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Abstract 

Spring and summer snowmelt runoff from the Canadian Rocky Mountains recharge 

many rivers and hence provide critical water supplies for a large portion of the 

population in western Canada. Because of the complex topography and vegetation 

conditions, the sparse network of observations of climate and snow properties, and the 

low quality of atmospheric model products, data assimilation (DA) is a potentially 

useful tool to improve the forecasting and prediction of snow properties and streamflow. 

To achieve better snowpack and streamflow estimations using DA, this research aims 

to: 1) evaluate the usefulness of SNODAS SWE data in Canada, and determine the 

influence of processes missing from the SNODAS model on the accuracy of SNODAS 

SWE, 2) explore the possibility of using remotely sensed data for detecting snow 

interception in forest canopies, 3) assimilate in situ measured and remotely sensed snow 

interception data into CRHM and assess their influence on the simulation of snow 

interception losses, 4) determine the optimal method to assimilate in situ snow 

measurements into the CRHM for prediction of basin snowpacks and streamflow. 

 

The results illustrate: 1) missing snow processes (blowing snow transport and canopy 

snow interception and sublimation) in the SNODAS snow model contribute 

substantially to its overestimation of SWE, 2) canopy intercepted snow can be detected 

by optical remote sensing data (NDSI and NDVI), 3) automated snow depth data 

measured from an adjacent forest and clearing can be used in a mass budget to 

accurately quantify snow interception loss, and assimilation of in situ measured and 

remotely sensed snow interception information can all improve simulations of snow 

interception timing and magnitude, 4) assimilating in situ SWE and snow depth into 

CRHM generally improves the simulation of snowpack properties and streamflow, but 

the results varied among different assimilation schemes. A better SWE simulation 

through DA does not always lead to better prediction of streamflow. The advanced snow 

interception measurement and DA techniques presented here deepens the understanding 

of cold regions hydrological DA and improve the capacity to forecast and predict the 

hydrology of headwater river basins in the Canadian Rockies and other similar regions. 
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CHAPTER 1: Introduction   

1.1  Background 

Snow is a critical but temporary land surface component of cold regions. Snowmelt 

runoff is the main water resource of many rivers and hence provides essential water 

supply for agriculture, industry, and domestic use over a large portion of the Earth’s 

surface. The high albedo of snow also changes global energy budgets through reflecting 

large portion of solar radiance directly back to the atmosphere. Because of climate 

change, the timing and extent of snowcover as well as snowmelt runoff have faced great 

changes in many regions during the past few decades (Bavay et al., 2009; Horton et 

al., 2006; Krogh and Pomeroy, 2018; Musselman et al., 2017; Rasouli et al., 2014; 

Rasouli et al., 2015; Stewart, 2005). Feedbacks from these changes also contribute to 

further climate change (Groisman and Davies, 2001). Therefore, determining the timing 

and extent of snowcover is not only crucial for the present but also critical for future 

global water security. 

 

The Canadian Rockies form the headwaters of major rivers that provide essential water 

supply for large portions of western Canada and the northwestern United States. The 

complex topography, land cover, and hydrological processes and sparse meteorological 

and snowpack observations result in challenges for assessing snowcover extent and 

snowmelt runoff magnitude and timing. NOAA’s National Operational Hydrologic 

Remote Sensing Center’s (NOHRSC) SNOw Data Assimilation System (SNODAS) 

provides the only high resolution snow products for these areas (Carroll et al., 2001). 

However, the accuracy of these products and the influence of their snow model’s 

structure on the accuracy of these products have not yet been explored in Canada. 

 

Needleleaf forests cover a large portion of the Canadian Rockies, and the snow 

interception by and sublimation from the forest canopy greatly influence snow 

accumulation under the canopy (Ellis et al., 2010). Many researchers have developed 

snow interception measurement approaches that can measure canopy snow interception 

quantitatively or qualitatively. However, these measurements are confined in single-

tree or small catchment scales (Friesen et al., 2015). This makes large-scale validation 

of snow interception model simulation impossible. The potential of using satellite 

remote sensing data to detect forest canopy snow interception has not been explored. 

 

Observations and modelling are two approaches for determining the time and 

magnitude of snow on the ground or on the canopy. However, despite their merits, they 

each have drawbacks. Observations typically have limited spatial coverage (automatic 

stations) or low repeat frequency (satellite sensor), whereas models are simplified 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0008
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0035
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0055
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0070
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representations of the real world, and their simulation results are highly influenced by 

the quality of input data, correctness of the model and the veracity of model 

parameterizations (Figure 1-1). In mountainous area, complex topography and 

vegetation condition limited the spatial representations of climate station data. 

Considering the sparse distribution of observation stations in many regions, the 

products from climate models can be the only forcing data available to run the 

hydrological models. However, these climate model products typically have relatively 

low accuracy and are of lower spatial resolution than the hydrological models they run. 

This has triggered the necessity of data assimilation (DA), which merges the advantage 

of observation (e.g., relatively higher accuracy) and modelling (e.g., low cost and 

consistent at reasonable spatial and temporal scales), for better simulation of snow on 

the ground and under forest canopies (Liu et al., 2012).  

 

 

Figure 1-1. Advantages and disadvantages of observation and modelling in cold regions hydrology 

research. 

Many snow DA studies have been conducted in cold regions around the world. However, 

most of the research has been done with simpler models (Bergeron et al., 2016; Franz 

et al., 2014; Slater and Clark, 2006; Stigter et al., 2017). The potential influence of DA 

on multilayer, physically based models that contain a full suite of snow redistribution 

and ablation processes still needed to be explored (Magnusson et al., 2017). Further, 

those studies were mainly focussed on the assimilation of snow depth (Kumar et al., 

2014; Stigter et al., 2017), snow cover fraction (Andreadis and Lettenmaier, 2006; 

Rodell and Houser 2004), and SWE (Franz et al., 2014; Liston and Hiemstra, 2007). 

The assimilation of canopy intercepted snow information has not been studied. 

Assimilations of ground snowpack and canopy snow information from in situ or 

remotely sensed measures into the multilayer, physical models that contain a full suite 

of snow redistribution and ablation processes are believed to have great potential to 

benefit the accurate estimation of snowpack and snowmelt runoff in mountain 

headwater drainage basins. 
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1.2  Literature review 

The literature review provides an overview of detailed features of snow interception on 

the forest canopy, cold regions hydrological modelling, and DA. 

1.2.1 Snow interception in coniferous forests 

Snowmelt is the main spring to early summer water resource for many rivers in cold 

regions. The amount of water that can be recharged to rivers in these regions is strongly 

controlled by the accumulation of the seasonal snowpack, which is affected by various 

factors such as sublimation and redistribution. In open areas, snowfall which reaches 

the ground can be redistributed by wind and sublimated from snow that is transported 

as blowing snow (Pomeroy et al., 1993). In needleleaf forests, redistribution is 

controlled by the canopy interception (Nakai et al., 1994; Pomeroy and Gray, 1995). 

Snow is first intercepted in the canopy, and remains there for a few hours to tens of 

days, and then leaves the canopy mainly through falling to the ground, sublimation, and 

meltwater drip (Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998b; Suzuki and Nakai, 

2008). These processes can reduce the SWE on the ground under the canopy compared 

to that in a clearing. Kuz’min (1960) reported that the mean SWE under the pine and 

spruce forests were 5%–35% and 10%–60% lower than in nearby open areas in Russia. 

Pomeroy and Schmidt (1993) found that in the midwinter in Canadian boreal forests, 

60% of the snowfall was intercepted, and the sublimation of intercepted snowfall can 

reach 30% of the annual snowfall. Storck et al. (2002) conducted experiments with 

weighing lysimeters, cut-tree and manual snow surveys in the Umpqua National Forest 

in USA; they found approximately 60% of the annual snowfall was intercepted by the 

canopy during the study period. Therefore, understanding and quantifying the processes 

related with interception is important for the water resource management of cold 

regions.  

1.2.1.1 Interception of snow and subsequent sublimation, melt and unloading 

Snow interception is a complex process that is affected by various factors. Miller (1964) 

stated that the amount of snow that can be intercepted in a forest is mainly controlled 

by three factors: canopy morphology, wind speed, and air temperature. The snow 

interception accumulation rate is controlled by the interception efficiency of canopy 

branches. This interception efficiency deceases with the increase of wind speed, air 

temperature, density of intercepted snow, and elastic rebound of snow crystals whilst 

increases with the increase of canopy density, snow crystal size, and horizontal cross-

sectional areas of branches (Gubler and Rychetnik, 1991; Pomeroy and Schmidt, 1993; 

Schmidt and Gluns, 1991; Schmidt and Pomeroy, 1990). Schmidt and Gluns (1991) 

found that interception efficiency of a branch increased and then decreased with 

increasing snowfall event size. However, Hedstrom and Pomeroy (1998) found that 

interception efficiency declines with increasing snowfall in the cold boreal forest. This 
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contrast may be caused by the scaling issue between individual tree and forest stand 

interception efficiencies. Interception efficiencies vary between deciduous and 

coniferous trees. Kuz’min (1960) reported that the SWE under the deciduous forests is 

not much different from that of neighboring open areas but quite different from that of 

the coniferous forests. There are difference in collection efficiency between coniferous 

trees. Satterlund and Haupt (1970) assessed two tree species with considerable 

morphological differences and found that there was difference in the intercepted snow 

amount between different tree species.  

 

As mentioned above, intercepted snow leaves the canopy mainly through three ways: 

falling to the ground, sublimation, and meltwater drip (Andreadis et al., 2009; Hedstrom 

and Pomeroy, 1998; Suzuki and Nakai, 2008). Sublimation is the process that the snow 

on the canopy becomes vapour and directly goes back to atmosphere (Schmidt, 1991). 

The percentage of sublimation snow in total interception varies from location to 

location. Lundberg and Halldin (1994) studied the sublimation of intercepted snow by 

a weighted hanging-tree method and found that the sublimation rate can reach 3.3 mm 

per 24 h in a spruce canopy. They claimed that the most important factors that affect 

sublimation are relative humidity, aerodynamic resistance, wind speed, and intercepted 

mass. Lundberg et al. (1998) used the gamma ray attenuation data to measure the 

sublimation of intercepted snow on a forest canopy in Scotland. They found that more 

than 30% of intercepted snow can be sublimated. Pomeroy et al. (1998b) measured and 

modeled the intercepted snow sublimation in the southern boreal forest in central 

Canada. The found the intercepted snow sublimation rate can up to 3 mm/day for the 

full-size jack pine. They observed the sublimation of intercepted snow account for 13%, 

31%, and 40% of annual snowfall in mixed spruce–aspen, mature pine, and mature 

spruce, respectively. Nakai et al. (1999a, 1999b) studied the sublimation of intercepted 

snow in a cool-temperate maritime climate in Japan; they found that the sublimation 

efficiency increases with the increase of the ratio between the snow-covered area and 

crown projection area. Parviainen and Pomeroy (2000) coupled the snow interception 

and sublimation algorithms from Pomeroy et al. (1998b) to the Canadian Land Surface 

Scheme (CLASS). They tested the model at two jack pine stands for two snowfall 

events and found the coupled sublimation model can predict the intercepted snow 

sublimation losses well and the sublimation rate can reach to 0.76 mm for the mature 

jack pine stand. Storck et al. (2002) used a large lysimeter and cutting trees to measure 

the sublimation of intercepted snow. They found that when temperature remained below 

the freezing point after snowfall, sublimation is dominant in the release processes, and 

the observed maximum sublimation rate was 4.3 mm SWE per 7 hours. However, the 

sublimation rate was too trial in the maritime mountainous climates as meltwater drip 

and unloading are the dominant intercepted snow removal processes. Montesi et al. 

(2004) conducted a study on the sublimation of intercepted snow in the U.S. They put 

one cut subalpine fir and an artificial conifer at two elevations. They found that 

sublimation rates were very large when the lower-elevation site had warmer 

temperatures, lower relative humidity, and higher wind speed. Around 20%–30% of 
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total snowfall was sublimated on the canopy during the research period. Suzuki and 

Nakai (2008) studied the sublimation in a coniferous plantation forest and found that 

almost 26% of the total snowfall was sublimated to the atmosphere and most of it was 

from canopy intercepted snow. 

 

Sublimated snow does not contribute to the streamflow of the basin, but that unloaded 

through falling and meltwater drip does. Mass release of intercepted snow occurs as a 

result of mechanical wind effects or snow melt. These processes are controlled by the 

adhesion of the snow to the tree branches (Andreadis et al., 2009). Hedstrom and 

Pomeroy (1998) found that the unloading of intercepted snow is mainly controlled by 

the unloading rate coefficient and time after snow load. Meltwater drip is rare in the 

low-temperature midwinter continent environments. Kittredge (1953) measured the 

meltwater drip of the forest canopy in Sierra Nevada and found that meltwater drip 

rarely happened in the forest, and the percentage of meltwater drip was only 2% of the 

total snowfall. However, in some maritime forest areas, the meltwater drip can be 

relatively large. Stock et al. (2002) studied the removal of intercepted snow in a 

maritime mountain in the U.S. They found that when temperature is high, sublimation 

seldom happens, and the removal of intercepted snow is dominated by falling and 

meltwater drip. The meltwater percentage can reach 72%, and the falling can reach 28% 

of the unloading of intercepted snow. The intercepted snow meltwater drip amount can 

be modelled by introducing a threshold ice-bulb temperature in which the intercepted 

snow is all unloaded when exceeded for certain amount of time (Ellis et al., 2010; 

Gelfan et al., 2004)    

1.2.1.2 Measurement of snow interception 

Because of the complexity of the interception process and irregular shape of trees, direct 

measurement of the intercepted snow is difficult. Mass budgeting, which compares the 

difference in the increases of snow accumulations between the forest floor and a nearby 

clearing or open area over the course of a snowstorm or a snow season, is a common 

method to determine the amount of intercepted snow for snow storm or the snow loss 

caused by snow interception and sublimation for a snow season (Pomeroy and Schmidt, 

1993). The increase in snow accumulation can be determined by precipitation gauges 

(e.g., Koivusalo and Kokkonen, 2002), automated SWE measurements (e.g., Lundberg 

et al., 1998; Floyd and Weiler, 2008), and snow survey (e.g., Hedstrom and Pomeroy, 

1998).  

 

To directly measure the snow interception, some early researchers knocked the snow 

off from a branch or tree and weighed it (Goodell, 1959; Miller, 1964). But this method 

is labourious and time consuming and only provides interception magnitude at a point 

scale for a single storm. To continuously measure snow interception, a cut tree branch 

(e.g. Schmidt and Gluns, 1991), a whole tree (e.g. Pomeroy and Schmidt, 1993; Storck 

et al., 2002), or artificial structures (e.g., boards in Floyd and Weiler, 2008; artificial 

tree in Schmidt et al., 1988) can be connected to a lysimeter to measure the weight 
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change during the interception processes. These methods mentioned above are capable 

of providing good measurements for point scale, but it is challenge to scale this point 

data up to a catchment or regional scale. Martin et al. (2013) used a trunk compression 

sensor installed in a living tree to measure the interception magnitude during a storm. 

However, this method is still a prototype and does not work when the tree freezes in 

cold weather.  

 

Larger scale snow interception measurements can be obtained through signal 

attenuation approaches. Lundberg et al. (1998) used emitted gamma ray attenuation to 

measure snow interception along a path length (35 m) through a forest stand as 

intercepted snow impacts the attenuation of gamma rays emitted from a radioactive 

source. Magnusson (2006) explored the usage of active impulse radar system in 

measuring snow interception and found intercepted snow affects radar signal 

attenuation.  These methods can measure snow interception at larger scale than a 

single tree. However, the footprint of the sensors they used still restricts usage of these 

methods in catchment or regional scales for snow interception measurement. 

 

Optical photography has been used to detect the presence of intercepted canopy snow 

based on the fact that snow has much higher reflectivity than tree canopy. Tennyson et 

al. (1974) first tried using a time-lapse movie camera to develop a snow load index to 

represent the canopy snow load. Pomeroy and Schmidt (1993) modeled the intercepted 

snow sublimation based on the sublimation algorithm and the relationship between 

digital-camera imagery derived snowcovered area in the canopy and snow mass on a 

weighed hanging tree. Floyd and Weiler (2008) used a time-lapse digital camera to 

measure the canopy snowcovered area (ratio of snow-covered pixels to total pixel on 

canopy in the image) for rain-on-snow events. Parajka et al. (2012) used a time-lapse 

camera to detect the intercepted snow on a canopy and compared this detected canopy 

snow information to the simulation of the snow interception model developed by 

Hedstrom and Pomeroy (1998). Garvelmann et al. (2013) used a 45-camera time-lapse 

network to record the canopy snow coverage and timing of interception and unloading 

in several mesoscale catchments. Although the optical photography is able to provide 

relative magnitude and timing of interception, which can be used to validate a snow 

interception model’s performance (Parajka et al., 2012; Stähli et al., 2009), its usage is 

still confined at small catchment scales. Snow interception measurements at regional or 

global scales have not been found in the literature. 

1.2.1.3 Modeling of Snow interception 

Many models were developed by researchers to simulate the snow interception 

processes. Most of them determine the snow interception using the initiate snow load, 

the snowfall rate, and the maximum snow storage capacity of the canopy, which is 

determined by air temperature, fresh snow density, and canopy coverage. The very first 

model that was developed for snow interception simulation was proposed by Satterlund 

and Haupt (1967). They studied the snow interception of two coniferous tree species 
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(Douglas fir and white pine) and found that snow interception follows the classical law 

of autocatakinetic growth. Their general equation for snow interception was: 

 

]1/[
)( 0PPk

s eSI


                                                  (1.1) 

 

where Is is the interception storage, S is the storage capacity of the canopy, k is a 

constant that express the interception storage rate, P and P0 are accumulated snowfall 

and snowfall at the time of the most rapid storage, respectively. In this model, k has to 

be determined for each tree species. 

 

Hedstrom and Pomeroy (1998) found that Satterlund and Haupt’s model did not 

describe observed snow interception in the boreal forest. They developed a model that 

included more general tree canopy parameterizations such as leaf area index (LAI) and 

canopy cover. They assumed that the interception efficiency increases when canopy 

density increases but deceases with canopy snow load increasing and unloading 

increases with time. For a snowstorm, the snow interception before unloading is given 

by: 

 

𝐼𝐻𝑃 = (𝐿
∗ − 𝐿0)(1 − 𝑒

−𝑚𝑃)                                          (1.2) 

 

where 𝐼𝐻𝑃 is the canopy interception load before the beginning of unloading, 𝐿∗ is 

maximum snow the canopy can hold, 𝐿0  is the initial canopy snow load at the 

beginning of the storm, e is the base of the natural logarithm, P is the snowfall, m is a 

proportionality factor that can be derived from the following equation: 

 

𝑚 =
𝐶𝑃

𝐿∗
                                                           (1.3) 

 

where Cp is the maximum plan area of the snow-leaf contact per unity area of ground 

and it’s value can be determined by: 

 

𝐶𝑃 =
𝐶𝐶

1−
𝐶𝐶𝑢𝐻

𝑤𝐽

                                                       (1.4) 

 

where Cc is the canopy cover, u is the wind speed, H is the canopy height, w is the 

vertical velocity of a snowflake falling through the gap in the canopy, and J is the mean 

forest canopy downwind distance. 

 

The L* in Equation 1.2 can be calculated by the following equation: 

 

𝐿∗ = 𝑀𝑆 ∗ 𝐿𝐴𝐼                                                     (1.5) 
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where LAI is the leaf area index of the canopy, MS is the maximum snow load per unit 

branch area and it can be determined by: 

 

𝑀𝑆 = 𝑆̅(0.27 +
46

𝜌𝑆
)                                                 (1.6) 

where value of 
_

S  should be 6.6 and 5.9 kg/m2 for pine and spruce, respectively, s

is the fresh snow density.  

 

Many researchers borrowed the concept or equations from the Hedstrom and Pomeroy 

(1998) model for their snow interception models (e.g. Bartlett et al., 2006; Gelfan et al., 

2004). 

 

Andreadis et al. (2009) developed a series of models to simulate the snow accumulation 

and ablation processes in forested environments. They incorporated the air temperature 

influence on canopy snow interception and their snow interception (IA) at a given time 

step is: 

IA= sfP                                                            (1.7) 

where I is the intercepted snow water equivalent during a time step, f is the efficiency 

of snow interception (0.6), and Ps is the snowfall over the time step. Snow interception 

on the canopy will continue until it reached its maximum interception capacity (B). 

 

B = Lr*m*(LAI)                                                    (1.8) 

 

where B is the maximum interception capacity, LAI is the single-sided leaf area index 

of the canopy, m is determined by the observations of maximum snow interception 

capacity, and Lr is the leaf area ratio and it can be calculate by a step function of air 

temperature (Andreadis et al., 2009), 

 

Lr = 4.0                  Ta > -1 °c 

Lr = 1.5Ta+5.5             -1 °c≤ Ta < -3 °c                           (1.9) 

Lr = 1.0                  Ta ≤ -3 °c 

 

With the development of remote sensing, more and more detailed canopy structure 

metrics are available and hence some researchers incorporated them into their recent 

models (Moeser et al., 2015; Roth and Nolin, 2019). Moeser et al. (2015) assumed that 

canopy interception is mainly controlled by the log-transformed canopy structure 

variables (mean distance to canopy (x1, unit: m), canopy closure (x2), total open area 

(x3, unit: m2)) and snowstorm event size. The interception amount (Im) of a snowstorm 

is given by: 
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𝐼𝑀 = 
𝐼𝑀𝑚𝑎𝑥

1+𝑒−0.3(𝑃−13.3)
                                                  (1.10) 

 

where IMmax is the interception storage capacity and it can be determined by: 

 

𝐼𝑀𝑚𝑎𝑥 = 𝑚1(𝑥1) + 𝑚2(𝑥1)
2 +𝑚1(𝑥2) + 𝑚2(𝑥2)2 +𝑚1(𝑥3) + 𝑚2(𝑥3)2 + 𝑏                                                  

(1.11) 

 

Most snow interception models were developed in continental snow climates and the 

influence of air temperature was not found important for most models. Working in the 

Pacific Northwest, Roth and Nolin (2019) developed a model that incorporated both 

temperature and detailed canopy structure in their snow interception model. The 

interception amount (IR) of a storm is given: 

 

𝐼𝑅 = 𝑃
𝜁                                                           (1.12) 

 

where ζ is the Roth parameter that controlled by air temperature and canopy structure: 

 

𝜁 = 0.04 ∗ 𝑇𝑎 − 0.75 ∗ 𝐺𝑧 + 1.56                                     (1.13) 

 

where Gz is the ratio of median gap length to change in height of the canopy. 

 

This model was tested against the models from Hedstrom and Pomeroy (1998), 

Andreadis et al. 2009, and Moeser et al. (2015) in both a maritime and continental snow 

climate. The results illustrated that this model outperformed all other models in the 

maritime climate site, where canopy snow is more sensitive to the relatively high winter 

air temperature. In the continental snow climate (Marmot Creek Research Basin, 

Alberta), the model from Hedstrom and Pomeroy (1998) still obtained the best results. 

1.2.2 Hydrological modelling in cold regions  

Modelling is an important aspect of research on cold regions hydrology since it helps 

to understand the present condition of water cycling and shows us past and future 

situations. Many hydrological models were developed to simulate the mass and energy 

balance of cold regions snow processes: such as Variable Infiltration Capacity (VIC) 

(Wood et al., 1992), NOHRSC Snow Model (NSM) (Carroll et al., 2001), and Cold 

Regions Hydrological Modelling platform (CRHM) (Pomeroy et al., 2007). Anderson 

(1973) described a snow accumulation and ablation model–SNOW-17. SNOW-17 is a 

conceptual index model using air temperature as the only index for the determination 

of energy balance and snow grain size. This model does not simulate the snow 

redistribution by canopy interception and wind but can simulate most of the processes 

happening within a snow pack, although only two inputs (temperature and precipitation) 

are required. In the 1980s, the Danish Hydraulic Institute, SOGREAH (France) and the 
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Institute of Hydrology (UK) developed the Système Hydrologique Européen (SHE) 

model (Abbott et al., 1986, Beven et al., 1980). It is a physically based distributed model 

that simulates eight processes (e.g., snowfall and snowmelt) in every grid point. This 

model is highly spatially detailed, so it requires large amounts of data inputs and 

complex parameter estimation. Its canopy interception component is based on the 

rainfall interception model developed by Rutter et al. (1971) in which the water storage 

on the canopy is determined by the amount of intercepted water minus evaporation and 

drainage. Wood et al. (1992) introduced the VIC model to link with general circulation 

models (GCMs) to simulate land surface hydrology over large areas. The VIC model 

needs estimation of the infiltration parameter, the evaporation parameter, and the base 

flow recession coefficient. The authors compared the stream discharge results of this 

model and GCM land surface schemes and found that the simulation of VIC model was 

closer to measured streamflow. With the development of this model, many cold regions 

snow processes such as snow interception and blowing snow transport have been 

included in it. Wigmosta et al. (1994) described the distributed hydrology-vegetation 

model to simulate the mass and energy balance of evaporation, transpiration, snow 

accumulation and melt, and runoff generation. Canopy evapotranspiration was 

calculated by a two-layer (overstory and understory) Penman–Monteith approach. 

Snow accumulation and ablation were modelled using an energy balance approach that 

includes the topographical and vegetation effects. The upgraded version–the 

Distributed Hydrology Soil Vegetation Model (DHSVM) now is capable of simulating 

the snow interception and release in the forest canopy. Sun et al. (1999) developed a 

simple snow-atmosphere-soil transfer (SAST) energy balance physically based snow 

model. This model divides the snow pack up to three layers, depending on snow depth, 

and simulates crucial physical processes occurring in each layer such as snow 

compaction, heat conduction, snow grain evolution, and snow melting. However, this 

model can not simulate the snow interception and sublimation in forest and the blowing 

snow transport and sublimation in the open areas. Kuchment et al. (2000) developed a 

distributed physical model to simulate the snowmelt and rainfall runoff generation in 

permafrost regions. This model includes algorithms for simulating snowcover 

formation and melt, evaporation, thawing of the ground, basin water storage dynamics, 

and flow on the land surface, subsurface and channels. The important feature of this 

model is that it accounts for the effects of the depth of thawed ground on the water 

balance between surface and subsurface layers. Kuchment et al. (2000) took a three-

step calibration approach to the model and found that the main parameters and accuracy 

of the model was improved after that. Gelfan et al., (2004) added snow interception and 

sublimation process to this model. Zhang et al. (2000) developed the arctic hydrological 

and thermal model (ARHYTHM), for simulation of the arctic region’s hydrological 

processes. This model uses physical equations to present snowmelt, evapotranspiration, 

subsurface flow and overland flow. Moreover, a degree-day method was used to 

simulate snow melt when there is not enough data for utilizing the energy balance 

method. Another physically based model, NSM (Carroll et al., 2001) is a distributed 

multi-layer snow model. The model borrowed the snow surface temperature solution 
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from Tarboton and Luce (1996) and the snow thermal dynamics for energy and mass 

fluxes algorithms from Jordan (1990). It computes the snowpack and soil properties 

(SWE, internal energy, thickness, temperature, and water content) for three snow layers 

and two soil layers separately. However, because the model is spatially uncoupled, it 

does not simulate the transport of blowing snow even though it simulates the 

sublimation of blowing snow. Another important process that missing in the NSM is 

the forest canopy snow interception and sublimation. Pietroniro et al. (2007) coupled 

the atmospheric model, land-surface scheme and a hydrological routing scheme into 

the MEC Surface and Hydrology (MESH) system. They conducted numerical 

prediction experiments in the Great Lakes basin in North America and found that 

MESH is able to provide a deeper understand of different land-surface schemes’ 

performances and reliable ensemble hydrological forecasts for the research area. 

 

As mentioned above, many models have been developed for hydrological simulation in 

the cold regions, but most of them do not include the snow interception in the forests 

and the blowing snow transport in the open areas. However, these two processes are the 

main factors that control the snow redistribution in most cold regions. Therefore, 

selecting a model that can simulate all important snow processes is the top priority for 

hydrological modelling in the cold regions. 

1.2.2.1 Cold Regions Hydrological Model platform (CRHM) 

The CRHM platform was developed by Environment Canada, the University of Wales, 

Aberystwyth and the Centre for Hydrology, University of Saskatchewan. Compared to 

the models mentioned above, CRHM has a more complete range of hydrological 

processes (Table 1-1) for cold regions such as the Canadian Rockies (Pomeroy et al., 

2007). Users of CRHM can construct their own model by selecting the modules from 

the CRHM module library or even add their own module to the platform based on input 

data availability, research scale and interest. The basic spatial simulation unit of CRHM 

is the hydrological response unit (HRU) that is mainly defined by basin topography, 

hydrography, and vegetation. A detailed description of CRHM was provided by 

Pomeroy et al. (2007) and recently updated (Fang and Pomeroy, 2016; Pomeroy et al., 

2016). 
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Table 1-1. Cold regions hydrological models and snow processes they simulate. 

Model name 
Interception and 

sublimation 

Snow 

albedo  
ET 

Blowing 

snow  

Frozen soil 

infiltration  

Snow 

melt  

 

Flow 

SNOW-17 NO YES YES NO NO TI NO 

VIC YES YES YES YES YES 
EB or 

TI 
YES 

SHE NO YES YES NO NO EB YES 

DHVSM  YES YES YES NO NO EB YES 

ARHYTHM  NO YES YES NO NO 
EB or 

TI 
YES 

SAST NO YES YES NO NO EB NO 

MESH YES YES YES YES YES EB YES 

NSM  NO YES NO NO NO EB YES 

Runoff model 

(Kuchment et al.,2000; 

Gelfan et al., 2004) 

YES YES YES YES YES EB YES 

CRHM YES YES YES YES YES EB YES 

(YES and NO denote whether the model can simulate the process or not. EB indicates Energy balance. 

TI means Temperature Index.) 

1.2.3 Data assimilation 

1.2.3.1 Principles of Data Assimilation 

DA is an approach to integrating the data from a variety of sources, resolutions, and 

accuracies with model predictions to improve deterministic model accuracy 

(McLaughlin et al. 2005). In other words, DA methods are designed to merge 

observation data, including in situ and remote sensing data, with estimates from 

hydrological models. By combining these complementary information sources, a more 

objective estimate of the actual state of a natural system can be gained. In a DA process, 
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various mathematical methods are used to quantify observational and hydrological 

model errors, and the model states are then updated through an optimal combination of 

observation and model simulation (Moradkhani, 2008). Reichle (2008) used a simple 

DA system to illustrate the basic concept. This study assumed that in a specific time 

window, there will be a model-simulated variable m with error variance (uncertainty) 

x2 and observation o with error variance y2. Then, one can use an objective function J 

to present the misfit among the true state z, the model estimate m and the observation 

o. After minimization of J with respect to z yields, a z* can be obtained, which is the 

least-squares estimate of z, presented by m, o, x2 and y2. Now, a K = x2 / (x2+ y2) is 

introduced, where K is the Kalman gain; 0 ≤ K ≤ 1 (Reichle, 2008). Then, z* can be 

calculated by m, o and K. The model states can then be updated using K.  

 

DA is mainly used to solve three problems in hydrological modelling (Liu et al., 2012). 

The first one is that of updating states, in which observations are assimilated into 

models to update the state variables. The second one is optimization or calibration. 

Instead of using observations to directly update the model state variables, this DA 

strategy using observations to estimate or optimize model parameters to achieve 

optimal simulation. The third one is error updating, in which DA is used to estimate the 

difference between model forecast and observation and use this difference to revise the 

future predictions of the model. This type of DA is widely used in operational practice. 

For example, this DA may helps the forecaster to decide whether or not to release a 

warning according to recent information on errors in the model outputs.  

1.2.3.2 Data Assimilation Methods 

There are many DA methods, such as simple direct insertion and various Kalman filters. 

Different methods use their own algorithms to calculate K. At the very beginning, 

hydrologists used the direct insertion approach in the DA process. In this process, the 

model state is directly replaced by the observation when and where an observation is 

available. Liston et al. (1999), Pan et al. (2003) and Rodell et al. (2004) used this 

approach to replace their model states by in situ and remotely sensed observations in 

their snow property studies and DA systems. This approach is time saving and easily 

implemented. However, the assumption on which this approach is based—that the 

observation is perfect, and the model output has no value—is too simple and, in most 

cases, far from the reality since the model performance may sometimes be even better 

than that of the observation (Sun et al., 2004). Later DA approaches, which have 

developed various sophisticated and better algorithms to determine the uncertainty of 

model estimates and observations, combine the advantages of both of these resources 

(Liu et al., 2012; Reichle et al., 2008). 

 

Traditional Kalman filters (KF) update the model state variables when an observation 

is shown and explicitly compute the error covariances through an additional matrix 

equation that propagates error information from one time step to the next (Reichle, 

2008). This method performs well when the error of the model and observations are 
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both Gaussian distributed and mutually independent and temporally uncorrelated, but 

the model needs to be linear. The nonlinear version of the Kalman filter is extended 

Kalman filter (EKF), which can be used in nonlinear models. However EKF cannot be 

used for nonlinear models and in a large study area because its error covariance 

integration requires large computational capability (Reichle et al., 2002). The 

alternative method is the ensemble Kalman filter (EnKF), which can perform better 

since it avoids the complex integration of the state error covariance matrix by 

propagating an ensemble of states through a Monte Carlo approach from which the 

required covariance information is obtained at the time of the update (Reichle et al., 

2002).  

 

According to the updating frequency of state variables, DA algorithms can be divided 

into two groups: filter (sequential) and smoothing (batch) algorithms (Reichle, 2008). 

Filter algorithms update model state variables and compute the error covariance 

immediately when an observation is available. Such algorithms include direct insertion, 

traditional Kalman filter, EKF, EnKF, and particle filter methods. Smoothing 

algorithms, such as the four-dimensional variational DA (4DVAR), update the model 

state variables over a designated time interval. In this situation, the model state variables 

are not updated by a single observation as in the filter algorithm but by several 

observations. For this algorithm, one must consider the time dimension of the 

observation, and the error covariance must be calculated implicitly. 

1.2.3.3 Data Assimilation Applications in Cold Regions Hydrology 

Hydrological models for application to cold regions are developed in part to simulate 

the snow processes and eventually estimate basin streamflow discharge using various 

snow properties, including SWE, snow depth, and snowcovered area (SCA). With 

development of remote sensing concepts and technology, these snow properties can be 

measured in various temporal scales, spatial scales, and degrees of accuracy and thus 

provide a useful data resource for snow data assimilation systems. 

 

SCA is an important snow parameter since it represents the horizontal extent and 

distribution of a snowpack. However, SCA is difficult to measure directly by traditional 

surface-based methods because of the large extent of snow cover. Fortunately, 

measurement of SCA became available with remote sensing technology as snowcover 

presence can be easily estimated from visible wavelengths. Especially in recent years, 

researchers developed algorithms (e.g., MODSCAG, Painter et al., 2009) to calculate 

the sub-pixel snowcover to overcome the problem caused by low resolution. SCA can 

be used for hydrological model DA in two ways. One approach is to directly assimilate 

SCA data to a model as the SCA is a state variable of the hydrological model. Clark et 

al. (2006) assimilated the MODIS SCA data to their conceptual snow model, which 

uses temperature index methods to simulate the accumulation and ablation of 

snowpacks, by using the EnKF method. They found that assimilation of SCA data 

improved the estimate of streamflow. Nagler et al. (2008) used the SCA data retrieved 
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from MODIS and SAR to update the snow runoff model (SRM) though a simple DA 

scheme. Results of their research showed that the runoff estimates updated by the 

combination of two sets of remote sensing data were superior to those obtained by using 

a single set of data. Another way is to retrieve SWE from SCA and then assimilate the 

SWE to a hydrological model when SCA is not the state variable of the model. Rodell 

and Houser (2004) developed a simple rule-based method for assimilating the MODIS 

SCA data to their model. Their rule is that if the model-simulated SWE is zero and the 

MODIS SCA fraction is more than 40%, then 5 mm SWE was added to the model, and 

if the model-simulated SWE is not zero and the MODIS SCA fraction is less than 10%, 

then the model SWE is removed, and the model SWE is unchanged under other 

situations. They found that both assimilated and control simulations contained errors, 

but assimilated simulations had a higher accuracy. Zaitchik and Rodell (2009) 

developed a more sophisticated model based on the rule of Rodell and Houser. They 

used an image up to 72 hours ahead to constrain the model simulation. This new 

algorithm improved SCA simulation performance at global scales when compared to 

the simple method of Rodell and Houser (2004). SWE can also be estimated from SCA 

by using the Snow Depletion Curve (SDC) (Gomez–Landsea and Rango, 2002). 

However, SDCs are heavily influenced by basin specifics such as topographical and 

meteorological conditions. Furthermore, different study areas need specific SDCs to 

fulfill the accuracy requirements. Andreadis and Lettenmaier (2006) used a simple SDC 

model to retrieve the SWE data from MODIS SCA data and then assimilated these SWE 

data to the VIC macroscale hydrological model by using EnKF. Validation by using the 

in situ SWE showed that this assimilation improved model performance. Kuchment et 

al. (2010) used MODIS-derived SCA to constrain a physically based snowpack model 

(Gelfan et al., 2004) parameters by comparing the model results to the ground-based 

point observations. They found that the streamflow simulation became more accurate 

thereafter. SCA is usually measured by optical remote sensors, which are heavily 

influenced by the weather condition. The optical remote sensors cannot penetrate cloud; 

this creates more uncertainty in the assimilation when more cloud covers the remote 

sensing image. Andreadis and Lettenmaier (2006) only used images with relatively low 

cloud cover (less than 20%). However, this also considerably reduced the amount of 

observation data, which could be used in DA. 

 

SWE is the most important output of cold regions hydrological model simulation and 

hence is the most interesting input data for data assimilation. It can be estimated by 

both in situ measurements and remote sensing measurements. Liston and Hiemstra 

(2007) assimilated both ground-based and remotely sensed SWE data in a snow-

evolution modeling system (SnowModel). The results showed that assimilation 

improved the SWE distribution of the model simulation, and the updated SWE was 

distributed more realistically than that estimated using observation data alone. With 

remote sensing technology, SWE can be obtained indirectly from SCA as mentioned 

previously and directly from microwave sensors. One of the advantages of microwave 

remote sensing (active or passive) is that it is not influenced by weather conditions. 
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However, microwave remote sensing data has its own disadvantages that limit its usage 

in hydrological DA. Most active microwave sensors (which emit signals and then 

collect the reflected energy) are airborne and thus have a small coverage area, low 

repeat frequency and high expense. Passive microwave data have relatively coarse 

resolution (e.g., AMSR-E, 25 km) since passive microwave sensors collect the low-

energy microwaves emitted from the surface, rendering the passive microwave data 

only available in low spatial resolution. Low-resolution land surface DA is not suitable 

for the relatively high spatial resolution needs of physical hydrological modeling. 

Another disadvantage of AMSR-E data is that its algorithm is heavily influenced by 

snow grain size, snow depth, and liquid water content of the snow pack (Zaitchik and 

Rodell, 2009). These factors make the AMSR-E data unreliable for snow DA 

(Andreadis and Lettenmaier, 2006).  

 

Some researchers also used land surface radiance data collected by satellite and ground-

based sensors to update model-simulated SWE or snow depth by using an observation 

operator, which transfer the radiance to SWE or snow depth (Dechant and Moradkhani, 

2011; Durand et al. 2009). Durand et al. (2009) assimilated ground-based passive 

microwave (PM) sensor-measured radiance into the SAST energy balance snow physics 

model using the EnKF method. They found that the snow depth bias was reduced from 

−53.3cm to −7.3 after DA. Dechant and Moradkhani (2011) used the brightness 

temperature (BT) data from AMSR-E to update the SNOW17 and the microwave 

emission model for layered snow pack (MEMLS) using the EnKF approach. The results 

showed that the flow estimate of the model was improved by DA. Toure et al. (2011) 

assimilated ground-based PM sensor-measured radiance into the snowpack energy and 

mass model-CROCUS using the EnKF method. CROCUS is more sophisticated than 

the SAST model as it divides the snowpack up into 50 layers and has 100 state variables. 

The ability to accurately simulate SWE and snow depth by CROCUS was largely 

improved after DA. 

1.2.3.4 SNODAS 

NOAA’s NOHRSC developed and operates the SNODAS project (Carroll et al., 2001). 

SNODAS provides ~1 km spatial resolution and daily snow products for the 

conterminous USA since 1 October 2003 and for southern Canada since 1 December 

2009. They assimilate ground-based snow data and remotely sensed data, such as 

NOHRSC Airborne Gamma SWE data and NOAA GOES/AVHRR snowcover data, 

into the NSM. The meteorological driving data used to force NSM is 1 km2 resolution 

data, which were downscaled from a 13 km2 resolution Numerical Weather Prediction 

(NWP) model (RUC2) product. The DA method used in the SNODAS project is the 

simple nudging method, which is also known as Newtonian Relaxation Procedure. In 

this assimilation procedure, the differences between model simulation and observation 

are first computed in each point. Second, the differences are interpolated into model 

grids. Third, the differences are divided by 6 to get a mean hourly nudging field for the 

last 6 hours. Lastly, the model is re-run for the last 6 hours, and the model estimate at 
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the end of each hour is nudged by using the nudging field produced in the last step 

(Carroll et al., 2006). The daily 30 arc-second resolution SNODAS products are 

archived by NOHRSC and are openly available to researchers from all over the world 

for various modelling and research purposes.  

 

Clow et al. (2012) evaluated SNODAS SWE and snow depth data in the Rocky 

Mountains, Colorado, USA using independent ground-based snow survey 

measurements including snow depth and density in headwater basins. They found that 

the accuracy of SNODAS data in forested areas was higher than in alpine areas. In 

forested areas, the SNODAS explains 77% and 72% of the variance of SWE and snow 

depth, respectively, whereas it explains only 30% and 17% of the variance of SWE and 

snow depth, respectively, in alpine areas. Clow et al. (2012) developed a simple wind 

redistribution adjustment method for SNODAS data. This method reduced the RMSE 

of SNODAS snow depth and SWE data from 37 cm and 12 cm to 23 cm and 6 cm, 

respectively. The researchers also claimed that the SNODAS product is a reliable input 

data resource for moderate- and large-scale hydrological models. SNODAS has not 

been evaluated in Canada in any published study. 

1.3  Research Gaps 

From this literature review, the following research gaps were found in the research of 

snow interception measurement and snow information DA in the cold regions 

hydrology community. 

1) Despite its potential utility as a snow data product, there has been no published 

validation of the US NWS SNODAS SWE data in Canada. Further, the influence 

of processes missing from the SNODAS NSM model, such as canopy interception 

and blowing snow transport, on the accuracy of the model has not been explored. 

2) Canopy intercepted snow can have an extremely important influence on snow 

accumulation under needleleaf forests that cover much of the Northern Hemisphere. 

Snow interception observations have been limited to time-lapse camera 

photography, radiation attenuation and weighed hanging trees - research has not 

focussed on using satellite data to detect snow interception despite the potential 

benefits of frequent and large areal coverage. 

3) Snow data assimilation research has mainly focussed on assimilating surface 

snowpack information. However, with the development of snow interception 

remote sensing, the potential benefits of assimilating snow interception data to cold 

regions hydrological models can now be explored. 

4) Many modern hydrological models applied in cold regions now contain the full 

suite of snow redistribution and ablation processes. However, most snow data 

assimilation research has been conducted using simple conceptual models that lack 

these processes. As a result, the influence of assimilating snowpack properties on 

the performance of physically based models is not well known.  
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1.4  Objectives 

Based on the research gaps identified, the research proposed here is aimed at improving 

snow information assimilation techniques and thus the simulation accuracy of 

snowpack properties on the ground and the forest canopy and streamflow. The specific 

research objectives are as follows: 

1) Evaluate the accuracy of SNODAS SWE predictions in Canada, by comparing them 

to snow survey data in various landscape types, and determining the influence of 

processes missing from the SNODAS model on the accuracy of SNODAS SWE. 

2) Explore the possibility of using of remotely sensed data for detecting intercepted 

snow presence on needleleaf forest canopies at the basin scale. 

3) Assimilate ground-based and remotely sensed snow interception data into CRHM 

and assess their influence on the simulation of snow interception losses. 

4) Determine the best methods to assimilate in situ snow measurements into a CRHM 

model that includes snow redistribution by wind and forest and ablation processes 

on complex terrain and evaluate how well assimilation of point snow observations 

improves the prediction of basin snowpack and streamflow.  

 

1.5  Organization of chapters 

This thesis consists of an introduction, four chapters that each address one research 

objective, and a summary chapter that synthesizes all of the research. Chapter 1 

introduces the study background, research gaps, and objectives. Chapter 2 describes the 

validation of SNODAS SWE data in western Canada and the importance of including 

snow interception and blowing snow transportation in hydrological simulations in these 

regions (Objective 1). Chapter 3 illustrates the approach for detecting snow interception 

on needleleaf forest canopies using satellite remote sensing data (Objective 2). Chapter 

4 addresses methods and the influence of assimilation of ground-observed and remotely 

sensed snow interception data into CRHM (Objective 3). Chapter 5 explores the ways 

to assimilate ground-based snowpack properties into a mountain CRHM model and 

evaluates the effects of this assimilation on snowpack and streamflow simulations 

(Objective 4). Chapter 6 summarizes all the findings of the preceding chapters and 

discusses the contributions and limitations of the present study. 
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CHAPTER 2: Evaluation of SNODAS Snow Water Equivalent in 

Western Canada and assimilation into a cold regions hydrological 

model 
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2.1 Preface 

Snow water equivalent (SWE) is one of the most important physical properties of a 

snowpack. The US National Weather Service’s Snow Data Assimilation System 

(SNODAS) provides snow products at high spatial (~1 km2) and temporal (daily) 

resolution for the contiguous USA and southern Canada. However, the accuracy of 

these products and the influence of their snow model’s structure on the accuracy of 

these products have not yet been explored in Canada.This study is aiming to: 1) evaluate 

the SNODAS SWE product in the boreal forest, prairie, and Rocky Mountains of 

western Canada against extensive snow survey measurements, 2) demonstrate that 

simulation of SWE in these environments where SNODAS has substantial errors can 

be achieved by assimilating SNODAS SWE data into a physically based Cold Region 

Hydrological Modelling (CRHM) platform, and 3) bias correct SNODAS. 
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2.2 Introduction 

Snow is a crucial water resource in cold regions where much of the precipitation falls 

as snow and the main portion of annual streamflow runoff is generated by snowmelt 

(Doesken and Judson, 1996; Gray and Male, 1981). Therefore, accurately monitoring 

snow processes such as snowfall, accumulation, redistribution, sublimation, and melt 

along with tracking snow properties such as depth, density, and water equivalent are 

necessary and important for ecology, agriculture, forestry, industry, and other human 

activities. Snow water equivalent (SWE) is one of the most important physical 

properties of a snowpack, as it combines the information of snow depth and density to 

provide the amount of available water within the snowpack (Pomeroy and Gray, 1995).  

 

One way to determine the SWE of a snowpack is by observation (e.g., field survey and 

remote sensing monitoring). However, ground observations typically do not provide 

enough information because they usually measure the SWE with limited spatial support 

or temporal resolution. But remote sensing SWE observations using microwaves have 

very coarse spatial resolution and limited ability to measure deep snow, redistributed 

snow, and snow under forest canopies (Derksen et al., 2003; Frei et al., 2012; Kinar and 

Pomeroy, 2015; Nolin, 2010; Peterson and Brown, 1975; Pulliainen and Hallikainen, 

2001; Tait, 1998). In addition, hydrological models can simulate SWE continuously 

over a wide geographic range at various spatial scales for fine temporal resolution. 

However, these are simplified representations of reality, whether empirical or physical, 

and simulation quality relies on accurate forcing data and parameterization (Knoche et 

al., 2014; Vrugt et al., 2007). Due to these observation and model simulation problems, 

data assimilation, which is widely used in atmospheric and oceanic sciences, has been 

introduced to hydrology to improve SWE estimation in recent decades (Andreadis and 

Lettenmaier, 2006; Liston et al., 1999; Liu et al., 2012). 

 

To provide better estimates of snow cover and associated snow properties in the USA, 

NOAA’s National Operational Hydrologic Remote Sensing Center (NOHRSC) has 

developed the SNOw Data Assimilation System (SNODAS) project (Barrett, 2003). 

SNODAS provides fine spatial and temporal scale snow products for the conterminous 

USA since October 2003 and southern Canada since December 2009. There are three 

main components in SNODAS: data ingestion and downscaling of meteorological 

information from Numerical Weather Predication (NWP) models, a physically based 

NOHRSC Snow Model (NSM) that simulates snow mass and energy balance, and a 

data assimilation component that updates snowpack estimates using various ground-

based and satellite observational data.  

 

NSM (Carroll et al., 2001) is a distributed multi-layer snow model which borrowed the 

snow surface temperature solution from Tarboton and Luce (1996) and the snowpack 

thermal dynamics and energy and mass flux algorithms from Jordan (1990). It computes 

snowpack and soil properties (SWE, internal energy, thickness, temperature, and water 
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content) for three snow layers and two soil layers separately. However, as the model is 

spatially uncoupled, it does not simulate blowing snow transport fluxes even though it 

simulates the sublimation of blowing snow following Pomeroy et al. (1993). Other 

important processes missing from the NSM are the forest canopy snow interception, 

unloading, drip and sublimation processes. The NWP data that force the NSM were 

downscaled from Rapid Update Cycle (RUC2). The system is also capable to utilizing 

the Mesoscale Analysis and Prediction System (MAPS) data sets when RUC2 data are 

not available. 

 

The daily 30 arc-second resolution SNODAS products are archived by NOHRSC and 

are openly available to researchers from all over the world for various modelling and 

research purposes. Many researchers have used SNODAS data in their research as it is 

the only data set that provides real-time spatially distributed snow properties in North 

America (Vuyovich et al., 2014). In hydrology research, SNODAS data have been used 

to validate remotely sensed SWE data (Azar et al., 2008; Tedesco and Narvekar, 2010; 

Vuyovich et al., 2014), been used to evaluate hydrological model performance (Artan 

et al., 2013; Barlage et al., 2010; Rittger et al., 2011), and been used for model 

calibration in ungauged basins (Boyle et al., 2014). SNODAS data have also been 

applied to the field of ecology, to study wildlife habitats and populations (Kays et al., 

2008; Millington et al., 2010). 

 

Although SNODAS data have been used in a wide variety of research, there are only a 

few studies that have validated their accuracy. SNODAS assimilates most available 

observations and rarely leaves other ground truth data for its evaluation. Anderson 

(2011) conducted a SNODAS validation in a watershed near Boise, Idaho, USA by 

using snow survey data and found that SNODAS underestimated SWE on the ground 

at most times and locations. Clow et al. (2012) evaluated SNODAS SWE and snow 

depth data in the Colorado Rocky Mountains, USA by using independent, ground-based 

snow survey data and water balance calculations in headwater basins. They found the 

accuracy of SNODAS data in forested areas was higher than in alpine areas, with 

SNODAS capturing 77% and 72% of variation of SWE and snow depth in forested 

areas but only 30% and 17% variation of SWE and snow depth in alpine areas. 

Schneiderman et al. (2013) found SNODAS SWE estimation fitted to snow survey 

SWE data performed better than that using two temperature index models in the Catskill 

Mountain region of New York State, USA. Hedrick et al. (2015) compared snow depth 

change data sets derived from SNODAS and LiDAR in northern Colorado and found 

that there was a reasonably strong correlation between two data sets, but the differences 

between two data sets were great in some locations. Dozier et al. [2016] suggested that 

SNODAS overestimates SWE during the melt period, possibly because of over-reliance 

on snow pillows which can overmeasure SWE during melt. They also noted that where 

elevational ranges are large, SNODAS can underestimate SWE at higher elevations due 

to assimilation of lower elevation snow pillow data. In Canada, despite the use of 

SNODAS by provincial water management and flood forecasting agencies, there has 
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not been validation and application research of the SNODAS product. The SNODAS 

assimilation frequency for the Boreal Ecosystem Research and Monitoring Sites 

(BERMS), Smith Creek Research Basin (SCRB), and Marmot Creek Research Basin 

(MCRB) areas are relatively low (Fall et al., 2014), and the impact of this low frequency 

on the accuracy of SNODAS SWE is unknown. 

 

The objectives of this research are therefore 1) to evaluate SNODAS SWE data in 

various Canadian environments such as mountains, prairies, and boreal forest by 

comparing model products to historical snow survey data, 2) to demonstrate that 

simulation of SWE in these environments where SNODAS has substantial errors can 

be achieved by assimilating SNODAS SWE data into a physically based Cold Region 

Hydrological Modelling (CRHM) platform, and 3) to bias correct SNODAS. 

2.3 Study area and data 

The Boreal Ecosystem Research and Monitoring Sites (BERMS), Smith Creek 

Research Basin (SCRB), and Marmot Creek Research Basin (MCRB) represent three 

important landscapes in Western Canada: boreal forests, prairies, and mountains, 

respectively (Figure 2-1). These research sites were operated as part of the Changing 

Cold Regions Network (DeBeer et al., 2015) and have excellent quality and well 

documented snow surveys and site characteristics. A brief introduction of these sites is 

included here together with landscape and elevation range information of the snow 

survey transects and the corresponding SNODAS grid cells in the three sites (Table 2-

1). 
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Table 2-1. Summary of landcover and elevation range of snow survey transects with corresponding 

SNODAS grid cells at all survey locations in western Canada. 

 

 

 

 



 

24 
 

 

Figure 2-1. Study locations: (a) Marmot Creek Research Basin (MCRB), Smith Creek Research Basin 

(SCRB) and three Boreal Ecosystem Research and Monitoring Study (BERMS) sites, all in Canada. (b) 

The extent of SNODAS data and BERMS site locations. (c) Landcover and meteorological stations in 

MCRB, Alberta, Canada. (d) Landcover types and snow survey locations in SCRB, Saskatchewan, 

Canada. 

2.3.1 Boreal Ecosystem Research and Monitoring sites 

The BERMS area is located in the southern Boreal Forest within the mid-Boreal Upland 

and Boreal Transition ecoregions, north of Prince Albert, Saskatchewan, Canada. It is 

a follow-on to the Boreal Ecosystem-Atmosphere Study (BOREAS) (Nichol et al., 

2000) that aimed to determine the long-term water, carbon, and energy exchanges 

between the atmosphere and boreal forest. Seven flux tower sites are located in various 

landcover types in BERMS (Barr et al. 2012). Snow survey data from four sites were 

available for the study period. Old Black Spruce (OBS) was excluded from the analysis 

as it is located outside of the extent of SNODAS data. The other three sites were chosen 

for this study based on precipitation measurements, snow survey data availability, and 

SNODAS data extent (Figure 2-1b). These sites are the needleleaf Old Jack Pine (OJP, 

53°54`N, 104°41`W, elevation 570 m), deciduous Old Aspen (OA, 53°38`N, 106°12`W, 

elevation 600 m), and Fen (FEN, 53°57`N, 105°57`W, elevation 525 m). OJP is located 

in a mature jack pine forest. The landscape is relatively flat (mean slope 2% to 5%) 

with a 13.5 m mean canopy height and 1.9 to 2.2 winter leaf area index (Baldocchi et 

al., 1997; Nichol et al., 2000). This type of environment experiences substantial snow 

http://www.geog.queensu.ca/climatology/Boreas01.htm
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interception losses (Pomeroy and Gray, 1995). The vegetation type of OA is mostly 

pure stands of mature trembling aspen overstory with heights from 18 to 22 m and a 

winter LAI of 0.72 and 2-m hazelnut understory with winter LAI of 0.33 (Hogg et al., 

1997; Barr et al., 2004). Pomeroy and Gray (1995) showed that snow accumulation in 

aspen forests closely matched cumulative snowfall in the cold boreal winter. The FEN 

site is located in an approximately 4000 m long and 450 m wide patterned fen 

surrounded by black spruce and jack pine forest. Bog birch shrubs at 0.5–1.5 m height 

and widely scattered, stunted deciduous tamarack trees are the main vegetation types in 

this site (Nichol et al., 2000; Sukyer et al., 1997). Because of its sparse vegetation cover, 

it can be subject to snow redistribution by wind. 

 

Researchers from Environment and Climate Change Canada (ECCC) and the Global 

Institute for Water Security, University of Saskatchewan conducted snow surveys on a 

transect around each site, one to three times per winter month. This was done using an 

ESC30 snow sampling tube to measure density and a ruler for depth following methods 

outlined by Pomeroy and Gray (1995). Along each 100-m transect, 25 depth 

measurements were taken at equal interval, with a density sample taken at every fifth 

depth measurement point. Average snow depth and density were used to calculate the 

mean SWE at each site. From the 2010 to 2015 water year, 89 mean SWE values were 

surveyed at three sites. 

2.3.2 Smith Creek Research Basin 

SCRB is located approximately 60 km southeast of Yorkton, Saskatchewan, Canada in 

the parkland ecoregion of the Canadian Prairies (Figure 2-1d). It has an area of 

approximately 393 km2 and a relatively level landscape, with average slopes ranging 

from 2 to 5% and elevation ranging from 490 to 548 m (Fang et al., 2010). The major 

landscape types of SCRB are cultivated cropland, pasture, native grassland, natural 

wetland, and deciduous woodland. Because snow is heavily redistributed by wind from 

one landscape to another during winter in this environment (Pomeroy et al., 1993; Fang 

and Pomeroy, 2009), 13 transects were chosen to represent the major landscapes (i.e., 

grassland, grain stubble, roadside ditch, woodland, and wetland) at survey sites 

throughout the whole basin. Each transect contained 25 snow sample points with a 5-

m interval. Snow depth was measured at each point and snow density was measured 

every fifth depth measurement using the ESC30 snow tube. Mean SWE was calculated 

from average snow depth and snow density following Pomeroy and Gray (1995). There 

were 67 mean SWE values from these transects within the 2010 to 2012 water year at 

SCRB (Pomeroy et al., 2014). Precipitation data from two meteorological stations, 

which were separately operated by University of Saskatchewan (UofS station) and 

ECCC (Langenburg station), located inside the SCRB were available for this research. 
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2.3.3 Marmot Creek Research Basin 

MCRB (50°57`N, 115°09`W) is located in the Front Ranges of the Canadian Rocky 

Mountains (Figure 2-1c) and has an area of approximately 9.4 km2 including three 

upper sub-basins: Cabin Creek, Middle Creek, and Twin Creek, as well as a lower 

confluence sub-basin. The elevation of MCRB ranges between 1450 m and 2825 m. 

The main landcovers are dense needleleaf lodgepole pine in the lower elevations; 

deciduous alpine larch, shrubs, grasses, needleleaf Engelmann spruce, and sub-alpine 

fir in the middle upper elevations; and talus and bare rocks occupy in the high alpine 

region (DeBeer and Pomeroy, 2009). The basin has been treated with large clearcuts 

and small forest clearings in the needleleaf forest zone (Ellis et al., 2013). There are 

substantial snow interception losses from needleleaf forests (Ellis et al., 2010) and wind 

redistribution of snow from alpine ridges and windward slopes to sheltered slopes and 

treeline forests (MacDonald et al., 2010). The average annual precipitation in MCRB 

is approximately 900 mm, which increases with elevation. The precipitation can reach 

1140 mm at the regions above treeline where 60%–75% of it falls as snow (DeBeer and 

Pomeroy, 2009). Snow usually accumulates from November to March and starts to melt 

in later April or early May. Ten permanent meteorological stations have operated since 

2005 at various locations throughout the basin (Figure 2-1c). These stations 

continuously collect short and long-wave radiation, air temperature, humidity, wind 

speed, and snow depth. Precipitation is measured with Alter-shielded Geonor weighing 

precipitation gauges at the Hay Meadow, Upper Clearing, and Fisera Ridge stations and 

is corrected for wind-induced undercatch (Smith, 2007).  

 

Snow surveys have been conducted at the Upper Clearing (UC), Vista View (VV), 

Fisera Ridge (FR), Level Forest (LF), and Hay Meadow (HM) sites regularly since 

2007. The survey method is same as that for SCRB with varied transect lengths. There 

are 348 mean SWE values from transect for SNODAS validation in MCRB for the 2010 

to 2015 water years. 

2.4 Methodology 

SNODAS data from October 2010 to September 2015 was downloaded and processed 

to extract SWE, precipitation, snowmelt runoff under the snowpack, blowing snow 

sublimation, and snowpack sublimation for all study sites. SNODAS SWE data was 

compared to ground snow survey data to evaluate its point scale accuracy in all three 

areas. In MCRB, SNODAS SWE was also compared with a CRHM simulation to assess 

accuracy at the basin scale. The accuracy of a snow data assimilation system is mainly 

controlled by two factors: model simulation accuracy and data assimilation accuracy 

and frequency. The main factors influencing model simulation accuracy are driving 

force, parameters, and model structure. Both blowing snow transportation and canopy 

snow interception simulations are missing in the SNODAS NSM model. Precipitation 
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data is the only available driving force in the archived SNODAS data sets, and data 

assimilation can be determined by using a water balance calculation (see section 2.4.1). 

Therefore, the influence of these factors on accuracy of SNODAS SWE data was also 

examined. CRHM was forced by the SNODAS precipitation and locally observed 

climate data to evaluate the importance of two missing snow processes by turning one 

or both off in the model. Then a CRHM simulation, forced by SNODAS precipitation, 

mimicked SNODAS by turning off modules of both processes in CRHM and adding 

the estimated assimilation. Lastly, SNODAS assimilation amount was assimilated into 

a comprehensive CRHM snow model, forced by SNODAS precipitation and locally 

observed climate variables was used to show the impact of correcting the model. The 

main works of this chapter are shown in Figure 2-2 and the details are provided in the 

rest of Section 2.4.  

 

 

Figure 2-2. Work flow of the research in Chapter 2. CRHMSP is a complete CRHM model forced by 

SNODAS precipitation and local observed other climate variables. CRHMSP_NB is a CRHM model 

that without blowing snow transport simulation forced by SNODAS precipitation and local observed 

other climate variables. CRHMSP_NI is a CRHM model, forced by SNODAS precipitation and local 

observed other climate variables, without snow interception simulation. CRHMSP_NBI is a CRHM 

model, forced by SNODAS precipitation and local observed other climate variables, without both 

blowing snow transport and snow interception simulation. CRHMSP_NBI is a CRHM model, forced by 

SNODAS precipitation and local observed other climate variables, without both blowing snow transport 

and snow interception simulation. CRHMSP_NBI+ASSIM is a CRHM model, forced by SNODAS 

precipitation and local observed other climate variables, without both blowing snow transport and snow 

interception simulation but inlcluding SNODAS assimilation. CRHMSP+ ASSIM is a complete CRHM 

model, forced by SNODAS precipitation and local observed other climate variables, inlcluding SNODAS 

assimilation. 
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2.4.1 Determination of assimilation in SNODAS 

In addition to SWE, SNODAS also provides daily cumulative precipitation (rain and 

snow), snowmelt runoff at the base of snowpack, sublimation from snowpack, and 

sublimation of blowing snow data for each pixel. Although there is no available 

information on when assimilation happens and how much SWE were assimilated at 

each time-step in the SNODAS system, these variables together can be used to compute 

the snowpack water balance to estimate assimilation. In the NSM simulation, single-

day SWE should equal SWE of the previous positive snowfall minus snowmelt runoff 

and sublimation under condition without any data assimilation. If there is considerable 

differences between these two data sets, assimilation must be the cause. Therefore, 

Equation 2.1 was used in this research to determine the assimilation amount in 

SNODAS system.  

Assim = SWE𝑖 − (𝑆𝑊𝐸𝑖−1 + 𝑆 − 𝑆𝑀 − 𝐵𝑆𝑆 − 𝑆𝑃𝑆)                      (2.1) 

where Assim is the assimilation amount, SWEi denotes SWE on the ith day of year, S is 

snowfall, SM is snowmelt runoff, BSS is blowing snow sublimation, and SPS is 

snowpack sublimation. 

2.4.2 Spatial representation of snow survey data 

In model or remote sensing validation research, ground truth and target data should 

have the same spatial resolution. To satisfy this requirement for validation of SNODAS 

data, previous researchers conducted their snow surveys in an approximately 1-km2 

area to represent the SNODAS grid cell (Anderson, 2011; Clow et al., 2012). In the 

present research, however, historical snow survey data were used and a perfect 

matching of scale was not possible. Transect lengths of the snow surveys are usually 

100 to 125 m, such that the survey area only represents a small part of the 30 arc-second 

SNODAS grid cell. SWE distribution is highly varied in different landcovers because 

of the snow redistribution caused by wind in open environments and needleleaf canopy 

interception (Liston et al., 2007; Pomeroy et al., 1993; Pomeroy et al., 1998a; Pomeroy 

and Gray, 1995). This makes a direct comparison between the historical snow survey 

data and the correspondent SNODAS data challenging in areas with complex terrain or 

heterogeneous landcovers. 

 

For each site in BERMS, topography is flat and land cover is primarily uniform. The 

mean SWE from each survey site can represent the SWE of the larger area around that 

site. Therefore, the observed mean SWE of each site was directly compared to the 

extracted SNODAS SWE data at BERMS sites. 

 

In SCRB, snow surveys at one site contain several transects that represent the dominant 

landscapes or surveys have one transect covering several landscapes. The present 



 

29 
 

research assumes that the SWE in each landscape type is regionally consistent in this 

flat area and that snow surveys of about 125 m in length can represent SWE over a 

larger area in that landscape type, following the stratified snow sampling methods of 

Steppuhn and Dyck (1974). The following equation was used to upscale the snow 

survey data to ~1 km2: 

𝑆𝑊𝐸1𝐾 =∑ (𝑆𝑊𝐸𝑖 ∗
𝑛

𝑖=1
𝑊𝑖)                                         (2.2) 

where 𝑆𝑊𝐸1𝐾 is the upscaled, approximately ~1 km2 observed SWE, 𝑆𝑊𝐸𝑖 is the 

observed SWE at 𝑖th landscape type, 𝑊𝑖 is the fractional coverage weight of the 𝑖th 

landscape type and is the result of the area of 𝑖th landscape type divided by ~1 km2. 

The area of each landscape type was calculated from a 30 m landcover map at each site.  

 

MCRB has highly heterogeneous landcover and complex terrain. The Steppuhn and 

Dyck (1974) method might not be suitable for upscaling the ground snow survey to the 

SNODAS pixel scale. The snow surveys in MCRB contain samples from most 

landscapes around each site, but they might not be sufficient to cover the elevation 

range, slope and aspect within each SNODAS cell. Various approaches were developed 

to upscale point snow survey data to catchment scale based on the influence of elevation, 

slope, aspect, radiation, vegetation condition, wind effect, and other factors on snow 

distribution (Elder et al., 1991; Harshburger et al., 2010; López-Moreno and Stähli, 

2008). However, Grünewald et al. (2013) found the influence of elevation, slope, slope, 

and sheltering index on snow depth distribution was weak in MCRB. These factors 

explained less than 30% of local snow depth variation. There is no existing optimal 

method to upscale 150 m snow survey transect data to the SNODAS cell level 

(approximately 582×926 m) in MRCB, and developing a new approach is beyond the 

scope of this research. Thus, the snow survey transects SWE data from different 

landscapes were directly compared to the corresponding SNODAS cell SWE. 

2.4.3 Point scale comparison 

To examine the influence of missing processes (i.e., blowing snow transport and canopy 

interception) in the NSM on SNODAS accuracy, the observed and SNODAS SWE were 

compared using linear regression at different landscape types (i.e., forest and clearings, 

leeward and windward slopes) in all three research sites. The root mean square error 

(RMSE, Equation 2.3), correlation coefficient (R2, Equation 2.4), and model bias (MB, 

Equation 2.5) between the two data sets were also calculated to evaluate accuracy.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑖−𝑋𝑠𝑖)

2𝑛
𝑖=1

𝑛
                                             (2.3) 

𝑅2 = 1 −
∑ (𝑋𝑂−𝑋𝑆)

2
𝑖

∑ (𝑋O−𝑋O)
2

𝑖

                                                (2.4) 

𝑀𝐵 =
∑𝑋𝑠

∑𝑋𝑜
− 1                                                     (2.5) 
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where Xs and Xo are SNODAS SWE and observed SWE, respectively, and 𝑋𝑜 is the 

average of observed SWE. 

 

Time series of SNODAS SWE were created and compared to the observed SWE at sites 

where observed precipitation was available. Cumulative SNODAS and observed 

precipitation as well as the amount of data assimilation were also included in the time 

series to assess the influence of these factors on SNODAS accuracy. 

2.4.4 CRHM model and basin scale comparison 

The Cold Regions Hydrological Modelling platform (CRHM) is a system to assemble 

hydrological models developed for Canadian and other cold environments. It can create 

distributed physically based hydrological models, which use the concept of the 

Hydrological Response Unit (HRU) as the basic unit for modelling. HRUs are 

conceptual landscape groups, which are subdivisions of the basin based on the elevation, 

slope, aspect, vegetation cover, soils, and other hydrological or biophysical 

characteristics. CRHM has various modules to simulate the snow processes of each 

HRU. Users can construct their own model by selecting modules from the CRHM 

module library based on input data availability, research scale, and predictive variable 

of interest. These modules can be used to interpolate meteorological data and to 

simulate rainfall and snowfall interception, snow redistribution, snow sublimation, 

snow albedo decay, canopy transmittance, snow energy and mass balance, evaporation, 

snowmelt, snowcover depletion, infiltration, soil moisture, flow and storage of the 

surface and subsurface, and streamflow routing. Pomeroy et al. (2007) provide a full 

description of CRHM. For the basin scale comparison in MCRB, the CRHM model 

configuration by Fang et al. (2013) was used here. The main modules used in the project 

are: 1. the Radiation module (Garnier and Ohmura, 1970) was used to calculate 

theoretical global radiation, and direct and diffuse solar radiation including to slopes. 2. 

The Albedo module (Verseghy, 1991) was used to simulate the snow albedo change due 

to the snow condensation, melt, and snowfall throughout the winter. 3. The SNOBAL 

module (Marks et al., 1998) was used to simulate the mass and energy balance of 

snowpack. 4. The Canopy module (Ellis et al., 2010) was used to estimate forest canopy 

interception of rainfall and snowfall and sub-canopy shortwave and longwave radiation. 

5. The Blowing Snow module (Pomeroy and Li, 2000) was used to simulate the blowing 

snow transportation and sublimation. Details on the modules used, model setup, and 

parameterization are described in several recent publications (Fang et al., 2013; Fang 

and Pomeroy, 2016; Pomeroy et al., 2016).  

 

The output of the SNODAS system predicts behaviour at the centre of each grid cell, 

which is assumed to represent the whole pixel for hydrological purposes. This 

assumption is valid in flat terrain (e.g. BERMS and SCRB) but may not be appropriate 

for complex terrain such as that found in MCRB. In light of this, SNODAS SWE in 
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MCRB was also evaluated by the CRHM simulated SWE data at the basin scale. This 

simulation used the observed forcing data in MCRB to run the CRHM model (hereafter 

referred to as ObsMet). First, ObsMet-simulated SWE was compared to snow survey 

data at several sites to assess the ability of CRHM to predict the timing and magnitude 

of snow accumulation and depletion at a point scale. Second, ObsMet-simulated 

streamflow was compared to streamflow observations at the basin outlet to evaluate the 

ability of CRHM to predict the surface and subsurface hydrological processes for 

streamflow generation timing, snow accumulation and depletion at the basin scale. 

Third, the ObsMet-simulated SWE for the whole basin was compared to the averaged 

SNODAS SWE in MCRB. The resolution of SNODAS SWE data is 30 arc-seconds 

and as MCRB is located at 51° N, each SNODAS grid cell covers approximately 0.54 

km2 area at that latitude. There are 30 SNODAS grid cells overlapping MCRB, and the 

average SNODAS SWE in MCRB was calculated based on areal-weighted SWE of 

each cell. RMSE_m (Equation 2.6) and MB_m (Equation 2.7) were calculated to 

compare the SNODAS and ObsMet-simulated SWE. RMSE_m and MB_m have the 

same algorithm with RMSE and MB, but they show the comparison between two model 

simulations. The assimilation amount, cumulative SNODAS precipitation, and 

observed precipitation data were included in the time series of SNODAS and ObsMet 

simulated SWE to examine their influence on SNODAS SWE accuracy in MCRB. 

𝑅𝑀𝑆𝐸_𝑚 = √
∑ (𝑋𝑚1𝑖−𝑋𝑚2𝑖)

2𝑛
𝑖=1

𝑛
                                        (2.6) 

𝑀𝐵_𝑚 =
∑𝑋𝑚1

∑𝑋𝑚2
− 1                                                 (2.7) 

where xm1 and xm2 denote the SWE simulated by SNODAS and ObsMet.  

2.4.5 Mimicking SNODAS simulations using CRHM 

One possible cause for the presumable error in SNODAS SWE is the structure of the 

NSM embedded in SNODAS system. The NSM is spatially uncoupled such that it does 

not consider the spatial redistribution of snow by wind even though it includes blowing 

snow sublimation following Pomeroy and Li (2000). NSM also does not calculate 

canopy snow interception and sublimation in forested regions (Carroll et al., 2001; 

Jordan, 1990; Tarboton and Luce, 1996). These model limitations might cause 

SNODAS to overestimate local SWE in MCRB, due to the presence of both windy open 

alpine and dense evergreen forest landcovers. Thus, one simulation was generated from 

an incomplete CRHM model in which blowing snow transportation and canopy 

interception modules were turned off but used observed precipitation in MCRB 

(hereafter the ObsMet_NBI). 

 

Another possible reason for the presumable SNODAS SWE error is an inaccurate 

driving force. To determine the influence of an inaccurate driving force and missing 

processes on SNODAS SWE quality, five simulations were conducted in MCRB by 

replacing observed precipitation with SNODAS precipitation in the forcing data to run 
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CRHM with different configurations of missing processes. These were compared to 

ObsMet and SNODAS SWE. The first four simulations are: 1) a complete CRHM 

model (CRHMSP), 2) an incomplete CRHM model with blowing snow transportation 

module turned off (CRHMSP_NB), 3) an incomplete CRHM model without the canopy 

snow interception module (CRHMSP_NI), and 4) an incomplete CRHM model with 

both blowing snow transportation and canopy snow interception modules turned off 

(CRHMSP_NBI). To make a simulation that closely matches the SNODAS system, a 

fifth simulation was conducted by incorporating data assimilation into the 

CRHMSP_NBI simulation. The assimilation amount used in the SNODAS system for 

MCRB was used to update the CRHMSP_NBI simulated SWE based on a nudging 

method. In the nudging process, the updated SWE equals simulated SWE plus the 

assimilation amount greater or lesser than zero. This simulation is referred to as 

CRHMSP_NBI+ASSIM hereafter. If the CRHMSP_NBI+ASSIM simulated SWE can 

closely match SNODAS SWE, then CRHM is able to mimic the SNODAS NSM model. 

2.5 Results and discussions 

2.5.1 SNODAS accuracy at point scale 

2.5.1.1 Boreal Forest 

The mean SWE of each site was compared to the extracted SNODAS SWE data (Figure 

2-3). The SNODAS SWE explained 64%, 71%, and 31% of variability of SWE at the 

OA, OJP, and FEN, respectively, with RMSE of 45.53 mm, 57.5 mm, and 77.4 mm, 

suggesting good correlation between the SNODAS and measured SWE in the OA and 

OJP sites but not in the FEN. SNODAS overpredicted SWE at all sites with a degree of 

overestimation that varied from 17% to 83%. The results indicate that among sites at 

BERMS, SNODAS works best at OA, is related to measurements but with a moderate 

positive bias at OJP, and is poorly related to measurements at FEN. These results can 

be explained by physical inference. In the needleleaf jack pine forest, ground snow 

accumulation is attenuated by canopy interception and sublimation losses of roughly 

1/3 of winter snowfall (Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998b; Pomeroy 

et al., 2002); snow interception and sublimation of intercepted snow are not represented 

in the SNODAS model simulation. Pomeroy et al. (2002) found that the ratio of forest 

to clearing snow accumulation was negatively related to winter LAI and canopy density 

of forests. However, the influence of canopy interception on snow accumulation under 

deciduous forest canopies is very small to negligible (Kuz’min, 1960; Pomeroy and 

Gray, 1995). This explains why SNODAS works better in the OA site, which is 

surrounded by deciduous aspen, than in OJP which is located under needleleaf canopies. 
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Figure 2-3. Comparison of observed and SNODAS-predicted SWE for water years 2011-2015 at 

BERMS sites (Saskatchewan, Canada) along with linear fits for old jack pine (OJP; green line) and old 

aspen (OA; red line) sites to a 1:1 relationship (black line). The fen (FEN) site has no significant linear 

fit. 

Another factor that affects snow accumulation on the ground is blowing snow transport 

from open to sheltered sites (Pomeroy and Li, 2000). This is also missing in the 

SNODAS model even though it calculates blowing snow sublimation loss. Blowing 

snow transport is an important process controlling snow accumulation in open areas 

such as FEN (Pomeroy and Gray, 1995). Mid-winter ablation events in boreal forest 

clearings that are driven by advection of turbulent energy, can result in lower mid-

winter snow accumulation in clearings such as the FEN, but not under the forest canopy 

with relatively stable and sheltered conditions in this region (Pomeroy and Granger, 

1997).  Additionally snowmelt in clearings is approximately three times faster than 

that under the canopy in this region (Pomeroy and Granger, 1997). Therefore in later 

the season the clearings are usually bare, but SNODAS was unable to represent this. 

This explains why five data points from FEN are located in the Y axis in Figure 2-3 – 

by this time of year there was no snow observed in the FEN but SNODAS still showed 

a snowpack in its simulation. Sub-canopy melt energetics are not represented in 

SNODAS. In addition to wind redistribution being a problem for SNODAS in open 

Colorado sites discovered by Clow et al. (2012), this study revealed more factors 
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causing SNODAS’s poor performance in the open area of the Canadian boreal forest. 

The combination of wind redistribution, mid-winter ablation, and canopy effects on 

radiation and turbulent transfer explain why the SWE accuracy in the FEN site is the 

lowest amongst the three BERMS sites. 

 

The cumulative precipitation data from SNODAS and observations at three sites were 

calculated to understand the effect of precipitation data quality on SNODAS SWE 

accuracy (Figure 2-4). SNODAS precipitation was close to observed precipitation in 

the 2011 water year, while SNODAS overestimated precipitation by 37–76% in all 

other water years. The SNODAS SWE accuracy varied among the five water years at 

each site. At OJP and FEN sites, SNODAS SWE agreed very well with observations in 

the 2011 water year, while the difference between the two data sets was larger in the 

other four water years. SNODAS SWE was in good agreement with observation at site 

OA except for during the 2013 water year. This means precipitation played a major role 

in the SNODAS SWE accuracy in this area in some years while precipitation bias was 

high. However, the missing processes were important every year, including those when 

the forcing precipitation bias was low. Besides precipitation data quality, assimilation 

also contributes to SNODAS SWE accuracy. There were several noticeable 

assimilations at these sites from the 2013 to 2015 water years, and SNODAS SWE 

accuracy increased after assimilations. In the 2013 water year, SNODAS had the 

highest precipitation bias among all years and there was assimilation at OJP and FEN 

but not at OA. Even though the SNODAS precipitation in this year was similar in all 

three sites, the RMSE between SNODAS and observed SWE was 164.3 mm for OA; 

higher than that of OJP (100.2mm) and FEN (61mm). However, in the years when 

assimilation occurred in all sites, OA had the highest accuracy. In the 2015 water year, 

for example, RMSE between SNODAS and observed SWE was 21.7 mm for OA; much 

lower than that in OJP (70.6 mm) and FEN (64.9mm). This suggests that missing model 

structure (i.e. canopy interception process at OJP and missing blowing snow transport 

at FEN) played bigger role in SNODAS SWE accuracy than did assimilation. The data 

assimilation frequency for this region was extremely low (less than once a year on 

average during the 2011 to 2015 water years) (Figure 2-4). This is much lower than in 

mountainous areas in the US (https://www.nohrsc.noaa.gov/pro/earth/archive.html). 

With such low frequency, erroneous precipitation data and the incomplete model 

structure of NSM together contribute more to the poor SNODAS performance in this 

region than does assimilation. Overall for BERMS sites, the main cause of the poor 

performance of SNODAS SWE was the high overestimation bias in SNODAS 

precipitation data in 2012–2015 water years (Figure 2-4). The major cause for 

SNODAS SWE accuracy was the missing processes in SNODAS model when 

SNODAS precipitation data bias was low. In all, the influence of erroneous 

precipitation data is important but only for certain years, while that of missing processes 

is important every year. 

 

https://www.nohrsc.noaa.gov/pro/earth/archive.html
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Figure 2-4. Time series comparisons of observed and SNODAS SWE and precipitation at BERMS sites 

for (a) old jack pine (OJP), (b) fen (FEN), and (c) old aspen (OA) sites in Saskatchewan, Canada. 

2.5.1.2 Prairie 

Upscaled snow survey data were compared to SNODAS predicted SWE at SCRB 

(Figure 2-5a). An R2 of 0.001 with relatively large RMSE (46.5 mm) and MB (0.27) 

indicates that the SNODAS SWE is not correlated with observed SWE in this case. This 

may be largely due to a SNODAS NSM model structural defect. The spatial variation 

of winter SWE in the prairie environment is primarily explained by wind redistribution 

(Fang and Pomeroy, 2009; Pomeroy et al., 1993; Pomeroy and Li, 2000), but there is 

no blowing snow transport simulation in the SNODAS NSM. To verify the influence 

of this missing process, the SNODAS SWE was also directly compared to snow survey 

transect data across landscapes (Figure 2-5b). SNODAS overestimated SWE in 

grassland, stubble field, and wetland sites where is blowing snow occurs with an RMSE 

of 54.6 mm, 46.6 mm, and 35.4 mm and MB of 0.52, 0.48, and 0.32, respectively. In 

blowing snow sink areas, such as woodlands and river channels, SNODAS 
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underestimated SWE on with negative MB (‒0.33 and ‒0.38 for woodland and river 

channel, respectively) and larger RMSE (120.4 mm and 132.1 mm). The R2 between 

SNODAS and observed SWE at all landscapes are lower than 0.3. This means it is 

challenging for SNODAS to capture the spatial distribution of SWE in the Canadian 

prairie without simulation of blowing snow transportation. 

 

 

Figure 2-5. Comparison of observed and SNODAS-predicted SWE at Smith Creek Research Basin, 

Saskatchewan, Canada for water years 2011-2015.   

Observed and SNODAS-estimated precipitation were similar between two sites for all 

water years. SNODAS overestimated the precipitation at both sites for all water years 

with variable overestimation rate. In the 2011 water year, SNODAS overestimated the 

precipitation by only 21% and 9% at UofS and Langenburg stations, respectively 
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(Figure 2-6). However, SNODAS overestimated precipitation at these two sites by 78% 

to 132% in other water years. In addition to SNODAS precipitation accuracy, 

assimilation affects SNODAS SWE accuracy at both sites. SNODAS greatly 

overestimated precipitation at both sites in the 2013 water year, but the RMSE between 

SNODAS and observed SWE was 31.9 and 39.6 mm for UosS and Langenburg. This 

was much lower in 2013 than in other years with only exception in Langenburg for 

2012 (59 and 65.7 mm for 2011 and 64.8 and 22.34 mm for 2012). This is attributed to 

a noticeable assimilation on February 8, 2013 at both sites. However, there were only 

few noticeable assimilations in SCRB during the study period. This resulted in that 

NSM simulation being the major factor influencing the accuracy of SNODAS products 

in this area. 

 

 

Figure 2-6. Time series comparisons of observed and SNODAS predicted SWE and precipitation at two 

meteorological stations at SCRB sites: (a) University of Saskatchewan station, and (b) Langenburg 

station. 

2.5.1.3 Canadian Rockies 

In MCRB, observed SWE was compared to SNODAS SWE in three landscape groups. Figure 

2-7a shows the comparison of SNODAS and observed SWE from all samples from coniferous 

forests and clearings in MCRB. SNODAS SWE was not correlated to SWE observations for 

either forest or clearing land cover types, with R2 values of 0.26 and 0.20, respectively. 
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SNODAS greatly overestimated SWE at both landscapes with MB of 4.76 in forests and 1.79 

in clearings. SNODAS SWE accuracy was lower in forests than in clearings as the RMSE 

between SNODAS and observed SWE was 374.8 mm and 323.9 mm, respectively. Poorer 

SNODAS SWE accuracy at forest sites, especially the high SWE overestimation, is likely 

partially attributed to the structure of the SNODAS NSM, which lacks simulation for canopy 

snow interception that, in turn, affects sub-canopy snow accumulation and ablation.  

 

Figure 2-7. Comparison of snow surveyed SWE and SNODAS-predicted SWE across various landscapes 

at Marmot Creek Research Basin: (a) displays the Clearings and Forests site and (b) shows the alpine 

slopes around Fisera Ridge (NF: north facing slope, RT: ridge top, SFT: South facing slope top, SFB: 

South facing slope bottom, LaF: larch forests at bottom of south facing slope). 

In addition, clearings at MCRB are relatively small and are surrounded by dense forest. 

Snow accumulation at them should have minimal impact from missing blowing snow 

and forest canopy interception processes in SNODAS. This means theoretically 

SNODAS SWE should closely match forest clearing observations. However, SNODAS 

overestimated SWE in clearings with relatively high MB and RMSE. This is likely due 

to a precipitation error that drives SNODAS NSM in MCRB.  

 

Cumulative precipitation from the SNODAS models, observations as well as SNODAS 
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assimilation were included to determine their influence on SNODAS SWE accuracy 

(Figures 2-8a and 2-8b). SNODAS and observed precipitation were comparable in 2011 

and 2012 water years with MB of ‒0.15 and 0.17, respectively, while SNODAS 

overestimated precipitation in other years with MB of 0.41 in 2013, 1.64 in 2014 and 

1.48 in 2015. RMSE between SNODAS and observed SWE were much lower in 2011 

and 2012 water years than other years at both forest and clearing sites. Using Upper 

Clearing as an example, RMSE were 181.6 mm, 139.9 mm, 264.7 mm, 505.2, and 247.2 

for 2011 to 2015 water years in order. Assimilation clearly plays a negative role in 

SNODAS SWE accuracy at this site in the 2011 and 2012 water years. The cumulative 

SNODAS and observed precipitation were almost identical before the peak SWE in 

2011 and 2012 water years at Upper Clearing, but there was still over 100 mm RMSE 

between SNODAS and observed SWE. This is explained by the total assimilation of 

162.6 mm and 102.1 mm in the SNODAS system before peak SWE for 2011 and 2012 

water years at this pixel.  

 

 
Figure 2-8. Time series comparisons of observed and SNODAS-predicted SWE and precipitation at two 

meteorological stations in Marmot Creek Research Basin, Alberta, Canada. (a) is the upper forest site, 

(b) is the upper clearing site, and (c) shows the alpine slopes around Fisera Ridge (NF: north facing slope, 

RT: ridge top, SFT: South facing slope top, SFB: South facing slope bottom, LaF: larch forests at bottom 

of south facing slope). 
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At FR, snow was usually redistributed from the windward areas (north-facing slope 

(NF) and ridge top (RT)) and deposited on the leeward areas (south-facing top slope 

(SFT), south-facing bottom slope (SFB), and larch forest (LaF)) (Figure 2-7b). 

SNODAS SWE accuracy was low in all five areas with RMSE higher than 150 mm. 

SNODAS tends to overestimate SWE in windward areas but underestimate the SWE at 

leeward sites. MB values in windward areas are positive (2.1 and 0.42 for NF and RT, 

respectively) but are negative at leeward areas (‒0.1, ‒0.25, and ‒0.27 for SFT, SFB, 

and LaF, respectively) (Figure 2-7b). This is likely attributed to missing blowing snow 

transportation simulation in the SNODAS NSM model.  

 

Time series of SNODAS and observed SWE were compared to assess the SNODAS 

precipitation data influence on SNODAS SWE accuracy at FR (Figure 2-8c). SNODAS 

underestimated precipitation by 44% and 22% in the 2011 and 2012 water years, 

respectively, which caused SNODAS to underestimate SWE for all sites except for NF. 

In the 2014 and 2015 water years, SNODAS overestimated precipitation at FR by 57% 

and 67%, and this led to the overestimation of SWE in all five areas. Although the 

overestimation of SNODAS precipitation in the 2015 water year was higher than that 

in 2014, RMSE of SWE was lower in 2015 than in 2014 as a result of a few more 

significant cases of assimilation in which SWE was reduced in the 2015 water year. 

2.5.2 CRHM evaluation 

To evaluate the reliability of CRHM, the ObsMet-simulated SWE was compared to 

snow survey data at a middle elevation mature coniferous forest (Upper Forest) and 

clearing (Upper Clearing), and alpine open slopes and deciduous forests for 2011 to 

2015 water years (Figure 2-9). ObsMet captured the magnitude and timing of SWE for 

most years at the coniferous forest and clearing sites (Figures 2-9 a-b). RMSE ranged 

from 22.5 mm to 78.5 mm with a five-year mean value of 50 mm for the forest, and 

from 30.9 mm to 78.2 mm with a five-year mean value of 53.5 mm for the clearing 

(Table 2-2). MB were relatively low, with five-year mean values of 0.37 and ‒0.16 for 

the forest and clearing, respectively. In the alpine area, ObsMet captured the SWE by 

simulating a blowing snow sequence from source to sink areas (Figures 2-9 c-g) with 

five-year mean RMSE ranging from 106 to 180.4 mm and five-year mean MB from ‒

0.1 to 1.19 (Table 2-2). Although RMSE in the alpine area is much higher than that in 

the forest, it is still acceptable because the SWE magnitude in the alpine area is usually 

much higher. Evaluation of SWE at a landscape point scale indicates that CHRM is 

capable of predicting snow accumulation and ablation at various landscapes with 

reasonable accuracy. 
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Figure 2-9. Comparison of observed and ObsMet-simulated SWE at Marmot Creek Research Basin, 

Alberta, Canada: (a) upper forest, (b) upper clearing, and Fisera Ridge sites: (c) north facing slope, (d) 

ridge top, (e) south facing slope top, (f) south facing slope bottom, (g) larch forest. 
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Table 2-2. Statistics comparing observed and ObsMet-simulated SWE at Marmot Creek Research Basin 

sites in Alberta, Canada: Upper Forest (UF), Upper Clearing (UC), and Fisera Ridge, which contains the 

north facing slope (NF), ridge top (RT), south facing slope top (SFT), south facing slope bottom (SFB), 

and larch forest (LaF) sites. 

 

To assess the ability of CRHM to simulate the hydrology at the basin scale, the ObsMet-

simulated basin outflow was compared to the streamflow measurements at the MCRB 

basin outlet for 2011 to 2015 water years (Figure 2-10). The simulated daily average 

streamflow agreed well with the observations and annual RMSE ranged from 0.08 to 

0.39 m3/s with an average of 0.18 m3/s for these five water years. The MB of daily 

streamflow ranged from ‒0.27 to 0.25 with five-year mean value of ‒0.06. This suggests 

that CRHM is capable of simulating the timing and magnitude of surface and subsurface 

processes for streamflow generation in MCRB. 
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Figure 2-10. Comparison of observed and ObsMet-simulated daily mean discharge at the Marmot Creek 

Research Basin, Alberta, Canada outlet. 

2.5.3 SNODAS performance at basin scale 

To assess SNODAS SWE prediction quality at the basin scale, the MCRB basin mean 

SNODAS SWE was compared to the ObsMet-simulated basin average SWE for 2011 

to 2015 water years (Figure 2-11). SNODAS SWE was much higher than ObsMet SWE 

for these five years; overestimation of SNODAS SWE ranged from 37% to 327% (five-

year mean = 135%) when compared to ObsMet-simulated SWE. The RMSE between 

SNODAS and ObsMet -simulated SWE was also high, ranging from 66.75 to 302.34 

mm (mean = 180.01 mm).  

 

 

Figure 2-11. Comparisons of SNODAS, ObsMet and ObsMet_NBI-simulated basin average SWE, 

SNODAS and observed precipitation, and data assimilation magnitude in SNODAS at Marmot Creek 

Research Basin, Alberta, Canada. 

To examine the effect of SNODAS precipitation on SNODAS SWE accuracy, the whole 

basin cumulative precipitation from SNODAS and observations were compared for 

each water year (Figure 2-11). The basin average SNODAS precipitation was calculated 
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by averaging the precipitation data from each MCRB pixel. The basin average observed 

precipitation was calculated by interpolating the precipitation measured from three 

Geonor gauges at MCRB using the observed precipitation gradient at a range of 

elevations throughout the basin (Fang et al., 2013). The accuracy of SNODAS 

precipitation data at MCRB was low during the five-year study period (mean RMSE = 

371 mm and mean MB = 0.37) with variable error in different water years. SNODAS 

underestimated precipitation data at MCRB for with MB for water year 2011 of ‒0.24 

and 2012 of ‒0.15. The RMSE between SNODAS and observed precipitation was 152.1 

and 95.4 mm for 2011 and 2012 water years, respectively. SNODAS did not 

consistently underestimate precipitation for all five years, its overestimation ranged 

from 18% to 145% for the 2013 to 2015 water years. For 2013 to 2015 water years, 

SNODAS overestimated precipitation only by 18%, 95%, and 145%, but SNODAS 

SWE was 117%, 230%, and 327% higher than CRHM simulated SWE (Table 2-3). The 

accuracy of SNODAS SWE is strongly influenced by the accuracy of the precipitation 

data, however precipitation data is not the only contributor to errors. 
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Table 2-3. RMSE_m and MB_m between SWE that simulated by various simulations, and RMSE and 

MB between observed (Ob_P) and SNODAS (SNODAS_P) precipitation at Marmot Creek Research 

Basin, Alberta, Canada. 
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The lack of blowing snow transport and canopy snow interception simulations in the 

SNODAS NSM is another factor that leads to overestimation of basin SWE in MCRB. 

To verify this, a CRHM simulation (ObsMet_NBI) with two process modules turned 

off was run with local observed driving forces. The ObsMet_NBI simulated SWE was 

much higher than that by the complete model ObsMet (Figure 2-11). Compared to 

ObsMet simulated SWE, ObsMet_NBI overestimated SWE in MCRB on average by 

50% for five water years with annual overestimation ranging from 38% to 72%. 

Compared to ObsMet, ObsMet_NBI increased peak SWE 1.44 to 1.83 times (mean = 

1.6 times) during the five water years. This indicates that the missing blowing snow 

transport and canopy snow interception simulations in SNODAS are other major factors 

causing the SNODAS SWE overestimation in MCRB.  

 

Impact of assimilation frequency and magnitude on SNODAS SWE accuracy was also 

analyzed (Figure 2-11). There were approximately 91 data assimilations related to water 

balance calculations in MCRB in SNODAS system for 2011 to 2015 water years. 

Assimilation was more frequent in first three water years (19 times and 798.7 mm in 

total for 2011, 31 times and 848.4 mm in total for 2012, and 19 times and 384.4 mm in 

total for 2013) than the latter two water years (10 times and ‒17.1 mm in total for 2014, 

12 times and ‒34.4 mm in total for 2015). Assimilations before peak SWE in 2014 and 

2015 water years were mainly negative, with more negative total assimilation amount 

in 2014 (‒99 mm) than in 2015 (‒31.4 mm). This leads to much lower SNODAS peak 

SWE in 2014 despite similar SNODAS precipitation in both years. 

2.5.4 Mimicking SNODAS simulations using CRHM 

To quantify the contribution of erroneous precipitation, model structure shortcomings, 

and SNODAS data assimilation accuracy in MCRB, five CRHM simulations with 

different model structure were run for 2011 to 2015 water years. Then, observed 

precipitation was replaced by SNODAS-predicted precipitation for the model forcing 

data (Figure 2-12). 1. CRHMSP was a complete CRHM model that simulates all 

processes. 2. CRHMSP_NB was a CRHM model without blowing snow transport 

simulation. 3. CRHMSP_NI was a CRHM model with canopy interception simulation 

turned off. 4. CRHMSP_NBI was the CRHM model with neither blowing snow 

transport or canopy snow interception. 5. CRHMSP_NBI+ASSIM was the CRHM 

model without either blowing snow transport or canopy snow interception, but with 

assimilation derived from the water balance calculation added. Compared to ObsMet, 

overprediction of CRHMSP SWE (five-year mean = 57%) was directly related to 

overestimation of SNODAS precipitation data (five year mean MB = 0.37). When 

compared with ObsMet SWE, CRHMSP underestimated SWE in MCRB by 31% and 

50% for 2011 and 2012, which can be explained by MB of ‒0.25 in 2011 and ‒0.15 in 

2012 for SNODAS precipitation. Overestimation of CRHMSP SWE in other water 

years ranged from 31% to 338% compared to ObsMet SWE, which is related to 

overestimated precipitation with MB ranging from 0.18 to 1.45. Compared to CRHMSP, 
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CRHMSP_NB overpredicted basin SWE by 8.1% to 31.5% for 2011 to 2015 water 

years with five-year mean overprediction by 22.0%. For the CRHMSP_NI simulation, 

the simulated basin SWE was 1.14 to 1.5 times (five-year mean = 1.21 times) of 

CRHMSP simulated SWE for 2011 to 2015 water years. With both blowing snow 

transportation and canopy interception simulations turned off, CRHMSP_NBI 

simulated much more SWE than CRHMSP ranging from 36% to 66% (five-year mean 

= 42%). One possible source of this annual variation may be the changing climate 

conditions among water years.  

 

 

Figure 2-12. Comparison of SNODAS and ObsMet SWE to simulations driven by SNODAS precipitation at Marmot 

Creek Research Basin, Alberta, Canada. a) shows the influence of snow interception and blowing snow transport 

simulations on basin SWE. b) illustrates importance of incorporating snow interception and blowing snow transport 

processes in the simulation. 

On average, blowing snow transport and canopy interception accounted for 

approximately 35% of snow loss in MCRB, with annual snow loss ranging from 24% 

to 49% for 2011 to 2015 water years. Without simulating these two processes, the 

simulated peak SWE increased by 57%, while the increase in peak SWE varied for 

different years ranging from 32% to 88%. These results highlight the importance of 

including the two processes when modelling the snowpack of the Canadian Rockies. 

 

Although CRHMSP_NBI sbimulated SWE was closer to SNODAS SWE than other 



 

48 
 

simulations demonstrated above, it was still far from matching SNODAS SWE. This is 

because SNODAS SWE contains influence of data assimilation. Thus, a fifth simulation 

CRHMSP_NBI+ASSIM (Figure 2-12 b) was conducted, in which the assimilation 

derived from the water balance calculation was added to CRHMSP_NBI simulation. 

CRHMSP_NBI+ASSIM was comparable to SNODAS with 1% to 22% more SWE 

estimated for the 2011 to 2015 water years and a five-year mean of 7% overestimation. 

The five-year mean RMSE_m was 41.1 mm, with annual RMSE_m ranging from 22.7 

mm to 49.6mm for the 2011 to 2015 water years. This difference can be explained by 

the different parameters and driving forces (other than precipitation) used in the two 

models. This indicates that, besides the two missing processes, CRHM shares similar 

model structure with the SNODAS NSM, and is able to mimic the SNODAS system.  

 

Simulated SWE from CRHMSP, CRHMSP_NBI and CRHMSP_NBI+ASSIM was 

compared to ObsMet to quantify the influence of precipitation, missing processes, and 

data assimilation on SNODAS SWE accuracy (Table 2-3). The RMSE_m caused by 

inaccurate precipitation was 132.1 mm in all and varied across years from 33.5 to 202.3 

mm. Two missing processes in the model introduced another 103.9 mm of RMSE_m 

across five water years. It increased the RMSE_m in most years except 2011, in which 

RMSE_m decreased 7.9 mm, as missing processes simulation compensated for 

underestimated precipitation that year. After data assimilation, the mean RMSE_m of 

CRHMSP_NBI+ASSIM simulated SWE reduced to 193.2 mm during the five water 

years. In all, data assimilation contributed positively to SNODAS accuracy but the 

influence was varied among water years. It decreased the RMSE_m by 2.6 and 107.3 

mm in the 2014 and 2015 water year, respectively. However, in the 2011, 2012, and 

2013 water years, data assimilation increased the RMSE_m by 43.9, 64.0, and 48.2 mm, 

respectively. This indicates that data assimilation did not always improve the accuracy 

of SNODAS SWE at MCRB. This might be a result of using inaccurate snow 

observation data in the SNODAS data assimilation system. The details of snow 

observations used for SNODAS assimilation in this area during these years were not 

explored. Snow-pillow measurement sites in the Canadian Rockies are commonly 

located in small level clearings at medium elevations and are not representative of areas 

with dense forests and varying topographic exposure to radiation and wind (Pomeroy 

and Gray, 1995; Pomeroy et al., 2002). If data from such sites are used to nudge the 

SNODAS product, then additional uncertainty occasionally may be spatially 

propagated (Dozier et al., 2016). Information about the type of data used for SNODAS 

data assimilation would be beneficial to researchers and water resources managers. 

2.5.5 Assimilating SNODAS into CRHM 

SNODAS overestimated SWE at all sites in three Canadian environments for 2011 to 

2015 water years. This overestimation was caused by overestimated precipitation and 

missing components to the SNODAS model structure. Data assimilation can 

compensate for this problem in many places. However, the frequency of data 
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assimilation in the boreal forest and prairie was very low — once or twice a year. 

Although the assimilation frequency is higher in the Canadian Rockies (18 times a year 

on average), more frequent data assimilation does not always make for better results. 

To correct SNODAS SWE bias one must fix the problems of missing processes and 

precipitation prediction. The complete CRHM model (CRHMSP) can solve the 

problem of missing processes. Although the assimilation data in the Canadian Rockies 

is not always correct, it is believed the precipitation problem can be partially solved 

after assimilation into the CRHMSP simulation. Therefore, a simulation that contains 

assimilation data calculated from the water balance into CRHMSP model might be able 

to correct some of the bias of SNODAS SWE (CRHMSP+ASSIM). 

 

The SWE simulated by CRHMSP+ASSIM is shown in Figure 2-12 b. Compared to the 

original SNODAS data, CRHMSP+ASSIM improved SWE accuracy after assimilation 

into CRHM in MCRB. The RMSE_m between CRHMSP+ASSIM and ObsMet for five 

water years dropped to 109.7 mm from 180.0 mm with annual improvement ranging 

from 25.2 mm to 110 mm. Overestimation in CRHMSP+ASSIM SWE, when compared 

to ObsMet SWE, also decreased from 1.35 to 0.79 for five water years with seasonal 

decreases ranging from 0.18 to 1.33. This indicates that assimilation of SNODAS into 

CRHM has the potential to improve the SWE accuracy of SNODAS SWE even though 

the problem caused by erroneous precipitation cannot be completely solved. Compared 

to simulations that only incorporated missing processes into SNODAS (i.e., CRHMSP), 

adding the data assimilation (i.e., CRHMSP+ASSIM) only decreased the RMSE_m of 

SWE by 22.4 mm. It improved the accuracy of all water years except 2012 (Table 2-3).  

 

In a data assimilation system, product accuracy is heavily reliant on two factors: model 

simulation and assimilation. In a region like MCRB where there are no frequent and 

reliable data resources for assimilation, a correct model structure is much more 

important than data assimilation. Therefore, there are two recommendations to the 

SNODAS system team from the present research. Recommendation 1 is to incorporate 

blowing snow transportation and forest canopy interception into the SNODAS NSM. 

Although making the gridded model spatially coupled with two process simulations can 

reduce computational efficiency and add complexity of parameterisation and input data, 

this can nevertheless improve product accuracy in regions with infrequent and 

unreliable assimilation input data. Recommendation 2 is to increase the assimilation of 

snow information into snow modelling in Canada in whatever platform is used. 

2.6 Conclusions 

This study evaluated this product in three western Canadian environments; the boreal 

forest, prairie, and Rocky Mountains. In the boreal forest region, SNODAS worked 

very well in deciduous forest stands, less well in the mixed deciduous and needleleaf 

forests, and poorly in an open, windswept fen. On the prairies, the SNODAS predicted 

SWE was not correlated with observed SWE, and the RMSE and MB of prediction 
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were relatively high. These suggest that the SNODAS poorly captures spatial variation 

of SWE in the open, wind-redistributed Canadian prairie environment. In the Rocky 

Mountains, SNODAS data quality varied from year to year, and SNODAS 

overestimated measured SWE on the ground at all sites in all years as the precipitation 

that drove SNODAS NSM model overestimated actual precipitation.  

 

In MCRB, a well-studied headwater basin in Canadian Rockies, SNODAS SWE 

accuracy was evaluated by comparing it to the CRHM physically based hydrological 

model. CRHM was also used to identify sources of SNODAS error by mimicking the 

SNODAS system with different model configurations. This indicated that the accuracy 

of SNODAS SWE data is greatly influenced by: 1) missing blowing snow transport and 

canopy interception and sublimation processes in the mass balance calculation, and 2) 

erroneous precipitation in the SNODAS NSM. The data assimilation in the SNODAS 

system in MCRB does not always improve simulations. To compensate for this, a 

method to correct SNODAS SWE by assimilating it into CRHM with a full set of snow 

processes was developed. The results show that this approach can improve the accuracy 

of SNODAS SWE. An additional benefit is that the CRHM assimilation process 

downscales the SNODAS data to the HRU scale that permits multi-scale snow and 

hydrological modelling. Overall, the results show promise for assimilation-based bias 

correction of SNODAS data products for basins in Canada with sparse precipitation 

measurements and the ability to use these products to estimate peak SWE at different 

spatial scales. To improve the SNODAS SWE accuracy, especially in the regions with 

sparse reliable input data for assimilation, two recommendations are also provided to 

the NOHRSC SNODAS team: 1) two missing snow redistribution processes should be 

added to the NSM, and 2) increase the assimilation of snow information into snow 

modelling in Canada in whatever platform is used. 
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CHAPTER 3: Detecting intercepted snow on mountain needleleaf 

forest canopies using satellite remote sensing  
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3.1 Preface 

Snow interception by cold region needleleaf forest canopies is a crucial process that 

controls local snow accumulation and redistribution. Various ground-based methods 

exist to measure intercepted snow, however no research has focused on detecting 

canopy snow using satellite observations, which can contribute to large scale snow 

interception model validation and data assimilation to cold regions hydrological 

forecasting models. After analyzing the importance of snow interception to basin SWE 

in the previous chapter, it was clear that development of a method to detect snow 

interception using satellite remote sensing could be beneficial for cold regions 

hydrological modelling. The aims of this research are to: 1) examine the influence of 

canopy snow on four selected remote sensing indices (NDSI, NDVI, albedo, and LST), 

2) determine the influence of different forest conditions on these indices when snow is 

present and absent on the canopy, and 3) develop an approach for canopy snow 

detection and compare its results to a model simulation. 
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3.2 Introduction 

Snow accumulation and ablation processes in evergreen forests are largely influenced 

by snow interception in the canopy (Nakai et al., 1994, Pomeroy and Gray, 1995). In 

coniferous forests, some snowfall is first intercepted in the canopy, and then exits the 

canopy primarily through unloading, melt dripping, or evaporation and sublimation 

(Hedstrom and Pomeroy, 1998; Suzuki and Nakai, 2008). This process makes the snow 

water equivalent (the mass of the snowpack per unit area, expressed as an equivalent 

depth of water in mm, SWE) in forests significantly different from nearby open areas. 

Various research indicates that up to 60% of the annual snowfall could be intercepted 

and the sublimation of intercepted snow could reach up to 40% of the annual snowfall 

(Kuz’min, 1960; Pomeroy and Schmidt, 1993; Storck et al., 2002). Interception itself 

is influenced by various factors including air temperature (Miller, 1964), wind (McNay 

et al., 1988; Woods et al., 2006), snowfall magnitude (Boon, 2009), elevation (D’Eon, 

2004), slope and aspect (Golding and Swanson, 1986), and canopy structure (Hedstrom 

and Pomeroy, 1998; Pomeroy et al., 2002). Intercepted snow affects energy partitioning 

in the canopy though changes to the canopy surface temperature and resistance and 

hence the direction and magnitude of sensible heat flux and Bowen ratio (Parviainen 

and Pomeroy, 2000; Pomeroy et al., 2008; Suzuki and Nakai, 2008). Therefore, 

determining the magnitude, processes and timing of snow interception has drawn a 

great deal of interest from cold regions land surface process and hydrological research 

communities (Essery et al., 2003; Friesen et al., 2015; Gelfan et al., 2004).  

 

Because of the complexity of the interception process and irregular shape of tree crowns, 

direct measures of regional snow interception are difficult. Usually, the amount of 

intercepted snow can be indirectly assessed by comparing precipitation measured on 

the surface under the canopy and the surface of nearby clearings, open areas or above 

canopy (Kittredge, 1953; Koivusalo and Kokkonen, 2002; Winkler et al., 2005). The 

seasonal interception loss is usually determined from the peak SWE difference between 

forests and nearby clearings or open areas (Bales et al., 2011; Koivusalo and Kokkonen, 

2002; Lundberg et al., 1998; Winkler et al., 2005). Various approaches have used a 

weighed-tree (e.g., Lundberg, 1993; Pomeroy and Schmidt, 1993,) or branch, with one 

direct method being to remove the snow from a branch or tree by knocking the snow 

off and weighing it (Goodell, 1959; Miller, 1964). However, this latter method is 

laborious and time consuming and only provides intercepted snow amount at a single 

point for a single moment in time. To continuously measure snow interception, a cut 

tree branch (Schmidt and Gluns, 1991) or a whole tree (Storck et al., 2002) can be 

connected to a lysimeter. The hanging-tree method, in which a living tree is cut and 

suspended on a tower with its weight continuously measured, has been widely used in 

various research projects at different locations (Lundberg et al., 1998; Harding and 

Pomeroy, 1996; Hedstrom and Pomeroy, 1998; Montesi et al., 2004; Pomeroy and 
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Schmidt, 1993; Suzuki and Nakai, 2008). A complication of this method is that the cut 

tree dries through the season and hence it is hard to determine its tare weight. Some 

artificial structures are used to replicate a branch (e.g., boards in Floyd and Weiler, 

2008) or a tree (e.g., artificial tree in Schmidt et al., 1988). Although these structure’s 

tare weights are stable, their structures are quite different from a real tree. For instance, 

the elasticity and therefore angle and shape of a real tree branch changes with 

temperature (Schmidt and Pomeroy, 1990), a property lacking in artificial trees or 

snowboards. A further problem with cut trees and artificial structures is that their 

thermal and longwave radiance characteristics are different from a living tree and this 

makes the unloading process different from real trees. To avoid cutting the tree, Friesen 

et al. (2008) developed a trunk compression sensor to measure the tree weight change 

during a storm to determine the intercepted rain amount. Martin et al. (2013) adopted 

this method in snow interception measurement as a prototype. Another possible method 

that does not require cutting the tree is to measure sway frequency. Papesch (1984) 

found that the intercepted snow reduces sway frequency of tree, and this can be 

quantified. Although those methods provide good measures of a single branch or a 

whole tree interception, like all other methods, it is challenge to scale this point data up 

to a catchment or regional scale. Signal attenuation approaches are also used in snow 

interception measurement by using equipment such as a emitted gamma ray attenuation 

(Lundberg et al., 1998), active impulse radar system (Magnusson, 2006) or passive 

cosmic ray sensor (Zreda et al., 2012). The principle behind these methods is that the 

intercepted snow will impact the attenuation of gamma rays emitted from a radioactive 

source in the first case, signal attenuation, in the second case, and speed or counts of 

neutrons, in the third case over a defined time. Although these methods can measure 

snow interception at larger scale than a single tree, their scale still restricted by the 

footprint of the sensors they use and in the case of gamma ray emission, the technique 

is now considered too dangerous to use because of human health concerns. 

 

Because snow has much higher reflectivity than the tree canopy, optical photography 

has been used by several researchers to detect the intercepted canopy snow. Tennyson 

et al. (1974) used a time-lapse movie camera to develop a snow load index to represent 

the canopy snow load and study the importance of snow interception in an uneven-aged 

Ponderosa Pine forest in east-central Arizona. Using a fractal relationship for 

intercepted snow, Pomeroy and Schmidt (1993) modeled the relationship between 

digital-camera imagery derived snowcovered area in the canopy and snow mass on a 

tree branch. Floyd and Weiler (2008) developed a time-lapse camera system to measure 

the snow accumulation and ablation dynamics during rain on snow event. A digital 

camera was included in this system to measure the canopy snowcovered area (ratio of 

snow-covered pixels to total pixel on canopy in the image) during and after a storm. 

Garvelmann et al. (2013) used a 45-camera time-lapse network to study snow processes 

in several mesoscale catchments. Their results indicate that the canopy snow coverage 

and timing of interception and unloading can be clearly recorded. Stähli et al. (2009) 

used human visual inspection in the field or a photograph of a forest to determine the 
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snow interception level in their study of the importance of snow interception on the 

coniferous forest radiation processes. Parajka et al. (2012) used a time-lapse camera to 

detect the intercepted snow on a canopy. Their results agreed well with the simulation 

of the snow interception model developed by Hedstrom and Pomeroy (1998). Although 

time-lapse cameras are able to provide the relative magnitude and timing of interception, 

which could be used to validate the snow interception model performance (Parajka et 

al., 2012; Stähli et al., 2009), they have has only been used at small scales and are 

difficult to use for regional or global scales. 

 

Satellite remote sensing has been used in various large scale snow properties studies 

(see Nolin, 2010, or Frei et al., 2012, for reviews). To the authors’ knowledge however, 

no research has been focused on the canopy intercepted snow detection. Various remote 

sensing indices have been developed to monitor changing of landscape. The 

Normalized Difference Snow Index (NDSI) has been widely used in snow cover 

monitoring in the remote sensing community since it was developed (Dozier, 1989; 

Hall et al., 1995). Because the forest canopy can obstruct the reflected visible and 

infrared information from snow on the ground under it, the NDSI method has a much 

lower accuracy in detecting ground snow in forested regions (Klein et al., 1998; Wang 

et al., 2015; Wang et al., 2018). Niemi et al. (2012) and Heinilä et al. (2014) studied the 

forest canopy influence on snow reflectance behaviour in Finland using mast-borne and 

airborne spectrometers, respectively. Results of both studies show that NDSI increased 

with snow on the canopy when compared to snow-free canopies. On the other hand, 

Normalized Difference Vegetation Index (NDVI), which is widely used in vegetation 

monitoring studies, decreases when snow is present on the canopy (Heinilä et al., 2014; 

Niemi et al., 2012). Snow has a much higher albedo than most of other land surface 

objects, especially compared to the forest canopy. However, whether canopy snow 

changes albedo or not is not well agreed upon in the literature. Pomeroy and Dion (1996) 

examined the amount of intercepted snow on a Jack Pine canopy, the canopy shortwave 

and net radiation exchange in the boreal forest of central Saskatchewan, Canada. They 

found no relationship between the amount of intercepted snow and canopy albedo. 

However, Leonard and Eschner (1968) measured albedo above a red pine plantation in 

New York, USA and found the albedo increased up to 0.20 when the canopy was 

covered by snow, and it decreased to summer values after snow removed from the 

canopy. Yamazaki et al. (1996) found a nonlinear relationship between canopy snow 

load and forest albedo in Japan. This concurred with the results of Kuusinen et al. 

(2012), who found that the presence of snow on the canopy can increase the boreal 

Scots pine forest albedo by more than 0.2, on average. But this increase only happens 

when more than half of the canopy was covered by snow. Temperature might be another 

indicator of snow presence on the canopy as the temperature of snow-free forest canopy 

is usually higher than snow and atmosphere temperature on a sunny day (Musselman 

and Pomeroy, 2017; Pomeroy et al., 2009). Nakai et al. (1999b) found the canopy 

surface temperature is usually lower than air temperature when snow fully covers the 

canopy, while the opposite is true when the canopy is snow-free. Lundquist and Lott 
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(2008) used near-surface soil temperatures as an indicator of snow presence on the 

ground, and found higher variation when the ground is snow free. This finding should 

be applicable to the canopy as well. Because of the low thermal conductivity, high 

albedo and high longwave emissivity of snow, its psychrometric cooling during 

sublimation and upper limitation of 0 oC, snow-covered canopies should have a lower 

daily temperature variation than snow-free canopies.  

 

NDSI, NDVI, albedo, and Land Surface Temperature (LST) can be derived from most 

optical and thermal satellite sensors. This suggests that detection of intercepted snow 

over large scales using satellite remote sensing data is possible. The main goal of this 

research is to determine the potential to use satellite data to detect intercepted snow on 

forest canopies. The specific objectives are to: 1) examine the influence of canopy snow 

on four selected remote sensing indices (NDSI, NDVI, albedo, and LST), 2) determine 

the influence of different forest conditions on these indices when snow is present and 

absent on the canopy, and 3) develop an approach for canopy snow detection and 

compare its results to a model simulation. The methods developed are expected to 

provide a new source of validation data for a large-scale snow interception model 

simulation and input data for future snow interception data assimilation into 

hydrological and land surface forecasting models. 

3.3 Materials and methods 

3.3.1 Study area 

The study area of this research is Marmot Creek Research Basin (MCRB, 50°57`N, 

115°09`W), located in the Front Ranges of the Canadian Rockies in Alberta, Canada 

(Figure 3-1). MCRB is approximately 9.4 km2 in area with an elevation range from 

1700 m to 2825 m. Average annual precipitation in MCRB varies from 660 mm at low 

elevations to 1140 mm at high elevations above tree line and 60% to 75% of 

precipitation falls as snow (DeBeer and Pomeroy, 2009). The main land covers in 

MCRB are continuous stands of Lodgepole Pine, Engelmann Spruce, and Douglas Fir 

in the low to middle elevations; Larch, Engelmann Spruce, Sub-alpine Fir, shrubs, and 

grasses are dominant at upper elevations; talus and bare rocks are the main land-cover 

in the highest elevations (DeBeer and Pomeroy, 2009). Seven permanent 

meteorological stations have been established in various locations in MRCB since 2005 

for continuously observing soil moisture, soil temperature, snow depth, short and long 

wave radiation, air temperature, humidity, and wind speed. Three Alter-shielded 

Geonor weighing precipitation gauges were mounted in low, middle, and high elevation 

bands to measure precipitation and the measurements were corrected for wind-induced 

undercatch (Smith, 2009). Approximately 65% of the basin is covered by forest and the 

sublimation of intercepted snow in the mid-elevation forest can return up to 60% of the 

annul snowfall directly back to the atmosphere (Ellis et al., 2010). MCRB includes four 

sub-basins: Cabin Creek, Middle Creek, Twin Creek, and Confluence which have 
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undergone different forest management. To study the influence of forest removal on 

local hydrology in the 1970s, two experiments were conducted with treatments in two 

sub-basins with the third one left as a control (Rothwell et al., 2016). In 1974, 50% of 

the forest area in the Cabin Creek sub-basin was clear-cut in six large blocks. In 1977–

1979, around 3000 small circular openings (12.2 m to 18.3 m in diameter) were cut in 

a “honeycomb” pattern in Twin Creek sub-basin. The total circular opening area 

accounted for 50% of the forest area of this sub-basin. After 40 years, small trees are 

scattered in both types of clearings. These management treatments give the forests a 

large range of canopy cover that makes the basin a good site for the current research. 

Two airborne LiDAR data collection sessions were conducted in August 2007 and 

March 2008 in MRCB. High resolution (1 m) topographic information (Digital 

Elevation Model (DEM), aspect, and slope) and forest canopy data (canopy coverage 

and Digital Surface Model (DSM, i.e., first return of Lidar data)) is available from these 

observations. 

 

 

Figure 3-1. Land cover, stream network, and main sub-basins of Marmot Creek Research Basin, Alberta, 

Canada. 

3.3.2 Time-lapse photography and processing 

To collect ground truth data of snow interception, a time-lapse camera (Wingscapes 

TimelapseCam) with a 43o field of view was mounted on the top of the Gold Chair-lift 

at the Nakiska ski resort beside MRCB from March 2015 to June 2016. It took hourly, 

day-time images for most of the forest area in MCRB (Figure 3-2a). The “Photo 
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Rectification And ClassificaTIon SoftwarE” (“PRACTISE”; Härer et al., 2013) was 

used to derive the canopy snowcover information from the time-lapse photography. 

PRACTISE is used to derive micro-scale snowcover information. The input into 

PRACTISE are time-lapse pictures, DEM, and several camera parameters (position, 

offset height, roll, lens focal length, sensor height and width, photo pixel row and 

column numbers, and target position (middle point of photo) in the photo). The output 

of the routine is the image with canopy snowcover information that is used as 

verification of if the canopies were snowcovered.  

 

 

Figure 3-2. (a) Two cameras mounted on the Gold Chair lift of Nakiska ski resort, (b) picture taken by 

the right camera on 15 April, 2015, (c) the picture after georectification, (d) the georectified picture after 

classification. 

PRACTISE includes four modules. The first generates a “viewshed” by identifying the 

visible pixels of the DSM from the camera position. Input data for this module are the 

1-m resolution DSM of MCRB and surrounding area plus the camera position. The 

second module georectifies all visible DSM pixels, by an animation and rendering 

technique (Watt and Watt, 1992) that generates a 2-D virtual camera image of DSM that 

also contains the 3-D information of each pixel. Once rendered, the camera RGB values 

are assigned to the 2-D virtual image of DSM. In the end, the pixels contain RGB values 

that are retransformed to a 3-D position. The third module optionally assesses Ground 

Control Points (GCPs) and it is only activated if the precise camera or target position is 
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unknown. In this study, sixteen GCPs were chosen to minimize the georectification 

error caused by the lack of precision in the target position. The fourth module classifies 

snowcover using two classification approaches with different levels of complexity. The 

first is based on threshold values that need to be manually set for each image based on 

analysing RGB values of snow and other objectives. This method is laborious but 

relatively accurate. The second is an automatic snow classification routine developed 

by Salvatori et al. (2011). This method is time-saving and is suitable for long term image 

processing, but with reduced accuracy. The threshold method was chosen in this 

research due to its stability and high accuracy. The classification threshold for RGB 

value was set to 50 to determine whether or not the pixel is snowcovered in the image 

following a study by Garvelmann et al. (2013). Because the RGB value is highly 

influenced by illumination conditions, the RGB value for one object may vary on 

different days. Using the ski lift cable from each image as a reference, an RGB 

adjustment was calculated for all images before classification. RGB value of all other 

images was adjusted to the April 15, 2015 image according to the RGB ratio of the lift 

cable between two images. Figure 3-2b, c, and d show an original time-lapse photo, the 

georectified photo, and classified canopy snowcover, respectively.  

 

After classification, a canopy snow-coverage index, which is the ratio of snowcovered 

to total pixels from the oblique time lapse photographs, was calculated and aggregated 

to 30 m × 30 m areas corresponding to Landsat image pixel locations in MRCB. This 

canopy snow-coverage index is not the real ratio of snowcovered area in the canopy, 

but it is the snow-coverage of that part of the canopy that is captured in the photographs 

and so its value is highly influenced by camera position, view angle and distance 

between camera and objective (Garvelmann et al., 2013). A detailed land cover map of 

the basin was used to mask out the non-forested areas, which were excluded from the 

following analyses. 

3.3.3 Landsat image and its processing 

3.3.3.1 NDSI and NDVI  

Fifty-six Landsat 5 TM and Landsat 8 OLI scenes from 2007 to 2016 were used in this 

research according to image availability and cloud cover conditions (cloud cover less 

than 5% in MCRB). On the 56 images, 22 of them are from Landsat 8 and 34 of them 

are from Landsat 5. These geometrically corrected images are available from the United 

States Geological Survey (USGS) website (http://earthexplorer.usgs.gov/). 

Atmospheric correction was conducted in ENVI using the FLAASH algorithm. NDSI 

(Equation 3.1) and NDVI (Equation 3.2) of each image were calculated using Raster 

Calculator tool in ArcGIS 10.2: 

 

𝑁𝐷𝑆𝐼 =
𝐵𝐺𝑟𝑒𝑒𝑛−𝐵𝑆𝑊𝐼𝑅

𝐵𝐺𝑟𝑒𝑒𝑛+𝐵𝑆𝑊𝐼𝑅
                                                 (3.1) 
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𝑁𝐷𝑉𝐼 =
𝐵𝑁𝐼𝑅−𝐵𝑅𝑒𝑑

𝐵𝑁𝐼𝑅+𝐵𝑅𝑒𝑑
                                                  (3.2)    

 

where BGreen is the reflectance of green band (band 2 for Landsat 5 TM and Band 3 

Landsat 8 OLI); BSWIR is the reflectance of short wave infrared band (band 5 for Landsat 

5 TM and Band 6 Landsat 8 OLI); BNIR is the reflectance of near infrared band (band 4 

for Landsat 5 TM and Band 5 for Landsat 8 OLI); BRed is the reflectance of red band 

(band 3 for Landsat 5 TM and Band 4 for Landsat 8 OLI).  

3.3.3.2 Shortwave albedo 

Because of the inability to sample the intrinsic reflectance anisotropy of land surface 

caused by a narrow sensor field-of-view, directly retrieving an accurate spectral albedo 

value using Landsat images is not possible (Roy et al., 2014). Shuai et al. (2011) 

developed a method that combining the MODIS Bidirectional Reflectance Distribution 

Function (BRDF) product and Landsat images to obtain a more reliable spectral albedo. 

However, this method only works on snow-free surfaces. Developing a reliable snow 

surface shortwave albedo (hereafter referred to as albedo) retrieving method for Landsat 

8 imagery is beyond the scope of this research. The focus here is to study albedo change 

caused by snow interception but not albedo magnitude itself. Therefore, the methods 

developed by Liang (2000) and Ke et al. (2016) were used to retrieve the land surface 

albedo. Landsat 5 TM land surface albedo was calculated following the method 

proposed by Liang (2000) using the following equation: 

 

α=0.356α1 + 0.130α3 + 0.373α4 + 0.085α5 + 0.072α7 − 0.0018              (3.3) 

 

where α1, α3, α4, α5, and α7 represent narrowband band albedo of Landsat 5 TM 

band 1, 3, 4, 5, and 7, respectively. 

 

Landsat 8 OLI land surface albedo was calculated using the method introduced by Ke 

et al. (2016) using: 

 

α=0.130α1 + 0.115α2 + 0.143α3 + 0.180α4 + 0.281α5 + 0.108α6 + 0.042α7     (3.4) 

 

where α1, α2, α3, α4, α5, α6, and α7 represent land surface reflectance of Landsat 

8 OLI band 1, 2, 3, 4, 5, 6, and 7, respectively. 

 

Landsat derived albedo data was validated by albedo data measured in situ from the 

Hay Meadow site located in MRCB (Figure 3-1). The Hay Meadow site was chosen 

because it is flat open ground and its land cover was unique and constant through the 

winter. The measured albedo represents the 30 m area corresponding to one Landsat 

image pixel while the topography and land cover of other sites in MRCB are more 

complex. 
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3.3.3.2 LST  

Different from previous Landsat missions, the Landsat 8 TIRS sensor divided the 

thermal infrared radiance measurement into two bands (Band 10 and 11). Both Jiménez-

Muñoz et al. (2014) and Yu et al. (2014) reported that Band 10 provides more accurate 

estimates of LST. Yu et al. (2014) compared several LST retrieval methods from 

Landsat 8 TIRS and they found that the radiative transfer equation-based method had 

better accuracy than either the split-window algorithm or the single channel method. 

The LST is defined as: 

 

𝐿𝑆𝑇 =
𝐶1

𝜆𝑙𝑛(
𝐶2

𝜆5(𝑅−𝐼↑−𝜏(1−𝜀)𝐼↓)/𝜏𝜀
+1)

                                          (3.5) 

 

where C1 and C2 are constants with the value 14387.7μm·K and 1.19104×108W·μm4·m-

2·sr-1, respectively, λis the effective wavelength of the thermal band in um (band 6 and 

band 10 for Landsat 5 and Landsat 8, respectively), R is the thermal band at sensor 

radiance, I
↑
,I

↓
, and 𝜏 are upwelling path radiance, downwelling path radiance, and 

channel atmospheric transmittance of thermal band respectively and their values are 

given by the on-line NASA Atmospheric Correction Parameter Calculator (Barsi et al., 

2003). The land surface emissivity, ε, is determined using a simple and popular NDVI-

based method (Momeni and Saradjian, 2007; Sobrino et al., 2004; Valor and Caselles, 

1996; Van de Griend and Owe, 1993; Yu et al., 2014). This method typically assumes 

there are only two objects on the land surface, green vegetation and soil. However, snow 

may be present on or under the canopy in this study, thus a modified NDVI-based 

method is used in this research to determine the land surface emissivity in different 

cases: 

 

(1) NDVI<0.2 

When the NDVI value of a pixel is less than 0.2, the pixel is assumed to be non-

vegetated. If the NDSI value of this pixel is equal to or higher than 0.4, the pixel is 

considered covered by snow and its emissivity is assumed to be emissivity of snow. 

Otherwise, the land cover of this pixel is assumed to be pure soil and its emissivity 

is calculated from red band reflectance through an empirical relationship. 

(2) 0.2≤NDVI≤0.5 

Under these conditions, land cover is assumed to be a mix of either snow and 

vegetation or bare soil and vegetation. NDSI has poor accuracy in determining snow 

cover on the forest floor, so the Normalized Difference Forest Snow Index (NDFSI, 

Equation 3.7), that has greater accuracy in determining snow cover under a 

coniferous canopy (Wang et al., 2015), is used to determine if snow is present. If 

NDFSI is equal or higher than 0.4, the land cover is assumed to be the mixture of 

snow and vegetation, otherwise, it is assumed to be composed of bare soil and 

vegetation. The pixel proportion of vegetation (PV) was calculated from the NDVI 
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value and it is used to calculate land surface emissivity. 

(3) NDVI>0.5 

Pixel has a NDVI value higher than 0.5 is assumed to be fully covered by vegetation 

and its emissivity equals to emissivity of vegetation. 

 

The modified NDVI-based method is summarized as: 

 

ε =

{
 
 

 
 
εsnow                                                                        NDVI < 0.2    NDSI ≥ 0.4
a − b ∗ α4                                                                 NDVI < 0.2    NDSI < 0.4

εvPV + εsnow(1 − PV) + C                           0.2 ≤ NDVI ≤ 0.5   NDFSI ≥ 0.4

εvPV + εsoil(1 − PV) + C                              0.2 ≤ NDVI ≤ 0.5   NDFSI < 0.4
εv + C                                                                                                    NDVI > 0.5

  

(3.6) 

 

where εsnow, εsoil, and εv denote to emissivity of snow (0.9904), soil (0.9668), and 

vegetation (0.9863), respectively. Their values were calculated from the MODIS UCSB 

(University of California, Santa Barbara) emissivity library. The values for a and b are 

constants, given as 0.973 and 0.047, respectively. C is the effect of land surface on the 

geometrical distribution and internal reflection. The calculation methods of PV and C 

refer to Sobrino et al. (2004) or Yu et al. (2014). NDFSI is calculated as: 

 

𝑁𝐷𝐹𝑆𝐼 =
B𝑁𝐼𝑅−BSWIR

B𝑁𝐼𝑅+BSWIR
                                                (3.7) 

 

Landsat derived LST data was also validated by the in situ measured land surface 

temperature data from the Hay Meadow site. 

3.3.4 FLIR thermal camera measurement  

Although Landsat measures regional LST, it only shows LST for a single time of each 

measuring day. To evaluate the influence of canopy snow on canopy temperature 

variation in a day, in situ high resolution temperature measures are needed. In this 

research, an FLIR T650S thermal camera was used to measure the surface temperature 

of forest canopy and nearby open ground snow through the day. Due to logistics, a 

Engelmann Spruce and Subalpine Fir coniferous forest in Fortress Mountain Snow 

Laboratory (FMSL, 50°82`N, 115°21`W) that is located approximately 10 km to the 

south-east from MRCB was chosen as the measurement location. Measurement dates 

were April 21 and April 26, 2016 and FMSL was partially cloudy on both days. Snow 

was intercepted on the forest canopy on April 26 while the forest canopy was snow-free 

on April 21 (Figure 3-3). Measurement started at approximately 9:30 a.m. and ended at 

4:00 p.m. local time on each day and the camera was in time-lapse mode with 

measurement frequency of one image per 15 minutes. Images were processed using 
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FLIR ResearchIR software and the average temperature of canopy and nearby open 

ground snow surface at each time step were extracted. Because of the uncertainty from 

various factors, such as air temperature, relative humidity, emissivity, and instrument 

error, temperatures measured using thermal infrared cameras often contain errors 

(Muniz et al., 2014). Following the method used in Harder et al. (2018), the possible 

error of FLIR-measured temperature was corrected by comparison to observations from 

two factory-calibrated Apogee SI-111 infrared radiometers, mounted on the nearby 

meteorological station to measure snow surface and canopy temperatures that were also 

measured in the thermal images. 

 

 

Figure 3-3. RGB (left) and thermal (right) images taken by a thermal camera for April 21 (upper) and 

April 26, 2016 (lower) at the Fortress Mountain Snow Laboratory. 

3.3.5 Cold Regions Hydrological Modelling platform 

The Cold Regions Hydrological Modelling platform (CRHM) was used to create model 

to simulate forest canopy snow interception, sublimation, and unloading in MCRB. 

CRHM is an object-oriented, flexible modelling platform through which researchers 

can choose a wide range of basin spatial configurations, spatial and temporal resolutions, 

and hydrological process modules for custom models that are suitable for the research 

scale, data availability, and objective interests for simulation. A detailed description of 

CRHM is provided by at Pomeroy et al. (2007; 2016b). The basic spatial simulation 
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unit of CRHM is the hydrological response unit (HRU) which is mainly defined by 

basin topography, hydrography, and vegetation. According to elevation, aspect, slope, 

drainage, and forest cover, MCRB was divided into 36 HRUs (12 in Cabin Creek sub-

basin, 7 in Middle Creek sub-basin, 9 in Twin Creek sub-basin, and 8 in Confluence 

sub-basin) and 22 of them located in the forested area following Fang et al. (2013). 

Fourteen modules were assembled by CRHM to create a model to simulate the flux and 

state of water mass and energy in MCRB. These modules are: observation module, solar 

radiation modules (Gray and Landine, 1988; Garnier and Ohmura, 1970), longwave 

radiation module (Sicart et al., 2006), albedo module (Verseghy, 1991), canopy module 

(Ellis et al., 2010), blowing snow module (Pomeroy and Li, 2000), Snobal energy-

balance snowmelt module (Marks et al., 1998), net radiation module (Granger and Gray, 

1990), infiltration module (Ayers, 1959; Zhao and Gray, 1999), evaporation module 

(Granger and Gray, 1989; Granger and Pomeroy, 1997; Priestley and Taylor, 1972), 

hillslope module (Dornes et al., 2008; Fang et al., 2010), routing module (Chow, 1964). 

The major parameters of the canopy module, which is the most relevant module for this 

study and which simulates canopy snow interception and its unloading, melt and 

sublimation, are canopy albedo, leaf area index (LAI), maximum canopy snow 

interception load, ice bulb threshold temperature that controls snow unloading as solid 

or melt in liquid form, and temperature and wind speed measurement height. These 

parameters were set according to field measurements or following the research of Ellis 

et al. (2010) and Fang et al., (2013). The detailed function and parameterization of other 

modules are described by Ellis et al. (2010), Pomeroy et al. (2012), and Fang et al., 

(2013). The CRHM model was forced by the locally observed air temperature, relative 

humidity, soil temperature, wind speed, incoming shortwave radiation, and 

precipitation from seven weather stations and three precipitation gauges. The 

temperature and precipitation were interpolated from these stations to the 36 HRUs 

based on the environmental lapse rate and observed precipitation gradients by the 

observation module. The model ran at an hourly time step from October 2007 to 

September 2016. With dense surface observations for model input data and good 

characterization of model parameters from field research, CRHM usually simulates 

snowpack accumulation and depletion under the forest canopy quite well at MCRB 

(Fang et al., 2013). Ellis et al. (2010) found that CRHM-simulated canopy intercepted 

snow load agreed well with measurements from a weighed, suspended tree in the basin. 

Although direct validation of snow interception simulations at the basin scale is not 

possible due to lack of measurement techniques, these findings suggest that CRHM can 

simulate snow interception well in MCRB. 

3.3.6 Data analysis 

Landsat 8 images from April 8, April 15, November 25, and December 27, 2015 were 

used to study the influence of canopy snow on NDSI, NDVI, albedo, and LST because 

clear canopy snowcover information from time-lapse photos was available on these 

four days. Table 3-1 shows the statistics of forest canopy snow-coverage index derived 
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from time-lapse camera data. Over 99% and 95% of canopies were snow-free on April 

8 and December 27 while more than 99% of the canopies had snow-coverage greater 

than 50% on April 15 and November 25. Solar elevation angle (SEA) has a positive 

influence on NDSI (Niemi et al., 2012), and a negative influence on NDVI and albedo 

(Warren, 1982; Pomeroy and Dion, 1996; Sesnie et al., 2012). Therefore, the April 8 

image was paired with April 15 (hereafter the spring group) while November 25 was 

paired with December 27 (hereafter the winter group) to eliminate the influence of the 

SEA on those indices. The closest snowfall event (~10 mm) occurred over the evening 

and afternoon of the day before April 15 and November 25, while less than 4 mm 

snowfall occurred four and three days before April 8 and December 27, respectively. 

The release of intercepted snow is controlled by temperature, slope/aspect, wind speed, 

and time since interception and is spatially heterogeneous. Snow intercepted on south-

facing slopes normally unloads, melts or sublimates faster than that intercepted on the 

north-facing slopes (Ellis et al., 2013; Garvelmann et al., 2013). Although the time-

lapse camera used here only obliquely views the south side of trees, the short time 

between the end of snow storm and the Landsat satellite image and cold, calm 

conditions during this time restricted sublimation, melting or unloading of intercepted 

snow. Therefore, it was assumed that the canopy snow-coverage index measured by the 

time-lapse camera represented the areal canopy snowcover on the four selected dates. 

This assumption may not be applicable on other dates with different conditions. Most 

of the forest floor and clearing were snow-covered in all four days according to the 

snow survey data. The snow on the forest floor for the spring group was shallow and 

dense with snow depth less than 11 cm, while the snow depth on forest floor of winter 

group was approximately 30 cm. Snow depth in the clearings was approximately 50 cm 

for April 8, November 25, and December 27, while April 15 had less snow with 

approximately 20 cm depth (Table 3-2). Pixels located on the forest edge, by roads or 

trails, or at time-lapse photo boundaries were excluded from analyses to minimize 

mixed-pixel effects. 
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Table 3-1. Canopy snow-coverage conditions derived from time-lapse photography at four selected dates. 

First column indicates the partition of each category. The rest of the columns state the percentage (%) of 

the pixels having a canopy snow-coverage index within each corresponding category. 

 

 

Table 3-2. Solar elevation angle (SEA), air temperature, closest storm date and snow fall amount in 

MCRB as well as basic ground snow conditions (SWE and snow depth (SD)) in two main forested sites 

– Vista View (VV) and Upper Clearing (UC) in MCRB on four selected dates. 

 

The canopy snow-coverage index from time-lapse photos was compared to NDSI, 

NDVI, and albedo derived from the remote sensed images to determine the possible 

relationship between canopy snow-coverage and those three indices. The forest was 

subdivided into four categories according to forest type (circular cut spruce forest (CC), 

clearings with recovered small tree (clearing), untreated pure Lodgepole Pine forest 

(LPP), and mixed forest (MF) of Spruce, Fir, and Lodgepole Pine) to measure the 

response of NDSI, NDVI, and albedo to intercepted snow under different forest 

conditions. Average forest canopy coverage of CC, Clearing, LPP, and MF are 39.8%, 

19.7%, 55.9%, and 54.9%, respectively. Landsat image pixels were classified to 

snowcovered or snow-free canopy according to canopy snow coverage from time-lapse 
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camera. A pixel was determined to be snowcovered when snow-coverage was higher 

than 0.5, and vice versa. NDSI, NDVI, and Albedo of canopy under snowcovered and 

snow-free conditions were compared amongst four forest types to determine the 

influence of canopy snow on those indices. The Lidar derived 1 m DEM, aspect, slope, 

and forest canopy cover data were scaled up to 30 m resolution to match Landsat image 

pixel size and location. To determine the cause of variation in NDSI, NDVI, and albedo, 

a multiple linear regression was conducted against the daily influence of elevation, 

aspect, slope, and forest canopy cover. The differences of NDSI, NDVI, and albedo 

from a snow-free canopy to a snowcovered canopy were calculated for each pixel. A 

multiple linear regression analysis was conducted to determine the relationship between 

changes in these indices and SEA, topography, and canopy coverage. 

 

Unlike the other three indices, LST is highly influenced by elevation and so it is difficult 

to compare the LST variation at a basin scale. Given this, the clearing where the Vista 

View station is located and the mixed forest around it were chosen to determine the 

influence of canopy snow on LST to minimize to influence of elevation. The LST of 

clearing, forest, and open ground snowcover in the alpine in the same elevation range 

were compared to observed air temperature (2.26 m above ground) from the Vista View 

station for the four chosen days to determine the influence of canopy snow on canopy 

temperature. The FLIR thermal camera measured canopy and snow surface temperature 

in FMSL was compared to air temperature measured at a nearby meteorological station 

to see the influence of canopy snow on canopy temperature diurnal variation. 

3.4 Results 

3.4.1 Canopy snow effect on NDSI 

Figure 3-4(a) shows the comparison of canopy snow-coverage index derived from time-

lapse photos and NDSI derived from Landsat images. The results indicate that canopy 

snow-coverage index and NDSI were not highly correlated directly, but that canopy 

snowcover did influence NDSI. When the canopy was snow-free, the NDSI varied from 

near -1 to 0.8. As the canopy snow-coverage index increased, the lower boundary of 

NDSI range also increased. When canopy snow-coverage index was greater than 50%, 

the NDSI was distributed from 0.5 to 0.8. Canopy snow clearly increased the magnitude 

of NDSI and reduced its areal variation. Although the coefficient of determination 

between NDSI and canopy snow coverage was 0.67, the relationship between those two 

indices was not linear as over 90% of the samples had canopy snow-coverage index of 

either 0 or 1 but their NDSI were widely distributed. One possible reason for this is that 

for each pixel, NDSI provides information from snow on the canopy and snow on the 

ground that can be seen through tree canopy gaps. Two pixels may have same canopy 

snow-coverage index, while the snow on the ground that can be seen may be different 

because of variation in the forest canopy coverage. This explains why NDSI ranged 

from -0.9 to 0.8 even though the canopy snow-coverage index was zero for all pixels. 
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This also indicates that a different threshold must be used for different forest conditions 

if NDSI is to be used to detect regional canopy snow-coverage. 

 

 

Figure 3-4. Comparison of time-lapse photo derived canopy snow-coverage index and NDSI (a), NDVI 

(b) and albedo (c), for four selected days in Marmot Creek Research Basin. No significant relationship 

was found between canopy snow-coverage index and the three indices. 

Figure 3-5 (a) illustrates NDSI values for all sample points in four forest types under 

snowcovered and snow-free canopy conditions. In each forest condition sample points 

were sub-divided into two groups, spring and winter, to minimize the influence of SEA 
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on the indices. The presence of snow on the canopy increased the NDSI for all pixels 

in the four forest types. NDSI values in all forest types were similar when snow was 

intercepted on the canopy; the value of CC and Clearing was slightly higher than LPP 

and MF. However, the NDSI difference between different forest types was large when 

the canopies were snow-free. In Clearing, the canopy snow-free NDSI values ranged 

from -0.07 to 0.77 and half of them were greater than 0.4 (Figure 3-6). The NDSI ranged 

from 0.66 to 0.85 (mean = 0.79) when there was snow on the canopies. There was no 

clear divide between snow-covered and snow-free canopy NDSI in Clearing. The NDSI 

difference between two scenarios was 0.39 and it was the smallest among all the forest 

types. In CC forest, NDSI ranged from 0 to 0.65 (mean = 0.26) when canopies were 

snow-free. On the canopy snow-free days, NDSI was concentrated from 0.57 to 0.89 

(mean = 0.71). Canopy snow increased the NDSI in CC by 0.45. The average canopy 

coverages of LPP and MF forests were very close, so the NDSI response to canopy 

cover for those two forest types were similar. With the influence of dense forest canopy, 

the NDSI in LPP and MF never reached 0.2 and was as low as -0.9 when canopies were 

snow-free even though most of the ground beneath the canopy was fully snowcovered. 

Most of the NDSI values in LPP and MF were higher than 0.4 when canopies were 

snowcovered. Canopy snow increased NDSI by 1.04 and 1.13 for LPP and MF to 0.63 

and 0.67. Intercepted snow decreased the NDSI variation in all forest types as the 

standard deviation of NDSI was significantly reduced when canopies were 

snowcovered. There was no overlap between snowcovered and snow-free canopy NDSI 

value in LPP and MF but few samples overlapped in CC and more samples overlapped 

in Clearing.  
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Figure 3-5. Landsat images derived NDSI (a), NDVI (b) and albedo (c) of sample points when snow is 

present (red dot) and absent (black dot) on the canopy for four forest conditions. ‘S’ and ‘W’ denote 

spring and winter groups, respectively. 

 

Figure 3-6. Distribution of NDSI, NDVI, and albedo values for snow-covered and snow-free canopies 

by forest type. Spring and winter groups are defined in the text. 
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NDSI values were negatively related to the forest canopy coverage under any snow 

cover condition (Figure 3-7). The coefficient of determination (r2, p < 0.05) of the linear 

relationship between NDSI and canopy snow coverage ranged from 0.24 to 0.65 on the 

four selected dates. The slope of the relationship was much higher when the canopy 

was snow-free than when the canopy was snow-covered. With the increase of forest 

canopy coverage from 0 to 0.7, the NDSI decreased from 0.75 to −1 when the canopy 

was snow-free. However, when the canopy was covered by snow NDSI declined by 

less than 0.2 when forest canopy coverage increased by the same amount. The change 

of NDSI from snow-free to snowcovered canopy increased with increasing of forest 

canopy coverage. 

 

 

Figure 3-7. Influence of canopy snow on the relationship between forest canopy coverage and Landsat derived three 

indices (NDSI, NDVI, and albedo). Spring and winter denote the data from spring group and winter group, 

respectively. 

The results of multiple linear regression analysis indicate that NDSI variation was 

highly related to topography (elevation, slope, and aspect) and forest canopy coverage. 

Elevation has a positive effect on NDSI, while other factors’ effects are negative. The 

coefficient of determination (p<0.05) between NDSI and the four factors were 0.78, 

0.67, 0.48, and 0.66 for April 8, April 15, November 25, and December 27, respectively 

(Table 3-3). Snow-free canopies had higher r2 than snowcovered canopies. This is 

because when the canopy was snow-free, the NDSI value only shows snow information 

on the forest floor; topography and forest canopy coverage have a strong influence on 

forest floor snow accumulation. However, when the canopy was snowcovered, NDSI 

provides snow information both on the ground and on the canopy. The snow on the 

canopy reduced the variation of total snowcover of each pixel and hence the influence 
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of the four factors on NDSI. However, those four factors still explain the 48% to 67% 

of the variation of NDSI when canopies were snowcovered.  

 

Table 3-3. Coefficient of determination of multiple linear regression among three indices with topography and 

canopy coverage in selected dates. P-Value < 0.05 for all r2. 

 

The results of multiple linear regression analysis between an NDSI increase from snow-

free and snowcovered canopies and elevation, slope, aspect, canopy coverage, and SEA 

illustrate that these five factors explain 62% of variation in the NDSI increase (Table 

A.2). Canopy coverage is the most important factor that influences the NDSI increase 

amount and it contributes half the effect whilst topography (elevation, slope, and aspect 

together) contributes the other half. SEA has very limited influence on the NDSI 

increase when compared to other factors. Topography and canopy coverage are the 

main factors that influence the magnitude of snow interception. This implies there 

might a good relationship between amount of snow interception and NDSI increase. 

3.4.2 Canopy snow effect on NDVI 

The relationship between NDVI and canopy snow-coverage index is shown in Figure 

3-4 (b). NDVI was distributed from 0.2 to 0.8 when canopies were snow-free while the 

upper boundary of the NDVI range decreased with increasing of canopy snow-coverage. 

The distribution of NDVI shrank to the values between 0.1 and 0.5 when canopy snow-

coverage index was higher than 50%. The presence of canopy snow decreased the 

NDVI value and variation. Although the coefficient of determination between NDVI 

and snow coverage was 0.67, most of the sample had a 0 or 1 canopy coverage and the 

corresponding NDVI was highly variable. NDVI reflects the greenness of objects in the 

pixel. When there was no snow on the canopy, its value was highly dependent on the 

forest canopy coverage. Although snow may block some of the greenness of canopies, 

when canopies were snowcovered, NDSI still relies on canopy coverage. This explains 

why the NDVI may differ between two pixels even though their canopy snow-

coverages are the same. 

 

The NDVI comparison between snowcovered and snow-free canopies for different 

forest types is shown in Figure 3-5 (b). The presence of snow significantly reduced the 

NDVI value of majority of the samples in all four forest types. The average NDVI value 

of snowcovered canopy for each forest were similar in their values of MF and LPP and 
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were slightly higher than that in CC and Clearing. Canopy snow-free NDVI for four 

forest types were quite different and the NDVI decrease in LPP and MF was much 

greater than that in CC and Clearing. The canopy snow decreased the mean NDVI for 

MF, LPP, CC, and Clearing by 0.41, 0.41, 0.17, and 0.21, respectively (Figure 3-6). For 

MF and LPP forests, although there were several samples located in the overlap region, 

the snow-free canopy NDVI ranged from 0.41 to 0.93, while the snowcovered canopy 

NDVI was clustered between 0.11 and 0.59. In CC and Clearing, NDVI was distributed 

from 0.12 to 0.76 (mean = 0.44) when the canopy was snow-free. NDVI was 

concentrated from 0.05 to 0.5 (mean = 0.24) when snow was present on the canopy. 

Under both forest types, there was large overlap from 0.2 to 0.4 inside of which both 

snowcovered and snow-free scenarios had sample points. Therefore, it was hard to 

determine an NDVI threshold to detect the canopy snow in CC and Clearing. The 

canopy snow decreased the mean NDVI from 0.65, 0.75, 0.42, and 0.45 to 0.24, 0.34, 

0.25, and 0.24 for MF, LPP, CC, and Clearing, respectively. The presence of snow on 

the canopy also reduced the variation of areal NDVI for all four forest types as this 

snow make the reflectance of the land surface more homogeneous, dropping both the 

standard deviation and CV values. 

 

NDVI was positively related to forest canopy coverage when the forest canopy was 

snow-free (Figure 3-7). The r2 in spring (0.57) was higher than in winter (0.31). Canopy 

snow coverage decreased the slope and r2 of the relationship between NDVI and forest 

canopy coverage. With snow on the canopy, this relationship became weak with a 

slightly negative slope and an extremely small r2 (0.006) in winter. The change of NDVI 

between snow-free and snowcovered canopies increased with increasing forest canopy 

coverage in both winter and spring.   

 

The results of multiple linear regression analysis indicated that NDVI variation was 

strongly related to elevation, slope, aspect, and forest canopy coverage when canopies 

were snow-free. This relationship was weak when snow was intercepted by the canopy. 

Elevation and slope had negative effects on NDVI, while the effects of aspect and 

canopy coverage were positive. The coefficients of determination between NDVI and 

the four factors were 0.72, 0.38, 0.20, and 0.49 for April 8, April 15, November 25, and 

December 27, respectively (Table 3-3). When canopies were snow-free, NDVI was 

mainly controlled by forest canopy coverage. Topography influenced NDVI by 

controlling the snow on the forest floor. However, when canopies were covered in snow, 

the snow blocked the greenness of the forest canopy and reduced the influence of 

canopy coverage on NDVI. New fallen snow made the snow on the forest floor more 

homogeneous so that influence of topography was also weaker.  

 

Multiple linear regression analysis between the NDVI change and elevation, slope, 

aspect, canopy coverage, and SEA shows that these five factors explain 50% of the 

variation of NDVI decreases (Table A.2). Canopy coverage was the most import factor 

that influenced the decrease in NDVI and it explained 37% of the variation individually. 
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Topographic factors had limited influence on NDVI decrease individually, but together 

they explained 32% of the variation of the NDVI decrease. SEA had very limited effect 

on the magnitude of NDVI decrease when compare to other factors. Thus, the main 

factors that control the NDVI decrease are topography and forest canopy coverage.  

3.4.3 Canopy snow effect on albedo 

Figure 3-8 (a) shows the comparison of observed and Landsat derived albedo for the 

grassland Hay Meadow site. This shows that the observed and Landsat derived albedo 

were highly correlated. The coefficient of determination was approximately 0.95 and 

the RMSE between the two data sets was 0.05. Therefore, the Landsat derived albedo 

can be used for this research in MRCB. 

 

 

Figure 3-8. Comparison of observed and Landsat derived albedo (a) and land surface temperature (b). 

 

Figure 3-4 (c) shows the relationship between albedo and canopy snow-coverage index. 

Albedo was largely distributed from 0.05 to 0.4 when the canopies were snow-free. The 

increasing canopy snow-coverage index had almost no influence on albedo before it 

reached 50% coverage. When canopy snow-coverage exceeded 50%, the distribution 

of albedo ranged largely from 0.1 to 0.5. Most of the samples were clustered at the 

canopy snow-coverage index of 0 or 1 and the albedo values that correspond to those 

two values were highly varied. The presence of canopy snow slightly increased the 

albedo and also increased its variation. The coefficient of determination between albedo 

and canopy snow-coverage index was 0.18.  

 

Figure 3-5 (c) shows the snowcovered and snow-free canopy albedo for all the samples 

in the four forests. Canopy snow increased the albedo for most samples and the albedo 

was highly varied whether the canopies were snow covered or not. Amongst all the land 

coverss, Clearing had the highest albedo variation when the canopies were snow-

covered and snow-free. The albedo was scattered from 0.08 to 0.48 (mean = 0.19) when 

the canopies were snow-free while it ranged from 0.13 to 0.60 (mean = 0.30) when 
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canopies were snowcovered (Figure 3-6). The albedo for rest of the forest types were 

much lower when compare to Clearing and rarely higher than 0.3. The mean values of 

albedo for CC were 0.11 and 0.17 when the canopies were snow-free and snow-covered, 

respectively. Albedo in spring was much higher than in winter in the CC and some 

samples with a snowcovered canopy in winter even had lower albedo than the sample 

from snow-free canopies from spring. Due to the low SEA and complex terrain, most 

winter samples of the CC were located in shade (Marsh et al., 2012). The shading effect 

lowered the reflectance and the albedo in this region. The canopy snow-free albedo for 

LPP and MF was concentrated around 0.05 to 0.17 (mean = 0.10 and 0.09), respectively. 

Canopy snow increased the albedo for LPP and MF by 0.08 and 0.06. Albedo variation 

in winter was much higher than in spring whether the canopies were snowcovered or 

not for those forests. The reason for this is twofold. First, some of the samples in LPP 

and MF were located in shade in winter because of the low SEA, so their albedo values 

were lowered by reduced reflectance. Second, for those who were not in the shade, their 

value was increased by the negative effect of SEA on albedo. Therefore, the albedo is 

highly influenced by topography and SEA. 

 

The relationship between albedo and forest canopy coverage was negative for all dates 

(Figure 3-7). The r2 of this relationship ranged from 0.41 to 0.73. Canopy snow 

coverage slightly increased the slope and r2 of the relationship in spring. However, in 

winter, the r2 decreased and there was no clear change in the slope of the relationship. 

This indicates that although albedo is related to forest canopy coverage, unlike NDSI 

and NDVI, the change of albedo from snow-free to snowcovered canopy is independent 

of the change in forest canopy coverage. 

 

Multiple linear regression analysis demonstrated that albedo distribution in the study 

area in the four selected dates was highly controlled by topography and forest canopy 

coverage. The coefficient of determination between albedo and elevation, slope, aspect, 

and canopy coverage were 0.79, 0.82, 0.70, and 0.67, respectively (Table 3-3). The 

increase of albedo from snow-free to snow-covered canopy was albedo controlled by 

these factors and SEA. Those five factors together explain 49% of variation of the 

albedo increase (Table A.2). Slope aspect was the most important factor among them; 

it explained 22% of the variation.  

3.4.4 Canopy snow effect on LST 

Figure 3-8 (b) shows the comparison of in situ measured and Landsat derived LST from 

the Hay Meadow site. The observed and Landsat derived LST were highly agreed with 

each other with a coefficient of determination greater than 0.95 and the RMSE of 5.2 °C 

between the two data sets. The greatest differences were from samples with 

temperatures higher than 0 °C. Data sets agree with each other very well when the 

temperature was below the freezing point.  
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The temperature of the forest canopy, clearings, and snow surfaces in the alpine area 

were compared to air temperature measured at 2.62 m above ground at the Vista View 

station (Figure 3-9). The average temperature of forest canopy was lower than that of 

clearing in April 8 and April 15 whilst the opposite was true in November 25 and 

December 27. Also, the temperature differences between forest and clearing were small 

(within ±1 °C) for all four selected dates. There appeared to be no clear temperature 

difference between forest and clearing in MRCB whether or not snow was on the 

canopy. One reason for this could be the spatial resolution of Landsat 8 LST data (100 

m). Its radiance may not be sensitive to the relatively small clearings. Another possible 

reason is that the clearings have small trees growing in them, which makes their thermal 

radiance similar to forest areas. The forest and clearing temperature were lower than air 

temperature but higher than snow surface temperature irrespective of canopy snow 

presence. The air temperature was approximately 2.5 °C on both April 8 and April 15. 

The forest canopy temperature was approximately -2.1 °C, which was close to open 

ground snow surface temperature of -3.4 °C, when snow was on the canopy, while it 

was 0.2 °C when the canopy was snow-free. The same patterns were found during 

winter. The presence of canopy snow decreased the canopy temperature hence the 

temperature difference between canopy and snow surface was smaller when canopy 

was covered by snow. The temperature difference between canopy and snow surface 

for April 8, April 15, November 25, and December 27 was 4.1 °C, 2.4 °C, 2.3 °C, and 

2.7 °C, respectively. Without snow on the canopy, the forest canopy tends to warm up 

by solar radiation on sunny days. This explains why the temperature difference between 

the canopy and snow surface was higher when canopy was snow-free. However, in the 

winter, the difference between two scenarios was relatively small when compared to 

spring. This is probably due to the solar elevation angle (very low in winter in this 

region) and sun rise (late). In winter, there was not enough energy and time to have 

warmed up the forest when Landsat 8 passed the study region (approximately 11:00 am 

local time) compared to spring.  
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Figure 3-9. Comparison of Landsat derived land surface temperature for forest, clearings, snow covered 

alpine and measured air temperature for four selected dates. 

Figure 3-10 shows the comparison of in situ measured forest canopy temperature and 

its nearby open-ground, snow-covered surface and air temperature on days that the 

canopy was snowcovered (April 26) and snow free (April 21) at FMSL. On April 26 

with no canopy snow, the temperature of forest canopy was higher than air temperature 

most of the time with an average difference of 0.9 °C. However, the open ground snow 

surface temperature was much less than air temperature and the temperature of canopy 

with mean differences of -12.9 °C and -13.8 °C, respectively. When snow was 

intercepted by the canopy, the temperature of forest canopy was constantly around the 

freezing point, which was much lower than air temperature. The difference between 

canopy and air temperature was -3.6 °C. The presence of snow makes the canopy 

temperature close to the temperature of the open ground snow surface with a mean 

difference of 3.1 °C. The canopy temperature reached its peak around 1400h to 1430h 

on both days. The canopy temperature increased from 8.8 °C to 17.2 °C from 0930h to 

1430h on April 21 while the canopy temperature only increased 0.6 °C during the same 

period on April 26. The presence of snow on the canopy also decreased the daily 

variation in canopy temperature. The standard deviations of daily canopy temperature 

for April 21 and 26 were 2.47 °C and 0.42 °C, respectively. 
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Figure 3-10. Comparison of measured canopy and open ground snow surface temperature with air 

temperature for April 21 2016 (snow-free canopy, upper panel) and April 26 2016 (snowcovered canopy, 

lower panel) at the Fortress Mountain Snow Laboratory. 

3.4.5 Canopy snow estimation  

Canopy snow clearly increases albedo under various forest and illumination conditions. 

However, its value is highly influenced by forest conditions, SEA, and illumination 

conditions. Snow on the canopy influences canopy temperature and this influence 

varies by time of day and year, elevation, cloud condition, and other factors. Thus, 

further research needs to be done before using satellite derived LST as an indicator of 

canopy snow. Among four indices, NDSI is the most sensitive to the presence of canopy 

snow as it had the greatest change. NDSI’s response to canopy snow is also very stable 

as the NDSI for a snow-covered canopy was close in different forest conditions and 

seasons. However, it only provides information about snow conditions and no 

information about the forest. Prior knowledge of forests must be gathered when using 

it as a stand-alone indicator. NDVI is not as sensitive and stable as NDSI to canopy 

snow, but it provides forest information. Therefore, a combination of NDSI and NDVI 

were chosen as indicators of canopy snow in needleleaf forests as a result of the 

previous mentioned concerns. 

 

Figure 3-11 shows the relationship between NDSI and NDVI for samples from different 

landscapes. Because large clearings with small trees have similar reflectance 

characteristics as snow intercepted intact forests, the samples from clearings were 

excluded in this analysis. NDSI is well correlated to NDVI in the forest region when 
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the forest floor was covered by snow. Samples from different scenarios were clustered 

in different regions. For samples from alpine areas, NDSI was usually higher than 0.4 

and NDVI rarely exceed 0.1. Samples from summer forests were clustered in the upper 

left corner of the relationship with NDSI and NDVI largely ranging from -0.7 to -0.4 

and 0.7 to 0.9, respectively. For winter forests (snow accumulated on the forest floor), 

NDSI is negatively correlated to NDVI with NDSI ranging from -0.9 to 0.8 and NDVI 

distributed from 0.1 to 0.9. It is noteworthy that some winter forest samples have even 

lower NDSI values than summer samples. The extremely low NDSI was largely caused 

by low SEA (13.58 ⁰) and shading effect during winter satellite measurement. The low 

SEA and complex mountain terrain made it rare for sunlight to reach the forest floor 

and some samples in mixed forests were located in shade that significantly reduced 

reflectance. There is a clear divide between scenarios of snowcovered and snow-free 

canopies. Samples of snowcovered canopies were concentrated on the upper right 

corner of the relationship with NDSI and ranged largely from 0.4 to 0.8 while NDVI 

was mainly distributed from 0.1 to 0.5. Because NDSI and NDVI of snowcovered 

canopy are seldom lower than 0.4 and 0.1, respectively. Thus, the area covered by the 

blue polygon in Figure 3-11 is proposed as the region for detecting canopy snow. This 

means all the pixels are classified into two categories: snow-covered canopy located in 

the polygon and others (snow-free canopy and open areas) located inside and outside 

of the polygon.  
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Figure 3-11. NDSI and NDVI relationships for different landscape and forest canopy conditions. Red 

stars and black dots depict snow-covered canopy and snow-free canopy (with snow below the canopy) 

respectively. Green triangles plot fully snow covered open areas. The blue polygon is the proposed area 

for measuring forests with a snow-covered canopy. 

The remaining 52 Landsat 5 and Landsat 8 scenes in the study area were classified 

according to this approach and the results were compared to CRHM snow coverage 

simulations. CRHM-simulated hourly snow interception information was validated by 

using time-lapse camera images from March 11 2015 to June 9 2016 before comparison 

to remote sensing classifications. The results indicated that the CRHM canopy snow 

simulations agreed with time-lapse derived canopy snow coverage 89.8% of the time 

and, hence, it is reasonable to compare it to the classification results. 

 

Figure 3-12 shows the comparison of the classification and CRHM model simulation 

for two selected days. On November 28, 2013, according to the model simulation, there 

was no snow on the canopy over the entire basin. This classification agreed well with 

model simulations at most of the hydrological response units (HRUs) except for some 

of the large clearings and forest edges. Because samples from large clearings were 

excluded from the NDSI-NDVI relationship, it is not surprising that this approach does 

not work well in those places. The forest edges have the situation that pixels are a mix 
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of forest and open ground, which make the reflectance characteristics similar to a 

snowcovered forest canopy. Therefore, some pixels in these areas were misclassified as 

snow-covered canopy. On November 28, 2013, most of the forest canopies were 

covered by 5 to 15.4 mm of snow according to CRHM simulation. This classification 

agreed very well to the simulation in most of the continuous forest types, but less well 

in sparse forests that were either artificially treated (CC) or a mix of deciduous and 

coniferous trees. In the model parameterization, the LAI of large clearings were set as 

0. This is why the model simulated no snow interception at those places. However, the 

approach misclassified the large clearing as a snowcovered canopy because of fresh 

tree growth. 

 

 

Figure 3-12. Comparison of canopy detection classification results (left) and CRHM simulated canopy 

snow interception (right) for November 28, 2013 (upper panel) and December 01, 2014 (lower panel). 
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The forty-five HRUs were classified into four landscapes according to their 

characteristics: Alpine (No trees), Clearing (large clearings with small re-growing trees), 

Sparse Forest (forests with circular cut clearings or the forests mixed of ever green trees 

and deciduous trees or shrubs), and intact forests (intact ever green forests with no 

treatment). Classification omission error (percentage of pixels that classified as snow-

fee canopy or open ground while snow was covered on the canopy according to model 

simulation), commission error (percentage of pixels that classified as snowcovered 

canopy while canopies were snow-free according to model simulation), and total 

accuracy (percentage of pixels that classified correctly according to the model 

simulation) were analyzed in all four landscapes.  

 

Table 3-4 shows the results of the comparison between CRHM simulations and 

classification of all 52 remaining Landsat 5 and Landsat 8 images from 2007 to 2016. 

In general, the approach worked very well in alpine areas. It classified 1.5% and 2.96% 

of the pixels from alpine areas into snowcovered canopy for Landsat 5 and Landsat 8 

images, respectively. Alpine had the highest total accuracy (98.1%) between 

classification and model simulation among all four landscapes. This indicates that the 

combined threshold of NDVI and NDSI can easily distinguish non-forest area from 

forest. This approach works less well in clearings. It classified 28.1% and 34.3% 

clearings as snow-covered canopies for Landsat 5 and Landsat 8, respectively. The 

consistency between classification and model simulation in clearings was 70.1%, which 

is the lowest amongst the four landscapes. For sparse forests, the error classification 

rate was much lower than that in clearings, but the classification omission error was 

relatively high. The model only classified 10.9% and 42.7% of the Landsat 5 and 

Landsat 8 pixels into snowcovered canopy when model simulated canopy snow 

interception was greater than zero. The pattern was similar in intact forests. Although it 

had very low commission error in continuous forests, the classification omission error 

was 75.1% and 29.3% for Landsat 5 and Landsat 8, respectively. The high classification 

omission of Landsat 5 images may be explained by the differences in sensors used in 

Landsat 5 and Landsat 8. The classification approach was developed using Landsat 8 

images, so some adjustment may have to be made when using data from other data 

sources. Even in intact forests, Landsat 8 still has 29.3% of classification omission error. 

The basic simulation unit of CRHM is the HRU. There are only 36 HRUs in MCRB 

while there are approximately 10452 pixels in each Landsat image in MCRB. In model 

simulations, each HRU only has one value for snow interception while there may be 

hundreds of pixels in each HRU. Due to various factors, canopy snowcover may be not 

homogeneous in one HRU. This may explain the relatively high classification omission 

error for sparse and intact forests. In all, the classification results were consistent with 

CRHM simulations in all landscapes with the accuracy of 98.1%, 70.1%, 72.1%, and 

82.6% in alpine, clearing, sparse forests, and continuous forests, respectively. Thus, this 

approach is capable of detecting canopy snow interception in the study area. 

 

 



 

82 
 

Table 3-4. Comparison of CRHM-simulated and Landsat image-detected canopy snow cover of 52 

Landsat 5 and Landsat 8 images from 2007 to 2016. Commission error (Com. %) refers to percentage of 

pixel was classified as snowcovered canopy while model simulated interception equals zero. Omission 

error (Omi. %) refers to percentage of pixel was classified as snow-free canopy while model simulated 

interception larger than zero. Accuracy (Acc. %) refers to classification results that agree with model 

simulation. 

 

3.5 Discussion 

This research evaluated the influence of canopy snow on several indices available from 

Landsat images and discovered the potential to use these indices to detect intercepted 

snow on a coniferous forest canopy. Canopy snow dramatically increased the forest 

NDSI to a level close to the NDSI for open areas. The increase varied amongst forest 

conditions, which is a reflection of canopy cover and topography. The NDSI increase 

was positively related to canopy cover, a result that is consistent with the research of 

Heinilä et al. (2014). A common method to retrieve ground fractional snowcover 

amongst remote sensing researchers is to use the relationship with NDSI (Salomonson 

and Appel, 2004; Salomonson and Appel, 2006). Because canopy snow could 

significantly increase the forest NDSI, attention should be paid when retrieving 

fractional snowcover in forests using the relationship developed by Salomonson and 

Appel (2004) as the NDSI may not only represent the snow on the ground but also 

contains information on canopy snow. No relationship was found between the time-

lapse camera measured canopy snow-coverage index and NDSI because of the forest 

floor snow fraction difference caused by the variation of forest canopy coverage. So, it 

is not possible to use NDSI to quantitatively measure canopy snow without prior 

knowledge of forest canopy coverage. Canopy snow also decreased the NDVI for 

forests because the presence of snow on canopy blocked the green vegetation 

reflectance. The decrease in NDVI was relatively lower than the increase in NDSI, 

consistent with the research of Heinilä et al. (2014). 

 

The land surface albedo increased considerably with snow interception but not to levels 

expected for open snowfields. The increase was found to be highly influenced by SEA 

and topography, which was supported by the research of Pomeroy and Dion (1996) and 

Pirazzini (2004). The forest canopy snow-free albedo (0.10 for Lodgepole Pine and 

0.09 for mixed forest, on average) retrieved from Landsat images in this research was 

similar to surface observations (Harding and Pomeroy, 1996; Pomeroy and Dion, 1996). 

The relatively high canopy snow-coverage index needed to trigger an increase in 
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canopy albedo is consistent with research from Pomeroy and Dion (1996) who 

measured no albedo increase for relatively small snow loads in Canadian boreal forests 

and Nakai et al. (1999) who measured albedo increases for very high canopy snow loads 

in Japanese mountain forests 

 

The measured canopy temperature was higher than air temperature at most times of the 

day in FMSL when canopies were snow-free (Figure 3-10). This coincides with the 

measurements of Pomeroy et al. (2009) and Musselman and Pomeroy (2017) in MCRB 

and elsewhere. In their research, the temperature of canopy needles was always higher 

than the sub-canopy temperature in daytime. However, here, Landsat derived LST in 

forests was lower than air temperature even when canopies were snow-free. This is 

presumably due to measurement scale differences. In the thermal camera measurement 

in FMSL and the data of Pomeroy et al. (2009) and Musselman and Pomeroy (2017), 

only the temperature of canopy needles was measured. However, the Landsat thermal 

sensor measures the thermal radiance of whole land surface, which is a mixture of forest 

canopy and understory snow. The temperature of snow surface on the ground is usually 

much lower than that of canopy and of the air temperature (Pomeroy et al., 2016a). 

Thus the measured LST for the whole pixel was lower than temperature of canopy and 

may explain the relatively low LST even when canopies were snow-free. 

 

The relationship between forest NDSI and NDVI in Figure 3-11 shows that the 

NASA/GSFC SNOWMAP algorithm is not working for this high latitude, mountainous 

basin with complex topography. When canopies were snow-free, most pixels have 

negative NDSI values and are located outside of the region proposed by Klein et al. 

(1998) for snow classification in forest regions even though the forest floor was fully 

snow-covered. Therefore, more attention should be paid when classifying the 

snowcover of these forests. The canopy snow detection approach from Figure 3-11 was 

developed using Landsat 8 data (excluding data in clearings with small trees). The 

accuracy of Landsat 5 images was relatively low when using this approach due to the 

sensor differences with Landsat 8. Thus, an adjustment of this relationship is needed 

when using other satellite data. Clearly, the ability to detect canopy snow in sparse 

forests is limited. This is because the spectral characteristics of clearings with small 

trees and snow-covered canopies are similar. Thus, this approach is not suitable for the 

detection of canopy snow in sparse evergreen forests. Using the NDSI and NDVI 

relationship in Figure 3-11, the accuracy in mixed needleleaf and deciduous forests 

were relatively low (Table 3-4). This indicates that this method may need to be modified 

for these forests. No obvious difference was found in results for pure mature Pine forest 

(LPP) and the mature mixed coniferous forests (MF) of Spruce, Fir, and Pine using this 

method. To determine the effectiveness of this method for other forests with different 

coniferous tree species and status, further study is needed.   

 

Because of limitations of in situ canopy snow measurement, this research can only 

detect snow presence on the canopy. With enough in situ snow interception and spectra 
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measurement, a quantitative measure of snow interception might be developed in the 

future. The canopy snow information derived from this research for the first time makes 

large-scale canopy snow interception model performance validation possible. Also, this 

information could be used as input for large scale hydrological data assimilation to 

hopefully improve the simulation of snow accumulation in coniferous forests. Because 

of the low repeat frequency of the Landsat satellite and cloud effects, there were only 

about 10 usable images of the study area each year. This may not be sufficient for 

hydrological model validation and data assimilation. One possible solution is to fill the 

gaps with data from other satellites, such as Sentinel 2 and MODIS Terra and Aqua. 

Although Sentinel 2 has just launched few years ago, it has higher spatial and temporal 

resolution than Landsat 8 and has been used in the snow related research (Wayand et 

al., 2018). MODIS has a lower spatial resolution, but it can provide two images each 

day for the study area and this can significantly increase data availability. 

3.6 Conclusion 

Four regular indices that are typically available from optical and thermal remote sensors 

were chosen in this research to study both the influence of canopy snow on reflectance 

and the potential for canopy snow detection. The results indicate that canopy snow 

dramatically increased NDSI and decreased NDVI and these changes in magnitude 

varied among forest conditions. When snow was present on a canopy, the increase of 

albedo was relatively small compared to changes in NDSI and NDVI, nevertheless, it 

was detectable. The magnitude and rate of increase of albedo were highly influenced 

by SEA, forest canopy coverage, and topography. Canopy snow reduced the LST of 

forests and clearings and enlarged the temperature difference between the forest canopy 

and air temperature. The temperature of canopies was closer to ground snow surface 

temperature when they were snowcovered. Canopy temperature was closer to air 

temperature when canopies were snow-free. However, canopy temperature is also 

highly influenced by illumination conditions and time of the day. Further research is 

needed to confirm LST use as an indicator of canopy snow. 

 

A canopy snow detection case study was conducted in MRCB using both NDSI and 

NDVI thresholds. The results were compared to a simulation using CRHM forest 

canopy snow interception algorithms. The detection classification results agreed with 

model simulations 82.6% of the time in continuous forests while the agreement in 

sparse forests and clearings with small trees was relatively lower (72.1% and 70.1 %). 

Therefore, NDSI and NDVI are recommended as canopy snow detection indices. The 

new source of canopy snow interception information available from these indices may 

provide future methods to validate or assimilate to land surface snow prediction models. 
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4.1 Preface 

After developing a remote sensing snow interception detection approach in the previous 

chapter, the next step is to assimilate these observations to a hydrological model. Snow 

interception is a crucial hydrological process in cold regions needleleaf forests, but it is 

rarely measured directly. Indirect estimates of snow interception can be made by 

measuring the difference in the increase in snow accumulation between the forest floor 

and a nearby clearing over the course of a storm. Pairs of automatic weather stations 

with ultrasonic snow depth sensors provide an opportunity to estimate this, if snow 

density can be estimated reliably. Data assimilation can merge the advantages of snow 

interception observation and modelling to provide an optimal snow interception 

estimation. This research is aiming to: 1) determine how automatically measured snow 

depth in the forest and clearing can be used to quantify snow interception loss in the 

forest, and 2) examine the influence of assimilating ground measured and remotely 

sensed snow interception information to snow interception simulations. 
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4.2 Introduction 

Snow is a critical, temporary land surface component in cold regions controlling water 

cycling and energy budget through stored precipitation and relatively high albedo than 

other, background surfaces. The processes governing snow residence in cold regions 

needleleaf forests, which cover more than 20% of the Earth’s land surface, are much 

different from open areas because forest canopy alters snow and energy distribution 

(Pomeroy and Gray, 1995; Pomeroy et al., 2008; Suzuki and Nakai, 2008). In needleleaf 

forests, part of snowfall is usually first intercepted by the forest canopy followed only 

later by unloading, melt, evaporation or sublimation (Pomeroy and Goodison, 1997). 

Snow interception and release from tree crowns are mainly controlled by snowfall 

amount, air temperature, wind speed, canopy structure, and topography (Hedstrom and 

Pomeroy, 1998b; Pomeroy et al., 2002). Snow interception leads to the snow water 

equivalent (SWE) on the forest floor being notably different from nearby open areas. 

Many studies have reported that up to 60% annual snowfall can be intercepted by the 

canopy and two thirds of them never reach the ground because of the sublimation 

(Kuz’min, 1960; Pomeroy and Schmidt, 1993; Storck et al., 2002). Due to snow’s high 

albedo and low thermal conductivity, it affects energy partitioning in and beneath the 

canopy (Suzuki and Nakai, 2008). Therefore, accurately determining the magnitude and 

timing of snow interception both play an important role in land surface or hydrological 

modelling and water management in cold regions evergreen forests.  

 

Many methods have been developed by researchers during the past few decades to 

quantitatively or qualitatively measure intercepted snow (c.f., Friesen et al., 2015). 

Mass budgeting, which examines the difference between snow accumulations under the 

forest canopy and in nearby open areas over the course of a snowstorm or snow season, 

is the most common indirect approach for quantitatively estimating snow interception. 

Precipitation or snow accumulation can be measured by using traditional precipitation 

gauges (Koivusalo and Kokkonen, 2002), artificial boards (e.g., Floyd and Weiler, 2008; 

Lundberg et al., 1998), or snow surveys (Hedstrom and Pomeroy, 1998). The annual 

loss caused by sublimation of intercepted snow can be obtained by differences in peak 

SWE between an adjacent forest and open area (Lundberg et al., 1998; Pomeroy and 

Schmidt, 1993; Winkler et al., 2005). The direct approach for measuring snow 

interception on a single tree or branch always involves a lysimeter or compression 

sensor that connects to a cut, a live tree or branch to measure weight change during and 

after a snow storm (Hedstrom and Pomeroy, Lundberg et al., 1998; Martin et al. 2013; 

1998; Pomeroy and Schmidt, 1993; Schmidt and Pomeroy, 1990; Suzuki and Nakai; 

2008;). Although these approaches can provide accurate interception measures, they all 

have drawbacks. For example, a cut hanging tree (branch) dries out through time 

making its tare weight change. The compression senor method is still experimental. 

Images from ground based digital cameras (Floyd and Weiler, 2008; Garvelmann et al. 
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2013; Pomeroy and Schmidt, 1993) or an optical remote sensing satellite (Lv and 

Pomeroy, 2019a) have been used to detect canopy snow presence based on the high 

reflectance of snow. Some of these studies have developed a method to calculate the 

snowcovered area of the canopy, however, the actual amount of intercepted snow has 

remained elusive. Snow mass budgeting is laborious or requires regular observations to 

determine field SWE changes. Automatic SWE measurement is not readily available or 

possible under forest canopies in most cold regions (Kinar and Pomeroy, 2015). 

Nevertheless, automatic, ultrasonic snow depth sensors are usually included in 

meteorological stations. Such snow depth measurements have been used to derive 

precipitation (Mair et al., 2016), snow density (Helfricht et al., 2018), and SWE (Egli 

et al., 2009), and have been used to compare water balance between forests and 

clearings (Bales et al., 2011). But, to date its use for quantitatively determining snow 

interception is needed to be further explored.  

 

Many models have been developed to simulate snow interception and unloading in 

forests (e.g. Bartlett et al., 2006; Hedstrom and Pomeroy, 1998; Niu and Yang, 2004). 

In these models, interception is usually determined by the initial snow load, snowfall 

rate, and the maximum snow storage capacity of the canopy, which is determined by 

air temperature, fresh snow density, and canopy coverage. The unloading of intercepted 

snow is usually determined by wind speed and time since the snowfall. The intercepted 

snow changes albedo, canopy temperature and hence the shortwave and longwave 

radiation around the canopy. All these factors rely on high quality climate data for 

simulating snow interception and release to achieve desirable accuracy. Because canopy 

intercepted snow is relatively less than snow on the ground and usually only stays for 

few hours to days, the modelling of canopy snow is more sensitive than ground 

snowpack to the quality of the forcing data that run the model. However, because of the 

sparse meteorological observation system in cold regions forests, climate model outputs 

that have relatively low accuracy are the only available source of data to model snow 

interception in most areas. Hence, the need for data assimilation (DA) to allow better 

simulation of snow interception. 

 

Snow observations and models both have drawbacks in estimating hydrological 

properties. Observations are usually limited by small spatial coverage (e.g., automatic 

station) or sparse repeat frequency (e.g., satellite remote sensing), or both (e.g., manual 

survey). Models are simplified representations of real world physical processes and 

their simulation accuracy is greatly influenced by the quality of parameterization and 

input data. To optimize estimation of hydrological properties, DA has been introduced 

to hydrological models since it combines advantages of observation (e.g., relatively 

higher accuracy) and modelling (e.g. low cost and consistent at reasonable spatial and 

temporal scales).  

 

Many DA methods have been developed in environmental science that differ in how 

they treat observations and model simulation error covariance (Liu et al., 2012). A 
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simple insertion method assumes that observations are perfect and only modelling 

contains error. Hence, modeled state variables are directly replaced by observations 

whenever there is an observation available. Other data assimilation approaches that 

have adopted improved sophisticated algorithms to determine model and observational 

uncertainty and are being used by many cold regions hydrologists. The most common 

are the Kalman filter (KF) family (traditional KF, EKF, EnKF), Particle Filter (PF), and 

four-dimensional variational data assimilation (4DVAR). Cold regions hydrologists 

have used these approaches to assimilate both in situ observations and remotely sensed 

data, including snow cover fraction (Andreadis and Lettenmaier, 2006; Clark et al., 

2006; De Lannoy et al., 2012; Liu et al. 2013; Rodell and Houser 2004; Slater and Clark 

2006; Stigter et al., 2017), snow depth (Hedrick et al., 2018; Kumar et al., 2014; Kumar 

et al., 2017; Liu et al. 2013; Lv and Pomeroy, 2019b; Magnusson et al., 2017; Stigter et 

al., 2017), and SWE (Andreadis and Lettenmaier, 2006; Bergeron et al., 2016; Franz et 

al., 2014; Huang et al., 2017; Liston and Hiemstra, 2007; Lv and Pomeroy, 2019b), into 

the hydrological models. However, to authors’ knowledge, the assimilation of snow 

interception information has yet to be explored. 

 

Snowmelt runoff from the Canadian Rockies contributes to the headwaters of major 

rivers that provide essential water supply for large portions of western Canada and the 

northwestern United States. Needleleaf forests cover much of the Canadian Rockies, 

and so accurate determination of the magnitude and timing of snow interception plays 

an important role in regional water management.  

 

This research studied the use of automatically measured snow depth from adjacent 

forest and clearing sites to quantitatively estimate snow interception in a headwater 

basin in the Canadian Rocky Mountains. This snow interception data, along with a 

weighed, hanging tree and time-lapse camera measured snow interception information, 

were assimilated into a physically based, process-hydrology Cold Regions 

Hydrological Modelling platform (CRHM) model using EnKF and rule based direct 

insertion to assess the influence of DA on snow interception simulation. The specific 

objectives of research are to determine how automatically measured snow depth in the 

forest and clearing can be used to quantify snow interception loss in the forest, and to 

examine the influence of assimilating ground measured and remotely sensed snow 

interception information to snow interception simulations.  

4.3 Study area and data 

4.3.1 Marmot Creek Research Basin 

This study took place in the Upper Forest (UF) and Upper Clearing (UC) sites at the 

Marmot Creek Research Basin (MCRB). MCRB is located in the Front Ranges of the 

Canadian Rockies in Alberta, Canada (Figure 4-1). It is about 9.4 km2 with an elevation 
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range from 1700 to 2825 m. At low to middle elevations, continuous stands of 

Lodgepole Pine, Engelmann Spruce, and Douglas Fir are the dominant land covers. 

Upper elevations are dominated by Larch, Engelmann Spruce, Sub-alpine Fir, shrubs, 

and grasses. The highest elevations are covered largely by talus and exposed rock. The 

main precipitation type in the basin is snow (up to 75% in high elevations) with mean 

annual precipitation varying by elevation from 660 to 1140 mm. Approximately 65% 

of basin is covered by forest. Snow interception by the forest canopy and sublimation 

of intercepted snow both control snow accumulation such that up to 60% of the annual 

snowfall never reaches the ground under the needleleaf forests (Ellis et al., 2010). In 

the 1970s, six large and thousands of small clearings were cut to study the influence of 

deforestation on local hydrology (Rothwell et al., 2016). UC is located in one of the 

middle elevation (1840 m) clearings with a diameter of approximately 60 m. Forty years 

after deforestation, the main vegetation type in UC is short grass and natural forest 

regeneration with young trees less than 2 m high. The UF site is located in a relatively 

level mature mixed forest stand of Spruce, Fir and Pine that is approximately 30 m from 

the northwest edge of UC.  

 

 

Figure 4-1. Landcover of Marmot Creek Research Basin, Alberta, Canada (left) and a close-up of upper 

forest and upper clearing sites (right, photo from Google Map). 

4.3.2 Data collection  

Two meteorological stations were mounted in UC and UF to continuously measure 

climate data at 15- minute intervals beginning in 2005. A Campbell SR50 sensor is 

mounted on each of the meteorological stations to measure snow depth. An Alter-

shielded Geonor weighing precipitation gauge was used to measure precipitation at UC. 

Precipitation data are corrected for wind-induced undercatch (Smith, 2009). Hourly air 

temperature, relatively humidity, soil temperature, wind speed, short- and longwave 

radiation, snow depth, and precipitation data until September 2017 were collected at 

both sites. A tree was suspended at UF to quantitatively measure snow interception on 

forest canopy from January 2016 to June 2017. A time-lapse camera (Wingscapes 
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TimelapseCam) was mounted on the Gold chair-lift at the Nakiska Ski Resort beside 

MRCB from March 2015 to June 2016 to take pictures of the forest canopy in the basin. 

Hourly images were processed following Lv and Pomeroy (2019a) to determine the 

time of intercepted snow on the forest canopy. Snow surveys were conducted one to 

three times each month at both sites from November to June of each hydrological year 

from 2006 to 2017. The survey follows designed transects near the sites with at least 25 

snow depth measures and one snow density measure among every five depth 

measurements using the ESC30 snow tube. In addition to locally observed 

meteorological data, the Environment and Climate Change Canada Global 

Environmental Multiscale (GEM) model 2.5 km grid product from November 2014 to 

August 2017 was used to run the CRHM model for DA experiments. Four grids of GEM 

data were needed to cover the entire MCRB basin. GEM outputs were hourly air 

temperature, relative humidity, wind speed, incoming shortwave radiation, incoming 

longwave radiation, and precipitation. These outputs were not bias corrected. The 2.5 

km GEM data were downscaled to Hydrological Response Unit (HRU, which is the 

basic simulation unit in CRHM) scale before forcing CRHM. Precipitation and air 

temperature for each HRU were adjusted based the observed elevation lapse rate in 

MCRB. Other forcing variables of each HRU were assigned to the value of the closest 

GEM grid cell. 

4.4 Methods 

4.4.1 Snow interception estimation 

4.4.1.1 Snow depth data filtering 

SR50-measured fixed point snow depth data usually contains error and noise and is 

unable to represent landscape mean (Neumann et al., 2006; Ryan et al., 2008). 

Therefore, the data were error corrected, smoothed, and upscaled following the methods 

in Lv and Pomeroy (2019b). Because air temperature influences the speed of sound, 

temperature compensation was conducted on SR50 ultrasonic sensor reading according 

the following formula provided by Campbell Scientific (2009):  

 

𝑆𝑐 = 𝑆𝑟√
𝑇𝑎

273.15
                                                     (4.1) 

 

where Sc is the compensated snow depth, Sr is the raw sensor reading, and the Ta is air 

temperature in Kelvin. 

 

After compensation, snow depth data still contains noise. “Noisy” data were removed 

by applying a three-hour moving average following Ryan et al. (2008). Fixed point 

snow depth measurements usually systematically over- or under-estimate areal means 

because of heterogeneity in snow accumulation, redistribution, and ablation caused by 
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topography, vegetation and wind (Pomeroy and Gray, 1995). Therefore, these were 

upscaled using a “scaling equation” developed using the relationship between 

temperature compensated as well as noise removed SR50 data and snow depth data 

from snow surveys at each site. For details of these “scale equations” refer to Lv and 

Pomeroy (2019b).  

4.4.1.2 Fresh snow density estimation 

Three methods were used to estimate fresh snow density to obtain SWE from the SR50 

snow depth data. Because of popular air-borne snow depth measurements, many studies 

have combined these measurements with snowpack model-simulated snow density to 

estimate SWE in cold regions (Hedrick et al., 2018; Painter et al., 2016). In the present 

research, the first method used the physically based energy-balance Snobal module in 

CRHM running local observed meteorological data to simulate the snowpack density. 

However, Snobal can only simulate the density for the entire snowpack. Pomeroy and 

Gray (1995) reported that the different snow densities should be applied to fresh and 

old snow. Concomitant increases of simulated SWE and snow depth during snowfall 

events were used to calculate fresh snow density. The second method is described in 

Equation 4.2, proposed by Hedstrom and Pomeroy (1998) that uses air temperature to 

calculate freshly fallen snow density (the Hedstrom-Pomeroy method hereafter). 

 

𝜌𝑓𝑠 = 67.9 + 51.3 𝑒
𝑇/2.6                                            (4.2) 

 

where 𝜌𝑓𝑠 is the fresh fallen snow density, T is the air temperature at 2 m in oC.   

 

The third method is described by Equation 4.3, developed by Jordan et al. (1999), that 

uses air temperature and wind speed to estimate freshly fallen snow density (the Jordan 

et al. method hereafter).  

 

{
𝜌𝑓𝑠 = 500 [1 − 0.951𝑒(−1.4

(278.15−(𝑇+273.15))
−1.15

−0.008𝑢1.7)]  − 13 < 𝑇 ≤  2.5 ℃ 

𝜌𝑓𝑠 = 500[1 − 0.904𝑒(−0.008𝑢
1.7)]                         𝑇 ≤  −13 ℃    

 

(4.3)            

 

where u is the 10-m wind speed in m/s.  

 

Because the snowpack densification rate in cold and sheltered environments is usually 

as low as 25 kg/m3 per month during the winter (Pomeroy et al., 1998a), all three 

methods assumed that the densification of lower old snowpack is negligible during 

snowfall events and the change of snowpack depth is contributed by fresh snow 

accumulation alone. The second and the third methods assume that fresh snow densities 

in the clearing and the forest are same during the snowtorm. 
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Snowfall events with mixed precipitation types (snow and rain) can affect the accuracy 

of snow density estimation. Thus data from these storms were excluded from the 

analyses and only data from pure snowstorms were analyzed. The precipitation phase 

of an event was determined following the method proposed by Harder and Pomeroy 

(2013).  

 

Measured snowfall amount from a shielded weighing precipitation gauge and snow 

depth increase were used to estimate the actual fresh snow density of each storm. These 

data were used to validate the calculated fresh snow density using root mean square 

error (RMSE, Equation 4.4) and Model Bias (MB, Equation 4.5). 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑖−𝑋𝑠𝑖)

2𝑛
𝑖=1

𝑛
                                               (4.4) 

𝑀𝐵 =
∑𝑋𝑠

∑𝑋𝑜
− 1                                                     (4.5) 

 

where xs and xo are simulated and observed fresh snow density, respectively. 

4.4.1.3 Interception estimation 

Forest canopy snow interception at the UF site was determined by the difference 

between SWE increases in UC and UF during each snow event using Equation 4.6:  

 

Int =  ΔSWEUC  − ΔSWEUF                                          (4.6) 

 

where Int is the snow interception amount for a snowfall event in UF, ΔSWEUC and 

ΔSWEUF denote the SWE increase during the snow fall for UC and UF, respectively.  

 

The estimated snow interception from the three methods was compared to the snow 

interception measured by the suspended weighed tree at UF from January 2016 to June 

2017 to determine the optimal method for snow interception estimation in the study site. 

The best method for estimating snow interception was used to scale the weighed tree 

data. 

4.4.2 CRHM 

The Cold Regions Hydrological Model platform (CRHM) was used to create a model 

to simulate snow interception and release from the forest canopy the UF site. CRHM is 

designed to assemble hydrological models that are suitable for cold regions. 

Researchers can create projects by choosing from a wide range of basin configurations, 

spatial and temporal resolutions, and hydrological process modules based on their 

research interests, data availability, and research scale. The CRHM library contains 

many modules that can be used to interpolate meteorological data, to simulate rainfall 
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and snowfall interception, wind redistribution, sublimation, albedo decay, canopy 

transmittance, snow energy and mass balance, evaporation, melt, snowcover depletion, 

infiltration, soil moisture, flow and storage of surface and subsurface, and streamflow 

routing. Detailed information about CRHM and the modules are given in several recent 

publications (Ellis et al., 2010; Fang et al., 2013; Fang and Pomeroy, 2016; Pomeroy et 

al., 2007; Pomeroy et al., 2016b).  

 

The canopy module used in this study was initially developed by Parviainen and 

Pomeroy (2000) and later modified by Ellis et al. (2010). The main parameters of this 

module are canopy snow-free albedo, leaf area index (LAI), maximum canopy snow 

interception load, ice bulb temperature that controls snow unloading as solid or liquid, 

and the measurement height of air temperature and wind speed. These parameters were 

set according to field measurements or following the research of Ellis et al. (2010) and 

Pomeroy et al. (2012).  

 

The Snobal module (DeBeer and Pomeroy, 2010; Marks et al., 1998) was used to 

simulate the mass - energy balance of snowpack and the snow density on the ground. 

Snobal assumes fresh fallen snow density as 100 kg/m3. It divides the snowpack into 

two layers (active and lower) that are the same density if snowpack depth is greater than 

10 cm. The active layer has a maximum thickness of 10 cm following Marks et al. 

(2008). The forcing data for the model are locally observed or GEM produced air 

temperature, relative humidity, soil temperature, wind speed, incoming shortwave 

radiation, and precipitation. The model is flexible but in this case was run at an hourly 

time step. When observations become available, model runs stop at 1 a.m. and a state 

file is exported. This state file contains values of all necessary state variables and fluxes 

at that moment. After the assimilation, this file is updated and set as the initial condition 

for next model run. 

4.4.3 Snow interception assimilation 

4.4.3.1 Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) was used to assimilate continuous snow 

interception data obtained by snow depth measurements and weighted tree at the UF 

site. EnKF was chosen because it is easy to implement and it has been successfully used 

to assimilate other snow properties into hydrological models in many studies over the 

world (e.g., Franz et al., 2014; He et al., 2012; Kumar et al., 2009). EnKF is a sequential 

assimilation approach that can be used to update model state variable(s) when an 

observation is available. The updating amount is determined using the Kalman gain (K, 

Equation 4.8), which is determined by the error covariance of ensemble model 

simulation and observations, and the difference between simulated and observed state 

variable using the following equation:  
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𝑥𝑖,𝑗
𝑢 = 𝑥𝑖,𝑗

𝑠 + 𝐾𝑖(𝑦𝑖,𝑗 −𝐻𝑖𝑥𝑖,𝑗
𝑠 )                                           (4.7) 

 

where xi,j and yi,j denote the jth (j=1, 2, …, N, N is ensemble size) ensemble model state 

and observation vector at time step i (i =1, 2, …, M, M is number of observations); 

superscripts u and s denote the updated and simulated model state vector; Hi is the 

operator that relates the model vector to the observed vector and it is a unit factor in 

this study. The Kalman gain Ki in ith time step is calculated by: 

 

𝐾𝑖 = 𝑃𝑖
𝑠/(𝐻𝑖𝑃𝑖

𝑠 + 𝑅𝑖)                                                 (4.8) 

 

where 𝑃𝑖
𝑠 and 𝑅𝑖 are the error covariances of model forecast and observation at time 

step i, respectively. Model forecast error covariance is estimated from the ensemble 

model simulations covariance. Observation error covariance is obtained by perturbation 

of observations with a presumed standard deviation.  

 

In the EnKF DA, model simulation uncertainty is assumed to be primarily caused by 

uncertainty in forcing climate data in the present research. As a result, ensemble model 

simulations were run by Monte Carlo perturbed forcing data following earlier research 

(Kumar et al., 2014; Liu et al., 2013; Reichle et al., 2002). For incoming shortwave 

radiation and precipitation, multiplicative perturbation with a mean value of 1 was 

performed to avoid unreasonable outcomes such as positive incoming short-wave 

radiation at night or negative precipitation. Additive perturbation with a mean value of 

zero was run for other driving forces (Table 4-1). For model state variable – canopy 

snow load, multiplicative perturbation was conducted, with standard deviation set at 

0.05. Because forcing variables are frequently related, such as precipitation resulting in 

low incoming shortwave radiation, a cross correlation was imposed to all variables 

except wind speed using established relationships (De Lannoy et al., 2012; Riechle et 

al., 2007) (Table 4-1). Theoretically, more ensemble simulations in EnKF DA means 

higher accuracy. However, in consideration of computational efficiency, twenty was 

chosen as ensemble number following on previous research (Kumar et al., 2009; Kumar 

et al., 2014). Using EnKF, snow interception data derived from SR50 measurement was 

assimilated for each snow storm detected from November 2014 to August 2017 

(hereafter DA_SR50). The hanging tree measured snow interception was assimilated 

daily from January 2016 to June 2017 (hereafter DA_Tree). 
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Table 4-1. Model driving and state variables with perturbation parameters. 

 

4.4.3.2 Rule based direct insertion 

Although snow interception data derived from the time-lapse camera (TLC) and 

satellite images is not able to determine the magnitude of interception, it provides the 

timing of interception. In particular, the data from time-lapse camera not only provides 

the initiation of interception, but also the duration of snow interception storage on the 

canopy. To assimilate this information into CRHM, a rule based simple insertion 

method inspired by the satellite measured snowcover information assimilation research 

of Rodell and Houser (2004) and Liu et al. (2013), was proposed in the present research. 

The TLC-derived snow interception information was assimilated daily (hereafter 

DA_TLC). Simulated snow interception was compared to the TLC information at end 

of each day. If the model-simulated snow interception was less than 1 mm and TLC 

information indicated there was snow on the canopy, the snow interception was adjusted 

to a minimum value (3 mm). In contrast, if model-simulated snow interception was 

greater than 1 mm but TLC information showing there was no snow on the canopy, the 

simulated snow was adjusted to 0. Assimilation can be only conducted at the midnight 

of each day in CRHM, but TLC can only show interception information during daylight. 

So, there were always several hours of lag between the observation and assimilation 

times. In addition, snowfall and intercepted snow unloading can happen at night. 

Therefore, only days with obvious midnight snow interception information were 

assimilated. On such days, canopy snow interception information was consistent before 

sunset of the first day and after sunrise of the second day. Therefore, days with unknown 

midnight snow interception information, indicated by no snow on the canopy in the 

evening but snow present on the canopy the following day, were omitted from the 

assimilation process. Two control experiments without DA were conducted to be 

compared to the DA experiments to assess the influence of DA on simulation of 

interception. One was forced by GEM data (OL) and the other was forced by local 

observed meteological data (ObsMet).  
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4.5 Results 

4.5.1 Snow depth in forest and clearing 

According to SR50 measurements, snow depth in the clearing was frequently higher 

than that in the forest (Figure 4-2). For the 12 hydrological years of observations, annual 

peak snow depths in the clearing and forest were correlated to each other (r2=0.91, 

P<0.05). Peak snow depth in the forest was 26.5 – 54.1% (mean: 45.8%) less than that 

in the clearing. At the end of the snow season, the snowpack on the ground lasted 0 to 

8 days (mean: 4.4 days) longer in the forest than in the clearing. Snow survey data 

indicated that the snowpack density in the clearing and forest were correlated, but not 

strongly (r2=0.5, P<0.05; Figure 4-3 a) and the snowpack density distribution and mean 

value at the two sites were similar (Figure 4-3 b). A T-test for two data sets illustrated 

that there was no significant difference between two sample means (data not shown). 

This indicated that the snow depth ratio was close to the SWE ratio between sites. 

 

 

Figure 4-2. SR50 measured snow depth at upper clearing (UC) and upper forest (UF) sites in the Marmot 

Creek Research Basin.  
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Figure 4-3. Comparison of observed snowpack densities at the upper clearing (UC) and upper forest (UC) 

sites in Marmot Creek Research Basin. a) UF density versus UC density and a 1:1 line for comparison, 

b) box plots of the distribution and mean of snowpack densities for UF and UC sites. 

Snow depth increases during snowfall events in UC and UF were strongly correlated 

(r2=0.9, P<0.05). The linear relationship between the snow depth increases was 

significant (Figure 4-4). On average, snow depth increases in the forest were 

approximately 47.6% lower than those in the clearing. For several small events, the 

snow depth changes in the forest were negative even though there was a snow depth 

increase in UC. This can be explained by a high interception efficiency for low snowfall 

amounts such that there was only very small accumulation below the canopy. Minor 

densification (< 3 cm) also impacts the old snowpack depth on the forest floor during 

the event. Almost all the events with heavy snow (snow depth increase higher than 30 

cm in UC) were located above the correlation line, demonstrating that the snow 

interception efficiency decreases whilst snowfall amount increases. 
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Figure 4-4. Comparison of snow depth (ds) increase from upper forest (UF) and upper clearing (UC) 

during each snowfall event. Black line shows the 1:1 ratio and blue line shows indicates the best linear 

regression. 

4.5.2 Fresh snow density estimation 

Snobal-simulated snowpack density was compared to directly observed snowpack 

density in UC and UF from 2005 to 2017. The model simulation frequently 

overestimated observed snowpack density at both forest and clearing sites (Figure 4-5). 

The overestimation rate was especially high in the early snow season of each 

hydrological year. On average, the model overestimated snowpack density by 43% and 

44% at UC and UF, respectively. The RMSE of model simulated snowpack density in 

UC and UF was 129.7 kg/m3 and 141.5kg/m3, respectively.  

 

Model simulated fresh snow density was frequently larger than that observed, resulting 

in the modelled snow depth increase being much smaller than that observed (Figure 4-

6). Therefore, using the model simulated snowpack density and observed snow depth 

leads to the overestimation of SWE at both sites. The calculated fresh snow density 

using Hedstrom-Pomeroy method was close to observation most of the time while the 

Jordan et al. method underestimated the fresh snow density for both events. 
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Figure 4-5. Time-series of Snobal simulated and observed snowpack density in the upper clearing (top) 

and upper forest (bottom) in Marmot Creek Research Basin. 

 

 

Figure 4-6. Time-series of simulated, calculated, and observed fresh snow density and simulated and 

observed snow depth accumulation during two snow storms at upper clearing site in Marmot Creek 

Research Basin. 
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The comparison between calculated and observed fresh snow density for all snowfall 

events from 2005 to 2017 is shown in Figure 4-7. The coefficients of determination (r2) 

between observed and calculated fresh snow density were lower than 0.4 for both 

methods. The RMSE of the Hedstrom-Pomeroy equation calculated fresh snow density 

was 14.7 kg/m3, while the RMSE of the Jordan et al. equation was slightly higher (21.5 

kg/m3). There was small underestimation trend for both Jordan et al. method and 

Hedstrom-Pomeroy method as their MB value were −0.02 and −0.08, respectively. The 

mean value for observed fresh snow density at the UC site was 83.7 kg/m3, which is 

slightly higher than the average value calculated using both methods (82.2 kg/m3 and 

77 kg/m3 for Hedstrom-Pomeroy and Jordan et al., respectively). The lower limit of 

calculated fresh snow density, which is the result of low air temperature, was around 68 

kg/m3 and 48 kg/m3 for Hedstrom-Pomeroy and Jordan et al., respectively. This resulted 

in calculated fresh snow density values for many snowfall events being the same or 

around the lower limit value. This partially contributed to the relatively low r2 values 

for both methods.  

 

 

Figure 4-7. Comparison of measured and calculated fresh snow density using Hedstrom-Pomeroy 

equation (left) and Jordan et al., equation (right) without any fresh snow densification at the upper 

clearing site in Marmot Creek Research Basin. A 1:1 line (black) is plotted for comparison. The 

regression line (blue) is only shown to display the fitted relationship for the regression. 

The difference between observed and calculated fresh snow density was determined 

and plotted against the snow event duration (Figure 4-8 a). For the Hedstrom-Pomeroy 

method, the average differences were negative when the snowstorm duration was less 

than 12 hours. When the snowstorm duration was longer than 12 hours, the difference 

became positive, increasing with longer snow event duration. This value peaked at 57 
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kg/m3 when snow event duration was 53 hours. With the Jordan et al. method, average 

difference values were frequently positive and increasing with increasing snow event 

duration. This indicated that fresh snow densification exists and varies among snow 

events. This study and the predictive algorithms tested, assumed that the densification 

of fresh snow during snow events at sheltered study sites is negligible; an assumption 

not validated in many cold regions (Goodison et al., 1981). However, according to the 

calculated and observed fresh snow density, the densification rate was frequently less 

than 1 kg/m3 per hour, indicating that the assumption of only a very small fresh snow 

densification is valid at present research sites. The densification rate is well correlated 

to the snow storm duration (Figure 4-8 b). Therefore, a small densification rate was 

added to the calculated fresh snow density for both methods for all snow storms 

according to the relationship between snow storm duration and densification rate that 

show in Figure 4-8 b. In all, the Hedstrom-Pomeroy equation worked better than the 

Jordan et al. equation at the study sites. In sheltered environments, fresh snow density 

can be effectively estimated using air temperature and a small densification rate. 

 

 

Figure 4-8. Comparison of snow storm duration (hours) to the difference between measured and 

calculated fresh snow density using two methods at the upper clearing site in Marmot Creek Research 

Basin. a). Average difference between measured and calculated fresh snow density among different snow 

storm durations. b). Comparison of average difference between measured and calculated fresh snow to 

snow storm durations (hours). A 1:1 line (black) is plotted for comparison. The regression line (blue) is 

only shown to display the fitted relationship for the regression. 
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4.5.3 Validation of interception estimation methods 

The calculated snow interception using three methods from 2016 to 2017 was validated 

using interception data measured by the weighed tree at UF (Figure 4-9). The Snobal 

method showed poor accuracy in estimating snow interception with a high RMSE of 

21.4 mm and low r2 (0.21). The correlation between calculated and observed 

interception was weak. This may be caused by the fact that Snobal largely 

overestimated the fresh snow density and hence the SWE at both sites as it assumes the 

density of fresh snow is 100 kg/m3. The two methods which use calculated fresh snow 

density and observed snow depth increase to estimate SWE change showed higher 

accuracy. The RMSE of both methods are low (2.0 mm and 2.6 mm for Hedstrom-

Pomeroy and Jordan et al., respectively). The r2 between calculated and observed snow 

interception for Hedstrom-Pomeroy method was 0.72, while the value for Jordan et al. 

was 0.66. The Hedstrom-Pomeroy method worked best amongst all methods so it was 

selected to estimate snow interception at UF. This indicates that continuously measured 

snow depth data are capable of quantifying snow interception. 

 

 

Figure 4-9. Comparisons between snow interception estimated by three methods and weighted tree 

observations at upper forest site in Marmot Creek Research Basin. A 1:1 comparison line is shown for 

reference. 

4.5.4 Snow interception assimilation 

Assimilation results were evaluated using weighed tree measurements and time-lapse 

camera photos from January to June 2016. These two data sets were both available only 
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during this period. ObsMet-simulated interception magnitude and timing were often 

close to observations (Figure 4-10). But the OL simulated snow interception did not 

agree with measurements most of the time, while three DA experiments improved 

interception simulation in varying degrees (Figure 4-10). 

 

 

Figure 4-10. Time series of CRHM simulated snow interception from different DA experiments driven 

by GEM data (GEM, DA_SR50, DA_Tree, DA_TLC, unit: mm) and CRHM simulation driven by 

observed meteorological data (ObsMet, unit: mm), the hanging tree measured snow interception 

(TreeInterception, unit: mm), and the time-lapse camera derived canopy snow cover timing (Time-lapse, 

yellow dot, 0, 1, and 0.5 denote canopy snow free, canopy snow covered, and unknown, respectively).  

The snowfall event shown in Figure 4-10 a, the OL simulated interception began 12 

hours earlier than the observation and disappeared before the observed interception 

began. The ObsMet simulation slightly overestimated the magnitude and timing of 

snow interception when compared to observations. All three DA experiments improved 
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the simulation on March 11th and the simulated snow interceptions were closer to 

observations than ObsMet simulation. However, because assimilation time is midnight, 

the incorrect interception in the morning of March 10th was not removed and the 

interception before the midnight was not simulated by all three DAs. 

 

During the event shown in Figure 4-10 b, observations indicated there were only a few 

hours of snow interception around noon of March 25th. The ObsMet simulation agreed 

with the observation in interception timing but slightly underestimated the interception 

magnitude. OL simulated snow interception was continuous from March 24th to 26th 

while the all three DAs did not detect interception at the beginning of March 25th. 

Simulations of all DAs agreed well with observations for the rest of detected events. 

However, like OL, all three DAs simulated interception following the afternoon of 

March 24th and there was no improvement in the simulated interception predictions for 

all three DA experiments on this day.  

 

For the event shown in Figure 4-10 c, snow was observed continuously landing on the 

canopy. The ObsMet simulation agreed well with observation of interception timing 

while slightly overestimating the intercepted snow amount. The OL simulation did not 

capture the interception from May 9th to 10th at all. After assimilation, all three DA 

experiments added some snow to the canopy at the beginning of May 9th, but the canopy 

snow completely ablated in the afternoon that day due to the high sublimation that was 

simulated. At the beginning of the May 10th, DA_Tree and DA_TLC added some snow 

to the canopy again and the simulated canopy snow disappeared earlier than was 

observed that day. DA_SR50 did not add snow to the canopy on May 10th because this 

method only assimilates snow interception amount during a single event without 

information of how long the snow stays on the canopy.  

 

There were two events shown in Figure 4-10 d. Like previous snowfall events, the 

ObsMet-simulated the timing of interception well but not the magnitude. The OL 

simulated the first event’s interception well but missed the second. DA_SR50 and 

DA_Tree have good simulation results but DA_TLC greatly overestimated the 

interception for the first event. Because model-simulated snow interception was less 

than 1 mm at the beginning of May 30th, DA_TLC adjusted the snow interception to 3 

mm according to assimilation rules. However, because the snowfall occurred after 

midnight, this contributed to the overestimation in DA_TLC. For the second small 

event, DA_Tree effectively simulated interception and DA_TLC again overestimated 

interception. The DA_SR50 simulation did not add any snow to the canopy because the 

storm was small and the SR50 interception estimation method did not catch this event. 

 

Figure 4-11 shows the results of DA experiments for the entire validation period. These 

results show that the weighed tree measurements agreed well with the time-lapse 

camera data with 93% consistency and ObsMet simulation overestimated interception 

duration by 4%. However OL only agreed with the time-lapse camera information about 
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57% of the time. After data assimilation, this rate increased to 61%, 68%, and 76% for 

DA_SR50, DA_Tree, and DA_TLC, respectively. The improvement of DA_SR50 was 

small and believed to be caused by the low assimilation frequency. The DA_TLC had 

the best results indicating that assimilating the time-lapse camera snow interception 

information based on the simple rule based method can greatly contribute to predicting 

interception timing. The RMSE of OL was 0.84 mm and data assimilation improved 

the accuracy by varying amounts. DA_Tree (RMSE = 0.68 mm) achieved the best 

results among all DAs and this is likely contributed to its relatively high DA frequency 

and better input data quality. The improvement in the other two DAs was relatively 

small, particularly in the case of DA_TLC that only improved accuracy by 0.06 mm. 

This indicated that although DA_TLC can improve the predictions of interception 

timing, its contribution to the simulation magnitude is small.  

 

 

Figure 4-11. Normalized snow interception timing of DA experiments driven by GEM data (OL, 

DA_SR50, DA_Tree, DA_TLC), CRHM simulation driven by observed meteorological data (ObsMet), 

and tree measurements (Tree) to time-lapse camera (Time-lapse) derived snow interception information 

(shaded bars, unit: 1), and RMSE of snow interception from ObsMet simulation and different DA 

experiments when compared to hanging tree measurement (dark bars, unit: mm). 

Although the three DA experiments that were forced using GEM data did not achieve 

the same results as ObsMet simulation that was forced using local meteorological 

observations, they all improved the interception magnitude and timing in comparison 

to the OL GEM-driven simulation. This indicated that assimilating interception 

information derived from automatic snow depth measurements and time-lapse cameras 

into a model that is forced by numerical weather model outputs can obtain results that 

are similar to those from a model driven by comprehensive locally observed forcing 

data (without assimilation). As comprehensive meteorological stations are sparse in 

cold regions forests, this assimilation strategy can benefit interception simulation in 

these areas.  
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4.6 Discussion 

In this study, automatically measured snow depth data from a needleleaf forest and 

adjacent clearings were used to quantify snow interception in a forest canopy. 

Interception observations were assimilated into a physically based hydrological model 

to better simulate snow interception. Three methods were used to calculate snow density. 

All were used, along with depth observations, to quantify SWE change during snowfall 

events in a forest and a clearing using observed meteorological data. The Hedstrom-

Pomeroy fresh snow density equation, using only air temperature to calculate fresh 

snow density, outperformed other methods. This agreed with the research of Mair et al. 

(2016) and Brazenec (2005). Freshly fallen snow densification can occur immediately 

after snowfall at a rate of 8–13 kg/m3 per hour (up to 12h) during snow events in Ontario 

(Goodison et al., 1981). Gray et al. (1970) also found that the densification rate of 

snowpack in the Canadian Prairies can reach 9 kg/m3 per hour over the course of a 

blowing snow storm. In the present research, no further densification factor was applied 

to fresh fallen snow during snowfall events but the calculated fresh snow density agreed 

well with observations. Although there was evidence of fresh snow densification when 

snowfall duration was longer than 12 hours, the densification rate was as low as <1 

kg/m3 per hour. This is much less than was found by Gray et al. (1970) and Goodison 

et al. (1981). This is almost certainly due to the fact that the study sites in the present 

research are located in sheltered environments where wind has a minor influence on 

snow densification and where cold conditions prevail during snowfall events.  

 

All three DA experiments contribute to better modelling of canopy snow interception. 

Assimilation of time-lapse camera derived canopy snow information can greatly 

improve the simulation of canopy snow coverage timing. However, because snow 

interception is difficult to reliably quantify, improvements to interception magnitude 

are limited. Overall, the DA_Tree achieved the best results in simulating interception 

among all three DA experiments. However, the continuous measurement of snow 

interception amounts from a weighed, suspended tree is not normally available for the 

cold regions forests (there is only one other weighed tree like this in Western Canada), 

and when it is, data are confined to a point scale. Assimilating snow interception 

information that was derived from continuous snow depth measurements gave a 

reasonable result but with one drawback; this method provides the snow interception 

amount at the end of a snowfall event but not information on canopy snow coverage 

duration. This method has a lower DA frequency and no control on the snow unloading 

process compared to the other two DAs.  

 

All three methods share a constraint that originates with the CRHM model. Because 

CRHM can only export and read the state file in the beginning of each day, the highest 

assimilation frequency is a 24 hour return period. This is not a big problem in for surface 

snowpack assimilation (Lv and Pomeroy, 2019b), but significantly influences canopy 

snow estimation. Unlike the surface snowpack that remains on the ground from weeks 
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to months, snow intercepted in forest canopies lasts only from hours to tens of days. If 

canopy snow storage is ephemeral, then the daily assimilation period is too infrequent 

to obtain useful information (c.f., Figures 4-10 a, b, and d). Therefore, higher 

assimilation frequencies at sub-daily or even hourly rates are preferable for canopy 

intercepted snow data assimilation.  

 

Due to canopy snow interception processes, the data assimilation result sometimes may 

not be desirable even if one assimilated a reliable interception measurement. Compared 

to snow on the ground, canopy intercepted snow quantities are small and coverage is 

transitory, persisting for a shorter time and making it very sensitive to meteorological 

conditions. In modelling deep surface snowpacks, a minor error in the forcing data such 

as temperature and humidity, usually does not alter results significantly. However, 

canopy snow interception storage is usually less than 10 mm. Thus, forcing data errors 

can significantly influence simulation results, reducing the benefits of data assimilation. 

For example, in the simulation in depicted in Figure 4-10c, even the canopy snow 

interception was rapidly updated in the DA_Tree experiment. But the canopy snow 

quickly disappeared after assimilations in both days. Figure 4-12 shows an extreme 

example of how error in the forcing data can jeopardize assimilation results. This figure 

shows a comparison of canopy snow interception in the ObsMet simulation that is 

forced by observed meteorological data, to an open loop simulation forced by GEM 

data; the DA_Tree simulation forced by GEM data, and weighed tree measurements. 

According to the weighed tree measurements, intercepted snow covered the canopy 

continuously from January 1st to 17th 2017 and the removal of canopy snow was trivial 

until January 16th. The open loop simulation frequently underestimated canopy snow 

interception and its simulated interception was not continuous. After assimilation, the 

DA_Tree simulated interception agreed well with observations at the beginning of each 

day. However, the model constantly removed the canopy snow by unloading and 

sublimation after the daily assimilation time until the next assimilation. The ObsMet 

simulation captured unloading timing well with little error in the interception 

magnitude. The daily amount of released canopy snow through sublimation and 

unloading was compared between ObsMet and DA_Tree. The error in GEM forcing 

data caused a constantly higher ablation rate, mostly due to sublimation, in DA_Tree. 

This indicates that although data assimilation can improve interception simulations 

during the assimilation time, or shortly afterwards, this improvement would be short-

lived if the model is run using poor quality forcing data.  
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Figure 4-12. Comparison of ObsMet (observation driven), OL (GEM driven), and DA_Tree (GEM driven) 

simulated canopy interception to weighed tree measured snow interception (unit: mm). Stars show the 

accumulated daily unloading and canopy snow sublimation from DA_Tree and ObsMet simulation (unit: 

mm).  

4.7 Conclusions 

Automatically measured snow depth data from an adjacent needleleaf forest and 

clearing were analyzed to quantify losses due to forest canopy snow interception. Peak 

snow depth in the forest was 45.8% lower than in the clearing on average. During 

snowfall events, snow accumulation (peak SWE) under the forest canopy was 

approximately 47.6% less than that in the clearing. Three fresh snow density estimation 

methods were tested with results indicating that the Hedstrom-Pomeroy equation using 

air temperature to calculate fresh snow density worked best. Combining measured snow 

depth data with calculated fresh snow density, snow interception was determined for 

each snow event. Calculated snow interception using this technique was validated using 

measurements from a weighed, suspended tree with results indicating that model 

predictions agreed well with observations. This indicated that automatically measured 

snow depths from adjacent forests and clearings are suitable for estimating snow 

interception in the forest canopy. The calculated snow interception, along with weighed 

tree and time-lapse camera measured snow interception information, were assimilated 

into the Cold Regions Hydrological Model, driven by GEM atmospheric model outputs, 

using the EnKF or rule-based direct insertion approaches. The results were compared 

to the CRHM model driven by locally observed meteorological data. Although the 

simulations after DA were not as accurate as models driven by locally observed 

meteorology, they all improved the simulation accuracy of snow interception amount 

and timing. Snow interception data assimilation is greatly influenced by the 

assimilation frequency and quality of forcing data. Daily assimilation frequency can 

achieve accurate results, but sub-daily or hourly frequency is more suitable for 

intercepted snow data assimilation.  
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5.1 Preface 

As assimilation of snow interception observations benefited the simulation of 

intercepted snow on the canopy, the next step is to extend the benefit of data 

assimilation to basin snowpack and basin streamflow simulations. Accurate snowpack 

and streamflow estimation in snow dominated regions are crucial for local water 

management. Data assimilation (DA) can be used to improve simulations by merging 

uncertainty in model forcing data and observed snowpack information. The potential 

influence of DA on multilayer, physically based models that contain a full suite of snow 

redistribution and ablation processes still needed to be explored. The goal of this 

research is to: 1) determine the optimal method to assimilate in situ measures into 

CRHM, 2) evaluate how well assimilation of point and transect snow observations 

improves of basin snowpack prediction, and 3) assess the contribution of transect based 

SWE assimilation to reducing uncertainty in streamflow simulations. 
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5.2 Introduction 

Snow is a crucial, seasonal component of the land surface in cold regions. It influences 

land surface energy balance with low thermal conductivity, high albedo, long duration 

and wide spatial distribution. It also contributes considerably to local, seasonal stream 

runoff (Moradkhani, 2008; Rodell and Houser, 2004). Snowmelt runoff provide an 

essential summer water supply for agriculture, industry, and domestic use over a large 

portion of the Earth’s surface (Barnett et al., 2008). Due to the sensitivity of snow to 

temperature, the time and magnitude of snowcover and snowmelt runoff have faced or 

will face great changes with climate change (Bavay et al., 2009; Horton et al., 2006; 

Krogh and Pomeroy, 2018; Stewart, 2005; Musselman et al., 2017; Rasouli et al., 2014; 

Rasouli et al., 2015). This will become a major concern of the future global water 

security. 

 

Accurate estimation of snow properties (e.g., SWE, depth, density, and distribution) has 

great weight in determining water and energy budgets in cold regions (Sheffield et al., 

2003). Manual or automatic monitoring of the state of the snowpack can provide 

accurate data, but can be costly. As a result, it is usually not available apart from point 

observations or specialized airborne LiDAR campaigns over river basins that supply 

water to high populations (Painter et al., 2016). Modelling is an alternative tool to 

monitor hydrology as it can be used to estimate past, present, and future snow properties 

and stream flow at multiple spatial scales. However, simulation accuracy is greatly 

affected by model structure, meteorological forcing data, and parameterization. Indeed, 

one of the dominant challenges in snow hydrological modeling is the accuracy and scale 

of the forcing meteorological data. Observed forcing data from weather stations has 

relatively high accuracy. But stations are sparse even in some of the most heavily 

monitored locations, necessitating upscaling. Although the output of climate models 

show continuous cover over a wide geographic range, they have relatively low accuracy 

and are often of lower spatial resolution than the hydrological models they run. 

 

Data assimilation (DA) can have great utility to hydrological management as it 

combines the advantages of snow property observation (relatively higher accuracy) 

with modelling (consistent at spatial and temporal scales). Hence, it offers optimal snow 

properties and streamflow estimation (Clark et al., 2006; Liston and Hiemstra, 2007; 

Liu et al., 2012). Several DA methods have been used to assimilate information both in 

situ observations and remotely sensed data, such as snowcover fraction (Andreadis and 

Lettenmaier, 2006; Clark et al., 2006; De Lannoy et al., 2012; Liu et al. 2013; Rodell 

and Houser 2004; Slater and Clark 2006; Stigter et al., 2017), snow depth (Hedrick et 

al., 2018; Kumar et al., 2014; Kumar et al., 2017; Liu et al. 2013; Magnusson et al., 

2017; Stigter et al., 2017), and SWE (Andreadis and Lettenmaier, 2006; Bergeron et al., 

2016; Franz et al., 2014; Huang et al., 2017; Liston and Hiemstra, 2007), into the 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0008
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0035
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0070
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021278#wrcr23038-bib-0055
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hydrological models. Assumptions differ amongst DA methods in how they treat the 

error covariance of observations and model simulations. The direct insertion method 

assumes that snow observations are perfect while model simulations contain errors so 

that whenever there is an observation, the simulated model state variable is replaced by 

the observation directly (Hedrick et al., 2018; Liston et al., 1999; Rodell et al., 2004). 

The direct insertion method is time saving and easy to implement, however, its 

assumption of error-free observations is far from reality much of the time. Therefore, 

other data assimilation approaches that have adopted improved, sophisticated 

algorithms to determine model and observational uncertainty are being used by many 

cold regions hydrologists.  

 

Traditional Kalman filters update model state variables when an observation is shown 

by explicit computation of error covariances (using additional matrix equations) error 

propagation information from one-time step to the next (Reichle, 2008). This method 

performs well when model and observational error both follow Gaussian distributions. 

But the model needs to be linear. The nonlinear version of the Kalman filter is the 

extended Kalman filter (EKF), which can be used in nonlinear models. However, EKF 

cannot be used in large study areas because its error covariance integration requires 

huge computational capacity (Reichle et al. 2002). An alternative method is the 

ensemble Kalman filter (EnKF, Evenson, 1994; 2003) that has been shown to improve 

performance. It avoids the complex integration of the state error covariance matrix by 

propagating an ensemble of states with a Monte Carlo approach from which the 

required covariance information is obtained at the time of the update (Reichle et al. 

2002). In addition, EnKF is easier to implement than other, more sophisticated 

assimilation methods such as four-dimensional variational data assimilation (4DVAR). 

This makes the EnKF the most popular assimilation method in cold regions 

hydrological community. 

 

Many snow DA studies have been conducted with the simpler models (Bergeron et al., 

2016; Franz et al., 2014; Slater and Clark, 2006; Stigter et al, 2017). Indeed, the 

potential influence of DA on multilayer physical models still needed to be researched 

(Magnusson, et al., 2017). The snow melt runoff from the Canadian Rockies forms 

headwaters for few major rivers that provides essential water supply for large portion 

of western Canada. However, due to the complex topography and large geographic 

cover, the sparse terrestrial weather monitoring system cannot provide accurate critical 

forcing data for hydrological modelling in this region. The results from weather 

prediction models become the only choice to force hydrological model at most of the 

location and time. However, due to the questionable accuracy of these weather 

prediction model results, data assimilation become critical to hydrological modelling 

for achieving the reasonable snowpacks and streamflow simulations. This research 

studied a mountain headwaters basin in the Canadian Rockies with abundant surface 

observations, ground manual observed SWE from once or twice monthly snow surveys 

and daily snow depth (ds) observations from sonic ranging sensors. These were 

http://dict.cn/terrestrial
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assimilated into the physically based, process-hydrology Cold Regions Hydrological 

Modelling platform (CRHM) by using EnKF to assess the influence of DA on basin 

snowpack properties and streamflow simulation. CRHM includes a full suite of snow 

redistribution by wind and vegetation, sublimation, energy balance snowmelt and 

complex terrain downscaling algorithms along with most other hydrological processes 

and so provides a unique opportunity to explore assimilation into a comprehensive 

simulation of the mountain hydrological cycle. The specific objectives of research were 

to determine the optimal method to assimilate in situ measures into CRHM, evaluate 

how well assimilation of point and transect snow observations improves of basin 

snowpack prediction and evaluate the contribution of transect based SWE assimilation 

to reducing uncertainty in streamflow simulations.  

5.3 Study area, data, and model 

5.3.1 Marmot Creek Research Basin (MCRB) 

MCRB (50°57`N, 115°09`W) is located in the Front Ranges of the Canadian Rockies, 

Alberta, Canada (Figure 5-1). It has an area of approximately 9.4 km2 and elevation 

range from 1450 m to 2825 m. It includes three upper sub-basins: Cabin Creek, Middle 

Creek, and Twin Creek as well as a lower confluence sub-basin. The main landcovers 

are dense coniferous lodgepole pine in the lower elevations, deciduous alpine larch, 

shrubs, grasses, needleleaf Engelmann spruce, and sub-alpine fir in the middle upper 

elevations; talus and bare rocks occupy in the high alpine region (DeBeer and Pomeroy, 

2009). The basin has had both large clearcuts and small forest clearings in the 

coniferous forest zone from forest management in the 1970s and 1980s (Ellis et al., 

2013; Rotherwell et al., 2016). There are substantial snow interception losses from 

coniferous forests (Ellis et al., 2010) and wind redistribution of snow from alpine ridges 

and windward slopes to sheltered slopes and treeline forests (MacDonald et al., 2010). 

The annual precipitation in MCRB has an average value of 900 mm, and increases with 

elevation reaching 1140 mm at the areas above treeline. Snow is the dominant 

precipitation type, accounting for approximately 60–75% of annual precipitation 

(DeBeer and Pomeroy, 2009). Snow usually accumulates from November to March and 

starts to melt in later April or early May. 
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Figure 5-1. Landscape condition and local observation stations at the Marmot Creek Research Basin, 

Alberta, Canada. 

5.3.2 Observations 

Seven permanent hydrometeorological stations were located to observe in various 

elevation bands and landscapes (Figure 5-1) in MCRB beginning in 2005. These 

stations are Hay Meadow (HM), Vista View (VV), Level Forest (LF), Upper Forest 

(UF), Upper Clearing (UC), Alpine (Al) and Fisera Ridge (FR) and continuously collect 

short-wave and long-wave radiation, air temperature, soil temperature, relative 

humidity, and wind speed. Precipitation is measured with an Alter-shielded Geonor 

weighing precipitation gauge at the HM, UC, and FR stations and is corrected for wind-

induced undercatch (Smith, 2009). Five Campbell SR50 sensors were mounted at sites 

UC (June 2005 – Present), UF (June 2005 – Present), Fisera Ridge Top (FRRT, June 

2005 – Present), Fisera Ridge South Facing (FRSF, November 2008 – September 2014), 

and Fisera Ridge North Facing (FRNF, November 2008 – September 2014) to measure 

snow depth at 15 minute intervals. UC and UF are located in the mixed forests of Spruce, 

Fir and Pine with elevation around 1845 m and snow interception in the forest canopy 

controls the snow accumulation at UF. UC station located in the middle of a 50 m 

diameter clearcut surrounded by the forest, UF station is in a forest approximately 20 

m from the UC clearing edge. Fisera Ridge is in the open alpine tundra at 2323 m 

elevation. Wind redistribution controls the local snow patterns. Snow usually blows 

from a source area on the north-facing slope, across the ridgetop to a sink area on the 

south-facing slope over the snow season. MCRB basin seasonal (1 May – 31 October) 
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daily mean streamflow data was collected by a long-term streamflow gauge (05BF016) 

at the basin outlet operated by the Water Survey of Canada (Environment and Climate 

Change Canada). Snow surveys have been conducted monthly or semi-monthly at the 

UC, UF, VV, FR, LF, and HM sites through the winter and spring of each year since 

2007. The survey follows designated transects near the meteorological stations with at 

least 25 snow depth measurements and snow densities measured every fifth depth 

measurement using a ESC30 gravimetric snow tube and weighing scale. In addition to 

locally observed meteorological data, the Environment and Climate Change Canada 

Global Environmental Multiscale (GEM) model 2.5 km grid product from November 

2014 to August 2017 were also used to run the CRHM model for DA experiments. Four 

grids of GEM data needed to cover the whole MCRB basin and GEM outputs were air 

temperature, relative humidity, wind speed, incoming short-wave radiation, incoming 

long-wave radiation, and precipitation. To downscale the 2.5 km GEM data to 

Hydrological Response Units (HRU, which is the basic simulation unit in CRHM) scale, 

precipitation and air temperature for each HRU were adjusted based on the elevation 

and observed elevation lapse rate for precipitation and air temperature in MCRB. The 

rest of the forcing variables of each HRU was assigned to the closest GEM grid cell’s 

values. 

5.3.3 SR50 data processing 

SR50 snow depth raw data contains errors and noise need to be removed before using. 

Because air temperature influences the speed of sound, temperature corrections were 

applied to the SR50 sensor reading according the following formula (Equation 5.1, 

Campbell Scientific, 2009): 

 

𝑆𝑐 = 𝑆𝑟√
𝑇𝑎

273.15
                                                     (5.1) 

 

where Sc is the compensated snow depth, Sr is the raw sensor reading, and the Ta is air 

temperature in K. To reduce or smooth noise, a three-hour moving average was applied 

to the compensated snow depth data (Ryan et al., 2008). 

 

The final, fixed-point snow depth measurement cannot be directly used to estimate 

snow depth over a large area because the areal average depth is prone to heterogeneity 

in accumulation, redistribution, and ablation caused by topography, vegetation, and 

wind (Pomeroy and Gray, 1995). However, repeating patterns in snow redistribution 

and ablation as governed by vegetation and topography mean that locally calibrated 

empirical formula can be used for upscaling over small areas. For example, Neumann 

et al. (2006) found the in each site of their Canadian boreal forest study area, the fixed-

point automatic snow depth measurement consistently over- or under-estimated the 

landscape mean. As a result, a simple “scaling equation” can be developed for each site 

to improve the local spatial representation of the fixed-point automatic snow depth 
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measures. In the present research, the mean snow depth value from snow surveys 

conducted around each SR50 sensor was used to both build the “scaling equation” and 

adjust the SR50 data to a large scale. The details of this calculation are shown in Section 

5.5.1.  

5.3.4 CRHM 

The CHRM platform is a system to assemble hydrological models developed for 

Canadian and other cold and temperate environments. It can create spatially distributed 

physically based hydrological models that use the concept of internally uniform HRU 

to discretize the basin as the basis for application of energy and mass balances and flux 

calculations. HRUs are conceptual landscape groups that are subdivisions of the basin 

based on the elevation, slope, aspect, vegetation cover, soils and other hydrological or 

biophysical characteristics. Each HRU has a unique set of parameters that govern 

hydrological process calculations. CRHM has various modules to simulate the snow 

and hydrological processes of each HRU. Users can construct their own model by 

selecting modules from the CRHM library, with selection based on input data 

availability, research scale and the predictive variable of interest. These modules can be 

used to interpolate meteorological data over complex terrain and to simulate rainfall 

and snowfall interception, wind redistribution, sublimation, albedo decay, canopy 

transmittance, snow energy and mass balance, evapotranspiration, melt, snowcover 

depletion, infiltration, detention, depressional storage, soil moisture, flow and storage 

of surface and subsurface water, and streamflow routing. The full description of CRHM 

is provided by Pomeroy et al. (2007). Updates and details on the modules used, model 

setup and parameterization of this research are described in several recent publications 

(Fang et al., 2013; Fang and Pomeroy, 2016; Pomeroy et al., 2016b). Here, the Snobal 

module (Marks et al., 1998) was used to simulate the mass and energy balance of 

snowpack. It divides the snowpack into two layers (active and lower) if snowpack depth 

higher than 10 cm. The active layer has the fixed thickness of 10 cm and the lower layer 

depth equals the snowpack depth minus active layer depth. The two layers share the 

same snowpack density but have different temperatures.  

5.4 Methodology 

5.4.1 Ensemble Kalman Filter 

In this research, EnKF was used as assimilation method following previous, successful 

examples (Franz et al., 2014; He et al., 2012; Kumar et al., 2009). EnKF is a sequential 

assimilation approach that updates model state variable(s) when an observation is 

available based the Kalman gain (K, Equation 5.2) that is determined by the error 

covariance of ensemble model simulation and observation (Equation 5.3).  
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𝑥𝑖,𝑗
𝑢 = 𝑥𝑖,𝑗

𝑠 + 𝐾𝑖(𝑦𝑖,𝑗 −𝐻𝑖𝑥𝑖,𝑗
𝑠 )                                         (5.2) 

 

where xi,j and yi,j denote the jth (j=1, 2, …, N, N is ensemble size) ensemble model state 

and observation vectors at time step i (i =1, 2, …, M, M is number of observations); 

superscripts u and s represent the updated and simulated model state vector; Hi is the 

operator that relates the model vector to the observed vector and it is a unit factor in 

this research. The Kalman gain Ki in ith time step is calculated by: 

 

𝐾𝑖 = 𝑃𝑖
𝑠/(𝐻𝑖𝑃𝑖

𝑠 + 𝑅𝑖)                                               (5.3) 

 

where 𝑃𝑖
𝑠  is the model forecast error covariance and 𝑅𝑖  is the observation error 

covariance at time step i. Model forecast error covariance is calculated from the 

ensemble model simulation covariance. Observation error covariance is derived by 

perturbation of observations with a presumed standard deviation.   

5.4.2 Application of EnKF to CRHM 

In this study, model simulation uncertainty is assumed to be mainly caused by the 

uncertainty of forcing data (Huang et al., 2017). As a result ensemble model simulations 

were run by Monte Carlo perturbation of the driving forces following the suggestions 

of early studies (Kumar et al., 2014; Liu et al., 2013; Reichle et al., 2002). For incoming 

shortwave radiation and precipitation, the multiplicative perturbation with a mean value 

of 1 was conducted to avoid unreasonable outcomes such as positive incoming short-

wave radiation at night or negative precipitation. Additive perturbation with a mean 

value of zero was run on other driving forces (Table 5-1). For model state variables, 

multiplicative perturbations were conducted, and a 0.05 standard deviation was set for 

all three variables as indicated by measurement instrument error. Further, because these 

forcing variables are usually related to each other, such as precipitation often resulting 

in low incoming short-wave radiation. This is also true for the snowpack state variables, 

such as higher SWE usually lead to higher ds. Therefore, a cross correlations were 

imposed to all variables except wind speed (Riechle et al., 2007; De Lannoy et al., 2012) 

(Table 5-1). In EnKF, model simulation error covariance is represented by that of 

ensemble members. Theoretically, an infinite number of ensembles could perfectly 

represent the real model error covariance. However, more ensemble members lead to 

more computational cost. Therefore, an ensemble number of twenty was chosen 

according to the previous research (Kumar et al., 2009; Kumar et al., 2014) and the 

authors’ experience. 
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Table 5-1. Model driving and state variables with their perturbation parameters. 

 

Although CRHM can be run hourly, it can only export and read the state file just after 

midnight of each day. Therefore, the minimum assimilation frequency for CRHM is 

limited to daily frequency. When an observation is available, model runs will stop at 1 

a.m. of that day and a state file will be exported and updated. Then the updated state 

file will reset to initial conditions for the next time step model running. To maintain 

water balance in the model, during the state file updating process, 15 state variables 

may have to be updated in addition to the assimilated state vectors (e.g., SWE and snow 

depth). These state variables are: snowcover presence, average snowpack density, snow 

depth, SWE, snowpack layer count, active layer snow depth, lower layer snow depth, 

active layer specific mass, lower layer specific mass, snowpack temperature, active 

layer temperature, lower layer temperature, snowpack cold content, active layer cold 

content, lower layer cold content. There are issues with how Snobal handles snowpack 

temperature, active layer temperature, and lower layer temperature variables for 

shallow and ephemeral snowpacks. Snobal sets the temperature of a snowpack layer 

that has no snow to −74.99 °C. If a snowpack grows such that the layer SWE is updated 

from zero during the run, but the snowpack layer temperature(s) are not adjusted, then 

the snowpack temperature will stay extremely low and the snowpack can have an 

unreasonable cold content. This degrades the model simulation of subsequent melt and 

results in the modelled snowpack accumulating more snow than in reality. This feature 

of Snobal has implications for and introduces challenges for data assimilation.  

 

Taking assimilation of SWE alone as an example, Figure 5-2 shows the details of how 

these 15 state variables were updated. SWE was updated to the calculated SWEa (SWE 

after update, subscript a means the state variable was after update) from EnKF 

(Equation 5.2). If SWEa was equal to 0, then the rest of the 14 variables were set to 0 

or -74.99 oC (three temperature variables). If SWEa was greater than 0, the rest of 14 

variables were updated according to the rules showing in Figure 5-2.  
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Figure 5-2. Rules for updating the state variables in CRHM during data assimilation. SWE is the whole 

snowpack snow water equivalent. Subscript a means the state variable value that after update. Subscript 

b denotes the state variable value that before update. ds is the whole snowpack depth. ds1 is the active 

layer snowpack depth, ds2 is the lower layer snowpack depth. ρ is the snowpack density. SWE1 is the 

active layer specific mass. SWE2 is the lower layer specific mass. Ts is the snowpack temperature. Ts1 

is the active layer temperature. Ts2 is the lower layer temperature. CCs is the snowpack cold content. 

CCs1 is the active layer cold content. CCs2 is the lower layter cold content. Tamin is the lowest air 

temperature of the previous day. Ci is the specific heat of ice (2102 J /kg*oC). Tm is the melting 

temperature of snow (0 oC). 

5.4.3 Experiment design 

5.4.3.1 SWE and snow depth assimilation influence on snow pack properties 

To evaluate the influence of SWE and ds assimilation on primary snowpack properties 

and find the optimal DA scheme, several DA experiments were conducted by 

assimilating ds and SWE separately, together, or with historical snowpack density 

(Figure 5-3). For assimilation of ds alone, there were two experiments conducted based 

on the methods updating SWE and snowpack density. To balance the relationship 

between ds, SWE and snowpack density (Equation 5.4), one has to update one or both 

of SWE and snowpack density while updating ds. 
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𝑆𝑊𝐸 = d𝑠 × 𝜌                                                    (5.4) 

 

where SWE is in mm when ds is in m and snowpack density 𝜌 is in kg/m3. 

 

 

Figure 5-3. Forcing data, input data, and variable (s) that assimilated, trusted, and updated for different 

DA experiments.  

In experiment a), ds was assimilated alone and the model simulated SWE was trusted 

so that the snow density was updated according to model simulated SWE and updated 

ds was updated based on Equation 5.4. In this experiment, SWE was updated only if 

simulated SWE equaled zero but updated ds was non-zero. Under this condition, the 

snowpack density was assumed as 200 kg/m3 and the SWE was updated accordingly. 

This DA experiment will be referred to as DA_sd1. 

 

In experiment b), ds was assimilated alone and modelled snowpack density was trusted 

so that SWE was updated according to model simulated snowpack density and updated 

ds. If simulated snowpack density equals zero but not the updated ds, the snowpack 

density was adjusted to 200 kg/m3. This DA experiment will be referred to as DA_sd2. 

 

In experiment c), ds and historical snowpack density were assimilated together into the 

model. Therefore, SWE was updated according to the updated ds and snow density. In 

this experiment, the updated ds has the highest confidence, which means if updated ds 

and snow density did not agree with each other on the matter of snow presence in the 

HRU, snow density was adjusted according to ds value. In other words, if updated 
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snowpack density equals zero but not the updated ds, snowpack density was adjusted to 

200 kg/m3. However, if updated ds equal zero but not the updated snowpack density, 

snow pack density was adjusted to zero. This DA experiment will be referred to as 

DA_sdrho. 

 

In experiment d), SWE was assimilated into the model alone when SWE observations 

were available. ds was simultaneously updated by using the simulated snowpack density 

and updated SWE. This DA experiment will be referred to as DA_swe. 

 

In experiment e) and f), SWE and ds were assimilated together. Because SWE and ds 

data had different data frequency (once or twice a month vs. daily), the model was run 

hourly, ds was updated daily while SWE was updated whenever the observation was 

available. When SWE and ds were both assimilated in the same day, snowpack density 

was updated based on the updated SWE and ds. However, there were few ds values 

assimilated alone between two consecutive SWE assimilations. Hence, the confidence 

level problem of SWE and snowpack density arose again in this situation. In experiment 

e), when ds assimilated alone, model simulated SWE had higher confidence so that the 

snowpack density was updated based on the simulated SWE and updated ds. This DA 

experiment will be referred to as DA_swesd1. 

 

In experiment f), in contrast to DA_swesd1, model simulated snowpack density had 

higher confidence so that the SWE was updated based on simulated snowpack density 

and updated ds when assimilating ds alone. This DA experiment will be referred to as 

DA_swesd2. 

 

Experiment g) is a simulation forced by 20 forced ensembles perturbed from GEM data 

without any data assimilation. This open loop (OL) simulation was used as a control to 

determine the improvement of other experiments on snowpack properties and 

simulation accuracy. This DA experiment will be referred to as OL.  

 

All the DA experiments forced by GEM data started from November 13, 2014 and 

ended on August 31, 2017. A CRHM model forced by local observations was run from 

October 1, 2005 to November 12, 2014 to generate a state file. The data from this state 

file were used as the initial conditions to start the model run of DA experiments. 

 

The influence of SWE and ds assimilation on snow pack properties was evaluated at 

the Upper Forest and Fisera Ridge sites because of data availability and the fact that 

these sites can represent the majority topography and snow redistribution and ablation 

processes in MCRB. Assimilation in Upper Forest and Upper Clearing sites was forced 

by the GEM data from November 2014 to August 2017. At Fisera Ridge, however, 

because the SR50 data were not available in north facing and south facing slopes after 

August 2014, the assimilation was run by local observed meteorological data from 

November 2008 to August 2014.  
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5.4.3.2 SWE assimilation influence on streamflow simulation 

To evaluate the influence of SWE assimilation on streamflow simulation, experiments 

were conducted to assimilate SWE with different schemes (Figure 5-3). The snow 

survey SWE from 10 sites in MCRB were interpolated to 36 HRUs over the whole 

basin based on linear regressions between SWE and elevation, slope, aspect, vegetation 

cover (LAI), wind index. These linear relationships were built daily as the snow 

accumulation and ablation are highly influenced by time of year. These interpolated 

SWE were then assimilated into CRHM. Assimilations were forced by GEM data and 

local in situ forcing data either separately or combined. This was aimed to evaluate the 

importance sensitivity of streamflow simulation to forcing data and SWE assimilation. 

Kumar et al. (2017) indicated that when using two or more sets of forcing data in one 

data assimilation experiment, the EnKF method led to better simulation results in 

assimilated state variables than using a single forcing data resource. In this case, two 

sets of forcing data would led to a better simulation of SWE, which was assimilated 

into the model using EnKF. Therefore, an assimilation driven by combined forcing data 

was conducted to evaluate if better SWE assimilation can improve streamflow 

simulation. 

 

In experiment h), the model was run by 20 forced ensembles perturbed from GEM data 

without data assimilation. This DA experiment will be referred to as GEM_OL. 

 

In experiment i), SWE were assimilated into the model run by 20 forced ensembles 

perturbed from GEM data. This DA experiment will be referred to as GEM_DA. 

 

In experiment j), the model was run by 20 forced ensembles perturbed from local 

observed forcing data without data assimilation. This DA experiment will be referred 

to as ObsMet_OL. 

 

In experiment k), SWE were assimilated into the model with 20 ensemble simulations 

forced by perturbation from local observed forcing data. This DA experiment will be 

referred to as ObsMet_DA. 

 

In experiment l), SWE were assimilated into the model with 20 ensemble simulations 

forced by combined perturbation from GEM and local observed forcing data. There 

were 10 ensembles by perturbation of GEM forcing data while the remaining 10 

ensembles were forced by the perturbation of local observed forcing data. This DA 

experiment will be referred to as GEM_ObsMet_DA. 

5.4.4 Evaluation of DA experiments results 

Evaluation of DA research sometimes can be difficult as some researchers assimilate 

all of the observations into the model, leaving no observations for validation (Clow et 
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al. 2012). In the present study, snow surveys are the only reliable data source for SWE 

and are already assimilated into some of the DA experiments. Due to lack of other 

independent SWE observations, snow survey SWE data were used to evaluate SWE 

simulations from all DA experiments. However, in the SWE-involved DA experiments, 

such as DA_swe, DA_swesd1, and DA_swesd2, two SWE measures were randomly 

excluded from assimilation in each year as an independent validation data. This 

independent validation was aimed to assess the effect of these DAs in SWE simulation 

in the interval between two assimilation time steps. Because only ds measures from 

SR50 were assimilated into the model, the ds measures from snow surveys were reliable 

independent data for assessing the impact of various DAs on ds accuracy. In this study, 

snowpack density was not directly assimilated into the model but included as historical 

snowpack density (DA_sdrho) or updated by the assimilated SWE and ds (DA_swesd1 

and DA_swesd2), so snowpack density from snow surveys was a reliable, independent 

data source for snowpack density evaluation for all DA. However, in DA_swesd1 and 

DA_swesd2, both SWE and ds were assimilated at the time when both data sets were 

available. This resulted in snowpack density also being indirectly assimilated. 

Therefore, another independent validation for snowpack density was conducted in these 

two DAs using the excluded data to assess their ability to simulate snowpack density 

between assimilation time steps.  

 

The results of designed experiments were evaluated though several metrics. Root mean 

square error (RMSE, Equation 5.5) was used to evaluate the difference between 

simulated and observed variables. Normalized root mean square error (NRMSE, 

Equation 5.6) is RMSE divided by mean of observation data. Model Bias (MB, 

Equation 5.7) was used to assess the ability of the experiment to reproduce the measured 

variables. A positive MB means the simulation overestimates observations while a 

negative MB means underestimation. Nash-Sutcliffe efficiency (NSE, Equation 5.8) 

was used to test the consistency between simulation and observation across time scales. 

The closer the NSE is to 1, the more accurate the simulation is, with 1 being a perfect 

match.  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑖−𝑋𝑠𝑖)

2𝑛
𝑖=1

𝑛
                                             (5.5) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑋𝑜̅̅ ̅̅
                                                    (5.6) 

𝑀𝐵 =
∑𝑋𝑠

∑𝑋𝑜
− 1                                                     (5.7) 

𝑁𝑆𝐸 = 1 −
∑(𝑋𝑜−𝑋𝑠)

2

∑(𝑋𝑜−𝑋𝑜̅̅ ̅̅ )2
                                                (5.8) 

where Xs and Xo are values of simulated and observed variables, respectively, Xo is 

the average of observed variables. In this present research RMSE and MB were used to 

evaluate the main snow pack properties (e.g. SWE, ds, Snowpack density) whilst 
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streamflow was assessed by RMSE, MB, and NSE. 

5.5 Results 

5.5.1 Spatial representation of SR50 point snow depth measures  

To evaluate the spatial variation of snow depth in MCRB snow survey sites, the 

standard deviation (SD) and coefficient of variation (CV) were calculated for every 

snow survey at each site. Figure 5-4 shows the SD and CV of areal snow depth from 

each snow survey for five MCRB sites from November 2007 to June 2018. In the 

blowing snow transport-dominated Fisera Ridge sites, snow depth SD usually increases 

initially as snow accumulates and then decreases when snow ablation begins. However, 

in the sites where wind plays a minor role (UC and UF), SD values increase consistently 

as the snow season progresses. Amongst the three FR sites, FRSF has the highest SD 

value as the site with the highest annual snow accumulation. Amongst all five sites, UC 

has the lowest SD as wind and vegetation have minimal influence on snow 

accumulation, redistribution, and ablation. Although UF has low annual snow 

accumulation, it has higher SD than UC because canopy interception exacerbates 

spatial variation as found by Faria et al. (2000) in the boreal forest. The CV of all five 

sites show the same pattern, decreasing with snow accumulation, peaking before 

ablation begins, then decreasing as the snowpack melts. In the forest sites, the clearing 

– UC (CV=0.25) has a lower areal snow depth variation than the forested area – UF 

(CV=0.62). In open sites, the blowing snow sink area – FRSF (CV=0.45) has the much 

lower snow depth variation than the source area – FRNF (CV=0.82) and FRRT 

(CV=0.8).  
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Figure 5-4. Aerial snow depth standard deviation (SD) and coefficient of variation (CV) from snow 

survey data at five sites at the Marmot Creek Research Basin, Alberta, Canada. 

The ability to represent the areal mean snow depth of SR50 varies amongst the five 

sites (Figure 5-5). In sites that have relatively low snow depth variation – FRSF and 

UC, the SR50 measurement agreed well with the snow survey mean value. The best fit 

lines of both sites were close to the 1:1 ratio line as the slopes of the linear regression 

equation were close to 1 and the intercepts were small (0.02 and 0.0007). The SR50 

measurement at the UC site, where wind and vegetation have a minor influence on snow 

accumulation and redistribution, agreed best with the areal mean with the lowest 

NRMSE (0.09) and MB (−0.03). FRSF also had a low NRMSE (0.15) and MB (0.05) 

especially considering the high annual accumulation at this site. In other three sites, the 

SR50 point observation consistently either under- or over-estimated the areal mean 

value. In FRNF and FRRT, which are the blowing snow source areas, the SR50 

observation underestimated the areal mean by 35% and 45% on average and with a high 

NRMSE (0.45 and 0.51). In UF, where areal snow variation is mainly influenced by 

forest cover, the SR50 observation overestimated the areal mean with an MB of 0.41 

and NRMSE of 0.56. In addition, the coefficient of determination values of all sites 

were higher than 0.74. This indicated that the linear relationship between SR50 point 

snow depth and snow survey snow depth areal mean can be used to adjust the SR50 

point measurement to allow upscaling. 
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Figure 5-5. Comparison of point SR50 snow depth measurements and landscape average from snow 

surveys at five sites at the Marmot Creek Research Basin, Alberta, Canada. Blue lines show the best fit 

and black lines denote the 1:1 line. 

Figure 5-6 shows the comparison of observed area mean snow depth from snow surveys, 

fixed-point SR50, and unscaled snow depth from SR50 according to the linear 

relationship from Figure 5-5 for each site in MCRB. The results indicated that upscaling 

largely improved the ability of SR50 to represent the areal mean value at most sites at 

MCRB. The unscaled snow depth agreed with snow survey data much better at sites 

FRNF, FRRT, and UF. Upscaling decreased the RMSE in these sites by 40% to 50%. 

The improvement in UC and FR was low because fixed-point SR50 observation already 

had a high accuracy. Upscaling improved the RMSE of FRSF by only 5% and the 

unscaled SR50 was almost identical to the snow survey measurements.  
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Figure 5-6. Time series of snow depth from snow survey observed areal means, fixed-point SR50 

measurements, and upscaled SR50 measurements at the Marmot Creek Research Basin, Alberta, Canada. 

Error bar shows the data range of the snow depth observation.  

5.5.2 SWE and snow depth assimilations influence on snowpack properties at middle 

elevations forest sites  

The open loop simulation largely underestimated SWE and snowpack duration when 

compared to observations in every year at site UF (Figure 5-7). At UC, although the 

open loop simulated snowpack duration was close to observations in most years, it 

largely underestimated SWE in hydrological year (HY) 2014 while overestimating 

SWE in 2016 (Figure 5-7). The open loop simulation overestimated snowpack density 

by 34% to 84% annually at both sites. This resulted in snow depth being underestimated 

at both sites most of the time. After the assimilation, different DA experiments 

influenced snowpack properties differently and were sensitive to the time of the year, 

simulation year, location, and CRHM model performance. 
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Figure 5-7. Comparisons of ds assimilation experiments simulated SWE (upper panel), ds (Middle panel), 

and snowpack density (lower panel) to observation at upper forest sites at the Marmot Creek Research 

Basin, Alberta, Canada. Error bars show the data range and the points show the mean values of the snow 

survey observations. SR50ds denotes the upscaled SR50 snow depth measurement. 
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Figure 5-8. Comparisons of ds assimilation experiments simulated SWE (upper panel), ds (Middle panel), 

and snowpack density (lower panel) to observation at upper clearing sites at the Marmot Creek Research 

Basin, Alberta, Canada. Error bars show the data range and points show the mean values of the snow 

survey observations. SR50ds denotes the upscaled SR50 snow depth measurement. 

Assimilating ds alone generally improved the timing of snowpack simulation (Figures 

5-7, 5-8). The simulated snowpack duration (positive SWE days) agreed well with ds 

observations at both sites (Table 5-2). The improvement is particularly large in the HY 

2014 site UF where DA_sd1 and DA_sd2 both improved modeled snowpack duration 

to 160 days from open loop simulated 49 days when observed snow pack duration was 

161 days.  
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Table 5-2. Duration (days) of observed and DA experiment simulated snowpack measures at forested 

sites at the Marmot Creek Research Basin, Alberta, Canada.  

 

 

DA_sd1 significantly improved ds simulation accuracy. Compared to OL, DA_sd1 

decreased RMSE for ds from 0.22 m and 0.22 m to 0.07 m and 0.08 m for sites UF and 

UC independently (Table 5-3). The open loop simulation largely underestimated ds at 

both sites by −80 to −93% (UF) and −16 to −67% (UC) annually (Table 5-4). After the 

assimilation, the annual MB was improved from −0.27 to −0.09 and −0.16 to −0.12 for 

sites UF and UC, respectively (Table 5-4). DA_sd1 improved the SWE simulation MB 

in most of years at both sites and slightly decreased the SWE simulation RMSE to 29.9 

mm and 38.0 mm from 40.4 mm and 54.9 mm at sites UF and UC respectively. However, 

this improvement was mainly observable in early snow accumulation and late depletion 

periods. One exception was the at UF site during the 2014 HY when the annual snow 

peak was low and open loop simulated snowpack was not continuous. Because 

snowpack density was updated according to assimilated ds and simulated SWE, which 

improved little, the enhancement of DA_sd1 on snowpack density simulation was also 

small. 

 

Table 5-3. RMSE of DA experiments when compared to in situ observations at forested sites in the 

Marmot Creek Research Basin, Alberta, Canada. Bold font shows the lowest RMSE simulation among 

DA experiments at each site. Numbers before the division slash show the RMSE of the whole evaluation 

while the ones after the division slash show the RMSE of independent evaluations.  

 

https://www.rapidtables.com/math/symbols/Division_Sign.html
https://www.rapidtables.com/math/symbols/Division_Sign.html
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Table 5-4. Model Bias (unit:1) of DA experiments when compared to in situ observation at forested sites 

at the Marmot Creek Research Basin, Alberta, Canada. Bold font shows the lowest MB simulation among 

DA experiments at each site. Numbers before the division slash show the MB of whole evaluation while 

the ones after the division slash show the MB of independent evaluations.  

 

 

The DA_sd2 simulation achieved similar results as DA_sd1 to predict ds (Figures 5-7, 

5-8). It decreased RMSE by 0.15 m and 0.18 m at sites UF and UC. However, due to 

CRHM largely overestimating snowpack density with annual MB from 0.46 to 0.91, 

DA_sd2 simulated SWE clearly deviated from observations. DA_sd2 overestimated 

SWE with an annual MB of 0.47 to 0.91 and 0.48 to 0.89 for sites UF and UC 

respectively. The SWE simulation RMSE of DA_sd2 was 42.4 mm and 77.5 mm for 

UF and UC, separately, which was even higher than the OL. DA_sd2 simulated 

snowpack density closely matched the DA_OL except in the early accumulation and 

late melt period when DA_OL simulated a SWE of zero. This slightly decreased the 

snowpack density RMSE at both sites by 22.6 kg/m3 and 1.65 kg/m3.  

 

By introducing historical snowpack density assimilation along with ds, DA_sdrho 

achieved much better SWE predictions than DA_sd1 and DA_sd2 (Figures 5-7, 5-8). 

DA_sdrho decreased the SWE RMSE by 22.2 mm and 23.7 mm at sites UF and UC 

respectively. MB estimates in each simulation year were also improved (Table 5-4). The 

https://www.rapidtables.com/math/symbols/Division_Sign.html
https://www.rapidtables.com/math/symbols/Division_Sign.html
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RMSE of simulated ds decreased from 0.22 m and 0.22 m to 0.05 m and 0.13 m for sites 

UF and UC independently. Simulated ds MB also improved every year at both sites and 

MB was lower than ±0.29 for all years. DA_sdrho for the most part increased the 

accuracy of snowpack density simulations, decreasing the RMSE by 109.9 kg/m3 and 

66.8 kg/m3 at UF and UC, separately, and improving the MB by 0.16 to 0.53. 

 

Assimilating SWE alone generally improved SWE simulation accuracy (Figures 5-9, 

5-10). The SWE simulation RMSE decreased to 15.0 mm and 35.6 mm from 40.4 mm 

and 54.9 mm at sites UF and UC, independently (Table 5-3). The simulation MB was 

also decreased in most years by 0.16 to 0.61 (Table 5-4). However, due to sparse SWE 

data availability and the nature of EnKF, there were several drawbacks for assimilating 

SWE alone. First, the assimilation result was poor during a dry year at site UF. In HY 

2014, the DA_swe simulated SWE at UF site was not continuous (Figure 5-9), which 

did not match with SR50 observations that showed the snowpack was continuous from 

November 13, 2014 to April 27, 2015. There were six SWE measurements at these sites 

in this year of which four were assimilated into the model and two were excluded as 

independent validation data. The model reacted well to the assimilation during the first 

two time steps and SWE was improved but the snowpack disapeared a few days after 

assimilations. At the third and fourth assimilation time steps (March 3 and April 20, 

2015), the model did not respond at all to assimilation. This is because model simulated 

SWE ensembles were all equal to zero before the update so that the model simulation 

error covariance (𝑃𝑖
𝑠  in Equation 5.3) equaled zero at these two time steps. This 

resulted in the Kalman gain K (Equation 5.2) equaling zero as well and hence there 

were no updates at these two time steps. Therefore, although the simulation snowpack 

duration increased to 102 from 49 days (OL), it was still much less than the observed 

snowpack duration – 168 days in this year at site UF. Second, although DA_swe can 

greatly improve SWE simulation in the middle of the snow season, its influence can be 

limited in the early accumulation and late depletion periods in some years due to SWE 

data sparsity. One example was that in 2015 at site UF, the snowpack started few days 

later and disapeared a few days earlier than SR50 snow pack duration. Third, although 

assimilating SWE alone greatly improved SWE simulation accuracy, it only enhanced 

model simulated ds and snowpack density accuracy to a small extent. DA_swe greatly 

overestimated snowpack density at most times of the year at both sites, as DA_OL did, 

and this led to it simulating ds lower than observed (Figures 5-9, 5-10). The RMSE and 

MB for DA_swe simulated ds and snowpack density were only slightly improved or 

even worsened over most of the year at both sites (Tables 5-3, 5-4). 
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Figure 5-9. Comparisons of SWE assimilation experiments simulated SWE (upper panel), ds (Middle 

panel), and snowpack density (lower panel) to observation at upper forest sites at the Marmot Creek 

Research Basin, Alberta, Canada. Error bars shows the data range and points show the mean values of 

the snow survey observations. SR50ds denotes the upscaled SR50 snow depth measurement. 
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Figure 5-10. Comparisons of SWE assimilation experiments simulated SWE (upper panel), ds (Middle 

panel), and snowpack density (lower panel) to observation at upper clearing sites at the Marmot Creek 

Research Basin, Alberta, Canada. Error bars shows the data range and points show the mean values of 

the snow survey observations. SR50ds denotes the upscaled SR50 snow depth measurement. 

By assimilating daily measured automatic ds data along with SWE, DA_swesd1 

resulted in the best snowpack estimates amongst all DA experiments (Figures 5-9, 5-

10). DA_swesd1 decreased the SWE simulation RMSE to 8.7 mm and 23.8 mm for UF 

and UC, respectively, which was the lowest RMSE value among all DA experiments. 

Annual MB values from most years were close to zero and all of them were less than 

or equal to ±0.2. DA_swesd1 also outperformed in the independent validation among 

SWE involved DAs most of the time (Tables 5-3, 5-4). DA_swesd1 also avoided the 

three drawbacks when SWE was assimilated alone. Because the daily ds information 

was also assimilated into the model, the DA_swesd1 simulated snowpack was 

continuous in each year leading to the model reacting to SWE assimilation at each time 

step. ds also provided detailed snowpack duration information, and this enhanced the 

ability for SWE to simulate early accumulation and late depletion. Therefore, The 

DA_swesd1 simulated snowpack durations were improved to a close match level to the 

observations in all the years at both sites (Table 5-4). Simultaneously assimilating SWE 

and ds provided reliable SWE information and high temporal resolution ds information. 
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This resulted in a DA_swesd1 simulated snowpack density that was closely matched to 

most observations. However, this close match was limited to the time of assimilation at 

the beginning of each day. Density always increased gradually immediately after the 

assimilation time because CRHM tends to overestimate the snowpack density at these 

sites. Figure 5-11 shows the detailed response of SWE, ds, and snowpack density to 

DA_swesd1 assimilation at hourly time steps at sites UF and UC from January 30 to 

March 1, 2016. Snow depth was updated at beginning of each day and snowpack 

density was updated based on simulated SWE and updated ds. However, because 

CRHM tends to overestimate snowpack density at both sites, snowpack densification 

started immediately after the time of assimilation and the snowpack density can 

increase as much as 70 kg/m3 within one day. The simulated ds decreased accordingly 

and became much smaller than observed until the next assimilation time. This 

confirmed the necessity of assimilating ds every day or at an even higher frequency, if 

possible, to keep simulating a reasonable snowpack density at sites like UF and UC. 

 

 

Figure 5-11. Reaction of main snow properties (SWE, ds, and snowpack density) to DA_swesd1 

assimilation at upper forest (a, b) and upper clearing (c, d) sites in Marmot Creek Research Basin, Alberta, 

Canada. 



 

135 
 

DA_swesd2 simulated SWE agreed with observations at the SWE assimilation time 

steps. However, SWE was largely overestimated the rest of time because the model 

consistently overestimated snowpack density. Independent validation indicated that 

RMSE between simulated and observed SWE was 87.63 mm and 67.48 mm at sites UF 

and UC respectively. This was the highest among all the SWE involved DAs. Like other 

DA experiments with ds assimilation, DA_swesd2 simulated ds agreed with 

observations most of the time with low RMSE (0.07 m and 0.05 m) and MB (−0.22 to 

−0.03 annually). Although the snowpack density was close to observed at time steps 

when both SWE and ds observations were available, the snowpack densified gradually 

after these assimilations. This resulted in the simulated snowpack density being 24% to 

72% higher than observed, resulting in the overestimation of SWE at both sites. 

5.5.3 SWE and ds assimilation influences on snowpack properties in open alpine sites  

Figure 5-12 shows the SWE from snow survey and several DA experiments at the 

windblown Fisera Ridge sites. Compared to OL, all DA experiments improved SWE 

simulation accuracy to varying degrees. At the FRNF site, OL largely overestimated 

SWE in all simulation years with a MB of 1.16. All DAs produced similar results, 

decreasing MB to between 0 and 0.2 with a decreased RMSE of simulated SWE from 

148.3 mm (OL) to between 22.4 and 69.4 mm (Table 5-5). The SWE-involved DAs 

(DA_swe, DA_swesd1, and DA_swesd2) performed better than assimilating snow 

depth alone (DA_sd1 and DA_sd2) or together with historical snow density data 

(DA_sdrho). Amongst SWE involved DAs, improvements were similar while 

DA_swesd1 gained a slightly higher accuracy (around 1 mm) than DA_swe and 

DA_swesd2. For the non-SWE DAs, DA_sdrho had between 1 and 31 mm higher 

accuracy than DA_sd2 and DA_sd1, respectively. At site FRRT, as in FRNF, OL 

overestimated SWE in most years with a MB of 0.49 dropping to between −0.19 and 

0.15 after assimilation. The SWE involved DAs had much better performance than non-

SWE DAs. The SWE involved DAs decreased the RMSE from 122.4 mm (OL) to 

between 18.6 and 48.0 mm with DA_swe outperforming DA_swesd1 and DA_swesd2. 

DA_sd1, DA_sd2, and DA_sdrho also improved SWE simulation accuracy but with 

relatively higher RMSE (62.2, 55.9, and 71.7 mm). OL overestimated SWE at site 

FRRT, however after the assimilation, DA_sd2 and DA_sdrho underestimated SWE. 

This is partially due to the adjusted SR50 observation underestimating snow depth at 

this site in most years. The open loop running at site FRSF had the highest RMSE (152.5 

mm) but lowest MB (0.12) among the three sites. Considering the high annual snow 

accumulation at this site, the OL simulated the snowpack the best at FRSF. After 

assimilations, the MB of the designed experiments improved to between −0.11 and 0.06. 

DA_swe, DA_swesd1, and DA_swesd2 improved RMSE by 113.5, 102.2, and 81.4 mm, 

respectively, whilst the improvements from DA_sd1, DA_sd2 and DA_sdrho were only 

25.4, 69.8 and 24.9 mm, respectively. Although the whole validation showed that 

assimilating SWE alone can be better than simultaneously assimilating SWE and ds, 
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independent validation shows that DA_swesd1 outperformed at sites FRRT and FRSF 

while DA_swesd2 achieved its best result at site FRNF (Table 5-6).   

 

 

Figure 5-12. Comparison of observed and simulated SWE in DA experiments at Fisera Ridge sites at the 

Marmot Creek Research Basin, Alberta, Canada. Error bars shows the data range and points show the 

mean values of the snow survey observations.  
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Table 5-5. RMSE and MB of DA experiments simulating SWE, snow depth, and snowpack density at 

Fisera Ridge sites in Marmot Creek Research Basin, Alberta, Canada.  

 

 

Table 5-6. RMSE and MB of independent validation of DAs simulated SWE and snowpack density at 

Fisera Ridge sites in Marmot Creek Research Basin, Alberta, Canada. Bold font shows the lowest RMSE 

or MB simulation among DA experiments at each site.  

 

 

Similar to SWE, the OL overestimated ds by 17−87% with an RMSE of 0.42 to 0.51 m 

(Figure 5-13). All assimilations improved model accuracy. After assimilating ds alone, 

DA_sd1 and DA_sd2 simulated ds agreed better to observations with MB lower than 

±0.06 and RMSE from 0.09 to 0.28 m. The results from assimilating SWE and ds 

together were similar to assimilating ds alone in ds simulations and the performances of 

DA_swesd1 and DA_swesd2 were close. DA_swe achieved even better results than 

DA_sdrho. This is likely due to DA_swe improving SWE simulations and CRHM 

having reasonable accuracy in snow density simulations. Hence, the ds updated 
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consistently with updated SWE and simulated snowpack density improved even though 

no ds data was assimilated into the model directly.   

 

 

Figure 5-13. Comparison of observed and simulated snow depth by DA experiments at Fisera Ridge sites 

in Marmot Creek Research Basin, Alberta, Canada. Error bars shows the data range and points show the 

mean values of the snow survey observations.  

The OL had relatively small over- or underestimation rates (−4% to 16%) in snowpack 

density simulations and the RMSE values between observations and simulation were 

76.2 to 123.9 kg/m3. The DA experiments improved little or not at all at the Fisera Ridge 

sites (Figure 5-14). DA_sd1 increased the RMSE and MB at all three sites and DA_sd2 

slightly improved the accuracy in two of three sites. DA_swe increased the simulation 

accuracy with little improvement of RMSE (0.87 to 13.4 kg/m3). DA_swesd1 decreased 

the RMSE in two of the three sites and DA_swesd2 only decreased at one of the sites. 

The DA_sdrho achieved its best results among all DA experiments by decreasing the 

MB to within ±0.07 and the RMSE by 9 to 22.5 kg/m3. Validation observations show 

that the SWE-involved DAs increased the RMSE and MB at all sites with one exception: 

DA_swesd1 on a south-facing slope (Table 5-6). These results indicated that, at FR sites, 

assimilations of SWE and ds in these experiments have very limited potential to 

improve the accuracy of snowpack density estimation. 
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Figure 5-14. Comparison of observed and simulated snowpack density by DA experiments at Fisera 

Ridge sites in Marmot Creek Research Basin, Alberta, Canada. Error bars shows the data range and points 

show the mean values of the snow survey observations.  

In all, the DAs assimilated SWE outperformed the DAs assimilated ds alone or together 

with historical snow density at FR sites. This indicated that assimilating snow survey 

SWE data is better than assimilating point scale ds in general, even though ds has a 

much higher collection frequency. This differs from the finding at the UC and UF sites, 

where assimilating SWE and ds together did always achieve better results than 

assimilating SWE alone when simulating SWE. Rather, DA_swesd1 had higher RMSE 

than DA_swe at two of three sites in FR. This is likely caused by several factors. The 

first is the high SWE and its consistency throughout the winter at these sites. At sites 

UC and UF, annual snow accumulation is small which makes OL simulated SWE 

discontinuous throughout the snow season in some years (Figure 5-7). Assimilating ds 

under this condition significantly benefits SWE assimilation. At the FR sites, however, 

the snowpack is continuous throughout the snow season in all years for OL so that the 

benefits of assimilating ds are small. Second, the SR50 observations did not provide 

enough information at the beginning and end of each snow season due to data gaps. At 

UC and UF, one reason DA_swesd1 outperformed DA_swe was that the former 

simulated SWE better at the beginning and end of the snow season. At FR, however, 

adjusted SR50 measurements only provided clear information about the beginning and 

end of the snow season in a few years (Figure 5-6). For the independent validation, the 
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DA_swesd1 outperformed the DA_swesd2 in two of the three FR sites (Table 5-6). This 

indicates that one can trust SWE more than snowpack density when assimilating SWE 

and ds together even if the model is reasonably accurate in snowpack density simulation. 

At FR, amongst all DAs, DA_sdrho had the second worst performance, in contrast to 

results from the forest zone UC and UF sites. This can be explained by differences in 

CRHM’s ability to predict snow density. CRHM tended to overestimate snow density 

at all sites where snow surveys are available. However, the degree of overestimation 

decreases with increasing elevation (Figure 5-15). At low elevations, such as at site LF, 

the overestimation rate can reach 69%. At middle elevations, such as at sites UC and 

UF, the rate decreased to between 47 and 49%. At high elevations (Fisera Ridge), this 

rate dropped to between 10 and 22%. At the forest zone sites UF and UC, because 

CRHM greatly overestimates snow density, incorporating a more reliable snow density 

measure can greatly improve SWE simulation accuracy. Although CRHM still has 

errors in simulating snow density at FR sites, the overestimation rate is low and 

modelled density is better than assimilating the ten-day average historical snow density. 

 

 

Figure 5-15. Comparison of observed and simulated snow density at all sites in Marmot Creek Research 

Basin, Alberta, Canada from 2007 to 2018. Black line shows the 1:1 relationship and the blue line shows 

the best fit. 
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5.5.4 SWE assimilation impacts on streamflow simulation  

GEM_OL tended to overestimate streamflow by 66% to 109% annually and the overall 

RMSE was 0.24 m3/s (Table 5-7). Simulated peak streamflow was 2 to 3 times higher 

than observations (Figure 5-16). SWE assimilation had a modest impact on the 

streamflow simulation when driving the model with GEM forcing data. The overall 

RMSE, MB, and NSE all improved slightly after SWE assimilation. GEM_DA only 

slightly improved the stream simulation in HY 2014 and 2015. RMSE, MB, and NSE 

changed very little and the annual peak flow was slightly improved when compared to 

the open loop simulation in these years. The improvement in HY 2016 was significant 

enough that the simulated discharge closely matched observations in magnitude and 

timing, with a low RMSE (0.1 m3/s) and MB (−0.07), and a higher NSE (0.65). In HY 

2014 and 2015, improvement in late summer streamflow estimates were insignificant 

because rainfall was a major source of summer streamflow. However, in HY 2016, 

predictive improvements occurred throughout the season because there was little 

rainfall in that summer (Figure 5-16). This indicated that snow data assimilation can 

only impact late season streamflow simulation in dry summers when rainfall is at a 

minimum.   

 

Table 5-7. RMSE, MB, and NSE of simulated daily streamflow (m3/s) from DA experiments in Marmot 

Creek Research Basin, Alberta, Canada. Bold font shows the best simulation among DA experiments.  
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Figure 5-16. Comparisons between several DAs simulated basin daily stream flow and the measured 

stream flow at the outlet of Marmot Creek Research Basin, Alberta, Canada. (Daily rainfall and snowfall 

from GEM and local observed precipitations are included to show the timing and type of precipitation) 

The open loop simulation using locally observed meteorological data as forcing 

performed better than GEM_OL and GEM_DA with an overall RMSE of 0.094 m3/s 

and MB of 0.15. The ObsMet_OL simulated annual peak streamflow still differed from 

observations in magnitude and timing, but was, nevertheless, an improvement over 

GEM_OL and GEM_DA. ObsMet_OL simulated streamflow matched observations 

well in the early season. Differences grew in the late season when precipitation type 

shifted from snowfall to rainfall. After SWE assimilation, the ObsMet _DA simulated 

streamflow improved considerably. Annual peak streamflow simulations agreed well 

with observations in timing and magnitude. The overall RMSE and MB decreased to 

0.08 m3/s and −0.04 respectively. The NSE also improved, reaching positive values in 

each year while the overall NSE increased to 0.53. However, this improvement was 

mainly evident in the early season whilst the impact of SWE assimilation on late season 
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streamflow was insignificant. This was due to the overwhelming effect of rainfall on 

late season streamflow generation in every year of simulation except for 2016 which 

was exceptionally dry.  

 

GEM_ObsMet_DA performed better than GEM_DA but worse than GEM_ObsMet. 

Estimates of magnitude and timing of peak flow by GEM_ObsMet_DA improved in all 

simulation years when compare to GEM_OL and GEM_DA. The RMSE, MB, and NSE 

of GEM_ObsMet_DA simulated streamflow in the first two years were greatly 

improved when compared to GEM_OL and GEM_DA but not when compared to 

ObsMet_OL and ObsMet_DA simulations (Table 5-7). However, GEM_ObsMet_DA 

achieved the best results in the third year, generating the lowest RMSE and highest NSE 

among all DAs. This is believed to be because of low rainfall from both forcing data 

sets that summer. This indicates that, although DA can improve streamflow estimates, 

reliable forcing data are still more important. In the combined forcing data assimilation 

experiment, snowpack SWE provided better results than single forcing data. However, 

streamflow simulations forced with combined data cannot be as accurate as simulations 

forced from observations, as the timing and magnitude of streamflow in the Canadian 

Rockies rely heavily on the basin-wide mass and energy flux and not only a snapshot 

of snowpack state. 

5.6 Discussions 

This research uncovered an approach to assimilating ground observed SWE and ds into 

a physically based, cold regions hydrological model that included snow redistribution 

and ablation processes. The influence of different assimilation schemes on snowpack 

properties and streamflow simulation were detailed.  

 

Snow survey-derived SWE and automatically measured, high-frequency ds were 

assimilated separately or together into models to evaluate the influence of assimilation 

on snowpack properties (SWE, ds, and ρ). The results show that, although snowpack 

property simulations can be improved to some degree when assimilating SWE or ds 

alone, there are clear drawbacks to using these approaches. Due to the limited 

availability of SWE measurements, assimilation may sometimes influence SWE 

simulations too little in the early and late snow season. The snow ablation season is a 

particularly important hydrological period as it controls snowmelt runoff estimates. 

Because of the nature of EnKF, the model may not respond to assimilation at critical 

times (snow season onset, snow season end, dry years) when model simulated SWE 

equals zero for all ensembles. This leads to a zero Kalman gain and no model updates. 

Kumar et al. (2009) proposed a method that used multiple sources of forcing data in 

one ensemble member set to increase model simulation error covariance. This approach 

generally enhances assimilation performance, and particularly in the early and late 

snow season. Assimilating observations of daily snow depth data alone can greatly 

improve the snow depth estimates, but its contribution to simulated SWE is entirely 
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dependant on the performance of modelled snowpack density. It has been shown 

elsewhere that ds assimilation can improve SWE estimates (Liu et al., 2013; Magnusson 

et al., 2017). Here however, the assimilation of ds alone did little to improve SWE 

estimates and in some cases made those estimates worse at the middle elevation sites. 

This is attributed to the Snobal module in CRHM tending to overestimate snowpack 

density. CRHM tends to overestimate snowpack density across the basin and 

overestimates are particularly high at low to middle elevations. Models of high 

elevation sites (Fisera Ridge) showed that assimilating ds alone achieved results close 

to SWE involved assimilation. At middle elevation sites (UC and UF), however, these 

models performed only slightly better and sometimes worse. This reveals the 

importance of reliable snowpack density estimates prior to assimilating ds into 

hydrological models.  

 

Most snow data assimilation research has assimilated either SWE or ds alone while 

updating the unincorporated variable based on modelled snowpack density (e.g., Clark 

et al., 2006; Liu et al. 2013; Magnusson et al. 2017; Slater and Clark, 2006). Knowing 

that snowpack density estimates from CRHM in study area were poor, this research 

assimilated monthly or semi-monthly SWE data from snow survey and daily snow 

depth measurements together into the model. Instead of trusting modelled snowpack 

density, snow density was adjusted based on updated SWE and ds in one experiment. 

At middle elevation sites, where CRHM greatly overestimates snowpack density, this 

experiment achieved its best results with three main snowpack properties (SWE, ds, and 

ρ). A comparable result was obtained by assimilating historical snowpack density along 

with ds data into the model. Reliable automatic and manual SWE measures are costly 

and not available in most cold regions. Hence, assimilating automatically measured ds 

and a reliable ρ together is more feasible for hydrological modeling than assimilating 

ds into a snow model that inadequately estimates snowpack density. A reliable ρ can be 

obtained by involving another snow density estimation algorithm based on 

meteorological data, topography, day of the year and other parameters (c.f., Jones et al., 

2009; Meløysund et al., 2007; Sturm et al., 2010). At the Fisera Ridge sites, where 

CRHM simulated the snowpack density relatively well, incorporating the historical 

snowpack density did not always produce better results than by assimilating ds alone. 

This indicated that when model simulated ρ is reliable, assimilating ds alone is the better 

choice because introducing another ρ estimation method always increases uncertainty. 

The results suggest that the flexible CRHM platform should employ other snowpack 

module options than Snobal for application in the Canadian Rockies.  

 

In the second part of this research, monthly or semi-monthly snow survey SWE data 

from several sites were interpolated to the whole basin scale and then assimilated into 

the model to evaluate its influence on streamflow simulation. Three parallel 

experiments were designed by forcing the model using climate model output or locally 

observed meteorological data, both separately or together. All three experiments 

improved streamflow estimates in the study area. The best result was achieved by using 
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observed forcing data. The simulation using mixed forcing data outperformed that using 

atmospheric model output alone. This indicated that SWE DA can improve streamflow 

simulation, but the influence is mainly during the snowmelt season. Forcing data plays 

a more important role than SWE assimilation for these simulations. Although including 

multiple forcing data can improve the simulation of SWE, better SWE simulation alone 

does not necessarily lead to better streamflow estimates (Liu et al., 2013). Magnusson 

et al. (2017) assimilated snow depth into a snow model, comparing the results of two 

experiments using observations and reanalysis data as model forcing. Their model 

achieved similar SWE and snow depth estimation accuracy, but the snowpack runoff 

accuracy was much higher when using observations rather than reanalysis data as 

forcing. 

 

Although fixed-point snow depth measurements used in the research are cheaper and 

more common in the field than SWE measurements, they are still not available in many 

remote cold regions. As well, the low sample site density creates issues in upscaling to 

the basin scale. Airborne remote sensing technology has made available ever more 

snow depth measurements with high spatial and temporal resolution (Harder et al., 2016; 

Painter et al., 2016). Assimilation of these snow depth measurements may contribute to 

a more accurate snow distribution and streamflow estimates and forecasting at regional 

or basin scales. 

5.7 Conclusions 

This research assessed the influence of data assimilation on snowpack properties and 

basin streamflow simulations of a coupled numerical weather forecast and physically 

based cold regions hydrological model in a headwater basin in the Canadian Rockies. 

Manual snow survey data and automatic snow depth measurement were assimilated 

into the coupled model using the EnKF method and simulation results were validated 

using local observations. Results showed that the snowpack module Snobal, in 

hydrological model, CRHM, tended to overestimate snowpack density. The 

overestimation rate decreased with increasing elevation suggesting that different 

assimilation strategies should be applied at different elevations to achieve the best 

results for SWE simulation. At low to middle elevations, where annual snow 

accumulation is low and CRHM heavily overestimates snowpack density, assimilating 

ds or SWE independently provides little or no improvement for the SWE simulation in 

some years. The best results were obtained by assimilating SWE or ds together. A 

similar result was achieved by assimilating ds and historical snow density estimates. At 

high elevation sites where annual snow accumulation is high and CRHM only slightly 

overestimates the snowpack density, assimilating SWE or ds alone can achieve a close 

or even better result compared to assimilating SWE and ds together. Introducing another 

snowpack density source is not necessary as it may not provide better results but 

increases uncertainty. SWE from annual snow surveys or automatic stations are not cost 
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effective nor available in most cold regions compared to automatic snow depth 

measurements that are relatively inexpensive and more common. Assimilating 

automatic measured snow depth is a better choice. However, the findings show that 

attention must be paid to the reliability of snowpack density estimates in snow models. 

If models cannot simulate densities well, then assimilating ds with other, more reliable 

density data will be necessary.  Alternative snowpack modules in CRHM in the future 

might provide more reliable density calculations and permit greater reliance on snow 

depth assimilation alone.   

 

Snow survey SWE data were assimilated into the coupled model with results showing 

that assimilation of snow information can improve streamflow estimates during the 

snowmelt period but not generally late in the hydrological year. Another two 

experiments in which the hydrological model was forced by observations or mixed 

forcing data showed that using observations achieved much better results than using 

numerical weather forecasts or mixed forcing data. This indicated that assimilation of 

SWE can improve streamflow simulation, but the quality of forcing data also plays an 

important role. 
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CHAPTER 6: Conclusions  

6.1 Overall conclusions 

This research advances the understanding of observation, modelling, and data 

assimilation for cold regions hydrological properties and processes. With intensive data 

collection, data analyses, and modelling, novel snow interception measurement 

approaches were developed to provide input data for DA, and the roles of model 

structure, model input data, assimilation input data, and assimilation strategy of DA 

systems were analyzed to provide a better understanding of DA. These findings can 

advance the estimation of snow properties and snowmelt runoff in the cold regions. 

 

The SWE product of the SNODAS system was validated in western Canadian 

environments (boreal forests, prairie, and mountains) for the first time, and its error 

sources were analyzed (Chapter 2). SNODAS overestimated SWE in all three 

environments, most of the time. By mimicking and then diagnosing the SNODAS 

system, the overestimation was found to be caused by errors in the input data for the 

snow model and by missing important snow redistribution processes in the model 

structure. Including the missing snow redistribution processes of blowing snow 

transport and snow interception by forest canopy can generally improve the accuracy 

of SNODAS SWE data. Therefore, this research recommends that these two processes 

be included in the SNODAS snow model. 

 

The ability to detect canopy intercepted snow using data from optical and thermal 

satellite remote sensors was demonstrated for the first time (Chapter 3). The influence 

of canopy intercepted snow on four indices (NDSI, NDVI, albedo, LST) was analyzed. 

Intercepted snow clearly increases the magnitudes of NDSI and albedo, whereas it 

decreases those of NDVI, LST and the daily variation of canopy temperature. NDSI 

and NDVI together were recommended to detect intercepted snow on the canopy as 

they are more sensitive to the snow on the canopy than the other two indices. Using 

NDSI and NDVI together also avoids the prior knowledge of land cover information. 

This work makes the validation of snow interception modelling on a large-scale 

possible and provides more input data for snow interception DA. 

 

Quantification of snowfall interception by the forest canopy using automatic snow 

depth measurements from an adjacent forest and clearing and the influence of DA on 

snow interception simulation were explored (Chapter 4). With a reliable fresh snow 

density estimation method, the snow depth measured from adjacent forest and clearing 

is able to indirectly determine snow interception quantitatively using a mass budget 

approach. The snow interception load estimated in this manner agreed well with the in 

situ directly measured snow interception. Indirectly estimated, directly measured, and 

remotely sensed (Chapter 3) snow interception information was assimilated into a 
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physically based snow interception, unloading, drip and sublimation routine in a cold 

regions hydrology model. The results indicated that these assimilations can improve the 

time and magnitude of snow interception simulation. The improvements are strongly 

influenced by the assimilating frequency and quality of forcing data for the hydrology 

model. This work explores using automatic snow depth measurements to quantify 

snowfall interception and demonstrates the benefit of snow interception DA. 

 

Effective approaches were developed for assimilating in situ measured SWE and snow 

depth data into a physically based hydrological model to improve the simulations of 

snowpack properties and streamflow (Chapter 5). Assimilation of SWE and snow depth 

generally improves the simulation of snowpack properties and streamflow, but the 

results can be undesirable under certain circumstances. First, assimilating low-

frequency (monthly or semi-monthly) SWE measurements alone in the shallow 

snowpack areas does not always improve the simulation of snowpack properties, 

especially in the beginning and the end of the snow season. This can be improved upon 

by assimilating automatically measured high-frequency snow depth data together with 

SWE into the model. Second, the result of assimilating snow depth data alone depends 

on the ability of the snow model to simulate snowpack density. Assimilating reliable 

snowpack density data together with snow depth can solve this problem. Third, 

assimilating SWE data can improve the accuracy of snowpack property simulations, 

but a better SWE simulation does not always lead to the better prediction of streamflow 

as the streamflow is also heavily influenced by the quality of meteorological forcing 

data, including rainfall, that drives the hydrological model. This work improves the 

understanding of snow DA and helps hydrologists to better design the DA framework.  

6.2 Synthesis and discussion 

The snowmelt runoff from the mountain areas is the main early summer water resource 

for many rivers in the world and hence provides critical water supply for large of the 

population over the surface of the Earth. With the complex topography and land over, 

ground snowpack observations are rare or confined in the small scale and the remote 

sensing data either contains substantial error or lacks of enough temporal or spatial 

coverage. The hydrological modelling results are always not desirable because lack of 

accurate meteorological forcing data as ground climate stations are sparse and weather 

model outputs usually have low accuracy. In a small headwater basin in the Canadian 

Rockies with dense snowpack and climate observations, the ground based and remotely 

sensed snow information was assimilated into a CRHM platform created physically 

base hydrological model that forcing by numerical weather prediction (GEM) outputs 

to achieve the better simulation of snow properties on the ground or the canopy and 

basin scale streamflow. This research demonstrates how to use DA to obtain optimal 

hydrological simulations in the mountain areas that have sparse weather stations.   

 

The main theme of this research is to reduce the uncertainty in estimation of cold 
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regions hydrological processes where there is redistribution of snow by wind and forest 

cover, through using DAs. To achieve this goal, several studies have been conducted in 

two major fields throughout the present study. The first one developed novel snow 

property measuring techniques to provide new input data for DA (Chapter 3 and 4). The 

second one helped to better understand DA through analyzing DA systems that were 

developed by other researchers (Chapter 2) and contributing a new one (Chapter 4 and 

5). 

 

A novel approach was proposed in this research to measure snow interception on a large 

scale qualitatively using satellite remote sensing (Chapter 3). Using automated snow 

depth measurements from adjacent forest and clearing sites to quantify the snow 

interception on a small scale was explored (Chapter 4). Many approaches have been 

developed to measure snow interception qualitatively and quantitatively from single-

tree to catchment scales (Friesen et al., 2015). However, measuring snow interception 

at a regional or larger scales was not possible before this research. Chapter 3 

demonstrated that optical satellite sensors are promising tools for detecting the presence 

of canopy intercepted snow. This makes the validation of snow interception simulation 

on a large scale possible for the first time. This research should initiate further studies 

of snow interception measurement using satellite remote sensing in the cold regions 

hydrological research community. The snow interception detected using satellite data 

was not used in the latter DA research in Chapter 4 for two reasons. First, the data 

frequency was too low as there were only 56 measurements from 2007 to 2016. Second, 

there was no validation data for this kind of assimilation as ground-based time lapse 

photo derived basin-scale snow interception was only available for 2015 spring to 2016 

summer. However, the ground-based time lapse photo derived snow interception was 

assimilated into the model at a HRU scale, and it improved simulations of the timing 

of snow interception. This encourages the assimilation of satellite data into the snow 

interception models in the future. Chapter 4 demonstrated, evaluated and clarified how 

automatic snow depth measurements from adjacent forest and clearing can be used to 

quantify snow interception magnitude in a forest. Before this research, snow 

interception was typically measured using direct methods using weighted, suspended 

whole trees; tree branches; or other artificial objects (Floyd and Weiler, 2008; Pomeroy 

and Schmidt, 1993; Schmidt et al., 1988; Schmidt and Gluns, 1991; Storck et al., 2002) 

or indirect budgeting methods that different SWE increases that measured through snow 

surveys (Hedstrom and Pomeroy, 1998; Gelfan et al., 2004; Pomeroy et al., 2008b) or 

precipitation gauges (Koivusalo and Kokkonen, 2002) between adjacent forest and 

clearing during the snow storm. These methods either require high maintenance or are 

costly. However, with a reliable fresh snow density estimation method, Chapter 4 

proposed using automatic snow depth sensor, which is usually included in weather 

stations and is relatively cheap and requires minimum maintenance, to quantify snow 

interception for snow storm. The snow interception determined in this way agreed well 

with the measurements from a weighed, suspended tree. Although this method only 

provides the maximum interception for each snow storm, it improved the timing and 
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magnitude of snow interception simulation by assimilating these data into the snow 

interception model (Chapter 4).  

 

An analysis of the performance of the SNODAS system found that it is missing 

important snow processes in the snow model. This along with errors in input forcing 

data for the snow model triggered the overestimation of SNODAS SWE data in western 

Canada (Chapter 2). With low assimilation frequency, missing snow processes in model 

have an important effect on the accuracy of SNODAS products in western Canadian 

environments. Error in the input data for the snow model is hard to avoid at this point. 

However, the missing processes could be incorporated into the snow model since many 

models have been developed to simulate snow interception in the forests (e.g., 

Hedstrom and Pomeroy, 1998) and blowing snow transport in the open areas (e.g., 

Pomeroy and Li, 2000). Although incorporating these processes can increase the 

computational cost of the DA system, it is still cheaper than collecting more 

observations as input data for data assimilation. Many researchers indicated that these 

two processes are crucial for the snow accumulation and redistribution at many regions 

in the U.S. (e.g., Clow et al., 2012; Miller, 1964; Montesi et al., 2004). Therefore, with 

limited observation for assimilation, development of a more comprehensive model 

should be a top priority for any DA system. Based on these findings, all the important 

processes were included in the model of the assimilation system used in this research 

(Chapters 4 and 5). Although assimilation of snow information improved simulations 

of snow properties on the ground and on the canopy and of streamflow, two major 

drawbacks were found in the DA system. The first one is that the Snobal module in the 

CRHM hydrological model tended to overestimate snowpack density at low to middle 

elevations in the Canadian Rockies (Chapter 5). Although high-quality snow depth data 

were assimilated alone into the model at some experiments, the SWE simulation at the 

middle elevation sites was degraded by DA. This indicates that researchers have to pay 

more attention to their models’ snowpack density algorithms before assimilating snow 

depth into the models. The second drawback is that the highest assimilation frequency 

to CRHM-created models is limited to daily. This might have not affect ground 

snowpack properties assimilation much, but it influenced the results of canopy snow 

assimilation (Chapter 4). Compared to snow on the ground, intercepted snow only stays 

on the canopy for few hours to tens of days. Daily assimilation frequency can 

sometimes be too low to obtain a desirable result. Overall, DA is a useful tool, but it 

has its limits. The input data for DA are always limited. To better estimate the 

hydrological properties, researchers have to pay more attention to both their model 

structure and assimilation strategies when designing their DA systems. 

6.3 Future work 

Based on the research results of this thesis, some research opportunities have been 

found, and recommendations for future research are given as follows. 
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As shown in Chapter 2, missing processes (snow interception in the forests and blowing 

snow transport in open areas) in the snow model of SNODAS largely affects the 

accuracy of its snow products. Therefore, it is recommended that the SNODAS team 

include these processes in their snow model. Also, researchers have to pay more 

attention to their hydrological models structure when designing their DA system. In 

other words, researchers have to incorporate all the important hydrological processes 

in their models to obtain the optimal simulation of hydrological properties. 

 

This research discovered the possibility of using satellite remote sensing to detect the 

presence of intercepted snow on a forest canopy. Because of lack of sufficient in situ 

data, the present study cannot measure the quantity of canopy intercepted snow using 

remote sensing data at this point. Although the timing of interception is important, the 

magnitude of interception is of the greatest interest to cold region hydrologists. Using 

ground snow interception magnitude to compare with the change of existing remote 

sensing indices such as NDSI or NDVI is one approach to quantifying snow 

interception. Measuring the snow interception magnitude for large areas as ground truth 

data for satellite data is not possible in the near future. However, the research at a single-

tree scale is a good start. A weighed, hanging tree to measure the interception magnitude 

and a spectrometer can be used to measure the reflectance of that tree canopy during 

and after the snow interception process. These data can be used to study the influence 

of snow interception magnitude on these indices. The relationship between the changes 

of intercepted snow magnitude and these indices can be used to determine the 

intercepted snow magnitude using remote sensing data. Another direction is to develop 

a new index based on the theory of determining the LAI using remote sensing data. LAI 

shows the leaf area in a canopy. With snow on the canopy, the area of the projected 

canopy can be modified; hence, LAI will be changed. With the theory of LAI and in 

situ snow interception measurements, statistical (or empirical) and physical approaches 

can be developed to determine the quantity of snow interception using remote sensing 

data. 

 

Owing to the low data availability, the satellite remote-sensing-derived snow 

interception information from Chapter 3 was not included in the DA in Chapter 4. The 

data gaps can be filled by introducing more satellite data, such as MODIS or Sentinel 

2, in the future DA research. Assimilation of these satellites’ data could improve the 

simulation accuracy of snow interception on a large scale. In Chapter 4, the snow depth 

data were only used to quantify snow interception magnitude and these data were 

assimilated into the model to update the snow interception state. Another way of using 

these snow depth data is to assimilate them directly into the model to adjust the 

precipitation through reverse modeling. This will not only benefit the snow interception 

simulation but also contribute to the simulation of snowpack on the ground. 

 

Due to strong winter winds, drone-based snow measurements are sparse in the research 

basin for the current study. Therefore, Chapter 5 only assimilated the HRU-scale SWE 
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and snow depth data into the model. Although the results are promising, better results 

can be obtained if basin-scale snow measurements are available for assimilation. With 

the development of airborne remote sensing technology, more and more areal snow 

measurements are available (Harder et al., 2016; Paiter et al., 2016). Assimilating these 

observations into a hydrological model could improve the snow properties and 

streamflow simulation. Before assimilating these snow depth data, researchers have to 

make sure the snowpack density algorithm is able to simulate density with reasonable 

accuracy. For example, the snowpack density algorithm in the Snobal needs to be 

upgraded for future DA work. 

 

New snow data assimilation systems need to be built for operational use. These systems 

should include snow interception and redistribution processes and take advantage of 

advances in remote sensing and surface observation found in this thesis. Snow 

interception can be detected using remote sensing. Interception losses can be estimated 

using remote sensing and surface observations of fresh snow depth if fresh snow density 

can be estimated accurately. These data should be included in the input data set for new 

DA systems to improve the simulation accuracy of snow interception on the forest 

canopy and snowpack on the forest floor. Snow data assimilation can be improved by 

using high frequency snow depth along with low frequency SWE observations, if 

snowpack density can be estimated accurately. More accurate snow density algorithm 

should be developed for the purpose of assimilating snow depth data considering more 

and more areal snow depth observations are available from LiDAR or other 

meaurements. However, snow DA alone cannot overcome poor forcing data for 

streamflow prediction, even in snowmelt dominated mountain basins. Therefore, there 

is need for more accurate climate model products for better simulation of stream flow 

through DA. 
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Appendix A 

 

This section presents some images and data, which are not shown in Chapter 3, to 

provide more details of this research. Figure A.1 presents two selected time-lapse 

photos that taken on the date with no snow on the canopy (left, Apr. 08th 2015) and with 

snow on the canopy (right, Apr. 15th 2015). These images illustrate the different look in 

RGB photos of snowcovered and snow-free canopies. Table A.1 shows the parameters 

that used in PRACTISE for processing these images. Most of these parameters were 

determined according to the field measurements or camera specifications except the 

target position (X and Y). Unlike the camera position, it is not possible to measure the 

target position for these images in this research. Therefore, it was determined using the 

ground control point module in PRACTISE using 18 GCPs. Figure A.2 provides the 

Landsat 8 images derived NDSI, NDVI, albedo, and LST for MCRB on two dates with 

snow and without snow on the forest canopies. From these images, one can clearly see 

how different these indices were when snow was covered or not on the canopies with 

just eyes. For all indices, the boundaries of the big clearings on the upper right side of 

the basin were much clearer when there was no snow on the canopies. This can be 

explained by the fact that canopy snow reduced the heterogeneity of these indices 

between forest canopy and ground snow surface in clearings. Table A.2 shows the 

multiple linear regression statistics among changes of NDSI, NDVI, and albedo and 

SEA, elevation (E), slope (S), aspect (A), and canopy coverage (C). The equations show 

the detailed influence of SEA, E, S, A, and C on the changes of NDSI, NDVI, and 

albedo from snow-free to snowcovered canopy. 

 

Figure A.1. RGB photos that taken by time-lapse camera on the date with no snow on the canopy (left, 

Apr. 08th 2015) and with snow on the canopy (right, Apr. 15th 2015) in Marmot Creek Research Basin, 

Alberta, Canada. 
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Table A.1. Parameters used in PRACTISE for processing RGB photos that taken by time-lapse camera 

in Marmot Creek Research Basin, Alberta, Canada. 

Parameter name  Value 

Camera position X 627245.5 

Camera position Y 5645456.718 

Target position X 628248.235 

Target position Y 5646628.165 

offset height 8 

roll angle of camera -4 

focal length 0.055 

camera sensor height 0.0315 

camera sensor width 0.042 

pixel rows 2448 

pixel columns 3264 

 

 

 

 

Figure A.2. Landsat 8 images derived NDSI, NDVI, albedo, and LST for Apr. 8th 2015 (upper) and Apr. 

15th 2015 (lower) in Marmot Creek Research Basin, Alberta, Canada. 

  



 

179 
 

 

Table A.2. Multiple linear regression statistics among changes of NDSI, NDVI, and albedo and SEA, 

elevation (E), slope (S), aspect (A), and canopy coverage (C). 

Parameter R2 Model p-Value 

NDSI    

E,S,A,C,SEA 0.62  Change=-0.0019E-0.0061S+0.1A+1.56C-0.0027SEA+3.81 <0.05 

E,S,A,C 0.61  Change=-0.0019E-0.0061S+0.1A+1.56C+3.73 <0.05 

E,S,A 0.30  Change=-0.004E+0.00063S+0.16A+8.3 <0.05 

E,S 0.26  Change=-0.0038E+0.0029S+7.86 <0.05 

E 0.25  Change=-0.0039E+8.1 <0.05 

S 0.05  Change=0.017S+0.66 <0.05 

A 0.02  Change=-0.0010768A-0.0290316 <0.05 

C 0.56  Change=1.79C+0.045 <0.05 

SEA 0.01  Change=-0.0027SEA+0.96 <0.05 

NDVI    

E,S,A,C,SEA 0.50  Change=0.00067E+0.00037S-0.095A-0.44C-0.000025SEA-1.32 <0.05 

E,S,A,C 0.49  Change=0.00067E+0.00037S-0.095A-0.44C-1.32 <0.05 

E,S,A 0.32  Change=0.0013E-0.0015S-0.11A-2.6 <0.05 

E,S 0.18  Change=0.0011E-0.0031S-2.3 <0.05 

E 0.17  Change=0.0012E-2.56 <0.05 

S 0.06  Change=-0.007S-0.25 <0.05 

A 0.11  Change=-0.096A-0.29 <0.05 

C 0.37  Change=-0.56C-0.086 <0.05 

SEA 0.00  Change=-0.000025SEA+0.34 0.89 

albedo    

E,S,A,C,SEA 0.49  Change=-0.00013E+0.0019S+0.037A-0.11C-0.00056SEA+0.34 <0.05 

E,S,A,C 0.43  Change=-0.00013E+0.0019S+0.037A-0.11C+0.33 <0.05 

E,S,A 0.26  Change=0.00002E+0.0015S+0.034A+0.0053 <0.05 

E,S 0.06  Change=0.0000779E+0.002S-0.089 <0.05 

E 0.00  Change=0.0000018E-0.075 0.9 

S 0.06  Change=-0.0008518S+0.1006 <0.05 

A 0.22  Change=0.035A+0.06 <0.05 

C 0.08  Change=-0.064C+0.11 <0.05 

SEA 0.06  Change=-0.00056SEA+0.096 <0.05 
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Appendix B 

 

Data and code availability 

 

Meteorological, snowpack, and streamflow data collected in Marmot Creek Research 

Basin, Alberta, Canada is available at: 

http://www.ccrnetwork.ca/outputs/data/index.php. 

 

Thermal images for forest canopy and ground snow surface collected in Fortress 

Mountain Snow Laboratory Alberta, Canada and the time-lapse RGB images for forest 

snow conditions that collected in Marmot Creek Research Basin, Alberta are available 

through Zhibang Lv (Zhibang.lv@usask.ca). 

 

SNODAS data used in Chapter 2 is available at: http://www.nohrsc.noaa.gov/nsa/. 

 

Landsat data used in Chapter 3 is available United States Geological Survey (USGS) 

website: http://earthexplorer.usgs.gov/. 

 

The CRHM platform is available at Centre for Hydrology, University of Saskatchewan 

website: http://www.usask.ca/hydrology/. 

 

All the data assimilation works in this research were done by using MATLAB. The code 

for DA process is available through a GitHub repository found at: 

https://github.com/ZhibangLv 

http://www.ccrnetwork.ca/outputs/data/index.php
mailto:Zhibang.lv@usask.ca
http://www.nohrsc.noaa.gov/nsa/
http://earthexplorer.usgs.gov/
http://www.usask.ca/hydrology/
https://github.com/ZhibangLv

