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Abstract

Occupational injuries are a serious public health concern for workers around the world.

Among all occupational injuries reported to the Workers’ Compensation Board of Saskatchewan

(WCB-SK) from 2007-2016, 177 (0.06%) out of 280,704 injury claims were fatal. Although

work-related injuries are relatively rare, they have tremendous impact on the workers, their

family, as well as a company’s overall productivity, hiring/training costs, and insurance pre-

miums. To help inform prevention of fatal claims, this study identified factors that increase

the probability of fatal injury claims in Saskatchewan.

WCB Saskatchewan’s administrative occupational injury claims data from 2007-2016 was

used to extract fatal and non-fatal occupational events. Potential covariates included worker

characteristics (age, gender, occupation) and incident characteristics (source of injury, cause

of injury, part of body). Given the fatality being rare in this study, conventional logistic

regression including multiple categorical covariates with over 40 parameters yielded biased

parameter estimates. Penalized logistic regression methods, such as bias-correction method,

i.e. Firth’s method as well as the model selection methods, i.e., lasso and elastic net were

compared to identify an optimal modelling strategy for calculating the odds ratio (OR) and

95% confidence intervals (CI) for probability of a WCB claim being fatal (vs. non-fatal).

Based on the best-fitting model, i.e., Firth’s logistic regression of the selected variables

under the elastic net method, odds of a claim being fatal was 5.5 (95% CI: 2.77,12.46) times

higher among men than women and was 6.59 (95% CI: 3.59,12.20) times higher for seniors

aged 65-85 as compared with those who are aged 14-24. Odds of a claim being fatal among

those who work in primary industry is 2.85 (95% CI: 1.07,9.39) higher than those working

in social sciences. The odds of injury being fatal for machinery sources is 51 (95% CI:

10.38,505.38) times higher than chemical products as the source.

Men workers are at higher risk of a claim being fatal (vs non-fatal). With respect to

age, result of analysis showed that the middle-aged workers are at a lower risk, and the

young workers are at a higher risk than middle aged workers. The risk of a claim being fatal

increased sharply as age increased from 45 to 85. Primary industry sector and machinery have

a disproportionate share of fatal claims. This knowledge can improve workplace safety by
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learning from past incidents, identifying significant risk factors, and implementing targeted

prevention strategies. Through development of effective interventions, we hope to prevent

fatal injuries in Saskatchewan.
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Chapter 1

Introduction

1.1 Background and Motivation

Occupational injuries continue to present a serious public health concern for workers all

around the world. Work-related injuries not only impact the worker and their family, but

they also affect a company’s overall productivity, hiring and training costs, and insurance

premium costs [2]. In Canada, an average of about one million occupational injury claims

have been reported each year by provincial and territorial Workers’ Compensation Boards

(WCBs) [3]. The total direct annual costs of occupational injuries and fatalities to the

Canadian economy were approximately $9.7 billion in 2008 [3].

Fatalities represent the most serious type of WCB claims; in 2017, the number of work-

place fatalities in Canada was 951 [4]. Between 2013 and 2017, Saskatchewan’s five-year

average acute injury fatality rate ranked highest (4.9 per 100,000 workers) among provinces

with over 100,000 workers [5]. Saskatchewan also showed the greatest percentage increase

(63%) in occupational disease fatality rates during this period. The number of work-related

fatalities in SK in 2018 was 28 [6]. These numbers include only the claims reported to and ac-

cepted by the compensation boards, so the total number of workers affected by occupational

injuries and illness may be even higher.

The Saskatchewan Workers’ Compensation Board has identified several gaps and problems

in their most recent strategic review, which resulted in a “fatalities problem statement”: “We

have too many fatalities in this province and we do not know enough about them

in order to develop a strategy to eliminate/mitigate them.” The negative effects

of fatal occupational claims on workers, their families, and the economy of Saskatchewan

demonstrate the need for further research to identify the risk factors associated with fatal
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occupational injuries, and this investigation forms the primary goal of this study.

A few challenges arise in modelling WCB data which may not be adequately handled

by typical regression modelling strategies. For example, in WCB data, not only are the

events rare, but also the covariates are mostly categorical variables with many levels and

the distribution of the covariates are highly imbalanced. All these characteristics of the data

may lead to quasi-complete separation problem. A quasi-complete separation happens when

a logistic regression model perfectly or nearly perfectly predicts the response. In this case, as

unique maximum likelihood estimates do not exist, the model fails to converge [7–9]. Often

this happens when there is a categorical predictor with no variability in the response, which

means all cases in one category of the predictor have the same response, which is the case

in our WCB data. Even if there is no quasi-complete separation, separation may be nearly

complete, so the standard error for a parameter estimate can become very large. Perfect

prediction or complete separation can occur for many reasons. One of the possible scenarios

for quasi separation to arise is when the event of interest in rare. The likelihood of separation

is higher for categorical predictors with rare categories compared to continuous predictors [1].

In the presence of separation, maximum likelihood-based logistic regression faces problems

including lack of convergence of maximum likelihood; even if it converges it produces biased

(sometimes infinite) estimates of the regression coefficients [9–11].

One common strategy to address quasi-complete separation problem is to use Firth’s

method [12], which is a bias-preventive approach in which the parameter is not corrected

after estimation, but a systematic corrective procedure is used to the score function which

the parameter estimate is calculated from. This method provides consistent estimates of

logistic regression parameters in the presence of separation [9]. Another solution is to reduce

the number of covariates through model selection. The traditional model selection methods

are forward, backwards or stepwise selection [13, 14], which find a subset of covariates to fit

a regression model. These methods are useful when there are many potential covariates, and

they can search for the presence of interactions, but the problem is that the traditional model

selection methods are prone to overfitting and have been shown to yield models with low

prediction accuracy [15]. To reduce the problem of overfitting, penalization or regularization

[16, 17] method, such as lasso (least absolute shrinkage and selection operator) [15] or elastic
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net [16] can be used, which impose penalty to the log likelihood function to reduce (shrink)

the coefficient values toward zero [18]. Penalized regression methods will be discussed in

details in Chapter 3.

1.2 Objectives

In our analysis of fatal injury claim based on the WCB claim data, the events are rare (< 1%)

with many potential categorical covariates (listed in Appendix C), which leads to the problem

of quasi-complete separation. Penalized regression methods, such as Firth’s method or the

model selection methods can help to find a parsimonious model for identifying risk factors

associated with fatal occupational injuries.

To the best of our knowledge, except one study that has been conducted to identify factors

associated with fatal occupational accidents among Mexican workers using Firth’s method

[19], other penalized regression methods have not yet been applied in occupational health

studies and it is also not clear that which of these methods would be the best for analysis

of WCB claims data with several challenging characteristics. Therefore, we aim to examine

each of these methods on the data to evaluate their estimation performance to get a new

perspective on this problem by applying these methods. We are particularly interested in

examining whether model selection methods such as traditional backward regression, lasso

or elastic net can fully help to solve the quasi-complete separation problem and in doing so

if they lead to an inferior fit to the data; moreover, we propose to examine whether applying

Firth’s method after model selection can further improve the model fit.

We aim to answer two primary research questions by doing this study. The first research

question is: what is the best-performing penalized logistic regression method within this con-

text of quasi-complete separation and a rare event? The second research question is: what, if

any, are the statistically-significant relationships between worker and incident characteristics

and the likelihood of a workers’ compensation claim being fatal?
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1.3 Outline

The remainder of the thesis is organized as follows: In Chapter 2, the problem of fatal

occupational health claims, gaps in understanding, and a summary of challenges in working

with this data will be demonstrated. The principals of Firth’s logistic regression method,

and some model selection methods including lasso and elastic net will be provided in Chapter

3. In Chapter 4, administrative Saskatchewan WCB data set will be introduced and model

comparison and result interpretation will be provided. Discussion and concluding remarks

will be given in Chapter 5.
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Chapter 2

Motivating Study

This chapter will discuss the problem of fatal occupational health claims, gaps in under-

standing, and highlight the necessity of learning more about this problem. Section 2.1 gives

an overview of Saskatchewan Workers’ Compensation Board data set. Literature review on

the analysis of WCB data in Canada will be presented in Section 2.2. The analytic challenges

in analysis of WCB-SK administrative data set will be discussed in Section 2.3, and finally a

summary of the problem and challenges will be discussed in Section 2.4.

2.1 Overview of Workers’ Compensation Board

Workplace mortality and morbidity result in suffering and hardship for the worker and their

family, but they also result in loss of time at work, reduction of overall productivity for

the enterprise and economy, and increased additional hiring and training costs due to staff

replacement [20]. The Workers’ Compensation Board (WCB) is an insurance system for work-

place injuries and illnesses that delivers financial help, medical treatment, and rehabilitation

to injured workers, and they also do prevention [21]. It is a no-fault system, which means

that neither an employer’s nor a worker’s fault has to be proven for workers to get financial

help and health benefits in case of occupational injury [22]. The WCB of Saskatchewan [21]

is an independent agency that manages Saskatchewans workers’ compensation system and

operates under a provincial law known as The Workers’ Compensation Act [21].
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2.2 Literature Review

Occupational health studies including WCB claims data have been conducted in Canada [23–

29], some of which studied serious and/or fatal claims. A number of studies analyzed WCB

claims data from the provinces of Manitoba, British Columbia, and Ontario to understand

the characteristics of the high risk groups of occupational injury across Canada. Tucker et

al. [23] conducted descriptive analysis on WCB claims data using data from Association

of Workers’ Compensation Board of Canada (AWCBC) and estimated full time equivalent

(FTEs); they derived the fatality rate and injury and illness rates for different provinces and

compared them [23]. Fan et al. [24] analyzed the WCB serious claims data from British

Columbia using negative binomial regression analysis to examine the rate and distribution

of serious work-related injuries by demographic, work, and injury characteristics. McLeod

et al. [27] conducted detailed analysis of work disability duration across jurisdictions includ-

ing Manitoba, British Columbia, and Ontario using Cox proportional hazard model. Table

A.1 in Appendix A summarizes the Canadian WCB studies conducted in British Columbia,

Manitoba, and Ontario. The study of work-related injury claims has also been conducted

in other countries such as Italy, United States, Australia, and Mexico [19, 30–33]. For ex-

ample, In 1998, Chen et al. [31] applied the National Traumatic Occupational Fatalities

(NTOF) surveillance system to assess risks of occupational fatal injuries related to cause and

occupation among U.S. construction workers. They derived fatality injury rate and work-

ing lifetime risk. This study was the first to provide a comprehensive national profile of

occupational injury risk for construction workers in United States [31]. In another study

using extracted data from NTOF surveillance system for a 12 year period, Kisner et al. [34]

calculated fatality rates and risk ratios using annual average employment data from Bureau

Labor Statistic (BLS). In this study, rate ratios were reported for cause of death and industry

divison combinations and cause of death and occupation divison combinations. In another

study, Gonzalez et al. [19] utilized information from National Occupational Risk Information

System to identify risk factors associated with fatality using logistic regression with Firth’s

approach. They considered sociodemographics (including age, sex and occupation), the work

environment and workplace characteristics in their study.
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Several modelling methods were used in these studies including negative binomial and Cox

PH models, but the methods are for modelling different outcomes, so these studies are not

only different because of the study time periods, their outcomes are also different. Although

the researchers analyzed workplace claims data during different time periods, few studies

explored penalized regression methods for improving the effect estimation. This might be

due to the fact that they did not encounter quasi-complete separation problem (for binary

outcome) in their data set. To our knowledge, the only study that used penalization method

is a study by Gonzalez et al. [19] that used Firth’s approach for identifying factors associated

with fatal occupational accident, in which the number of fatalities is 1,140 out of 406,222

with almost 60 parameters (EPV=19). In the current study, our event of interest (fatality)

is even more rare than their study. With respect to method, in the current study, we have

not considered using negative binomial for modelling counts as aggregating data into count

outcome may result in loss of information and may limit our ability to explore the impact of

many categorical variables. The reason why we could not consider time to event outcome is

because we did not have access to that kind of information in our data.

To our knowledge, most research in Canada have investigated serious occupational in-

juries, and there have not been any studies conducted on the fatal occupational injuries in

Canada and specially in Saskatchewan. Although there are a few studies conducted on oc-

cupational fatalities in other countries, which mostly focused on fatality rate, those studies

have not used penalized regression method. This remaining gap in using penalized regression

methods forms one of the main objectives of this study. In modelling the rare events data

with many parameters, model selection is another strategy to resolve the overfitting problem.

Besides the traditional model selection methods (backward, forward, stepwise), regulariza-

tion techniques, such as lasso and elastic net, that reduce the size of the coefficient estimates

(shrinking them towards zero) have gained increasing popularity recently. The key strength

of this thesis is to move beyond the conventional logistic regression method to investigate the

penalized regression modelling methods for addressing the challenges arising from analyzing

rare events data.
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2.3 Methodological Problem Statement: Challenges

In this section, the analytic challenges that were encountered in modelling the risk of occu-

pational fatality based on the WCB data are discussed as follows.

2.3.1 Rare Event

Rare events are dichotomos dependent variables with dozens to thousands of times fewer

“ones” (i.e. events, such as wars, vetoes, or epidemiological infections) than “zeros” (i.e. non-

events) [35]. Many studies have shown that rare-event variables are difficult to explain and

predict; common statistical methods like logistic regression can underestimate the probability

of rare events [35]. When the number of event of interest is small in comparison with estimated

regression coefficients, overfitting is likely to occur [36]. Overfitting happens when a model

can accurately classify data that is very closely related to the training data, but it performs

poorly when using it for data point that are not closely related to training data, which means

that random fluctuation and the noise in the training data is learned and negatively affect

the model’s ability to gerneralize. This problem may arise in the studies of rare events or

rare diseases in health research [36].

Preliminary analysis of the WCB claim data shows that, out of 280,704 WCB traumatic

injury claims between 2007 and 2016, only 0.06% (177) of WCB claims were fatalities, which

indicates that EPV is less than 10 as the number of coefficients to be estimated is around

40. EPV can be calculated by dividing the number of events by the number of covariates

used in developing a prediction model, or equivalently the number of EPV is the number of

events divided by the number of degrees of freedom needs to present all of the variables in

the model [37]. Roughly 10 EPVs are required for true estimation of regression coefficients

in logistic regression model [38].

2.3.2 Multiple Covariates with Many Levels

The problem of many potential predictors is a concern with the WCB dataset, since not

only the number of variables but also the number of levels in the categorical covariates is
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high. Rare events and multiple covariates with many levels cause low EPV, which leads

to unstable parameter estimates. Under these circumstances, an alternative to standard

regression techniques is needed to address this problem. The most common selection methods

are forwards or backwards stepwise selection [13, 14], which find a subset of covariates to fit

a regression model. This is useful when there are many potential covariates, and they can

search for the presence of interactions, but the problem is that stepwise methods are prone

to overfitting and have been shown to yield models with low prediction accuracy [15].

In WCB claims data, we consider 6 covariates including age, gender, occupation, part of

body, source of injury, and cause of injury. Many of those variable have multiple levels; for

example, for the source of injury, there is 10 levels. In total, there are around 40 dummy

variables.

2.3.3 Quasi-Complete Separation

Another problem that arises in the analysis of WCB claims data is quasi-complete separation,

which happens when one or some of covariates can perfectly or nearly perfectly predict the

response variable. Table 2.1 shows an example of separation. We can see that in presence

of complete separation, observations with Y=A all have values of X=0, and observations

with Y=B all have values of X=1. In other words, Y separates X perfectly or X predicts Y

perfectly because X=1 corresponds to Y=B and X=0 corresponds to Y=A.

Table 2.1: Example of complete and quasi-complete separation for binary covariate X
against outcome variable Y, based on Rahman et al [1]

Complete separation Quasi-complete separation

Y Y

A B A B

X
0 177 0

X
0 177 0

1 0 177 1 2 175
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As shown in the Table 2.2, the problem of quasi-complete separation is present in this

data. In some of the levels, the number of fatal claim injuries is equal to zero. For example,

there are not any fatalities in the occupations in art and science category in Table 2.2.

Some of other characteristics also have the problem of zero cells, which will be discussed

further in Chapter 4, Section 4.2.1. These zero cells here are an indicator of the presence

of quasi-complete separation, which can be problematic while analyzing WCB-SK data set

with traditional regression methods such as logistic regression.

Table 2.2: Distribution of the occupation of injured workers from Saskatchewan WCB
who had fatalities vs. those who did not, SK, Canada, 2007-2016

Occupation Injury being fatal

Yes (%) No (%)

social sciences 1(0.00) 6160 (2.19)

business/advertising 4 (0.01) 12785 (4.55)

health 1(0.00) 27617 (9.84)

natural/applied sciences 9(0.00) 3592 (1.28)

primary industry 24 (0.01) 12480 (4.45)

art/culture 0(0.00) 1228(0.44)

sale/services 12(0.01) 59437 (21.17)

trade/transport 93(0.03) 95142 (33.89)

processing/manufacturing 9(0.00) 22028 (7.85)

not stated 24 (0.01) 40058 (14.27)
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2.3.4 Multicollinearity

Another challenge in working with Saskatchewan WCB claims data is the presence of mul-

ticollinearity. Multicollinearity is “a situation in which two or more independent variables

are perfectly or nearly perfectly correlated” [39]. Using multiple regression models, multi-

collinearity can lead to several problems including: increased variance of estimated regression

coefficients and unstable parameter estimates [40, 41]. Variance Inflation Factor (VIF) is a

statistic that measures the level of multicollinearity [39]. The VIF is defined as follows

V IFi =
1

1−R2
i

, (2.1)

where R2
i is the square of the multiple correlation coefficient from the regression of the

j-th explanatory variable on the remaining explanatory variables. Ringle et al [42] suggested

that the maximum acceptable level of VIF has to be smaller than 5. However, a rough rule

of thumb is that variance inflation factors greater than 10 can be problematic in multiple

linear regression. In this study, we will use the more traditional maximum level of VIF for

logistic regression which is 2.5 [43, 44].

Table 2.3 represents the VIF for the dummy variables of all the categorical variables. As

shown in the Table 2.3, some of dummy variables are highly correlated with VIFs greater

than the recommended maximum of 2.5. For example, VIF for bodily reaction in the cause

of injury is 132.87 and VIF for upper extremities in part of body is 14.42, both of which are

higher than the recommended value of 2.5.

One of the concerns under high multicollinearity is the interpretation of regression co-

efficients [45]. The predictor variables in the model will largely affect the same portion of

variance as none of them can make a unique contribution, so one must be cautious interpreting

the partial coefficients of a set of variables [46]. Another problem with high multicollinearity

is that the parameter estimates might show sample to sample variation, which means they

are not reliable [47, 48].
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Table 2.3: Variance inflation factor (VIF) for examining the multicollinearity among
the dummy variables of the categorical covariates in the analysis of WCB injury claim
data

Variable VIF Variable VIF Variable VIF

men 1.56 primary industry 1.24 other sources 11.28

age 25-34 1.69 processing 1.4 parts/materials 8.85

age 35-44 1.65 body system 2.4 tools/instruments 8.9

age 45-54 1.71 head 7.6 vehicles 5.6

age 55-64 1.46 lower extremities 9.63 assaults 16.49

age 65-85 1.07 multiple parts 5.04 bodily reaction 132.87

occupation business 1.26 other parts 1.13 contact with objects 132.58

applied sciences 1.07 trunk 13.64 harmful substances 34.5

health 1.75 upper extremities 14.42 falls 69.8

art/culture 1.03 containers 7.53 other events 26.26

sales/services 1.93 furniture 3.23 transportation accidents 15.56

trades/transport 2.22 machinery 4.5

2.4 Summary of Problem and Challenges

In the WCB fatal claims data, the event of interest (fatal injury) is rare 177 over 280,704

(<1%) claims, with multiple categorical covariates containing many levels as shown in Ap-

pendix C. During our analysis, we found that the estimated regression coefficients tend to be

unstable with wide confidence intervals, which is undesirable for estimation. We also encoun-

tered the problem of a rare event and presence of quasi-complete separation problem that we

need to address by using some statistical methods. This motivates current study seeking for a

more appropriate analytic strategy to address those challenges including the Firth’s method

to correct the bias in the parameter estimates and using model selection methods (such as

lasso and elastic net) to build a more parsimonious model and deliver better-estimated co-

efficients for modelling rare events. Given that few published reports have evaluated the

performance of different methods in this context, this study has the potential to advance
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knowledge of identifying more appropriate analytic tools for identifying risk factors for fatal

WCB claims.
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Chapter 3

Statistical Methods Overview

To address the analytic challenges presented in Chapter 2, several statistical methods are

presented in this Chapter as the potential solutions for overcoming these challenges.

3.1 Conventional Logistic Regression Model

Logistic regression models are commonly used to estimate the relationship between a binary

response variable and one or more covariates. The popularity of logistic regression mainly

comes from its mathematical convenience and the easy interpretation of results in terms of

odds ratios. Let yi be the outcome variable for the i-th subject, and it is Bernoulli distributed

and takes on the value 1 with probability πi = P (yi = 1|xi), where xi = (x1, ..., xp)
T is the

i-th subject’s covariate vector, and value 0 with probability 1 − πi. The logistic regression

model with the logit link function can be written as:

πi =
exp(β0 + xTi β)

1 + exp(β0 + xTi β)
(3.1)

where β0 is an intercept term, and β = (β1, ..., βp)
T is a p× 1 vector of estimated regression

coefficients on the logit scale.

Equation 3.1 is a generalized linear model. If parameter θ = (β0,β)T , then the corre-

sponding log-likelihood function is given by the following equation as it was also shown by

[49]:

`θ =
n∑
i=1

[yilog(πi) + (1− yi)log(1− πi)] (3.2)
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By replacing πi from Equation 3.1 in Equation 3.2, we have:

`θ =
n∑
i=1

[
yi(β0 + xi

Tβ)− log(1 + exp(β0 + xi
Tβ))

]
. (3.3)

In the maximum likelihood method, the goal is finding a set of values for θ that can

maximize Equation 3.3. One of the most common ways of doing this is differentiating this

equation with respect to θ, set the derivative to 0, and then solve the equation to find

estimated regression coefficients using MLE [7]. However, for most data and models, there

is not a closed form or explicit solution for this equation. In these cases, numerical methods

such as Newton-Raphson algorithm will be used [7]. For more information about this method

we refer the reader to Anderson [7]. With respect to this thesis, the question is what would

happen with this algorithm when we have quasi-complete separation problem. Using this

algorithm when we have the problem of quasi-complete separation, “at each iteration, the

parameter estimate for the variable (or variables) with separation gets larger in magnitude.

Iterations continue until the fixed iteration limit is exceeded. At whatever limit is reached,

the parameter estimate is large and the estimated standard error is extremely large” [7],

which in turn leads to lack of convergence of ML.

Although maximum likelihood (ML) estimation is one of the most common methods to

estimate unknown regression coefficients, ML is also known to have finite sample properties

[36]. For example, when the event per variable (EPV) is low and the quasi-complete sepa-

ration or complete separation may occur, ML estimation could lead to infinite estimates of

coefficients [12].

3.2 Firth’s Logistic Regression

One of the possible solutions for the problem of separation in WCB data is using Firth’s

logistic regression. Heinze and Schemper showed that Firth’s method is an ideal solution to

the issue of separation [9].

The expectation of the estimate is always larger in absolute value than the true parameter,

so maximum likelihood estimates of θ are biased away from 0 [50]. As shown by Firth [12],
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the bias of the ML estimates of θ can be expanded asymptotically as

Bias(θ) = E(θ̂)− θ =
β1(θ)

n
+
β2(θ)

n2
+ ... (3.4)

Most bias-corrective methods remove the first asymptotic order bias from θ̂ by using θ̂BC =

θ̂− β1(
ˆθ)
n

[12]. These methods rely on calculating the MLE and correcting MLE by subtracting

the first-order bias β1(θ)
n

[51]. In presence of complete or quasi-complete separation, it is not

feasible because MLEs do not exist. To tackle this problem, Firth [12] introduced a bias-

preventive approach in which the parameter is not corrected after estimation, but a systematic

corrective procedure is used to the score function from which the parameter estimate is

calculated. This method provides consistent estimates of logistic regression parameters in

the presence of separation [9]. The detail of Firth’s logistic regression method can be found

in Appendix B, and we refer the reader to these papers [12, 52–55] for more information on

this method.

As it was also shown in [1], taking the natural logarithm of the Equation B.6 gives us the

corresponding log likelihood function

`∗(θ) = `(θ) +
1

2
log|I(θ)| (3.5)

If Firth’s method is used in binary logistic regression model as defined in Equation 3.1,

where θ = (β0,β)T this is known as Firth’s logistic regression. The penalized log likelihood

function in this case is

`∗(θ) =
n∑
i=1

[yilog(πi) + (1− yi)log(1− πi)] +
1

2
log|I(θ)|, (3.6)

Which the information matrix is I(θ) = XTWX, with W = diag [πi(1−πi)] and πi = P(y =

1|xi,θ). The second term on right hand side of the above equation is maximized at πi = 0.5

for i = 1, 2, ..., n which occurs in θ = 0. So the parameters are shrunk towards zero. The

penalized-likelihood estimates will be smaller in absolute value than standard MLEs [1, 12].

Heinze and Schemper [9] applied Firth’s logistic regression to data sets that have separa-

tion. The results of their study showed that Firth’s penalized likelihood estimator is an ideal

solution in case of separation problem in logistic regression, which is the case in our data set.

By comparing the estimates derived by Firth’s method with those derived by ordinary MLE,
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they concluded that in presence of small samples Firth’s method is superior to ordinary MLE

as point estimates have lower variability and confidence intervals are more reliable.

3.3 Lasso Penalized Logistic Regression

The Least Absolute Shrinkage and Selection Operator (lasso) is a penalization (regulariza-

tion) method introduced by Tibshirani in 1996 [15], which can be used for regression coeffi-

cient estimation and variable selection when the number of covariates (regression coefficients)

p is larger than the number of sample size n. This method performs both regularization

through penalizing and shrinking parameter estimates, and variable selection as it is able to

shrink parameter estimates to exactly zero.

Lasso is an alternative to ridge regression with a different penalty term, and it is able to

overcome the disadvantage of ridge regression. Ridge regression shrinks the regression coeffi-

cients towards zero by imposing constraint, but it does not shrink the regression coefficients

to exactly zero, which is why it can not be used as a variable selection method [56, 57].

Therefore, lasso will be used as an alternative method to do variable selection.

In conventional logistic regression the parameter estimates are derived by maximizing the

log-likelihood function:

`(θ) =
n∑
i=1

{yilog(πi) + (1− yi)log(1− πi)} =
n∑
i=1

{yi(β0 + xi
Tβ)− log

[
1 + exp(β0 + xi

Tβ)
]
}

(3.7)

The lasso logistic regression estimator depends on the choice of tuning (shrinking) parameter

λ ≥ 0, that can be chosen by cross validation or generalized cross validation [15]. As shown

in [58], by Maximizing the penalized log-likelihood function shown in Equation 3.8, the

regression coefficients estimates will be derived [17].

`Lλ(θ) = `(θ)− λ
p∑
j=1

|βj|=
n∑
i=1

{yi(β0 + xi
Tβ)− log

[
1 + exp(β0 + xi

Tβ)
]
} − λ

p∑
j=1

|βj| (3.8)

The `1 penalty in lasso sets some of the coefficient estimates to be exactly equal to zero

when the tuning parameter λ is large enough. Models generated from lasso are generally
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easier to interpret than models produced by ridge regression, and lasso yields sparse models

as it excludes ‘unnecessary’ predictors by shrinking their coefficients to exactly zero, yielding

a more parsimonious model [59]. Selection of a good value of λ for lasso is critical and it can

be driven by cross validation.

3.3.1 Choice of Regularization Parameter

Choosing the suitable regularization parameter λ is an important thing that needs to be

considered in penalized logistic regression. When λ becomes larger, the bias increases and

the variance decreases, and this is where we need to decide how much bias we take to decrease

the variance which leads to the choice of optimal tuning parameter λ. We are interested in

finding λ that gives us the model with the lowest mean square error (MSE). In cross validation,

test sets and training sets are made by splitting the data set to K groups. Common choices

of K is 5 or 10, where one group is chosen as a test set and the remaining K-1 groups form

the training set [60].

For K-fold cross validation, first we split the data into K equal size parts. Then for each

part (k-th), we fit the model to the other K-1 parts of the data and calculate the MSE of

fitted model when predicting the k-th part of the data [60]. At next stage, we repeat the

procedure for k=1,2,...,K and average the K estimates of mean square error, which gives us

a cross validation error curve [60].

For instance, 10 fold cross validation consists of splitting the data into 10 sub samples

with the same size, before fitting the considered model on 9 sub samples (in this case 90%

of the data is in the training set) and evaluating the model’s performance on the remaining

one sub sample (10% of the data is in the validation set) [61]. Then, this process is repeated

for all 10 cases, where each of the 10 sub samples would be used one time as validation set.

The value of λ that results in the lowest MSE rate is then chosen.

When the cross validation error curve achieves the minimum, the estimate of λ is chosen.

This choice of tuning parameter often results in insufficient regularization, which means that

too many variables stay in the model [62]. Hastie et al. [17] reports that the model based on

the one standard error rule is the best cross validated model; this means that selected model

will be the most regularized model with error within one standard error of the minimal error.
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The simplest model whose accuracy is comparable with the best model will be chosen by this

rule [17].

3.4 Elastic Net Logistic Regression

The elastic net was introduced by Zou and Hastie [16] as another regularization and variable

selection method which is capable of outperforming lasso, especially where the number of

predictors is significantly larger than the sample size (i.e. p >> n), while this method retains

a similar sparsity. Elastic net eliminates the problems that occurs when lasso is used in the

presence of highly correlated variables [63].

Elastic net includes the tuning parameter α ≥ 0, and the penalty term in this method is

a combination of ridge and lasso as it was also shown by [16, 58]:

α

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj| (3.9)

Elastic net is the combination of `1 and `2 penalties that conveys the desirable properties

of both ridge and lasso [16]. The method can effectively shrink the coefficients of non-

informative features to exactly 0, and it is also able to control the group of correlated features.

For more detailed features about the elastic net method we refer the reader to Zou et al. [16]

and Tibshirani et al. [60].

3.5 Other Penalized Regression Methods

Many other penalties have been introduced after introducing lasso by Tibshirani [15]. Fan

and Li [64] introduced the Smoothly Clipped Absolute Deviation (SCAD) penalty. They

showed how the penalized estimator in SCAD is optimal in the sense that it performs as

if the active variables are known [65]. Later on, Zhang introduced the Minimax Concave

Penalty (MCP) which is a similar method to SCAD [66]. In 2006, Zou [67] introduced

another penalized estimator called adaptive lasso that has the oracle property. Adaptive

lasso is much simpler than the SCAD and MCP penalties. This thesis focuses on exploring
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the two mostly commonly used penalized model selection methods, namely, lasso and elastic

net.

3.6 Method Comparison Criteria

3.6.1 Akaike’s Information Criterion (AIC)

For a given model, the AIC is a measure of the loss of information resulted by the use of

model to explain a specific pattern or variable [68].

AIC = −2logL+ 2k (3.10)

Where k is the number of estimated parameters in the model. The log-likelihood of the

model given the data shows the overall fit of the model. AIC penalized for addition of the

parameters, which means it selects the model that fits the data well with a minimum number

of parameters [68]. The smaller the AIC, the more accurate the model.

3.6.2 Area Under the Curve (AUC)

One of the ways to rate the predictive performance of a model is Area Under the Curve

(AUC), which measures the area under the Receiver Operating Characteristic (ROC) curve

[69, 70]. AUC shows a trade off between specificity and sensitivity [71]. Sensitivity is the

proportion of events that are correctly predicted while specificity is the proportion of non-

events that are correctly predicted [72]. The ideal is for both of these proportions to be high.

“ROC is a graphical plot that illustrates the diagnostic ability of a binary classifier system as

its discrimination threshold is varied” [73]. By plotting the true positive rate (TPR) vs the

fraction of false positive rate (FPR) at various threshold settings ROC will be made [69, 73].

The AUC=0.5 is the baseline, and AUC=1 shows perfect prediction. For more information

about ROC, we refer the reader to Tom Fawcett [70].
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Chapter 4

Application to WCB Data

In this Chapter, the performance of different penalized regression methods will be com-

pared to see which one fits the data better and then the results of analysis for WCB data

based on the best method will be provided. At first, a brief background about the study

will be given, then the data set and the variables will be described and finally, method

comparison, the analysis results, and the interpretation will be provided.

4.1 Data Sources and Descriptions

4.1.1 Study Population

The data used for this study is the administrative occupational injury claim data from 2007 to

2016 for workers in Saskatchewan which was provided by Saskatchewan’s WCB. A summary

of all explanatory and outcome variables is reported in Appendix C. There are 280,704

observations and near 40 features with fatality as the response variable or outcome of interest.

Illness-related fatalities (such as occupational cancers) are not included in this analysis. The

minimum age considered in this study is 14 because the minimum legal working age in

Saskatchewan is 14, and the maximum age considered in this study for workers is 85 as it is

close to the life expectancy in Canada.

4.1.2 Outcome Variable

The outcome variable that will be considered in this analysis of WCB data is fatal injury

claim. The percentages of fatal claims in WCB data are reported in Table 4.1.
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Table 4.1: Frequency and percentage of fatal injury vs. non-fatal injury claims

Fatal claim indicator Frequency Percentage

Non-fatal 280,527 99.94

Fatal 177 0.06

4.1.3 Potential Covariates

All the potential covariates and their categories are given in Appendix C. Table C.1 presents

the descriptive statistics/frequency for a subset of covariates. For the remainder of the thesis,

all explanatory variables will be explored.

Demographic Characteristics

• Gender: Men vs. women, with women as the reference group since our preliminary

results showed that women have a lower chance of a claim being fatal.

• Age: In our study, age was stratified into six categories: 14-24, 25-34, 35-44, 45-54,

55-64, 65-85 with 14-24 as the youngest group and 65-85 as the oldest group.

• Occupation of the worker at the time of the occupational injury: There are ten cate-

gories of occupations including: (1) business and finance; (2) health; (3) natural and

applied sciences; (4) primary industry; (5) art, culture, recreation and sport; (6) social

sciences and education; (7) sale and services; (8) trade and transport; (9) processing,

and manufacturing; and (10) not stated.

Characteristic of injury

• Cause of injury: Why injury happened (7 categories; please see Appendix C for more

details)

• Part of body injured: Part of body that injured at time of injury (7 categories; please

see Table C.1 in Appendix C for more details)

• Source of injury: (10 categories; please see Table C.1 for more details)
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• Year: Year when the injury happened.

• Month: Month when the injury happened.

4.2 Saskatchewan WCB Data Analysis Results

Based on the nature of data and challenges we encountered some of which explained in

Chapter 2, this analysis will use several methods, including: conventional logistic regression,

conventional logistic regression after variable selection, Firth’s logistic regression, and Firth’s

logistic regression after lasso, and elastic net variable selection methods to analyze WCB

fatal claims data.

4.2.1 Descriptive Statistics for Covariates

Selected descriptive statistics for covariates of interest are described within three categories:

personal characteristics Table 4.2, incident characteristics Table 4.3, and temporal character-

istics Table 4.4. Characteristics of the study population by fatality status and the distribution

of injured workers in Saskatchewan across different categories of the covariates considered in

our analysis are presented in these tables.

As shown in the descriptive statistics tables, the problem of quasi-complete separation

is present while working with WCB-SK data. For example, in personal characteristics there

are not any fatalities in the occupations in art and science category, and for incident charac-

teristics, there are not any fatalities in tools and equipments and lower extremities in source

of injury and part of body characteristics respectively.

As shown in Table 4.3 and based on our preliminary analysis, part of body and cause of

injury are two main characteristics that cause the problem of quasi-complete separation.
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Table 4.2: Distribution of the personal characteristics of injured workers from
Saskatchewan WCB who had fatalities vs. those who did not, SK, Canada, 2007-2016
(p-values are based on bivariate analysis)

Characteristics Frequency (%) Fatal injury Type3

Yes (%) No (%) P-value P-value

Gender <.0001

women (ref) 92432 (32.93) 8 (0.01) 92424 (99.99)

men 188272 (67.07) 169 (0.09) 188103 (99.91) <.0001

Age <.0001

14 to 24 (ref) 56576 (20.16) 23 (0.04) 56553 (99.96)

25 to 34 67495 (24.04) 34 (0.05) 67461 (99.95) .4270

35 to 44 57903 (20.63) 16 (0.03) 57887 (99.97) .2355

45 to 54 61297 (21.84) 43 (0.07) 61254 (99.93) .0346

55 to 64 33106 (11.79) 33 (0.10) 33073 (99.90) .0010

65 to 85 4327 (1.54) 28 (0.65) 4299 (99.35) <.0001

Occupation <.0001

social sciences (ref) 6161 (2.19) 1 (0.02) 6160 (99.98)

business/advertising 12789 (4.56) 4 (0.03) 12785 (99.97) .0005

health 27618 (9.84) 1 (0.00) 27617 (100) .56

natural/applied sciences 3601 (1.28) 9 (0.25) 3592 (99.75) .054

primary industry 12504 (4.46) 24 (0.19) 12480 (99.81) .0008

processing/manufacturing 22037 (7.85) 9 (0.04) 22028 (99.96) .66

art/culture 1228 (0.44) 0 (0.00) 1228 (100) .97

sale and services 59449 (21.18) 12 (0.02) 59437 (99.98) .45

trade/transport 95235 (33.93) 93 (0.10) 95142 (99.90) .026

not stated 40082 (14.28) 24 (0.06) 40058 (99.94) .23
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Table 4.3: Distribution of the incident characteristics of the injury from Saskatchewan

WCB, SK, Canada, 2007-2016 (p-values are based on bivariate analysis)

Characteristics Frequency (%) Fatal injury Type3

Yes (%) No (%) P-value P-value

Source of injury <.0001

chemical products (ref) 5109 (1.82) 1 (0.02) 5108 (99.98)

furniture/fixture 7977 (2.84) 1 (0.01) 7976 (99.99) .75

parts/materials 30835 (10.98) 13 (0.04) 30822 (99.96) .46

structure/surfaces 39435 (14.05) 20 (0.05) 39415 (99.95) .35

vehicles 14660 (5.22) 71 (0.48) 14589 (99.52) .0014

containers 24759 (8.82) 2 (0.01) 24757 (99.99) .47

machinery 12809 (4.56) 14 (0.11) 12795 (99.89) .096

persons/animals 68549 (24.42) 28 (0.04) 68521 (99.96) .47

tools/equipments 30000 (10.69) 0 (0.00) 30000 (100) .96

other sources 46571 (16.59) 27 (0.06) 46544 (99.94) .29

Part of body <.0001

other (ref) 5283 (1.88) 46 (0.01) 5237 (0.99)

body systems 4569 (1.63) 30 (0.66) 4539 (99.34) .0002

head 31786 (11.32) 9 (0.03) 31777 (99.97) .96

lower extremities 47910 (17.07) 0 (0.00) 47910 (100) <.0001

upper extremities 87424 (31.14) 1 (0.00) 87423 (100) <.0001

multiple 20390 (7.26) 85 (0.42) 20305 (99.58) <.0001

trunk 83342 (29.69) 6 (0.01) 83336 (99.99) <.0001

Cause of injury <.0001

reference category 1 8124 (2.90) 3 (0.00) 8121 (100)

contact with objects 99675 (35.51) 22 (0.02) 99653 (99.98) .40

bodily reaction/exertion 97801 (34.84) 2 (0.00) 97799 (100) .002

transportation accidents 6941 (2.47) 74 (1.07) 6867 (98.93) <.0001

1assaults/violent acts and fires and explosions
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falls 37847 (13.48) 21 (0.06) 37826 (99.94) .51

other events 12916 (4.60) 20 (0.15) 12896 (99.85) .021

harmful substances 17400 (6.20) 35 (0.2) 17365 (99.80) .005
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Table 4.4: Distribution of the temporal characteristics of the injury event from
Saskatchewan WCB, SK, Canada, 2007-2016 (p-values are based on bivariate analy-
sis)

Characteristics Frequency (%) Fatal injury Type3

Yes (%) No (%) P-value P-value

Year 0.3447

2007 30437 (10.84) 13 (0.04) 30424 (99.96) 0.9429

2008 30360 (10.82) 15 (0.05) 30345 (99.95) 0.7695

2009 26755 (9.53) 19 (0.07) 26736 (99.93) 0.2059

2010 26887 (9.58) 20 (0.07) 26867 (99.93) 0.1614

2011 28574 (10.18) 19 (0.07) 28555 (99.93) 0.2752

2012 29287 (10.43) 28 (0.10) 29259 (99.90) 0.0290

2013 29170 (10.39) 17 (0.06) 29153 (99.94) 0.4669

2014 28211 (10.05) 19 (0.07) 28192 (99.93) 0.2606

2015 26013 (9.27) 16 (0.06) 25997 (99.94) 0.3917

2016 (ref) 25010 (8.91) 11 (0.04) 24999 (99.96)

Month .7519

January 23603 (8.41) 16 (0.07) 23587 (99.93) .4408

February 21372 (7.61) 8 (0.08) 21364 (99.99) .5116

March 23822 (8.49) 17 (0.01) 23805 (99.92) .3591

April 21559 (7.68) 13 (0.07) 21546 (99.93) .6578

May 23332 (8.31) 13 (0.06) 23319 (99.94) .8061

July 24760 (8.82) 12 (0.05) 24748 (99.95) .9195

August 25191 (8.97) 21 (0.09) 25170 (99.91) .1660

September 24404 (8.69) 14 (0.06) 24390 (99.94) .7460

October 24960 (8.89) 20 (0.09) 24940 (99.91) .2061

November 23938 (8.53) 18 (0.08) 23920 (99.92) .2854

December 20003 (7.13) 13 (0.07) 19990 (99.93) .5286

June (ref) 23760 (8.46) 12 (0.06) 23748 (99.94)
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4.2.2 Results of Model Fitting

In this section, we present the results of analysis based on different methods including conven-

tional logistic regression, lasso logistic regression, and elastic net logistic regression, Firth’s

logistic regression, and Firth’s logistic regression after doing variable selection via lasso and

elastic net. First, we demonstrate model selection procedure from bivariate analysis to inves-

tigate interactions, and then we present the results based on different methods after doing

multivariable analysis.

In the last two columns of tables 4.2, 4.3, and 4.4, the p-values for bivariate analysis and

type 3 analysis were shown. In this study, we kept those variables with p-value less than 0.25

in the bivariate analysis for the first multivariable model. Based on p-values from tables 4.2,

4.3, 4.4, variables included in the model are gender, age, occupation, source of injury, cause

of injury, and part of the body. Year and month will not be considered to be in the model for

multivariable analysis as the p-value for year and month is 0.3447 and 0.7519 respectively,

which are greater than 0.25.

The next step in model selection is fitting the multivariable model with all covariates

identified for inclusion in bivariate analysis, then we do backward model selection based on

p-values.

In presence of quasi-complete separation, SAS gives the results at the last iteration in

case of using logistic regression [74]. After fitting conventional logistic regression method,

age, gender, cause of injury, source of injury, and part of body were kept in the model.

The next step in model selection is investigating the assumption of the presence of inter-

action. To our knowledge, there have not been any studies on WCB claims data in Canada

investigating the presence of interactions.

After using conventional logistic regression, SAS and R gave an error indicating that

there exist the quasi-complete separation problem in this analysis. Then lasso and elastic net

logistic regression methods were used to see whether applying variable selection methods can

address the problem of quasi-complete separation or not. Based on the error from R and the

results provided in tables 4.6 and 4.7, the problem of quasi-complete separation was solved

after using lasso logistic regression with λ = λ.1se, but the separation problem is still there
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after using elastic net logistic regression.

Now that we presented the analysis results based on conventional logistic regression, lasso

logistic, and elastic net logistic regression, we are going to apply Firth’s method to address the

quasi-complete separation problem and compare the results with other penalized methods.

The logistf package [75] in R was used to run the Firth’s method analysis. After fitting

Firth’s logistic regression methods, age, gender, cause of injury, source of injury, and part of

body were kept in the model. The results of this analysis can be found in tables 4.8 and 4.9.

As mentioned earlier, there are some challenges in working with Saskatchewan WCB data

including separation, rare events and multiple covariates with many levels (low EPV), and

multicollinearity, all of which can be addressed by penalized regression. Now that we ad-

dressed the separation problem of the data by using Firth’s method, we are going to try some

variable selection methods including lasso and elastic net as regularization or penalization

methods to address the remaining problems.

To determine if the variable selection improves the Firth’s method, we will compare

the Firth’s method after variable selection with Firth’s method before variable selection

in terms of AIC. The results of analysis after variable selection using some of penalized

logistic regression methods (lasso and elastic net) will be presented in this section to see

what characteristics will be selected by these methods to stay in the final model. First, the

results after doing variable selection by lasso method will be presented.

Firth’s Logistic Regression Results after Lasso Variable Selection

Several implementations of lasso are offered in R like in packages liblinear [76], glmnet [77],

lars [78], and genlasso [79]. We chose to use the glmnet package as model fitting is easy by

using this package, which provides easy transition between lasso and elastic net models.

For fitting the lasso method, cv.glmnet() from glmnet package will be used. It performs

10 fold cross validations to find the best value of the tuning parameter λ.

First, the tuning parameter λ in the lasso penalty will be chosen using cross validation

procedure, which choose λopt to be the one that minimize the deviance with respect to logistic

regression. Figure 4.1 shows the cross validation plot generated by package glmnet. Figure

4.1 includes cross validation curve (red dotted line), and upper and lower standard deviation
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curves along the λ sequence (error bars). The larger the value of λ, the more variables will

be eliminated from the model.

Figure 4.1: Cross validation plots for λopt for lasso method with WCB fatality as an
outcome

There is two vertical lines in Figure 4.1. The one at the minimum is the one that minimize

out of sample CV (λ.min) and the other vertical line is for λ.1se which is the largest λ value

within 1 standard error of λ.min. The numbers on the top of the Figure 4.1 give the number

of non-zero coefficients, which means that for our data, we would be using 19 dummy variables

instead of using 36 dummy variables for selected model if we would choose the one standard

error estimate.

After doing variable selection via lasso, we refit the Firth’s logistic regression again to com-

pare the derived model with the results of Firth’s method without doing variable selection.

The results of fitted model is presented in Table 4.5. Another choice for tuning parameter λ

is λ.min. If we select this λ as the final tuning parameter, the number of dummy variables

remaining in the model will be 34, which means lasso removed only 1 dummy variable from

the model with this choice of λ. A list of these variables can be found in Table C.2, Appendix

C.
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Figure 4.2: Cross validation plot for log(λ) vs mean square error for lasso method
with WCB fatality as an outcome

Firth’s Logistic Regression Results after Elastic Net Variable Selection

In this section, the results of variable selection conducted by elastic net will be presented.

For fitting elastic net, cv.glmnet will be used. Just as with the lasso method, in elastic

net we also have two choices for choosing tuning parameter λ, so we present the result of

analysis based on these two quantities. Figure 4.3 shows the cross validation plot generated

by package glmnet, which shows larger the value of λ, the more variables will be eliminated

from the model. As shown in Table 4.5, if we choose λ = λ.min, then we would have 35

dummy variables in the model while we would have 26 dummy variables in the model if we

choose λ = λ.1se. The result of Firth’s method after elastic net variable selection can be

found in tables 4.8 and 4.9.
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Figure 4.3: Cross validation plots for λopt for elastic net method with WCB fatality
as an outcome

4.2.3 Method Comparison

In this section, a comparison between different methods that were used will be presented to

find the best method to analyze WCB fatal claims data and interpret findings. Several model

performance criteria have been used to compare conventional logistic, lasso logistic, elastic

net logistic, Firth’s, and Firth’s after lasso, and Firth’s after elastic net together, some of

which mentioned in Section 3.6.

Table 4.5 reports method comparison score AIC and AUC for these methods, and it also

reports the number of dummy variables selected to stay in the model in final analysis (i.e.

model parsimony) plus the intercept. Based on AIC performance criteria shown in Table 4.5,

Firth’s after elastic net with the choice of λ = λ.min has the lowest AIC, and it can be a

good candidate to analyze this data set. Another thing that needs to be considered in model

selection is model parsimony. Compared to the Firth’s method, Firth’s method after doing

variable selection by elastic net.min has a lower AIC, and it has one dummy variable less

than the Firth’s method. Firth’s method after elastic net variable selection also can address

the problem of separation with WCB data. The AUC is also high for this method compared

to other methods. All of these show that this model performs better for WCB claims data

set. Therefore, all interpretation for the purpose of WCB applications will be done using the

Firth’s method after elastic net variable selection.
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It is good to mention that, the performance of Firth’ logistic, Firth’ logistic after lasso.min,

and Firth’s logistic after elastic net.min are very similar and they are just slightly different,

but for the case of this study based on our model performance criteria, we decided to choose

Firth’s method after elastic net.min as the best method to interpret the results based on.

In the current study, bias-correction or Firth’s method is doing most of the work, and the

positive effect of variable selection methods is only marginal, but for other cases of the

data the other two methods might perform better. With respect to lasso logistic regression,

although this method could address the problem of separation, we did not present the final

results based on because its AIC is higher than other methods.

Table 4.5: Method comparison scores for the logistic, Firth’s, and Firth’s after lasso
and elastic net variable selection methods. The bolded numbers in the table indicates
the model with the optimized performance metric

Method AIC AUC number of dummy variables -logL

logistic 1766.72 0.98 37 846.36

Lasso.1se logistic 1807.64 0.97 20 883.82

Lasso.min logistic 1762.78 0.98 35 846.39

Elastic net.1se logistic 1767.22 0.98 27 856.61

Elastic net.min logistic 1764.73 0.98 36 846.36

Firth’s 1703.30 0.98 37 814.65

Firth’s after lasso.1se 1761.77 0.97 20 860.88

Firth’s after lasso.min 1702.67 0.97 35 816.33

Firth’s after elastic net.1se 1713.11 0.97 27 829.55

Firth’s after elastic net.min 1701.96 0.975 36 814.98

In addition to the method performance comparison criteria presented in Table 4.5, the

width of confidence intervals was also considered to compare these methods. The tables of

estimated OR and 95% CIs are provided for all included methods that we used to analyze

the WCB Saskatchewan data. Table 4.8 shows the OR and 95% CIs for personal character-

istics for conventional logistic, Firth’s logistic, and Firth’s after lasso and elastic net variable

selection with different tuning parameters. Table 4.9 represents the OR and 95% CIs for
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incident characteristics as calculated by conventional logistic, Firth’s, and Firth’s after lasso

and elastic net variable selection for two different tuning parameters.

As shown in odds ratio tables, 95% confidence intervals are wide for some of the levels in

some characteristic using conventional logistic regression, although using the Firth’s method

gives us shorter CIs compared to conventional logistic regression in addition to address the

separation problem. For example, in Table 4.9, 95% confidence interval for point estimate

of machinery in source of injury based on conventional logistic regression is (11.92,1406.23)

while this CI based on Firth’s method is (10.31,515.65). For furniture and fixture in source

of injury, the 95% CI is (0.83,603.30) based on logistic regression although the 95% CI from

Firth’s method is (1.67,300.65).

Based on our literature review, using conventional logistic regression is not ideal in the

presence of quasi-complete separation as it gives very wide CIs, which is consistent with

the result from our analysis, but it seems that the Firth’s method could solve this problem.

It is also good to mention that as the results of conventional logistic regression are based

on the last maximum likelihood iteration, validity of the model fit is questionable for this

method; note that we presented the results of conventional logistic regression only to make

a comparison with other methods.

Based on the results from OR tables 4.8 and 4.9, the length of 95% CI is shorter for Firth’s

method after using lasso and elastic net variable selection methods especially for λ = λ.1se

as this λ prevents overfitting. As mentioned earlier compared to Firth’s logistic regression,

AIC for Firth’s after elastic net.min is lower.

The plots of odds ratio (OR) and 95% CIs for OR are provided in Figure 4.4 and Figure

4.5 for personal and incident characteristics for conventional logistic, Firth’s logistic, and

Firth’s logistic after elastic net.min methods. Red dots are ORs, and the green lines are 95%

CIs for the ORs. Blue lines show very wide CIs for ORs, and ◦ shows tiny CIs in these two

OR plots. These tables show that the length of 95% CIs for Firth’s method after variable

selection (elastic net.1se) is shorter.
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Table 4.6: Odds Ratios and 95% Confidence Intervals for personal characteristics from conventional logistic regression,

logistic regression after using lasso and elastic net as variable selection methods for the relation between the covariates and

a claim being fatal, Saskatchewan WCB, 2007-2016

Characteristics2 Method

logistic (95% CI) LA.lse (95% CI)3 LA.min (95% CI) 4 EN.1se (95% CI) 5 EN.min (95% CI) 6

Gender

women

men 5.82 (2.88,13.5) 7.2 (4.4,11.63) 5.8 (2.88,13.5) 6.1 (3,13.98) 5.82 (2.88,13.5)

Age

14 to 24

25 to 34 1.06 (0.62,1.86) - - - 1.064 (0.62,1.867)

35 to 44 0.48 (0.25,0.93) 0.49 (0.27,0.84) 0.47 (0.26,0.80) 0.48 (0.261,0.82) 0.484 (0.25,0.93)

45 to 54 1.52 (0.90,2.62) 1.46 (0.97,2.18) 1.46 (0.96,2.2) 1.45 (0.96,2.18) 1.52 (0.90,2.62)

55 to 64 1.78 (1.02,3.17) 1.77 (1.12,2.75) 1.7 (1.1,2.70) 1.74 (1.1,2.72) 1.79 (1.020,3.17)

65 to 85 6.70 (3.62,12.49) 7.2 (4.4,11.6) 6.5 (3.8,10.67) 6.71 (4,11.01) 6.70 (3.63,12.48)

2The first category for each characteristic is the reference category for logistic method, but the reference category for other methods is different
and consists of the first category of each variable (reference category in logistic) plus those dummy variable kicked out from the model shown by − in
each method in the table

3Logistic regression after lasso variable selection when λ = λ.1se
4Logistic regression after lasso variable selection when λ = λ.min
5Logistic regression after elastic net variable selection when λ = λ.1se
6Logistic regression after elastic net variable selection when λ = λ.min
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Occupations 7

social sciences

business 3.01 (0.93,11.62) 2.81 (1.25,5.67) 3 (0.92,11.6) 2.49 (1.1,5.2) 3.01 (0.93,11.62)

health 0.45 (0.02,3.15) - 0.45 (0.023,3.14) 0.33 (0.02,1.59) 0.45 (0.02,3.14)

applied sciences 0.29 (0.01,2.08) - 0.29 (0.015,2.07) 0.22 (0.01,1.13) 0.29 (0.02,2.08)

primary industry 3.14 (1.14,11.13) 2.91 (1.70,4.85) 3.13 (1.13,11.1) 2.53 (1.43,4.4) 3.14 (1.14,11.13)

art/culture 0.00∗ 8 ( 0.00∗, 0.00∗) 1 (0.01,9.74) 0.00∗ (0.00∗,0.00∗) - 0.00∗ (0.00∗,0.00∗)

sale/services 0.90 (0.3,3.28) - 0.90 (0.3,3.28) 1.74 (1.1,2.7) 0.90 (0.30,3.28)

trade/transport 1.68 (0.67,5.65) 1.59 (1.11,2.31) 1.67 (0.67,5.63) 1.37 (0.92,2.08) 1.68 (0.67,5.65)

manufacturing 1.59 (0.49,6.11) - 1.58 (0.49,6.1) - 1.59 (0.49.6.11)

not stated 1.20 (0.44,4.23) - 1.2 (0.44,4.2) - 1.20 (0.44,4.23)

7Reference category for logistic is the first category in the table (social sciences), and for other methods the reference consists of social sciences in
addition to those dummy variables kicked out from the model shown by − in the table

8Reports very low numbers less than < ×10−3
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Table 4.7: Odds Ratios and 95% Confidence Intervals for incident characteristics from conventional logistic regression,

logistic regression after using lasso and elastic net as variable selection methods for the relation between the covariates and

a claim being fatal, Saskatchewan WCB, 2007-2016

Characteristics9 Method

logistic (95% CI) LA.lse (95% CI)10 LA.min (95% CI) 11 EN.1se (95% CI) 12 EN.min (95% CI) 13

Source of injury

chemical products

furniture/fixture 22.36 (0.83,603.30) - 22.27 (0.83,596.56) - 22.35 (0.83,598.40)

parts/materials 37.60 (6.80,703.75) - 37.58 (6.86,702) 3.41 (1.70,6.44) 37.59 (6.86,701.8)

structure/surfaces 29.92 (4.46,605.74) - 29.91 (5,580.47) - 29.89 (5.01,580.16)

vehicles 43.77 (7.01,857.84) 3.87 (1.74,8) 43.78 (7.2,851.6) 3.39 (1.5,7.2) 43.75 (7.16,851.01)

containers 19.21 (1.67,439.65) - 19.23 (1.7,437.3) - 19.21 (1.68,436.68)

machinery 72.57 (11.92,1406.23) 6.3 (2.9,12.37) 72.67 (12,1399.48) 5.9 (2.64,12.19) 72.55 (12.13,1397.03)

persons/plants 22.19 (4.66,397.79) - 22.24 (4.7,398.5) 2.60 (1.50,4.6) 22.19 (4.66,397.66)

tools/equipments 0.00∗ 14 (0.00∗,0.00∗) - 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗)

other sources 9.29 (1.74,171.80) - 9.3 (1.7,171.7) - 9.29 (1.75,171.76)

9The first category for each characteristic is the reference category for logistic method, but the reference category for other methods is different
and consists of the first category of each variable (reference category in logistic) plus those dummy variable kicked out from the model shown by − in
each method in the table

10Logistic regression after lasso variable selection when λ = λ.1se
11Logistic regression after lasso variable selection when λ = λ.min
12Logistic regression after elastic net variable selection when λ = λ.1se
13Logistic regression after elastic net variable selection when λ = λ.min
14Reports very low numbers less than < ×10−3
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Part of body

other

body systems 0.01 (0.00∗,0.01) 0.01 (0.007,0.03) 0.06 (0.002,0.013) 0.006 (0.003,0.012) 0.006 (0.002,0.01)

lower extremities 0.06 (0.04,0.10) 0.14 (0.09,0.20) 0.061 (0.04,0.098) 0.067 (0.04,0.12) 0.060 (0.04,0.098)

upper extremities 0.00∗ (0.00∗,0.00∗) 0.001(0.002,0.012) 0.00∗ (0.00∗,0.001) 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗)

multiple parts 0.00∗ (0.00∗,0.02) 0.01 (0.00,0.04) 0.005 (0.001,0.016) 0.005 (0.001,0.018) 0.005 (0.001,0.02)

head 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00,0.01) 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗)

trunk 0.00∗ (0.00∗,0.01) 0.006 (0.002,0.012) 0.02 (0.001,0.006) 0.003 (0.001,0.006) 0.002 (0.001,0.006)

Cause of injury

violent acts

bodily reaction 0.13 (0.02,0.85) 0.16 (0.03,0.55) 0.134 (0.02,0.54) 0.068 (0.011,0.23) 0.134 (0.02,0.54)

transportation 5.25 (1.35,27.32) 3.60 (1.76,7.81) 5.25 (2.14,14.1) 3.10 (1.55,6.69) 5.26 (2.14,14.09)

falls 1.00 (0.23,5.40) - - - -

contact (objects) 1.77 (0.52,8.36) - 1.78 (0.8,3.98) - 1.78 (0.8,3.98)

other events 7.17 (2.12,33.68) 6.67 (3.87,11) 7.17 (2.73,19.86) 3.33 (1.723,6.278) 7.18 (2.736,19.87)

harmful substances 0.43 (0.15,1.86) - 0.43 (0.18,1.1) 0.162 (0.086,0.30) 0.43 (0.18,1.1)
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Table 4.8: Odds Ratios and 95% Confidence Intervals for personal characteristics from conventional logistic regression,

Firth’s logistic regression, and Firth’s after using lasso and elastic net as variable selection methods for the relation between

the covariates and a claim being fatal, Saskatchewan WCB, 2007-2016

Characteristics15 Method

Firth’s Method

logistic (95% CI) Firth’s (95% CI) LA.lse (95% CI)16 LA.min (95% CI) 17 EN.1se (95% CI) 18 EN.min (95% CI) 19

Gender

women

men 5.82 (2.88,13.5) 5.49 (2.76,12.45) 7.68 (3.96,16.99) 5.5 (2.77,12.47) 5.73 (2.91,12.91) 5.50 (2.77,12.46)

Age

14 to 24

25 to 34 1.06 (0.62,1.86) 1.06 (0.62,1.84) - - - 1.06 (0.62,1.84)

35 to 44 0.48 (0.25,0.93) 0.49 (0.25,0.93) 0.50 (0.28,0.85) 0.48 (0.27,0.82) 0.49 (0.27,0.83) 0.49 (0.25,0.93)

45 to 54 1.52 (0.90,2.62) 1.5 (0.90,2.58) 1.46 (0.97,2.18) 1.46 (0.97,2.20) 1.45 (0.96,2.18) 1.50 (0.90,2.58)

55 to 64 1.78 (1.02,3.17) 1.77 (1.02,3.13) 1.78 (1.14,2.75) 1.73 (1.09,2.69) 1.75 (1.11,2.72) 1.77 (1.02,3.12)

65 to 85 6.70 (3.62,12.49) 6.6 (3.6,12.23) 7.23 (4.41,11.61) 6.42 (3.83,10.58) 6.7 (4.01,10.94) 6.59 (3.59,12.20)

15The first category for each characteristic is the reference category for logistic and Firth method, but the reference category for other methods is
different and consists of the first category of each variable (reference category in logistic and Firth’s) plus those dummy variable kicked out from the
model shown by − in each method in the table

16Firth’s method after lasso variable selection when λ = λ.1se
17Firth’s method after lasso variable selection when λ = λ.min
18Firth’s method after elastic net variable selection when λ = λ.1se
19Firth’s method after elastic net variable selection when λ = λ.min
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Occupations 20

social sciences

business 3.01 (0.93,11.62) 2.83 (0.91,10.11) 2.93 (1.33,5.82) 2.81 (0.91,10.07) 2.57 (1.13,5.33) 2.82 (0.91,10.11)

health 0.45 (0.02,3.15) 0.6 (0.06,3.34) - 0.60 (0.06,3.35) 0.49 (0.05,1.90) 0.60 (0.06,3.35)

applied sciences 0.29 (0.01,2.08) 0.38 (0.04,2.17) - 0.38 (0.04,2.17) 0.32 (0.04,1.33) 0.38 (0.04,2.17)

primary industry 3.14 (1.14,11.13) 2.85 (1.07,9.39) 2.92 (1.72,4.86) 2.84 (1.07,9.36) 2.53 (1.44,4.38) 2.85 (1.07,9.39)

art/culture 0.00∗ 21 ( 0.00∗, 0.00∗) 1 (0.01,9.74) - 1 (0.01,9.72) - 1.00 (0.01,9.74)

sale/services 0.90 (0.3,3.28) 0.83 (0.29,2.83) - 0.83 (0.29,2.83) 0.75 (0.37,1.42) 0.84 (0.29,9.74)

trade/transport 1.68 (0.67,5.65) 1.51 (0.63,4.7) 1.58 (1.1,2.3) 1.5 (0.62,4.69) 1.36 (0.91,2.06) 1.51 (0.63,4.70)

manufacturing 1.59 (0.49,6.11) 1.49 (0.48,5.32) - 1.48 (0.48,5.29) - 1.49 (0.48,5.32)

not stated 1.20 (0.44,4.23) 1.10 (0.42,3.59) - 1.10 (0.42,3.58) - 1.10 (0.42,3.59)

20Reference category for logistic and Firth is the first category in the table (social sciences), and for other methods the reference consists of social
sciences in addition to those dummy variables kicked out from the model shown by − in the table

21Reports very low numbers less than < ×10−3
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Table 4.9: Odds Ratios and 95% Confidence Intervals for incident characteristics from conventional logistic regression,

Firth’s logistic regression, and Firth’s after using lasso and elastic net as variable selection methods for the relation between

the covariates and a claim being fatal, Saskatchewan WCB, 2007-2016

Characteristics Method

Firth’s Method

logistic (95% CI) Firth’s (95% CI) LA.lse (95% CI) LA.min (95% CI) EN.1se (95% CI) EN.min (95% CI)

Source of injury

chemical products

furniture/fixture 22.36 (0.83,603.30) 22.40 (1.67,300.65) - 22.02 (1.65,292.77) - 22.07 (1.66,293.19)

parts/materials 37.60 (6.80,703.75) 26.19 (5.77,249.66) - 25.96 (5.78,246.75) 3.47 (1.75,6.50) 25.96 (5.78,246.66)

structure/surfaces 29.92 (4.46,605.74) 20.26 (3.60,216.45) - 19.82 (4.01,199.20) - 19.79 (4.01,198.95)

vehicles 43.77 (7.01,857.84) 30.57 (5.91,310.47) 3.98 (1.80,8.17) 30.21 (5.97,303.75) 3.45 (1.54,7.27) 30.16 (5.96,303.21)

containers 19.21 (1.67,439.65) 15.96 (1.90,189.55) - 15.79 (1.90,185.93) - 15.76 (1.89,185.56)

machinery 72.57 (11.92,1406.23) 51.68 (10.31,515.65) 6.59 (3.11,12.81) 51.20 (10.40,506.78) 6.14 (2.80,12.51) 51.06 (10.38,505.38)

persons/plants 22.19 (4.66,397.79) 15.02 (3.89,134.97) - 15.10 (3.91,135.61) 2.60 (1.46,4.58) 15.06 (3.90,135.28)

tools/equipments 0.00∗ 22 (0.00∗,0.00∗) 1.90 (0.01,38.56) - 1.88 (0.01,37.91) 0.25 (0.00,1.83) 1.88 (0.01,37.93)

other sources 9.29 (1.74,171.80) 6.51 (1.49,61.09) - 6.49 (1.49,60.87) - 6.49 (1.49,60.88)

Part of body

neck (throat)

body systems 0.01 (0.00∗,0.01) 0.01 (0.00,0.01) 0.02 (0.01,0.03) 0.01 (0.00,0.01) 0.01 (0.00,0.01) 0.01 (0.0026,0.01)

lower extremities 0.06 (0.04,0.10) 0.06 (0.04,0.10) 0.14 (0.09,0.21) 0.06 (0.04,0.10) 0.07 (0.04,0.11) 0.06 (0.04,0.1)

22Reports very low numbers less than < ×10−3
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upper extremities 0.00∗ (0.00∗,0.00∗) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00∗ (0.00∗,0.00∗)

multiple parts 0.00∗ (0.00∗,0.02) 0.01 (0.00,0.02) 0.01 (0.00,0.04) 0.01 (0.00,0.02) 0.01 (0.00,0.02) 0.01 (0.00,0.02)

head 0.00∗ (0.00∗,0.00∗) 0.00∗ (0.00∗,0.00∗) 0.00 (0.00,0.01) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.006 (0.00∗,0.00∗)

trunk 0.00∗ (0.00∗,0.01) 0.00 (0.00,0.01) 0.01 (0.00,0.01) 0.00 (0.00,0.01) 0.00 (0.00,0.01) 0.0027 (0.00∗,0.01)

Cause of injury

violent acts

bodily reaction 0.13 (0.02,0.85) 0.14 (0.02,0.78) 0.20 (0.04,0.61) 0.16 (0.03,0.60) 0.08 (0.02,0.26) 0.16 (0.03,0.60)

transportation 5.25 (1.35,27.32) 4.30 (1.17,20.21) 3.44 (1.71,7.44) 4.89 (2.01,13.06) 2.98 (1.50,6.37) 4.90 (2.01,13.08)

falls 1.00 (0.23,5.40) 0.87 (0.21,4.29) - - - -

contact (objects) 1.77 (0.52,8.36) 1.54 (0.47,6.50) - 1.74 (0.79,3.91) - 1.75 (0.79,3.92)

other events 7.17 (2.12,33.68) 6.03 (1.89,25.30) 6.74 (3.94,11.07) 6.79 (2.61,18.70) 3.34 (1.74,6.27) 6.79 (2.62,18.71)

harmful substances 0.43 (0.15,1.86) 0.38 (0.14,1.45) - 0.43 (0.18,1.08) 0.16 (0.09,0.31 ) 0.43 (0.18,1.08)
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Reflecting on all of these findings, the best performing model is Firth’s after doing elastic

net variable selection with the choice of λ = λ.min, and in order to answer the application

question stated in the second objective of the study, the next section will focus solely on the

results of the this method.

4.2.4 Estimating Risk of a Claim Being Fatal (Results)

In this section, we discuss variables that are associated with higher risk of a claim being fatal.

Based on what we discussed in Section 4.2.3, we interpret the results of the Firth’s method

after elastic net.min to see what variables increase the risk of a claim being fatal. Tables 4.10

and 4.11 show the results of the analysis based on this method.

Interpretation

The results of the multivariate analysis for personal characteristics (Table 4.10) indicate that

the risk of a claim being fatal for the seniors aged 65-85 years of age is 6.59 (95% CI: 3.59-

12.20) times higher as compared with those who are 14-24. Similarly, the odds of a claim

being fatal for those aged 55-64 years of age is 1.77 (95% CI: 1.02-3.12) times higher as

compared with those who are aged 14-24. The odds of a claim being fatal for those aged

35-44 years of age is 0.49 (95% CI: 0.25-0.93) less than those who are aged 14-24. Comparing

workers 14 to 24 years old and workers aged 45 to 54 reveals no significant difference in claims

being fatal. In addition, odds of a claim being fatal among men is 5.5 (95% CI: 2.77-12.46)

times higher than women. Odds of a claim being fatal among those who work in primary

industry vs. those who work in social sciences is 2.85 (95% CI: 1.07-9.39). Comparing other

occupations and occupations in social sciences does not show any significant differences.

The results of the multivariate analysis for incident characteristics (Table 4.11) indicates

that odds of a claim being fatal for machinery in source of injury is 51 (95% CI: 10.38-505.38)

times higher than odds of a claim being fatal in chemical products. For part of body, the only

significant OR is related to lower extremities, and as other levels of this variable have very

tiny CIs and are very close to zero, we did not consider them statistically significant relevant

to the application. For cause of injury, the odds of claims being fatal for other events and

exposures is 6.79 (95% CI: 2.62-18.71) times higher as compared with ‘reference category’
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Figure 4.4: Odds Ratios and 95% Confidence Intervals for personal characteristics
from conventional logistic regression, Firth’s logistic regression, and Firth’s logistic
after using elastic net.min as variable selection methods from left to right respectively
for the relation between the covariates and a claim being fatal, WCB Saskatchewan,
2007-2016
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Figure 4.5: Odds Ratios and 95% Confidence Intervals for incident characteristics
from conventional logistic regression, Firth’s logistic regression, and Firth’s logistic
after using elastic net.min as variable selection methods from left to right respectively
for the relation between the covariates and a claim being fatal, Saskatchewan WCB,
2007-2016
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including fires and explosions, violent acts and falls. Moreover, the odds of claims being fatal

for cause of injury in transportation vs. ‘reference category’ (fires and explosions ; violent

acts; and falls) is 4.90 (95% CI: 2.01-13.08) times higher. The odds of a claim being fatal

for bodily reaction is 0.16 times less likely than for ‘reference category’ (OR: 0.16, 95% CI:

0.03-0.6). Comparing contact with harmful substances and objects with ‘reference category’

shows no significant difference in odds of a claim being fatal.

Results of the previous section shows that men, occupations in primary industry, ‘machin-

ery’ source of injury, and lower extremities are significant predictors of injury claims being

fatal in Saskatchewan.
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Table 4.10: The multivariate analysis reporting the estimated odds ratios (OR), the
corresponding 95% confidence interval (CI) and p-values for all the potential personal
risk factors in the WCB fatality data analysis using Firth’s after elastic net.min variable
selection method

Characteristic OR 95% CI P-value

Gender

men vs women 5.50 (2.77,12.46) <.0001

Age

25-34 vs 14-24 1.06 (0.62,1.84) 0.8

35-44 vs 14-24 0.49 (0.25,0.93) 0.03

45-54 vs 14-24 1.50 (0.90,2.58) 0.1

55-64 vs 14-24 1.77 (1.02,3.12) 0.04

65-85 vs 14-24 6.59 (3.59,12.20) <.0001

Occupation

business/advertising vs social sciences 2.82 (0.91,10.11) 0.07

health vs social sciences 0.60 (0.06,3.35) 0.58

natural/applied sciences vs social sciences 0.38 (0.04,2.17) 0.29

primary indusrty vs social sciences 2.85 (1.07,9.39) 0.03

art and culture vs social sciences 1 (0.01,9.74) 0.99

sale and services vs social sciences 0.84 (0.29,2.84) 0.75

trade and transport vs social sciences 1.51 (0.63,4.70) 0.38

processing/manufacturing vs social sciences 1.49 (0.48,5.32) 0.49

not stated vs social sciences 1.10 (0.42,3.59) 0.86
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Table 4.11: The multivariate analysis reporting the estimated odds ratios (OR), the
corresponding 95% confidence interval (CI) and p-values for all the potential incident
risk factors in the WCB fatality data analysis using Firth’s method after elastic net.min

Characteristic OR 95% CI P-value

Source of injury

furniture/fixtures vs chemical products 22.07 (1.66,293.19) 0.02

parts/materials vs chemical products 25.96 (5.78,246.66) <.0001

structure/surfaces vs chemical products 19.79 (4.01,198.95) <.0001

vehicles vs chemical products 30.16 (5.96,303.21) <.0001

containers vs chemical products 15.76 (1.89,185.56) 0.01

machinery vs chemical products 51.06 (10.38,505.38) <.0001

persons, plants/animals vs chemical products 15.06 (3.90,135.28) <.0001

tools/equipments vs chemical products 1.88 (0.01,37.93) 0.7

other sources vs chemical products 6.49 (1.49,60.88) <.0001

Part of body

body systems vs ‘other body part’ 0.01 (0.0026,0.01) <.0001

lower extremities vs ‘other body part’ 0.06 (0.04,1) <.0001

upper extremities vs ‘other body part’ 0.00033 (0.00004,0.001) <.0001

multiple body part vs ‘other body part’ 0.01 (0.001,0.02) <.0001

head vs neck and ‘other body part’ 0.0002 (0.000002,0.001) <.0001

trunk vs ‘other body part’ 0.0027 (0.001,0.01) <.0001

Cause of injury

bodily reaction/exertion vs ‘ref category’ a 0.16 (0.03,0.60) 0.005

transportation accidents vs ‘ref category’ 4.90 (2.01,13.08) <.0001

contact with objects vs ‘ref category’ 1.75 (0.79,3.92) 0.17

harmful substances vs ‘ref category’ 0.43 (0.18,1.08) 0.07

other events/exposures vs ‘ref category’ 6.79 (2.62,18.71) <.0001

afires and explosions, violent acts, and falls
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Chapter 5

Final Remarks

5.1 Summary

Motivated by the statistical challenges encountered in modelling rare event data in a real

application with Saskatchewan Workers’ Compensation Board Data, this thesis went beyond

basic descriptive analysis by applying penalized logistic regression and different variable se-

lection methods to identify the characteristics of the vulnerable population with a high risk

of a claim being fatal. We used administrative WCB-SK claims data, which is representative

of all fatal claims obtained from population-based data at the individual level, along with

workers and incident characteristics. To our knowledge, no studies have applied penalized

regression methods in the context of occupational injury data in order to address the analytic

challenges except one study that used logistic regression with Firth’s approach in identifying

facors associated with fatal accidents among Mexican workers [19].

The analytic challenges are mostly due to the strong imbalance of the outcome variable as

well as the categorical covariates. The outcome of interest in our study, i.e., fatal injury claim

was very rare (177 out of 280,704) and about 40 regression coefficients (multiple covariates

with many levels) were estimated, which resulted in low EPV, i.e. 177/40 ≈ 4.4. In many

epidemiological and medical studies, an EPV of ≥ 10 is widely used as a rule-of-thumb

to determine the reliability of the statistical analysis. Variable selection is often used as a

strategy to reduce the number of variables in the model to overcome the problem of low EPV.

In addition to the issue of low EPV, several categorical explanatory variables in our analysis,

such as source of injury or part of the body have many levels and are highly imbalanced.

The low EPV in combinations with highly imbalanced multi-categorical covariates caused the

quasi-complete separation problem. Under the combinations of these problems, the maximum
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likelihood estimation under the conventional logistic regression model failed to converge and

yielded very unstable parameter estimates. Firth’s logistic regression is a standard tool for

solving the problem of quasi-complete separation. However, Firth’s method does not perform

model selection and there has been very limited research investigated if model selection

methods can fully circumvent the quasi-complete separation problem.

Therefore, various model selection methods were applied, such as traditional backward

model selection method, lasso and elastic net penalized regression methods to examine if

quasi-complete separation problem can be resolved at increased EPV. Unsurprisingly, model

selection methods reduced the number of parameters in the model and therefore increased

EPV; however, quasi-complete separation problem still exists especially in using elastic net

logistic regression method. As a result, Firth’s method was used after the model selection

methods as a bias-correction method. Our results showed that Firth’s method after model

selection based on elastic net with λ = λ.min outperformed other methods, which gave lower

AIC, higher AUC, and shorter CIs. Previous studies showed that elastic net can outperform

lasso while encouraging a grouping effect and enjoying the same sparsity [16]. In the presence

of highly correlated variables, empirical studies have shown that elastic net outperforms lasso

[16], which was the case in the current study using WCB-SK data.

This is not to say that the Firth’s method after variable selection by elastic net.min should

be preferred over all other methods in all scenarios. Indeed, when analyzing rare event data

with many categorical covariates, which may lead to separation problem and in presence of

multicollinearity, additional care needs to be given to choosing the best method that fits the

data well. Depending on the nature of data and the objectives of the study, other methods

can be preferable.

Results of the Section 4.2.4 showed that men, ‘primary industry’ occupation, ‘machinery’

source of injury, ‘other events/exposures’ and ‘transportation’ cause of injury are significant

covariates in higher odds of a claim being fatal for workers in Saskatchewan. These results

more or less confirm the findings of other researchers for analysis of occupational claims data.

With respect to age, the relationship between age and the risk of a claim being fatal

is not simply linear, and the middle-aged workers are at a lower risk. The young workers

are at a higher risk than middle-aged workers, and the risk of having fatal injury increased
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sharply as age increased from 45 to 85. Our analysis showed that age group 65-85 years

old is most prone to having a claim being fatal compared to 14-24. The majority of studies

that examined serious occupational injuries showed that older age workers suffer from a

higher number of severe or fatal injuries in comparison with younger workers [26, 80–86].

In addition, previous studies using different occupational data have reported different age

patterns for different injury types [87]. For example, using workers’ compensation claims

data from Ontario, Canada, Choi et al. [88] reported that workers aged 30-59 were more

likely to have strain and sprain occupational injuries. However, in the current study, we did

not have access to such a variable to investigate this relationship.

Our results showed that men have higher odds of a claim being fatal compared to women.

With regards to the effect of gender on making fatal claim injuries, our study revealed higher

odds of fatal claims among men. Similar findings were reported in other studies, for instance,

Fan et al. [24] reported lower overall serious injury rate for women compared to men in British

Columbia. However, for some studies, the rate of fracture (injury type) was similar across

age groups for men but increased with age for women [24]. Lots of studies have shown an

increased risk of fatal accidents related to gender [89, 90], some of which show a higher risk

for men, some higher risk to women. For example, Ward et al. showed that from 1990 to

1996, there were 11 times as many agriculture-related fatalities for men compared to women

[91]. Although these studies give insight into fatal accidents, we could not find any reports

specifically investigating the outcome of a claim being fatal.

An interesting result from our analysis is the highest odds of a claim being fatal are for

occupations in primary industry (such as mining, oil and gas drilling and service, fishing

vessel deckhands, etc.) and sales and services. No studies were found which compare WCB

claims resulting from primary industry and sale and services industry. However, there is

ample evidence that injury risk is higher when there is a risk of falling [92], or working with

fire and explosive materials [93, 94].

With respect to the part of body, as shown in Table 4.11, the length of CIs are very short

and the CIs for different levels of part of body variable are very close to zero. Therefore, the

only level of this variable that we can have a conclusion for is lower extremities. The odds of

a claim being fatal for lower extremities is only 6% that of the reference category (other body
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part). The results of other levels of part of body variable were not considered statistically

significant as the CIs were very short and close to zero. However, part of body can provide

useful information about the nature of the incident and the mechanism of a fatality. For

example, in the current study, the analysis of occupational injuries were considered and we

did not take occupational illnesses into consideration. As most occupational diseases are

related to lung illnesses and lung cancers, the results derived from part of body after adding

those workplace injuries to the data set would probably be different.

5.2 Limitations and Future Work

Although our data captured the majority of Saskatchewan’s employed workforce, some work-

ers such as self-employed workers and farmers are excluded from the data, which may bias

the results. It is also possible that workplace injuries are under-reported for compensation,

but this study likely included most of them as fatalities are most likely to be reported [95].

Therefore, locally representative survey sample could be collected in the future to have a more

representative sample of the study population. Motor-vehicle collisions are particularly haz-

ardous in Saskatchewan [96]. To learn more about the nature of industries in Saskatchewan

and for prevention efforts, WCB-SK data could be possibly linked with other data sources

such as Saskatchewan Government Insurance (SGI) data and coroner death data for incor-

porating more and different kinds of valuable information, such as environmental factors

for identifying risk factors associated with occupational traffic crashes more accurately [97].

As a potential next step to this study, several characteristics such as length of employment

for workers can be collected by WCB-SK to investigate whether there is any statistically

significant relationship between this covariate and occupational fatalities or not. Some of

other variables which might be useful to collect include where occupational injury fatality

happened and what the weather was like (especially for traffic events, which form a large

proportion of the fatalities.). As most studies in different countries used fatality rate and

fatality risk to analyze occupational claims data, using a slightly different outcome in the

current study makes it difficult to compare the results of our analysis with those from other

studies. In future work, fatality rate can be calculated to get the results and compare them
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with other studies.

Other regression shrinkage and variable selection methods can be considered (e.g., SCAD

[65], adaptive lasso [67]) to analyze WCB-SK data. Simulation studies will be conducted

in the future to compare various penalized likelihood methods to provide recommendations

of optimal strategies in conditions of rare events data with low EPV and quasi-complete

separation problems. In this thesis, we primarily focused on binary logistic regression (fatal.

vs. non-fatal injuries). Injury severity level (fatal vs. serious vs. non-serious injuries) as a

three-level outcome variable may be also of interest to be modelled. Ordinal regression is often

used for modelling outcome variable with ‘ordered’ multiple levels. The analytic challenges

such as quasi-complete separation and low EPV can also occur with such a discrete outcome.

Penalized regression methods can be applied to investigate if combinations of strategies, such

as Firth’s penalization after lasso or elastic net variable selections can yield better model

performances.

The present study found statistically significant relationships between personal charac-

teristics such as gender, age, and occupation, and some incident characteristics and the

possibility of death in case of occupational injury. The findings from our study enable us

to identify the most vulnerable groups who are at higher risk of a claim being fatal. Based

on the results of the current analysis, we propose some strategies for WCB-SK to prevent

occupational injuries. Improving occupational injury prevention programs by monitoring and

promoting safe work area, implementing more rigorous legal control measures, and improving

enforcement activities such as focused inspection and training could be useful interventions

to consider and evaluate.
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Appendix. A

Summary of Literature Review of Published WCB Claims Anal-

ysis

Table A.1: Summary of literature review of published WCB claims analysis

Author (Year) Data Goal Method Results

McLeod

et al

(2017)

[27]

MB, BC,

ON Workers

Compensa-

tion Board

Conduct detailed analysis of

work disability duration across

jurisdictions and analyze long

duration injury claims among 3

Canadian provinces (MB, BC,

ON) to investigate trends and

variations in work disability du-

ration across these provinces.

Cox propor-

tional hazard

model

Reducing long work disability duration claim is a

key policy objective of Canadian WCB. Large dif-

ferences in the average number of disability days

paid were observed across province and industry

sector. Jurisdiction has a marked effect on dura-

tion of work disability.

Fan et al

(2012)[24]

Workers

Com-

pen-

sation

Board

of BC

Examine the rate and distribu-

tion of serious work-related in-

juries by demographic, work and

injury characteristics in British

Colombia from 2002 to 2008.

Negative

binomial

regression

Women had a lower overall serious injury rate

compared to men. The 35-44 age group had

the highest overall rate compared to youngest

age group. The rate for severe strain was sim-

ilarly high in both men and women group in

the 35-44 age group. Although there is a dif-

ferential pattern by gender for other types of

injuries.
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Pratt

et al

(2016)

[28]

Youth aged 10 to 17 years,

inclusive, who had com-

pleted a CHIRPP form be-

tween January 1, 1991,

and December 31, 2012)

Describes features of work-

related injuries in young

Canadians to identify areas

for potential occupational injury

prevention strategies.

none

“Of the 6046 injuries (0.72% of events in this

age group) that occurred during work, 63.9%

were among males. Youth in food and bever-

age occupations (54.6% males) made up 35.4%

of work-related ED visits and 10.2% of work-

related hospital admissions, while primary in-

dustry workers (76.4% males) made up 4.8%

of work-related ED visits and 24.6% of work-

related hospital admissions [28]”

Tucker

(2016-

2018)

WCB-SK

AWCBC

To compare fatality

rate and occupa-

tional injury rate

among different

provinces and sug-

gest some advice to

WCB and policy

makers

Descriptive statis-

tics and calcula-

tion of fatality and

occupational injury

rates

No statistical comparison of risk groups. De-

scriptive is too lengthy to summarize, please

refer to the report
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Table A.2: Summary of literature review of using penalized regression methods for risk prediction and model selection

Author (Year) Data Goal Method Results

Pavlou

et al

[36]

(2015)

Penile cancer

Predicting low dimensional binary out-

comes when the number of events is

small compared to the number of re-

gression coefficient using penalized re-

gression methods

Penalized re-

gression meth-

ods including

LASSO, ridge

regression,

elastic net,

adaptive lasso

and SCAD

Ridge regression performs well except when we have noise

predictors. LASSO performs better than ridge in case of

noise predictor and worse in case of correlated predictors.

Elastic net performs well in all scenarios, and adaptive

lasso and SCAD perform best in all scenarios with many

noise predictors.

Goldstien et al

[98] (2016)

Data derived from

their institution’s elec-

tronic health record

(13 regularly measured

laboratory markers)

Use of machine learning methods for

development of risk prediction models

Regression

based includ-

ing lasso,

ridge regres-

sion, principal

component

regression,

random forests

Machine learning algorithms can be advantageous over

traditional regression methods because they can be

used to solve the problem of multiple and correlated

predictors, non-linear relationships, interaction be-

tween predictors and endpoints and most importantly

large datasets

Lu et al

(2017)
Bangladesh cohort

To show application of penalized linear

regression methods including SCAD,

adaptive lasso to the selection of en-

vironmental biomarkers.

SCAD,

MCP

Simulation studies show that SCAD, adaptive lasso

and MCP are better variable selection methods com-

pared to traditional stepwise regression methods.

Rahman

et al [1]

(2017)

Stress echocar-

diography data

and simulation

study

Evaluation of the per-

formance of Firth-and

log F-type penalized

methods in risk predic-

tion for small or sparse

binary data

Firth, log F-type pe-

nalized method

All penalized methods offered some improvements in

calibration, discrimination, and overall predictive per-

formance. Although the Firth and log-F type methods

showed almost equal amount of improvement, Firth

type penalization produces some bias in the average

predictive probability and the amount of bias is even

larger than that produced by MLE.



Appendix. B

Firth’s Method

Reduction of bias in maximum likelihood estimates is one of the popular ways to address

the problem of separation [99]. The maximum likelihood estimates are unbiased with asymp-

totic variance which is equal to I(θ) = XTWX, the inverse of Fisher information matrix,

in which X is the model matrix, and W, an n × n matrix, when W = diag(πi(1 − πi)).

McCullagh and Nelder [100] showed that for a large sample size,

E(θ − θ̂) = O(n−1). (B.1)

Then Firth [12] showed that for an m dimensional model, the asymptotic bias of a single ML

estimate θ̂ of parameter θ can be written in the following form as it was also shown in [101]:

b(θ) =
b1(θ)

n
+
b2(θ)

n2
+ ... (B.2)

Reducing the bias of parameter estimates by removing the O(n−1) term is the main goal of

Firth’s method [99].

The maximum likelihood estimate is a solution to the score equation

O`(θ) = U(θ) = 0, (B.3)

Where `(θ) = logL(θ) is log likelihood function [12]. An exponential family model can be

written as `(θ) = tθ −K(θ), in which θ is scalar [12]. Then we have

U(θ) = `
′
(θ) = t−K ′

(θ), (B.4)

and as shown in Equation B.4, the sufficient statistic t only affects the location of U(θ), and

it would not have any effects on its shape [12]. As discussed in Firth [12], the bias in θ̂

comes from two factors including: unbiasedness of the score function at the true value of θ

(E(U(θ)) = 0 and curvature of the score function (U
′′′

(θ) 6= 0) [12].

The main focus of Firth’s method is that the bias in θ̂ can be reduced by introducing a

small bias in score function [12]. The best modification to U(θ) is given by simple triangle

geometry, shown in Figure B.1.
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Figure B.1: Modified score function reproduced from DAVID FIRTH, Bias
reduction of maximum likelihood estimates, Biometrika 1993; 80 (1): 2738,
doi:10.1093/biomet/80.1.27. Reprinted by permission of Oxford University Press on
behalf of the Biometrika Trust.

“If θ̂ is subject to a positive bias b(θ), the score fucntion is shifted downward at each

point θ by an amount i(θ)b(θ), where −i(θ) = U
′′
(θ) is the local gradient” [12]. The modified

score function will be defined by

U∗(θ) = U(θ)− i(θ)b(θ), (B.5)

Where θ∗ is a solution to U∗(θ) = 0. When we have a vector parameter, Equation B.5

will be read as a vector equation, and i(θ) will be the Fisher information matrix. We refer

the reader to Firth [12] for more information.

The log likelihood function can be penalized by Jeffrey’s invariant prior [104] to obtain

the modified score function above [55, 101]. The Jeffrey’s invariant prior density is |I(θ)|1/2=

|XTW(θ)X|1/2, when θ is the vector of unknown parameters, and I(θ) = XTWX is Fisher

information matrix. The penalised likelihood function in Firth’s method can be written as

l∗(θ) = l(θ)× |I(θ)|1/2 (B.6)

Taking natural log of Equation B.6, we have

logl∗(θ) = logl(θ) + (1/2)log|I(θ)|. (B.7)
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For more detail about the method we refer readers to the original paper on Firth’s method

by Firth [12].
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Appendix. C

List of Covariates

Table C.1: Potential explanatory variables and their categories from claims data

Variable levels

Cause of injury

Contact with objects and equipment Falls

Bodily reaction and exertion Exposure to harmful substances or environments

Transportation accidents Other events or exposures

Assaults, violent acts, attacks, harassment

Source of injury

Chemicals and chemical products Containers

Furniture and fixture Machinery

Parts and materials Persons, plants, animals, and minerals

Structures and surfaces Tools, instruments, and equipment

Vehicles Other sources

Occupations

Art, culture, recreation and sport Business and finance

Health Natural and applied sciences

Primary industry Social sciences and education

Sale and services Trade and transport

Processing and manufacturing Not stated

Part of body injured

Other body parts Head

Trunk Body system

Lower extremities Upper extremities

Multiple body parts

Year 2007, 2008, ...,2016

Age 14,15,...,85

Month January, February,..., December
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Table C.2: List of covariates selected by lasso (for λ=lambda.min and lambda.1se)

Variable Selected levels

Lasso with λ.min Lasso with λ.1se

Age 25-34 , 35-44 ,45-54, 55-64, 65-85 25-34 , 35-44 ,45-54, 55-64, 65-85

Gender Male Male

Source of injury

machinery, vehicles machinery, vehicles

containers, furniture

other sources, parts and materials

persons/plants, structures

tools, instruments

Occupations

natural and applied sciences natural and applied sciences

primary industry, trade and transport primary industry, trade and transport

business, health, social sciences

art/culture, sale/services, processing, not stated

Part of body

neck including throat, head neck including throat, head

trunk, multiple body parts trunk, multiple body parts

lower extremities, upper extremities lower extremities, upper extremities

Cause of injury
bodily reaction and exertion, other events bodily reaction and exertion, other events

transportation accidents, objects and equipment transportation accidents

harmful substances
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