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A First Evaluation of the Realistic
Supelec-Breast Phantom

Tomas Rydholm , Andreas Fhager , Member, IEEE, Mikael Persson, Member, IEEE,
and Paul M. Meaney , Senior Member, IEEE

Abstract—A microwave tomographic system is used to evalu-
ate the realistic breast phantom developed at the Supelec institute.
The system utilizes 16 monopole antennas and a modern vector
network analyzer (VNA) to measure the phantoms influence on
the S-parameters. An iterative algorithm is then used to solve the
inverse problem and reconstruct a 2-D plane transecting the phan-
tom. The reconstructed images are compared to the ones recovered
from a cylindrical phantom of equivalent phantom media. The re-
sults show that both phantoms are possible to reconstruct, although
the interior of the Supelec phantom is more challenging.

Index Terms—Breast cancer, microwave imaging, phantoms, to-
mography.

I. INTRODUCTION

M ICROWAVE tomography is an emerging imaging tech-
nology with possible applications in fields ranging from

surveillance [1] to medical applications. In the latter case, pos-
sible applications are found within brain imaging [2], [3], bone
density measurements [4], cardiac imaging [5] and breast cancer
diagnosis [6], [7] among others. Modern vector network ana-
lyzers (VNAs) released in recent years have a sufficiently high
dynamic range to allow for broad band measurements and have
therefore made it possible to use real measured data, no longer
restricting it to idealistic simulations.

Microwave tomographic or inverse problem techniques in-
volve illuminating a target from multiple directions surrounding
(either 2-D or 3-D configurations) it and receiving the scattered
signals at corresponding locations around the object. A primary
advantage of the tomography approach over radar techniques
is the potential for improved target specificity given the inverse
problems generate images of the actual properties which are
highly specific to different tissue types. Because the inverse
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problem is non-linear and ill-posed, it is most often solved by
a range of different iterative methods. Various array configu-
rations have been proposed and implemented utilizing a va-
riety of antennas including liquid-filled waveguides to simple
monopoles and different coupling media ranging from air to
glycerin. Because of attention to multi-path signal corruption
and the need to restrain system complexity and cost, imple-
mentations have ranged from bi-static to multi-static. For each
configuration, the number and orientation of antennas is closely
related to the nuances of the associated imaging algorithm. More
detailed descriptions of the principles of microwave tomography
can be found in Pastorino [8] and Paulsen et al. [9].

Several different microwave systems for breast cancer imag-
ing have now reached clinical tests. This study focuses on a
tomographic system built after the same concepts as the sys-
tem developed at Dartmouth College [7], which is described in
Section II-A. An alternative method that is being developed at
the University of Bristol uses a radar based configuration in-
stead [10]. There are also recent developments reported by the
University of Calgary [11] and McGill University [12].

Development of tomographic systems for diagnosis of breast
cancer is an important and promising opportunity. Breast can-
cer is the single most common form of cancer among women
[13]. It has been estimated that in the US alone, 250 000 new
cases of breast cancer will occur in 2017 and that 40 000 will
die from the disease [13]. Novel techniques of detection and di-
agnosis could potentially reduce these figures significantly. For
improved chance of survival from cancer, early detection and
treatment are crucial. Thus, it is desired to distinguish tumors
from normal tissue and benign lesions at an early stage. The
gold standard today for screening is X-ray based mammogra-
phy. Although the resolution is good, it can often be difficult
to determine whether a particular lump is malignant or not, the
main challenge being in dense breasts. Using microwaves in-
stead could be highly beneficial, because of the specific nature
of the dielectric properties of the different tissue constituents.
This difference originates primarily from the high water con-
tent of tumors compared to the more fatty adipose and even
fibroglandular tissue [14].

In the process of developing a microwave tomographic sys-
tem, measurements using realistic phantoms play a crucial role.
Phantoms are models of body parts or organs designed to mimic
the shape and physical properties of their biological counter-
parts. In terms of microwave tomography, the interesting pa-
rameters, apart from the geometry, are the permittivity and the
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electrical conductivity. Materials that have been suggested as ap-
propriate tissue substitutes are, e.g., rubber-carbon mixtures [15]
gels [16] and liquids such as glycerin [17] and Triton X-100 [18].

In the case of systems developed for breast cancer diagnosis it
is useful to exploit phantoms that replicate the complex geome-
try of a human breast. A breast can roughly be divided primarily
into two parts, adipose and fibroglandular tissue, which can be
distinguished from each other by different dielectric properties
due to their respective water, fat and protein content [14]. Dif-
ferent recipes of mixtures matching the dielectric properties of
breast tissues have been proposed; however, there is still con-
siderable debate as to what values are most representative and
hence which mixtures to use. For example, Sugitani [19] re-
ported permittivities of roughly 45, 25 and seven for malignant,
fibroglandular and adipose tissues at 1.5 GHz.

Although simple phantoms can be made fairly easy by us-
ing inclusions of a fibroglandular mimicking material inside a
larger vessel corresponding to the adipose tissue, more sophis-
ticated phantoms are being developed. Examples of these are
the phantoms developed by Burfeindt et al. at the University of
Wisconsin [20], Joachimowicz et al. at the Supelec institute [21]
and similar ones designed by Pistorius et al. at the University of
Manitoba [22].

In this study, the Supelec phantom has been tested together
with our tomographic measurement system. For a more thor-
ough description of the phantom, see Section II-B. To our
knowledge these are the first images of the phantom published,
although some results have been presented at conferences [23]–
[25]. This is an initial evaluation of the Supelec phantom and
more thorough investigations are being considered for the future.

II. METHODS

To prove the robustness of the system, the Supelec phantom is
compared to a simpler cylindrical phantom with the capability
of inserting cylindrical inclusions of different sizes, locations
and properties. Measurements are performed on the different
phantoms and the complex valued S-parameters are collected
and used for the reconstructions. The inverse problem of recon-
structing the data is solved by a regularization based algorithm
as reported in [26], and the measurement system has been de-
scribed in [27].

A. The System

The measurement system is shown in Fig. 1 and utilizes
sixteen monopole antennas arranged in a circular pattern. The
monopole antenna was first successfully used in Meaney et al.
[28] and has been successfully used in a range of phantom and
animal repeats along with several clinical studies. These are
connected through coaxial cables to a VNA (Rhode & Schwarz
ZNBT8) with sixteen ports so that an external switching matrix
is not needed. The VNA has a frequency range from 9 kHz to
8.5 GHz and dynamic range of more than 130 dB for the fre-
quencies of interest, 50 MHz to 4 GHz. Its channel-to-channel
isolation is greater than 150 dB. The measurements are per-
formed with an IF bandwidth of 10 Hz, an output power of
0 dBm and averaging over 10 measurements. The antennas are

Fig. 1. System used in the study. The VNA is located to the left and the
immersion tank (filled with the coupling medium) and its 16 monopole antennas
are located to the right.

Fig. 2. Imaging phantoms. (a) Exterior of the Supelec-breast phantom. (b) Its
interior viewed from above. (c) Cylindrical phantom and its inclusion.

placed in a cylindrical tank which is filled with an immersion
medium consisting of a mixture of 80% glycerin and 20% water.
This medium has two desired properties. First, it reduces the per-
mittivity and conductivity contrast between the liquid and the
phantoms. Second, it is highly attenuating which reduces the
unwanted effects of surface waves and multi-path signals [7],
[29]. Calibration is performed by taking a measurement of just
the immersion medium. This reference is then subtracted from
the actual measurements, i.e. producing the difference which is
due only to the presence of the target.

B. The Phantoms

Two different kinds of phantoms have been used in this study.
The first one uses a plastic (Polyethylene terephthalate: PET)
cylinder of diameter 105 mm with the option to insert tubes
(Polyethylene terephthalate glycol: PETG) of different diame-
ters as inclusions with liquids of other dielectric properties. The
relative permittivity for PET ranges from 2.4 to 3.7 [30], for
PETG it ranges from 2.4 to 2.6 [31] and the wall thicknesses of
this phantom and its inclusions were around 0.5 mm.

The second is the Supelec-breast phantom, see Fig. 2. The
Supelec phantom is a 3-D printed plastic (Acrylonitrile butadi-
ene styrene, ABS) structure derived from a previous MRI-based
numerical phantom available from the UWCEM Numerical
Breast Phantom Repository [32]. It has two different chambers
representing different tissues of the breast. The phantom is
currently being tested by different research groups around the
world [25], [33], [34]. The fact that it is 3-D printed means that
there will be a plastic interface between each region, for which
the dielectric properties will be significantly lower than the
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remaining phantom. The ABS plastic has a relative permittivity
of 3 at 2.4 GHz and the typical thickness of the structure is
1.5 mm [34], although the inner chamber could be considered
to have a larger “effective” thickness due to its wrinkled shape.

Different mixtures of water and glycerin were used as phan-
tom media [17]. Although there is debate on whether glycerin
mixtures are representative of human tissue, the mixtures allow
for a significant degree of freedom in testing a wide range of
dielectric properties.

C. Inverse Problem

The acquired data consist of a 16 × 15 matrix of complex
values describing amplitude and phase (the reflection data is not
used), which is used in the reconstruction algorithm. The Gauss-
Newton iterative algorithm incorporates a log-transformation
that computes the forward solution at each iteration and adjusts
the dielectric parameters in the reconstruction mesh in order to
step-wise converge to an improved representation of the interro-
gated phantom. The method is a two step algorithm which uses
50 iterations of a smoothed Levenberg-Marquardt regulariza-
tion followed by 20 iterations of Tikhonov regularization with a
Euclidean distance penalty term. A more thorough description
is given in [26].

The first step thus aims to minimize the cost function

fL M (k) = ||�m − �c(k2)||2 + ||�m − �c(k2)||2 (1)

where � and � are logarithmic magnitudes and phases, respec-
tively, m and c denote measured and computed values, and k is
the wave number. The weighting between the two terms have
been set to unity in accordance with a previous study [35]. k2 is
related to the relative permittivity εr and conductivity σ through

k2 = ωμ0ε0εr + jωμ0σ (2)

where ω is the angular frequency, μ0 the free-space permeability
and ε0 the free-space permittivity. k2 is essentially a complex
representation of the reconstructed images.

The second step uses a similar cost function, with the differ-
ence being an extra penalty term:

fT (k) = ||�m − �c(k2)||2 + ||�m − �c(k2)||2

+ λ||k2 − k2
ini t ||2 (3)

where λ is an empirically determined regularization parameter
and k2

ini t is the intermediate image obtained from the Levenberg-
Marquardt step.

D. Measurements

Image reconstructions are performed at frequencies from
1100 MHz to 1900 MHz. Above 2 GHz, the signal strength
for the receive antennas furthest from the transmitter is too
low compared to the noise floor. Conversely, for frequencies
below 1 GHz, the attenuation of the mixture is insufficient to
fully eliminate unwanted surface waves and the effects of the
associated multi-path signal corruption [7]. To evaluate the
reconstructed images with respect to ground truth, the actual
permittivity of the different glycerin-water mixtures were

Fig. 3. Dielectric properties of the three glycerin-water mixtures used in the
experiments as function of frequency.

Fig. 4. Measurement of the Supelec phantom. The phantom is submerged into
the coupling bath and is located inside the circle of antennas.

measured with a dielectric probe (Agilent 85070 Performance
Probe).

The surface level for both phantoms of the coupling bath is
kept constant at roughly three centimeters above the antennas,
to minimize image artifacts due to signal reflections from the
surface. For the cylindrical phantom, a mixture of 88% glycerin
and 12% water is used and an inclusion of radius 42 mm con-
taining a corresponding 72:28 mixture is inserted to resemble
the inner chamber of the Supelec phantom. The permittivities
for these liquids and for the coupling bath, as measured by the
probe, are presented in Fig. 3.

For the Supelec phantom, in order to obtain corresponding
dielectric properties, the same 88:12 and 72:28 glycerin-water
mixtures are used as for the cylindrical phantom. A measurement
is depicted in Fig. 4. Since the shape of this phantom varies
along the z-axis both in terms of the cross-section area and the
shape of the inner (fibroglandular tissue) region, six different
layers are processed, each separated by 1 cm. This led to several
challenges. First, for layers closest to the chest wall, the fixture
holding the phantom is partially immersed in the coupling bath.
The low dielectric properties of this plastic fixture may have
interfered with the reconstruction of the upper layer. Second,
since this is a 2-D algorithm, there is an effective imaging plane
that transects the phantom. In practice, scattering from tissue
just above and below this plane also contributes to the received
signals. Thus, the image produced is in fact a weighted average
of the nearby layers and should not be expected to perfectly
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Fig. 5. Phantom with inclusion measured at 1900 MHz. (Left) Permittivity.
(Right) Conductivity.

Fig. 6. Phantom with inclusion measured at 1100 MHz. (Left) Permittivity.
(Right) Conductivity.

match the true geometry. This issue is not a problem for the
image of the cylindrical phantom since the shape is constant
along the z-axis.

III. RESULTS

Fig. 5 shows a first example of reconstructions for the cylin-
drical phantom performed at 1900 MHz. The general shape of
the phantom is very well reconstructed, especially for the per-
mittivity case. The conductivity image is blurrier with some
artifacts but is generally a good representation of the phantom.
Two circles have been added to each image to mark the loca-
tions of the phantom and its inclusion to further emphasize the
similarity between the actual and reconstructed data.

The relative error η in relative permittivity between the re-
construction and ground truth is defined as

η =
√
√
√
√

1

n

n
∑

i=1

(
εi,im − εi

εi

)2

(4)

where εi,im and εi denotes the imaged and true relative permit-
tivity at node i , and n = 559 is the number of nodes. The same
formula can be applied similarly to the conductivity images.
The relative errors are 0.257 and 0.264 for the permittivity and
conductivity, respectively.

A second reconstruction computed at 1100 MHz is presented
in Fig. 6 to demonstrate the broad range of frequencies the
system is capable of handling. Once again, the correspondence
between the phantom and its reconstruction is quite good. For
this image, a cross section of the reconstructed permittivity along
the line y = −0.64 cm is presented in Fig. 7. As can be seen,
the reconstructed levels for the surrounding coupling bath and
the adipose region are similar to the actual data measured by the
dielectric probe. The central part of the inclusion overshoots the
actual values but that can be expected as a way to compensate for

Fig. 7. Cross section along y = −0.64 cm for reconstructed and actual data
for the cylindrical phantom with inclusion measured at 1100 MHz.

the fact that the sharp edge between adipose and fibroglandular
regions are smoothed. The relative errors are for this case 0.282
and 0.198 for permittivity and conductivity, respectively.

The same procedure is applied for the Supelec phantom. In
Fig. 8, the reconstruction at 1500 MHz is shown for the six dif-
ferent planes ranging from closest to the nipple to closest to the
chest wall. It can be seen clearly in the permittivity images that
the cross-section size of the phantom increases when moving the
image plane to layers further away from the nipple. The inner
chamber is partially revealed in the fifth layer (counting from
the nipple) both in terms of permittivity and conductivity. The
sixth layer suffers from artifacts in the sense that the general
shape of the phantom is not as clearly recovered as before. This
is associated with signal corruptions which may originate from
the fact that the fixture is partially submerged and too close to
the imaging plane. However, it is still possible to distinguish
parts of the inner structure in the conductivity image.

A second set of reconstructed images is presented in Fig. 9.
Here, the fifth layer, which is located roughly 5 cm from the
nipple, is reconstructed at frequencies ranging from 1100 MHz
to 1900 MHz in steps of 200 MHz. This plane is chosen since
the fibroglandular region comprises a significant proportion of
the phantom cross section. Studying the lower frequencies, the
interior of the phantom is clearly differentiated both in terms
of permittivity and conductivity. For the higher frequencies,
however, the inner chamber is not visible in the permittiv-
ity images but can partially be identified in the conductivity
images.

IV. CONCLUSION

The Supelec phantom is an intricate 3-D printed part that ge-
ometrically resembles a human breast. Its two chambers open
up for filling with different property liquids to test various het-
erogeneous property distributions. The simplicity of changing
the liquids also presents the opportunity of investigating phan-
toms with a wide range of properties to mimic different density
breasts.

In this study, images of the phantom are produced where the
exterior shape of the breast are well reconstructed. However,
the interior is not as clearly reconstructed although traces of the
inner shapes can be seen. In comparison to the reconstructed
images of the cylindrical phantom, with equivalent mixtures in
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Fig. 8. Reconstructions of the Supelec phantom at 1500 MHz. (Left) Relative
permittivity. (Right) Conductivity. The top row depicts the layer closest to the
nipple (layer 1), and in the bottom row, the layer closest to the chest wall
(layer 6).

Fig. 9. Reconstructions of the Supelec phantom roughly 5 cm from the nipple
(layer 5) at 1100, 1300, 1500, 1700, and 1900 MHz. (Left) Relative permittivity.
(Right) Conductivity.



64 IEEE JOURNAL OF ELECTROMAGNETICS, RF, AND MICROWAVES IN MEDICINE AND BIOLOGY, VOL. 1, NO. 2, DECEMBER 2017

the primary phantom and inclusion as to that of the two chambers
of the Supelec phantom, there are differences in how well the
interior is recovered. The study shows that the system is clearly
capable of distinguishing inclusions of the same properties and
roughly the same geometrical cross section as for the inner
chamber of the Supelec phantom. For the latter, even though the
phantom can be seen in the reconstructions, the inner part is more
challenging to retrieve. One reason may be the fact that the cross
section of the interior shapes are substantially smaller than that
of the cylindrical phantom such that the inherent smoothing of
the regularization procedure blurs the recovery of these shapes.
It is also possible that the fairly large plastic content of the inner
chamber may cause aberrations with the scattering. One should,
however, note that a slightly elevated feature in the phantoms
interior is present in several of the recovered images. Averaging
of the properties of the plastic constituent may very well reduce
the otherwise higher permittivity values of the fibroglandular
region liquid to something similar to the outer adipose region.
This problem has also been identified by Faenger et al., who
proposed the use of conductive ABS plastics instead, for which
the permittivity is significantly higher [36]. The authors would
therefore like to continue the study further.

It is important to note that these images were recovered with
an algorithm that did not require a priori information and did
not converge to unwanted solutions. This is unique within the
microwave-imaging community. For a sequel study, we plan to
investigate the effects of the plastics of the Supelec phantom by
performing complementary measurements. It is also of interest
to study whether a smaller more tumor like inclusion could be
detected or not.
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[34] N. Joachimowicz, B. Duchêne, C. Conessa, and O. Meyer, “Reference
phantoms for microwave imaging,” in Proc. 11th Eur. Conf. Antennas
Propag., Paris, France, 2017, pp. 2719–2722.

[35] P. M. Meaney, N. K. Yagnamurthy, and K. D. Paulsen, “Pre-scaled
two-parameter Gauss-Newton image reconstruction to reduce property
recovery imbalance,” Phys. Med. Biol., vol. 47, no. 7, pp. 1101–1119,
Mar. 2002.

[36] B. Faenger, S. Ley, M. Helbig, J. Sachs, and I. Hilger, “Breast phantom
with a conductive skin layer and conductive 3D-printed anatomical struc-
tures for microwave imaging,” in Proc. 11th Eur. Conf. Antennas Propag.,
Paris, France, 2017, pp. 1065–1068.

Tomas Rydholm received the B.S. degree in engi-
neering physics from Chalmers University of Tech-
nology, Gothenburg, Sweden, in 2013 and the Civilin-
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