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Abstract

Free probability theory, invented by Voiculescu, and greatly expanded by Speicher, is a young and active

area of research with numerous applications in pure and applied mathematics.

This Master thesis is a comprehensive study of a specific result in the recent preprint by C. Vargas, in

which Vargas presents a survey of applications of non-commutative and free probability to topological data

analysis. The relevant result from the preprint reveals a new interpretation of Betti numbers for simplicial

complexes in terms of distributions in an operator-valued probability space.

This thesis is mostly an exposition of the areas of free probability and algebraic topology; here, we do

not present cutting-edge research in either free probability or algebraic topology. The author did a literature

review for both fields and presents here the results in a comprehensive way along with detailed proofs and

motivating examples that one may not find in a research paper. We believe that this thesis would help

researchers to quickly grasp the main ideas and tools in both fields, and we hope it will help to advance the

research in both areas and to develop applications in related areas.
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Introduction

Non-commutative probability is the systematic study of non-commutative random variables, defined as

abstract elements of non-commutative algebras. Free probability is the main branch of non-commutative

probability, and it studies joint random variables under the view of free independence, or freeness. The

language used in free probability is analogous to the language of classical probability. Namely, we will speak

of expectations, moments, distributions, independence, there will be a central limit theorem, etc.

The theories of free probability and non-commutative probability have been very fruitful recently in its

applications to numerous areas of pure and applied mathematics. This Master’s thesis attempts to introduce

the reader to one new application of non-commutative probability presented in a recent preprint by C. Vargas

[15], in which the framework of non-commutative probability is used in the study of algebraic topology and

topological data analysis. Thus this thesis is roughly written in two parts. The first part (chapters 1 and

2) introduces the reader to non-commutative and free probability. Our presentation here closely follows that

of A. Nica and R. Speicher in [12]. The second part of the thesis (chapters 3-6) focuses on the algebraic

topology of simplicial complexes, introducing the reader to all the concepts used, and presenting the main

result from non-commutative probability in algebraic topology. This part is based roughly on [15].

Chapter 1 gives the definitions of non-commutative probability spaces, ∗-probability spaces, moments and

distributions, with their basic properties and with plenty of examples. The semicircular distribution, which is

particularly important, is introduced in section 1.3. Finally, in section 1.4 we define the Cauchy transform of a

compactly supported probability measure and briefly discuss techniques for computing analytic distributions.

Chapter 2 gives an overall view of free probability. The definition of free independence is provided after a

discussion of joint moments and joint distributions. A few examples and multiple computations are provided.

The combinatorics of free probability are then introduced, namely crossing and non-crossing partitions, and

their relation to Catalan numbers. Then, the free central limit theorem is stated in section 2.4 and proved

via combinatorics. Although this result is not used elsewhere in this thesis, we choose to include it for two

reasons. First, to illustrate the main way in which free probability is analogous to classical probability theory,

and second, to help the reader see how non-crossing partitions appear naturally in free probability. Then,

without going too far into the combinatorics, free cumulants are defined by the moment-cumulant formulas,

and presented with examples and computations. Then we discuss free convolution and the additivity of

cumulants. The R-transform is only briefly introduced, and its properties only stated with no proof.

Chapter 3 introduces simplicial complexes. Since textbooks rarely agree on their definition and notations

of simplicial complexes, most of this chapter is devoted to clarifying the conventions used in the thesis.
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Specifically, we use finite simplicial complexes in Rn, with ordered and oriented simplices whose order and

orientations are predetermined by a fixed order of the vertices. As defined here, a simplicial complex is a

collection of simplices satisfying some combinatorial properties, a simplex is the convex hull of any given set

of points in general position in Rn, and to each simplicial complex is associated a fixed geometric realization

in Rn.

Once simplicial complexes are defined and our notation established, we introduce the homology of simpli-

cial complexes by defining boundary operators on simplices, then boundary operators on simplicial complexes,

and finally its corresponding boundary matrix, denoted here for a given simplicial complex, by J.

Chapter 4 is very short and simply provides a proof of the finite-dimensional version of the Hodge theorem.

The proof of this this finite-dimensional version of the theorem requires only linear algebra, and so it is very

accessible. The proof of the general Hodge theorem, on the other hand, requires familiarity with differential

geometry that would be too advanced for non-experts. Furthermore the author found no textbooks or papers

providing this simple proof, and thus hopes it will be helpful to some readers. A similar, finite-dimensional

version of this theorem was proved and posted online in [10].

Chapter 5 begins by introducing Operator-Valued Probability Spaces, a generalization of non-commutative

probability that will be used for the spectral analysis of simplicial complexes. Immediately, we move on to

prove the main result as presented in Vargas’ preprint [15], which is simply a probabilistic interpretation of

the Hodge theorem in the framework of operator-valued non-commutative probability.

We conclude, in Chapter 6, by discussing future developments that, in the author’s opinion, can either

benefit from the results of this thesis, or help advance them further. Some of these future developments have

been previously explored to some extent.
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1 Non-Commutative Probability Theory

The theory of free probability was invented some thirty-five years ago by Dan-Virgil Voiculescu. It

began as a tool for approaching certain problems in operator algebras [16]. Eventually, free probability

became its own research area, with manifestations in many branches of pure and applied mathematics.

A key result in the historical development of free probability was the free central limit theorem, proved

analytically by Voiculescu in [18]. The framework on which free probability is developed is non-commutative

probability. Non-commutative probability is a field of study analogous to classical probability, but with

random variables defined on abstract algebraic structures; in particular, random variables are allowed to be

non-commutative. Many different branches of mathematics that are somehow “probabilistic” are then unified

in non-commutative probability. For example, this framework allows us to see classical probability, matrix

algebra and random matrix theory as different examples of the same kind of object. The distinction between

what is called free probability and what is called non-commutative probability is the kind of independence

adopted: Free probability is the branch of non-commutative probability that takes freeness as its notion of

independence. Other kinds of non-commutative probability are given by classical independence, Boolean

independence, monotone independence and others, however these alternative theories (except for classical

probability) are less interesting and useful than free probability; furthermore, freeness is the only one that

satisfies certain properties that are very desirable.

Many notions of “non-commutative analogs” were being used for a long time, for example in the study of

operator algebras and in quantum physics. The first systematic development of non-commutative probability,

however, was done by Voiculescu in his treatment, [16], of free probability. He gave us the notion of freeness,

or free independence (Chapter 2), analogous to independence in the sense of classical probability. Roland

Speicher is a key player in the development of free probability; he revealed a vast combinatorial side of the

theory by defining the free cumulants via non-crossing partitions. This allows us to give a proof of the free

central limit theorem (section 2.4), which is far simpler than Voiculescu’s analytic approach based on the

R-transform (section 2.6). Free probability is now a growing and quite accessible research field of its own.

The usefulness of the theory lies mostly in the interplay between the analytical and combinatorial sides of

the theory.

In this chapter, we introduce the basics of non-commutative probability. Free probability and its combi-

natorics will be the subject of chapter 2.
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1.1 Non-Commutative Probability Spaces

Recall that in classical probability theory we have a sample space Ω, with a collection F of measurable sets, or

events, and a probability measure P. Classical random variables are then, by definition, measurable functions

X : Ω → C. Since multiplication of random variables is defined pointwise, classical random variables are

always commutative: X(ω)Y (ω) = Y (ω)X(ω), ∀ω ∈ Ω. The idea behind of non-commutative probability

is to redefine random variables in an abstract way so that they are allowed to be non-commutative.

Recall that an algebra over a field, or an algebra, is a vector space equipped with a bilinear multiplication

operation, that is, a multiplication which is linear on both arguments. More precisely, a vector space A over

a field F is an algebra, if it has a binary multiplication which gives, for each a, b, c ∈ A, and α ∈ F

α(ab) = (αa)b = a(αb) a(b+ c) = ab+ ac (a+ b)c = ac+ bc.

We say that an algebra is unital if it contains a multiplicative identity, or unit. That is, an algebra A is

unital if there exists an element 1A ∈ A such that for all a ∈ A, 1Aa = a1A = a. The unit of A will also be

denoted 1, when there is no danger of ambiguity.

1.1 Definition. A non-commutative probability space is a pair (A, ϕ), consisting of a unital algebra A over

C and a unital linear functional ϕ : A → C, where unital means ϕ(1A) = 1 ∈ C.

Elements of A are called random variables, and ϕ is called an expectation functional. Given an element a

in the non-commutative probability space (A, ϕ), the values ϕ(an), for n ≥ 1 are called the moments of a.

Throughout this work, the integrals we use are written in the notation of Lebesgue integration and

measure theory. See [5].

1.2 Example. Consider classical probability theory, where random variables are, by definition, measurable

functions X : Ω→ C on a space Ω with a probability measure P, and we have the usual expectation function

E defined by

E[X] =

∫
Ω

XdP.

In order for E to be an expectation functional in the sense of non-commutative probability, we require

that E[X] be finite for all random variables X. The algebra of measurable functions that we will use is

L∞(Ω,P), the set of all bounded P-measurable functions on Ω. (One could rather take the space L∞−(Ω,P)

of P-measurable functions on Ω, not necessarily bounded, but with finite moments of all orders.) Then(
L∞(Ω,P), E[·]

)
is a non-commutative probability space with unit being the constant-1 function. Notice, however, that all

random variables in this space are necessarily commutative, which makes example somewhat uninteresting.

1.3 Example. Consider now the algebra Mn(C) of all n × n matrices with complex coefficients. We will

take for expectation functional the normalized trace,

trn :=
1

n
Tr,
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where Tr is the trace of a matrix, so that trn is unital, trn(I) = 1, the unit I being the identity matrix. So

(Mn(C), trn) is a non-commutative probability space. Note the special property of traces, namely trn(ab) =

trn(ba) for any a, b ∈Mn(C).

By diagonalizing a matrix a ∈ Mn(C), (or using its Jordan canonical form,) we can see that the expec-

tation is given by the normalized sum of its eigenvalues,

trn(a) =
1

n

n∑
i=1

aii =
1

n

n∑
i=1

λi,

or we could say in other words, the average eigenvalue.

1.4 Definition. Let (A, ϕ) be a non-commutative probability space. Then ϕ is said to be a trace (or to be

tracial) if and only if

ϕ(ab) = ϕ(ba) for all a, b ∈ A.

The two above examples are often combined in the theory of random matrices, as in the following example.

1.5 Example. Given a non-commutative probability space (A, ϕ), we may take(
Mn(A), ϕ ◦ trn

)
,

the n×n matrices with entries in A, and the expectation, as above would be given by the expectation of the

eigenvalues. (Some authors write ϕ ⊗ trn, since we have an isomorphism Mn(A) ∼= A ⊗Mn(C).) So for a

random matrix [aij ]i,j ∈Mn(A), with entries aij ∈ A, we would have

(ϕ ◦ trn)([aij ]i,j) = ϕ

(
1

n

n∑
i=1

aii

)
=

1

n

n∑
i=1

ϕ(aii).

1.6 Definition. A ∗-probability space is a non-commutative probability space, (A, ϕ), in which A is a ∗-

algebra, (i.e., there is a linear anti-involution a 7→ a∗ on A, (a∗)∗ = a, (ab)∗ = b∗a∗,) and ϕ is a positive

functional in the sense that ϕ(a∗a) ≥ 0 for all a ∈ A.

All of the examples above are also ∗-algebras, with the ∗-action given, respectively, by complex conjugation

of a complex-valued function, and by conjugate-transpose of a (deterministic) matrix or a random matrix.

In the spirit of matrix theory, we define the following vocabulary for general ∗-random variables.

1.7 Definition. Let (A, ϕ) be a ∗-probability space and a ∈ A.

(1) We say a is normal if a∗a = aa∗.

(2) We say a is unitary if a∗a = aa∗ = 1A (i.e. a∗ = a−1).

(3) And we say a is selfadjoint if a∗ = a.

In a ∗-probability space (A, ϕ), we define ∗-moments of a random variable a ∈ A to be all expressions of

the form

ϕ
(
aε(1)aε(2) . . . aε(m)

)
,

5



for m ≥ 0, where for each k ∈ [m], ε(k) ∈ {1, ∗}, and the case m = 0 is taken to be ϕ(1). (Throughout this

thesis we use the notation [n] = {1, 2, · · · , n}, for any n ∈ N.) Then we can see that every ∗-moment can be

simplified to the form

ϕ

((
aε(1)

)i(1) (
aε(2)

)i(2)

. . .
(
aε(n)

)i(n)
)
,

with n ≥ 0, (aε(k))i(k) 6= 1, and ε(1) 6= ε(2) 6= · · · 6= ε(n).

Furthermore, if a is a normal random variable it has moments of the form

ϕ ((a∗)
m
an) , for m,n ≥ 0,

if a is unitary the moments simplify to

ϕ (an) , for n ∈ Z,

and if a is selfadjoint its moments have the form

ϕ (an) , for n ≥ 0.

We follow the vocabulary of classical probability in speaking of the mean and variance of a random

variable. Given any random variable x ∈ (A, ϕ) we call ϕ(x) the mean and ϕ(x2)− ϕ(x)2 the variance of x.

1.8 Definition. Let (A, ϕ) be a ∗-probability space. Then ϕ is faithful if and only if for a ∈ A,

ϕ(a∗a) = 0 implies a = 0.

The following example, on group algebras, is important for free probability in general. This is because

group algebras are the main motivation for the definition of free independence, to be given in section 2.2. In

fact, it could be said that free probability was invented by Voiculescu to study Von-Neumann algebras on

free groups, as he explains in [19].

1.9 Example. Let G be any group. We define the group algebra CG to be the algebra of all formal finite

linear combinations of elements in G, ∑
g∈G

αgg (αg ∈ C),

with the ordinary addition of linear combinations, and with a distributive multiplication defined in the natural

way: (∑
g∈G

αgg

)(∑
h∈G

βhh

)
=
∑
f∈G

( ∑
gh=f

αgβh

)
f.

It is instructive to see this as a generalization of the algebra of polynomials by seeing G as, in a sense, the

abstract group of “monomials”, in which case we could take the expectation τG to be seen as “evaluation at

0”, or the coefficient of the identity element e ∈ G. This gives a ∗-probability space(
CG, τG

)
,

6



with the expectation functional given by

τG

(∑
αgg

)
= αe,

and with the ∗-action given by (∑
αgg

)∗
=

(∑
αgg

−1

)
.

It is then easy to see that τG is indeed a positive functional. Furthermore, τG is a faithful trace. This is

because for a random variable a =
∑
αgg in CG, we have

a∗a =
∑
f∈G

( ∑
g−1h=f

αgαh

)
f,

and so

τG(a∗a) =

( ∑
g−1h=e

αgαh

)
=

(∑
g=h

αgαh

)
=

(∑
g∈G
|αg|2

)
≥ 0

(hence ϕ is positive), with equality only if a = 0 (hence ϕ faithful), and to show that ϕ is tracial we note

that τG(ab) = τG(ba) for all a, b ∈ CG, because for group elements g, h ∈ G, we have gh = e if and only if

hg = e.

In light of the above example, we may define polynomials, commutative and non-commutative, as elements

of a group algebra as follows.

1.10 Definition.

(1) The algebra of (complex) polynomials in one variable, denoted C[X] is defined to be the group algebra

of the multiplicative infinite cyclic group generated by an element X.

(2) More generally, C[X1, X2, . . . , Xn] denotes the algebra of polynomials in n variables, defined to be the

group algebra of the (multiplicative) free Abelian group generated by the elements X1, X2, . . . , Xn.

(3) C〈X1, . . . , Xn〉 is the algebra of non-commutative (or free) polynomials, defined as the group algebra of

the free group generated by X1, . . . , Xn.

1.11 Remark. Let Fn be the free group generated by n non-commuting elements. We have the isomorphisms

C[X1, . . . , Xn] ∼= CZn,

C〈X1, . . . , Xn〉 ∼= CFn.

1.12 Example. Recall that a vector space H with an inner product 〈·, ·〉 is called a Hilbert Space if H forms

a complete metric space, with the norm defined for v ∈ H by ‖v‖ =
√
〈v, v〉. Let H be a Hilbert space with

inner product 〈·, ·〉 and B(H) the algebra of bounded linear operators on H. If we take a vector ξ ∈ H with

‖ξ‖ = 1, we get a functional ϕξ given by ϕξ(T ) = 〈Tξ, ξ〉 for all T ∈ B(H). Then we have a ∗-probability

space (
B(H), ϕξ

)
,

where for each T ∈ B(H), T ∗ is the unique operator determined by the property that 〈u, T ∗v〉 = 〈Tu, v〉 for

all u, v ∈ H. A concrete example of this kind is given in example 1.3.

7



1.2 Distribution of Random Variables

The central idea of classical probability theory is reducing random variables to their distributions and joint

distributions. In a similar way, the central idea in non-commutative probability is the reduction of random

variables to a suitable notion of distribution and joint distribution. Joint distributions will be discussed in

section 2.1; here, we give the definitions and examples concerning the notion of a ∗-distribution for a single

random variable. There are two such notions, both essential to the theory: distribution in the analytical

sense, for the special case of normal random variables, and distribution in the algebraic sense, for the general

case. Intuitively, the distribution of a random variable should be an object that captures the information

of all its moments while ignoring the specific nature of the random variable or the space where it lives. In

other words a “standardized” way of keeping track of ∗-moments. This is done via free non-commutative

polynomials.

1.13 Definition. If (A, ϕ) is a ∗-probability space and a ∈ A, then the ∗-distribution of a (in the algebraic

sense) is the function µ : C〈X,X∗〉 → C defined for all polynomials P ∈ C〈X,X∗〉 by

µ(P ) = ϕ (P (a, a∗)) .

Two random variables are said to be identically distributed, or to have the same distribution, if there is a

function µ : C〈X,X∗〉 → C such that µ is the distribution of both random variables.

Here a distribution (i.e., ∗-distribution, the terms will be used interchangeably) is simply the collection

of all moments (and linear combinations of moments), but parametrized by non-commutative polynomials.

In this way two corresponding moments can be compared from different random variables. It should be

noted that X and X∗ are just two different symbols, or more precisely, they are two free, non-commutative

indeterminate variables, so that we might have written C〈X,Y 〉 instead of C〈X,X∗〉.

For example, let P ∈ C〈X,X∗〉 be the free polynomial P (X,X∗) = XX∗ − X∗X. If a ∈ (A, ϕ) has

∗-distribution µ : C〈X,X∗〉 → C, then we would have that

µ(P ) = ϕ(aa∗)− ϕ(a∗a).

And of course, if in this case a happens to be a normal random variable, or if ϕ happens to be a trace, then

this would simplify to zero.

Analytic Distributions

If a is a normal random variable (i.e. a∗a = aa∗), then all the moments of a simplify to the form ϕ(aka∗`).

In this case we can take “distribution” to mean essentially the same as in classical probability: a measure

that gives moments by way of integration:

8



1.14 Definition. Let (A, ϕ) be a ∗-probability space and a ∈ A. If µ is a probability measure on C with

compact support, then µ is said to be the ∗-distribution of a (in the analytic sense) if and only if

ϕ(aka∗`) =

∫
C
zkz̄`dµ(z) for all k, ` ∈ N.

1.15 Remark. For an arbitrary random variable a, there may exist no analytic distribution, however if a

distribution exists, then it is unique. This follows from the Stone-Weierstrass theorem on C.

1.16 Remark. If a is a self-adjoint random variable with distribution µ, then supp(µ) ⊆ R. This can be seen

by the following computation.∫
C
|z − z̄|2 dµ =

∫
C

(z − z̄)(z̄ − z) dµ

=

∫
C

2zz̄ − zz − z̄z̄ dµ

= 2ϕ(aa∗)− ϕ(a∗a∗)− ϕ(aa) = 0.

Since z 7→ |z − z̄| is a continuous non-negative function, it must vanish on the support of µ. But z − z̄ = 0 if

and only if z ∈ R, so we have that

supp(µ) ⊆ R.

Then, for selfadjoint random variables the condition that makes µ a ∗-distribution of a is

ϕ(ak) =

∫
R
zkdµ(z) for all k ∈ N.

Examples of Analytic Distributions

The reader should observe that an algebraic distribution provides no additional information or tools for

studying random variables; it only gives us a standard vocabulary, as it were, for talking about its moments.

An analytic distribution, on the other hand, provides new analytical tools for the computation of its moments,

and of the moments of other related variables, as will be seen below. When we study normal random variables,

therefore, we always prefer to have a measure µ to serve as the distribution in the analytical sense. Therefore,

an important question to answer about normal random variables is whether a distribution exists. This

question only makes sense when we are talking about distributions in the analytic sense, (since distributions

in the algebraic sense always exist,) so in the rest of this work we will often refer to analytic distributions

simply as distributions, unless there is danger of ambiguity. The following are examples of random variables

for which we compute analytic distributions.

1.17 Example. Consider the non-commutative probability space (L∞(Ω,P),E) of (bounded) classical ran-

dom variables. Then, for any random variable a : Ω→ C in L∞(Ω,P), there is a ∗-distribution of a, namely

the probability measure ν on C called “the distribution of a” in classical probability. Recall that ν is defined

on any Borel-measurable set B ⊆ C by

ν(B) = P(a−1(B)) = P{ω ∈ Ω : a(ω) ∈ B}. (1.1)
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Since a ∈ L∞(Ω,P) is bounded by definition, we must have that ν has compact support. Indeed, if a is

bounded, then for some r ∈ R, {a(ω) : ω ∈ Ω} is contained in Dr(0), the closed disc centered at 0 with radius

r; then, any open set disjoint from Dr(0) must have measure zero (by the definition of ν), which implies

supp(ν) ⊆ Dr(0). Since supp(ν) is closed and bounded in C, it is therefore compact. If we denote by f the

characteristic function of B ⊆ C (i.e. f(z) is 1 if x ∈ B and 0 if x /∈ B), then equation 1.1 can be rewritten

as an integral as ∫
C
f(z) dν(z) =

∫
Ω

f(a(ω)) dP(ω). (1.2)

By using a standard argument from real analysis and Lebesgue integration, (see [5],) we may extend equation

(1.2) to be valid for any bounded measurable function f . Namely, one first takes linear combinations of

characteristic functions, and then (1.2) is valid with f being any step function, and by taking limits we may

conclude (1.2) for any bounded measurable function f . In particular, if k, ` ∈ N, and we take f to be

f(z) =

z
kz̄`, |z| ≤ r

0, else,

(so that f is bounded,) then we have∫
C
zkz̄` dν(z) =

∫
C
f(z) dν(z) =

∫
Ω

f(a(ω)) dP(ω) =

∫
Ω

aka∗` dP = E[aka∗`].

(The first equality holds because f(z) and the polynomial P (z) = zkz̄` are equal “almost everywhere” with

respect to ν, the second equality by definition of ν, the third because a is bounded by r, and the last

one by definition of E.) Hence we have proved that ν is the analytic distribution of a in the framework of

non-commutative probability.

1.18 Example. We now take a normal matrix a ∈ Mn(C), i.e. aa∗ = a∗a, and we compute its ∗-moments

in (Mn(C), trn),

trn(aka∗`).

By simultaneously diagonalizing a and a∗ as a = pdp−1 and a∗ = pd∗d−1, (note that diagonalizable matrices

can be simultaneously diagonalized if the commute with one another,) we have

tr(aka∗`) = tr(dkd∗`) =
1

n

n∑
i=1

λki λ̄
`
i =

∫
C
zkz̄` dµ,

where µ =
∑n
i=1

1
nδλi , and δc is the Dirac point-mass measure at c ∈ C. Then the probability measure µ is

the distribution of a and is called the eigenvalue distribution, where λ1, · · · , λn are the eigenvalues of a (with

multiplicities).

1.19 Example. Let G be a group and g ∈ G be an element of infinite order. If we take g to be a random

variable in (CG, τG), then it is a unitary random variable (i.e. g∗ = g−1) and its moments are given by

τG(gk) =

1, k = 0

0, k ∈ Z \ 0.
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Let µ be the uniform probability measure supported on the unit circle T ⊆ C (the so-called “Haar measure”).

That is, the measure µ on C, is supported on T = {eit : t ∈ [0, 2π)}, and determined by

eitdµ(t) =
1

2π
eitdt for t ∈ [0, 2π).

Then, we claim µ is the distribution for the element g of infinite order. Indeed, we may parametrize the unit

circle as z = eit, 0 ≤ t < 2π, so we have, for k ∈ Z

∫
C
zk dµ =

1

2π

∫ 2π

0

ekit dt =

1, k = 0

0, k ∈ Z \ {0}.

Now, similarly, consider the case of an element g of order p. The moments of g are given by

τG(gk) =

1, k ≡ 0 mod p

0, k ∈ Z \ pZ.

Then, the measure of g is µ = 1
p

∑p−1
n=0 δωn , where ω0, · · · , ωp−1 are the distinct p-th roots of unity ωn = en

2πi
p .

We have, when k is not a multiple of p

∫
C
zk dµ =

1

p

p−1∑
n=0

enk
2πi
p =

1

p

p−1∑
n=0

(e
2kπi
p )n =

1

p

1−
(
e

2kπi
p

)p
1− e

2kπi
p

 =
1− 1

p
(

1− e
2kπi
p

) = 0

And clearly, we have, when k is a multiple of p, that e
2πi
p k = 1 and therefore we get

∫
zk dµ = 1, as expected.

This is an important distribution in free probability and in some applications. We will see it again in example

(1.21) below. Random variables with these distributions receive the name of Haar unitary and p-Haar unitary,

due to Voiculescu in [17].

1.20 Definition. Let (A, ϕ) be a ∗-probability space.

(1) A random variable u ∈ A is called a Haar unitary if it is unitary and its moments are given by

ϕ(uk) = 0, for k ∈ Z \ {0}.

(2) A random variable u ∈ A is called a p-Haar unitary if it is unitary and its moments are given by

ϕ(uk) =

1, k ≡ 0 mod p

0, k ∈ Z \ pZ.

One important task in free probability is the following. Given a random variable a, consider the self-adjoint

random variable a+ a∗. We would like to answer two questions:

(1) What are the moments of a + a∗? More specifically, is there a “nice” formula for computing the ∗-

moments?
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(2) Is there a distribution µ of a+ a∗?

The following two examples introduce some of the computation used often in non-commutative probability.

The first involves a unitary (normal) random variable, and the second is similar, but involves a non-normal

random variable.

1.21 Example. Let (A, ϕ) be a ∗-probability space and u ∈ A be a Haar unitary. We will consider the

self-adjoint random variable u+ u∗ and answer the two questions above. We begin by finding a formula for

the moments ϕ((u+ u∗)n). Since u commutes with u∗, we simplify (u+ u∗)n using the binomial expansion.

(u+ u∗)n =

n∑
k=0

(
n

k

)
uk(u∗)n−k =

n∑
k=0

(
n

k

)
u2k−n.

But since ϕ(u2k−n) vanishes except in the case 2k − n = 0, then we have

ϕ
(
(u+ u∗)k

)
=

n∑
k=0

(
n

k

)
ϕ
(
u2k−n) =


(
n
n/2

)
, n even

0, n odd.

(1.3)

The next question is whether u+ u∗ has a distribution. The answer is yes, and we compute it as follows.

We need a measure µ such that
∫
R t

ndµ = ϕ((u + u∗)n). There are techniques to determine µ from the

moments computed in equation (1.3), namely by using the Cauchy transform, (see section 1.4,) but this is

more complicated. Instead, we use the known distribution of u to derive the distribution of u + u∗. Since

ϕ(un) =
∫ 2π

0
eintdt, then it follows that ϕ((u+ u∗)n) = 1

2π

∫ 2π

0
(eit + eit)ndt. This is because

ϕ
(

(u+ u∗)n
)

= ϕ

(
n∑
k=0

(
n

k

)
uk(u∗)n−k

)

=

n∑
k=0

(
n

k

)
ϕ
(
uk(u∗)n−k

)
=

n∑
k=0

(
n

k

)
1

2π

∫ 2π

0

(eit)k(e−it)n−kdt

=
1

2π

∫ 2π

0

(
n∑
k=0

(
n

k

)
(eit)k(e−it)n−k

)
dt =

1

2π

∫ 2π

0

(eit + e−it)ndt.

Now, we simplify,

1

2π

∫ 2π

0

(eit + e−it)ndt =
1

2π

∫ 2π

0

(2 cos(t))ndt =
1

2π
2

∫ π

0

(2 cos(t))ndt =
1

π

∫ π

0

(2 cos(t))ndt.

Notice we are not trying to evaluate the integral, we already did that by computing the moments in (1.3). We

are trying to determine the distribution µ by rewriting the integral as
∫
R t

nK(t)dt, (the function K : R→ R is

often referred to as a kernel of integration, or as the density of µ) in which case µ will be given by dµ = K(t)dt.

We now use the substitution v = 2 cos t, i.e.

t = arccos v, dt =
dv

−
√

22 − v2
,
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and the integral becomes

1

π

∫ π

0

(2 cos(t))ndt =
1

π

∫ −2

2

vn
dv

−
√

4− v2

=
1

π

∫ 2

−2

vn
dv√

4− v2
.

So in conclusion we have the equality of the four expressions:

ϕ((u+ u∗)n) =
1

π

∫ π

0

(2 cos(t))ndt =

∫
R
tnK(t)dt =


(
n
n/2

)
, n even

0, n odd.

(1.4)

where

K(t) =


1

π
√

4−t2 , |t| < 2

0, |t| ≥ 2

is the so-called “arcsine density”. Therefore µ, given by dµ = K(t)dt, is the measure with compact support

supp(µ) = [−2, 2] and it is the distribution of u+ u∗.

The following example, due to Voiculescu [16], is analogous to the previous one, but it involves a non-

normal random variable a, instead of the normal random variable u studied above.

1.3 The Semicircular Distribution

Consider a ∗-probability space (A, ϕ) and a random variable a ∈ A with the following properties

(i) a∗a = 1, but aa∗ 6= 1.

(ii) ϕ(aka∗`) = 1 if k = ` = 0, and 0 otherwise.

(iii) The set {aka∗`|k, ` ≥ 0} is linearly independent.

(iv) A is generated (as a unital ∗-algebra) by a. I.e., A = alg(1, a, a∗).

The ∗-moments of a are indeed determined by (i) and (ii). To show this, we need to show that all ∗-

moments can be written in the form described in (ii). This can be seen by noting that all elements of A can

be written in the form aka∗`, because by using property (i), we have

aka∗`aia∗j =


ak+i−`a∗`, ` < i

aka∗j , ` = i

aka∗(j+`−j), ` < i.

Thus we may conclude that A = span{aka∗`|k, ` ≥ 0}.
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Before continuing, we provide a concrete realization of a random variable with these properties. Take the

Hilbert space cc of infinite sequences with finite support, (also denoted by `(N ∪ {0}),) i.e.

cc =

(x0, x1, x2, x3, · · · )

∣∣∣∣∣∣ ∀n ∈ N ∪ {0} xn ∈ C,

∃N ∈ N ∪ {0} s.t. xn = 0 for n ≥ N

 ,

equipped with the inner product defined for all x = (x0, x1, x2, · · · ), and y = (y0, y1, y2, · · · ) by

〈x, y〉 =

∞∑
n=0

xnȳn.

For any n ∈ N ∪ {0}, let en = (0, 0, · · · , 0, 1, 0, · · · ), having xn = 1 and zeroes elsewhere. The set {en|n ∈

N ∪ {0}} is an orthonormal basis. Then, as in example, 1.12 we have the ∗-probability space (B(cc), ϕe0) of

bounded linear operators with the expectation function defined on any operator T : cc → cc by

ϕe0(T ) = 〈Te0, e0〉.

More precisely, if T (e0) = (y0, y1, y2, · · · ), then ϕe0(T ) = y0. Now, consider the one-sided shift operator

S : cc → cc determined by

S(en) = en+1

It follows that its adjoint is given by

S∗(e0) = 0, S∗(en) = en−1, n > 0.

Then the reader can check that, if A = alg(S, S∗), then the ∗-probability space (A, ϕe0) and the random

variable S satisfy the three properties listed above, namely

(i) S∗S = 1, but SS∗ 6= 1,

(ii) ϕe0(SkS∗`) = 1 if k = ` = 0, and 0 otherwise, and

(iii) the set {SkS∗`|k, ` ≥ 0} is linearly independent.

Hence the discussion that follows applies to this concrete random variable, as well as to any random variable

with the same distribution. We now continue to work in the general framework of a ∈ (A, ϕ) with the

properties stated above. Since a is non-normal, we do not attempt to find a distribution for it. Instead, as in

example 1.21, we will now focus on the selfadjoint random variable a+ a∗ and attempt to answer the same

two questions: Is there a “nice” formula for the moments? And is there a compactly-supported distribution

of a+ a∗?

First we compute the moments of a+ a∗.

ϕ ((a+ a∗)
n
) = ϕ

 ∑
ε(1),··· ,ε(n)∈{1,∗}

aε(1)aε(2) · · · aε(n)


=

∑
ε(1),··· ,ε(n)∈{1,∗}

ϕ
(
aε(1)aε(2) · · · aε(n)

)
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Most of the moments ϕ
(
aε(1)aε(2) · · · aε(n)

)
will vanish, and those remaining will be equal to 1. So, each

moment ϕ ((a+ a∗)
n
) will count the number of possible choices of a function ε : [n] → {1, ∗} so that

aε(1)aε(2) · · · aε(n) reduces to 1. That is,

ϕ ((a+ a∗)
n
) = #

{
ε : [n]→ {1, ∗}

∣∣∣ ϕ
(
aε(1)aε(2) · · · aε(n)

)
= 1
}

Here, for a set A, #A denotes the number of elements in A. Let us now solve this counting problem. The

criterion for the moment reducing to 1 and not to 0 is, roughly, that before every factor of a, there is one

factor of a∗, which will cancel it, and that all factors will end up cancelled in this way. To express this more

precisely, we look at functions γ : [n] → {−1, 1} (referred to as paths with n steps) instead of the functions

ε : [n]→ {1, ∗}. with a one to one correspondence between them given by replacing each ∗ in ε by a 1 in γ,

and each 1 in ε by a −1 in γ. The characterization of the nonvanishing terms is whether their corresponding

path γ satisfies the following conditions:

(1) For each k ∈ [n],
∑k
i=1 γ(i) ≥ 0.

(2)
∑
i∈[n] γ(i) = 0.

(Condition (1) ensures all a∗’s come before an a to cancel it, and (2) ensures there is at the end the same

number of terms a as a∗.) If a function γ : [n] → {−1, 1} satisfies these two conditions it is called, by

definition, a Dick path with n steps.

The Catalan numbers Ck are defined for all k ∈ N ∪ {0} by

Ck =
1

k + 1

(
2k

k

)
,

or equivalently by the inductive equationsC0 = C1 = 1,

Ck =
∑k
i=1 Ci−1Ck−i.

1.22 Proposition. The number of all possible Dick paths γ : [n] → {−1, 1} with n steps is given by the

Catalan numbers as follows:

#{γ : [n]→ {−1, 1} | γ is a Dick path} =

0, n odd,

Ck, n = 2k.

And therefore, the even moments of a+ a∗ are given by the Catalan numbers:

ϕ ((a+ a∗)
n
) =

0, n odd,

Ck, n = 2k.

For a full treatment of the combinatorics involved and a proof of this fact, see lecture 2 of [12].
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Next we are interested in finding a distribution for a+ a∗. The desired distribution will be given by the

semicircular density of radius 2 :

dµ =


1

2π

√
4− t2dt, |t| ≤ 2

0, |t| > 2.

1.23 Definition (Voiculescu [17]). Let (A, ϕ) be a ∗-probability space and x ∈ A be a selfadjoint element.

If x has the analytic distribution 2
πr2

√
r2 − t2dt, supported on [−r, r] then x is called a semicircular random

variable with radius r. By computing an integral, one can show that the variance of x is r2/4. Since the

variance is an important quantity in non-commutative probability, we often refer to x as a semicircular

variable of variance σ, where σ = r2/4. If a semicircular variable has radius 2, (i.e. variance 1,) we call it a

standard semicircular random variable.

1.24 Proposition. The following equality holds for all n ∈ N ∪ {0}.

1

2π

∫ 2

−2

tn
√

4− t2dt =

0, n odd,

Ck, n = 2k.

Proof. We use the trigonometric substitution t = 2 cos θ, dt = −2 sin θdθ, so that
√

4− t2 = 2 sin θ.

1

2π

∫ 2

−2

tn
√

4− t2dt =
1

2π

∫ 0

π

(2 cos θ)n(2 sin θ)(−2 sin θ dθ)

=
1

2π

∫ π

0

(2 cos θ)n(2 sin θ)2) dθ

=
1

2π

∫ π

0

(2 cos θ)n(4− (2 cos θ)2) dθ

=
4

2

(
1

π

∫ π

0

(2 cos θ)n dθ

)
− 1

2

(
1

π

∫ π

0

(2 cos θ)n+2 dθ

)
.

We already computed in equation 1.4 of example 1.21 that

1

π

∫ π

0

(2 cos θ)n dθ =


(
n
n/2

)
, n even

0, n odd.

So the integral vanishes for odd n, and for even n we have

1

2π

∫ 2

−2

tn
√

4− t2dt = 2

(
1

π

∫ π

0

(2 cos θ)n dθ

)
− 1

2

(
1

π

∫ π

0

(2 cos θ)n+2 dθ

)
= 2

(
n

n/2

)
− 1

2

(
n+ 2

(n+ 2)/2

)
. Let

n

2
= p.

= 2

(
2p

p

)
− 1

2

(
2p+ 2

p+ 1

)
= 2

(
(2p)!

p! p!

)
− 1

2

(
(2p+ 2)!

(p+ 1)!(p+ 1)!

)
=

(
1− 1

2

(2p+ 2)(2p+ 1)

(p+ 1)(p+ 1)

)(
2p

p

)
=

1

p+ 1

(
2p

p

)
= Cp.
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1.4 The Cauchy Transform

The proof above only verified that the measure µ gives the right moments via integration; it gives no indication

of how one might have come to find µ in the first place; note, for example, that we were able to find the

measure of u+ u∗ in example 1.21 because we had a distribution of u to begin with, which we can not have

for a because it is non-normal. In this section we study the main method by which we obtain the analytic

distribution of a random variable given knowledge of its moments. This method is the Cauchy transform.

Let us denote by C+ the upper half-plane, and by C− the lower half-plane, thus we have

C+ = {x+ iy ∈ C : x ∈ R, y > 0}, C− = {x+ iy ∈ C : x ∈ R, y < 0}.

1.25 Definition. Let µ be a compactly supported measure on R. Then the Cauchy transform of µ is the

function Gµ : C+ → C− given by

Gµ(z) =

∫
R

1

z − t
dµ(t), z ∈ C+.

Note that the integral
∫
R

1
z−tdµ(t) converges absolutely for any z ∈ C+, and it takes values in C−. (See

[5] for clarification.) Indeed, if t ∈ R and z ∈ C+, then z − t ∈ C+, and so 1
z−t ∈ C−. Finally we just

need to show that the integral converges; thus (by the way Lebesgue integration is defined) we will have that

Gµ(z) ∈ C−. To do this it suffices to show that
∫
R |

1
z−t |dµ(t) is finite. And indeed, if we write z = x+ iy, we

have∫
R

∣∣∣∣ 1

z − t

∣∣∣∣ dµ(t) =

∫
R

1

|x− t+ iy|
dµ(t) =

∫
R

1√
(x− t)2 + y2

dµ(t) ≤
∫
R

1√
y2
dµ(t) =

∫
R

1

y
dµ(t) =

1

y
,

and since y > 0, the integral is finite for all z ∈ C+.

The important property of the Cauchy transform is that Gµ(z) can be expressed as an infinite sum using

only information about the moments of µ (i.e. the moments of a random variable with distribution µ, or in

other words the values of
∫
R t

ndµ(t) for n ∈ N ∪ {0}) in the following way. Let a ∈ (A, ϕ) be a selfadjoint

random variable, and denote its moments by mn, i.e.

mn = ϕ(an) =

∫
R
tndµ.

Then we can write ∫
1

z − t
dµ(t) =

1

z

∫
1

1− t
z

dµ(t) =
1

z

∫ ∞∑
n=0

(
t

z

)n
dµ(t).

Of course, this power series expansion is only valid where it converges, which is for all values z (z fixed)

such that
∣∣ t
z

∣∣ < 1. This is satisfied by taking t ∈ supp(µ) and |z| > sup{|t| : t ∈ supp(µ)}. In that case,

convergence is absolute, and we may integrate term-by-term:

1

z

∫ ∞∑
n=0

(
t

z

)n
dµ(t) =

∞∑
n=0

∫
tndµ(t)

zn+1
|z| > sup{|t| : t ∈ supp(µ)}.
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So we have concluded that for z large enough, we have

Gµ(z) =

∞∑
n=0

mn

zn+1
. (1.5)

Hence, given the selfadjoint random variable a and its moments mn, our technique for finding its distri-

bution µ (when it exists) is to compute its Cauchy transform using equation (1.5) and then to recover the

measure µ by applying the following result, known as the Stieltjes inversion formula. We denote by Im(z)

the imaginary part of the complex number z, i.e. if x, y ∈ R then Im(x+ iy) = y.

1.26 Proposition. Let t ∈ R and y > 0. If φ is any continuous function, then

lim
y→0+

∫
R
φ(t)

[
− 1

π
Im
(
Gµ(t+ iy)

)]
dt =

∫
R
φ dµ. (1.6)

Hence the measure µ is recovered from the Cauchy transform by choosing suitable test functions φ and

evaluating equation (1.6). The proof is a standard computation in real analysis and measure theory. See

[14], or [2].
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2 Free Probability

In chapter 1 we introduced the framework on which free probability is built. The cornerstone of the

theory will be the definition of free independence, or freeness (analogous to independence of classical random

variables). As we will see, it is freeness that gives us all the non-trivial structure of free probability that

makes it interesting and essentially different from classical probability.

2.1 Joint Moments and Joint Distributions

To begin our discussion about free probability, it will be useful to first define joint moments and joint

distributions in a way similar to the definition of distributions and ∗-distributions in the analytical sense.

Instead of just defining the joint distributions and moments of a finite family a1, a2, · · · , as we will give

the most general statement by taking an arbitrary family of random variables (ai)i∈I , where I is an arbi-

trary indexing set (possibly infinite or even uncountable). Similarly we use the algebra of non-commutative

polynomials in an arbitrary collection of variables,

C〈Xi : i ∈ I〉,

whose elements are (finite) linear combinations of non-commutative monomials of the form Xi1Xi2 . . . Xin ,

for n ∈ N ∪ {0} and i1, · · · , in ∈ I.

2.1 Definition. Let (ai)i∈Ibe random variables in a non-commutative probability space (A, ϕ).

(1) The family of joint moments of (ai)i∈I is the collection of values

{
ϕ(ai1ai2 . . . ain) : n ∈ N, i1, · · · , in ∈ I

}
.

(2) The joint distribution of the random variables (ai)i∈I is the functional µ : C〈Xi : i ∈ I〉 → C given by

µ(P ) = ϕ
(
P (ai : i ∈ I)

)
,

i.e. it is a parametrization of the joint moments via free polynomials.

2.2 Definition. Let (ai)i∈I be random variables in a ∗-probability space (A, ϕ).

(1) The family of joint ∗-moments of a1, · · · , as is the collection of values

{
ϕ(aε1i1 a

ε2
i2
. . . aεnin ) : n ∈ N, ir ∈ I, εr ∈ {1, ∗} ∀r ∈ [n]

}
.
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(2) The joint distribution of the random variables (ai)i∈I is the functional µ : C〈Xi, X
∗
i : i ∈ I〉 → C given

by

µ(P ) = ϕ
(
P (ai, a

∗
i : i ∈ I)

)
.

2.2 Free Independence

The intuition behind independence, at least in the classical setting, is that two random variables are in-

dependent if the outcome of one does not affect the other. This intuition will not be of much use for us.

Rather, free independence of two non-commutative random variables indicates that they satisfy no algebraic

relationships whatsoever, not even commutativity. If they commute, then they are too dependent from a free

probability point of view.

It is more practical to see independence of random variables as a way of indicating the behaviour of their

mixed moments. Recall that in classical probability, if two random variables X,Y : Ω→ C are independent,

then we compute their mixed moments by

E[XmY n] = E[Xm]E[Y n]. (2.1)

This property actually characterizes classical independence, and the definition of free independence given will

be analogous to it. It is stated in terms of random variables of expectation zero, namely by indicating how to

evaluate their mixed moments. Notice in the classical setting, as in equation (2.1), we could actually speak

of independence of the algebras alg(1, X) and alg(1, Y ) instead of just independence of X and Y .. Something

similar is done below.

2.3 Definition. Let (A, ϕ) be a non-commutative probability space and let I be an indexing set.

(1) Subalgebras {Ai}i∈I of A are said to be freely independent, or free, if and only if for any n ∈ N

ar ∈ Ai(r) ∀r ∈ [n]

ϕ(ar) = 0 ∀r ∈ [n]

i(1) 6= i(2) 6= i(3) 6= · · · 6= i(n)

 =⇒ ϕ
(
a1a2a3 · · · an

)
= 0. (2.2)

(2) Random variables {ai}i∈I in A are said to be freely independent, or free, if and only if the unital algebras

generated by them form a freely independent family.

We say of a random variable that it is centered if it has expectation zero. Equation 2.2 may be summarized

as saying that a product of centered random variables is also centered, given that adjacent variables belong

to distinct subalgebras Ai. Notice that the condition i(1) 6= · · · 6= i(n) only requires that adjacent indices be

distinct; so, for example, we could have that i(1) = i(3), but never that i(r) = i(r + 1).

For comparison, we give the definition of classical independence. We will use it in the central limit theorem

in section 2.4.
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2.4 Definition. Let (A, ϕ) be a non-commutative probability space and let I be an indexing set.

(1) Subalgebras {Ai}i∈I of A are said to be classically independent, or tensor independent, if and only if the

algebras Ai commute with one another, (in the sense that for all i 6= j in I, and any a ∈ Ai, b ∈ Aj , the

random variables a and b commute: ab = ba,) and for any random variables a1 ∈ Ai1 , a2 ∈ Ai2 , · · · , an ∈

Ain , with all i1, · · · , in distinct, we have

ϕ
(
a1a2a3 · · · an

)
= ϕ(a1)ϕ(a2) · · ·ϕ(an).

(2) Random variables {ai}i∈I in A are said to be classically independent, or tensor independent, if and only

if the unital algebras generated by them form a classically independent family.

At first sight the definition of freeness may seem odd. As in the notion of classical independence, we

expect free independence to give us a way of computing mixed moments from individual moments. For

example, if a and b are free in (A, ϕ), and we know all the moments of a and b separately, then what are

the values of ϕ(ab), ϕ(aba), or ϕ(a2b2)? If a and b have expectation zero, then the first two are zero, but

what about the third? And what in the case when a and b are not centered? The solution is to proceed by

“centering” the random variables. As we see in the examples below, we will apply freeness on the variables

a− ϕ(a)1A and b− ϕ(b)1A, instead of doing it on a and b. In the future we will omit the unit 1 ∈ A when

it is being scaled by a constant, i.e. for a scalar α ∈ C, we write α = α1 ∈ A, when there is no danger of

ambiguity.

2.5 Example. Let a, b ∈ (A, ϕ) be free. Let us compute the mixed moment ϕ(ab). We do this indirectly

by computing ϕ
(
(a − ϕ(a))(b − ϕ(b))

)
and symplifying. Since by linearity we have ϕ(a − ϕ(a)1) = ϕ(a) −

ϕ(a)ϕ(1) = 0, and similarly for b, then we have by freeness that

ϕ
((
a− ϕ(a)

)(
b− ϕ(b)

))
= 0.

Then we simplify.

0 = ϕ
((
a− ϕ(a)

)(
b− ϕ(b)

))
= ϕ

(
ab− aϕ(b)− ϕ(a)b+ ϕ(a)ϕ(b)

)
= ϕ(ab)− ϕ(a)ϕ(b)− ϕ(a)ϕ(b) + ϕ(a)ϕ(b)

= ϕ(ab)− ϕ(a)ϕ(b).

And by rearranging we get

ϕ(ab) = ϕ(a)ϕ(b).

By substituting a by am and b by bn, and applying the same logic, we also have that

ϕ(ambn) = ϕ(am)ϕ(bn). (2.3)
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This result is the same as the classical case seen in equation 2.1. Something similar happens in the mixed

moments of order three:

ϕ(aba) = ϕ(a2)ϕ(b), ϕ(aibjak) = ϕ(ai+k)ϕ(bj). (2.4)

The first instance in which we see a result that is unique to free probability is in the order-four moments.

2.6 Example. Let a and b be free random variables in (A, ϕ). We now compute the value of ϕ(abab) by the

same method as above.

0 = ϕ
((
a− ϕ(a)

)(
b− ϕ(b)

)(
a− ϕ(a)

)(
b− ϕ(b)

))
(by freeness)

= ϕ
(

abab −abaϕ(b) −abϕ(a)b +abϕ(a)ϕ(b)

−aϕ(b)ab +aϕ(b)aϕ(b) +aϕ(b)ϕ(a)b −aϕ(b)ϕ(a)ϕ(b)

−ϕ(a)bab +ϕ(a)baϕ(b) +ϕ(a)bϕ(a)b −ϕ(a)bϕ(a)ϕ(b)

+ϕ(a)ϕ(b)ab −ϕ(a)ϕ(b)aϕ(b) −ϕ(a)ϕ(b)ϕ(a)b +ϕ(a)ϕ(b)ϕ(a)ϕ(b)
)
.

By linearity (noting ϕ(a) and ϕ(b) are just scalars) this simplifies to

= ϕ(abab) −ϕ(aba)ϕ(b) −ϕ(abb)ϕ(a) +ϕ(ab)ϕ(a)ϕ(b)

−ϕ(aab)ϕ(b) +ϕ(aa)ϕ(b)ϕ(b) +ϕ(ab)ϕ(b)ϕ(a) −ϕ(a)ϕ(b)ϕ(a)ϕ(b)

−ϕ(a)ϕ(bab) +ϕ(a)ϕ(b)ϕ(ba) +ϕ(a)ϕ(a)ϕ(bb) −ϕ(a)ϕ(a)ϕ(b)ϕ(b)

+ϕ(a)ϕ(ab)ϕ(b) −ϕ(a)ϕ(a)ϕ(b)ϕ(b) −ϕ(a)ϕ(b)ϕ(a)ϕ(b) +ϕ(a)ϕ(b)ϕ(a)ϕ(b).

Now all mixed moments must be simplified by using the previous results 2.3 and 2.4. Then everything will

be expressed only in terms of the values ϕ(an) and ϕ(bn) for n ∈ N. The simplified equation is

0 = ϕ(abab)− ϕ(aa)ϕ(b)2 − ϕ(a)2ϕ(bb) + ϕ(a)2ϕ(b)2,

Which gives the value of the mixed moment, as desired.

ϕ(abab) = ϕ
(
a2
)
ϕ(b)2 + ϕ(a)2ϕ

(
b2
)
− ϕ(a)2ϕ(b)2.

Free Groups and Free independence

Let us now illustrate the historical origins of the notion of free independence by exploring its relation with

freeness of subgroups in a group. Recall the following definition from group theory and compare it to the

definition of free independence.

2.7 Definition. Let {Gi}i∈I be a family of subgroups of a group G with identity e. We say that the

subgroups Gi are free in G if and only if

gr ∈ Gi(r) ∀r ∈ [n]

gr 6= e ∀r ∈ [n]

i(1) 6= i(2) 6= · · · 6= i(n)

 =⇒ g1g2g3 · · · gn 6= e. (2.5)

And we say a family of elements {gi}i∈I are free in G if and only if the subgroups {〈gi〉}i∈I generated by the

gi’s are free.
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This definition essentially says that subgroups in a group are free if they do not satisfy any algebraic

relationships with one another. As we might expect, the notions of freeness “coincide” when we look at

group algebras of free groups as non-commutative probability spaces.

2.8 Proposition. For each i ∈ I, let Gi be a subgroup of a group G. Then the following are equivalent:

(i) {Gi}i∈I are free subgroups of G.

(ii) The group algebras {CGi}i∈I are freely independent in the ∗-probability space (CG, τG).

Proof. Suppose first that the groups Gi are free in G, and let us show that the subalgebras {CGi} are free

in (CG, τG). Let a1, a2, · · · , an be elements of the group algebra CG with expectation zero, i.e. τG(ar) = 0

for r ∈ [n], and let i : [n]→ I be a function such that for every r ∈ [n], ar ∈ CGi(r), with the property that

i(r) 6= i(r + 1), for 1 ≤ r ≤ n− 1.

We now show that τG(a1 · · · an) = 0. Recall that τG is defined by τG

(∑
g∈G αgg

)
= αe, so what we have

to show is that the coefficient of e in the product a1a2 · · · an ∈ CG is zero. Since τG(ar) = 0, then for each

r ∈ [n], ar has the form

ar =
∑
g 6=e

α(r)
g g

. Therefore we have the following computation

a1a2 · · · an =

∑
g 6=e

α(1)
g g

∑
g 6=e

α(2)
g g

 · · ·
∑
g 6=e

α(n)
g g


=
∑

g1,···gn 6=e

(
α(1)
g1 α

(2)
g2 · · ·α

(n)
gn

)
g1g2 · · · gn.

Since the elements gr (1 ≤ r ≤ n) satisfy the properties

gr ∈ Gi(r), gr 6= e, i(1) 6= i(2) 6= · · · 6= i(n),

then by freeness of groups in G, it follows that the product g1g2 · · · gn is not equal to e. This in turns proves

that τG(a1 · · · an) = 0, as desired.

Conversely, suppose that the subalgebras {CGi} are free in the probability space (CG, τG). We show that

{Gi} are free groups in G. This is easy. Take elements g1, · · · gn, with gr ∈ Gi(r) \ {e} and i(1) 6= · · · 6= i(n).

Then we can consider the elements gr as being random variables in CGi(r). We clearly have τG(gr) = 0

because gr 6= e. Then from freeness of the subalgebras CGi we immediately conclude that the product

gig2 · · · gn ∈ G has expectation zero as a random variable in (CG, τG), hence it is not equal to e, which proves

freeness of the groups {Gi}i∈I .

2.3 The Combinatorics of Free Probability

Many of the similarities and distinctions between classical probability and free probability can be better seen

from a combinatorial point of view. In fact, it is the relationship between the analysis and the combinatorics
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that makes free probability powerful in tackling many kinds of problems. This discussion will culminate in

section 2.5, when we introduce the free cumulants. For now, we give a basic overview of the prerequisites in

combinatorics and some interesting examples that illustrate how combinatorics will play a role. The results

and definitions in the rest of this chapter are mainly due to Speicher [13].

Now, for each n, consider finite ordered sets [n] = {1, 2, · · · , n}. A partition of the set {1, · · · , n} is a

family π = {V1, V2, · · · , Vs} of pairwise disjoint nonempty sets whose union is {1, · · · , n}; we call the sets Vi

blocks of π, and we denote #π = s, the number of blocks in π. We denote by P (n) the set of all partitions of

[n]. We will denote each partition in P (n) with a diagram consisting of the ordered elements 1, · · · , n, and

where for each block V ∈ π, we connect the elements of V with lines underneath the numbers. For example,

for the partition
{
{1, 4}, {2, 3}, {5}

}
we have the following diagram.

1 2 3 4 5

This partition has two blocks of size 2 and one block of size 1. We will always drop the numbers and draw

only the lines of the diagram.

As long as we are dealing with an ordered set {1 < 2 < · · · < n}, there will be no ambiguity in dropping the

numbers. In a similar way, the diagram

∈ P (5)

is identified with the partition π =
{
{1, 3, 4}, {2, 5}

}
. We observe, however that two lines representing

different blocks “cross” each other:

When this happens we call π a crossing partition. (See formal definition below.) If there is no “crossing” in

the diagram of a partition, then we call it a non-crossing partition, and we denote the set of non-crossing

partitions of [n] as NC(n). So for example we have

∈ NC(5).

The last two examples above have both one block of size 2 and one block of size 3. A block of size 2 is called

a pairing or pair. If a partition in P (n) has only blocks of size two we call it a pair partition, and we denote

the sets of pair partitions and non-crossing pair partitions by P2(n) or NC2(n), respectively. For example,

= ∈ NC2(8) ⊂ P2(8).

We summarize everything in the following definition.
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2.9 Definition. (1) Let A be any set. A collection π = {Vi : i ∈ I} of subsets of A is called a partition of

A if and only if Vi 6= ∅ for all i ∈ I, Vi ∩ Vj = ∅ for i 6= j, and
⋃
i∈I Vi = A.

(2) The set of all partitions of [n] is denoted P (n).

(3) A partition π ∈ P (n) is called crossing if and only if there exist i, j, p, q ∈ [n], i < p < j < q, such that

i, j belong to a block U ∈ π, and p, q ∈ V ∈ π, with U 6= V. Otherwise, π is called non-crossing. The set

of non-crossing partitions in P (n) is denoted NC(n).

(4) A partition in P (n) is called a pairing if and only if all its blocks are of size 2; and we denote P2(n) and

NC2(n) the sets of all pair partitions and non-crossing pair partitions of [n], respectively.

The first illustration of how crossing and non-crossing partitions come into play in free probability will

be illustrated by the following interesting fact.

2.10 Lemma. (1) If X is a classical random variable with the standard normal distribution N(0, 1), i.e.

E[Xn] =
1

2π

∫
R
tne

−t2
2 dt,

then its moments are given by

E[Xn] =

0, n odd

#P2(n), n even.

.

Furthermore, we have that for n even,

#P2(n) = (n− 1)(n− 3)(n− 5) · · · (5)(3)(1).

(2) Let (A, ϕ) be a non-commutative probability space. If s ∈ A is a semicircular random variable, i.e.

ϕ(sn) =
1

2π

∫ 2

−2

tn
√

4− t2 dt,

then its moments are given by

ϕ(sn) =

0, n odd

.#NC2(n), n even.

Furthermore, we have that for n = 2k, n even,

#NC2(2k) = Ck,

where Ck is the k-th Catalan number introduced in example 1.3.

The proof of this lemma is just a series of computations and is left to the reader. To prove that

#NC2(2k) = Ck, one must provide a one-to-one correspondence between partitions π ∈ NC2(2k) and

Dyck paths γ with 2k steps, (see section 1.3,) by matching a +1 in γ with the “opening” of a pair in π, and

a −1 in γ to the “closing” of a pair in π.
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The fact expressed in proposition 2.10 suggests that these two distributions play the same role in their

respective “parallel worlds” of classical and free probability. This is indeed the case, in a certain sense. As

we will see in the central limit theorem, the transition from classical probability to free probability amounts

precisely to exchanging the role of partitions by the role of non-crossing partitions.

2.11 Proposition. For all k ∈ N, the number of non-crossing pair partitions of 2k elements is equal to the

number of all non-crossing partitions of k elements. I.e.,

#NC2(2k) = #NC(k).

In summary, we have that

Ck =
1

2π

∫ 2

−2

t2k
√

4− t2dt = #NC2(2k) = #NC(k).

2.4 Central Limit Theorem

Central to classical probability and statistics is the Gaussian or normal distribution (denoted N(0, 1) when it

has mean 0 and variance 1). The reason it is particularly important is that it is the asymptotic distribution

appearing in the classical central limit theorem. (See the statement of the theorem below.) In free probability

this important role is played by the semicircular distribution, introduced in definition 1.23.

2.12 Definition. If for each k ∈ N, we have a non-commutative probability space (Ak, ϕk) and a random

variable ak in Ak, and a is a random variable in a non-commutative probability space (A, ϕ), then we say

ak converges in distribution to a as k → ∞ if and only if for every fixed n ∈ N, the sequence
(
ϕk(ank )

)
k∈N

in C, consisting of the n-th moments of ak in (Ak, ϕk), converges to ϕ(an) as k →∞. In this case, we write

ak
dist.−−−→ a.

2.13 Theorem. Let (A, ϕ) be a non-commutative probability space, let (ai)i∈N be a collection of selfadjoint,

centered, and identically distributed random variables in (A, ϕ) with variance 1. I.e,

ϕ(ai) = 0, ϕ(a2
i ) = 1, ϕ(ani ) =ϕ(anj ) ∀i, j, n ∈ N.

We consider the sequence of random variables(
a1 + a2 + · · · ak√

k

)
k∈N

. (2.6)

(1) If the variables {ai}i∈I are classically independent, then the sequence (2.6) converges in distribution to a

random variable s with the normal distribution N(0, 1).

(2) If the variables {ai}i∈I are free, then the sequence (2.6) converges in distribution to a random variable s

with the semicircular distribution.
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Proof. In accordance with the definition of convergence in distribution, all we need to do is fix an arbitrary

n ∈ N, compute the n-th moment

ϕ

((
a1 + · · ·+ ak√

k

)n)
and then take the limit as k →∞.

Let {ai}i be independent random variables (either classical or free independence; the distinction will be

made at the end of the proof). We proceed with the following computations.

lim
k→∞

ϕ

((
a1 + · · ·+ ak√

k

)n)

= lim
k→∞

1

k
n
2
ϕ
(

(a1 + · · ·+ ak)n
)

= lim
k→∞

1

k
n
2

∑
i:[n]→[k]

ϕ
(
ai(1)ai(2) · · · ai(n)

)
In the last line above we simply expanded the n-th power of the sum to terms of the form ai(1)ai(2) · · · ai(n),

where the sum runs through all arbitrary choices of subscripts with 1 ≤ i(1), i(2), · · · , i(n) ≤ k. We now

observe that the concrete choice of indices i : [n]→ [k] does not affect the value of the mixed moment,

ϕ
(
ai(1)ai(2) · · · ai(n)

)
,

as long as the partition induced by i on [n] is the same in the following sense. Given a function f : A → S,

the partition induced on A by f is defined to be the partition{
f−1{s} ⊆ A : s ∈ S, f−1{s} 6= ∅

}
.

Therefore the partition induced by i on [n] is an element πi ∈ P (n). Since the variables {ai}i∈N are indepen-

dent and identically distributed, then two joint moments ϕ
(
ai(1)ai(2) · · · ai(n)

)
and ϕ

(
aj(1)aj(2) · · · aj(n)

)
are

equal whenever i and j induce the same partition in P (n). For example, if {a, b, c, d} are independent and

identically distributed random variables, then

ϕ (abaaabb) = ϕ (cdcccdd) = ϕ (dadddaa) ,

because all these mixed moments induce the partition

in P (7). Indeed, this is true in general because the joint distribution µ : C〈X1, · · · , Xk〉 → C of the inde-

pendent variables (a1, · · · , ak) is determined by the single-variable distributions of the ai’s, according to the

mixed-moment computations given by classical and free independence. And since the variables (a1, · · · , ak)

are identically distributed, then the joint distribution µ : C〈X1, · · · , Xk〉 → C remains unchanged after

permuting the variables (aσ(1), · · · , aσ(k)) with some σ ∈ Sk.
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Then the computation above becomes

lim
k→∞

1

k
n
2

∑
i:[n]→[k]

ϕ
(
ai(1)ai(2) · · · ai(n)

)
= lim
k→∞

1

k
n
2

∑
π∈P (n)

Nπκπ,

where κπ denotes the value of ϕ
(
ai(1)ai(2) · · · ai(n)

)
if i : [n]→ [k] is any function that induces the partition

π, and Nπ is the number of functions i : [n] → [k] which give the partition π. As one might expect, many

terms of this sum will vanish, and others will go to zero as k →∞. We will now prove that all the non-zero

terms (after taking the limit) correspond precisely to pair partitions in P2(n). First, we show that if π has a

block of size 1, then κπ = 0. Indeed, if π = {V1, V2, · · · , {t}, · · · , Vs} for some t ∈ [k], then

κπ = ϕ
(
ai(1) · · · at · · · ai(n)

)
(2.7)

= ϕ (c1atc2) (2.8)

= ϕ(at)ϕ(c1c2) = 0 (2.9)

Here we are taking c1, c2 to be in the algebra generated by {a1, · · · , ak} \ {at}, which is free from the algebra

generated by at because {ai}i∈N is free. Equation (2.9) follows by the computations of mixed moments of

independent variables, as computed in 2.4 for free variables. (The same holds for classically independent

variables.) And the moment vanishes because ϕ(at) = 0. Therefore all the remaining nonzero terms will

correspond to partitions π with blocks of size 2 or more. This implies (by the pigeonhole principle) #π ≤ n/2.

Next we show that non-vanishing terms, after taking the limit, will satisfy #π ≥ n/2. We write the

expression above as ∑
π∈P (n)
#π≤n2

(
lim
k→∞

Nπ
k
n
2

)
κπ,

and we will show that the limit in parentheses is zero whenever #π < n
2 .

First, given a partition π, we compute the value of Nπ. This is a standard problem in enumerative

combinatorics. Nπ is by definition the number of functions i : [n] → [k] that induce the partition π. Let

π = {V1, V2, · · · , V#π}, then to construct all possible functions i : [n] → [k] that induce π, we just need to

choose for each 1 ≤ j ≤ #π, without repetition, the value of i on each block Vj . Since there are k possible

values for i, the number of functions i that induce π is k(k − 1)(k − 2) · · · (k −#π + 1).

Now we compute the limit

lim
k→∞

Nπ
k
n
2

= lim
k→∞

k(k − 1)(k − 2) · · · (k −#π + 1)

k
n
2

= lim
k→∞

k

k

(k − 1)

k

(k − 2)

k
· · · (k −#π + 1)

k
k#π−n2

=

1, n
2 = #π

0, n
2 > #π.
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Thus we have shown that in the limit all terms of the summation vanish unless they correspond to a partition

π with #π = n/2, and with no blocks of size 1. It follows that each remaining term will correspond to a pair

partition. Thus we have so far that

lim
k→∞

ϕ

((
a1 + · · ·+ ak√

k

)n)
=

∑
π∈P2(n)

κπ.

To conclude the proof we compute the value of κπ. This will require us now to discern between the cases of

classical independence and free independence. Recall that κπ is by definition the moment ϕ(ai(1)ai(2) · · · ai(n)),

where i : [n]→ [k] is any function inducing the partition π.

If {ai}i∈N is classically independent, then ϕ(ai(1)ai(2) · · · ai(n)) will factor into a product of second mo-

ments, and since the variance of the random variables is 1, then κπ = 1 for each π ∈ P2(n). Therefore in the

classically independent case we have

lim
k→∞

ϕ

((
a1 + · · ·+ ak√

k

)n)
=
∑

π∈P2(n)

1 = #P2(n)

As we saw in lemma 2.10, these are precisely the moments of the standard normal distribution. And

therefore that random variable converges to a normal distribution of variance 1.

In the case of free independence, We have two cases for the moment ϕ(ai(1)ai(2) · · · ai(n)).

Case 1: All pairs of neighbouring indices are different:

i(1) 6= i(2) 6= · · · 6= i(n).

In this case, by freeness, ϕ(ai(1)ai(2) · · · ai(n)) = 0.

Case 2: There exists r ∈ [n] such that i(r) = i(r + 1). In this case we may factor the mixed moment by

using freeness as we did in equation (2.9). This gives

ϕ
(
ai(1) · · · ai(r)ai(r+1) · · · ai(n)

)
=ϕ

(
ai(r)ai(r+1)

)
ϕ
(
ai(1) · · · ai(r−1)ai(r+2) · · · ai(n)

)
.

We can evaluate ϕ
(
ai(r)ai(r+1)

)
= 1, and so we are left with a moment ϕ

(
ai(1) · · · ai(r−1)ai(r+2) · · · ai(n)

)
of

a lesser order.

This new moment then falls on one of the two cases above, and so we repeat. Eventually this process

ends either with a zero moment, if at some point we get an expression of case 1, or with a moment of 1, if

all variables are eliminated two at a time. The latter will happen precisely if and only if the indices i induce

a non-crossing partition. To see that this is the case , consider a crossing pair partition π ∈ P2(n) \NC2(n)

induced by an index-function i : [n] → [k]. By definition, then, and because π is a pairing, we must have

that there are blocks {h, j}, {`,m} ∈ π such that h < ` < j < m. There are exclusively two possibilities

for the moment ϕ(ai(1)ai(2) · · · ai(n)); either all neighbouring pairs of variables are cancelled by repeatedly

applying case 1 above, in which case the expected value is 1, or at some point we fall into case 2 above, i.e.
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neighbouring indices (after possibly applying case 1 a number of times) are all different, in which case this

moment is zero. Since the factors ai(h) and ai(j) will never be adjacent because ai(`) is intermediate, the

factors ai(h) and ai(j) can not be cancelled before the factors ai(`) and ai(m). But since a similar argument

can be made for ai(`) and ai(m), then we can not have cancellation in the reverse order either. Thus these

four terms can never be canceled by repeated application of case 1, and therefore case 2 applies eventually

to the moment ϕ
(
ai(1)ai(2) · · · ai(n)

)
which must then be zero.

Conversely, consider an index-function i : [n]→ [k] with induced partition π ∈ P2(n) such that

ϕ
(
ai(1)ai(2) · · · ai(n)

)
= 0.

This can only happen if case 2 applies eventually. Without loss of generality, suppose that adjacent indices

are distinct,

i(1) 6= i(2) 6= · · · 6= i(n)

(otherwise apply case 1 as many times as possible, reset the value of n, and re-label the indices). We will

now show that π is a crossing partition. Take 1 ≤ a1 < b1 ≤ n such that a and b are paired by π. If there

exists a′, b′ such that a1 < a′ < b′ < b1 and {a′, b′} is a pair in π, then let a2 = a′, and b2 = b′. Continue in

a similar way: for each am, bm paired in π, if there exist a′, b′ paired in π such that am < a′ < b′ < bm then

we define am+1 = a′, bm+1 = b′. Eventually this will terminate with a pair {at, bt} ∈ π such that there is no

pair {a′, b′} with at < a′ < b′ < bt. There must be an element c ∈ [n], between a and b, because consecutive

indices i(r), i(r + 1) are not equal. So c must be paired in π with some other element d such that either

at < c < bt < d or d < at < c < bt.

π =
1 · · · at · · · c · · · bt · · · d · · · n

In both cases this proves, by definition, that π is a crossing partition.

Thus we have shown, as desired, that ϕ
(
ai(1)ai(2) · · · ai(n)

)
= 0 if and only if i : [n] → [k] induces a

crossing partition, and it is 1 otherwise. Therefore,

lim
k→∞

ϕ

((
a1 + · · ·+ ak√

k

)n)
=
∑

π∈NC2(n)

1 = #NC2(n),

which gives precisely the moments of a semicircular distribution, by lemma 2.10. This concludes the proof.

2.5 Free Cumulants

The values κπ from the proof in the previous section serve as motivation for the study of free cumulants.

The values labelled there as κπ were indeed cumulants, but they are specific to the semicircular distribution.

In order to introduce cumulants in general we will need the notion of multiplicative family of functions

in NC. From now on, we will use NC to denote the set of all non-crossing partitions of any set [n], i.e.

NC =
⋃
n∈NNC(n).
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2.14 Definition. A multiplicative family of functions in NC (or respectively, in P ) is a collection (fπ)π∈NC

such that for each π ∈ NC(n) (resp. π ∈ P (n)), fπ : An → C is a multilinear function (a1, · · · , an) 7→

fπ[a1, · · · an] with the property that its values factor in accordance with the blocks of π as follows:

fπ[a1, · · · , an] =
∏
V ∈π

V={i1<···<is}

fs(ai1 , · · · ais).

Where fn(a1, · · · , an) = f{[n]}[a1, · · · , an], {[n]} ∈ NC(n) the partition with just one block. So that the

functions (fn)n∈N determine all others.

For example, if

π = =
{
{1, 3, 4}, {2, 6}, {5}

}
∈ P (6),

then

fπ[a1, a2, a3, a4, a5, a6] = f3(a1, a3, a4)f2(a2, a6)f1(a5).

2.15 Definition. Let (A, ϕ) be a non-commutative probability space. We define free cumulants (κπ)π∈NC to

be the multiplicative family of functions in NC determined inductively by the following relation to moments

in A.

ϕ (a1 · · · an) =
∑

π∈NC(n)

κπ[a1, · · · , an]

And we define also the sequence of functions κn : An → C, n ∈ N, by

κn = κ{[n]}.

To see how moments in A determine the values κπ, we begin by determining κ1. Take n = 1, so

NC(1) = {{1}}. We have, for any a ∈ A,

ϕ(a) = κ{{1}}[a] = κ1(a).

So κ1(a) = ϕ(a) for all a ∈ A. Next, to determine κ2, we fix n = 2 and use the value of κ1 obtained above.

First, we have that

NC(2) =
{

,
}

So the definition gives, for arbitrary a, b ∈ A,

ϕ(a, b) = κ [a, b] + κ [a, b]

= κ1(a)κ1(b) + κ2(a, b)

= ϕ(a)ϕ(b) + κ(a, b).

So for any a, b ∈ A, the second cumulant is given by

κ2(a, b) = ϕ(ab)− ϕ(a)ϕ(b). (2.10)
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Now, once the first two cumulants are known, they are used to compute the third free cumulant as follows.

There are five non-crossing partitions of three ordered elements:

NC(3) =

{
, , , ,

}
.

Therefore, we compute the third cumulant κ3 = κ is computed, according to the definition, from the

moment-cumulant formula:

ϕ(abc) =κ + κ + κ + κ + κ

=κ3(a, b, c) + κ2(a, b)κ1(c) + κ1(a)κ2(b, c) + κ2(a, c)κ1(b) + κ1(a)κ1(b)κ1(c)

=κ3(a, b, c) +
(
ϕ(a, b)− ϕ(a)ϕ(b)

)
ϕ(c)

+ ϕ(a)
(
ϕ(bc)− ϕ(b)ϕ(c)

)
+
(
ϕ(a, c)− ϕ(a)ϕ(c)

)
ϕ(b) + ϕ(a)ϕ(b)ϕ(c)

=κ3(abc) + ϕ(a)ϕ(bc) + ϕ(b)ϕ(ac) + ϕ(c)ϕ(ab)− 2ϕ(a)ϕ(b)ϕ(c).

And therefore for all a, b, c ∈ A,

κ3(a, b, c) = ϕ(abc)− ϕ(a)ϕ(bc)− ϕ(b)ϕ(ac)− ϕ(c)ϕ(ab) + 2ϕ(a)ϕ(b)ϕ(c) (2.11)

The fourth cumulant κ4(a, b, c, d) = κ [a, b, c, d] would be computed in the same way, by writing the

moment-cumulant formula over NC(4), simplifying according to the known values of the first three cumulants,

and solving for κ4. It is too long to write for arbitrary a, b, c, d ∈ A, (it has 14 terms, one for each non-

crossing partition in NC(4),) but for the special case where all four random variables are centered, i.e.

ϕ(a) = ϕ(b) = ϕ(c) = ϕ(d) = 0, most of the terms vanish and the cumulant simplifies to

κ4(a, b, c, d) = ϕ(abcd)− ϕ(ab)ϕ(cd)− ϕ(ad)ϕ(cd). (2.12)

Similarly, in the special case a = b = c = d, the cumulant simplifies to

κ4(a, a, a, a) =ϕ(aaaa)− 4ϕ(aaa)ϕ(a)− 2ϕ(aa)2 + 10ϕ(aa)ϕ(a)2 − 5ϕ(a)4. (2.13)

Admittedly, the method used above for computing the n-th cumulant is tedious, it gets very long quickly

as n increases, and it has the disadvantage that, in order to compute κn, all previous cumulants must have

been computed in advance. In order to overcome the difficulty, techniques from advanced combinatorics are

essential, namely lattice theory and the Möbius inversion formula on a lattice. Unfortunately this subject is

too deep to be covered in this thesis. For reference, we direct the reader to lectures 9 and 10 of [12]. The

rough idea is that there exists a function µn : NC(n)→ Z such that the cumulants may be evaluated directly

by

κn(a1, · · · an) =
∑

π∈NC(n)

µn(π)ϕπ[a1, · · · an].

Where ϕ is treated as a multiplicative family in NC by writing ϕn(a1, a2, · · · , an) = ϕ(a1a2 · · · an). For

example, we would write ϕ [a, b, c, d] = ϕ(abd)ϕ(c). In turn, one computes the function µn combinatorially

32



from the lattice structure of NC(n), namely by the lattice diagram of NC(n). For example, the lattice

diagrams of NC(2), NC(3) and NC(4) are

1

-1

,

1

-1 -1 -1

2

,

1

-1 -1 -1 -1 -1 -1

2 22 21 1

-5

,

where each partition π ∈ NC(n) above is labeled with its corresponding value µn(π). Notice, for example

that the coefficients of ϕπ that determine the second and third cumulants in equations (2.10) and (2.11)

precisely match the respective values µn(π), as indicated in the diagram. In fact, the author wrote equations

(2.12) and (2.13) on fourth cumulants by reading the diagram. Details on the construction and interpretation

of these diagrams may be found in [12].

The following theorem is a central result of free probability. It gives a characterization of free independence

in terms of cumulants. Roughly, it states that a collection of random variables is free if and only if their

mixed cumulants vanish.

2.16 Theorem. Let (A, ϕ) be a non-commutative probability space and let (κn)n∈N be the corresponding free

cumulants. Let Ai for i ∈ I, be subalgebras of A. Then the following are equivalent.

(i)
{
Ai
}
i∈I are freely independent.

(ii) If n ≥ 2, and a1, · · · , an are random variables with ar ∈ Ai(r), for i(1), · · · i(n) ∈ I, and if there exist

p, q ∈ [n], p < q with i(p) 6= i(q), then κn(a1, a2, · · · , an) = 0.

As this theorem illustrates, the main use of free cumulants is the simplification of definitions, computa-

tions and proofs. For example, recall the definition of freeness given in section 2.2. In order to show random

variables are free, according the definition, one needs to show that mixed moments vanish under certain con-

ditions; namely, they have to be moments of centered random variables, and neighbouring random variables

in the mixed moment must be generated by different random variables from the free family. According to the

criterion given by this theorem, on the other hand, if we look at the same random variables from the point of

view of their joint free cumulants, all we need to show is that mixed cumulants vanish; no other conditions
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need be satisfied. The proof of this theorem is not particularly hard, but it uses nontrivial combinatorial

properties of NC, and it is a rather long proof, so it is omitted. See [12].

2.6 The R-Transform and Free Convolution

In this section, we will study random variables by focusing on their sequence of moments and their sequence

of free cumulants. For a fixed random variable a in a non-commutative probability space (A, ϕ), he sequence

of moments, as seen in the previous chapter, is simply
(
ϕ(an)

)
n∈N. Similarly the sequence(

κn(a, · · · , a)
)
n∈N

will be referred to as the sequence of cumulants of a.

2.17 Notation. Given a ∈ (A, ϕ), for simplicity we will write

ma
n = ϕ(an) κan = κn(a, · · · , a).

If µ is the ∗-distribution of a in some ∗-probability space, then we may also write mµ
n for ma

n and κµn for κan.

And, when there is no risk of ambiguity, we drop the superscript, and we just write mn and κn.

2.18 Remark. In a non-commutative probability space, the sequence of moments contains all the information

about the distribution of a. Since the the sequence of moments is related to the sequence of cumulants by

the moment-cumulant formula,

ϕ (a1 · · · an) =
∑

π∈NC(n)

κπ[a1, · · · , an],

then it follows that both the sequence of moments can be recovered from the sequence of cumulants, and vice

versa. In other words, the sequences of moments and cumulants contain exactly the same information about

the distribution of a random variable.

2.19 Remark. In the framework of a non-commutative probability space, the sequence of moments captures

all the information about the single random variable. In the framework of a ∗-probability space, the ∗-

distribution of a single random variable is far more complicated, as seen in chapter 1. But in the case of

a selfadjoint random variable, we do have that the sequence of moments captures all of its probabilistic

information. The same can be said about the sequence of cumulants, by remark 2.18.

In non-commutative probability in general, we are often interested in studying sums of random variables.

See, for instance, what we did in example 1.21, where we defined the normal random variables known as Haar

unitaries u, whose distribution is quite straight forward. Then we found analytically the distribution of the

sum u + u∗, a selfadjoint random variable. It was found to have the arcsine distribution and a sequence of

moments given by n 7→
(
n
n/2

)
if n is even, and n 7→ 0 if n is odd. Similarly, we studied the example of section

1.3, in which we studied a non-normal random variable a with a very simple distribution. The sum a+a∗ was
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considered, as a selfadjoint random variable, and it was found to have the semicircular distribution, which

gives the moment sequence n 7→ Cn/2 if n is even, and zero otherwise.

It is especially important in free probability to compute the sum of free, identically distributed random

variables, as we saw, for example, in the central limit theorem (section 2.4). We, therefore, define free

convolution to capture the essence of addition of freely independent random variables.

2.20 Definition. (1) Let (A, ϕ), and (B, ψ) be ∗-probability spaces and a ∈ A, b ∈ B. If there exists a

∗-probability space (C, τ) and random variables a′, b′ such that a, a′ are identically distributed, b, b′ are

identically distributed, and a′, b′ are free, then we say that a′ + b′ are the free convolution of a and b. In

this case, we write

a� b = a′ + b′.

(This is a slight abuse of notation, since a′, b′, and (C, τ) are not necessarily unique, but since the freeness

of a′ and b′ uniquely determines mixed ∗-moments in terms of the ∗-moments of a and of b, then the

∗-distribution of a′ + b′ is uniquely determined by the ∗-distributions of a and b.)

(2) If µ and ν are ∗-distributions C〈X,X∗〉 → C, then the ∗-distribution η : C〈X,X∗〉 → C is said to be the

free convolution of µ and ν, if there exist random variables a and b in some ∗-probability space such that

η is the ∗-distribution of a� b. In this case we write

µ� ν = η.

As the reader has seen up to know, the moments of a sum of random variables are not predictable in any

obvious way. This is the case both in sums of non-free random variables, as in the computations for u+ u∗

and a + a∗, mentioned above, and also in sums of free random variables, as is seen in the computations of

the mixed moments of free random variables, as in the central limit theorem. In other words, computing free

convolutions is non-trivial from the point of view of moments. However, from the point of view of cumulants,

this is not the case. The single most important property of cumulants is that they are additive on free random

variables.

2.21 Proposition ([12]). Let a, and b be freely independent random variables in a non-commutative proba-

bility space. Then we have, for all n ∈ N,

κa+b
n = κan + κbn.

Proof. This is a direct consequence of the vanishing of mixed cumulants, and the properties of κn as an
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n-linear function:

κa+b
n = κn(a+ b, · · · , a+ b)

=
∑

(x1,··· ,xn)∈{a,b}n
κ(x1, · · · , xn) (by multilinear property)

= κn(a, · · · , a) + κn(b, · · · , b) (by vanishing of mixed cumulants)

= κan + κbn.

An equivalent way of stating the theorem above would be: For any random variables a, and b in any pair

of non-commutative probability spaces, we have

κa�bn = κan + κbn.

In light of this result, it is easy to see that the computation of free convolution is better done in terms of

cumulants than in terms of moments. Therefore, the main technique used in free probability to compute free

convolutions is, in summary, passing from knowledge of distributions to knowledge of cumulants, perform

direct addition to obtain the cumulants of the convolution, and finally return to knowledge of distributions.

The transition between moments and cumulants is done either combinatorially, by directly applying the

moment-cumulant formula, algebraically, as in the kinds of computations done in the central limit theorem,

or analytically, which leads us to define Voiculescu’s “R-transform.”

It is common practice in basic combinatorics to record the information of a sequence as the coefficients

of a formal power series and attempt using different analytic tools. We do exactly this (with a shift on the

indices,) on the sequence of free cumulants.

2.22 Definition. Let a be a random variable in a non-commutative probability space. Then theR-transform

Ra of a (also denoted Rµ, and referred to as the R-transform of µ, if µ is the distribution of a ) is the formal

power series

Ra(z) =
∞∑
n=0

κn+1z
n.

Therefore we have the desired additivity of the R-transform: If a and b are free random variables in a

non-commutative probability space, then

Ra+b(z) = Ra(z) +Rb(z).

The use of the R-transform is to take advantage of selfadjoint random variables with an analytic distribution.

It is related to the Cauchy transform in the following way.

2.23 Theorem. Let µ be a compactly supported probability measure on R. Then the R-transform of µ is

related to the Cauchy transform of µ by

Gµ

(
Rµ(z) +

1

z

)
= z.
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See [12] for a proof involving the combinatorics of NC and other analytic computations.

Observe that the R-transform can be computed by finding the inverse function of Gµ:

G−1
µ (z) = Rµ(z) +

1

z
.

Recall also that the Cauchy transform can be written in two forms, one in terms of the sequence of moments

and the other in terms of an analytic distribution. Namely, we have

Gµ(z) =

∫
1

z − t
dµ(t) =

∞∑
n=0

mµ
n

zn+1
.

And so a standard procedure to transition from distributions to cumulants is to compute the Cauchy

transform of a selfadjoint random variable, (whether this is done by its sequence of moments or by its

analytic distribution), compute its inverse, and solve for Ra(z). A similar procedure is used to return from

cumulants to moments.
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3 Simplicial Complexes

Chapters 1 and 2 were an introduction to free probability and its techniques. The rest of this thesis

will focus specifically on a recent application of non-commutative probability to algebraic topology. This

research area is in its very early stages and, as the reader will notice, is significantly unfinished. This chapter

introduces the main topological objects to be studied, simplicial complexes. We will introduce definitions,

notations and properties concerning simplicial complexes and basic homology theory; then, we will record

all the information that determines a simplicial complex in the form of a block-matrix. This matrix will

be studied in subsequent chapters as a non-commutative random variable. All of our notation in this and

subsequent chapters is intended to match the notations used by Vargas in [15].

3.1 Simplices and Complexes

Simplicial complexes are a kind of topological space made up of “triangulations” of different dimensions.

First, we define these k-dimensional “triangles”, or properly called, simplices.

3.1 Definition. Let v0, v1, . . . , vk be points in Rn, for some n ≥ k. Then v0, v1, . . . , vk are said to be in

general position (or affinely independent) if and only if the vectors v1 − v0, v2 − v0, . . . , vk − v0 are linearly

independent in Rn.

3.2 Definition. Let v0, v1, . . . , vk be in general position in Rn for some n ≥ k. Then the k-dimensional

simplex, or k-simplex on the vertices v0, v1, . . . , vk , denoted [v0, v1, . . . , vk], is defined to be the convex hull

of its vertices, i.e. the set

[v0, v1, . . . , vk] =

x ∈ Rn : x =

k∑
j=0

αjvj , αj ≥ 0,

k∑
j=0

αj = 1

 .

Given simplices σ and τ , we say τ is a subsimplex of σ if and only if every vertex of τ is a vertex of σ. If τ is a

subsimplex of σ, and the dimension of τ is one less than the dimension of σ, then we say τ is a face of σ. Thus

faces of σ are obtained by removing exactly one vertex from those of σ. Given a k-simplex [v0, v1, . . . , vk], we

will denote the (k − 1)-face on all but one of the vertices by the notation

[v0, . . . , v̂i . . . , vk] = [v0, . . . , vi−1, vi+1 . . . , vk] ,

so that the “hat” in v̂i indicates that the vertex vi is omitted.
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For example, given points a, b, c and d in standard position in Rn, the simlpex [a] = {a} is simply a point,

[a, b] is a line, [a, b, c] is a triangle, and [a, b, c, d] is a tetrahedron.

a

a

b

a

b
c

a

b
c

d

3.3 Notation. Throughout this work, we will assume that the vertices of a simplex are linearly ordered,

and this will be expressed by indices. A simplex [vj0 , vj1 , . . . , vjk ] will always be expressed with the vertices

in increasing order. In other words, we use the convention that

A simplex may be expressed as [vj0 , vj1 , . . . , vjk ], if and only if j0 < j1 < · · · < jk.

Furthermore, when drawing diagrams, arrows may be added to the edges (i.e. 1-dimensional subsimplices),

pointing from lesser to greater, in the order of the vertices.

So for example, the simplex [a, b, c] above, with the order a < b < c, (i.e., v1 = a, v2 = b, v3 = c,) may be

represented pictorially by

a

b
c

3.4 Definition. A simplicial complex X in Rn is a collection of simplices in Rn such that:

1. If σ, τ ∈ X, then the set σ ∩ τ is itself a simplex, and it is a subsimplex of both σ and τ .

2. If σ ∈ X and τ is a subsimplex of σ, then τ ∈ X.

Furthermore, we will denote simplicial complexes as disjoint unions

X =

d⋃
i=0

Xi,

where Xi is the set of i-simplices in X, and d = max{i : Xi 6= ∅}. d is called the dimension of X. We define

also ni to be the number of i-simplices in X, and N to be the total number of simplices in X, i.e.

ni = |Xi| and N = n0 + n1 + · · ·+ nd.

0-dimensional simplices in a simplicial complex are often referred to as vertices, and 1-dimensional simplices

are referred to as edges.
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It should also be noted that by the definition of a simplex, the vertices of each simplex are in general

position, but this needs not be the case for all vertices in the complex.

3.5 Example. Consider the points v1 = (0, 0), v2 = (1, 3), v3 = (3, 1), v4 = (−3,−2) in R2 and the

2-dimensional simplicial complex K in R2 represented pictorially by

v1

v2

v3

v4

.

For future reference, we will call the simplicial complex K the kite. Note that v1, v2, v3 are in general position

because they are not colinear, and v1, v4 are in general position because they are distinct. Also, note that

v1, v2, v3, v4 are not in general position, because they are four co-planar points (obviously, since they are 4

points in R2) but this is no issue for us; it just means that the 3-simplex [v1, v2, v3, v4] cannot be defined.

The simplicial-complex structure of X is

X =
{

[v1], [v2], [v3], [v4],

[v1, v2], [v1, v3], [v1, v4], [v2, v3],

[v1, v2, v3]
}
.

And the elements of X1, X2, X3 are written in different lines, respectively.

3.6 Notation. As in the notation above, we will always assume the collection of all vertices (or 0-simplices)

will be ordered by indices so that we will always write indices as in

X0 =
{

[v1], [v2], . . . , [vn0 ]
}
,

and therefore an arbitrary simplex in X will have the form

σ = [vi0 , vi1 , . . . , vik ], for 1 ≤ i0 < i1 < · · · < ik ≤ n0.

We will fix an order on X as follows. First, on each Xj we will use the lexicographic (or dictionary) order:

for any σ = [vi(0), . . . , vi(j)], τ = [vk(0), . . . , vk(j)] in Xj ,

σ < τ if and only if



i(0) < k(0)

or i(0) = k(0), i(1) < k(1)

or i(0) = k(0), i(1) = k(1), i(2) < k(2)
...

...
...

...
. . .

or i(0) = k(0), i(1) = k(1), · · · , i(j) < k(j).
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And thus we write the j-simplices in order as

Xj =
{
σ

(j)
1 , σ

(j)
2 , · · · , σ(j)

nj

}
.

Then we declare that for j < `, and σ
(j)
i ∈ Xj , σ

(`)
k ∈ X`, we have

σ
(j)
i < σ

(`)
k

Thus we have a linear order in X and we write its N elements it in increasing order:

X =
{
σ

(0)
1 , σ

(0)
2 , · · · , σ(0)

n0 ,

σ
(1)
1 , σ

(1)
2 , · · · , σ(1)

n1 ,
...

σ
(d)
1 , σ

(d)
2 , · · · , σ(d)

nd

}
For example, the simplices of X from example 3.5 were written in increasing order.

The main use of simplicial complexes is in reducing topological objects to a combinatorial structure; one

then uses combinatorial methods to express its topological properties. Since a simplicial complex is simply a

set of simplices, we will also talk of its geometric realization in Rn

|X| =
d⋃
i=0

ni⋃
j=1

σ
(i)
j ,

And when we talk about the topology of a simplicial complex, we are referring to the topology of its geometric

realization.

3.2 Chain Complexes and Homology

We now define chain groups on a simplicial complex. For our purposes, the chain groups are vector spaces

over C.

3.7 Definition. Let X be a simplicial complex of dimension d. Then for any 0 ≤ i ≤ d, the i-th chain group

of X is the formal vector space over C, denoted Ci (or Ci(X)), with basis Xi, i.e.

Ci = C
{
σ

(i)
1 , σ

(i)
2 , · · · , σ(i)

ni

}
.

The motivation for defining the chain groups is to define the homology groups, algebraic structures which

capture some of the topological data of the simplicial complex. To this end we define the boundary operator

∂i : Ci → Ci−1

3.8 Definition. Let X be a simplicial complex as above with vertices v1, v2, · · · , vn0
. Then for 1 ≤ i ≤ d,

we define the boundary operator ∂i : Ci → Ci−1 (or ∂i(X),) to be the linear map determined as follows.
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Let 1 ≤ j(0) < j(1) < · · · < j(i) ≤ n0, then

∂i
([
vj(0), vj(1), · · · , vj(i)

])
=

i∑
k=0

(−1)k
[
vj(0), vj(1), · · · , v̂j(k), · · · , vj(i)

]
,

where the “hat” in v̂j(k) indicates vj(k) has been deleted from the list, i.e.

[
vj(0), vj(1), · · · , vj(k−1), v̂j(k), vj(k+1), · · · , vj(i)

]
=
[
vj(0), vj(1), · · · , vj(k−1), vj(k+1), · · · , vj(i)

]
∈ Ci−1.

We define ∂0 : C0 → 0 to be the zero map.

The chain complex of X is then the set (C•, ∂•) = {(Ci, ∂i) : 0 ≤ i ≤ d}, and is summarized in the following

diagram.

Cd Cd−1 · · · C1 C0 0
∂d ∂d−1 ∂2 ∂1 ∂0

In light of boundary operators, we denote faces of a simplex as either even or odd. Recall that a face of

an i-dimensional simplex is by definition an (i− 1)-dimensional subsimplex.

3.9 Definition. A face
[
vj(0) · · · , v̂j(k), · · · , vj(i)

]
of a simplex

[
vj(0), · · · , vj(i)

]
is said to be an even face if

k is even, and an odd face if k is odd.

In other words, even faces of a simplex are the ones that get a coefficient of 1 in the boundary of the

simplex, and odd simplices are the ones given a coefficient of −1. Note that a face is only even or odd relative

to the simplex that contains it. So for example one simplex could be an even face in one simplex and an

odd face in another.

In practice, we usually do not write out simplices as the complete list of vertices. Instead, we only have a

list of simplices written in order and an indication of which are subsimplices of which, see the example below.

A way to remember in a simplex which faces are even and which are odd, we begin by writing the faces in

increasing order. Then the last of the faces (the greatest in the linear order) is even, and then we proceed

from last to first, alternating between even and odd.

3.10 Example. Let us take the kite, K, introduced in example 3.5. I.e., K is the 2-dimensional simplicial

complex

v1

v2

v3

v4

e1

e2

e3

e4

f1

,

whose simplices we denote as

X = { v1, v2, v3, v4, e1, e2, e3, e4, f1 }
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(v1 is being identified with [v1], the edges ei are written in order, and f1 = [v1, v2, v3] ). Then the chain

groups of X are

C0 = C
{
v1, v2, v3, v4

}
, C1 = C

{
e1, e2, e3, e4

}
, C2 = C

{
f1

}
,

and the boundary operators are determined on each simplex as follows.

∂0 : C0 → 0 ∂1 : C1 → C0 ∂2 : C2 → C1

v1 7→ 0 e1 7→ v2 − v1 f1 7→ e4 − e2 + e1

v2 7→ 0 e2 7→ v3 − v1

v3 7→ 0 e3 7→ v4 − v1

v4 7→ 0 e4 7→ v3 − v2

So, for instance, e3 and e1 are even faces of f1, and e2 is an odd face of f1; in every edge the final endpoint is

an even face and the initial enpoint is odd; and, we have that v2 is an even face of e1 but an odd face of e4.

To motivate the coming theorem, let us compute (∂1 ◦ ∂2)(f1).

∂1

(
∂2(f)

)
= ∂1(e3 − e2 + e1)

= ∂1(e4)− ∂1(e2) + ∂1(e1)

= (v3 − v2)− (v3 − v1) + (v2 − v1)

= 0.

As we see in the following theorem, this is no coincicdence.

An important invariant in algebraic topology is the homology group of a simplicial complex, which will

be defined as a quotient of vector spaces in Ci. The following theorem is necessary for homology to make

sense.

3.11 Theorem. If (C•, ∂•) is the chain complex of a simplicial complex, then we have, for each 1 ≤ i ≤ d,

∂i−1 ◦ ∂i = 0.

Proof. Take a basis element σ
(i)
r in Ci. We have the following computations.

(∂i−1 ◦ ∂i)
(
σ(i)
r

)
=∂i−1

(
∂i

(
σ(i)
r

))
=∂i−1

(
∂i
([
vj(0), vj(1), · · · , vj(i)

]))
(for some j : [i]→ [n0])

=∂i−1

(
i∑

k=0

(−1)k
[
vj(0), · · · , v̂j(k), · · · , vj(i)

])

=

i∑
k=0

(−1)k∂i−1

([
vj(0), · · · , v̂j(k), · · · , vj(i)

])
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=

i∑
k=0

(−1)k∂i−1

([
vj(0), · · · , vj(k−1), vj(k+1), · · · , vj(i)

])
=

i∑
k=0

(−1)k

((
k−1∑
`=0

(−1)`
[
vj(0), · · · , v̂j(`), · · · , vj(k−1), vj(k+1), · · · , vj(i)

])

+

(
i∑

`=k+1

(−1)`−1
[
vj(0), · · · , vj(k−1), vj(k+1), · · · , v̂j(`), · · · , vj(i)

]))

=

i∑
k=0

(−1)k

((
k−1∑
`=0

(−1)`
[
vj(0), · · · , v̂j(`), · · · , v̂j(k), · · · , vj(i)

])

+

(
i∑

`=k+1

(−1)`(−1)
[
vj(0), · · · , v̂j(k), · · · , v̂j(`), · · · , vj(i)

]))

=

i∑
k=0

k−1∑
`=0

(−1)k+`
[
vj(0), · · · , v̂j(`), · · · , v̂j(k), · · · , vj(i)

]
−

i∑
k=0

i∑
`=k+1

(−1)k+`
[
vj(0), · · · , v̂j(k), · · · , v̂j(`), · · · , vj(i)

]
=

∑
0≤`<k≤i

(−1)k+`
[
vj(0), · · · , v̂j(`), · · · , v̂j(k), · · · , vj(i)

]
−

∑
0≤k<`≤i

(−1)k+`
[
vj(0), · · · , v̂j(k), · · · , v̂j(`), · · · , vj(i)

]
=

∑
0≤`<k≤i

(−1)k+`
[
vj(0), · · · , v̂j(`), · · · , v̂j(k), · · · , vj(i)

]
−

∑
0≤`<k≤i

(−1)k+`
[
vj(0), · · · , v̂j(`), · · · , v̂j(k), · · · , vj(i)

]
= 0

3.12 Corollary. Let (C•, ∂•) be the chain complex of a simplicial complex. Then we have, for each 0 ≤ i < d,

that im(∂i+1) is a subspace of ker(∂i) (both as subspaces of Ci).

The proof is immediate from theorem 3.11.

3.13 Definition. Let X be a simplicial complex as above, with chain complex (C•, ∂•) and 0 ≤ i < d. Then

the i-th homology group of X is the complex vector space given by the quotient

Hi =
ker(∂i)

im(∂i+1)

(We may also write Hi(X) when X needs to be specified.) Furthermore, the i-th Betti number βi (or βi(X))

is defined as the dimension of the i-th homology group.

βi = dim(Hi)

There would be no point for us in diverting too much on homology theory. All we need to know for this

thesis is the following facts:
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1. Homology groups (and hence Betti numbers) are topological invariants, and even homotopy-type invari-

ants. Hence it is heavily used theoretically to distinguish non-homeomorphic topological spaces. For

example, to prove that Rm and Rn are not homeomorphic for m 6= n, one shows that upon removing a

single point from each, the remaining spaces have different homologies unless m = n.

2. Betti numbers have a nice, intuitive geometric interpretation. The Betti number β0(X) is exactly the

number of path-connected components of X as a topological space; β1(X) is equal to the number of

“holes” in the space X (for example, if X has the shape of a solid coffee mug, then it has β1(X) = 1, if

X is has the shape of two circles with a single point in common, then β1(X) = 2); β2(X) is the number

of “hollow spaces” enclosed by X, for example both a sphere and a torus have β2 = 1. And so on in

higher dimensions.

3. The sequence of Betti numbers is used often in pure and applied mathematics to encode many properties

of a topological space. In particular, it is often possible to obtain the sequence of Betti numbers for an

unknown space either theoretically, e.g. via cohomology, or experimentally, e.g. via topological data

analysis (see section 6.2). In both cases, knowledge of the homology or Betti numbers of a space reveals

important information.

For the precise statements of these properties, see any standard textbook on algebraic topology, such as

[11, 7].

An equivalent way to define a chain complex is by writing

C• =

d⊕
i=0

Ci and ∂• : C• → C•,

with ∂• a linear map defined by the linear property and its value on basis vectors

∂•

(
σ

(i)
j

)
= ∂i

(
σ

(i)
j

)
.

In this notation, theorem 3.11 simplifies to

∂2
• = 0

We will, from now on, use the isomorphism C• ∼= Cn0+n1+···+nd = CN , with the standard basis on CN

written as {
e

(0)
1 , e

(0)
2 , · · · , e(0)

n0 ,

e
(1)
1 , e

(1)
2 , · · · , e(1)

n1 ,
...

e
(d)
1 , e

(d)
2 , · · · , e(d)

nd

}
and the isomorphism given by σ

(i)
j 7→ e

(i)
j . We will use the standard inner product 〈a, b〉 on CN . (That is,

〈a, b〉 = b∗a, where A∗ is the conjugate transpose of a matrix A, a, b ∈ CN are seen as column vectors, and

(b∗)(a) is seen as matrix multiplication.)
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3.3 The Boundary Operator

We denote by J(X), or just J , the boundary matrix of X, which is by definition the natural map J : CN → CN

corresponding to ∂• under the isomorphism above. J is simply the map such that for each i = 0, · · · , d and

j ∈ [ni], we have

J
(
e

(i)
j

)
=

∑
0≤k≤d
1≤`≤nk

α
(k)
` e

(k)
` , for some constants α

(k)
` ∈ C, if and only if ∂•

(
σ

(i)
j

)
=

∑
0≤k≤d
1≤`≤nk

α
(k)
` σ

(k)
` .

In other words, J is the unique linear map that makes the following diagram commute.

C• CN

C• CN .

∼=

∂• J

∼=

More concretely, if ψ : C• → CN is the isomorphism given by ψ
(
σ(i)j

)
= e(i)j, then we have

J = ψ∂•ψ
−1.

Similarly, we define di : Cni → Cni−1 to be the natural map corresponding to ∂i : Ci → Ci−1. In other

words, the following diagram commutes:

Ci Cni

Ci−1 Cni−1 ,

∼=

∂i di

∼=

and we have

di = ψ|Ci∂iψ
1
|Ci .

The direct-sum decomposition CN = Cn0 ⊕ Cn1 ⊕ · · · ⊕ Cnd gives J the structure of a block matrix, where

the sizes of the block are given by the numbers (n0, n1, · · · , nd).

We will use the following notation for block matrices of this form.

3.14 Notation. If A is an N ×N matrix with the block structure given by N = n0 + n1 + · · · + nd, then

we will say A is an (n0, n1, · · · , nd)-block matrix, and write the blocks of A as
[
A(i,k)

]d
i,k=0

, that is

A =


A(0,0) A(0,1) · · · A(0,d)

A(1,0) A(1,1) · · · A(1,d)

...
...

. . .
...

A(d,0) A(d,1) · · · A(d,d)

 ,

where A(i,k) is an ni × nk matrix whose elements are given by

A(i,k) =
[
a

(i,k)
j,`

]
j,`

(1 ≤ j ≤ ni, 1 ≤ ` ≤ nk).
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Since J : CN → CN restricts on each of the subspaces Cn0 ⊕Cn1 ⊕ · · ·⊕Cnd to a map Cni → Cni−1 , then

J =
[
J (i,k)

]d
i,k=0

is an (n0, n1, · · · , nd)-block matrix whose only nonzero blocks are J (i,i−1) for i = 1, 2, · · · , d.

And we get precisely that J (i,i−1) = di.

0 d1 0 · · · 0 0

0 0 d2 · · · 0 0

0 0 0
. . . 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 dd

0 0 0 · · · 0 0


.

And finally, we observe that the entries of di are given by

(di)j,` =


1, if σ

(i−1)
` is an even face of σ

(i)
j ,

−1, if σ
(i−1)
` is an odd face of σ

(i)
j ,

0, else.

3.15 Example. Let us see what the boundary matrix J(K) is, for the kite complex K in example 3.5

v1

v2

v3

v4

e1

e2

e3

e4

f1

,

We have, for this complex, N = 9, so

C• ∼= C9 = C4 ⊕ C4 ⊕ C1 = C
{
v1, v2, v3, v4} ⊕ C

{
e1, e2, e3, e4} ⊕ C

{
f1}.

Therefore, J(K) is a (4, 4, 1)-block matrix

J(K) =


0 d1 0

0 0 d2

0 0 0

 =



0 0 0 0 −1 −1 −1 0 0

0 0 0 0 1 0 0 −1 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0



.
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4 Finite-Dimensional Hodge Theorem

In this chapter we continue using the definitions and notation of simplicial complexes, their homology

and their corresponding boundary matrices to provide a proof of the finite-dimensional version of the Hodge

theorem. For this chapter, let us take a simplicial complex X =
⋃d
i=0Xi with |Xi| = ni, N = n0 + · · ·+ nd,

with boundary matrix J . As in the previous chapter, J =
[
J (i,k)

]d
i,k=0

is an (n0, · · · , nd)-block matrix whose

only nonzero blocks are J (i−1,i) = di.

4.1 Definition. The combinatorial Laplacian of X is defined to be the N ×N matrix ∆ = JJ∗ + J∗J.

4.2 Remark. ∆ can be expressed as a block diagonal matrix of the operators ∆i, which we define by ∆i =

d∗i di + di+1d
∗
i+1.

∆ =



d1d
∗
1 0 · · · 0

0 d∗1d1 + d2d
∗
2

...
. . .

...

d∗d−1dd−1 + ddd
∗
d 0

0 · · · 0 d∗ddd



=



∆0 0

∆1

. . .

∆d−1

0 ∆d


.

The Hodge theorem is a key result in differential geometry and algebraic geometry. However, the standard

statement and proof of the theorem is in a general setting that requires much knowledge not relevant to this

thesis. Here, we only deal with a finite-dimensional, linear-algebraic version of the theorem. A similar

finite-dimensional version of this theorem was posted online and proved in a similar way in [10].

Recall that the i-th homology group of X is defined by

Hi(X) =
ker(∂i)

im(∂i+1)
.

The following theorem is a mere reformulation of the results of Eckmann in [4].

4.3 Theorem. We have the following vector space isomorphism.

ker(∆i) ∼= Hi(X)
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Proof. First, we will show that ker(∆i) = ker(di) ∩ ker(d∗i−1). It is clear that ker(di) ∩ ker(d∗i−1) ⊂ ker(∆i).

To show the other containment take x ∈ ker(∆i). Since ∆ix = 0, we also have that 〈∆ix, x〉 = 0. On the

other hand, we compute

〈∆ix, x〉 = 〈(d∗i di + di+1d
∗
i+1)x, x〉

= 〈d∗i dix+ di+1d
∗
i+1x, x〉

= 〈d∗i dix, x〉+ 〈di+1d
∗
i+1x, x〉

= 〈dix, dix〉+ 〈d∗i+1x, d
∗
i+1x〉.

Since 〈u, u〉 ≥ 0 for any u ∈ Rni ∼= Ci, we must have

〈dix, dix〉+ 〈d∗i+1x, d
∗
i+1x〉. = 0,

which implies that dix = 0 and d∗i+1x = 0. Thus we conclude x ∈ ker(di) ∩ ker(d∗i−1), and therefore

ker(∆i) = ker(di) ∩ ker(d∗i−1).

Now, we will show that

Rni ∼= Hi ⊕ ker(d∗i+1)⊥ ⊕ ker(di)
⊥. (4.1)

This will prove the theorem because we also have the orthogonal decomposition

Rni =
(
ker(d∗i+1) ∩ ker(di)

)
⊕
(
ker(d∗i+1) ∩ ker(di)

)⊥
=
(
ker(d∗i+1) ∩ ker(di)

)
⊕ ker(d∗i+1)⊥ ⊕ ker(di)

⊥.

So by uniqueness of direct-sum decompositions, we would conclude

Hi
∼= ker(di) ∩ ker(d∗i−1),

as desired.

We decompose the space ker(di) as a direct sum

ker(di) ∼= im(di+1)⊕Hi.

This decomposition is immediate from the definition of Hi as the quotient

Hi =
ker(di)

im(di+1)
.

Now we decompose Ci (or Rni).

Rni = ker(di)⊕ ker(di)
⊥

∼= (im(di+1)⊕Hi)⊕ ker(di)
⊥

∼= Hi ⊕ im(di+1)⊕ ker(di)
⊥

= Hi ⊕ ker(d∗i+1)⊥ ⊕ ker(di)
⊥

This is precisely as in equation (4.1), and thus concludes the proof. (In the last line, we used the result from

finite-dimensional linear algebra that im(T ) = ker(T ∗)⊥ for any linear map T .)
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5 Spectral Analysis of Simplicial Complexes

This chapter is based on the results of Vargas in [15], and it gives the main results of this thesis. They

are expressed in a slightly more general version of non-commutative probability called operator-valued non-

commutative probability.

5.1 Operator-Valued Probability Spaces

5.1 Definition. A triple (A,B,E) is an Operator-Valued Probability Space (or OVPS ) if and only if A is a

unital algebra over C, B ⊂ A is a unital subalgebra, and E : A → B is a conditional expectation, which is by

definition a linear map satisfying the following conditions.

(i) E(b) = b, for all b ∈ B.

(ii) If a ∈ A, and b1, b2 ∈ B, then E(b1ab2) = b1E(a)b2

5.2 Remark. Note that condition (ii) implies E(1) = 1.

5.3 Example. Every non-commutative probability space (A, ϕ) is also an OVPS
(
A,C{1A}, ϕ′

)
, where for

a ∈ A, ϕ′(a) = ϕ(a)1.

5.4 Example. Given a non-commutative probability space (A, ϕ), we can consider the space of random ma-

trices as an OVPS (Mn(A),Mn(C),E), where E is given by mapping a random matrix into the deterministic

matrix given by “entry-wise expectation”:

E
(

[aij ]i,j

)
=
[
ϕ (aij) 1

]
i,j
.

5.5 Example. Given a measure space (Ω,F , µ), and partition Ω =
⋃n
i=1 Si into measurable sets Si, we take

χi to be the characteristic function of Si, alg(1, χ1, · · · , χn) = span(χ1, · · · , χn) we have(
L∞(Ω, µ), alg(χ1, · · · , χn), F

)
,

where F =
∑n
i=1 Ei, and

Ei(f) =
E(f · χi)

E(χi)
χi.

5.6 Example. Take N = n0 + n1 + · · ·+ nd, and the unital algebra A =MN (C). We will look at elements

in A as (n0, n1, · · · , nd)-block matrices

A =
[
A(i,k)

]d
i,k=0

,
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where A(i,k) is any ni × nk matrix with complex coefficients,

A(i,k) = [a
(i,k)
j,` ]j,`.

Next, we develop an OVPS structure on A. For each 0 ≤ i ≤ d, let Pi ∈ A be the block matrix

Pi = [A(j,`)] such that A(j,`) =

Ini , if j = ` = i,

0, else.

That is,

Pi =



0n0
0

0n1

. . .

Ini
. . .

0 0nd


,

where, for all n ∈ N, 0n and In are respectively the n× n zero matrix and identity matrix. In other words,

using the basis {e(i)
j |0 ≤ i ≤ d, 1 ≤ j ≤ ni} for RN = Rn0 ⊕ · · · ⊕ Rnd used above, Pi : RN → RN is the

operator determined by

Pi

(
e

(k)
`

)
=

e
(k)
` , i = k

0, i 6= k,

for all e
(k)
` 0 ≤ k ≤ d and ` ∈ [nk], and its matrix is as described.

Then take B = alg(P0, · · · , Pd), the subalgebra generated by the matrices Pi. Note
∑
Pi = IN ∈ B, so B

is unital. We will now define a conditional expectation E as follows. For all 0 ≤ i ≤ d let Ei be defined for

alla ∈ A by

Ei(a) =
Tr(PiaPi)

Tr(Pi)
Pi.

Then we define

E =

d∑
i=0

Ei,

and indeed we have that (
A,B,E

)
is an operator-valued probability space.

This last example is the one we will use throughout the rest of this chapter.

In previous chapters we saw how a topological space X with the structure of a simplicial complex can

be encoded by its boundary matrix J . We also saw how the Hodge theorem gives a method for computing

information about the homology of the topological space; namely, computing the kernels of the blocks of

∆ = J∗J + JJ∗ gives the Betti numbers β0, · · · , βd of X. Now, in the notation from the last example, we
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can practically treat the topological space of a simplicial complex as a random variable in an operator-valued

probability space, namely by taking its boundary matrix as a random variable J ∈ MN (C), where N is the

number of simplices in X. Now, the result we present in this thesis is one example of the ways in which it

may be advantageous to study topological spaces from the point of view of non-commutative probability.

5.7 Definition. Let A be a random variable in the OVPS
(
MN (C), alg(P0, · · · , Pn), E

)
, i.e. A is the block

matrix A =
[
A(i,k)

]d
i,k=0

. Consider each of the ni×ni blocks A(i,i) in the diagonal as random variables in the

∗-probability space
(
Mni(C), trni

)
. Then µ = (µ0, µ1, · · · , µd) is said to be the multivariate distribution of

A in
(
MN (C), alg(P0, · · · , Pn), E

)
, if and only if, for each i = 0, · · · , d, µi is a compactly supported measure

on C and A(i,i) has distribution µi, that is,

trni
(
(A(i,i))k

)
=

∫
C
tkdµi(t), ∀k ∈ N.

Now, take a simplicial complex X, with boundary matrix J, and combinatorial Laplacian ∆, defined in

chapter 4 as ∆ = J∗J + JJ∗. Recall that ∆ is a block-diagonal matrix

∆ =


∆0 0

. . .

0 ∆d

 ,

where, for each i, we have ∆i = d∗i di + di+1d
∗
i+1, with ∆. As we saw in the Hodge theorem from chapter 4,

each ∆i has a kernel isomorphic to the i-th homology group of X, i.e.

ker(∆i) ∼= Hi. (5.1)

In particular, we obtain the Betti numbers (defined as βi = dim(Hi)) by

dim ker(∆i) = βi (5.2)

Now, we want to interpret equation (5.2) as a property of operator-valued random variables. We then observe

that the kernel of a matrix A equals the eigenspace of A with respect to the eigenvalue 0. Eigenvalues, in

turn, are recorded, with multiplicity, in the analytic distribution of A, as a random variable. We now present

the main result of this thesis.

5.8 Theorem (Vargas [15]). Let X =
⋃d
i=0Xi be a d-dimensional simplicial complex with i-dimensional

simplices Xi = {σ(i)
1 , · · · , σ(i)

ni }, and N = n0 + · · · + nd. Let J be the boundary matrix of X. Consider the

OVPS (
MN (C), alg(P0, · · · , Pn), E

)
,

introduced in the example above, and the combinatorial Laplacian ∆ = J∗J + JJ∗, as a random variable in

MN (C). Let µ = (µ0, · · · , µd) be the multivariate distribution of ∆. Then the Betti numbers of X can be

recovered as the (scaled) weights of the point 0 in each of the distributions in µ, namely

µi
(
{0}
)

=
1

ni
βi.
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Proof. This theorem is a direct consequence of the Hodge theorem. From the Hodge theorem we have that

dim ker(∆i) = βi. or equivalently, that the multiplicity of the eigenvalue 0 in ∆i is equal to βi. But as we

saw in example 1.18, the distribution of ∆ is given by

µi =

ni∑
j=1

1

ni
δλj ,

where λ1, · · · , λni are the eigenvalues of ∆i, and thus we conclude that µi
(
{0}
)

= 1
ni
βi, as desired.

This result gives a new way of computing Betti numbers from probability distributions. The computation

of Betti numbers is very important in some aspects of applied topology. For example, the field of Topological

Data Analysis (TDA), studies data in a topological, rather than a statistical way. The idea behind TDA is

to construct a simplicial complex of a suitable dimension to resemble a set of data points, and then being

able to study the shape of the data in a rather qualitative way. The computations of Betti numbers is an

essential part of the process. Specifically, bar-codes and histograms are specific ways in which TDA records

topological information about data points, and non-commutative probability has the potential of being a

great computational tool for this. For an introduction to TDA see [3], and for the uses of Non-commutative

probability in constructing histograms see section 5.1 of [15]

As the avid reader will notice, this chapter has made no mention of freeness. Indeed, the topics studied

in this chapter are in a very early stage of development, and at this point there is very little understanding

of what role free independence might play in the non-commutative-probability view of topological spaces. In

other words, the understanding of simplicial complexes, or topological spaces in general, as non-commutative

random variables, is currently very superficial and involves only the abstract framework of non-commutative

probability spaces. The results of this chapter are only a taste of what this theory could be developed into.

Once free probability comes into the picture, we will then be able to apply the powerful tools we saw in

chapter 2, such as free independence, free products, the combinatorics of freeness, free cumulants, and the

R-transform. Until we acquire a conceptual understanding of freeness for simplicial complexes, this theory

will remain very limited. In the next chapter we explore some specific directions on which this theory may

be developed.
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6 Directions for Further Research

The main purpose of this thesis so far has been on one hand to introduce the reader to free probability

and its powerful techniques, and on the other hand to expose the recently developed, and vastly unexplored,

connections between non-commutative probability and algebraic topology. It is currently unclear how far

research could advance in this direction, but there are various possible starting points and open questions

which might indicate a way forward.

6.1 Topological Interpretations of Freeness

In chapter 3 we reduced simplicial complexes to their corresponding boundary matrices, and in chapter

5 we developed a way of seeing them as operator-valued non-commutative random variables. As we briefly

mentioned earlier, the concept of free independence never came into the picture. In the opinion of the author,

the next most important work to do in this research area is understanding the role of free independence of

simplicial complexes from a topological point of view. Freeness is important because it is the key concept that

allows us to use all the tools introduced in chapter 2, such as the moment-cumulant formulas, the vanishing

of free cumulants and the additivity of the R-transform.

One first step towards understanding freeness of simplicial complexes , that is, freeness of their boundary

matrices, or of their chain complexes, is understanding their moments. Let X be a simplicial complex

with chain complex (C•, ∂•), and boundary matrix J. Consider J to be a random variable in the OVPS(
MN (C), alg(P0, · · · , Pn), E

)
. Then one important open question is: What is the meaning of the ∗-moments

of J? We have seen in one special case, how of the moments E
(
(J∗J +JJ∗)n

)
give the Betti numbers. Next

we would like to understand what other topological information might be encoded in the distribution or the

multi-variate distribution of J.

In order to understand moments better, it may be useful to look at the moments of other block matrices

associated to a simplicial complex; for example, some generalizations of adjacency and incidence matrices to

simplicial complexes.

Some progress has been done in understanding the moments of certain random variables related to graphs

and simplicial complexes. Given a graph G we have upper adjacency matrices A1
0, lower adjacency matrices

A0
1, incidence matrices IG, and, if the graph is oriented, boundary matrices JG. Taking these matrices as

elements in the ∗-probability space Mn(C), (where the meaning of n varies depending on what matrix we

are using,) some moments may be interpreted as counting certain paths of points along edges, paths of edges
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along points, or other interpretations. Adjacency matrices may be generalized in simplicial complexes to the

matrices Aji (there is a 1 if two i-dimensional simplices are adjacent through a j-dimentional simplex). This

might be a good place to start studying the topological or combinatorial meanings of moments. We could

also take the ∗-probability space (Mn(C), π), with the non-tracial expectation π : Mn(C) → C, given by

π
(

[ai,j ]
)

= a1,1. This space has the advantage that it is considerably easier to keep track the combinatorial

or topological meaning of the moments of a matrix.

One additional way in which freeness could be studied further is through certain products of graphs,

and by extension, products of simplicial complexes. In particular we are interested in the free product of

graphs, see for example [1]. Although it results in an infinite graph, work could be done to transfer all of its

information to a suitable kind of random variable, e.g some bounded linear map on a Hilbert space. In [8], the

authors study how certain algebraic-topological operations on simplicial complexes affect the combinatorial

Laplacian.

6.2 Non-Commutative Probability for Topological Data Analysis

Topological Data Analysis, or TDA, is a modern technique for reading large data sets in a qualitative way.

The data comes in the form of points (or point clouds) from a metric space, and the idea is that, instead of

studying the data with the standard techniques of statistics, one studies the “shape of the data”. Namely,

points are joined to one another to form graphs or simplicial complexes, and the topological properties of the

resulting structure are taken to be properties of the data set. The way one constructs a simplicial complex

out of data points in a metric space is by specifying criteria under which two points are joined by a line, or,

more generally, n+ 1 pints are joined by an n-simplex. This will in turn create a simplicial complex with the

data points as the vertices; this complex is the object to be studied. Of course, the resulting space depends of

the “criteria” used for joining points with simplices. Two examples of simplicial complex costructions are the

Čech complex and the Vietoris-Rips Complex. These constructions, however, vary according to a parameter.

Namely, the parameter that indicates “how close together” a cluster of points needs to be for the points to

be connected by a simplex. Finally, instead of fixing this parameter to obtain a fixed complex, one allows

the parameter to vary, and the collection of varying complexes is taken as a whole. Then the properties of

this varying simplicial complex serve to describe the data set.

This is done via persistence diagrams. As the parameter changes, the homology of the resulting complex

changes, either by the addition or the removal of basis vectors. Persistence diagrams keep track of how long

each basis vector of the homology stays. The basis vectors that stay longer are said to be persistent, and are

considered as more pronounced properties of the data set. Homology vectors that only appear for a short

period of the parameter are neglected as noise. For a full treatment of topological data analysis, see [3]. The

book [6] has an introduction to topological data analysis as well as many other topics in applied topology.

In TDA, Betti numbers are one of the essential properties that tell us about the “shape of data”. So, from
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a purely computational point of view, the connection between Non-commutative probability and algebraic

topology might be very fruitful. The task of computing the dimension of homology is reduced to the task of

computing eigenvalues, or equivalently, eigenvalue distributions.

6.3 On Non-Commutative Mathematics

Beginning with Voiculescu’s work on free probability, there has been a recent movement to rewrite the many

branches of mathematics in a non-commutative setting. A great part of this movement is illustrated by what

is called free non-commutative function theory [9], which is a development of analysis in the non-commutative

setting, along with its notion of integration, etc. This theory is currently in early stages.

The topics covered in this work, therefore may contribute to the future developments of a non-commutative

framework for topology and geometry.
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