
Continuous Monitoring meets Synchronous Transmissions and
In-Network Aggregation

Downloaded from: https://research.chalmers.se, 2019-10-22 21:15 UTC

Citation for the original published paper (version of record):
Stylianopoulos, C., Almgren, M., Landsiedel, O. et al (2019)
Continuous Monitoring meets Synchronous Transmissions and In-Network Aggregation
Proceedings of 15th International Conference on Distributed Computing in Sensor Systems (DCOSS):

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chalmers Research

https://core.ac.uk/display/228339636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Continuous Monitoring meets Synchronous Transmissions and
In-Network Aggregation

Charalampos Stylianopoulos†, Magnus Almgren†, Olaf Landsiedel‡†, Marina Papatriantafilou†
†Chalmers University of Technology, Sweden ‡ Kiel University, Germany

Email: {chasty, magnus.almgren, ptrianta}@chalmers.se, ol@informatik.uni-kiel.de

Abstract—Continuously monitoring sensor readings is an
important building block for many IoT applications. The
literature offers resourceful methods that minimize the amount
of communication required for continuous monitoring, where
Geometric Monitoring (GM) is one of the most generally
applicable ones. However, GM has unique communication
requirements that require specialized network protocols to
unlock the full potential of the algorithm.

In this work, we show how application and protocol co-
design can improve the real-life performance of GM, making it
an application of practical value for real IoT deployments. We
orchestrate the communication of GM to utilize the properties
of a state-of-the-art wireless protocol (Crystal) that relies on
synchronous transmissions and is designed for aperiodic traffic,
as needed by GM. We bridge the existing gap between the
capabilities of the protocol and the requirements of GM,
especially in the case of periods of heavy communication. We
do so by introducing an in-network aggregation technique
relying on latent opportunities for aggregation that we exploit
in Crystal’s design, allowing us to reliably monitor duplicate-
sensitive aggregate functions, such as sum, average or variance.
Our results from testbed experiments with a publicly available
dataset show that the combination of GM and Crystal results
in a very small duty-cycle, a 2.2x - 3.2x improvement compared
to the baseline and up to 10x compared to previous work. We
also show that our in-network aggregation technique reduces
the duty-cycle by up to 1.38x.

Keywords-continuous monitoring; synchronous transmis-
sions; aggregation; co-design; sensor networks

I. INTRODUCTION

The problem of monitoring a network-wide system state
has fundamental uses in Wireless Sensor Networks (WSN).
Whether we are monitoring the temperature in a room to
detect outliers [3] and hot-spots [27] or machinery operation
statistics in a factory to detect malfunctions [20], we are
often interested in keeping track of a function calculated
over all the network’s readings. More specifically, given a
set of sensor nodes n1,...,nN with readings ~v1,..., ~vN that
vary over time, we want to continuously track whether
the value of a function f , defined over the network-wide
weighted average of the readings, is higher (or lower) than
a predefined threshold T .

One of the most generally applicable solutions that ad-
dresses the communication complexity of the problem is
Geometric Monitoring (GM) by Sharfman et al. [26]. GM is
a method that can monitor any function, linear or not, with

respect to a threshold and can suppress most of the readings
without having to communicate. Since its introduction, GM
has been extended with sketches [10] and prediction mod-
els [11], showing that it is extensible and applicable in many
scenarios.

When considering the applicability of GM for IoT deploy-
ments, there are aspects to consider that go beyond the
algorithm itself. The communication pattern of GM is highly
data-dependent and varies significantly during run-time. This
implies a challenge for most network protocols as they are
usually optimized for periodic communication. Moreover,
the actual energy savings on the nodes depend on the un-
derlying communication stack and the way it interacts with
GM. Previous work [28] studied the performance of GM in
an applied IoT context and showed that the energy overhead
of mainstream network stacks limits the effectiveness of
the algorithm in practice. Thus, it is interesting to study
how to close the gap between the requirements of GM and
appropriate protocols that can support them.

Crystal [12], [13] is a recently introduced wireless proto-
col based on synchronous transmissions that is specifically
designed to favor aperiodic communication patterns: it effi-
ciently handles communication when there is little to send
within an epoch, but can also accommodate epochs with
heavy communication. However, Crystal was originally de-
signed with applications featuring aperiodic data collection
from multiple senders to a single sink node. Contrary, GM
requires that any node should be able to broadcast updates
to every other node in the network. Moreover, even though
Crystal gracefully handles the case of low communication
load, it misses opportunities to save energy in cases of high
load that can benefit, e.g., from in-network aggregation.

In this work, we bridge this gap between the requirements
of GM as an application and Crystal as a state-of-the-art
wireless protocol that relies on synchronous transmissions.
By doing so, we provide a practical realization of a system
that continuously monitors sensor values with a high degree
of communication suppression (due to properties of GM)
and operates at low duty-cycle with high reliability (due to
properties of Crystal). We also propose Arctium, adding in-
network aggregation to synchronous transmission protocols
for aperiodic communication; this orthogonal design allows
any application that monitors aggregated values from sensors

to get additional reduction in communication on top of the
existing design of Crystal. Hence, we show how to: (i) make
algorithms such as GM practical for real IoT deployments,
in combination with modern protocols such as Crystal and
(ii) reduce the energy consumption of such algorithms even
further by adding in-network aggregation.

In particular, we make the following contributions:

• We orchestrate and deploy Geometric Monitoring on
top of a state-of-the-art wireless network protocol that
relies on synchronous transmissions.

• We introduce Arctium,1 a novel method for in-network
aggregation that relies on latent opportunities for ag-
gregation in Crystal’s design and reliably tracks aggre-
gates, including duplicate-sensitives ones, using fewer
transmissions than Crystal.

• We evaluate the effects of application and protocol co-
design on real IoT nodes, using publicly available data-
sets and show a reduction in energy consumption of up
to 10x compared to previous work, and how in-network
aggregation further reduces it by 1.13-1.38x.

The paper is organized as follows. Section II summarizes
GM and Crystal. In Section III, we present our GM and
Crystal co-design and describe Arctium, our aggregation
scheme. In Section IV, we show the results from our eval-
uation. We present related work in Section V and conclude
in Section VI.

II. PRELIMINARIES

A. The Geometric Monitoring Method (GM)

In their seminal work [26], Sharfman et al. present a
general method able to monitor (with respect to a threshold)
arbitrary functions defined over network-wide aggregates.
Instead of having nodes communicate for every new reading,
each node uses local information to decide whether to send
an update. Each node keeps track of: (i) how far its local
readings have drifted from the last reading it broadcasted
to everybody in the network and (ii) the global estimate
vector, which is the weighted sum of all the readings each
node in the network broadcasted last. Based on these, each
node locally, i.e. without communication, creates a region
(depicted as a sphere in the domain of the values being mon-
itored) and checks whether that region crosses the surface
that indicates the threshold. As long as this region remains
fully on one side of the threshold, no communication is
required. Otherwise, broadcasts are needed to see whether
the local change is offset by changes at other nodes (false
alarm) or if the function has actually crossed the threshold.
A more detailed presentation can be found in Section A in
the Appendix, as well as in the original GM publication by
Sharfman et al. [26].

1Arctium is a genus of plants, notable for their velcro-like heads that
tend to stick and aggregate on other materials.

Recv
sync

Recv
Ack

Sink

Node	A

Node	B

Node	C

Recv
sync

Recv
sync

Send	
sync

Send	
VC

Send	
VA

Send	
VB

Recv
VA

Ack
VA
Recv
Ack

Recv
Ack

Recv
Ack

Send	
VB

Send	
VC

Recv
VC

Recv
VC

Ack
VC

Recv
Ack

Recv
Ack

Recv
Ack

Recv
VB

Recv
VB

Send	
VB

Recv
VB

Ack
VB

Recv
Ack

Recv
Ack

S T T TA A A
Phases	of	a	single	epoch

Send	
Nack

Recv
Nack

Recv
Nack

Recv
Nack

T A

1 2 3 4 5 6 7 8 9
time

Figure 1: A direct adaptation from [13], showing the differ-
ent phases of Crystal, for a network with three nodes and
one sink. Each box indicates a (possibly multi-hop) Glossy
flood.

What is relevant for this work, from a communication
behavior point of view, is that the method results in nodes
communicating aperiodically: there are intervals when most
nodes suppress their readings with almost no communica-
tion, while at other times multiple nodes need to broadcast
their values so that all nodes in the network can update their
global estimate. Such a dynamic communication pattern
makes GM a challenging application for many state-of-the-
art low-power wireless protocols.

B. Crystal

Crystal [12], [13] is a protocol for low power and highly
reliable aperiodic collection of data from multiple nodes
to a single sink. Crystal has epochs and is designed to
be particularly useful for applications where the number
of nodes that have data to be collected at each epoch
varies but is typically low. In its core, Crystal relies on
Glossy [7], the seminal work of Ferrari et al. By tight (sub-
microsecond) scheduling of transmissions, Glossy makes use
of the capture effect [21] and constructive interference [7] to
achieve network-wide flooding with extremely small latency.

Crystal, in turn, builds a schedule on top of Glossy that
consists of a series of phases that form an epoch. Figure 1
shows an example of a single Crystal epoch for a network
with three nodes about to send their values to the sink. In this
example, the epoch takes nine phases until completion. VX
indicates the value that node X is trying to send to the sink.
First, during the S-phase, the sink floods a synchronization
message to ensure all nodes have a common reference point.
Then, during the T-phases (phases 2, 4, 6 and 8), any
node that has data to be collected initiates its own Glossy
transmission. With high probability, one of the transmissions
reaches the sink, which acknowledges the transmission in the
following A-phase. In this example, the value from Node C
reached the sink at phase 4 and was acknowledged at phase
5. Nodes that did not get their transmissions acknowledged
transmit again during the next T-phase, until one (or more,

for safety) T-phases are empty. In this case, the sink issues
a negative acknowledgment (phase 9) and the network can
go back to sleep until the beginning of the next epoch.

III. GM, CRYSTAL AND Arctium CO-DESIGN

A. Overview

The first idea is to use GM on top of the existing
communication schedule followed by Crystal (see Figure 1),
with benefits from both worlds: (i) communication reduction
from using GM as an application, and (ii) efficient handling
of the aperiodic communication pattern using Crystal as the
underlying protocol. This can be achieved by using the T-
phase to send updates from nodes who detected threshold
violations and the A-phases to trickle down the changes
to the global estimate. All nodes perform the computation
required by GM (threshold checking) between the T-A pairs
to decide whether to transmit or just forward packets.

The second idea is to gracefully handle the (so far
overlooked) cases of multiple concurrent transmitters. We
propose Arctium to extend the design of Crystal in a novel
way by introducing in-network aggregation inside Crystal’s
schedule. We do so by extending the role of the T-phases:
during these phases, nodes do not only forward messages
towards the sink, but they also have the opportunity to
overhear neighbouring transmissions and combine these with
their own. As a result, Arctium requires fewer messages
to complete the epoch and is more energy efficient than
Crystal. Arctium is orthogonal to GM and works for any
application that is monitoring aggregates, such as min, max,
sum, average and variance.

In the rest of this section, we first describe how we design
GM in coordination with Crystal. Then we introduce Arctium
and outline how it enables aggregation on top of Crystal.

B. Orchestrating GM communication with synchronous
transmissions

Crystal was originally designed for data collection: sen-
sor values from any node must be collected at a single,
fixed sink. The original requirements of GM are however
different:2 when a node detects a local threshold violation
and transmits its update, all other nodes must receive it to
recompute the global estimate. In order to bridge the gap
between the two models and fit the requirements of GM on
top of the existing Crystal schedule, we make use of the
Glossy transmission during the A-phase. That transmission
not only acknowledges the reception of a node’s value by
the sink, but it also lets every node in the network know the
new, updated value of the global estimate.

Overall, in our system, nodes first collect new sensor
readings and perform threshold checking (see Section II-A)

2There are models of GM that consider a single, coordinating node
that is able to query values from specific nodes (using e.g. a unicast) and
resolve threshold violations. However, since unicast is not part of Crystal’s
schedule, we do not consider such models in this work.

at the beginning of the epoch. If they cross the threshold,
they send their update during the T-phase. If an update
reaches the sink, the sink updates the global estimate. The
new global estimate will then trickle-down to the other nodes
during the A-phase, piggybacked on the acknowledgment
of the previous T-phase transmission. When nodes receive
the new global estimate, they have until the next T-phase
to perform the threshold checking again (based on the new
global estimate) and decide whether they need to transmit
their update. This continues until there are no further trans-
missions (2-3 empty T-phases) and the epoch ends. Note
that, on rare cases, a packet loss during the A-phase might
go undetected resulting in some nodes momentarily having
an outdated global estimate. This is corrected in the next A-
phase when the sink disseminates the new global estimate.

Efficient threshold checking: As mentioned in Sec-
tion II-A, nodes need to perform the threshold checking
required by GM between the T-A pairs in the protocol,
which can be computationally challenging for IoT devices
with very limited computing and energy resources as the
threshold surface might have an arbitrary shape.

We address this by approximating the GM-spheres with
a simpler shape that makes the computations significantly
faster while ensuring that we do not introduce false neg-
atives. As an example in 2D, the original spheres (now
circles, similar to the example Figure 1 in Appendix) can be
replaced with squares containing the former, which results
in simpler boundary conditions (as it is simpler to check
whether the sides of a square, rather than points on a circle,
cross a surface). Naturally, there will be cases where the
square check will report a violation even though the circle
inside it does not actually cross the threshold, hence sac-
rificing communication reduction for ease of computation.
This relaxation might not cope with high dimensions, but
in many cases of monitoring statistics such as variance
or correlations between nodes, it provides a simple and
efficient solution which we have also experimentally verified
(e.g. when monitoring the variance, the computation time
decreases from 20ms to just 7ms on the TelosB platform,
see Section IV). In Section V we discuss other alternatives
in existing literature [19].

C. Arctium: Enhancing Crystal with in-network aggregation

Motivation: Crystal is designed to efficiently handle the
case where only a few nodes have data to transmit within the
epoch. However, for many applications including GM, there
are epochs where many or all the nodes in the network have
data to transmit. For example, for GM this happens when
the monitored value is close to the threshold. Hence, there
is potential for improvement on a protocol level, which we
exploit by proposing Arctium.

The following two observation has guided our work of
Arctium. (i) In applications such as GM, the individual
values by themselves are not interesting but rather only the

Recv
sync

Recv
Nack

Sink

Node	A

Node	B

Node	C

Values	added	to	aggr.	vector packet	with	aggregated	values

Recv
sync

Recv
sync

Send	
sync

Send	
VC

Send	
VA
Recv
VC

Recv
VA

Ack VA

Recv
Ack

Recv
Ack

Recv
Ack

Send	
VB,VC

Send	
VC

Recv
VC

Recv
VB,VC

Ack
VB,VC

Recv
Ack

Recv
Ack

Recv
Ack

Send	
Nack

Recv
Nack

Recv
Nack

S T T TA A A
Phases	of	a	single	epoch

time
1 2 3 4 5 6 7

Figure 2: Example of an epoch with three nodes with values
to send and one sink, using Arctium. During phase 2, node
B overhears a transmission from node C and combines C’s
value with is own. Compared to Crystal in Figure 1, Arctium
requires one less T-A pair to complete the epoch.

aggregate (e.g. GM needs to keep track of the average of
the values to compute the global estimate). (ii) During each
T-phase, only one value from one node reaches the sink,
while the other concurrent senders fail.

The goal is to allow nodes that did not manage to reach
the sink to aggregate their own values with the values of
neighbouring nodes. Subsequently, these nodes try to send
their aggregated values. If they reach the sink, the sink
acknowledges multiple values in a single phase and the total
number of phases in the epoch is reduced.

Fitting aggregation into Crystal: Figure 2 shows an
example epoch using Arctium. Our aggregation scheme
leverages the T and A communication phases of Crystal. If,
during a T-phase, a node does not try to transmit a value of
its own (Node B, phase 2), it can overhear a neighbouring
transmission and propagate it. At the end of the T-phase,
the value that was overheard is stored in a vector. The node
then aggregates that value with its own or other, previously
aggregated values and tries to send the aggregate to the
sink. The sink in our system acknowledges the aggregated
information during a single A-phase, in response to receiving
an aggregated message (phase 5). As a result, the total
number of phases in an epoch is reduced. In this case, two
phases less than the Crystal example in Figure 1.

Keeping track of values from multiple nodes: To track
which nodes’ values we have aggregated, packets in Arctium
hold, apart from the value, a small vector with the IDs of the
nodes whose values are taken into account in the aggregate.
The size of this vector determines the maximum number of
nodes whose values we can aggregate in a single message.
Even though this vector increases the size of the packet and
adds overhead, we show in Section IV that even with a small
vector (two or three IDs) we have good opportunities for
aggregation without adding excessive overhead. A node also
keeps a local vector with the IDs and values that are part

of the aggregate. Keeping track of that vector allows nodes
to add or remove values from the aggregate, based on the
design choices described next.

Increasing the chances to aggregate: In order to give
the opportunity for nodes that have values to transmit to
overhear neighbouring transmissions and to combine them
with their own, we introduce a random back-off during the
T-phases. If a node has values to transmit, it will do so
with a given probability p. Otherwise, the node will still
be part of the T-phase but will only overhear and forward
packets. Note that introducing such a back-off is not wasting
opportunities for communication: only one node’s value will
reach the sink anyhow, so unless all nodes with data to send
back-off simultaneously, there will be a successful reception
at the sink.

Aggregation design choices: We now outline and moti-
vate important design choices for the logic of when and how
to aggregate. In the following, we denote with VX the value
that node X is trying to send to the sink.
Point 1: If node A overhears during a T-phase that its
value VA has been aggregated by node B, node A stops
transmitting VA and allows node B to send it instead. This
helps to reduce the number of concurrent transmitters within
each T-phase and reduces the size of the epoch.
Point 2: If node A, which has aggregated (VA, VB , VC),
hears an acknowledgment from the sink that contains (either
standalone or part of an aggregated packet) the ID of B,
A removes VB from its vector and continues with the
aggregated values of A and C. This allows us to keep the
rest of the values that have been aggregated so far and only
remove the ones that were acknowledged by the sink.
Point 3: Nodes do not combine one set of aggregated values
with another. E.g., if node A with aggregated values (VA,
VB , VC), overhears a transmission from node D which
has aggregated (VD, VB , VE), node A will not attempt to
combine the aggregates. This serves two purposes: (i) it
avoids duplicate values (in the example above VB would
be counted twice) and (ii) it makes enforcing Point 2 above
possible, because a node knows the individual contributions
of the values that it is aggregating.
Point 4: If an aggregating node A overhears that node B is
aggregating some similar IDs and B is a more successful
aggregator (has a larger vector of aggregated values), node
A will remove those common IDs from its own vector and
allow B to take care of them. This helps to decrease the
probability of cases where two nodes each have aggregated
values which they cannot combine, due to Point 3.

Algorithm 1 summarizes the pseudo-code of the aggrega-
tion logic, in correlation with the points described above.

Properties of Arctium: We now argue about the following
three claims regarding the behavior of Arctium. For read-
ability, we first present them considering absence of packet
losses and then we discuss the implications incurred by
packet losses.

Algorithm 1: Packet structure and packet handlers at
node U .
// The application payload
struct {

Data: value
Vector: idBuffer

} Packet;

// Local variables
U.idBuffer : a local vector of node IDs who’s values
have been aggregated

U.valueBuffer : a local vector of values that have been
aggregated

U.aggregate : the current sum of all aggregated values
U.nodeId: current node’s ID

Function upon reception of packet P during the
A-Phase
// Implements Point 2 (§ III-C)
foreach id ∈ P.idBuffer do

if id ∈ U.idBuffer then
remove id and its value from U.idBuffer
and U.valueBuffer
U.aggregate = Sum (U.valueBuffer)

end
end
With probability p, back-off in the next T-Phase

Function upon reception of packet P during the
T-Phase
// Implements Point 3 (§ III-C)
if P.idBuffer.size ==1 and idBuffer.notFull then

add P.idBuffer in U.idBuffer
add P.value in U.valueBuffer
U.aggregate = Sum of values in U.valueBuffer

end

// Implements Point 4 (§ III-C)
if (U has aggregated values) and (P.idBuffer.size ≥
U.idBuffer.size) then

foreach id ∈ P.idBuffer do
if id ∈ U.idBbuffer then

remove id and its value from
U.idBuffer and U.valueBuffer
U.aggregate = Sum (U.valueBuffer)

end
end

end

// Implements Point 1 (§ III-C)
if (U has not aggregated any value) and (U.nodeId
∈ P.idBuffer) then

stop trying to transmit
end

Claim 1: If Crystal delivers a value VX to the sink,
Arctium delivers it as well in the same epoch. In other words,
Arctium guarantees delivery of all values.

Arctium makes sure no values are dropped in the following
way. Consider a node A trying to send a value VA to the
sink. First, node A will not stop trying to send VA until it
is acknowledged by the sink or picked up for aggregation
by another node B (see point 1). Second, if a node B has
aggregated the value VA of node A, node B will not remove
it from its aggregation vector until it is acknowledged by the
sink (see point 2) or it is picked up by a more successful
aggregator (see point 4). In any case, until the value VA is
acknowledged by the sink, there is at least one node (either
the originator of that value or the node(s) that aggregated it)
that is responsible for that value and keeps trying to send it
to the sink.

Claim 2: Arctium guarantees no duplicates to the sink.
This is because: (i) nodes remove the values that are

acknowledged by the sink from their aggregation vector (see
point 2) so that they are not sent to the sink again and
(ii) we disallow combining one set of aggregated values with
another (see point 3), as this could cause the values in the
union of those sets to be aggregated twice.

Corollary 1: Arctium correctly monitors aggregate func-
tions on the network.

From Claims 1 and 2, since every value will be delivered
exactly once, Arctium can track distributive aggregates (such
as sum and count) as well as algebraic ones (such as average
and variance). Holistic aggregates [17] (such as median or
top-k) are not covered by the method. Arctium can also
track any function that fits into the GM framework (since
GM aggregates the values from different nodes using the
average).

Claim 3: With high probability, epochs in Arctium are not
longer than the ones in Crystal.

In the absence of packet losses, at the end of every T-
A pair, exactly one node’s packet will reach the sink. In
Arctium packets contain the aggregated values from at least
one node, hence fewer or equal packets are required (less T-
A pairs) for all nodes’ values to reach the sink. Also, only the
nodes that have values to transmit in this epoch participate
in aggregation, i.e. we do not introduce new messages on the
nodes that would otherwise not have values to send in this
epoch. The only case where Arctium might introduce extra
T-A pairs is when, during a T-phase, all nodes with values to
send decide to back-off simultaneously. If N is the number
of nodes with values to send in an epoch and p is the back-off
probability, the total number of extra T-A pairs introduced
this way in an epoch follows a Poisson binomial distribution
with success probabilities pN , pN−1, ..., p2, p. For example,
for p = 0.5 and N = 26 the expected number of extra T-A
pairs is close to 1, and the probability of having more than
e.g. 4 extra pairs is less than 1.7% (by using Chernoff’s
bound). Moreover, even if extra T-A pairs exist in an epoch,

the reduction in T-A pairs by the use of aggregation is
likely to counter their effect as can be seen experimentally
in Section IV-C.

Now let’s also consider packet losses for the cases dis-
cussed above. Claim 1 only holds with high probability as
there is an unlikely scenario with loss of values if all of the
following four conditions hold: (i) a node A has aggregated
at least one value VB from another node B, (ii) node B
has delegated that value to A and stopped trying to send
it to the sink, (iii) no other node has aggregated VB and
(iv) node A repeatedly fails to reach the sink. This scenario
is extremely unlikely, given that all these four conditions
must hold simultaneously and, as shown in [13] and later
in Section IV-B, Crystal achieves high reliability, i.e. packet
losses are very rare. Even then, node A can deliver the value
at the next epoch, as a last resort.

Claim 2 can still hold in the presence of losses with a
simple remedy. Duplicates might arise when a node that
holds value V sends it to the sink but fails to receive the
acknowledgment for that value, due to packet losses. In this
case, value V might reach the sink more than once. This
can be remedied if the sink keeps track of the values it has
received. If it detects a duplicate value, it can resend the
potentially lost acknowledgement. Claim 3 still holds with
high probability in the presence of packet losses.

IV. EVALUATION

We implemented Geometric Monitoring and Arctium in
Contiki [5], a well-known operating system for IoT applica-
tions. We targeted the TelosB platform that supports proto-
cols such as Crystal that rely on synchronous transmissions.
In this section, we assess the performance of our design
based on its duty-cycle as well as with other metrics defined
below.

A. Experimental Methodology

Experiment setup: We run our experiments in two set-
tings, similar to the setup used in [28]: (i) A full-system
evaluation on the Flocklab [22] testbed. Flocklab consists
of 26 TelosB nodes deployed with a four hop topology.
Using Flocklab, it is possible to test our design on a real
deployment with realistic interference due to the presence
of people and Wi-Fi signals. Moreover, Flocklab is, at the
moment, the only publicly available testbed that still includes
the TelosB nodes that support protocols such as Crystal.
(ii) A full-system simulation on Cooja [24], a cycle-accurate
simulator where the whole network stack is simulated in
software at every node. We use Cooja to reproducibly
uncover trends and insights, which we then validate with
deployment in Flocklab. The default topology here is similar
to the testbed. We also use Cooja to test larger topologies
than the one available in Flocklab (see Section IV-C).

Data set and monitoring functions: We use the
commonly-used Intel Lab data set [2]. We use the first day

Parameter Explanation (X is S, T or A) Value
NX number of Glossy transmissions in phase X 4
WX the maximum duration of phase X 12 (ms)

R
number of consecutive empty T-A pairs
before the epoch is finished

3

Table I: Crystal’s parameter values used in experiments.

of temperature readings from 26 nodes as sources of data
for the nodes in the testbed. In the original dataset, nodes
take a new reading every 31 seconds. In our experiments,
we simulate the same period, i.e. we scale the duty-cycle
results to correspond to a period of 31 seconds.

We experiment with two monitoring functions: the vari-
ance (also used in [27]) and the average of the temperature
readings and use different values for the threshold we want
to monitor (see Section IV-B). Unless otherwise noted, we
will use the variance and a threshold T = 2◦C2.

Configuring Crystal: Crystal has many knobs that allow
the protocol to operate on different topologies and network
conditions, e.g. one-hop vs multi-hop networks, noisy vs
interference-free networks. Those knobs also offer a con-
figurable trade-off between the performance requirements,
i.e. allow the user to favor energy efficiency in place of
reliability and vice versa. We refer to the original publi-
cations of Crystal [12], [13] where the authors explain the
significance and the methodology of choosing correct values
for Crystal’s parameters. In this work, we simply choose
the set of parameter values presented in Table I that allows
Crystal to operate in a reliable manner.

Metrics of interest: A key evaluation criterion is duty-
cycle (DC), i.e. the fraction of the total time that the
radio is turned on. In some experiments we also report
the lifetime improvement, i.e. the reduction in duty-cycle
achieved through GM. Related to GM, we also report the
communication reduction of GM in terms of the number
of updates suppressed by the algorithm; it is a measure of
the efficiency of GM, purely from the application point of
view. Finally, we also measure the loss rate, in terms of
the percentage of updates from individual nodes that fail to
reach the sink.

Summary of the experiments: The rest of the evaluation
section is organized as follows: in Section IV-B we present
testbed and simulation experiments that summarize the per-
formance of our Crystal and GM co-design, without using
aggregation. In Section IV-C we focus on our aggregation
scheme, Arctium, and show, through testbed and simulation
experiments, how it manages to reduce the average duty-
cycle.

B. Combining GM and Crystal: overall performance

We start with a real-life deployment on the Flocklab
testbed, where we monitor the variance and the average of
the temperature readings using different threshold values.
We compare the performance against a baseline (same as

Method Comm. DC (%) Lifet. Loss
Reduction Impr. Rate (%)

Baseline 1X 1.22 1X 0.34
GM (variance / T=0.5) 3.2X 0.54 2.26 0.03
GM (variance / T=1) 4.1X 0.46 2.65 0.00
GM (variance / T=2) 4.3X 0.44 2.77 0.00
GM (variance / T=3) 5.5X 0.38 3.21 0.10
GM (average / T=25) 87x 0.18 6.78 0.00

Table II: Full system evaluation on the Flocklab testbed,
using GM on top of Crystal, for different monitoring func-
tions and threshold values.

0 500 1000 1500 2000 2500
Epochs

0
1
2
3
4
5
6
7
8

Av
er

ag
e

du
ty

 c
yc

le
 (%

)

GM+Crystal GM+ContikiMac

Figure 3: Duty-cycle during runtime when monitoring the
variance with T = 2. The figure also includes results of
using GM with ContikiMAC taken from [28].

in [26], [28]) that does not run GM and instead sends all
measurements to the sink. However, in our case, the baseline
uses Crystal as the underlying protocol.
Testbed experiments: Table II shows the results from the
Flocklab deployment. The choice of monitoring function and
threshold value plays an important role on the effectiveness
of the GM and the communication reduction it achieves.
When monitoring the variance, GM manages to suppress
most of the nodes’ values and communicates 3.2 to 5.5
times less than the baseline. What is important in this work
though, is that, with the combination of GM and Crystal,
that communication reduction is translated as lifetime im-
provement on the nodes. Our experiments report very low
duty-cycle, down to 0.38%. This results in an up to 3.2 times
lifetime improvement compared to the baseline, which is
using Crystal without GM, an already very energy-efficient
protocol. We also note that the system remains fairly reliable,
with less than 0.34% loss rate. In the case of the average,
GM suppresses most of the communication and the system
has a duty-cycle of 0.18%.
Runtime behaviour: We now take a closer look at the dy-
namic behaviour of the above experiments and the evolution
of the average duty-cycle during runtime. We have simulated
one of the above experiments in Cooja (we chose the one
with T = 2) and continuously report the average duty-
cycle in Figure 3. To highlight the benefits of using GM
with Crystal, compared to other network stacks, the figure
also includes the equivalent results from [28] where GM
is applied on top of ContikiMac [4], a mainstream network
stack. The figure shows that, regardless of the protocol stack,

15

20

25

30

35

Av
er

. #
 o

f T
-A

 p
ai

rs
 p

er
 e

po
ch

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

DC
 (%

) p
er

 e
po

ch

0

5

10

15

20

DC
 o

ve
rh

ea
d

(%
)

0 1 2 3 4 5 6 7
ID buffer size (aggregation factor)

Figure 4: Collection of trends illustrating the effect of the
aggregation factor (x-axis): (i) the per-packet DC overhead
(blue trend), (ii) the average number of T-A pairs per epoch
(green trend) and (iii) the average DC per epoch (red trend).

GM exhibits a highly dynamic behavior, with periods of
low activity where most of the communication is suppressed
and periods of high activity (usually when the monitored
value is close to the threshold) where GM communicates
more. However, the choice of communication protocol has
a major effect on the average duty-cycle. Our design that
combines GM and Crystal has an order of magnitude smaller
duty-cycle and consumes a bare minimum amount of power
when communication is low. On the contrary, mainstream
networks stacks have a significant overhead which they have
to pay even under low communication [28].

C. Arctium: In-network aggregation under heavy communi-
cation

In this section, we focus on our aggregation scheme Arc-
tium and show that aggregation is an effective technique to
reduce the already low duty-cycle presented in the previous
section, even further. In all the experiments of this section,
the back-off probability p was set to 0.5.
Effects of the aggregation factor: We start by presenting

simulation results that illustrate the effects of the size of
the aggregation buffer. As mentioned earlier in Section III,
Arctium uses a node-ID buffer that is a placeholder for the
IDs of the nodes whose values might be aggregated in a
single packet. The size of the buffer is a parameter of our
design and it affects the effectiveness of the aggregation.
In the following experiment, every node in the network
tries to send data to the sink (i.e. we adopt the baseline
behavior, without the GM algorithm) to illustrate the effect
of aggregation. Figure 4 shows the evolution of different
trends as the size of the ID buffer (aggregation factor)
increases in the x-axis. We now explain the significance of
each trend.

The blue trend shows the added, per-packet overhead that
comes from increasing the buffer size, compared to not
having a buffer (aggregation factor 0). Since each packet
has to statically reserve space for each entry in the buffer,
the size of the packet increases linearly with the size of
the buffer. This results in a linear increase in duty-cycle

Aggregation factor (size of the buffer)
0 1 2 4

Method DC DC Impr. DC Impr. DC Impr.
baseline 1.24% 0.97% 1.27x 0.90% 1.38x 0.93% 1.33x(+ Arctium)
GM 0.54% 0.49% 1.10x 0.48% 1.13x 0.50% 1.08x(+ Arctium)

Table III: Full system evaluation on the Flocklab testbed,
for different aggregation factor values.

overhead in order to receive and transmit those packets.
Each added slot in the buffer adds approximately 3% extra
overhead.

The green trend illustrates the benefits that come from
aggregating values in a single packet: it reports the average
number of T-A pairs required to complete an epoch. As
the aggregation factor increases, the number of T-A pairs
quickly drops, since a bigger buffer allows a packet to carry
more information and deliver more values to the sink. Most
noticeably, even using a single-slot ID buffer, i.e. going from
aggregation factor 0 to 1, is enough to reduce the number of
T-A pairs by 23%. The benefit saturates after an aggregation
factor of 3 which indicates that, for this given topology, there
are not many opportunities to aggregate more than 3 values
before the sink receives every node’s value.

The red trend reports the average duty-cycle per epoch.
This metric factors in both the increasing overhead per
packet (blue trend) and the decreasing number of T-A pairs
per epoch (green trend). As a result, the average duty-cycle
initially decreases and has a minimum when the aggregation
factor is 2. At this point, using Arctium results in 23%
smaller duty-cycle. After that point, the increasing packet
overhead dominates and the duty-cycle increases slowly.
Testbed experiments: We support the above simulation
results regarding Arctium with results from real deployments
in the Flocklab testbed. Table III summarizes the duty-cycle
reported for the baseline and GM, as we change the aggrega-
tion factor. In the GM experiments, we monitor the variance
with a threshold of T = 0.5. We also report the improvement
in duty-cyle, due to aggregation. For the baseline, the results
validate the previous claims: aggregation further reduces
the duty-cycle by a varying amount, up to 1.38x. Arctium
also has a positive effect for the case of GM, where the
already low duty-cycle (0.54%) is further decreased by up
to 1.13x. Naturally, since GM communicates far less than
the baseline, there are fewer messages to send to the sink
and fewer chances to aggregate values. Still, the results show
that Arctium brings improvement even in applications with
aperiodic communication patterns.
Testing larger networks: Finally, we experiment with larger
and busier topologies in the Cooja simulator. Figure 5 reports
the average duty-cycle for topologies that range between 20
and 50 nodes. In each topology, every node is trying to send
values to the sink. Overall, Arctium manages to reduce the

0 1 2 3 4 5 6
ID buffer size (aggregation factor)

100

150

200

250

300

350

Av
er

ag
e

DC
 (%

) p
er

 e
po

ch

20 nodes
30 nodes

40 nodes
50 nodes

Figure 5: The average duty-cycle per epoch for different
topologies, as the aggregation factor changes.

duty-cycle at each topology. The reduction ranges from 21%
with 20 nodes where there are few packets to aggregate in
the network, up to 33% with 50 nodes where there are more
opportunities for aggregation.

V. RELATED WORK

Geometric Monitoring (GM): Since its original publica-
tion, GM has been extended in many ways, orthogonal to the
design we consider in this work. It has been combined with
sketches [10] and prediction models [11] that effectively
track aggregates such as join and self-join sizes, while also
taking the temporal evolution of the monitored values into
account. A summary of the use of GM for query tracking in
distributed streaming systems can also be found in [9]. This
interest has been motivating also for the work in our paper.

In [15], the authors introduce shape sensitive geomet-
ric monitoring, that takes into account properties of the
monitored function. Lazerson et al. [19] propose a method
to approximate the monitored function to convex/concave
components, so that it can be easily checked for violations,
providing a good alternative to tackle the complexity of
threshold checking we discuss in Section III-B. They also
experiment with a high-end embedded platform and show
that the method is lightweight. The approximation we pro-
pose in our work is orthogonal, in the sense that we leave
the function intact and instead bind the local area that nodes
have to keep track of.

GM has been studied in the general context of WSN
from a high-level perspective. In [27], the authors present
an adaption of GM that is designed for clustered topologies.
In [3], GM is used for detecting outliers in the readings of
wireless sensor nodes. In both of these lines of work, the
network is only considered as a communication abstraction
and practical system aspects are not studied. Differently, we
take a full system perspective and consider a real network
stack. The only work that considers deployment of GM on
top of real networks stacks is in [28], which we compare
against in Section IV-B.
Wireless protocols: Crystal is not the only modern network
stack that relies on synchronous transmissions. Ferrari et
al. [6] present a protocol that uses synchronous transmissions
to support many communication patterns. Landsiedel et

al. [18] also use synchronous transmissions and augment
them with in-network aggregation to achieve low power
and excellent reliability. However, their approach focuses on
duplicate-insensitive aggregates (e.g. min or max) and does
not work out of the box for duplicate-sensitive aggregates
(e.g. sum or average). Al Nahas et al. [1] extend the protocol
with duplicate-sensitive aggregates. However, all previously
mentioned protocols are not designed for cases where traffic
is sparse and aperiodic. That is the main motivation why we
chose Crystal to build our design upon.
Aggregation: In-network aggregation has been an active
topic of research for many years. A large body of work stud-
ies aggregation as an application of gossip-based protocols.
Friedman et al. [8] discuss different gossiping protocols. Je-
lasity et al. [14] present a decentralized aggregation protocol
based on gossiping. Koldehofe [16] shows the effect of the
buffer size in the performance of gossip-based protocols.
Kuhn et at. [17] prove bounds and provide algorithms for
holistic aggregates, specifically for distributed selection.

In the context of wireless sensor networks, Rajagopala
et al. [25] survey different ways aggregation is used in
WSNs, mostly by utilizing the network’s architecture. Nath
et al. [23] show how to approximately track duplicate-
sensitive aggregates in WSNs. In this work, we present an
approach that builds on top of a modern network protocol
that has not been studied before in the context of in-network
aggregation.

VI. CONCLUSION

We show how a general threshold monitoring framework
(GM) can be co-designed together with a state-of-the-art
wireless protocol (Crystal), for the problem of continuous
threshold monitoring. Detailed results from testbed deploy-
ments show that the two approaches complement each other
and are able to achieve a very low duty-cycle, up to 10x less
than a mainstream network stack, which was the limiting
factor in previous work. In particular, we present the way
we orchestrate the communication of GM using the existing
schedule of Crystal. We also introduce an efficient approx-
imation for threshold checking that makes this co-design
possible. Moreover, we extend our design to also exploit
latent opportunities for aggregation in Crystal and improve
the lifetime of applications that are monitoring network
aggregates. Our aggregation scheme, called Arctium, allows
nodes to overhear and correctly aggregate neighbouring
node’s values and manages to further improve the lifetime
of the nodes by up to 1.13-1.38x. Our results show that
applications such as GM can have practical value for real
IoT deployments, coupled with modern networks stacks that
unlock the full potential of the application. Our code is
available online: https://github.com/mpastyl/Arctium.

ACKNOWLEDGEMENTS

The research leading to these results has been partially
supported by the Swedish Civil Contingencies Agency
(MSB) through the projects RICS and RIOT, by the Swedish
Foundation for Strategic Research (SSF) through the frame-
work project FiC and the project LoWi, by the Swedish
Research Council (VR) through the project ChaosNet, and
from the European Community’s Horizon 2020 Framework
Programme under grant agreement 773717.

REFERENCES

[1] B. Al Nahas, S. Duquennoy, and O. Landsiedel. Network-
wide consensus utilizing the capture effect in low-power wire-
less networks. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, SenSys, 2017.

[2] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and
R. Thibaux. Intel Lab Data, 2004.

[3] S. Burdakis and A. Deligiannakis. Detecting Outliers in
Sensor Networks Using the Geometric Approach. In IEEE
International Conference on Data Engineering, 2012.

[4] A. Dunkels. The ContikiMac radio duty cycling protocol.
Technical report, Swedish Institute of Computer Science,
2011.

[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In
29th IEEE Int’l Conf. on Local Computer Networks, 2004.

[6] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-
power wireless bus. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, SenSys,
2012.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with glossy. In
Proceedings of the 10th ACM/IEEE International Conference
on Information Processing in Sensor Networks, April 2011.

[8] R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and
S. Voulgaris. Gossiping on manets: The beauty and the beast.
SIGOPS Oper. Syst. Rev., 41(5), Oct. 2007.

[9] M. Garofalakis. Approximate geometric query tracking over
distributed streams. IEEE Data Eng. Bull., 2015.

[10] M. Garofalakis, D. Keren, and V. Samoladas. Sketch-based
Geometric Monitoring of Distributed Stream Queries. Proc.
VLDB Endow., 2013.

[11] N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman,
and A. Schuster. Prediction-based geometric monitoring over
distributed data streams. In ACM SIGMOD International
Conference on Management of Data, 2012.

[12] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza. Data
prediction + synchronous transmissions = ultra-low power
wireless sensor networks. In Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems, SenSys,
2016.

[13] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco.
Interference-resilient ultra-low power aperiodic data collec-
tion. In Proceedings of the 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks,
IPSN, 2018.

[14] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput.
Syst., 23(3), Aug. 2005.

[15] D. Keren, I. Sharfman, A. Schuster, and A. Livne. Shape
Sensitive Geometric Monitoring. IEEE Trans. Knowledge and
Data Eng., 2012.

[16] B. Koldehofe. Buffer management in probabilistic peer-to-
peer communication protocols. In 22nd International Sym-
posium on Reliable Distributed Systems, 2003. Proceedings.,
Oct 2003.

[17] F. Kuhn, T. Locher, and R. Wattenhofer. Distributed selection:
A missing piece of data aggregation. Commun. ACM, 51(9),
Sept. 2008.

[18] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos:
Versatile and efficient all-to-all data sharing and in-network
processing at scale. In Proceedings of the 11th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys, 2013.

[19] A. Lazerson, D. Keren, and A. Schuster. Lightweight mon-
itoring of distributed streams. ACM Trans. Database Syst.,
43, July 2018.

[20] J. Lee, B. Bagheri, and H.-A. Kao. A cyber-physical systems
architecture for industry 4.0-based manufacturing systems.
Manufacturing Letters, 3, 2015.

[21] K. Leentvaar and J. Flint. The capture effect in fm receivers.
IEEE Transactions on Communications, 24(5), 1976.

[22] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. Flocklab: A testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. In
2013 ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), 2013.

[23] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson.
Synopsis diffusion for robust aggregation in sensor networks.
In Proceedings of the 2Nd International Conference on Em-
bedded Networked Sensor Systems, SenSys, 2004.

[24] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with cooja. In 31st
IEEE Conf. on Local Computer Networks, 2006.

[25] R. Rajagopalan and P. K. Varshney. Data-aggregation tech-
niques in sensor networks: A survey. IEEE Communications
Surveys Tutorials, 8, Fourth 2006.

[26] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over distributed
data streams. In ACM SIGMOD Int’l Conf. on Management
of Data, 2006.

[27] I. Sharfman, A. Schuster, and D. Keren. Aggregate threshold
queries in sensor networks. In IEEE Int’l Parallel & Distr.
Process. Symp., 2007.

[28] C. Stylianopoulos, M. Almgren, O. Landsiedel, and M. Pa-
patriantafilou. Geometric monitoring in action: a systems
perspective for the internet of things. In 2018 IEEE 43rd
Conference on Local Computer Networks (LCN), 2018.

APPENDIX

A. Geometric Monitoring

In this section of the Appendix, we give a more detailed
summary of the Geometric Monitoring method than the one
found in Section II-A. A more detailed analysis, as well
as the proofs can be found in the original publication by
Sharfman et al. [26].

Assume a network of N nodes, with sensor readings
~v1,..., ~vN , called local statistics vectors. Those vectors con-
sist of one or more variables that each node monitors and
vary over time. These vectors are only known locally, but
sporadically a node ni will broadcast its ~vi to every other
node. The last broadcasted value from ni is denoted as ~v′i.
The weighted average of the local vectors is called the global
statistics vector.

ssss

Estimate	Vector	e

u
𝜐

u

u

u

u

v e

Figure 6: An example illustrating the GM method.

~v =

N∑
i=1

wi ∗ ~vi (1)

Similarly, the weighted average of the last broadcasted
values is called the estimate vector (~e) and it is known to
all nodes. Given a function f and a threshold T , we want
to continuously monitor whether or not the value f(~v) is
under the threshold. Equivalently, we want to always know
whether or not ~v lies in an are where the function takes
values below the threshold.

When a node measures a new set of sensor readings, its
local statistics vector will drift (~∆vi = ~vi − ~v′i). The drift
vector ~ui, defined as the displacement of the estimate vector
because of the new drift, i.e. ~ui = ~e+ ~∆vi, can be computed
locally without communication. Figure 6 shows an example
of the method, also depicting the values defined above.

The convex hull of the drift vectors (yellow area) is
defined as the set of all the convex combinations of
~ui (

∑
θi ~ui). As such, it is clear that the weighted average

of the drift vectors (defined similarly to Equation 1) would
be part of this set. With simple substitution, one can also
see that the global statistics vector is equal to the weighted
average of the drift vectors and thus it must also lie in
the convex hull of the drift vectors. Thus, as long as the
convex hull does not cross the threshold (i.e. lies in the white
area), ~v is also guaranteed to not have crossed the threshold.
However, nodes cannot locally determine the convex hull, as
that would require knowing all ~u1,..., ~uN .

This is where the final part of the method comes into play.
Let each node create a sphere locally, centered at ~e+ ~ui

2 with
a radius of ~e− ~ui

2 . This is possible since ~ui is known to ni
and ~e is the same across all nodes at a given time. Sharfman
et al. [26] prove that the union of those spheres strictly
covers the convex hull. Therefore, a node only needs to track
whether its locally computed sphere crosses the threshold.
If yes, it will send its local vector to everyone, subsequently
updating the estimate vector; else, it can remain quiet.

