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ABSTRACT: 

A simple, reliable flow injection analysis (FIA)-tandem mass spectrometric (MS/MS) method 
was developed for the determination of gemini surfactants, designated as 16-3-16, 16(Py)-
S-2-S-(Py)16 and 16-7N(GK)-16, as gene delivery agents in cellular matrix. 16-3-16 is a 
conventional gemini surfactant bearing two quaternary amines, linked by a 3-carbon spacer 
region, 16(Py)-S-2-S-(Py)16 contains two pyridinium head groups, while 16-7N(GK)-16 
bears a glycine-lysine di-peptide in the space region. The method was fully validated 
according to USFDA guidelines. It is the first time that FIA-MS/MS method was developed for 
the quantification of gemini surfactants, belonging to different structural families. The 
method was superior to existing liquid chromatographic (LC)-MS/MS methods in terms of 
sensitivity and time of analysis. Positive electrospray ionization (ESI) in the multiple reaction 
monitoring (MRM) mode were used on a triple quadrupole-linear ion trap (4000 QTRAP®) 
instrument. Deuterated internal standards were used to correct for matrix effects and 
variations in ionization within the ESI source. Isotope dilution standard curves were 
established in cellular matrix, with a linear range of 10nM-1000nM for 16-3-16 and 16(Py)-
S-2-S-(Py)16, and 20nM-2000nM for 16-7N(GK)-16. The precision, accuracy, recovery and 
stability were all within the acceptable ranges as per the USFDA guidelines. The method was 
successfully applied for the quantification of target gemini surfactants in the nuclear fraction 
of PAM 212 keratinocyte cells treated with nanoparticles, which varied significantly and may 
explain differences in the observed efficiency and/or toxicity of these gemini surfactants in 
gene delivery. 

Keywords:  FIA-MS/MS, quantification, gemini surfactants, lipid-based gene delivery agents, 
cellular matrix 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/228343852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

1 Introduction 

Gene therapy is a promising approach to treat or improve the health condition of patients by 
introducing therapeutic genetic materials into the patient’s cells [1-4]. To date, almost 2,600 
gene therapy clinical trials have been conducted worldwide, with more than half of them 
being in the field of cancer gene therapy [5]. The most difficult challenge in gene therapy is 
the issue of gene delivery. Typically, there are two main types of gene delivery methods; viral 
and non-viral vectors [6]. Viral vectors utilize the viruses’ natural infection capability to 
introduce the target gene into cells [7, 8]. While viruses are efficient vectors for transfection, 
a limited quantity of genetic material can be delivered and they present challenges with 
respect to potential genotoxicity and induction of a severe immune response [9, 10]. On the 
other hand, non-viral vectors have relatively low toxicity profiles, are not limited to the size 
of genes they can encapsulate, and can be easily produced at low cost [4, 11, 12]. However, 
the major disadvantage of non-viral vectors is their low transfection efficiency compared to 
viral vectors [13]. Thus, major efforts have been made to discover and develop novel non-
viral vectors that offer both high transfection efficiency and low toxicity. 

A family of lipid cationic molecules, called gemini surfactants, has been investigated as gene 
delivery vehicles [14, 15]. They are comprised of two surfactant monomers that are 
chemically linked by a rigid spacer group [16]. Gemini surfactants possess dual positively 
charged hydrophilic head groups and hydrophobic tail regions [17] (Figure 1A). This 
structure enables gemini surfactants to bind and compact DNA, and subsequently facilitate 
their cellular entry [18, 19]. For example, the conventional bis-quaternary gemini surfactant 
14-2-14 and the serine-derived bis-quaternary gemini surfactants (nSer)2N5 (n=12 and 14) 
were shown to efficiently deliver plasmid DNA into mitochondria in HeLa cells in 
combination with the helper lipids 1, 2-di-(9Z-octadecenoyl)-sn-glycero-3-
phosphoethanolamine (DOPE) and cholesterol [20]. A transfection of up to 40% of the cells 
was achieved, which is almost twice of that obtained with commercial transfection agent, 
Lipofectamine 2000. 

By varying the head group, the length of the hydrophobic tails and the spacer region, a wide 
range of gemini surfactant compounds can be designed and synthesized. The aim is to 
increase efficacy while reducing toxicity. N, N-bis(dimethylhexadecyl)-1,3-
propanediammonium (denoted 16-3-16, Figure 1B) is a representative of the traditional 
non-substituted m-s-m gemini surfactants, where m is the number of carbon atoms in the tail 
chain and s is number of carbon atoms in the spacer region [17]. Other classes of gemini 
surfactants with variations in the head group have also been studied, such as 1,1’-[ethane-
1,2-diylbis(sulfanediylhexadecane-1,2-diyl)]dipyridinium (denoted 16(Py)-S-2-S-(Py)16, 
Figure 1C) [21], which displayed good DNA binding property and low cytotoxicity [21]. Most 
recently, bio-compatible moieties, such as amino acids, have been incorporated within the 
gemini surfactant structure to enhance the bio-compatibility of the delivery agent [22]. One 
compound, in particular, substituted with the di-peptide glycine-lysine (denoted 16-7N(GK)-
16, Figure 1D) showed higher transfection efficiency with lower toxicity in comparison to 
earlier generations of gemini surfactants [23].  

However, these gemini surfactants nonetheless vary amongst each other in terms of their 
gene transfer efficiency and toxicity profile. This could theoretically be attributable to their 
different biological fates upon transfection, such as variable cellular uptake, subcellular 
biodistribution and/or metabolism. Garnering such knowledge is important and may 
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provide a mechanistic explanation for the observed differences among these gemini 
surfactants in their efficiency and toxicity. However, there is a need for sensitive analytical 
methods that can detect, differentiate and quantify these gemini surfactants in biological 
matrices to determine their post-transfection fate. 

Since the majority of gemini surfactants lack a chromophore or fluorophore and contain 
permanent positive charges, mass spectrometry (MS) is ideal for their qualitative and 
quantitative analysis [24-26]. Tandem mass spectrometry (MS/MS) using multiple reaction 
monitoring (MRM) allows for the detection and quantification of gemini surfactants using 
precursor ion-to-product ion diagnostic transitions, which provides specificity to target 
gemini surfactants in complex biological matrices. Our group has established the collision-
induced dissociation (CID)-MS/MS fragmentation patterns of over 50 gemini surfactant 
structures belonging to various structural families and identified their diagnostic product 
ions [27-31]. Subsequently, we developed liquid chromatography electrospray ionization 
(LC-ESI)-MS/MS methods employing cyano and hydrophilic interaction liquid 
chromatography (HILIC) columns for the quantification of gemini surfactants within cells 
[25, 26]. However, these methods suffered from some drawbacks, such as ion suppression 
due to the addition of an ion pairing reagent, relatively long run times, and the use of an 
analytical column and gradient elution. Therefore, we aim herein to develop a simple and 
reliable method that can quantify the gemini surfactants in cellular matrix. 

Flow injection analysis (FIA)-MS/MS is an analytical approach for the rapid quantitative 
analysis, in which no analytical column is used and both separation and detection occur 
simultaneously within the MS instrument [32]. The removal of the analytical column can 
substantially decrease the time of method development, increase the speed of analysis and 
simplify the acquisition of quantitative data. Furthermore, FIA-MS/MS offers high-
throughput quantitative analysis without compromising the sensitivity, precision and 
accuracy [33]. Many studies have demonstrated the feasibility of FIA-MS/MS for the 
quantification of small molecules in biological samples [34-36]. For example, FIA-MS/MS has 
been used to quantify nifedipine in human plasma samples, with high sensitivity, selectivity 
and a short run time [37]. Similarly, the drug metformin was quantified in dog plasma after 
developing a validated FIA-MS/MS method that was superior to all existing methods in terms 
of speed of analysis without compromising sensitivity [38]. Most recently, a simple FIA-
MS/MS method has been developed for the cutaneous determination of peptide-modifed 
cationic gemini surfactants used as gene delivery vectors [39]. 

In this work, we report for the first time the development and validation of a fast and simple 
FIA-MS/MS quantification method that was applied for the quantification of structurally 
different gemini surfactants at the subcellular level. 
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2 Materials and Methods 

2.1 Materials 

All gemini surfactants and the deuterated internal standards were previously synthesized 
using established protocols [21, 23, 40]. Their structures are listed in Figures 1 and S1 
(supporting information). For analyte 16-3-16, the internal standard (16-3-16-D66) contains 
66 deuterium atoms in the alkyl tails. Analyte 16(Py)-S-2-S-16(Py) has an internal standard 
(16(Py)-S-2-S-16(Py)-D10) with deuterated pyridinium head groups (10 deuterium atoms), 
while the internal standard (16-7N(GK)-16-D4) for analyte 16-7N(GK)-16 possesses 4 
deuterium atoms on the peptide group (Figure S1 in supporting information).  

PAM 212 keratinocyte cells were kindly provided by Dr. S. Yuspa, National Cancer Institute, 
Bethesda, MD, USA. The neutral lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 
(DOPE), was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA). Formic acid, 
chloroform, methanol and acetonitrile were purchased from Fisher Scientific (Ottawa, ON, 
Canada). Minimum essential media (MEM), fetal bovine serum albumin (FBS) and antibiotic-
antimycotic solution were obtained from Sigma-Aldrich (Oakville, ON, Canada). Tissue 
culture flasks (150cm2) and petri dishes (150cm2) were purchased from Fisher Scientific 
(Ottawa, ON, Canada). The motorized tissue-grinder/pellet homogenizer (#12-141-361, 12-
141-368) was purchased from Fisher Scientific (Toronto, ON, Canada). 

2.2 Instrumentation 

A quadrupole-linear ion trap (4000 QTRAP®) mass spectrometer (AB Sciex, Concord, ON, 
Canada) was coupled with an Agilent 1200 series HPLC, comprised of a quaternary pump, 
degasser and auto sampler (Agilent Technologies, Mississauga, ON, Canada), to perform the 
FIA-MS/MS analysis. 3µL of sample at 6℃ was loop-injected into the turbo ion source with 
an isocratic mobile phase consisting of acetonitrile-water (98:2, v/v) with 0.1% formic acid 
at a flow rate of 0.5mL/min. The data acquisition time is 2min. No sample carryover was 
observed and to eliminate any chance of carryover, the injection of the highest calibration 
curve sample was followed by one blank sample injection during sample analysis. 

The source was set at 600℃ at the interface, with ion spray voltage (ISV) at 5500V, curtain 
gas (CUR) at 30, nebulizer gas (GS1) at 55, and heater gas (GS2) at 50. Nitrogen was used for 
all gas consumption. Multiple reaction monitoring (MRM) in positive electrospray ionization 
(PESI) mode with unit resolution was employed to monitor all analytes and internal 
standards. Two MRM transitions were monitored for each analyte, with one as a quantifier 
ion and the other as a qualifier ion (Figure 1); one MRM transition was used for each internal 
standard (Figure S1, supporting information). Dwell times for all transitions were set at 
150ms. The monitored MRM transitions and compound-dependent parameters for analytes 
and internal standards are listed in Table 1. Data acquisition and analysis was performed 
with Applied Biosystems/MDS Sciex Analyst software (v. 1.6.0). 

2.3 Standard preparation 

All gemini surfactants and internal standards were prepared as aqueous stock solutions at a 
concentration of 3mM, and stored at -80℃ under darkness. A working solution for each 
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analyte was prepared by serial dilution of the stock solution to achieve a concentration range 
of 50nM-5000nM for 16-3-16 and 16(Py)-S-2-S-(Py)16, and 100nM-10000nM for 16-
7N(GK)-16. Working solutions for each internal standard were prepared at a concentration 
of 1000nM. For the preparation of the standard curve and quality control samples, 50µL of 
analyte and internal standard working solutions were added to 900µl of blank cell lysate 
(untreated cell lysate), the mixture then was processed in the same sample extraction 
process as described below. After extraction, 150µL of organic solution was transferred into 
an HPLC vial for FIA-MS/MS analysis. 

DOPE vesicles were prepared freshly at 1mM in isotonic sucrose solution (9.25% w/v, pH=9) 
as per established protocol [14]. Plasmid DNA (pGT·IFN-GFP) solution at 200µg/mL was 
prepared in ultra-pure water and stored at -80℃. The DOPE vesicles and plasmid DNA 
solutions were used without further dilutions. 

2.4 Cell treatment and sample collection 

The plasmid DNA, gemini surfactant and lipid DOPE (P/G/L) nano-lipoplex was formulated 
as previously described [14]. Briefly, 190µL of gemini surfactant was added to 190µL of 
plasmid DNA and mixed, followed by a 15min incubation at room temperature; 4620µL of 
DOPE solution was then added to the binary mixture, which was incubated at room 
temperature for 15min to yield  5000µL of the ternary P/G/L system (nanoparticles).  

PAM 212 cells were cultured inside a humidified incubator at 37℃ in an atmosphere of 5% 
CO2. The MEM cell culture medium was supplemented with 10% (v/v) FBS and 1 % (v/v) 
antibiotic-antimycotic solution. Upon reaching 80% confluence in the 150cm2 flasks, cells 
were washed with phosphate buffered saline (PBS, 25ml), dissociated with a 5min 
incubation in a versene (5ml) and trypsin (0.5mL) mixture and collected by centrifugation 
(1,200rpm, 5min, 4℃). The cells were then seeded at 8×106 cells per dish (150cm2) 24h prior 
to treatments. At 1h prior to transfection, cells were switched to serum free media. 
Nanoparticle formulations (500µL) were added to each dish in a dropwise manner and 
incubated for 5h, after which the cells were returned to supplemented media for all 
subsequent incubation steps. During the incubation period, triplicates of treated cell samples 
were trypsinized and collected along with one control (untreated cells) at 2h, 5h and 8h. The 
collected cells were pelleted (1,200rpm, 5min, 4℃), rinsed with PBS, reconstituted in 500µL 
ice-cold hypotonic homogenization buffer (10mM NaCl, 1.5mM MgCl2, 10mM Tris-HCL 
(pH=7.5), cOmplete™ protease inhibitor cocktail) and incubated on ice for 10min. 

The ice-cooled 500µL treated cell samples were gently homogenized using a motorized 
tissue-grinder/pellet homogenizer to release the subcellular components, and diluted in ice-
cold hypertonic homogenization buffer (420mM mannitol, 140mM sucrose, 10mM Tris-HCL 
(pH=7.5), 2mM EDTA (pH=7.5)) to a total volume of 1000µL. Cell homogenates were then 
fractionated by differential centrifugation as described [41] to obtain the nuclear, 
mitochondrial, plasma membrane and cytosolic fractions. It is necessary to mention that the 
reported differential centrifugation procedure was slightly modified using 100,000 x g, 
instead of 80,000 x g, to separate the mitochondrial and cytosolic fractions. Finally, all 
fractions were suspended in an equal volume of 950µL PBS and stored at -80℃ prior to 
sample preparation.  
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2.5 Sample preparation 

The 950µL subcellular fractions were thawed and lysed by undergoing six 
freeze/thaw cycles plus 1h sonication at 25kHz on a water bath at room temperature. After 
that, each sample was spiked with 50µL of internal standard bringing the volume for 
subsequent extraction to 1mL. Liquid-liquid extraction of the analytes and internal 
standards from cellular matrix was carried out using the Bligh/Dyer method [42]. Briefly, 
each 1mL of sample was mixed with 3.75mL of methanol-chloroform (2:1, v/v), followed by 
mixing with 1.25mL of chloroform and finally 1.25mL of water. At each step, samples were 
vortexed for at least 10s to ensure that a thorough mixing was achieved. The final combined 
mixture was centrifuged at 4000rpm for 10min at room temperature to separate the 
aqueous and organic phases. The bottom organic phase (80% portion) was retrieved and 
dried under a N2 gas stream, followed by reconstitution in 200µL of methanol. 150µL of 
methanol solution was transferred into an HPLC vial for FIA-MS/MS analysis. 

2.6 Method validation 

Method validation for all gemini surfactants was conducted in accordance with USFDA 
guidelines [43], which include matrix effects, selectivity, linearity, precision, accuracy, 
recovery and stability. 

 Matrix effects were assessed by comparing the instrument response of analytes added to 
the extracted cell samples to that of analytes in a methanol solution at low, mid and high 
concentration. Selectivity was evaluated to ensure no interference from other components 
of the sample matrix through the analysis of six different blank cell samples.  

Linearity was explored over a wide range of analyte concentrations in the sample extract, 
from 10nM to 1000nM for both 16-3-16 and 16(Py)-2-S-2-(Py)-16, and from 20nM to 
2000nM for 16-7N(GK)-16. Standard curves were constructed by plotting the ratio of peak 
areas of analytes to peak areas of internal standards versus the analyte concentrations using 
the least-square regression with a weighting factor of 1/x. Each standard curve was 
established with the slope, intercept and coefficient of determination (r2). The curve was 
accepted if the ± 15% deviation of the nominal value for each standard point other than 
LLOQ, which can be ± 20%, is achieved. The lower limit of detection (LLOD) was set as the 
lowest detectable concentration with a signal‐to‐noise ratio (S/N) ≥3, while the lower limit 
of quantification (LLOQ) was set as the lowest concentration with S/N ≥5, with precision of 
± 20% coefficient of variation (CV) and accuracy of ± 20% deviation from the nominal value 
as per the USFDA guidelines [43].  

Precision and accuracy of the method were determined by analysis of six replicates of quality 
control samples at four different concentrations (LLOQ; low quality control (LQC), middle 
quality control (MQC), and high quality control (HQC)). The LQC was within 3 fold of the 
LLOQ, the MQC was at the middle part of the standard curve range, and the HQC was within 
80% of the upper limit of quantitation (ULOQ). Two runs per day were conducted across 
three consecutive days to assess the intra- and inter-day precision and accuracy. Precision 
was accepted if the CV is ± 15% for concentrations other than the LLOQ, which is allowed to 
be ± 20%; while accuracy was accepted if they were ± 20% deviation of the nominal value 
for the LLOQ and ± 15% deviation of nominal values for other concentrations. 
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Recovery experiments were conducted by preparing one set of samples with analyte pre-
spiked prior to extraction and the other set with analyte post-spiked after extraction, and 
comparing the peak areas of analytes obtained from each set. For each analyte, three 
different concentrations at LQC, MQC and HQC levels in each set were used to determine the 
recovery.  

Freeze-thaw stability, bench-top stability, auto-sampler stability and long-term stability 
were carried out using samples with concentrations at LQC, MQC, and HQC levels. Six 
replicates of samples at each concentration were prepared for the stability evaluation. 
Freeze/thaw stability was tested after all samples had gone through six freeze-thaw cycles, 
with one cycle involving taking out samples stored at -80℃ for at least 24h and allowing 
them to thaw completely at room temperature prior to refreezing. Bench top stability was 
evaluated after the samples were placed on the bench at room temperature for 8h and then 
extracted and analyzed. For the auto-sampler stability, a set of samples was prepared and 
placed in the auto-sampler at 6℃ for 20h prior to injection for analysis. Long-term stability 
was tested for samples that were stored at -80℃ for 90 days. All samples were analyzed 
along with freshly prepared standard curves. Samples were considered stable when the 
USFDA criteria for precision and accuracy were met [43]. 

3 Results and discussion 

3.1 Method development 

In this work, we aimed at developing a simple and reliable method that can quantify the three 
target gemini surfactants in biological matrix for the assessment of their uptake and 
biodistribution in cells. Although gemini surfactants have been previously separated and 
determined using LC-MS/MS methods with various analytical columns, such as cyano [25] 
and HILIC columns [26], all of these methods require relatively long run time for the 
separation and the prior optimization of LC for the analysis. Therefore, we chose to develop 
a FIA-MS/MS method that relies on the mass spectrometer’s separation capability, as the 
MRM mode in the quadrupole-linear ion trap system has the capability of selectively 
monitoring and accurately quantifying the analytes of interest in complex matrices. 

Optimization of the FIA-MS/MS condition was the main focus in the process of method 
development. All source-dependent parameters, such as nebulizer gas (Gas 1) and heater gas 
(Gas 2), and compound-dependent parameters (i.e. DP, EP, and CE) were properly optimized 
so that a high sensitivity of the MRM transitions for each analyte and internal standard can 
be achieved. Two MRM transitions were selected for each analyte in this method; the 
qualifier transition was used to confirm the presence of the analyte peak, whereas the 
quantifier transition was used for the calculation of the concentration of analyte. Matrix 
effects have been identified as a challenge in ESI-MS/MS analysis due to the inconsistency in 
ion current response [44]. To correct for such variations, we used deuterium-labelled gemini 
surfactants as internal standards that have similar physicochemical properties and MS 
behavior to the analytes. The deuterated gemini surfactants possess various number (n=4, 
10 and 66) of deuterium atoms (Figure S1, supporting information), which resulted in large 
mass differences between the analytes and their respective internal standards and thus 
eliminated the potential for cross-talk. In addition, we did not observe any interference from 
the endogenous compounds in the biological matrix for all standards.  
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For the optimization of FIA, different compositions of solvent mobile phases, including 
acetonitrile, methanol and water mixed with varying concentrations of formic acid, were 
tested. Acetonitrile was found to be superior to methanol in terms of obtaining better peak 
shape and reducing carry over, as gemini surfactants are amphiphilic compounds that tend 
to stick to the injection loop and tubing (Figure 2). Aqueous solvent and acid condition are 
required to achieve high ionization efficiency of gemini surfactants for better detection 
sensitivity. As a result, acetonitrile-water (98:2, v/v) with 0.1% formic acid was the best 
mobile phase system that can obtain high ionization efficiency, minimize peak tailing for all 
analytes and internal standards, and reduce the carry over (Figure S2 in supporting 
information) 

The Bligh/Dyer extraction method was adapted in this study as it was reported previously 
to be highly efficient at extracting lipids, including gemini surfactants, from biological 
matrices [26, 42]. In this method, methanol-chloroform (2:1, v/v) was used as the binary 
extraction solvent, because it is highly compatible with the amphiphilic nature of the gemini 
surfactants and thus results in high extraction efficiency. To minimize variation in extraction 
efficiency across samples, internal standards were spiked into samples at appropriate 
concentrations prior to extraction. 

3.2 Selectivity and matrix effects 

Selectivity was assessed with the analysis of six different blank cell matrices. These blank 
cell samples did not contain either the analyte or the internal standard, and a typical 
chromatogram for the blank cell sample is shown in Figure S3 (supporting information). As 
illustrated, no interference peak from endogenous compound was observed in the analyte 
and the internal standard channels from the cell matrix. Furthermore, no cross-talk was 
observed between the analytes and the internal standards as they have large mass 
differences due to the presence of multiple (n=4, 10 and 66) deuterated atoms in the 
structures of internal standards. The peaks of analytes and internal standards eluted at 
0.11min within the data acquisition time of 2min (Figure 3). 

Matrix effects were evaluated by comparing the analyte response in the post-extracted 
spiked sample with non-extracted neat sample. Three different concentrations for each 
analyte in three replicates were used for the evaluation. The matrix effects across all 
concentration levels were calculated, on average, to be 41.5%±7.2% for 16-3-16, 
40.2%±7.8% for 16(Py)-S-2-S-(Py)16, and 35.7%±4.4% for 16-7N(GK)-16 (Table S1, 
supporting information), respectively, which were caused by ion suppression. Although a 
column or additional preparative steps may help reduce the matrix effect, the observed ion 
suppression does not undermine the quantification of gemini surfactants as the sensitivity 
of the method was sufficient for the detection and quantification of target gemini surfactants. 
In addition, internal standards are used, which are considered the gold standard approach 
for correcting any matrix effects. 

3.3 Linearity and Sensitivity 

The linearity of each standard curve was established with a wide range sufficient to cover 
the expected concentration of analytes for quantitative analysis. The standard curves were 
linear at a concentration range of 10nM-1000nM for 16-3-16 and 16(Py)-S-2-S-(Py)16, and 
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20nM-2000nM for 16-7N(GK)-16, with r2 ≥0.998. The LLOD was 4nM for both 16‐3‐16 and 
16(Py)-S-2-S-(Py)16 and 8nM for 16-7N(GK)-16, whereas the LLOQ was 10nM for 16-3-16 
and 16(Py)-S-2-S-(Py)16, and 20nM for 16-7N(GK)-16. Compared to the recent HILIC-
MS/MS method [26], which reported an LLOQ of 67.5nM and 58.2nM for the gemini 
surfactants 16-3-16 and 16(Py)-S-2-S-(Py)16, respectively [26], the current FIA-MS/MS 
method has a lower LLOQ and thus higher sensitivity. The increase in sensitivity could be 
attributable to the enhanced sample preparation method and the optimized solvent mobile 
phase, which resulted in narrower and more symmetrical analyte peaks compared to those 
obtained with the HILIC-MS/MS method [26]. Such sensitivity is needed to detect the target 
analytes in a subcellular matrix. 

3.4 Intra- and inter-day precision and accuracy 

Intra- and inter-day precision and accuracy were evaluated by analyzing samples at four 
different concentrations LLOQ, LQC, MQC and HQC as per the USFDA guidelines [43]. Tables 
2 and 3 show the precision and accuracy obtained for gemini surfactants 16-3-16 and 
16(Py)-S-2-S-(Py)16 at various concentrations. The precision and accuracy of 16-7N(GK)-16 
are listed in Tables 4 and 5. The precision was reported as CV% among all measurements 
and accuracy was expressed as a percentage of the mean of all measurements relative to the 
theoretical value. The intra-day precision did not exceed 7.7% for any of the gemini 
surfactants at the four concentration levels, while accuracy ranged between 94.4% and 
108.8%. The inter-day assessment yielded a precision less than 3.3% and accuracy between 
from 97.2% to 108.4%. 

3.5 Recovery 

Recovery was determined as the ratio of the analyte peak area of the pre-spiked sample 
before extraction versus that of the post-spiked sample after extraction, expressed as a 
percentage. Three concentrations for each analyte were tested in this study. On average, the 
recovery was 104.9% at 30nM, 111.3% at 150nM and 94.3% at 800nM for 16-3-16, 104.0% 
at 30nM, 95.7% at 150nM and 102.9% at 800nM for 16(Py)-S-2-S-(Py)16; and 42.9% at 
60nM, 33.1% at 400nM and 34.4% at 1600nM for 16-7N(GK)-16. Similar to previously 
published results [26], the Bligh/Dyer method efficiently extracted the gemini surfactants 
16-3-16 and 16(Py)-S-2-S-(Py)16 from the cellular matrix. In contrast, the extraction 
efficiency for the gemini surfactant 16-7N(GK)-16 was significantly reduced. This finding 
was expected as 16-7N(GK)-16 is more hydrophilic compound due to the presence of a di-
peptide in the spacer region, which decreases its partition to the organic solvent (methanol-
chloroform), thereby reducing the extraction efficiency. However, with the use of deuterated 
internal standards spiked prior to the sample extraction, the recovery of analyte was 
corrected with internal standard. Therefore, the determination of 16-7N(GK)-16 is not 
compromised. Such low recovery explains the slightly higher LLOQ for 16-7N(GK)-16 in 
comparison to the other two anlaytes (Tables 2 and 4). 

3.6 Stability 

Freeze-thaw stability, bench top stability, auto-sampler stability and long-term stability 
were tested with the analysis of samples at three different concentrations as shown in Tables 
S2 and S3 (supporting information). Freeze-thaw stability was determined to be with 
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precision of ≤6.7% and accuracy between 94.7% and 104.4%. For the bench top stability, the 
precision and accuracy varied from 2.6% to 7.3% and from 96.7% to 100.3%, respectively. 
The stability of these samples in the auto-sampler resulted in a precision range of 2.8%-5.7% 
and accuracy range of 96.9%-102.5%. These results confirmed that the samples were stable 
during sample preparation and data acquisition. The stability of these samples was not 
compromised by long-term storage at -80oC, with the values of precision ranging from 2.0% 
to 7.0% and accuracy ranging from 89.1% to 101.1%.  

3.7 Application 

The uptake and subcellular distribution profiles of the gemini surfactants 16-3-16, 16(Py)-
S-2-S-(Py)16 and 16-7N(GK)-16 in PAM 212 cells were studied using the validated FIA-
MS/MS method. In this work, we show proof-of-principle application of the method to 
analyze these compounds in the nuclear fraction. The complete analysis of various 
subcellular fractions including the nucleus, mitochondria, plasma membrane and cytosol, 
along with other biological assessments, will be reported upon completion of the analyses. 
Although the standard curves and QC samples were prepared in the blank cell lysate matrix, 
no matrix difference was observed among the various subcellular fractions and the whole 
cell lysate (data not shown), which ensured the accurate quantification of the gemini 
surfactants in each cellular fraction. 

The uptake rate of the gemini surfactants in the nuclear fraction increased rapidly over the 
course of the 5h treatment, reaching to approximately 800nmol for 16(Py)-S-2-S-(Py)16 and 
16-7N(GK)-16 and 300nmol for 16-3-16, followed by a gradual decrease after the removal 
of the dosed culture media (Figure 4). The observations are consistent with the reported 
progressive nanoparticle uptake, which reaches a maximum before a depletion of the 
intracellular analyte [26]. As expected, the rate of uptake and the bio-distribution in the 
nuclear fraction is different among the three gemini surfactants. Such differences could 
explain their variable efficiency and/or toxicity. However, a definitive conclusion may only 
be drawn upon the completion of the analysis of all four subcellular compartments, which 
will be conducted in the near future. 

4 Conclusion 

A simple and reliable FIA-MS/MS method was successfully developed and validated for the 
quantification of the gemini surfactants 16-3-16, 16(Py)-S-2-S-(Py)16 and 16-7N(GK)-16 as 
gene delivery agents in subcellular compartments. The sensitivity of the FIA-MS/MS method 
was superior to the reported HILIC-MS/MS method for the determination of these gemini 
surfactants at the subcellular level. The specificity, precision, accuracy, recovery and stability 
were sufficient to quantify these gemini surfactants in a cellular matrix. Furthermore, the 
use of chromatographic separation, gradient elution and an ion pairing reagent was 
eliminated in the reported approach, thus substantially simplifying the analytical method 
and reducing the sample run time. The method was successfully applied to quantify the three 
gemini surfactants in the nuclear fraction of PAM 212 cells treated with nanoparticles, which 
varied significantly and may explain differences in the observed efficiency and/or toxicity of 
these gemini surfactants in gene delivery. 
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Figure 1. (A) Schematic representation of the general structure of gemini surfactant, (B) structure of 16-3-16 
and the monitored product ions, (C) structure of 16(Py)-S-2-S-16(Py) and the monitored product ions, and 
(D) structure of 16-7N(GK)-16 and the monitored product ions.  
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Figure 2. FIA-MS/MS chromatogram of 16(Py)-S-2-S-16(Py) using various mobile phases: (a) acetonitrile with 
0.1% formic acid, (b) acetonitrile-water (98:2, v/v) with 0.1% formic acid, and (c) methanol-water (98:2, v/v) 
with 0.1% formic acid. 
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Figure. 3. FIA-MS/MS chromatograms in cellular extract. (a) 16-3-16 and internal standard, (b) 16(Py)-S-2-S-
16(Py) and internal standard, and (c) 16-7N(GK)-16 and internal standard. 
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Figure 4. Distribution of gemini surfactants: 16-3-16, 16(Py)-S-2-S-16(Py) and 16-7N(GK)-16 in the nuclear 
fraction of PAM 212 cells treated with gemini surfactant nanoparticles. 
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Table 1. MRM transitions and compound-dependent parameters for analytes and internal standards 

Gemini surfactants Molecular Formula MRM Transition (m/z) DP EP CE CXP 

16-3-16 C39H84N22+ 
290.3/355.4 (quantifier) 70 10 22 10 

290.3/86.1 (qualifier) 70 10 35 10 

16-3-16-D66 C39H18D66N22+ 323.5/388.6  70 10 22 10 

       
16(Py)-S-2-S-16(Py) C44H78N2S22+ 

349.3/396.3 (quantifier) 50 10 22 10 

349.3/203.1 (qualifier) 50 10 22 10 

16(Py)-S-2-S-16(Py)-D10 C44H68 D10N2S22+ 354.3/401.3  50 10 22 10 

       
16-7N(GK)-16 C50H106N6O22+ 

411.4/276.8 (quantifier) 100 12 28 10 

411.4/268.3 (qualifier) 100 12 31 10 

16-7N(GK)-16-D4 C50H102 D4N6O22+ 413.4/278.8  100 12 28 10 

DP- declustering potential, EP-entrance potential, CE-collision energy, CXP-collision exit potential. 

 

Table 2.  Intra-day precision and accuracy of gemini surfactants 16-3-16 and 16(Py)-S-2-S-16(Py) 

Samples Day 

Measured concentration   
(Mean± SD, nM) 

Precision Accuracy 

16-3-16 16(Py)-S-2-S-
16(Py) 

16-3-16 16(Py)-S-2-S-
16(Py) 

16-3-16 16(Py)-S-2-S-
16(Py) 

LLOQ    
(10nM) 

1 10.6±0.4 10.3±0.6 3.7% 5.5% 105.8% 102.7% 

2 10.2±0.3 10.8±0.8 3.1% 7.7% 101.9% 108.3% 

3 10.1±0.2 10.2±0.5 2.0% 5.1% 100.6% 102.0% 
        

LQC       
(30nM) 

1 29.7±0.5 29.0±1.8 1.6% 6.0% 98.9% 96.5% 

2 29.2±0.4 30.2±1.2 1.5% 3.9% 97.4% 100.7% 

3 28.9±0.6 28.3±1.5 1.9% 5.4% 96.3% 94.4% 
        

MQC     
(150nM) 

1 150.7±1.2 143.3±7.3 0.8% 5.1% 100.4% 95.6% 

2 150.2±1.5 149.8±7.2 1.0% 4.8% 100.1% 99.9% 

3 150.7±1.8 149.0±3.9 1.2% 2.6% 100.4% 99.3% 
        

HQC     
(800nM) 

1 805.8±8.6 761.7±17.0 1.1% 2.2% 100.7% 95.2% 

2 814.0±6.6 804.0±24.7 0.8% 3.1% 101.8% 100.5% 

3 809.5±7.9 775.7±20.2 1.0% 2.6% 101.2% 97.0% 

 

 

Table 3. Inter-day precision and accuracy of gemini surfactants 16-3-16 and 16(Py)-S-2-S-16(Py) 
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Samples Replicates  

Measured concentration 
(Mean± SD, nM) 

Precision  Accuracy 

16-3-16 16(Py)-S-2-S-
16(Py) 

16-3-16 16(Py)-S-2-
S-16(Py) 

16-3-16 16(Py)-S-2-
S-16(Py) 

LLOQ 
(10nM) 

18 10.3±0.3 10.4±0.4 2.6% 3.3% 102.8% 104.3% 

LQC 
(30nM) 

18 29.3±0.4 29.2±1.0 1.3% 3.3% 97.6% 97.2% 

MQC     
(150nM) 

18 150.5±0.3 147.4±3.5 0.2% 2.4% 100.3% 98.3% 

HQC     
(800nM) 

18 809.8±4.1 780.4±21.6 0.5% 2.8% 101.2% 97.6% 

 

 

Table 4. Intra-day precision and accuracy of gemini surfactant 16-7N(GK)-16 

Samples Day Measured concentration (Mean± SD, nM) Precision  Accuracy  

LLOQ    
(20nM) 

1 21.7±0.8 3.5% 108.7% 

2 21.5±1.1 5.3% 107.7% 

3 21.8±1.0 4.5% 108.8% 

     
LQC       

(60nM) 
1 60.3±1.4 2.4% 100.5% 

2 60.1±0.8 1.4% 100.1% 

3 62.8±1.8 2.9% 104.6% 

     
MQC     

(400nM) 
1 401.2±8.4 2.1% 100.3% 

2 397.0±15.2 3.8% 99.3% 

3 389.0±10.8 2.8% 97.3% 

     
HQC     

(1600nM) 
1 1613.3±35.6 2.2% 100.8% 

2 1575.0±50.9 3.2% 98.4% 

3 1536.7±57.5 3.7% 96.0% 

 

 

 

 

 

Table 5. Inter-day precision and accuracy of gemini surfactant 16-7N(GK)-16 

Samples Replicates Measured concentration (Mean± SD, nM) Precision Accuracy 
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LLOQ 
(20nM) 

18 21.7±0.1 0.6% 108.4% 

LQC 
(60nM) 

18 61.0±1.5 2.5% 101.7% 

MQC     
(400nM) 

18 395.7±6.2 1.6% 98.9% 

HQC     
(1600nM) 

18 1575.0±38.3 2.4% 98.4% 
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