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1 Introduction

Holographic duality [1–3] has proved to be an effective tool to compute the exact response

of strongly correlated media, where perturbation theory is not applicable. In particular,

electromagnetic properties such as the conductivity and the dielectric function have been

studied. The simplest gravitational bulk to describe media with a finite chemical potential

is the planar AdS-Reissner-Nordström black hole (AdS-RN). The AdS-RN bulk has two

parameters, mass and charge, corresponding to temperature and chemical potential on the

boundary, but only one effective dimensionless parameter, the ratio µ/T .
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Physically interesting systems often have a temperature that is much smaller than the

chemical potential of the system, which is problematic, as the extremal RN black hole is not

a stable solution in that parameter regime [4–6]. One mode of instability when the temper-

ature is decreased is that, as the local bulk chemical potential increases, fermionic charge

carriers could be supported. For low enough temperatures, the black hole charge can decay

into these, leaving a density of charge carriers a distance from the remainder of the black

hole. These bulk configurations, called ‘electron clouds’, have been previously studied [7, 8],

and are the focus of this paper.1 Further turning down the temperature, one eventually

arrives at a solution where the event horizon and the inner edge of the could merge into

a Lifshitz geometry without any horizon. This configuration has been called ‘electron

star’ [9], due to the similarity to neutron stars, but instead built out of charged fermions.

In this paper we expand on previous work [10–12], by computing the quasinormal

modes (QNMs), i.e. the poles of the screened response function χsc, and the collective

modes (CMs), which correspond to the poles of the physical response function χ, in the

electron cloud model. The distinction between QNMs and CMs is important since it is

the physical response function χ which is directly accessible in an experimental setup.

The screened response of the system, being the sum of the applied external field and the

induced polarization, is internal to the system and hence not directly accessible through

experiments. In addition, as CMs are the possible oscillations of the system in the absence

of external fields, they correspond to the poles in the physical response function χ.

The main results are that the ‘exotic’ dispersion previously observed in the Reissner-

Nordström model [12], where the leading order propagating modes disappears for an in-

termediate range of momenta, persists in the electron cloud model, and that there is also

a new mode arising due to excitations of the cloud. As the ‘exotic’ behaviour is not seen

in weakly coupled models [12] it provides a potential experimental signature for strongly

correlated physics, and also the basis for possible future technological applications.

The paper is structured as follows: in section 2 we briefly review the electron cloud

model we will be studying. The results regarding both CMs and QNMs are presented

in section 3, and compared to the results for the simpler Schwarzschild and Reissner-

Nordström models. Section 4 contains a discussion of the results, and outlines some in-

teresting lines of future research. Since this paper is meant to represent a comprehensive

study of both CMs and QNMs for the electron cloud model we have included some amount

of details in the appendices.

2 The electron cloud

We consider the electron cloud model, which consists of Einstein-Maxwell theory coupled

to a perfect fluid of charged particles. For more technical details about the action and

equation of motion of this model we refer to [7–9, 13], as well as appendix A.1. The

crucial ingredient is the presence of charged fermionic matter that is approximated in the

1Note that despite the name, the charged fermions in the bulk are not necessarily electrons. Note

also that the holographically dual boundary theory generically lacks quasiparticle excitations, so the exact

nature of the particles in the bulk is of limited relevance from the perspective of the boundary theory.
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Thomas-Fermi limit, where the density of states is

g(E) = βE
√

(E2 −m2) , (2.1)

for energies above the cloud particle mass m, and where β is a parameter determining

the density of the cloud.2 This sets the number density and the energy density inside the

cloud as

n =

∫ µloc

m
g(E)dE , ρfl =

∫ µloc

m
Eg(E)dE , (2.2)

respectively. The pressure is then given by the usual equation of state,

p = −ρfl + µlocn , (2.3)

and we have introduced the local chemical potential

µloc = uµ (Aµ + ∂µφ) , (2.4)

which is the effective chemical potential felt by a particle.

Considering a static background space-time in this setup, there will be three regions to

be considered; a pure RN-solution in the IR, an intermediate cloud-solution and another

pure RN-solution in the UV (albeit with potentially different parameters than in the IR).

This follows from the fact that the background solution has a local bulk chemical potential,

given by (2.4), that is zero at both the horizon and the boundary, with a maximum in

between. Where the chemical potential is large enough to support the charged fluid (that

is, larger than the mass of the fluid particles), there will be a cloud, located in that region.

If the charge of the black hole, Q, is not large enough, the chemical potential might not

be sufficient to support an electron cloud. The solution is then instead a pure planar AdS-

Reissner Nordström black hole everywhere. The chemical potential of such models can be

seen in figure 1, where the horizon is placed at z = 1, the conformal boundary at z = 0 and

Q2 = 0 corresponds to the uncharged, Schwarzschild black hole, and Q2 = 6 corresponds

to an extremal black hole. For a cloud particle mass m, the system will support a cloud

wherever the chemical potential is larger than m (and thus, the solution is no longer pure

RN). From the figure we can note that a cloud can only be supported for m < 1 and the

larger the charge Q, the closer to the horizon the cloud lies.

Note that for systems with a cloud one also needs to take into account the backreaction

of the cloud itself on the region in which it is supported, hence it is only possible to find the

inner bound of the cloud from the pure RN-solution in the IR. As the cloud particles have

a charge greater than the mass (m < 1) for stability,3 their presence extends the region in

which the bulk chemical potential is larger than m. How the chemical potential depends

on the density parameter β is illustrated in figure 2.

2Also note that the particles in the could are approximated in the zero temperature limit, as finite

temperature effects would correspond to 1/N effects [7, 8].
3Otherwise the particles would fall into the black hole due to the gravitational pull being larger than

the electromagnetic repulsion [9].
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Figure 1. Local chemical potential in pure AdS-RN for different values of Q2. The dashed line

marks the maximal value, for all different values of Q2.

Figure 2. The chemical potential in an electron cloud model at Q = 1 and m = 0.2 for different

values of β. Note that all chemical potentials are equal only beneath the dashed line (m) to the right.
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Figure 3. The inner (top) and outer (bottom) bounds as a function of mass, measured by the

radial coordinate z, of the electron cloud for charge Q2 = 4 and different β. Note especially that

the inner bound is independent of β and that for a specific mass, only values of m > mcrit(Q, β)

gives a well defined outer bound.

As noted in figure 2, the outer bound of the cloud depends non-trivially on the density

parameter β. Similarly, the inner and outer bounds of the cloud depend on the mass

parameter, as illustrated in figure 3, where for any value of the mass m, one can draw a

vertical line to find the inner and outer bound of the cloud for some different values of

β, at a fixed Q2 = 4. Here we can also see that there is a critical limit for large enough

β, since a sufficiently dense electron cloud could source itself indefinitely, indicated by the

absence of an outer bound. Whether the outer bound of the cloud extends to infinity or

not is obviously mass dependent, e.g. β = 30 and masses below 0.47 leads to an infinitely

extended cloud. These solutions are unphysical as they give rise to an infinite chemical

potential and charge density on the conformal boundary. In contrast, in a physically

relevant setting the charge density and chemical potential remains finite. The expansion

of the cloud when increasing β, or lowering m, should not be interpreted only as the cloud

stretching out farther, but also as the scale T/µ decreasing. If the chemical potential is

to remain fixed, the charge and mass of the black hole would decrease when the cloud

expands, as the black hole dissipates into the cloud. The zero temperature electron star

limit, T = 0, is however not attainable in our framework, as we fix the position of the

horizon to z = 1. In this framework instead, the relevant scale T/µ goes to zero, e.g. when

approaching the critical limit with a diverging µ (from below in m).

While solutions beyond the critical limit βcrit(m) are unphysical in this setting, solu-

tions close to the limit are more interesting (but also more computationally challenging).
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Within the cloud, the geometry has a Lifshitz-scaling, which gives rise to a higher speed

of light in the UV side of the cloud than in the IR. The further the cloud stretches, the

larger this difference becomes.

2.1 First order perturbation

Varying the action gives the equations of motion for the respective fields. Rather than solv-

ing for the most general field configuration, we work in a static background, isotropic in

(x, y), and add wavelike-perturbations and study the linear response.4 Making this ansatz

for the fields turns each equation into one equation for the background and one equation

for the perturbation. Due to Bianchi-identities, some equations simplify to algebraic con-

straints which can be used to simplify the remaining equations. After this simplification,

there are four non-linear differential equations for the background, and seven linear dif-

ferential equations for the perturbations. It should also be noted that we are working in

the longitudinal sector, where no magnetic flux is induced, so we do not have to take into

account the corrections to the electron cloud model in the presence of magnetic fields [14].

Further details about the equations of motion we solve are in appendix A.

Of the seven perturbation equations, only six are present outside of the cloud region,

and the boundary conditions of the seventh equation are set by regularity. For the remain-

ing six second order differential equations, half of their boundary conditions are set at the

horizon, by requiring no modes to be outgoing. This means that the modes are either pure

gauge or satisfying infalling boundary conditions.

At the boundary we make the standard choice of Dirichlet boundary conditions for

the metric perturbations, as well as for the perturbed At-component, which ensures that

there is no dynamical gravitation on the boundary and fixes the chemical potential in the

boundary theory. Lastly, one makes a specific choice of boundary condition for the Ax-

perturbation depending on which features, such as QNMs or CMs, e.g. plasmon modes,

one is interested in computing, corresponding to the boundary conditions

δAx = 0 , (2.5)

ω2δAx + c e δA′x = 0 , (2.6)

respectively, where prime denotes the normal derivative at the boundary and e is the

boundary Maxwell coupling. In what follows we will set e = 1, which does not affect the

qualitative behaviour of the dispersion relations.

Computationally, since the system is linear, it is more convenient to set arbitrary

starting values at the horizon, and find a linear combination of the solutions that satisfy

the boundary conditions at z = 0. In addition to four pure gauge modes, one can specify the

infalling solutions as one that is ‘gravitational’ on the horizon, having {δg∗xx(1), δA∗x(1)} =

{1, 0} and one that is ‘electromagnetic’, having {δg∗xx(1), δA∗x(1)} = {0, 1}. Stars indicate

the lowest order after Fröbenius expansion.

4We use the same conventions as in previous work [10–12], and further detail about the parametrization

of our fields is found in appendix A.
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Figure 4. The lowest modes in the

Schwarzschild background. The (black) gravi-

tational curve is solely in the gravitational sec-

tor and thus both a CM and a QNM. The low-

est electromagnetic CM (blue) and QNM (red)

are distinct. Real parts are shown as dashed

lines and positive to lessen clutter (a negative

real part is also a solution). Imaginary parts

are solid lines (and always negative).

Figure 5. The electromagnetic QNM of figure 4

but here with ω in the complex plane, plotted

for several different values of k. Arrows indi-

cate increasing values of k. Note how the two

poles moving along the imaginary axis collide

and give rise to two symmetric poles about the

imaginary axis.

3 Results

In this section we compute the longitudinal CMs and QNMs for three different bulk con-

figurations, and illustrate and discuss how various aspects of the bulk affect physics in the

boundary field theory.

3.1 Schwarzschild background

Setting Q = 0 means that the chemical potential will be zero everywhere. The absence of

background Maxwell-fields will also lead to the decoupling of the 6 perturbation equations

into 4 equations only containing the gravitational perturbations and two equations only

containing the Maxwell perturbations. This decoupling allows us to identify two different

kinds of modes; gravitational and electromagnetic modes. The lowest gravitational mode

(shared for CMs and QNMs) is given in figure 4, as well as the electromagnetic CMs and

QNM. In figure 5 the movement of the QNM poles in the complex ω plane is displayed.

Note that for the CM condition (2.6), only the (gravitational) sound mode exists for

small ω and k whereas for the Dirichlet boundary condition (2.5) there exists a purely

diffusive (electromagnetic) mode in addition to the sound mode.

It is also worth noting that whenever the frequency of a mode has a real part, there is

a corresponding mode with a negative real part, which is omitted to keep the figures less

cluttered. That is, there are technically six modes in e.g. figure 4, although for larger k

there only appears to be three, as they all have a non-zero real part and hence represent

two modes each.

– 7 –
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Figure 6. The lowest CM in a µ/T ≈ 5 RN

background. The dashed line is the real part

of ω/T , while the solid lines are the imagi-

nary parts. The real part of the green mode

coincides with the horizontal axis. The black

mode originates from the (gravitational) sound

mode, the green from the lowest EM mode.

Figure 7. The lowest QNMs in a µ/T ≈ 5

RN background. The dashed lines are the real

parts of ω/T , while the solid lines are the imag-

inary parts. The real part of the green mode

coincides with the horizontal axis.

3.2 Reissner-Nordström background

Turning on a non-zero black hole charge Q, and requiring that m > µloc,max(Q) or β=0,

leads to the Reissner-Nordström solution. For the specified range of parameters, the chem-

ical potential will not support a charged fluid outside the horizon, but due to the non-

vanishing bulk chemical potential the perturbation equations are now coupled. However,

as in the Schwarzschild case above, taking the limit Q → 0 lets one identify the ‘origin’

of a mode as gravitational or electromagnetic. The lowest CMs and QNMs are given in

figures 6 and 7, respectively. For certain values of the parameters an ‘exotic’ dispersion

can be observed,5 cf. [12], which is a leading order effect for the CMs, but subleading for

the QNMs due to the presence of the dominating sound mode.

3.3 Electron cloud background

A non-zero black hole charge Q, and a particle mass m < µloc,max together with β 6= 0

leads to the ‘electron cloud’ background, where a charged fluid is supported for some radial

coordinate range outside the horizon. The numerical analysis gets more complicated in the

cloud, and the Lifshitz background allows for a modification of the dispersion relations’

slopes. In the limit β → 0 one gets back the RN-solution, and can thus again trace back

the origin of the modes as being gravitational or electromagnetic.6

We focus our attention on the five lowest modes. However, due to parity, to any mode

with a non-zero real part of ω there also exists a mode with the same real part, but the

opposite sign. This means that in practice, we generally study three different modes.

The most notable difference compared to the Reissner-Nordström model is the appear-

ance of a new CM — marked red in figures 8 and 9 and referred to as ‘cloud mode’ in the

5A similar type of dispersion has previously been observed in the context of QNMs for probe branes in

a magnetic field [15] (which couples the longitudinal and transverse sectors), for transverse QNMs [16], and

recently for longitudinal QNMs in the presence of spacetime filling branes [17].
6Up to different types of mode merging, thus yielding modes having multiple origins.
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Figure 8. The lowest CMs at µ/T ≈ 1.9,

m = 0.1 and β = 4π. Dashed lines are real

parts and solid lines are imaginary parts. Sim-

ilarly coloured real parts and imaginary parts

constitute the same mode. The black line

is purely diffusive (and technically five differ-

ent modes). Note that the ω/T -axis is scaled

quadratically to better display all modes, but

also to showcase the quadratic imaginary part

of the linear mode.

Figure 9. The lowest CMs at µ/T ≈ 14.4,

m = 0.2 and β = 10. Dashed lines are real

parts and solid lines are imaginary parts. Sim-

ilarly coloured real parts and imaginary parts

constitute the same mode. The black line is

purely diffusive (and technically three different

modes). The brown line is the imaginary part

of the lowest gapped mode, whereof the real

part has been omitted, as it is an order of mag-

nitude beyond the scale of the other modes.

following. This mode starts off linearly, meaning that the five lowest modes are one diffu-

sive, two linear and two gapped, much like the case for QNMs. In contrast to the linear

QNM, i.e. the sound mode, this new mode exhibits an intermediate overdamped region,

similar to the ‘exotic’ behaviour discussed in [12] for the gapped CM and QNM.

The appearance of several overlapping modes with such ‘exotic’ behavior indicates that

there must be several competing processes that hinder the free movement of charge carriers.

Numerical investigations show that the ‘cloud mode’ vanishes in the limit where the cloud

disappears and the solution becomes the Reissner-Nordström model. With the latter only

containing the ‘exotic’ mode which contains an overdamped region due to electromagnetic

interaction, this indicates that the ‘cloud mode’ describes damping due to the nature of

the particles. With the cloud modeled after principles of Fermi liquid theory, it stands to

reason that the damping seen in the ‘cloud mode’ stems from quantum statistical processes

inherent in the fermionic nature of charge carriers.

The exotic behaviour of all modes can to some extent be manipulated with all three

parameters — even with some particular choices leading to situations where the exotic

behaviours of different modes overlap, as is e.g. the case in figure 8. Furthermore, tweaking

the parameters appears to have significantly larger impact on the CMs compared to the

QNMs. In the following, we highlight some of these differences.

3.3.1 Varying β

Figures 10–12 show the impact of changing β without changing the other parameters.

Especially noteworthy is the crease in the gapped dispersion, figure 11, indicating that the

system is going toward having an exotic gapped mode. Also worth noting is the movement

– 9 –
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Figure 10. The diffusion QNM (left) and CM (right) at µ/T ≈ 5.4, m = 0.2. Note the formation

of the crease in the CM, which becomes more pronounced as β increases.

Figure 11. The gapped QNM (left) and CM (right) at µ/T ≈ 5.4, m = 0.2.

Figure 12. The linear QNM (left) and ‘cloud’ CM (right) at µ/T ≈ 5.4, m = 0.2. Note the

formation of an overdamped ‘exotic’ region in the CM.

of the exotic region of the linear mode in figure 12 at increasing β, which appears to move

towards higher k/T for small β but then turns again and moves toward smaller k/T for

sufficiently large β (β & 80).

– 10 –
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Figure 13. The diffusion QNM (left) and CM (right) at µ/T ≈ 5.4 and β = 50.

Figure 14. The gapped QNM (left) and CM (right) at µ/T ≈ 5.4 and β = 50.

Figure 15. The linear QNM (left) and ‘cloud’ CM (right) at µ/T ≈ 5.4 and β = 50.

3.3.2 Varying m

Figures 13–15 show the impact of changing m independently of the other parameters.

Note especially the appearance of an exotic region for both the gapped mode and the

linear mode, and how one is becoming more pronounced by decreasing the mass, while the

other is weakened.
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Figure 16. The diffusion QNM (left) and CM (right) at β = 10 and m = 0.2.

Figure 17. The gapped QNM (left) and CM (right) at β = 10 and m = 0.2.

Figure 18. The linear QNM (left) and ‘cloud’ CM (right) at β = 10 and m = 0.2.

3.3.3 Varying µ/T

Figures 16–18 show the impact of changing µ/T in the system at fixed m and β. Note

especially the movement of the exotic region in the linear dispersion. What is particularly

noticeable is that the exotic region in the ‘cloud mode’ becomes more pronounced as the

chemical potential increases. This is a further indication that this mode captures damping

due to quantum statistical processes, as the more states are filled means that there are

fewer possibilities for charge carriers to transition to.

– 12 –
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4 Discussion

In this paper we have studied longitudinal QNMs and CMs in the electron cloud back-

ground. While QNMs correspond to poles in the screened response function χsc, the CMs

correspond to poles in the physical response function χ [18]. The QNMs correspond to

Dirichlet conditions for the fields at the asymptotic AdS boundary, while the CMs corre-

spond to a specific type of mixed boundary condition for the Maxwell potential [10, 11],

related to an RPA form of the Green’s function [19–21].

We have previously studied the same type of modes in the Reissner-Nordström back-

ground, and found an exotic, or anomalous, dispersion relation which for the CMs is a lead-

ing order phenomenon (in the QNM sector there is always a dominating sound mode) [12].

More specifically, for certain parameter values of the model there opens up a range of mo-

menta for which the leading propagating mode becomes non-propagating. However, it is

well-known that the RN black hole is unstable at low temperature corresponding to the

extremal RN black hole [4–6]. One mode of instability involving fermions is towards the

formation of an electron star [9] for zero temperature, or an electron cloud [7, 8] for non-

zero temperatures.7 A natural question to ask is what kind of dispersion relation a more

realistic model of a holographic metal, like the electron star or cloud models, has, and in

particular if the exotic dispersion is an artifact of the instability of the RN model. However,

as the exotic dispersion is a high temperature phenomenon it is expected to appear also in

the electron cloud model, which is indeed what we find.

As we have shown in this paper, not only does the exotic dispersion persist in the

electron cloud model, there is an extra CM, corresponding to excitations within the charged

cloud, which in itself exhibits an exotic dispersion. With the EC model allowing to trace

properties of these different ‘exotic’ modes to parameters in the theory, there is evidence

on how the overdamping stems from electromagnetic interaction, respectively statistical

repulsion due to the fermionic nature of charage carriers. Further note that the range of

parameters for which the exotic behaviour appears makes this phenomenon very difficult to

access using conventional methods. Therefore, in (strange) metals without quasi-particles,

the appearance of a range of momenta for which the leading order longitudinal mode of

transport is strongly suppressed is a holographic prediction that might be possible to test

in the near future [24].

Looking ahead, studying the CMs in yet more realistic models would be of interest.

In addition, studying other phenomena in which the dynamic charge response plays an

important role is now possible as we know how to properly extract this information from

the physical response function χ.
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A Detailed description of the model

A.1 Action

As explained in section 2, we use the standard AdS-Einstein-Maxwell lagrangian,

LME = −1

4
FµνF

µν +
1

2
(−2Λ +R[O]) , (A.1)

adding the non-rotating, zero-temperature, ideal fluid lagrangian

Lfl = −ρfl(n) + nuµAµ + nuµ∂µφ+ λ (1 + gµνu
µuν) , (A.2)

to describe the ‘cloud’. Here ρfl is the energy density and n is the number density, and

the charge of the fluid particles has been set to unity. The ‘Clebsch’ potential φ ensures

that the mass of the fluid is conserved. Similarly, λ is a Lagrange multiplier implementing

that uµ squares to minus one, as required for the 4-velocity of the fluid.

The fluid Lagrangian can be rewritten as

Lfl = −ρfl + nµloc + λ (1 + gµνu
µuν) (A.3)

with the local bulk chemical potential µloc defined as

µloc = uµ (Aµ + ∂µφ) . (A.4)

A.1.1 Equations of motion

By varying the action with respect to each of the independent fields we get the following

equations of motion,

λ : 0 = 1 + gµνu
µuν (A.5)

n : 0 = −
∂ρfl
∂n

+ µloc (A.6)

φ : 0 = −∇µ (nuµ) (A.7)

u : 0 = Aµn+ 2λuµ + n∂µφ (A.8)

A : 0 = −nuµ −∇κ∇κAµ +∇κ∇µAκ (A.9)

g : 0 = −Λgµν + Lflg
µν − 1

4
gµνFκλF

κλ + FµκF νκ −R[O]µν

+
1

2
gµνR[O] + 2λuµuν . (A.10)

These equations can be simplified somewhat. By contracting (A.8) with u and solving for

λ, using (A.5), we get

λ =
1

2
nuµ (Aµ + ∂µφ− spp∂µθ + α∂µβ) =

1

2
nµloc . (A.11)

Introducing p = Lfl and using (A.11), (A.10) can be written as

−Λgµν−R[O]µν+
1

2
gµνR[O]− 1

4
gµνFκλF

κλ+FµκF νκ+pgµν+nµlocu
µuν = 0, (A.12)

where

p = Lfl = −ρfl + µlocn. (A.13)
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A.1.2 Ansatz for the fields

Rather than looking for the most general solution to the equations of motion, we are going

to assume a static background, isotropic in (x, y), and add wavelike-perturbations studying

the resulting linear response. Making this ansatz turns each equation of motion above into

one equation for the background and one equation for the perturbation.

The background metric is assumed to be a generalization of a planar black hole,

L−2ds2 = −f(z)dt2 + z−2dx2 + z−2dy2 + g(z)dz2, (A.14)

where the horizon is located at z = 1 and the AdS boundary at z = 0, that is z = rH/r

where rH is the horizon radius and the other coordinates have been rescaled accordingly.

To this we also add perturbations to the metric, invariant under parity y → −y, and

work in radial gauge, δgzµ = 0,

δgµν = εL2e−iωt+ikx


δgtt(z) δgtx(z) 0 0

δgtx(z) δgxx(z) 0 0

0 0 δgyy(z) 0

0 0 0 0

 . (A.15)

Similarly, for the Maxwell-potential the static isotropic background, together with radial

gauge, leads to

Aµ = L2
(
h(z), 0, 0, 0

)
. (A.16)

The perturbation then becomes

δAµ = εL2e−iωt+ikx
(
δAt(z), δAx(z), 0, 0

)
. (A.17)

From (A.5) and (A.14) it is clear that the static solution for u is

uµ = L2
(√

f(z), 0, 0, 0
)
, (A.18)

together with the perturbation

δuµ = εL2e−iωt+ikx
(
δut(z), δux(z), 0, δuz(z)

)
. (A.19)

The remaining scalars can be written as

n = σ(z) + εe−iωt+ikxδσ(z) , (A.20)

φ = φ0(z) + εe−iωt+ikxδφ(z) , (A.21)

to first order in the perturbation, and analogously for ρfl

ρfl(n) = ρ0(σ(z)) + εe−iωt+ikx
∂ρ

∂n
δσ(z) (A.22)

= ρ0(z) + εe−iωt+ikxµ0δσ(z) . (A.23)
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Inserting the ansatz above into the equations of motion gives us four independent non-

trivial background equations,

(p0 + ρ0)f ′ − 2
√
fσh′ + 2fp′ = 0 , (A.24)

4fg + fg2(p0 + ρ0)z2 + gzf ′ + fzg′ = 0 , (A.25)

−2f + 6fgz2 + 2fgp0z
2 + 2zf ′ − z2

(
h′
)2

= 0 , (A.26)

−2
√
fgσ + z(p0 + ρ0)gh′ + 2h′′ = 0 , (A.27)

from the gtt, gxx, gzz and At variations. Furthermore, we get six second order differential

equations for the perturbations from the gtt, gtx, gxx, gyy, At and Ax variations, as well as

four constraint equations from the gtz, gxz, gzz and Az variations. The constraint equations

should be satisfied automatically by any solution of the first six, meaning that they serve

only as a check of the solutions. All these equations can be found in appendix A.4.

The expressions resulting from the variations of the other fields can be condensed into

simple rules for each of the different perturbations, apart from the n-variation which leaves

us with a differential equation for φ, effectively getting its derivatives from the expression

of uz. This equation can also be found in appendix A.4.

We are thus left with seven independent second order differential equations for the

perturbations as well as four background equations we need to solve.

A.2 Background solution

As explained in the main text, the background will naturally be divided into three regions;

a pure RN-solution in the IR, an intermediate cloud-solution and another pure RN-solution

in the UV. This follows as a RN-solution has a local bulk chemical potential that is zero

at both the horizon and the boundary, with a maximum in between. When the chemical

potential is large enough to support the charged fluid (that is, larger than the mass of the

fluid particles), there will be a cloud, located in that region. Note that the cloud itself

affects the region in which a cloud is supported, so one cannot find both the inner and

outer bound of the cloud from the pure RN-solution at the center.

A.2.1 Region I: inner RN

The background solution is well known and poses no difficulties, it is the standard Reissner-

Nordström solution. The fluid quantities pressure, number density and energy density, are

all zero.

There are four constants determining the Reissner-Nordström solution: the chemical

potential µRN, the charge Q, the mass M and the speed of light c.

f(z) =
c2

z2
−Mz +

1

2
Q2z2 , (A.28)

g(z) =
c2

z4f(z)
, (A.29)

h(z) = µRN −Qz . (A.30)
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Rescaling the radial coordinate such that the horizon of the black hole is located at z = 1

leads to the following expression for the mass

f(1) = 0⇒M1 = c2
1 +

1

2
Q2

1. (A.31)

The chemical potential in the inner region is determined by requiring the Maxwell potential

to vanish at the horizon,

h(1) = 1⇒ µRN1 = Q1, (A.32)

to avoid a singularity in the gauge field. The speed of light can be normalized,

c1 = 1. (A.33)

This leads to a single parameter Q1 corresponding to the charge of the black hole, that

defines the inner region.

This Q gives rise to a local chemical potential in the bulk, shown in figure 1. This

potential always starts at µloc(1) = 0 rises to a maximum, and decreases to µloc(0) = 0, as

previously stated.

We stress that this local chemical potential is not the whole story, because we wish

our model to not only be pure AdS-RN. Eventually the local chemical potential will be

large enough to support a fermion density, and we will no longer be in a purely AdS-RN

solution. It does however give the location of the inner bound of the cloud.

A.2.2 Region II: the electron cloud

When working in the limit where the temperature of the cloud is zero, there is a well

defined edge of the cloud, determined by the particle mass m giving a region z1 ≥ z ≥ z2

where the fluid is supported such that µloc(z1) = µloc(z2) = m. The inner bound z1 is

clearly given by the RN background solution, while z2 has to be calculated numerically, for

each value of Q,m and β. The number density of cloud particles affects the bulk chemical

potential, resulting in clouds of different size depending on the mass m and the density

parameter β.

In figure 3, the inner and outer bounds of the electron cloud for different m are shown

for Q2 = 4 and β = 0, 10, 30 and 100. As the cloud particles have a greater charge than

mass (m < 1), their presence expands the region where the bulk chemical potential is

larger than m (compared to the pure RN solution). At m = 0.3, having β = 10 shifts the

outer bound to z = 0.1 from z = 0.2 at β = 0. This also gives rise to a critical limit,

since a sufficiently dense electron cloud could source itself indefinitely, as can be seen in

the figure by the absence of an outer bound at β = 30 for masses below 0.46. For each

mass this critical limit can be written as β < βcrit(m). Beyond that limit, the solutions

are unphysical as they give rise to an infinitely dense and infinitely extended cloud in the

bulk, and an infinite chemical potential and an infinite charge density on the conformal

boundary. This is in contrast to the physically relevant setting where the charge density

or chemical potential of a system is held fixed. The expansion of the cloud can then be

interpreted, since the scale is set by the horizon radius, as the black hole shrinking, until

the system ultimately cools down to the zero temperature solution, the electron star.
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A.2.3 Region III: outer RN

Matching the background RN-solution onto the outer surface is quite straightforward. It

is however worth to note that the same four parameters now take on different values than

previously, especially the speed of light which can no longer be normalized to 1. This has

some implications to systems where one wishes to have different speeds of light in the IR

and UV.

A.3 Linear response

A.3.1 Region I: inner RN

In this region, having an explicit background solution and vanishing fluid quantities; pres-

sure, number density and energy density, greatly simplifies the equations for the perturba-

tions. These also lead to the elimination of the δφ equation, since all terms in that equation

are proportional to either of those quantities or their derivatives.

The main issue here is the behaviour of the perturbations when approaching the hori-

zon. This is handled by factoring out an exponential term in the fields and in the equations

(by performing a Fröbenius-expansion). We are then left with a rather simple explicit set of

equations that can all be solved numerically. After eliminating outgoing solutions, we find

that there are two degrees of freedom left. These can be chosen to be δA∗x(1) and δg∗xx(1)

(stars indicating post Fröbenius expansion). As we study linear differential equations, we

can solve for two different sets of starting values, e.g. (1,0) and (0,1), and eventually make

linear combinations.

A.3.2 Region II: the electron cloud

The starting point of the next region is given by the previously obtained z1. The matching

at the inner surface is well defined and provides no further degrees of freedom, even though

the number of fields and equations is increased.

A.3.3 Region III: outer RN

Matching the perturbations is done similarly at z2 as done at z1. At the AdS boundary at

z = 0 is typically where you impose other conditions on the system, as these can describe

physical quantities in the boundary theory, but it’s easier to give different sets of starting

values at the horizon, and then use the linearity of the system to find a suitable linear

combination of solutions that also fulfills the boundary conditions [25].

A.3.4 Pure gauge solutions

Working in radial gauge does not completely fix the gauge freedom of the system. Although

the physical requirement of having infalling modes at the horizon does, that is not a

requirement one necessarily wants to impose on pure gauge modes. The gauge freedoms

can be written down in terms of four additional analytic solutions to the equations of
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motion{
δgtt(z)3 = 0, δgtx(z)3 = 0, δgxx(z)3 = 0,

δgyy(z)3 = 0, δAt(z)3 = −iω, δAx(z)3 = ik,
(A.34)

{
δgtt(z)4 = 2iωf(z), δgtx(z)4 = −ikf(z), δgxx(z)4 = 0,

δgyy(z)4 = 0, δAt(z)4 = −iωh(z), δAx(z)4 = ikh(z),
(A.35)

{
δgtt(z)5 = 0, δgtx(z)5 = − iω

z2
, δgxx(z)5 = 2ik

z2
,

δgyy(z)5 = 0, δAt(z)5 = 0, δAx(z)5 = 0,
(A.36)



δgtt(z)6 = i

(
2ωf(z)I1 + if ′(z)√

g(z)

)
, δgtx(z)6 = − i(kz2f(z)I1+ωI2)

z2
,

δgxx(z)6 =
2i

(
kzI2+ i√

g(z)

)
z3

, δgyy(z)6 = − 2

z3
√
g(z)

,

δAt(z)6 = −iωh(z)I1 − iωI3 + h′(z)√
g(z)

δAx(z)6 = ikh(z)I1 + ikI3,

(A.37)

where we have introduced the following integrals,

I1 =

∫ z

1
−
iω
√
g(z′)

f(z′)
dz′ , (A.38)

I2 =

∫ z

1
−ikz′2

√
g(z′) dz′ , (A.39)

I3 =

∫ z

1

iω
√
g(z′)h(z′)

f(z′)
dz′ . (A.40)

A.3.5 Boundary conditions

Due to the linearity of the differential equations, we can solve the system for any starting

values at the horizon, get two different solutions and examine whether there exists a linear

combination of these, together with the pure gauge solutions, that fulfill the boundary

conditions on the AdS boundary. As the equations as well as the boundary conditions are

homogeneous, the trivial solution of all fields being zero is a solution. However, such a

solution carries no interest and instead, we want to find (ω,k) such that there are more

solutions to the boundary value problem, i.e. the boundary values of the six individual

solutions (without boundary conditions) are linearly dependent. Such circumstances would

imply that the determinant is zero [25].

E.g. to get the QNMs, choose δA∗x(z= 1) = 1 and δg∗tx(z= 1) = 0 to get a first set of

solutions, choose δA∗x(z = 1) = 0 and δg∗tx(z = 1) = 1 to get a second. Together with the

four pure gauge solutions, these make up a 6-by-6 matrix of boundary values. Then study

the determinant ∣∣∣∣∣∣∣
δgtt(z)1 δgtx(z)1 δgxx(z)1 δgyy(z)1 δAt(z)1 δAx(z)1

δgtt(z)2 δgtx(z)2 δgxx(z)2 δgyy(z)2 δAt(z)2 δAx(z)2

· · ·

∣∣∣∣∣∣∣
z→0

, (A.41)
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and find for which values of (ω, k) the determinant is zero. These pairs are points on a

dispersion relation. Note that e.g. ω(k) in general is complex for real k.

If one wants to study self-sourcing modes in a Maxwell boundary theory, one needs

to adjust the boundary conditions accordingly. This corresponds to the standard plasma-

oscillation condition that the dielectric function, ε, is zero, or that both the electric field

and the current vanishes on the boundary, see e.g. [10, 11]. In our holographic model, these

are captured by the boundary condition

ω2δAx + c e δA′x = 0 , (A.42)

where e is the boundary Maxwell coupling. This is in addition to requiring δgµν = 0 at the

AdS boundary, which would otherwise introduce dynamical gravity effects on the boundary

and δAt = 0 at the boundary, which translates to keeping the chemical potential fixed.

A.4 Equations for the perturbations

A.4.1 Equations of motion

δgtt-variation equation:

δg′′tt + 2f1/2gσδAt −
kf3/2gσz2

ω
δAx −

kg
(
ω2 + f1/2hσ

)
z2

ω
δgtx

−
i
(

2ω2f1/2gσ + k2f3/2gσz2
)

ω
δφ+

1

4

(
−2fz − z2f ′

)
δg′xx

+
1

4

(
−2fz − z2f ′

)
δg′yy +

(
−2fg − 2gzf ′ − fzg′

)
2fgz

δg′tt + 3h′δA′t

+
if1/2

(
−4fghσ + 2ghσzf ′ − fhσzg′ − 2fgσzh′ + 2fghzσ′

)
2ωghz

δφ′

+
if3/2σ

ω
δφ′′

+
1

2f2gz2

(
10f2g − 6f2g2z2 + 2f2g2ρz2 + 2f3/2g2hσz2 − k2f2g2z4 + 2fgzf ′

+ 2gz2
(
f ′
)2

+ 2f2zg′ + fz2f ′g′ + 4fgz2
(
h′
)2 − 2fgz2f ′′

)
δgtt

+
1

4fg

(
4f2g − 2ω2fg2z2 − 12f2g2z2 + 4f2g2ρz2 − 6f3/2g2hσz2 − 4fgzf ′

− gz2
(
f ′
)2

+ 2f2zg′ − fz2f ′g′ − 2fgz2
(
h′
)2

+ 2fgz2f ′′
)
δgxx

+
1

4fg

(
4f2g − 2ω2fg2z2 − 12f2g2z2 + 4f2g2ρz2 − 6f3/2g2hσz2 − 2k2f2g2z4

− 4fgzf ′ − gz2
(
f ′
)2

+ 2f2zg′ − fz2f ′g′ − 2fgz2
(
h′
)2

+ 2fgz2f ′′
)
δgyy = 0

δgtx-variation equation:

δg′′tx + 2δAxf
1/2gσ + 2ikδφf1/2gσ + kωδgyygz

2 +
δg′tx
(
−gf ′ − fg′

)
2fg

+ 2δA′xh
′ + δgtx

(
−6g + 2gρ+

4

z2
− f ′

fz
+
g′

gz
+

(
h′
)2
f

)
= 0
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δgxx-variation equation:

+ δg′′xx −
kδAxf

1/2gσ

ω
− ik2δφf1/2gσ

ω
+
kδgtxg

(
ω2 − f1/2hσ

)
ωf

+
δg′yy

(
−2f − zf ′

)
4fz

+
δg′xx

(
6fg + gzf ′ − 2fzg′

)
4fgz

+
δA′th

′

fz2

+
δgtt

(
10fg − 6fg2z2 + 2fg2ρz2 + k2fg2z4 + 2fzg′ + 2gz2

(
h′
)2)

2f2gz4

+
iδφ′
(
−4fghσ + 2ghσzf ′ − fhσzg′ − 2fgσzh′ + 2fghzσ′

)
2ωf1/2ghz3

+
if1/2σδφ′′

ωz2

+
1

4f2gz2

(
−12f2g − 2ω2fg2z2 + 12f2g2z2 − 4f2g2ρz2 + 2f3/2g2hσz2

− 2k2f2g2z4 + gz2
(
f ′
)2 − 2f2zg′ + fz2f ′g′ + 2fgz2

(
h′
)2 − 2fgz2f ′′

)
δgyy

+
1

4f2gz2

(
−4f2g + 2ω2fg2z2 − 12f2g2z2 + 4f2g2ρz2 − 6f3/2g2hσz2

− gz2
(
f ′
)2 − 2f2zg′ − fz2f ′g′ − 2fgz2

(
h′
)2

+ 2fgz2f ′′
)
δgxx = 0

δgyy-variation equation:

δg′′yy −
kδAxf

1/2gσ

ω
− ik2δφf1/2gσ

ω
−
kδgtxg

(
ω2 + f1/2hσ

)
ωf

+
δg′xx

(
−2f − zf ′

)
4fz

+
δg′yy

(
6fg + gzf ′ − 2fzg′

)
4fgz

+
δA′th

′

fz2

+
δgtt

(
10fg − 6fg2z2 + 2fg2ρz2 − k2fg2z4 + 2fzg′ + 2gz2

(
h′
)2)

2f2gz4

+
iδφ′
(
−4fghσ + 2ghσzf ′ − fhσzg′ − 2fgσzh′ + 2fghzσ′

)
2ωf1/2ghz3

+
if1/2σδφ′′

ωz2

+
1

4f2gz2

(
−12f2g − 2ω2fg2z2 + 12f2g2z2 − 4f2g2ρz2 + 2f3/2g2hσz2

+ gz2
(
f ′
)2 − 2f2zg′ + fz2f ′g′ + 2fgz2

(
h′
)2 − 2fgz2f ′′

)
δgxx

+
1

4f2gz2

(
−4f2g + 2ω2fg2z2 − 12f2g2z2 + 4f2g2ρz2 − 6f3/2g2hσz2

− 2k2f2g2z4 − gz2
(
f ′
)2 − 2f2zg′ − fz2f ′g′ − 2fgz2

(
h′
)2

+ 2fgz2f ′′
)
δgyy = 0
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δAt-variation equation:

δA′′t − k2δAtgz
2 +

kδgtxf
1/2gσz2

ω
+
ik2δφf3/2gσz2

ωh

+
δAx

(
−kω2ghz2 + kf3/2gσz2

)
ωh

+
δA′t
(
−4fg − gzf ′ − fzg′

)
2fgz

+
δg′tth

′

2f

+
1

2
z2δg′xxh

′ +
1

2
z2δg′yyh

′ +
1

2
δgxx

(
f1/2gσz2 + 2zh′

)
+

1

2
δgyy

(
f1/2gσz2 + 2zh′

)
−
if1/2δφ′

(
−4fghσ + 2ghσzf ′ − fhσzg′ − 2fgσzh′ + 2fghzσ′

)
2ωgh2z

− if3/2σδφ′′

ωh
+
δgtt

(
−f3/2g2σz − 4fgh′ − 2gzf ′h′ − fzg′h′ + 2fgzh′′

)
2f2gz

= 0

δAx-variation equation:

kωδAtg

f
− ikδφf1/2gσ

h
+
δAxg

(
ω2h− f3/2σ

)
fh

+
δA′x
(
gf ′ − fg′

)
2fg

+
δg′txh

′

f

+ δA′′x +
δgtx

(
−2f3/2g2σ − gf ′h′ − fg′h′ + 2fgh′′

)
2f2g

= 0

δφ-equation, from n-variation:

δφ′′ + ikδAxgz
2 +

ikδgtxghz
2

f
+
iωδgxxghz

2

2f
+
iωδgyyghz

2

2f
+
iωδAtghσ

′

f3/2σµ′

+
iωδgttgh

2σ′

2f5/2σµ′
− 1

2
δφ′
(

4

z
− 2f ′

f
+
g′

g
+

2h′

h
− 2σ′

σ

)
− δφg

(
k2z2 − ω2hσ′

f3/2σµ′

)
= 0

A.4.2 Constraint equations

δgtz-variation, constraint equation:

ikz2δg′tx
2fg

+
iωz2δg′xx

2fg
+
iωz2δg′yy

2fg
− σδφ′

f1/2g
− ikδgtxz

2f ′

2f2g
+
iωδgxxz

(
2f − zf ′

)
4f2g

+
iωδgyyz

(
2f − zf ′

)
4f2g

= 0

δgxz-variation, constraint equation:

− iωδgtxz

fg
+
ikδgyyz

3

g
− ikz2δg′tt

2fg
− iωz2δg′tx

2fg
+
ikz4δg′yy

2g

+
iδgttz

(
−2kf + kzf ′

)
4f2g

− ikδAtz
2h′

fg
− iωδAxz

2h′

fg
= 0
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δgzz-variation, constraint equation:

δAtσ

f1/2g
− iωδφσ

f1/2g
− kωδgtxz

2

fg
− δg′tt
fg2z

+
zδg′xx

(
2f − zf ′

)
4fg2

+
zδg′yy

(
2f − zf ′

)
4fg2

+
δgxx

(
2f − z

(
ω2gz + f ′

))
2fg2

+
δgyy

(
f
(
2 + k2gz4

)
− z
(
ω2gz + f ′

))
2fg2

− δA′th
′

fg2
+
δgtt

(
f1/2ghσz − k2fgz3 + 2f ′ − z

(
h′
)2)

2f2g2z
= 0

δAz-variation, constraint equation:

iωδA′t
fg

+
ikz2δA′x

g
+
f1/2σδφ′

gh
+
iωδgtth

′

2f2g
+
ikδgtxz

2h′

fg
+
iωδgxxz

2h′

2fg
+
iωδgyyz

2h′

2fg
= 0
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