Surprisingly,
it is not always the highest value in a row. It looks as if taking into account some
wrong taggings during Baum-Welch estimation could accidentally improve the es-
timation, because the wrong tag might also have occurred in the given context.
This seems especially plausible for cases like common and proper nouns, which are
often confused. However, any speculation in such a case is not of much value.

120 Chapter 6. Semi-Supervised Learning of POS Tagging

Language 1 2 3 4 5 6
Ancient Greek 56.6 % 46.4 % 56.9 % 62.8 % 63.8 % 69.9 %
Finnish 53.5 % 37.7 % 56.7 % 65.1 % 67.5 % 71.7 %
German 59.4 % 49.8 % 58.7 % 61.8 % 62.0 % 63.1 %
Gothic 63.6 % 55.0 % 65.9 % 67.7 % 67.8 % 73.9 %
Latin 59.0 % 49.3 % 61.7 % 66.0 % 68.7 % 73.4 %
Latvian 58.5 % 47.1 % 59.4 % 65.7 % 66.8 % 71.3 %
Polish 55.4 % 43.7 % 57.5 % 62.5 % 62.7 % 67.9 %
Romanian 71.2 % 71.3 % 75.9 % 76.4 % 76.1 % 82.4 %
Russian 73.1 % 65.4 % 73.6 % 78.0 % 78.9 % 81.3 %

Table 6.5: Tagging evaluation with fine-grained tags.

Although the results speak consistently in favor of using extrinsic tag guess-
ing, as well as using tag guessing at all, the benefits are somewhat less clear than
I expected. Especially in the case of fine-grained tags, my expectation was that,
due to the discrete nature of morphological rules, at least the tags of unambiguous
words would be identified mostly correctly. This was supposed to greatly improve
the Baum-Welch estimation, as instead of considering many hundred possible tags,
the correct one is already known, which turns the estimation into almost supervised
learning. However, I underestimated the impact of the small size of training cor-
pus on the morphology component. Most fine-grained tags are very rare, so many
morphological rules related to such forms are not learnt. As the set of possible
tags is finite, this problem could perhaps be less significant if larger corpora were
available for both training and development.

6.3.4 Remarks

The main limitation of the approach presented here is that it fails to capture
regularities that do not change the surface form, like e.g. the relationship between
the German verb infinitive and 3rd person plural, which always correspond to the
same surface form.9 The untagged graph contains one node per surface form, so
edges preserving the surface form would have to be loops, which are not possible in
the current model. Any further work on this approach should address this problem.

The task presented here is a neat example of the usefulness of treating inflec-
tion and derivation uniformly, as WWM does. Both inflectional and derivational
regularities can provide clues about the word’s lexical category and inflectional

9Or a large portion of English verb inflection. This is another reason why this approach
currently does not make sense for a language like English.

6.3. Evaluation 121

form.
Perhaps the forward-backward computation on morphology graphs presented

in this chapter could be generalized to predicting other latent word features that
are affected by morphological rules in a regular way, or applied in a different graph
model.

An adjustment of the approach presented here to fully unsupervised learning
of morphological paradigms is also imaginable. In this variant, we would start with
random transition matrices and an untrained root tag distribution and fit both
using an expectation-maximization approach based on sampled frequencies. This
would be similar to the approach taken by Chan [2006], but with an improved
model of morphological transformations.10 On the other hand, it would almost
certainly constitute an improvement over my early attempts to learn morpholog-
ical paradigms [Janicki 2013]. However, some problems remain to be solved: for
example, in the semi-supervised case, the transition matrices are sparse. In the
fully unsupervised case, they would be dense, which would make the computations
prohibitive for large numbers of tags. A small number of tags would however fail to
distinguish different inflectional forms, which in inflected languages, like Polish or
Latin, behave very differently in the graph representation (i.e. take edges labeled
with different rules). Thus, the fully unsupervised case remains a topic for further
work.

10Chan [2006] uses a very simple model, in which every word form is derived from the base via
a single suffix change

122 Chapter 6. Semi-Supervised Learning of POS Tagging

Chapter 7

Unsupervised Vocabulary
Expansion

One of the signs of mastering the morphology of a given language is the ability
to utter or anticipate words that one has never heard before. In an unsupervised
learning setting, this corresponds to taking a list of words as input and suggesting
further words as output. Recent works call this task vocabulary expansion [Rasooli
et al. 2014; Varjokallio and Klakow 2016].1 The practical applications of vocabu-
lary expansion include especially tasks like speech recognition or optical character
recognition (OCR), in which words listed in some lexicon have to be recognized in
a noisy representation.

As an evaluation task for unsupervised learning of morphology, vocabulary
expansion has a huge advantage: it is theory-agnostic. Instead of discovering some
underlying representation that has to be consistent with a certain linguistic theory,
like segmentation or lemmatization, we predict the mere existence of words. By
using out-of-vocabulary rate reduction as evaluation measure, we can replace the
question of the existence of a word by the question of its occurrence in a certain
corpus, thus further simplifying the evaluation. In this way, we can use unannotated
corpora as both training and evaluation data. The linguistic agnosticism makes this
task suitable for comparing different approaches to morphology, e.g. segmentation
vs. word-based.

1This should not be confused with lexicon expansion, which usually means predicting some
features for new words, more in the spirit of Chap. 6. In Janicki [2015], I erroneously used the
term lexicon expansion while referring to vocabulary expansion.

123

124 Chapter 7. Unsupervised Vocabulary Expansion

7.1 Related Work

Chan [2008] observed that inflected forms of a lexeme have a frequency distribu-
tion exhibiting the general tendency of Zipf’s law (although there are not enough
data points to establish the Zipf’s law in a stricter sense): a few forms tend to
be common, while many more are rare. For middle and low frequency lexemes,
this means that the rare forms are expected to be missing, especially in smaller
corpora. This phenomenon creates a large number of words that will typically not
be observed in the training corpus, while they can be anticipated from observed
words with knowledge of the language’s morphology.

As an evaluation task for unsupervised learning of morphology, vocabulary
expansion has been used already by Neuvel and Fulop [2002] for their Whole Word
Morphology model. Similarly to the present work, they needed an evaluation mea-
sure that was agnostic of the underlying model of morphology, unlike segmentation.
More recently, vocabulary expansion was approached as a separate task by Rasooli
et al. [2014]. They apply a state-of-the-art unsupervised morphological segmenta-
tion method (Morfessor) and subsequently induce a finite grammar (implemented
as an FST) from the obtained segmentations. This line of research was further ex-
plored by Varjokallio and Klakow [2016], who train language models (N-gram and
RNN) on the segmentations and use them to sample new words. Both approaches
are evaluated by measuring the reduction of out-of-vocabulary (OOV) word rate
on a separate corpus.

My own preliminary work on the graph-based morphology model also in-
volved evaluation through vocabulary expansion [Janicki 2015; Sumalvico 2017]. I
reported precision at various sizes of generated vocabulary, measured against com-
plete lists of correct words in a given language. As such lists are difficult to find
and rarely really complete, OOV rate reduction seems more suited as an evaluation
measure and will be used in this chapter.

7.2 The Method

Given a vocabulary V and a morphology model 〈R, θ〉 trained on this vocabulary,
we can compile two transducers: TV , accepting all words from the lexicon, and
TR, being a disjunction of all known morphological rules. Then, we can apply the
following transformation in order to compute TN , an automaton that accepts new
words:

TN = πout(TV ◦ TR) \ TV (7.1)

7.2. The Method 125

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

log fjedsten

P
ro

ba
bi

lit
y

de
ns

it
y

Figure 7.1: Predicted log-frequency of the hypothetical word *jedsten, as derived
from jedes via the rule /Xes/→ /Xsten/. The frequency model predicts the mean
log-frequency µ = 4.24 (corresponding to the frequency around 69) with standard
deviation σ = 0.457. The probability of the word not occurring in the corpus (i.e.
frequency < 1) corresponds to the area under the curve on the interval (−∞, 0),
which is approximately 10−20.

Subsequently, we analyze all words produced by TN by computing possible edges
deriving them from known words. For each edge, we compute its cost using the
trained model. Finally, we compute the cost of adding the word to the vocabulary
from the edge costs.

Additionally, we can use the frequency model developed in Sec. 4.2.4 to pre-
dict the frequency of newly generated words. This can be included in the edge
costs: the generated words should have low frequencies, so that their absence from
the training corpus is well-motivated. Sec. 7.2.1 explains this aspect in more detail,
while Sec. 7.2.2 shows how word costs are computed from edge costs.

7.2.1 Predicting Word Frequency

A word frequency model, such as the one developed in Sec. 4.2.4, may be helpful
in the task of predicting unseen words. The words that we aim at lie in a certain
frequency range: they are too infrequent to be observed in the training corpus, but
frequent enough to be expected in the (usually larger) development corpus.

Modeling word frequency is expected to help avoid a common mistake: ap-
plying highly productive rules to very frequent words. For example, the German
adjective jeder ‘each’ displays a typical adjective paradigm: jeder, jede, jedes, je-
den, jedem etc. However, comparative or superlative forms, like *jedere or *jedsten,
do not exist. Using the frequency model, we can easily conclude that such forms
indeed do not exist, instead of just happening not to occur in the corpus. Consider

126 Chapter 7. Unsupervised Vocabulary Expansion

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.5

1

log faufwändigsten

P
ro

ba
bi

lit
y

de
ns

it
y

Figure 7.2: Predicted log-frequency of aufwändigsten, as derived from aufwändiges
via the rule /Xes/ → /Xsten/. The probability of log-frequency being negative
(i.e. the frequency being < 1) is here around 0.863 (µ = −0.5, σ = 0.457).

deriving the word *jedsten from jedes using the rule /Xes/→ /Xsten/. jedes has a
corpus frequency of 114 and the mean difference of log-frequencies between source
and target word fitted for the rule is 0.5. This yields the predicted mean frequency
of exp(ln 114 − 0.5) ≈ 69 (Fig. 7.1). Hence, if the word existed, it would have to
be observed.

A different situation arises if the base word is rare. Consider applying the
same rule to aufwändiges, which occurs only once in the training corpus. The
resulting aufwändigsten has a predicted mean frequency of exp(ln 1 − 0.5) ≈ 0.6,
so it is quite likely to be missing from the corpus (Fig. 7.2). Admittedly, this
method does not always work: there are many rare adjectives that cannot form
superlative as well. However, in this way we are able to filter out at least some
false positives with small chances of losing a true positive.

When considering the occurrence of a word in another corpus, rather than its
existence, we might want to modify the integration interval. Instead of computing
the probability of corpus frequency being smaller than 1, which amounts to inte-
grating over the interval (−∞, ln 1), we set the minimum frequency as well. For
example integrating over the interval (ln 0.1, ln 1) gives us the probability, that the
word is not observed in the given training corpus, but will be observed in a ten
times larger corpus. This is the approach that I took in the evaluation experiments.

7.2.2 Computing Word Costs from Edge Probabilities

We will now turn to computing the cost of adding a new word v to the vocabulary.
A usual way of deriving a new word is applying a known and productive rule to an

7.2. The Method 127

already known word. However, especially in the absence of POS tags, this approach
is likely to overgenerate massively: we apply a rule every time the pattern on its
left-hand side is matched, regardless of the part-of-speech and inflectional form of
the source word. In this way, we quickly end up adding for instance verb suffixes
to nouns. In the worst case, the pattern on the left-hand side of the rule is just
/X/, which results in applying the rule to every known word.

Recall from Sec. 6.1.1 that several possible base words give a much better
indication of the part-of-speech and paradigm type of the derived word than just
one. As in Whole Word Morphology there is no concept of a ‘base word’ or ‘lemma’,
we are likely to find many different rules, by which a proposed new word can be
derived from various known words. In the remainder of this section, I present a
method of computing costs for new words that takes into account all possible
ways of deriving a word. Each possible derivation lowers the cost of the resulting
word. Thus, the more known words ‘support’ a proposed new word, the cheaper it
becomes.

Formally, the cost of adding a new word v to the vocabulary equals the following
log-likelihood change:

cost(v) = − log
P (V ∪ {v}|R)

P (V |R)
= − log

∑
E P (V ∪ {v}, E|R)∑

E P (V,E|R)
(7.2)

The sum goes over all edges that can be created using words from the given vo-
cabulary and rules from R.

Let p0 denote the root probability of the newly added word v and p1, . . . , pn

denote the probabilities of edges that derive v from some word in V using some rule
in R. It is easy to see that the probability of each graph not containing v (i.e. the
graphs considered in the denominator of (7.2)) will contain the term

∏n
i=1(1− pi):

the considered edges are possible (the source node is in V and the deriving rule is
in R), but not present, since the node v is not present. Let us draw this term in
front of the sum and call the rest of the sum Z:

∑
E

P (V,E|R) =
n∏
i=1

(1− pi)Z (7.3)

Z contains the probabilities of edges not involving v, summed over all possible
graph structures.

Now let us turn to the graphs containing v, which form the numerator of
(7.2). In order to make the computation tractable, we will consider only graphs,

128 Chapter 7. Unsupervised Vocabulary Expansion

in which v is a leaf node. In this case, it is either a root node, or is derived by one
of the edges. Note that for each graph not containing v, there is exactly one graph
containing v as a root (simply the same graph, plus v as a root). Furthermore, each
graph containing v as a root, contains the term: p0

∏n
i=1(1−pi). On the other hand,

for each graph not containing v and each possible edge deriving v, there is exactly
one graph containing this extra edge. If v is derived with the k-th edge, the graph
probability contains the term:

∏k−1
i=1 (1− pi)pk

∏n
i=k+1(1− pi) = pk

1−pk
∏n
i=1(1− pi).

In result, by considering in the numerator only graphs, in which v is a leaf,
we obtain the following approximation for (7.2):

cost(v) = − log

(
p0 +

∑n
j=1

pj
1−pj

)∏n
i=1(1− pi)Z∏n

i=1(1− pi)Z
= − log

p0 +
n∑
j=1

pj
1− pj

 (7.4)

Thus, the cost of adding a word can be obtained by simply summing the proba-
bilities of different ways of deriving it, and taking the negative logarithm of the
result. In practice, p0 is usually several orders of magnitude smaller than the edge
probabilities, so it can be safely omitted.

7.3 Evaluation

7.3.1 Experiment Setup

Four different configurations are evaluated wrt. the methods presented in this chap-
ter. On one hand, using as many edges as possible (‘COMBINED’) to compute the
cost of a new word in the way presented in Sec. 7.2.2 is compared to using just
the edge with the highest probability (‘SINGLE’). Both cases are further split in
two by either using a frequency model (‘-FREQ’) or omitting it. In case the fre-
quency model is used, the interval for the frequency of proposed words is set to
[0.1, 2]. The model components used are the ALERGIA root model (Sec. 4.2.1)
and the simple edge model (Sec. 4.2.2). All models were trained by 5 iterations of
fitting, without model selection. In order to speed up the computation, rules with
− log p > 8 are discarded and the maximum cost of generated words is set to 6.
This results in around 2 to 5 million unique new words, depending on the dataset
and model variant.

Baseline. The present approach is compared to a simplified version of the method
presented by Varjokallio and Klakow [2016]: segmenting the training corpus with

7.3. Evaluation 129

Language
Training corpus Development corpus
Types Tokens Types Tokens Token OOV Type OOV

German 218,043 1,935,822 972,596 17,430,771 8.03 % 84.74 %
Finnish 276,798 1,430,189 1,225,944 12,850,115 13.82 % 84.49 %
Latin 77,777 411,148 321,336 3,671,912 13.63 % 82.46 %
Latvian 169,876 1,855,796 598,446 16,690,119 5.41 % 77.80 %
Polish 214,856 1,730,214 788,680 15,569,684 7.80 % 78.88 %
Romanian 176,539 2,262,719 622,247 20,377,801 4.69 % 77.69 %
Russian 231,818 1,756,566 889,958 15,852,287 8.52 % 80.33 %

Table 7.1: The datasets used for evaluation.

Morfessor [Virpioja et al. 2013] and training an RNN language model on the morph
sequences using the RNNLM toolkit [Mikolov et al. 2010; Mikolov 2012]. While the
authors found that a linear interpolation of an RNN and an n-gram language model
yielded slightly better results, the difference was rather minor, as illustrated by Fig-
ure 1 in Varjokallio and Klakow’s paper. The setup used for both tools is based
on the original paper: the parameter α for Morfessor is set to 0.8 and the RNN
model uses 50 classes and a hidden layer of size 20. I sampled 100 million words
from the RNN model, which, depending on the language, yielded between 5.4 and
7.7 million unique new words.

Datasets. As in Section 5.2, I used the corpora from the Leipzig Corpora Collec-
tion for the experiments. The size of the corpora was 1 million sentences, except for
the Latin dataset, which was smaller (around 243k sentences). The corpora were
randomly split into training and development datasets in proportion 1:9. Table 7.1
presents some statistics about the vocabulary of the resulting datasets.

Evaluation measure. The evaluation measure used in the experiments is the
out-of-vocabulary rate reduction: it measures, how much the rate of out-of-vocabulary
words decreases after vocabulary expansion. If OOVbase denotes the OOV rate be-
fore expansion (one of the two last columns of Table 7.1) and OOVexp the OOV
rate after expansion, the reduction is given by the following formula:

OOVreduction =
OOVbase −OOVexp

OOVbase
(7.5)

7.3.2 Results

Tables 7.2 and 7.3 present the OOV reduction rates for various numbers of gener-
ated words. Two sizes are particularly interesting: 200k, which corresponds roughly

130 Chapter 7. Unsupervised Vocabulary Expansion

Language Model 10k 50k 100k 200k 500k 1M

German

COMBINED+FREQ 1.85% 4.75% 7.99% 11.41% 17.48% 21.97%
COMBINED 1.88% 5.45% 8.13% 11.78% 17.23% 21.50%
SINGLE+FREQ 0.86% 3.66% 5.82% 8.83% 15.49% 20.87%
SINGLE 1.19% 4.11% 6.94% 10.59% 15.52% 19.65%
Morfessor+RNNLM 0.21% 1.30% 2.54% 4.54% 8.68% 11.98%

Finnish

COMBINED+FREQ 2.31% 6.86% 9.89% 14.84% 22.04% 28.45%
COMBINED 2.39% 6.95% 10.32% 15.61% 23.25% 29.39%
SINGLE+FREQ 0.90% 3.52% 6.30% 10.24% 17.94% 25.92%
SINGLE 1.05% 4.20% 6.89% 11.73% 19.66% 26.65%
Morfessor+RNNLM 0.53% 2.29% 3.91% 6.27% 10.75% 14.58%

Latin

COMBINED+FREQ 7.67% 18.75% 25.70% 33.66% 42.56% 47.56%
COMBINED 7.27% 19.43% 26.21% 33.39% 42.94% 47.77%
SINGLE+FREQ 3.17% 13.21% 20.67% 30.35% 41.08% 46.71%
SINGLE 4.49% 14.84% 21.80% 30.55% 41.12% 46.93%
Morfessor+RNNLM 0.82% 3.82% 6.70% 10.84% 19.02% 25.23%

Latvian

COMBINED+FREQ 5.81% 16.30% 23.55% 32.14% 43.35% 50.97%
COMBINED 5.62% 15.80% 22.89% 31.03% 42.84% 50.72%
SINGLE+FREQ 2.39% 9.89% 16.96% 26.75% 40.24% 49.35%
SINGLE 2.60% 10.86% 17.96% 26.67% 39.76% 48.50%
Morfessor+RNNLM 0.49% 2.19% 4.40% 8.30% 16.41% 23.69%

Polish

COMBINED+FREQ 4.69% 13.27% 19.18% 26.77% 37.55% 44.24%
COMBINED 4.58% 13.07% 19.20% 26.56% 37.17% 44.32%
SINGLE+FREQ 1.97% 8.94% 14.50% 22.09% 34.93% 42.88%
SINGLE 2.38% 9.41% 14.67% 21.91% 34.25% 42.97%
Morfessor+RNNLM 0.27% 1.24% 2.70% 5.57% 12.06% 19.40%

Romanian

COMBINED+FREQ 4.25% 11.96% 17.87% 24.36% 32.15% 37.80%
COMBINED 4.25% 12.36% 17.67% 23.66% 32.28% 38.09%
SINGLE+FREQ 2.11% 8.63% 14.20% 21.23% 30.10% 35.94%
SINGLE 2.67% 10.07% 14.50% 20.57% 29.88% 36.09%
Morfessor+RNNLM 0.62% 2.56% 4.38% 7.11% 12.47% 17.32%

Russian

COMBINED+FREQ 4.39% 12.93% 18.90% 26.00% 36.65% 43.77%
COMBINED 4.41% 12.49% 18.31% 25.56% 36.24% 43.32%
SINGLE+FREQ 1.97% 7.30% 13.12% 21.38% 34.08% 42.41%
SINGLE 2.02% 8.14% 14.01% 21.99% 33.13% 41.51%
Morfessor+RNNLM 0.58% 2.53% 4.45% 7.53% 14.32% 20.49%

Table 7.2: Token-based OOV reduction rates for various numbers of generated
words.

7.3. Evaluation 131

Language Model 10k 50k 100k 200k 500k 1M

German

COMBINED+FREQ 0.61% 1.94% 3.44% 5.39% 9.16% 12.48%
COMBINED 0.57% 2.03% 3.33% 5.28% 8.74% 11.99%
SINGLE+FREQ 0.35% 1.59% 2.67% 4.20% 8.03% 11.76%
SINGLE 0.43% 1.68% 2.90% 4.76% 7.77% 10.71%
Morfessor+RNNLM 0.10% 0.56% 1.15% 2.18% 4.68% 6.84%

Finnish

COMBINED+FREQ 0.68% 2.63% 4.26% 7.10% 11.94% 16.73%
COMBINED 0.67% 2.52% 4.23% 7.14% 12.31% 17.08%
SINGLE+FREQ 0.39% 1.61% 2.96% 5.07% 9.61% 15.19%
SINGLE 0.39% 1.72% 2.98% 5.40% 10.10% 14.97%
Morfessor+RNNLM 0.19% 0.94% 1.72% 2.94% 5.42% 7.71%

Latin

COMBINED+FREQ 2.77% 9.00% 13.86% 20.08% 28.23% 33.53%
COMBINED 2.41% 8.85% 13.60% 19.46% 28.43% 33.70%
SINGLE+FREQ 1.50% 6.80% 11.39% 18.02% 26.93% 32.70%
SINGLE 1.80% 7.03% 11.27% 17.61% 26.80% 32.82%
Morfessor+RNNLM 0.44% 2.14% 3.84% 6.54% 12.34% 17.17%

Latvian

COMBINED+FREQ 1.71% 6.49% 10.74% 16.59% 25.74% 32.99%
COMBINED 1.53% 5.91% 9.87% 15.33% 24.82% 32.45%
SINGLE+FREQ 0.98% 4.45% 8.14% 13.77% 23.49% 31.53%
SINGLE 0.94% 4.39% 7.92% 12.94% 22.49% 30.35%
Morfessor+RNNLM 0.28% 1.23% 2.46% 4.80% 9.91% 14.59%

Polish

COMBINED+FREQ 1.36% 5.33% 8.77% 13.75% 21.91% 27.58%
COMBINED 1.18% 4.78% 8.07% 12.73% 20.92% 27.38%
SINGLE+FREQ 0.83% 3.97% 6.94% 11.57% 20.40% 26.54%
SINGLE 0.85% 3.79% 6.37% 10.42% 18.87% 26.30%
Morfessor+RNNLM 0.13% 0.65% 1.41% 2.91% 6.57% 10.97%

Romanian

COMBINED+FREQ 1.39% 4.96% 8.24% 12.63% 18.83% 23.79%
COMBINED 1.25% 4.88% 7.85% 11.76% 18.77% 23.95%
SINGLE+FREQ 0.91% 3.90% 6.75% 10.75% 17.41% 22.34%
SINGLE 0.96% 4.07% 6.48% 10.04% 17.03% 22.44%
Morfessor+RNNLM 0.29% 1.28% 2.26% 3.83% 7.17% 10.40%

Russian

COMBINED+FREQ 1.20% 4.88% 8.24% 12.82% 21.07% 27.39%
COMBINED 1.07% 4.32% 7.36% 11.91% 20.07% 26.55%
SINGLE+FREQ 0.79% 3.20% 6.02% 10.59% 19.28% 26.37%
SINGLE 0.73% 3.15% 5.86% 10.22% 17.86% 24.99%
Morfessor+RNNLM 0.24% 1.15% 2.12% 3.74% 7.49% 11.26%

Table 7.3: Type-based OOV reduction rates for various numbers of generated
words.

132 Chapter 7. Unsupervised Vocabulary Expansion

to doubling the size of the training vocabulary (with the exception of Latin, where
100k is nearer), as well as 1M, which is around the size of the development corpus
vocabulary for most languages.

Comparison between segmentation and Whole Word models. The re-
sults show a very clear advantage of the Whole Word Morphology model over the
Morfessor+RNNLM model. The latter is outperformed by at least factor 2 for all
vocabulary sizes, and for small sizes the difference is sometimes as high as factor
10 (e.g. Polish token-based 50k). There are multiple reasons for such a difference,
which all amount to the fact that segmentation-based morphology models like Mor-
fessor are not well-suited for vocabulary expansion. When taking the segmentation
view of morphology, an accurate model of morphotactics is crucial in predicting
which words can be formed. However, morphotactics is overlooked by models like
Morfessor, which rather put emphasis on explaining the words that they are given.
Using language models such as RNNLM as a model for morphotactics is a dubious
solution, as the analogy between words in a sentence and morphs in a word seems
quite far-fetched. On the other hand, the Whole Word Morphology approach of
generating words from other existing words seems suitable for this task. It puts
emphasis on generating missing inflected forms, rather than forming compounds
or long chains of affixes. The ‘combined’ model prioritizes proposals that are sup-
ported by multiple existing words, thus minimizing the risk of applying a rule on
a wrong base word. In general, the WWM approach tries to be ‘safe’ and stay as
close to the known vocabulary as possible, exploring only the nearest neighbor-
hood. In contrast, the ‘disassemble and reassemble’ approach of the segmentation
model frequently produces words that are much more unlike anything seen in the
training set. It is however necessary to note that the Whole Word approach works
best for fusional morphologies and might run into trouble in highly agglutinating
languages.

Finally, there is one more difference: the FST implementation of the Whole
Word model makes it possible to discard proposals with high costs through simple
thresholds. By doing so, we can compute all proposals with cost smaller than some
threshold and subsequently sort them by cost. On the other hand, best-first search
in models like RNNLM is not readily available (although probably possible), so
we have to generate through sampling. Some high-probability candidates might be
overlooked in this process.

7.3. Evaluation 133

Comparison of different Whole Word models. Slightly surprising is the fact
that the frequency model turned out to be irrelevant in this task. It is yet unclear
whether this is due to wrong parameter values, insufficient fitting, or simply lack
of necessity of modeling the frequency. Cases like jedes → *jedsten might turn out
to be so rare that they do not impact the results. On the other hand, they could
be countered by failing to generate some existing words because of their atypical
frequency patterns.

The ‘COMBINED’ models perform consistently better than ‘SINGLE’. How-
ever, the difference is in most cases not critical, indicating that either many gener-
ated words are supported by only a single existing word or that the differences in
edge probabilities are so large that (7.4) is often dominated by a single term. The
latter is indeed often the case.

There is a clear difference between the results for German and Finnish and
other languages. German and Finnish are indeed different from the rest in that
they make heavy use of concatenative morphology (especially compounding) and
many OOV words are compounds. Additionally, the German inflectional morphol-
ogy is fairly limited compared to the other languages (including Finnish). This
accounts for lower difference between the performance of ‘SINGLE’ and ‘COM-
BINED’ models for German.

On the other hand, the five other languages all exhibit highly fusional mor-
phology and extensive inflection. As my model aims primarily at generating missing
inflected forms of words, for which other inflected forms are known, it is no sur-
prise that it works best for languages, in which missing inflections, rather than e.g.
compounds, contribute most significantly to OOV rates. Interestingly, this phe-
nomenon can be also observed for the Morfessor+RNNLM approach, although to
a smaller extent. While this model has little difficulty with generating new com-
pounds, this strategy is less likely to produce words occurring in the development
corpus than just exchanging an inflectional affix.

Comparison to maximum OOV reduction. The OOV reduction rates are
somewhat difficult to interpret for small numbers of generated words: for instance,
is 0.61% for German 10k-word experiment a good or bad result? For this reason, it
is helpful to consider a different evaluation metric: the ratio of the achieved OOV
reduction to the maximum achievable type-based OOV reduction at a given size.
For example, assuming that all 10, 000 generated words occur in the development
dataset, we can still achieve only 10,000

972,596·0.8474 ≈ 1.21% type-based OOV reduction.
The value in the denominator is the number of OOV types in the development

134 Chapter 7. Unsupervised Vocabulary Expansion

Language Model 10k 50k 100k 200k 500k 1M

German
COMBINED+FREQ 50.4 % 32.0 % 28.4 % 22.2 % 15.1 % 12.5 %
Morfessor+RNNLM 8.0 % 9.3 % 9.5 % 9.0 % 7.7 % 6.8 %

Finnish
COMBINED+FREQ 70.4 % 54.5 % 44.1 % 36.8 % 24.7 % 17.3 %
Morfessor+RNNLM 20.0 % 19.5 % 17.8 % 15.2 % 11.2 % 8.0 %

Latin
COMBINED+FREQ 73.5 % 47.7 % 36.7 % 26.6 % 28.2 % 33.5 %
Morfessor+RNNLM 11.7 % 11.3 % 10.2 % 8.7 % 12.3 % 17.2 %

Latvian
COMBINED+FREQ 79.5 % 60.4 % 50.0 % 38.6 % 25.7 % 33.0 %
Morfessor+RNNLM 13.0 % 11.4 % 11.4 % 11.2 % 9.9 % 14.6 %

Polish
COMBINED+FREQ 84.4 % 66.3 % 54.6 % 42.8 % 27.3 % 27.6 %
Morfessor+RNNLM 8.2 % 8.0 % 8.8 % 9.1 % 8.2 % 11.0 %

Romanian
COMBINED+FREQ 67.0 % 48.0 % 39.8 % 30.5 % 18.8 % 23.8 %
Morfessor+RNNLM 14.1 % 12.4 % 10.9 % 9.3 % 7.2 % 10.4 %

Russian
COMBINED+FREQ 85.7 % 69.8 % 58.9 % 45.8 % 30.1 % 27.4 %
Morfessor+RNNLM 17.3 % 16.4 % 15.1 % 13.4 % 10.7 % 11.3 %

Table 7.4: Type-based OOV reduction as the percentage of the maximal reduction
at a given size.

dataset, which can be computed from values given in Table 7.1. Thus, in this case,
almost exactly half of the generated words contributed to the OOV reduction.

Formally, let NOOV denote the number of OOV words in the dataset and
Ngenerated the number of generated words. The maximum achievable reduction is
computed as follows:

OOVmax. reduction =
min{Ngenerated, NOOV}

NOOV
(7.6)

Table 7.4 presents the ratios of achieved to maximum achievable OOV reduction.
In other words, the numbers represent the percentage of generated types that are
encountered in the development dataset. Only the best Whole Word Morphology
model was compared to Morfessor+RNNLM.

The scores for the Whole Word Morphology model, especially in the low
sizes, are very high: the vast majority of predicted words is indeed encountered.
This result could be utilized in a manually post-corrected vocabulary expansion. If
increasing the vocabulary size is computationally expensive because of complexity
issues (e.g. in a speech recognition system operating in real-time), we do not want
to introduce garbage into our vocabulary. In this case, it is imaginable that each
suggested new word would have to be approved by a human. The lists taken for
manual inspection would necessarily be relatively short: several thousand to several
tens of thousands words. The results in Table 7.4 suggest that roughly between

7.3. Evaluation 135

a half and three quarters of words present in such a list would be correct, which
makes the manual inspection worth the effort.

136 Chapter 7. Unsupervised Vocabulary Expansion

Chapter 8

Conclusion

And furthermore, my son, be admonished: of

making many books there is no end; and much

study is a weariness of the flesh.
Ecclesiastes 12:12

This thesis presented a computational and statistical model of morphology
inspired by linguistic theories rejecting the notion of morpheme, with special em-
phasis on Whole Word Morphology. The adaptation of WWM to Natural Lan-
guage Processing was motivated by two main reasons: the inherent difficulty of
segmentational methods of morphological analysis in handling non-concatenative
phenomena (like German umlaut) and their overemphasis on difficult and irrele-
vant questions (like whether or not to segment cranberry morphs or how to mark
morph boundaries blurred by morphophonological processes or orthography). Fur-
thermore, whereas segmentational approaches have proved successful in handling
agglutinative morphology, there seems to exist a gap for fusional morphology, for
which a word-based approach is better suited.

The proposed computational model consisted of a formal definition of a mor-
phological rule operating on whole existing words, along with the implementation
of such rules as Finite State Transducers. The natural data structure to repre-
sent a morphologically annotated lexicon in this formalism is a labeled graph.
Furthermore, I presented performant algorithms for extracting candidates for mor-
phological rules and graph edges from unannotated corpora.

In order to assess the productivity of morphological rules and eliminate un-
necessary ones, a probabilistic model for morphology graphs was introduced. It
is designed with unsupervised training in mind, whereas the additional possibil-
ity of supervised training arises as a by-product. The fitting of model parameters

137

138 Chapter 8. Conclusion

is done using Monte Carlo Expectation Maximization (MCEM), with expected
values approximated by a graph sampler implementing the Metropolis-Hastings
algorithm. Although no formal analysis of convergence and plausible stopping cri-
teria was done, an informal analysis confirms the capability of this approach to
explore high-probability regions of the sample space.

Evaluation tasks and results. Finding plausible evaluation methods for the
learning approach was challenging, as the underlying theory rejects any notions
of ‘word structure’ or ‘analysis’. The only plausible evaluation is thus explaining
words (their features or mere existence) in terms of other words, without explic-
itly referring to any representation of linguistic knowledge like segmentation or
derivation trees. The evaluation on various tasks related to inflection, presented
in Chap. 5, was already problematic, as the theory does not distinguish between
inflection and derivation. However, it was attempted because of the high useful-
ness of such tasks. Somewhat unsurprisingly, the model did not provide a clear,
consistent advantage over simple baselines on such tasks.

In Chapter 6, we examined the capability of the model to suggest POS tags
for unknown words based on their morphological relationships to one another and
use those suggestions to improve a tagger by re-training it on unannotated text.
The results showed that the guessing of tags for OOV words significantly improves
tagging results and that the graph-based morphology model proposes significantly
better tags than a character-based recurrent neural network, yielding a tiny, but
consistent improvement in tagging accuracy. The question of reproducing this im-
provement for state-of-the-art tagging methods and applying it to improve taggers
for resource-scarce languages offers a promising direction for further research.

Finally, in Chapter 7, we evaluated the model on the task of vocabulary ex-
pansion. This was the most theory-agnostic evaluation task: it utilized only infor-
mation directly observable in unannotated corpora (word existence and frequency)
for both training and evaluation. The model scored its best results there, out-
performing a state-of-the-art approach based on segmentation by a clear margin.
The inspection of results showed that the methods work in fundamentally differ-
ent ways: while the segmentation-based approach essentially coins new words by
combining random morphs, the whole-word approach typically applies small and
well-motivated changes to known words. As vocabulary expansion has important
real-world applications, it is presumably the area where the methods developed in
this thesis can most likely prove themselves useful.

In general, we can conclude the evaluation by stating that the whole-word

139

model works best for tasks that are consistent with the assumptions of Whole
Word Morphology, i.e. do not require or evaluate any explicit representation of
linguistic knowledge (like segmentation), treat all words equally (no ‘lemmas’, no
‘complex’ words being derived from ‘simpler’ base words) and do not discriminate
between different types of morphology (like inflection and derivation). Such tasks
tend to have simple and theory-agnostic gold standards, typically consisting only
of directly observable data (POS tagging being an acceptable exception, as it is
widespread and rarely disputed). The tasks described in Chapters 6 and 7 fulfill
those requirements.

Main directions for further work. The requirement on this work to be com-
pleted by one person in a limited period of time imposed obvious limitations on
its scope. Many possibilities were not explored in full detail, leaving room for im-
provements and further research.

Although theoretical foundations for including compounding in a Whole
Word Morphology description were laid in Sec. 1.1.3, second-order rules were not
implemented. Their inclusion in the probabilistic model poses problems, as they
would make the dependency between the vocabulary and the rule set circular.
However, the necessity of including compounding in a morphology model is clear.

The lack of constraint on tree height or explicit model of node degree leads
to unintuitive graphs (‘chains’) – a problem which is described in Sec. 4.1.3. The
ad-hoc solution proposed there is unsatisfactory. This problem needs more careful
consideration.

The graph model is formulated as a framework with replaceable components.
The catalog of components proposed in Sec. 4.2 is by no means exhaustive and
some components (especially those based on neural networks) were designed hastily,
without much consideration given to their architecture. Especially the failure of
the neural edge model to offer an improvement over the simple model, despite
being able to capture individual word features relevant for the probability of rule
application, requires further inspection (and perhaps a better proposal for such
model).

Although the model makes it possible to include word embeddings in the
data, the experiments carried out in this thesis showed no benefit of doing so. The
possibilities offered by word embeddings should be studied in more detail. Also the
(hypothetical) capability of the model to predict embeddings for unknown words,
as well as its application to improving OOV-word handling in neural language
models, should be evaluated. Furthermore, the neural network edge and embedding

140 Chapter 8. Conclusion

models produce embedding vectors for morphological rules as by-product. Those
could turn out to be useful as well, e.g. for discovering paradigms or identifying
‘synonymous’ rules.

Bibliography

Adam Albright. The Identification of Bases in Morphological Paradigms. PhD thesis,
University of California, Los Angeles, 2002.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
OpenFst: A general and efficient weighted finite-state transducer library. In Proceedings
of the 12th International Conference on Implementation and Application of Automata
(CIAA 2007), pages 11–23, 2007.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A comparison of
extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr., 12(4):
461–486, 2009.

Jan W. Amtrup. Morphology in machine translation systems: Efficient integration of
finite state transducers and feature structure descriptions. Machine Translation, 18:
213–235, 2005.

Stephen R. Anderson. A-Morphous Morphology. 1992.

Mark Aronoff. Word Formation in Generative Grammar. MIT Press, 1976.

Mark Aronoff. In the beginning was the word. Language, 83(4):803–830, 2007.

Mark Aronoff and Kirsten Fudeman. What is Morphology? Fundamentals of Linguistics.
Wiley, 2004.

R. H. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX lexical database (CD-
ROM), release 2, 1995.

Marco Baroni, Johannes Matiasek, and Harald Trost. Unsupervised discovery of morpho-
logically related words based on orthographic and semantic similarity. In Proceedings
of the 6th Workshop of the ACL Special Interest Group on Phonology, volume 6, pages
48–57, 2002.

Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. Center for the Study
of Language and Information, 2003.

Julian Besag. An introduction to Markov Chain Monte Carlo methods. In Mark Johnson,
Sanjeev P. Khudanpur, Mari Ostendorf, and Roni Rosenfeld, editors, Mathematical
Foundations of Speech and Language Processing, pages 247–270. Springer-Verlag New
York, Inc., 2004.

141

142 Bibliography

Chris Biemann. Chinese Whispers - an efficient graph clustering algorithm and its ap-
plication to natural language processing problems. In Proceedings of TextGraphs: The
First Workshop on Graph Based Methods for Natural Language Processing, 2006.

Chris Biemann. Unsupervised natural language processing using graph models. In Pro-
ceedings of the NAACL-HLT 2007 Doctoral Consortium, pages 37–40, 2007a.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and Matthias Richter. The Leipzig
Corpora Collection: Monolingual corpora of standard size. In Proceedings of Corpus
Linguistics 2007, Birmingham, UK, 2007.

Christian Biemann. Unsupervised and Knowledge-free Natural Language Processing in
the Structure Discovery Paradigm. PhD thesis, University of Leipzig, 2007b.

David M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
April 2012.

Leonard Bloomfield. Language. University of Chicago Press, 1933.

Thomas Bocek, Ela Hunt, and Burkhard Stiller. Fast Similarity Search in Large Dictio-
naries. Technical report, University of Zurich, 2007.

Rens Bod, Jennifer Hay, and Stefanie Jannedy, editors. Probabilistic Linguistics. MIT
Press, 2003.

Stefan Bordag. Two-step approach to unsupervised morpheme segmentation. In Pro-
ceedings of the PASCAL Challenges Workshop on Unsupervised Segmentation of Words
into Morphemes, Venice, Italy, April 2006.

Stefan Bordag. Elements of Knowledge-free and Unsupervised Lexical Acquisition. PhD
thesis, University of Leipzig, 2007.

Stefan Bordag. Unsupervised and knowledge-free morpheme segmentation and analysis.
In Carol Peters, Valentin Jijkoun, Thomas Mandl, Henning Müller, Douglas W. Oard,
Anselmo Peñas, Vivien Petras, and Diana Santos, editors, Advances in Multilingual
and Multimodal Information Retrieval, pages 881–891. 2008.

Stefan Bordag and Gerhard Heyer. A structuralist framework for quantitative linguis-
tics. In Alexander Mehler and Reinhard Köhler, editors, Aspects of Automatic Text
Analysis, volume 209 of Studies in Fuzziness and Soft Computing. Springer, 2007.

Jan A. Botha and Phil Blunsom. Adaptor grammars for learning non-concatenative
morphology. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 345–356, Seattle, Washington, 2013.

Jan A. Botha and Phil Blunsom. Compositional morphology for word representations and
language modeling. In Proceedings of the 31st International Conference on Machine
Learning, Beijing, China, 2014.

Jan Abraham Botha. Probabilistic Modelling of Morphologically Rich Languages. PhD
thesis, University of Oxford, 2014.

Bibliography 143

Burcu Can. Statistical Models for Unsupervised Learning of Morphology and POS Tag-
ging. PhD thesis, University of York, 2011.

Julie Carson-Berndsen. Time Map Phonology, volume 5 of Text, Speech and Language
Technology, chapter Finite State Techniques in Computational Phonology. Springer,
Dordrecht, 1998.

Bruno Cartoni. Lexical morphology in machine translation: a feasibility study. In Pro-
ceedings of the 12th Conference of the European Chapter of the ACL, pages 130–138,
2009.

Çağrı Çöltekin. A freely available morphological analyzer for Turkish. In LREC 2010,
Seventh International Conference on Language Resources and Evaluation, 2010.

Erwin Chan. Learning probabilistic paradigms for morphology in a latent class model. In
Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational
Phonology at HLT-NAACL 2006, pages 69–78, New York City, USA, June 2006.

Erwin Chan. Structures and Distributions in Morphology Learning. PhD thesis, Univer-
sity of Pennsylvania, 2008.

Noam Chomsky. Remarks on nominalization. In Roderic A. Jacobs and Peter S. Rosen-
baum, editors, Readings in English Transformational Grammar. Georgetown Univer-
sity School of Language, 1970.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Genabith. Learning morphology with
morfette. In Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC’08), pages 2362–2367, 2008.

Alexander Clark. Memory-based learning of morphology with stochastic transducers. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguis-
tics, Philadelphia, PA, USA, 2002.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and Hinrich Schütze. Labeled mor-
phological segmentation with semi-markov models. In Proceedings of CoNLL 2015,
2015.

Mathias Creutz and Krista Lagus. Unsupervised morpheme segmentation and morphol-
ogy induction from text corpora using Morfessor 1.0. Technical report, University of
Helsinki, 2005a.

Mathias Creutz and Krista Lagus. Inducing the morphological lexicon of a natural lan-
guage from unannotated text. In Proceedings of the International and Interdisciplinary
Conference on Adaptive Knowledge Representation and Reasoning (AKRR’05), 2005b.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne Pylkkönen,
Vesa Siivola, Matti Varjokallio, Ebru Arısoy, Murat Saraçlar, and Andreas Stolcke.
Analysis of morph-based speech recognition and the modeling of out-of-vocabulary
words across languages. In Proceedings of NAACL HLT 2007, 2007.

144 Bibliography

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010.

Colin de la Higuera and Franck Thollard. Identification in the limit with probability
one of stochastic deterministic finite automata. In Grammatical Inference: Algorithms
and Applications – 5th international colloquium, ICGI 2000, pages 141–156. Springer,
2000.

Ferdinand de Saussure. Course in General Linguistics. Philosophical Library, New York,
1916.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B. Methodological, 39(1):1–38, 1977.

Christopher J. Dyer. The ‘noisier channel’: translation from morphologically complex
languages. In Proceedings of the Second Workshop on Statistical Machine Translation,
Prague, 2007. Association for Computational Linguistics.

Manaal Faruqui, Ryan T. McDonald, and Radu Soricut. Morpho-syntactic lexicon gen-
eration using graph-based semi-supervised learning. Transactions of the Association
for Computational Linguistics, 4:1–16, 2016.

Ronen Feldman and James Sanger. The Text Mining Handbook. Cambridge University
Press, 2007.

Alan Ford, Rajendra Singh, and Gita Martohardjono. Pace Pān. ini: Towards a word-
based theory of morphology. American University Studies. Series XIII, Linguistics, Vol.
34. Peter Lang Publishing, Incorporated, 1997.

Brendan S. Gillon. Pān. ini’s as.t.ādhyāȳı and linguistic theory. Journal of Indian Philos-
ophy, 35(5-6):445–468, Dec 2007.

John Goldsmith. An algorithm for the unsupervised learning of morphology. Natural
Language Engineering, 12(4):353–371, 2006.

Peter D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and Mikko Kurimo. Morfessor FlatCat:
An HMM-based method for unsupervised and semi-supervised learning of morphology.
In Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers, pages 1177–1185, Dublin, Ireland, 2014.

Jan Hajič and Dan Zeman, editors. Proceedings of the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Dependencies, Vancouver, Canada, August
3-4, 2017, 2017. Association for Computational Linguistics.

Morris Halle. Prolegomena to a theory of word formation. Linguistic Inquiry, 4(1), 1973.

Péter Halácsy, András Kornai, and Csaba Oravecz. Hunpos – an open source trigram
tagger. In Proceedings of the ACL 2007 Demo and Poster Sessions, pages 209–212,
Prague, 2007.

Bibliography 145

Harald Hammarström and Lars Borin. Unsupervised learning of morphology. Computa-
tional Linguistics, 37(2):309–350, 2011.

Zellig S. Harris. Structural Linguistics. The University of Chicago Press, 1951.

Zellig S. Harris. From phoneme to morpheme. Language, 31(2):190–222, 1955.

Zellig S. Harris. Morpheme boundaries within words: Report on a computer test. Trans-
formations and Discourse Analysis Papers, 73, 1967.

Wilfred K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

Jennifer B. Hay and R. Harald Baayen. Shifting paradigms: gradient structure in mor-
phology. TRENDS in Cognitive Sciences, 9(7), July 2005.

Gerhard Heyer, Uwe Quasthoff, and Thomas Wittig. Text Mining: Wissensrohstoff Text.
W3L Verlag, 2008.

Charles F. Hockett. Two models of grammatical description. Word, 10:210–234, 1954.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

Richard Hudson. Word Grammar. Basil Blackwell, 1984.

Maciej Janicki. Unsupervised learning of a-morphous inflection with graph clustering.
In Proceedings to RANLP 2013 Student Workshop, Hissar, Bulgaria, 2013.

Maciej Janicki. Graphbasiertes unüberwachtes Lernen von Morphologie. MSc thesis,
University of Leipzig, 2014.

Maciej Janicki. A multi-purpose Bayesian model for word-based morphology. In Cerstin
Mahlow and Michael Piotrowski, editors, Systems and Frameworks for Computational
Morphology – Fourth International Workshop, SFCM 2015. Springer, 2015.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.

Bryan Jurish. Efficient online k-best lookup in weighted finite-state cascades. In Thomas
Hanneforth and Gisbert Fanselow, editors, Language and Logos: Studies in theoretical
and computational linguistics, pages 1–16. De Gruyter, 2010.

Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Com-
putational Linguistics, 20(3):331–378, 1994.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zaenen. Two-level morphology with
composition. In Proceedings of COLING-92, pages 141–148, Nantes, France, 1992.

George Anton Kiraz. Computational Nonlinear Morphology: With Emphasis on Semitic
Languages. Cambridge University Press, New York, NY, USA, 2001.

146 Bibliography

Scott Kirkpatrick, Daniel C. Gelatt, and Mario P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

Amit Kirschenbaum. Unsupervised segmentation for different types of morphological
processes using multiple sequence alignment. In 1st International Conference on Sta-
tistical Language and Speech Processing, SLSP, pages 152–163, Tarragona, Spain, 2013.

Amit Kirschenbaum. To split or not, and if so, where? Theoretical and empirical as-
pects of unsupervised morphological segmentation. In Alexander Gelbukh, editor,
Computational Linguistics and Intelligent Text Processing, pages 139–150. Springer
International Publishing, 2015.

Amit Kirschenbaum, Peter Wittenburg, and Gerhard Heyer. Unsupervised morphological
analysis of small corpora: First experiments with kilivila. In Frank Seifart, Geoffrey
Haig, Nikolaus P. Himmelmann, Dagmar Jung, Anna Margetts, and Paul Trilsbeek,
editors, Potentials of Language Documentation: Methods, Analyses and Utilization,
pages 25–31. 2012.

Friedrich Kluge. Etymologisches Wörterbuch der deutschen Sprache. de Gruyter, Berlin,
22. edition, 1989.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2010.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. Semi-supervised learning of concate-
native morphology. In Proceedings of the 11th Meeting of the ACL Special Interest
Group on Computational Morphology and Phonology, pages 78–86, Uppsala, Sweden,
2010.

Kimmo Koskenniemi. Two-Level Morphology: A General Computational Model for Word-
Form Recognition and Production. PhD thesis, University of Helsinki, 1983.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and Krista Lagus. Morpho challenge
2005-2010: Evaluations and results. In Proceedings of the 11th Meeting of the ACL-
SIGMORPHON, ACL 2010, pages 87–95, 2010.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing. Synthesis
Lectures on Human Language Technologies. Morgan & Claypool Publishers, 2009.

Jackson Lee and John Goldsmith. Linguistica 5: Unsupervised learning of linguistic
structure. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Demonstrations, pages 22–26, San
Diego, California, June 2016. Association for Computational Linguistics.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

Krister Lindén. A probabilistic model for guessing base forms of new words by anal-
ogy. In CICling-2008, 9th International Conference on Intelligent Text Processing and
Computational Linguistics, Haifa, Israel, February 2008.

Bibliography 147

Krister Lindén. Entry generation by analogy – encoding new words for morphological
lexicons. Northern European Journal of Language Technology, 1:1–25, 2009.

Krister Lindén and Jussi Tuovila. Corpus-based lexeme ranking for morphological
guessers. In Proceedings of the Workshop on Systems and Frameworks for Compu-
tational Morphology (SFCM), Zürich, Switzerland, 2009.

Krister Lindén, Erik Axelson, Sam Hardwick, Tommi A. Pirinen, and Miikka Silfverberg.
HFST – framework for compiling and applying morphologies. In Cerstin Mahlow and
Michael Piotrowski, editors, Systems and Frameworks for Computational Morphology
– Second International Workshop, SFCM 2011. Springer, 2011.

Jiaming Luo, Karthik Narasimhan, and Regina Barzilay. Unsupervised learning of mor-
phological forests. Transactions of the Association for Computational Linguistics, 5:
353–364, 2017.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

David Mareček. Unsupervised Dependency Parsing. PhD thesis, Charles University in
Prague, 2012.

Beáta B. Megyesi. The open source tagger HunPoS for Swedish. In Proceedings of the
17th Nordic Conference of Computational Linguistics (NODALIDA), 2009.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21(6):1087–1092, 1953.

Andrei Mikheev. Automatic rule induction for unknown-word guessing. Computational
Linguistics, 23(3):405–423, 1997.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Neural Information Processing Systems (NIPS),
2013a.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous
space word representations. In Proceedings of NAACL-HLT 2013, 2013b.

Tomáš Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,
Brno University of Technology, 2012.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur.
Recurrent neural network based language model. In 11th Annual Conference of the
International Speech Communication Association 2010 (INTERSPEECH 2010), pages
1045–1048, 2010.

Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Automata, Monographs in Theoretical
Computer Science. An EATCS Series. Springer-Verlag Berlin Heidelberg, 2009.

148 Bibliography

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted automata in text and
speech processing. In 12th European Conference on Artificial Intelligence (ECAI 96),
1996.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers
in speech recognition. Computer Speech & Language, 16(1):69–88, 2002.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. An unsupervised method for
uncovering morphological chains. Transactions of the Association for Computational
Linguistics, 3:157–167, 2015.

Sylvain Neuvel and Sean A Fulop. Unsupervised learning of morphology without mor-
phemes. In Proceedings of the ACL-02 workshop on Morphological and phonological
learning - Volume 6, MPL ’02, pages 31–40, Stroudsburg, PA, USA, 2002. Association
for Computational Linguistics.

Eugene A. Nida. Morphology: The Descriptive Analysis of Words. University of Michigan
Press, Ann Arbor, 1949.

Sonja Nießen and Hermann Ney. Improving SMT quality with morpho-syntactic analysis.
In Proceedings of the 18th Conference on Computational Linguistics (COLING ’00),
volume 2, pages 1081–1085, Saarbrücken, Germany, 2000.

Tommi A. Pirinen. Weighted Finite-State Methods for Spell-Checking and Correction.
PhD thesis, University of Helsinki, 2014.

Tommi A. Pirinen. Development and use of computational morphology of Finnish in
the open source and open science era: Notes on experiences with Omorfi development.
SKY Journal of Linguistics, 28:381–393, 2015.

Hoifung Poon, Colin Cherry, and Kristina Toutanova. Unsupervised morphological seg-
mentation with log-linear models. In Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the ACL, pages 209–217, 2009.

Maja Popović, Daniel Stein, and Hermann Ney. Statistical machine translation of Ger-
man compound words. In FinTAL - 5th International Conference on Natural Language
Processing, 2006.

Franz Rainer. Semantic fragmentation in word-formation: The case of Spanish -azo. In
Singh and Starosta [2003], pages 197–211.

Mohammad Sadegh Rasooli, Thomas Lippincott, Nizar Habash, and Owen Rambow.
Unsupervised morphology-based vocabulary expansion. In 52nd Annual Meeting of
the Association for Computational Linguistics, pages 1349–1359, 2014.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
1978.

Jorma Rissanen. An introduction to the MDL principle, 2005. URL http://www.
mdl-research.net/jorma.rissanen/pub/Intro.pdf.

http://www.mdl-research.net/jorma.rissanen/pub/Intro.pdf
http://www.mdl-research.net/jorma.rissanen/pub/Intro.pdf

Bibliography 149

Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer
Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. Supervised
morphological segmentation in a low-resource learning setting using conditional ran-
dom fields. In CoNLL, 2013.

David Rybach. Investigations on Search Methods for Speech Recognition using Weighted
Finite-State Transducers. PhD thesis, RWTH Aachen, 2014.

Rajhans Samdani, Ming-Wei Chang, and Dan Roth. Unified expectation maximization.
In 2012 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 688–698, 2012.

Helmut Schmid. A programming language for finite state transducers. In Proceedings
of the 5th International Workshop on Finite State Methods in Natural Language Pro-
cessing (FSMNLP 2005), Helsinki, Finland, 2005.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using latent
semantic analysis. In Proceedings of the 2nd Workshop on Learning Language in Logic
and the 4th Conference on Computational Natural Language Learning – CoNLL ’00,
pages 67–72, Stroudsburg, PA, USA, 2000.

Elisabeth O. Selkirk. The syntax of words. MIT Press, 1982.

Miikka Silfverberg and Krister Lindén. HFST runtime format – a compacted trans-
ducer format allowing for fast lookup. In Finite-State Methods and Natural Language
Processing - FSMNLP 2009 Eight International Workshop, 2009.

Miikka Silfverberg, Pekka Kauppinen, and Krister Lindén. Data-driven spelling correc-
tion using weighted finite-state methods. In Proceedings of the ACL Workshop on
Statistical NLP and Weighted Automata, pages 51–59, Berlin, Germany, 2016.

Rajendra Singh and Probal Dasgupta. On so-called compounds. In Singh and Starosta
[2003], pages 77–89.

Rajendra Singh and Stanley Starosta, editors. Explorations in Seamless Morphology.
SAGE Publications, New Delhi, 2003.

Noah A. Smith and Jason Eisner. Contrastive estimation: Training log-linear models
on unlabeled data. In Proceedings of the 43rd Annual Meating of the Association for
Computational Linguistics, 2005.

Herbert Weir Smyth. A Greek Grammar for Colleges. American Book Company, 1920.

Radu Soricut and Franz Josef Och. Unsupervised morphology induction using word
embeddings. In NAACL 2015, pages 1626–1636, 2015.

Sebastian Spiegler. Machine Learning for the Analysis of Morphologically Complex Lan-
guages. PhD thesis, University of Bristol, 2011.

150 Bibliography

Sebastian Spiegler and Christian Monson. EMMA: A novel evaluation metric for morpho-
logical analysis. In Proceedings of the 23rd International Conference on Computational
Linguistics (COLING 2010), pages 1029–1037, Beijing, 2010.

Stanley Starosta. The Case for Lexicase: An Outline of Lexicase Grammatical Theory.
Open linguistics series. Pinter Publishers, 1988.

Stanley Starosta. Do compounds have internal structure? A seamless analysis. In Singh
and Starosta [2003], pages 116–147.

Milan Straka and Jana Straková. Tokenizing, pos tagging, lemmatizing and parsing ud
2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 88–99, 2017.

Maciej Sumalvico. Unsupervised learning of morphology with graph sampling. In Pro-
ceedings to RANLP 2017, Varna, Bulgaria, 2017.

Robert E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

Christoph Teichmann. Markov Chain Monte Carlo Sampling for Dependency Trees. PhD
thesis, University of Leipzig, 2014.

Antal van den Bosch and Walter Daelemans. Memory-based morphological analysis. In
Proceedings of the 37th Annual Meeting of the Association for Computational Linguis-
tics, pages 285–292, 1999.

Matti Varjokallio and Dietrich Klakow. Unsupervised morph segmentation and statistical
language models for vocabulary expansion. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, pages 175–180, 2016.

Sami Virpioja, Jakko J. Väyrynen, Mathias Creutz, and Markus Sadeniemi. Morphology-
aware statistical machine translation based on morphs induced in an unsupervised
manner. In Proceedings of the Machine Translation Summit XI, pages 491–498, Copen-
hagen, Denmark, 2007.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. Morfessor 2.0:
Python implementation and extensions for Morfessor baseline. Technical report, Aalto
University, Helsinki, 2013. URL http://urn.fi/URN:ISBN:978-952-60-5501-5.

Stephan Vogel. Statistical Machine Translation with Cascaded Probabilistic Transducers.
PhD thesis, RWTH Aachen, 2005.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21(I):168–173, 1974.

Greg C. G. Wei and Martin A. Tanner. A Monte Carlo Implementation of the EM Algo-
rithm and the Poor Man’s Data Augmentation Algorithms. Journal of the American
Statistical Association, 85(411):699–704, 1990.

Richard Wicentowski. Modeling and Learning Multilingual Inflectional Morphology in a
Minimally Supervised Framework. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, 2002.

http://urn.fi/URN:ISBN:978-952-60-5501-5

Bibliography 151

Kay-Michael Würzner and Bryan Jurish. Dsolve – morphological segmentation for Ger-
man using conditional random fields. In Cerstin Mahlow and Michael Piotrowski, ed-
itors, Systems and Frameworks for Computational Morphology – Fourth International
Workshop, SFCM 2015, pages 94–103, 2015.

David Yarowsky and Richard Wicentowski. Minimally supervised morphological analysis
by multimodal alignment. In Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics, pages 207–216, 2000.

Andrea Zielinski and Christian Simon. Morphisto – an open source morphological an-
alyzer for German. In Finite State Methods and Natural Language Processing, 7th
International Workshop, FSMNLP 2008, Ispra, Italy, 2008.

152 Bibliography

Bibliographische Daten

Autor: Maciej Janicki
Titel: Statistical and Computational Models for Whole Word Morphology
173 Seiten, 30 Abbildungen, 16 Tabellen, 13 Algorithmen

Das Ziel dieser Arbeit ist die Formulierung eines Ansatzes zum maschinellen
Lernen von Sprachmorphologie, in dem letztere als Zeichenkettentransformationen
auf ganzen Wörtern, und nicht als Zerlegung von Wörtern in kleinere stukturelle
Einheiten, modelliert wird. Der Beitrag besteht aus zwei wesentlichen Teilen: zum
einen wird ein Rechenmodell formuliert, in dem morphologische Regeln als Funk-
tionen auf Zeichenketten definiert sind. Solche Funktionen lassen sich leicht zu
endlichen Transduktoren übersetzen, was eine solide algorithmische Grundlage
für den Ansatz liefert. Zum anderen wird ein statistisches Modell für Graphen
von Wortableitungen eingeführt. Die Inferenz in diesem Modell erfolgt mithilfe
des Monte Carlo Expectation Maximization-Algorithmus und die Erwartungswerte
über Graphen werden durch einen Metropolis-Hastings-Sampler approximiert. Das
Modell wird auf einer Reihe von praktischen Aufgaben evaluiert: Clustering flek-
tierter Formen, Lernen von Lemmatisierung, Vorhersage von Wortart für unbekan-
nte Wörter, sowie Generierung neuer Wörter.

153

154

Wissenschaftlicher Werdegang

2015-2018 Promotionsstipendium: Landesinnovationsstipendium aus den Mitteln
des Europäischen Sozialfonds (ESF).
Thema: Statistisches Lernen wortbasierter Morphologie.
Betreuer: Prof. Dr. Uwe Quasthoff, Prof. Dr. Gerhard Heyer.

seit 2014 Promotionsstudent an der Universität Leipzig, Institut für Informatik,
Abteilung Automatische Sprachverarbeitung;

Leitung von Lehrveranstaltungen:

• Linguistische Informatik (Übung und teilweise Vorlesung),
• Text Mining: Wissensrohstoff Text (Übung),
• Algorithmen und Datenstrukturen 1 (Übung),
• Anwendungen Linguistische Informatik (Seminar – Betreuung von Grup-

penprojekten).

Teilnahme und Veröffentlichung an internationalen Fachtagungen: RANLP
2013, SFCM 2015, RANLP 2017, LREC 2018.

2012-2014 Masterstudium Informatik mit Ergänzungsfach Linguistik an der Uni-
versität Leipzig; DAAD-Stipendium für ausländische Studierende;
Abschlussnote: 1,2
Titel der Masterarbeit: Graphbasiertes unüberwachtes Lernen von Morpholo-
gie.
Betreuer: Prof. Dr. Uwe Quasthoff

2008-2012 Bachelorstudium Informatik an der Technischen Universität Wrocław,
Polen (Wrocław University of Technology);
Abschlussnote: celujący (lobenswert)
Titel der Bachelorarbeit: Usługa sieciowa do rozpoznawania nazw własnych z
wykorzystaniem akwizycji wiedzy z dostępnych zasobów elektronicznych (Web
service for the recognition of proper names based on the knowledge extraction
from available electronic resources).
Betreuer: Dr. Maciej Piasecki

2008 Abitur am Allgemeinbildenden Lyzeum Nr. 3 in Wrocław, Polen;
Wahlfächer: Mathematik, Physik.

155

156

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den

157

	Introduction
	Theories of Morphology
	Segmentational Morphology
	Limitations of Segmentational Morphology
	Word-Based Theories

	Morphology in Natural Language Processing
	Goals and Contributions of This Thesis

	A Review of Machine Learning Approaches to Morphology
	Recognition of Morph Boundaries
	Grouping Morphologically Related Words
	Predicting the Properties of Unknown Words
	Discussion

	Morphology as a System of String Transformations
	Formalization of Morphological Rules
	Finite State Automata and Transducers
	Preliminaries
	Compiling Morphological Rules to FSTs
	Binary Disjunction
	Computing the Number of Paths in an Acyclic FST
	Learning Probabilistic Automata

	Rule Extraction
	Finding Pairs of Similar Words
	Extraction of Rules from Word Pairs
	Filtering the Graph
	Supervised and Restricted Variants

	Statistical Modeling and Inference
	Model Formulation
	The Basic Model
	Distributions on Subsets of a Set
	Penalties on Tree Height
	Part-of-Speech Tags
	Numeric Features

	Model Components
	Root Models
	Edge Models
	Tag Models
	Frequency Models
	Word Embedding Models

	Inference
	MCMC Methods and the Metropolis-Hastings Algorithm
	A MCMC Sampler for Morphology Graphs
	Sampling Negative Examples
	Fitting the Model Parameters
	Model Selection
	Finding Optimal Branchings

	Learning Inflectional Relations
	Datasets
	Unsupervised Clustering of Inflected Forms
	Unsupervised Lemmatization
	Supervised Lemmatization
	Supervised Inflected Form Generation

	Semi-Supervised Learning of POS Tagging
	A General Idea
	Intrinsic and Extrinsic Tag Guessing
	Applying Tagged Rules to Untagged Words

	The Method
	The Forward-Backward Algorithm for Trees
	Modifications to the Sampling Algorithm
	Extending an HMM with New Vocabulary

	Evaluation
	Experiment Setup
	Evaluation Measures
	Results
	Remarks

	Unsupervised Vocabulary Expansion
	Related Work
	The Method
	Predicting Word Frequency
	Computing Word Costs from Edge Probabilities

	Evaluation
	Experiment Setup
	Results

	Conclusion
	Bibliography

