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Abstract 
 

Software quality assurance is necessary to increase the level of confidence in the 

developed software and reduce the overall cost for developing software projects. The problem 

addressed in this research is the prediction of fault prone modules using data mining 

techniques. Predicting fault prone modules allows the software managers to allocate more 

testing and resources to such modules. This can also imply a good investment in better design 

in future systems to avoid building error prone modules.  Software quality models that are 

based upon data mining from previous projects can identify fault-prone modules in the 

current similar development project, once similarity between projects is established. In this 

paper, we applied different data mining rule-based classification techniques on several 

publicly available datasets of the NASA software repository (e.g. PC1, PC2, etc). The goal 

was to classify the software modules into either fault prone or not fault prone modules. The 

paper proposed a modification on the RIDOR algorithm on which the results show that the 

enhanced RIDOR algorithm is better than other classification techniques in terms of the 

number of extracted rules and accuracy. The implemented algorithm learns defect prediction 

using mining static code attributes. Those attributes are then used to present a new defect 

predictor with high accuracy and low error rate.   
  

Keywords: Data mining, software quality, software fault tolerance, software mining, fault 

prone modules, rule extraction 
 

1. Introduction 
 

Data mining techniques are utilized and applied in the different fields of science. This is 

due to the huge amount of existed data and the need to convert them into useful knowledge, 

which leads to better strategic decision support systems. There are many data mining 

techniques that can be utilized. 

Examples of those techniques include: pattern analysis, association rules, sequential 

patterns, clustering analysis, classification, neural networks, nearest neighbor, and web 

mining, etc. The majority of these techniques try to emulate the human skill of decision 

making. For example, the classification approach is the process of predicting a class 

label for an object based on a set of predefined objects‟ class labels. Many real life 

problems such as; credit evaluation, medical diagnosis or expert systems, speech, voice 

or image recognition are considered as classification problems [12]. 
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Software mining entails the use of data mining techniques to improve and support the 

management activities of software projects. The term software mining describes a broad 

class of investigations into the examination of software repositories [1, 11], such as; 

fault, effort, or cost prediction, software reuse, and detection of incomplete changes. 

This paper focuses on the classification of software modules into either faulty or correct 

modules through the use of data mining techniques. 

The importance of this classification comes from the fact that it enables software 

developers and the testing team to focus on those software modules that are classified 

as faulty. This allows software managers to allocate their testing budget to those 

modules that are most likely to contain errors based on the results of the software 

mining algorithms. As a result, this is expected to effectively improve using the 

resources available for testing. However, these methods can‟t replace human or experts‟ 

judgment, which is complementary to those techniques. Throughout the years, several 

data classification techniques have been proposed. They include: decision tree 

induction, Bayesian classification, K-Nearest Neighbor, case-based reasoning, genetic 

algorithms, neural networks, rough set approach, and Support Vector Machines (SVMs) 

[12, 15]. 

The problem addressed in this paper is the prediction of fault prone modules using 

data mining techniques. Predicting fault prone modules allows the software managers to 

allocate more testing and resources to such modules. They may also help them improve 

the design of future modules. In data mining, historical data is studied to make 

scientific prediction for future ones, based on establishing similarities between the 

historical data and the future ones. The aim of this paper is to apply different data 

mining rule-based classification techniques on some publicly available datasets of the 

NASA software repository in order to classify the software modules into either fault or 

not fault prone modules. The selected datasets are: PC1, PC2, PC3, PC4, CM1, MW1, 

KC3, and KC4. Table 1 provides a set of features about the dataset. A detailed 

description about those datasets is provided in [22]. 

 

Table 1.  The Selected Datasets 

Data-set Language %  defect  # of modules 

PC1 C 6 1108 

PC2 C 4 5590 

PC3 C 10 1564 

PC4 C 12 1458 

CM1 C 9 506 

MW1 C 7 404 

KC3 JAVA 9 459 

KC4 JAVA 49 126 

 

On the other hand, a new algorithm is introduced. This algorithm combines the 

RIDOR and CLIPPER mining algorithms. RIDOR algorithm and the newly proposed 

algorithm is that enhanced RIDOR algorithm in terms of effectiveness (i.e. generating 

less number of rules) and accuracy (i.e. improving the results). The implemented

 algorithm learns defect prediction using mining of static code attributes. Those 

attributes are used to present a new defect predictor with enhancements to accuracy and 

error rate. 
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In order to overcome using static classification methods such as decision trees, and 

present defect predictor that improves the accuracy and ability of detecting defective 

modules for decision trees based predictor, and Naïve Bayes based predictor, a new 

defect predictor is presented that is expected to improve predicted accuracy. 

Furthermore, the software attributes used in those prior works, are chosen among the 

static code attributes that can easily be extracted from a source code, which prevents the 

consideration of human errors or subjectivity. 

The rest of the paper is organized as follows: in section 2, the necessary 

background to the field of using data mining in software fault predication is provided. 

In section 3, the methodology is described. In section 4, the experimental results are 

provided, and in section 5, the paper is concluded with summary and possible future 

work. 
 

2. Related Works 
 

Several papers are presented about using mining for software fault prediction 

[4,5,8,9,13,19,23,24,25,14]. Some of those papers discussed methods for fault 

prediction such as size and complexity metrics, multivariate analysis, and multi-co-

linearity using Bayesian belief networks [8, 9]. Naïve Bayes is widely used for building 

classifier due to its simplicity and optimal accuracy that it delivers based on Bayes 

theorem. When developing a defect predictor, the probability of each class is calculated, 

given the attributes extracted from a module, using metrics such as Halstead and 

McCabe ones (i.e. metrics that are relevant to predicting faulty modules). The modules 

will then be classified according to the selected attributes or metrics as usually not all 

attributes will be selected in the classification stage. Menzies et al. developed  predictors 

with Naïve Bayes (NB) for fault characteristics [19]. They have discovered more 

predictive power in combined or hybrid predictors than in the mono metrics. Mono-

metrics lack needed information that can be captured by combined metrics.  They found 

that NB are the best faulty models predictors reported so far. NB provides same weights 

or different weights to the attributes based on their importance or variation impact. 

Olivier et al. have used the Ant Colony Optimization (ACO) algorithm, and the Max-

Min Ant System to develop the AntMiner+ model that classifies the dataset into either 

faulty or non-faulty modules [13]. This algorithm shown to achieve a predictive 

accuracy that is competitive to other methods. 

Predictors that are built using the previous techniques, suffer from high possible 

errors in assigning records to the correct class. As it will be shown in the results 

section, NB provides high number of incorrectly classified modules. As a result, many 

algorithms were built to overcome the significant drawbacks of NB. One of these 

algorithms that demonstrated the accuracy of NB technique is Lazy Bayes Rules (LBR), 

which reduces the problem of high errors in NB and demonstrates the accuracy of NB. 

In other words, LBR produces a classification algorithm with very errors. LBR has high 

computational overheads, due to high computational complexity required at the 

classification time. As a result, this will reduce its usefulness as an alternative to NB. It 

is feasible only when the number of records in the training set is small. 

A group of researchers conducted manual software reviews to find defective 

modules. They found that approximately 60 percent of defects can be detected manually 

[25]. They found that the accuracy of correctly classified instances in defect detection 

of industrial review methods is relatively small. Reviews and inspections can find over 

50% of the defects in an artifact, regardless of the lifecycle phase applied. It was also 
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found that „about 90% of the downtime comes from at most about 10% of the defects 

[25].  In our study, we learn defect predictors using static code attributes defined by 

McCabe [24] and Halstead [23]. McCabe and Halstead are module based metrics, where 

a module is the smallest unit of functionality in the system as a whole. 

 

3.  Methodology 
 

The results reported in this paper are based on datasets obtained from the NASA 

public MDP (Modular toolkit for Data Processing) repository. This is a public 

repository for NASA datasets. NASA datasets are composed of several static code 

attributes. 

Eight datasets are selected from those available in the repository which will be used 

in our study as shown in Table 1. Each dataset describes the attributes of each project 

properties such as size, number of modules, and the number of defects. 

All data sets are available in the extension “.arff” extension to enable us processing 

and analyzing data sets via a data mining tool called Weka [17]. Many classifiers are 

implemented in publicly available machine learning toolkit Weka.  Several data pre-

processing steps are conducted to improve data sets quality, which will eventually 

increase performance of the predictor.  
 

3.1. Preliminary Experiment 
 

Before implementing the enhanced RIDOR algorithm experiment, a preliminary 

study is conducted on three datasets of the selected 8. The first 3 selected datasets are: 

PC1, PC4, and KC1. Both PC1 and PC4 describe a flight software project used for an 

earth orbiting satellite written in C. PC1 contains 40 KLOC, PC4 36 KLOC. KC1 size is 

43 KLOC written in C++ and is a subsystem of a larger ground control system. The 

number of attributes for each of the PC1, PC4, and KC1 is 43, 43, and 27 respectively. 

Table 2 shows summary statistics of the first 3 selected datasets.  

 

Table 2. Dataset Characteristics 

Dataset PC1 PC4 KC1 

Size 1107 1458 2107 

Faulty Modules 

Number 

77 179 326 

% of faulty modules 6.87 12.21 15.42 

Metrics Number 40 40 21 

 

All classification methods used can only deal with discrete variables or categorical 

values. A discretization or digitization or discretization step is implemented using Weka 

with an entropy-based procedure to turn all continuous variables into discrete ones 

(through averaging and selecting median representatives). 

To make sure that only relevant variables are included in the datasets, an input 

selection procedure is implemented using an x22-based feature selection algorithm 

available in Weka. Later on, 12 attributes along with the class attribute were retained 

for each selected dataset. Table 3 summarizes the retained attributes after the input 

selection. Through selection and evaluation, those attributes prove to be more relevant 

than others. 
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3.2. Enhanced RIDOR Algorithm Analysis and Assessment 
 

In order to make an initial assessment of accuracy and effectiveness of existing 

classifiers, several classifiers are selected to be applied on the selected MDP datasets. 

The selected classifiers include: JRIP, NNge, PART, PRISM, RIDOR and AntMiner.  

JRip is an implementation Cohen‟s RIPPER [14]. RIPPER creates first a default rule 

and then recursively develops exceptions to it. Part constructs rules based on partial 

decision trees. NNge is a nearest neighbor algorithm forming non-nested general 

exemplars. It is a nearest neighbor algorithm which learns rules based on the hyper 

rectangles it divides the instance space into [2]. PART creates a rule set by repeatable 

creating pruned decision trees using J4.8 [18]. PRSIM is an attribute-value pair oriented 

approach that generates rules from training set directly. It is a covering based method 

[21]. The purpose of Ant-Miner is to use ants to create rules describing an underlying 

data set [16]. 

The RIpple DOwn Rule (RIDOR) is another algorithm that produces a set of rules. It 

works by generating a default rule, after which exceptions are generated in a tree-like 

fashion until all training instances are classified correctly according to the rule set. 

RIDOR is the algorithm that usually gets the best classification scores [10,3].  

The result of each classifier is compared with others in terms of accuracy, number of 

extracted rules, and the time in seconds, needed to build the classifier. The performance 

of all selected classifiers is summarized in Table 4. 

In Table 4, NNge has the highest accuracy, while JRIP comes in seconds and 

followed by PRISM. Their accuracy values are: 96.64%, 91.86%, and 88.67% 

respectively. However these algorithms tend to generate large number of rules (NNge 

with 301 for example), which in turns make the extracted rules incomprehensible and 

hard to interpret by humans. 

 

Table 3. Attributes Retained After Input Selection 
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Table 4. The Performance of the Classifiers 

 Accuracy % No. Of Rules Time (s) 

JRIP 91.86 33 6.56 

NNge 96.64 301 0.92 

PART 82.17 42 0.28 

PRISM 88.67 68 0.22 

RIDOR 75.73 16 0.2 

AntMiner 75.42 13 576 

 

On the other hand, AntMiner performs best in terms of the number of extracted rules, 

closely followed by RIDOR. Such methods are more compressible and can be 

understood easily by humans. When considering the time that is required to build a 

classifier model for each algorithm, we can see that the AntMiner is the worst in 

comparison with other algorithms which take very short time to construct their model. 

As the results have shown, AntMiner and RIDOR algorithms are the best, of those 

selected, regarding the effectiveness of the extracted rules. The new proposed enhanced 

RIDOR algorithm combines the RIDOR and CLIPER algorithms to produce few 

numbers of rules while at the same time increase the RIDOR accuracy. RIDOR 

algorithm generates the default rule first. It then generates the exceptions for the default 

rule with the least weighted error rate. It generates the best exceptions and performs a 

tree-like expansion of exceptions. The leaf has only default rule with no exceptions. 

The exceptions are set of rules that predict the class (other than default class). Table 5 

and 6 show performance comparison between the enhanced RIDOR algorithms and 

AntMiner on the PC1 and PC4 datasets respectively. 

 

Table 5. Performance Comparison on PC1 Dataset 

 No. of rules Accuracy % Time (s) 

Enhanced RIDOR 6 85.32 0.6 

AntMiner 7 69.79 180 

 

Table 6. Performance Comparison on PC4 Dataset 

 No. Of rules Accuracy % Time (s) 

Enhanced RIDOR 6 67.57 0.2 

AntMiner 7 70.15 420 

 

The enhanced RIDOR algorithm tries to benefit of advantages of the two algorithms: 

CLIPER and RIDOR. CLIPER algorithm was particularly proposed to efficiently mine 

a closed set of iterative patterns. The efficiency stems from its pruning strategy. We 

will adapt this strategy and applied it to the list of rules extracted from RIDOR 

classifier. The procedure to implement this new algorithm was as the following:   

1.  Extract the rules from the RIDOR, retain the rules of faulty classes, and assign 

all other rules to the rest. 

2.  Encode each attribute as symbols and consider it as an event. For example, the 

Halstead content attribute is referenced to as H and its order intervals as: (H1, 

H2, H3, H4, H5, etc.).  
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3.  Those attributes will be then compacted or merged to only two: (i.e. H1, H5) 

based on the values of Halstead Content attribute. Furthermore, the iterative 

events can also be merged. For example the iterative event: H, B, C, and D can 

be compacted to (H, D). This may result in classification of non-faulty modules 

into faulty ones. However, this can be less problematic than the opposite. 

4.  Repeat previous steps for all predecessors attributes in the rules list. 

This procedure is applied to PC1, PC4, KC1 and the modified dataset. The results 

were compared with those of AntMiner as an alternative algorithm to RIDOR. The 

results have shown that the enhanced RIDOR algorithm tends to generate fewer 

numbers of rules with approximately the same accuracy of AntMiner. Tables 7 and 8 

summarize the performance of the proposed algorithm with the AntMiner algorithm in 

terms of number of rules, accuracy, and the time needed to build the classifier. 
 

3.3. Evaluating the Enhanced RIDOR Algorithm 
 

The modified datasets are passed to three learners from Weka. Those are: Naïve 

Bayse, LBR, and Averaged One- Dependence Estimators (AODE) [20]. 

The selected techniques are based on those that will weaken NB‟s attribute 

independence assumption, achieving the error performance of LBR, without affecting 

their computational load. Analyzing LBR shows that this computational load is an 

indication of two factors: model selection, and probability estimation. One way to 

minimize the computation required for model selection is to perform no model 

selection, as does NB. 

 

Table 7. Performance Comparison on KC1 Dataset 

 No. of rules Accuracy 

% 

Time (s) 

Enhanced RIDOR 9 61 0.2 

AntMiner 8 59.9 300 

 

Table 8. Performance Comparison on the Modified Dataset 

 No. of rules Accuracy % Time (s) 

Enhanced RIDOR 2 79.6 0.02 

AntMiner 6 78 5 

 

In addition to the desire to minimize computation, a second motivation for avoiding 

model selection is that selection between alternative models can be expected to increase 

variance. This is because selection between models allows a learning system to more 

closely fit the training data. In consequence, changes in the training data will lead to 

greater changes in the model, which leads to greater variance. In contrast, under 

approaches such as NB where there is no choice in the form of the model, all that 

changes when the training data changes is the underlying conditional probability tables 

which tends to result in relatively gradual changes in the patterns of classification. 

Model selection avoidance may minimize the variance components of a classifier‟s 

error. 



International Journal of Software Engineering and Its Applications 

Vol. 6, No. 1, January, 2012 

 

 

82 

 

Applying the NB product rule, it follows that for any attribute value xi: P(y, x) = P(y, 

xi)P(x | y, xi)  

As this equality holds for every xi, it follows that it also holds for the mean over any group 

of attribute values. Hence,  

|})(1:{|

),|(),(
),(

)(1:

mxiFnii

xiyxPxiyP
xyP

mxiFnii



 

 

Where F(xi) is a count of the number of training examples having attribute-value xi 

and is used to enforce the limit, m that is placed on the support needed in order to 

accept a conditional probability estimate [20]. 

In order to obtain the error performance of the LBR, without its computational 

burden, AODE technique is introduced, that demonstrated the NB accuracy and has the 

ability of classification with low probability of errors as LBR, without suffering from 

high computational complexity. 

The reasons for using AODE in Our defect prone predictor is that the evaluation of 

any predictor based on its accuracy, theory and experiments prove that a predictor built 

with AODE has better accuracy and error performance than NB. 

AODE can be used to generate defect-prone predictors. Before a set of attributes are 

passed to the predictors, a number of attributes can be removed without damaging the 

performance of the predictor. Several suggested algorithms for attribute subset selection 

can find what attributes can be removed as a data reduction form. The simplest and 

fastest subset selection method is to compute information gain for each attribute and 

then rank attributes from the most to the least informative attribute [7]. 

Eight sets of static code attributes data is used to learn predictors. Infogain is 

computed for each attribute in each data set, to select only highest two from the thirty-

eight attributes. Two predictors are presented: LBR and AODE. 

Each of these models plus the previous NB model are implemented several times 

using Weka in order to examine their accuracy. Moreover, we implement (M =10) * 

(N=10) cross-validation, in which the dataset is divided into 10 buckets. The model was 

trained using 9 buckets and the tenth is used for the dataset. The cross validation is 

implemented several times and then the average is computed. In each time, one model 

is implemented, and a cross validation is conducted via Weka. The data is rearranged 

randomly by choosing a filter provided by Weka (Figure1). 

The performance of the learners affects significantly the efficiency of the predictors. 

The ability of one predictor to detect defective modules depends on learners' accuracy. 

Strong predictors use high accurate learner, with low performance errors (i.e. incorrect 

classified records). The accuracy measure is important to assess predictors. Accuracy is 

defined as the percentages of the correctly classified instances to the percentages of the 

incorrectly classified instances. There are four possible results for classifying modules. 

Modules can be faulty and classified as either faulty (i.e. True negative), or not faulty 

(i.e. False negative). They can also be not faulty and classified as either not faulty (i.e. 

True positive), or faulty (i.e. False positive). 

Various comparative tests are performed to select the best technique. NB, LBR and 

AODE methods are applied on the tested datasets using WEKA. The results of those 

runs based on the above measures are shown in Table 9. 

Results show that the accuracy of the correctly classified instances is better using 

LBR and AODE methods relative to NB in terms of accuracy. However, LBR takes 

much time to run relative to the other modules. AODE shows the best performance with 
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log-transforms since it has a majority of accuracy of the correctly classified instances 

and a minority of percentage of incorrectly classified instances. 

In AODE, initial runs with iterative InfoGain sub setting illustrated that all datasets 

could be reduced from having 38 to 3 attributes (except PC1) without impacting the 

performance. However, iterative sub setting caused selecting seven attributes for PC1. 

Therefore, for this dataset only, exhaustive sub setting was applied on 27 subsets to 

discover the three best attributes.  Large reductions in the number of attributes were 

produced without impacting the performance of the learned predictor.  
  

 

Figure 1. The Modified Generic Algorithm 

 

 

Table 9.  Accuracy Results from Selected Datasets 

Data 

Sets  

Accuracy 

NB 

Accuracy 

LBR 

Accuracy 

AODE 

Selected 

Attributes 

PC1 79.58% 92.68% 93.22% 3,35,37 

PC2 98.28% 98.32% 99.37% 5,39 

PC3 84.52% 89.19% 90.61% 1,20,37 

PC4 82.30% 86.63% 87.45% 1,4,39 

CM1 72.28% 89.31% 90.10% 5,35,36 

MW1 85.61% 91.56% 92.31% 23,31,35 

KC3 71.18% 90.61% 90.61% 16,24,26 

KC4 73.60% 74.40% 68.80% 3,13,31 

AVG 80.92% 89.09% 89.06%   
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4. Conclusion 
 

The goal of fault prone modules‟ prediction using data mining is to improve the 

software development process. This enables the software manager to effectively 

allocate project resources toward those modules that require more effort. This will 

eventually enable the developers to fix the bugs before delivering the software product 

to end users. 

In this paper a rule-based classification method is suggested for the classification of 

modules from their fault prone characteristic. A modification is proposed on the RIDOR 

algorithm or rule to produce smaller number of rules, while at the same time increase its 

accuracy. Same goal can be evaluated in future applied to other rule-based classification 

methods such as AntMiner, PRISM, and JRIP. 

Several pre-processing techniques were proposed to improve the accuracy using 

classifiers such as LBR and AODE. Similarly, static code attributes with log filtration is 

used to improve accuracy and performance. 
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