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Abstract: Propagation of either an infinitely thin interface or a reaction wave of a nonzero thickness
in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence is simulated
by solving unsteady 3D Navier–Stokes equations and either a level set (G) or a reaction-diffusion
equation, respectively, with all other things being equal. In the case of the interface, the fully
developed bulk consumption velocity normalized using the laminar-wave speed SL depends linearly
on the normalized rms velocity u′/SL. In the case of the reaction wave of a nonzero thickness,
dependencies of the normalized bulk consumption velocity on u′/SL show bending, with the effect
being increased by a ratio of the laminar-wave thickness to the turbulence length scale. The obtained
bending effect is controlled by a decrease in the rate of an increase δAF in the reaction-zone-surface
area with increasing u′/SL. In its turn, the bending of the δAF(u′/SL)-curves stems from inefficiency
of small-scale turbulent eddies in wrinkling the reaction-zone surface, because such small-scale
wrinkles characterized by a high local curvature are smoothed out by molecular transport within the
reaction wave.

Keywords: reaction waves; turbulent reacting flows; turbulent consumption velocity; bending effect;
reaction surface area; molecular transport; direct numerical simulations

1. Introduction

In turbulent reacting flows, the so-called bending effect consists in decreasing the rate (dUT)/du′

of an increase in turbulent consumption velocity UT by the rms turbulent velocity u′ with increasing
u′, i.e., the second derivative of the function UT(u′) is negative. As illustrated in Figure 1, due to
this effect, the curve plotted in an orange solid line is bent and, at high u′, shows significantly
lower consumption velocities when compared to the straight dashed red line. Since this basic
phenomenon was documented, e.g., in premixed turbulent flames [1,2], it has been challenging
the research community and different approaches to explaining and modeling the bending effect have
been put forward.

The most recognized approach consists in highlighting the so-called stretch effect, i.e., variations
in the local structure of reaction wave (e.g., flame) and the local consumption velocity uc, caused by
turbulent stretching of the wave [3–5]. Here, uc is a properly normalized rate of production of a major
reaction product, integrated along the local normal to a thin reaction zone, which is assumed to be
inherently laminar within the framework of the discussed concept. The straightforward manifestation
of the stretch effect consists in changing the mean value 〈uc〉 of the local consumption velocity with
increasing u′, followed by eventual local reaction extinction at sufficiently high u′. A decrease in
〈uc〉 and the local reaction extinction can also affect the area AF of the reaction-wave surface, but this
manifestation of the discussed mechanism is indirect, i.e., it is a consequence of the dependence of uc or
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〈uc〉 on the local stretch rate or u′, respectively. According to the theory of stretched laminar premixed
flames [6,7], which is well developed in the case of single-step chemistry and the asymptotically high
activation energy E of the global combustion reaction, the dependence of uc on the local stretch rate s
is controlled by differences in molecular diffusivities of a fuel, DF, oxygen, DO, and the heat diffusivity
κ of the mixture. In the equidiffusive (DF = DO = κ) adiabatic case, uc does not depend on s if E tends
to infinity, but uc can depend on s and the flame extinction by the stretch rate can occur at a finite
activation energy [8]. The reader interested in further discussion of the stretch effect in premixed
flames is referred to review paper [9].
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Even if the mean 〈uc〉 is close to the speed SL of the unperturbed laminar reaction wave, the
bending effect can occur. For instance, a recent Direct Numerical Simulation (DNS) study [10] has
shown that the bending effect can be controlled by the mean flame surface area 〈AF〉, i.e., the second
derivative of the function 〈AF〉(u′) can be negative in spite of 〈uc〉 ≈ SL. Under such conditions, the
bending effect might be attributed to various physical mechanisms, e.g., statistical equilibrium between
small-scale turbulent eddies and reaction rate [11], collisions of reaction waves [12,13], or smoothing
of small-scale wrinkles of the reaction-wave surface due to its propagation [14].

While all the aforementioned approaches [3–5,11–14] were developed by studying premixed
flames, they place the focus of consideration on the influence of turbulence on combustion, but
disregard the back influence of the combustion on the turbulence. However, phenomena caused
by combustion-induced thermal expansion can also contribute to the bending effect. For instance,
small-scale turbulent eddies may be inefficient in wrinkling reaction-zone surface, because they
disappear due to dilatation and an increase in the kinematic viscosity of the preheated mixture [15,16].
The reader interested in further discussion of the thermal expansion effects is referred to review
papers [17,18].

It is also worth noting that Damköhler [19] has arrived at the following scaling UT∝SL(u′L/κ)1/2

by reducing the influence of very intense turbulence on reaction wave to enhancement of heat and
mass transfer within the wave by turbulent eddies. Here, L is an integral turbulent length scale. From
the purely mathematical viewpoint, this scaling results in the bending, but the physical mechanism
hypothesized by Damköhler [19] is associated an increase in 〈uc〉 when compared to SL.

Finally, the bending effect can be pronounced differently in different reaction waves. For instance,
levelling-off of UT(u′)-curves, followed by a decrease in UT with increasing u′, is well documented in
expanding statistically spherical flames [1,2], but the positive dUT/du′ was obtained from statistically
stationary flames at much higher values of u′/SL [20,21].
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Besides the reaction-wave-configuration effects, which are beyond the scope of the present
study, the aforementioned physical mechanisms of the bending may be divided into three groups;
(A) mechanisms that highlight differences in the molecular transport coefficients, i.e., the stretch
effect [3–5], (B) mechanisms that highlight thermal expansion effects in flames, and (C) mechanisms
that address equidiffusive flames, but disregard the thermal expansion effects [11–14,19]. The
physical mechanisms of the bending may also be divided into two other groups; (a) mechanisms that
highlight variations in local consumption velocity uc due to the stretch effect [3–5] or the transport
enhancement [19] and (b) mechanisms that highlight the bending of 〈AF〉(u′)-curves.

To conclude this brief introduction, it is worth noting that the fact that various physical
mechanisms of the bending effect are discussed in the literature does not mean that all relevant
physical mechanisms have already been revealed.

The present communication does not aim at comparing all the aforementioned physical
mechanisms. The goals of the communication are solely restricted to (i) supporting recent finding [10]
that the bending of UT(u′)-curves can be controlled by the bending of 〈AF〉(u′)-curves, (ii) comparing
physical mechanisms from Group (C), and (iii) emphasizing a physical mechanism that controls the
bending of 〈AF〉(u′)-curves under conditions of the present study, but has yet been outside of the
mainstream discussions, to the best of the present authors’ knowledge. It is worth stressing that,
under certain conditions in turbulent flames, the emphasized physical mechanism might play a less
important role when compared to preferential diffusion or thermal expansion effects, which are not
addressed in the present study. This reservation should be borne in mind when applying the reported
results to modeling premixed turbulent combustion.

2. Method of Research

For these purposes, a DNS study of propagation of (i) an infinitely thin interface, see fine red line
in Figure 1, and (ii) a single-reaction wave of a finite thickness, see thick orange shape, in statistically
the same (in both cases) homogeneous, isotropic, forced, constant-density turbulence affected neither
by the interface nor by the reaction was performed.

The constant-density turbulence is described by the continuity

∇·u = 0 (1)

and Navier–Stokes equations

∂u/∂t + (u·∇)u = −ρ−1∇p + ν∇2u + f, (2)

where t is time, u is the flow velocity vector, ρ, ν, and p are the density, kinematic viscosity, and
pressure, respectively, and a vector-function f is added in order to maintain constant turbulence
intensity by using energy forcing at low wavenumbers.

Propagation of the infinitely thin interface is modeled by level set (or G) equation [22]

∂G/∂t + u·∇G = SL|∇G|, (3)

where G is a signed distance function to the closest interface associated with G(x,t) = 0. Attributes,
methodology, and results of the simulations that dealt with Equations (1)–(3) were already discussed
by us in details in References [23,24].

Moreover, propagation of a reaction wave of a non-zero thickness is modeled by the following
reaction-diffusion equation

∂c/∂t + u·∇c = D∆c + W, (4)

for a scalar field c, which is equal to zero and unity in fresh reactants and products, respectively. Here,

W = (1 − c)exp[−(Ze(1 + τ)2)/τ(1 + τc)]/[τr(1 + τ)] (5)
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is the reaction rate, τ = 6, and Ze = 6. DNS cases are set up (i) by specifying the reaction-wave speed SL

and thickness δF = D/SL and (ii) by finding required constant values of D and reaction time scale τr in
pre-simulations of a planar 1D laminar-wave modeled by Equations (4) and (5).

Because the attributes, methodology, and results of the simulations that dealt with Equations (1),
(2), (4), and (5) were already discussed by us in detail [25,26], we will restrict ourselves to a very brief
summary of those DNSs and refer the interested reader to the cited papers.

The computational domain is a rectangular box of size of Λx × Λ × Λ. It is discretized using a
uniform staggered Cartesian grid of Nx × N × N cells with Nx = N(Λx/Λ) = 4N. Therefore, spatial
resolution ∆x = Λx/Nx = Λ/N = ∆y = ∆z is the same in the axial (x) and transverse (y and z) directions.
The boundary conditions are periodic in all three directions, thus, enabling a piece of reaction zone
that comes to the left boundary (x = 0) at certain t, y and z to enter the computational domain through
the right boundary (x = Λx) at the same t, y and z, respectively.

Turbulence is generated and forced using techniques discussed elsewhere [27–29]. As shown
earlier [23–26], the turbulence achieves statistical stationarity, homogeneity, and isotropy over the
entire domain, with correlations Rxx(r) = 〈u(x,y,z,t)u(x + r,y,z,t)〉, Ryy(r) = 〈v(x,y,z,t)v(x,y + r,z,t)〉, and
Rzz(r) = 〈w(x,y,z,t)w(x,y,z + r,t)〉 being very close to each over and vanishing at r = Λ/2. Here, the
mean values 〈·〉 are evaluated by averaging the velocity fields over transverse coordinates and time.

The simulations are performed using three velocity fields A, B, and C, whose characteristics are
reported in Table 1. Here, L11 is the longitudinal integral length scale of the turbulence evaluated by
the integrating the correlation Rxx(r) over distance r, η = (ν3/〈〈ε〉〉)1/4 is the Kolmogorov length scale,
〈〈ε〉〉 is the dissipation rate ε = 2νSijSij averaged over the computational volume and time, and Sij =
(∂ui/∂xj + ∂uj/∂xi)/2 is the rate-of-strain tensor. The major difference between the three velocity fields
consists of the width Λ of the computational domain, which controls the length scale L11 and the initial
Reynolds number Re0 = u′Λ/(4ν). In other words, L11 and Re0 are increased by increasing Λ, whereas
u′ or ν remain the same in the simulations.

Table 1. Studied cases.

Case Re0 Nx × N× N η/∆x L11/η u′/SL L11/δF Da Ka 〈UT,c〉/u′ 〈UT,G〉/u′

A1 50 256 × 642 0.68 12 0.5 2.0 4.1 1.34 2.18 3.66
A2 - - - - 1.0 - 2.0 2.69 1.31 2.68
A3 - - - - 2.0 - 1.0 5.38 0.89 2.19
A4 - - - - 5.0 - 0.4 13.4 0.57 1.83
A5 - - - - 10.0 - 0.2 26.9 0.40 1.67
B1 100 512 × 1282 0.87 17 0.5 3.7 7.5 0.84 2.45 3.66
B2 - - - - 1.0 - 3.8 1.67 1.69 2.71
B3 - - - - 2.0 - 1.9 3.34 1.27 2.23
B4 - - - - 5.0 - 0.8 8.36 0.80 1.87
B5 - - - - 10.0 - 0.4 16.7 0.55 1.77
C1 200 1024 × 2562 1.07 25 0.5 6.7 14. 0.55 2.77 3.70
C2 - - - - 1.0 - 6.7 1.10 2.06 2.80
C3 - - - - 2.0 - 3.4 2.21 1.61 -
C4 - - - - 5.0 - 1.4 5.52 1.11 -
C5 - - - - 10.0 - 0.7 11.0 0.76 1.87

TRW - - - - - 2.1 0.2 36.2 0.42 -

All cases studied by solving either Equations (1–3) or Equations (1 and 2) and (4 and 5) and using
velocity field A, B, or C are reported in Table 1, where Da = τt/τf and Ka = τf/τη are the Damköhler
and Karlovitz numbers, respectively, τf = δF/SL, τt = L11/u′, and τη = (ν/〈〈ε〉〉)1/2 are the reaction
wave, eddy-turn-over, and Kolmogorov time scales, respectively. For each velocity field, five cases
characterized by different ratios of u′/SL are studied by varying SL. When propagation of a reaction
wave of a nonzero thickness is addressed using Equations (1 and 2) and (4 and 5), the laminar-wave
thickness δF retains the same value in all 15 cases A, B, and C in spite of variations in SL. In order to
keep δF constant, the Schmidt number Sc = ν/D is changed. A ratio of L11/δF is increased by increasing
the width Λ of the computational domain from field A to field C. In a single TRW (thick reaction wave)
case, the ratio of L11/δF is decreased by increasing the thickness δF when compared to Case C5. It is
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worth remembering that the values of L11/δF, Da, and Ka, reported in Table 1, characterize the reaction
waves described with Equations (1 and 2) and (4 and 5), whereas L11/δF = Da = ∞ and Ka = 0 for an
infinitely thin interface, which is characterized solely with u′/SL in the present study.

In order to initiate the studied process, either an interface G(x0,y,z,t) = 0 or a planar wave c(x,t) =
cL(ξ) is released at x0 = Λx/2 and t = 0 so that the value of the combustion progress variable integrated
over the half-space of x < x0 to be equal to the value of c integrated over the half-space of x > x0. Here,
ξ = x − x0 and cL(ξ) is the pre-computed laminar-wave profile. Subsequently, evolution of the field
G(x,t) or c(x,t) is simulated by solving Equation (3) or Equations (4) and (5), respectively. In the former
case, c(x,t) = H[G(x,t)], where H is Heaviside function.

Mean bulk turbulent consumption velocity is evaluated as follows [24]

〈UT〉 = Λ−2d/dt〈
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W(x,t)dx〉 (7)

is also applied. Because Equations (6) and (7) yield very close results in all studied cases, solely values
of 〈UT〉, obtained using Equation (6), will be reported in the following. Here, 〈·〉 designates a mean
value averaged over time from t* till t* + ∆t, the starting instant t* allows the forced turbulence to
reach statistical stationarity, and ∆t is longer than 50 time scales τ0 = Λ/(4u′). Reported in the two
right columns in Table 1 are normalized fully developed mean bulk turbulent consumption velocities
obtained by solving Equations (4 and 5) and (3), respectively. Cases C3 and C4 were not simulated by
solving the G-equation (3) in Reference [24].

It is worth stressing that the major difference between the two sets of the simulations consists
in solving either the G-equation (3) or the reaction-diffusion Equation (4), whereas numerical
methods, turbulence characteristics, etc. are basically similar in both sets. Accordingly, in the present
communication, the focus of consideration is placed on phenomena that stem from the finite thickness
of the reaction wave.

As far as the physical mechanisms discussed in Section 1 are concerned, the present simulations
allow for all mechanisms from Group (C). Moreover, the stretch effect is also addressed. Indeed,
variations in the local consumption velocity in and the local quenching of stretched inherently laminar
flames can occur in the studied adiabatic equidiffusive flames, because the Zeldovich number Ze
in Equation (5) is finite [8]. However, it is worth remembering that the stretch effect can be much
more pronounced if DF 6= DO 6= κ or if heat losses play a substantial role. The thermal expansion
effects are not taken into account in the present simulations, because the physical mechanisms from
Group (C) do not allow for them. We may also note that (i) the vast majority of approximations
of experimental data on UT, e.g., see review papers [30,31], do not invoke the density ratio σ, thus,
implying a weak influence of σ on UT or ST, (ii) recent target-directed experiments [32], as well as
earlier measurements [33], did not reveal a substantial influence of σ on UT either, and (iii) recent DNS
studies, e.g., Figures 10 and 11 in [34] or Figure 2a in [35], do not indicate such an influence.

3. Results

Normalized fully developed turbulent consumption velocities 〈UT〉/SL obtained by solving either
the G-equation (2) or the reaction-diffusion Equation (3), with all other things being equal, are plotted
in open or filled symbols, respectively, in Figure 2. Comparison of the two sets of results indicates, first,
that 〈UT,G〉 is significantly higher than 〈UT,c〉, with the difference in 〈UT,G〉 and 〈UT,c〉 being increased
by u′/SL. Therefore, the nonzero thickness of the reaction wave reduces its bulk consumption velocity
when compared to the infinitely thin interface. Second, if u′/SL is kept constant, then, the ratio of
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〈UT,c〉/SL is increased by L11/δF, cf. filled blue squares, black circles, and red triangles. Third, while
〈UT,G〉/SL depends linearly on u′/SL, see open symbols and dashed lines, the solid curves, which fit
to the DNS data on 〈UT,c〉/SL, are clearly bent. Fourth, the bending effect is more pronounced at a
lower L11/δF, see filled blue squares.
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Figure 2. Normalized fully developed turbulent consumption velocity 〈UT〉/SL (symbols) and a
relative increase δA in the wave surface area (dotted-dashed lines) vs normalized root mean square
(rms) velocity u′/SL. Open symbols show DNS data obtained in the case of an infinitely thin interface,
while dashed lines are linear fits to these data. Filled symbols show results simulated in the case of a
reaction wave of a nonzero thickness, while solid lines are power-law fits to these data.

It is worth noting that the computed increase in 〈UT,c〉/SL by L11/δF or u′/SL agrees with
available experimental data, at least qualitatively. In particular, solid lines in Figure 2 show power-law
fits a(u′/SL)b, where b = 0.44, 0.51, and 0.58 for L11/δF = 2.0, 3.7, and 6.7, respectively. Similar
values of the scaling exponent q in UT∝u′q were documented in various experimental studies, e.g.,
q ≈ 0.5 [30,31,36,37], q = 0.56, see data by Kido et al. [38] fitted in Reference [31], q = 0.63 [39], or
q = 0.67, see data by Kobayashi et al. [40,41] fitted in Reference [31]. All these experimental databases
also indicate an increase in UT by an integral length scale of turbulence.

Curves plotted in dotted-dashed lines in Figure 2 show that a relative increase δAF

δAF = Λ−2(c2 − c1)−1〈
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|∇c|f(x,t)dx〉 (8)

in the area AF of the reaction-zone surface depends on u′/SL very similarly to 〈UT,c〉/SL. Here,
|∇c|f is the value of the Flame Surface Density |∇c| conditioned to the reaction zone c1 ≤ c ≤ c2,
whose boundaries c1 and c2 are given by W(c1) = W(c2) = max{W(c)}/2. In fact, the bending of the
δAF(u′/SL)-curves (dotted-dashed lines) is even more pronounced when compared to 〈UT,c〉/SL-curves
(solid lines), thus, implying a slight increase in 〈uc〉/SL by u′/SL. This observation could be attributed
to (i) an increase in the reaction rate integrated over the mixing zones (c ≤ c1), as such zones are
expanded by small-scale turbulent eddies [19], or (ii) an increase in the local reaction rate in the vicinity
of cusps [42]. Because the increase in 〈uc〉/SL by u′/SL does not contribute to the bending effect, but
weakly resists it, further discussion of this trend is beyond the scope of the present communication.

All in all, DNS data reported in Figure 2 indicate that, under conditions of the present study, the
bending of 〈UT,c〉/SL(u′/SL)-curves is mainly controlled by the bending of δAF(u′/SL)-curves, in line
with the recent finding by Nivarti and Cant [10]. The present DNS data imply that the bending effect
stems from the finite thickness of the reaction wave. Indeed, because the sole difference between the
previous [23,24] and present simulations consists in substituting the G-equation (3) with Equations (4)
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and (5), the obtained difference between the linear and bent 〈UT,c〉/SL(u′/SL)-curves should not
be attributed to the exploited method of turbulence generation, numerical resolution or scheme,
insufficiently large width of the computational domain, etc. The difference between the linear and
bent curves can solely be controlled by δF. Let us discuss physical mechanisms that could control
this difference.

First, the DNSs yield 〈UT,c〉/SL ≈ δAF, thus, implying that, under conditions of the present study,
the influence of turbulence on 〈UT,c〉 is not controlled by an increase in local burning rate due to
enhancement of the local heat and mass transfer by turbulent eddies. It is worth noting, however,
that DNS data computed by us at significantly higher Ka� 1 [26,43] support scaling of 〈UT,c〉/SL∝
(u′L11/D)1/2, as predicted by Damköhler [19] by reducing the influence of turbulence on burning
rate to the enhancement of the local heat and mass transfer by the turbulence. In other words, the
mechanism by Damköhler [19] can play an important role, but under conditions that differ significantly
from the conditions of the present study (e.g., the present DNS data show a substantially weaker
dependence of 〈UT,c〉 on L11 when compared to the Damköhler’s scaling).

Second, eventual reduction in δAF due to interface-interface or wave-wave collisions [12,13]
is taken into account when numerically solving Equation (3) or (4), respectively. Nevertheless, the
bending effect is not pronounced in the former case, thus, implying that the collisions do not control
the effect under conditions of the present study. If the collisions were of importance, they would yield
the bending in the simulations with Equation (3) also.

Third, a physical mechanism that controls the bending effect under conditions of the present
study is revealed in Figure 3. In particular, DNS data plotted in lines in Figure 3 indicate that the
cumulative probability of finding highly curved reaction zones characterized by a sufficiently large
product |ηhm|>b of the Kolmogorov length scale and the local iso-surface curvature conditioned
to c1 ≤ c ≤ c2 (i) is weakly affected by L11 if the laminar-wave thickness δF is kept constant, cf.
dotted-dashed lines which show results obtained in cases A5, B5, and C5, but (ii) is significantly
increased when δF is decreased, cf. (ii.a) violet dashed line (case TRW) and the three dotted-dashed
lines or (ii.b) magenta solid and black double-dashed-dotted lines, which show results computed by
solving Equations (3)–(5), respectively, in case C5. Here, b is a positive number of unity order, hm =
∇·nG and nG = −∇G/|∇G| or hm = ∇·nc and nc = −∇c/|∇c| in the simulations that deal with
Equation (3) or Equations (4) and (5), respectively. Therefore, when the thickness δF is decreased,
the probability of appearance of small-scale highly curved wrinkles on the reaction-zone surface is
increased, thus, increasing the surface area AF and, hence, the turbulent consumption velocity 〈UT,c〉.
The highest values of AF and 〈UT,G〉 are associated with the infinitely thin interface and 〈UT,G〉∝u′ in
this case, see open symbols and dashed lines in Figure 2. An increase in δF results in decreasing 〈UT,c〉
when compared to 〈UT,G〉∝u′, i.e., the bending effect.

DNS data plotted in symbols in Figure 3 support such a scenario by indicating that the cumulative
probability of finding highly curved reaction zones characterized by |δFhm| > b at c1 ≤ c ≤ c2 (i)
is decreased with increasing L11/δF, cf. filled symbols, but (ii) is weakly affected by variations in
the velocity field (A or C), Ka, and Kolmogorov scales, provided that u′/SL, L11/δF, and, hence,
the Damköhler number are kept constant, cf. red triangles (case A5) and violet crosses (case TRW).
Therefore, comparison of lines and symbols in Figure 3 implies that the curvature magnitude is
primarily controlled by the thickness δF. Because variations in δF in cases C5 and TRW result from
variations in the diffusivity D, the significant dependence of the curvature magnitude on δF implies
that it is the molecular transport that impedes wrinkling reaction-zone surface by small-scale eddies in
intense turbulence.

In other words, the DNS data plotted in Figure 3 imply that the magnitude of the local curvature
of the reaction zone is bounded by the reaction-wave thickness δF, whereas smaller-scale turbulent
eddies are inefficient in wrinkling the reaction-zone surface. Accordingly, the small-scale range of the
turbulence spectrum weakly contributes to an increase in the area AF of the surface. Such a hypothesis
is further supported by approximately equal values of 〈UT,c〉 obtained in cases A5 and TRW, associated
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with almost the same Da (which characterizes large-scale eddies), but substantially different Ka (which
characterizes the smallest-scale turbulent eddies).
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reaction-wave thickness δF is larger by a factor of four when compared to a reference value used in all 
other cases associated with Equations (4) and (5). Magenta solid line shows DNS data obtained by 
solving the level set Equation (3). 
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Figure 3. Cumulative probability that the normalized absolute value of local curvature of reaction zone
is larger than a positive threshold number b. Lines and symbols show results obtained by normalizing
the curvature using the Kolmogorov length scale η and the laminar-wave thickness δF, respectively. All
results were obtained in cases characterized by the same u′/SL = 10, but different L11/δF = 2.1 (cases
A5 and TRW), L11/δF = 3.7 (case B5), or L11/δF = 6.7 (case C5). In case TRW, the laminar reaction-wave
thickness δF is larger by a factor of four when compared to a reference value used in all other cases
associated with Equations (4) and (5). Magenta solid line shows DNS data obtained by solving the
level set Equation (3).

To illustrate a mechanism that bounds |hm| by δF, let us follow Zel’dovich et al. [44] and rewrite
Equation (4) as follows

∂c/∂t + u(∂c/∂r) − 2(D/r)(∂c/∂r) = D(∂2c/∂r2) + W (9)

in the spherical coordinate framework. For an expanding reaction wave, the last term on the left-hand
side reduces the wave speed when compared to the counterpart planar wave. If the local radius rw

of the wave curvature is on the order of the Kolmogorov length scale η, the magnitude D/rw of the
negative speed resulting from the considered term is on the order of the Kolmogorov velocity (if the
Schmidt number Sc = O(1)) and can be much larger than SL if Ka� 1. This curvature-induced speed is
negative (positive) for a local wrinkle with the curvature center in products (reactants) and, therefore,
tends to damp the local wrinkle. This physical mechanism is controlled by the molecular diffusion and
acts even if the local consumption velocity does not depend on the curvature radius rw. Moreover,
while a turbulent eddy whose length scale is significantly smaller than δF perturbs the local wave
surface during a short lifetime of the eddy, the considered mechanism can smooth the perturbation
even after disappearance of the eddy until D/rw = O(SL) and rw = O(δF). Accordingly, if η < δF, the
small-scale range of the entire turbulence spectrum appears to be inefficient in wrinkling the wave
surface due to such a smoothing mechanism and this inefficient range expands to smaller length scales
when η/δF is decreased due to an increase in u′/SL. This physical mechanism acts to reduce increasing
the wave surface area and turbulent consumption velocity with increasing u′/SL, thus, causing the
bending effect.

Indeed, filled black triangles in Figure 4 show that, in case TRW associated with the most
pronounced bending effect, the probability of finding high locally negative displacement speed Sd =
(D∇2c + W)/|∇c| of the reaction zone is strongly increased by hm if |δFhm| < 1. The probability
of Sd/SL < −1 is larger than 60% if δFhm > 2. Accordingly, if the local curvature of the reaction zone
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is positive and sufficiently high (δFhm > 1), the zone statistically tends (i) to move to products, i.e.,
to the curvature center, and, therefore, (ii) to smooth out the local wrinkle of the zone surface. If the
local curvature of the reaction zone is negative and sufficiently high (δFhm < −1), the zone moves to
reactants (the probability of finding positive Sd > SL is almost equal to unity, see red stars), i.e., to the
curvature center, and, therefore, smooths out the local wrinkle on the zone surface again.
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On the contrary, violet dashed or blue dotted-dashed line shows that the probability of finding
Sd < −SL or Sd > SL, respectively, in the reaction zone (c1 ≤ c ≤c2) depends weakly on the total strain
S2=Sij Sij. This result implies that turbulent strain rates affect propagation of the reaction zone with
respect to the local flow weakly from the statistical viewpoint.

4. Discussion

The above analysis of the present DNS data indicates that the bending of 〈UT,c〉/SL(u′/SL)-curves,
computed in the case of δF > 0 (see filled symbols in Figure 2) is controlled by the bending of the
mean area of the reaction-zone surface as a function of u′/SL (see dotted-dashed lines in Figure 2).
The latter bending is controlled by the following physical mechanism. When a reaction front has
a negligible thickness, turbulent eddies of various scales can wrinkle the front surface, increase its
area, and, hence, increase turbulent consumption velocity. However, if the local thickness δF of the
reaction wave is comparable with or larger than the Kolmogorov length scale η, the local molecular
transport efficiently smooths out small-scale wrinkles of the reaction-zone surface. Therefore, the local
molecular transport impedes increasing the surface area due to the highest local stretch rates created
by the smallest turbulent eddies. Consequently, the turbulent consumption velocity UT is reduced
when compared to the case of the infinitely thin interface.

It is worth noting that the above analysis is consistent with DNS data by Wenzel and Peters [45],
who simulated self-propagation of a passive interface in constant-density turbulence by solving
Equation (3), where SL was substituted with SL−νSc−1 ∇·nG. Indeed, results obtained at Sc = ∞, i.e.,
using the unperturbed laminar-wave speed SL indicate a linear dependence of δAF on u′ [45], with UT

= SLδAF being very close to 〈UT,G〉 obtained by us by solving Equation (3), cf. stars with other symbols
in Figure 4 in Reference [24]. However, at Sc = 0.25 or 0.50, the bending of AF(u′)-curves reported
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in [45] is well pronounced due to the physical mechanism highlighted above, as the second term in
SL−νSc−1 ∇·nG models the smoothing effect of the curvature-induced displacement speed.

The smoothing effect emphasized in the present work differs fundamentally from the
well-recognized stretch effect [3–5]. In particular, the smoothing effect (i) is controlled by the molecular
diffusivity D of the deficient reactant and (ii) manifests itself in the reduction in AF independently
of a ratio of 〈uc〉/SL. On the contrary, the stretch effect (i) is mainly controlled by the differences in
DF, DO, and κ in the adiabatic case and (ii) manifests itself in significant variations in the mean local
consumption velocity 〈uc〉 independently of the area AF. In the present study, the stretch effect is not
pronounced, because the differences in the molecular transport coefficients are not allowed for.

At first glance, the smoothing mechanism emphasized in the present communication appears to
be similar to the smoothing effect of flame propagation, which is considered to play an important role
by fractal models of premixed turbulent combustion. For instance, the latter mechanism controls the
Gibson length scale [46]. However, there are fundamental differences between this well-known
propagation-smoothing mechanism and the diffusion-smoothing mechanism emphasized in the
present communication. For instance, first, the former and latter mechanisms are associated with the
right-hand side and the third term on the left-hand side of Equation (9), respectively. Accordingly,
a ratio of magnitudes of effects caused by the two mechanisms may be estimated as follows rwSL/D. If
the radius rw of the curvature created by the smallest-scale turbulent eddies is significantly less than
δF = D/SL, the diffusion-smoothing mechanism should dominate. Second, the propagation-smoothing
mechanism can act not only in the case of a reaction wave of a finite thickness, but also in the case
of self-propagation of an infinitely thin interface. The fact that the simulations with the G-equation
do not yield the bending effect, see open symbols and dashed lines in Figure 2, implies that the
propagation-smoothing mechanism is of minor importance under conditions of the present study. It is
also worth noting that the present results are qualitatively consistent with experimental data [47] that
indicate that the inner cut-off length scale of wrinkles on a flame surface scales as the laminar flame
thickness, rather than the Gibson length scale.

In a variable density case, the efficiency of small-scale eddies in wrinkling the reaction zone can
be reduced not only due to the smoothing mechanism emphasized in the present communication,
but also due to the disappearance of the small-scale eddies due to dilatation and an increase in the
mixture viscosity by the temperature. In order to understand what mechanism (smoothing or thermal
expansion) dominates and under which conditions, the present DNS study should be extended to
flames characterized by substantial density variations.

5. Conclusions

A DNS study of propagation of either an infinitely thin interface or a reaction wave of a nonzero
thickness in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence was
performed by solving Navier–Stokes equations and either a level set or a reaction-diffusion equation,
respectively. In the latter case, the computed mean wave speed <UT,c> (i) is reduced when a ratio
L11/δF of the longitudinal integral length scale L11 of the turbulence to the laminar wave thickness
δF is decreased and (ii) is significantly lower than <UT,G> simulated in the former case, with all other
things being equal. Moreover, the following results obtained in the present work stem from the finite
thickness δF of the reaction wave.

First, the computed <UT,c>/SL(u′/SL)-curves show bending. The bending effect is less
pronounced at higher L11/δF and vanishes in the case of the infinitely thin interface.

Second, under conditions of the present study, the bending effect is controlled by a decrease in the
rate of an increase δAF in the reaction-zone-surface area with increasing u′/SL. In its turn, the bending
of the δAF(u′/SL)-curves stems from inefficiency of small-scale turbulent eddies in wrinkling the
reaction-zone surface, because small-scale wrinkles are smoothed out by molecular transport within
the local reaction wave. Such a smoothing effect is not pronounced in the case of self-propagation of
the infinitely thin interface at a constant speed SL in statistically the same turbulence.



Fluids 2019, 4, 31 11 of 13

Author Contributions: Data curation, R.Y.; Formal analysis, R.Y. and A.N.L.; Methodology, R.Y. and A.N.L.;
Investigation, R.Y. and A.N.L.; Software, R.Y.; Writing—original draft preparation, A.N.L.; Writing—review and
editing, R.Y. and A.N.L.

Funding: The first author (R.Y.) gratefully acknowledges the financial support by the Swedish Research Council
(VR) and the National Centre for Combustion Science and Technology (CeCOST). The second author (A.N.L.)
gratefully acknowledges the financial support by Chalmers Area of Advance Transport and the Combustion
Engine Research Center (CERC).

Acknowledgments: The simulations were performed using the computer facilities provided by the Swedish
National Infrastructure for Computing (SNIC) at Beskow-PDC Center. Some results of this work were orally
presented at the 10th Mediterranean Combustion Symposium and were reported in the Proceedings of the
Symposium, see http://ircserver2.irc.cnr.it/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karpov, V.P.; Sokolik, A.S. Ignition limits in turbulent gas mixtures. Proc. Acad. Sci. USSR Phys. Chem. Sect.
1961, 141, 866–869.

2. Abdel-Gayed, R.G.; Bradley, D. Dependence of turbulent burning velocity on turbulent Reynolds number
and ratio of laminar burning velocity to r.m.s. turbulent velocity. Symp. Int. Combust. 1977, 16, 1725–1735.
[CrossRef]

3. Abdel-Gayed, R.G.; Al-Khishali, K.J.; Bradley, D. Turbulent burning velocities and flame straining in
explosions. Proc. R. Soc. London A 1984, 391, 391–414. [CrossRef]

4. Bray, K.N.C.; Cant, R.S. Some applications of Kolmogorov’s turbulence research in the field of combustion.
Proc. R. Soc. London A 1991, 434, 217–240. [CrossRef]

5. Bradley, D. How fast can we burn? Symp. Int. Combust. 1992, 24, 247–262. [CrossRef]
6. Clavin, P. Dynamical behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy

Combust. Sci. 1985, 11, 1–59. [CrossRef]
7. Matalon, M. Flame dynamics. Proc. Combust. Inst. 2009, 32, 57–82. [CrossRef]
8. Klimov, A.M. Laminar flame in a turbulent flow. ZhPMTF 1963, 4, 49–58.
9. Lipatnikov, A.N.; Chomiak, J. Molecular transport effects on turbulent flame propagation and structure.

Prog. Energy Combust. Sci. 2005, 31, 1–73. [CrossRef]
10. Nivarti, G.V.; Cant, R.S. Direct numerical simulation of the bending effect in turbulent premixed flames.

Proc. Combust. Inst. 2017, 36, 1903–1910. [CrossRef]
11. Zimont, V.L. Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds number.

Combust. Explos. Shock Waves 1979, 15, 305–311. [CrossRef]
12. Klimov, A.M. Premixed turbulent flames—Interplay of hydrodynamic and chemical phenomena. In Flames,

Lasers and Reactive Systems; Bowen, J.R., Manson, N., Oppenheim, A.K., Soloukhin, R.I., Eds.; AIAA:
New York, NY, USA, 1983; Volume 88, pp. 133–146.

13. Duclos, J.M.; Veynante, D.; Poinsot, T. A comparison of flamelet models for premixed turbulent combustion.
Combust. Flame 1993, 95, 101–117. [CrossRef]

14. Gouldin, F.C. An application of fractals to modelling premixed turbulent flames. Combust. Flame 1987, 68,
249–266. [CrossRef]

15. Poinsot, T.; Veynante, D.; Candel, S. Quenching processes and premixed turbulent combustion diagrams.
J. Fluid Mech. 1991, 228, 561–606. [CrossRef]

16. Roberts, W.L.; Driscoll, J.F.; Drake, M.C.; Goss, L.P. Images of the quenching of a flame by vortex—To
quantify regimes of turbulent combustion. Combust. Flame 1993, 94, 58–69. [CrossRef]

17. Lipatnikov, A.N.; Chomiak, J. Effects of premixed flames on turbulence and turbulent scalar transport. Prog.
Energy Combust. Sci. 2010, 36, 1–102. [CrossRef]

18. Sabelnikov, V.A.; Lipatnikov, A.N. Recent advances in understanding of thermal expansion effects in
premixed turbulent flames. Annu. Rev. Fluid Mech. 2017, 49, 91–117. [CrossRef]

19. Damköhler, G. Der einfuss der turbulenz auf die ammengeschwindigkeit in gasgemischen. Z. Electrochem.
1940, 46, 601–652.

20. Venkateswaran, P.; Marshall, A.; Shin, D.H.; Noble, D.; Seitzman, J.; Lieuwen, T. Measurements and analysis
of turbulent consumption speeds of H2/CO mixtures. Combust. Flame 2011, 158, 1602–1614. [CrossRef]

http://ircserver2.irc.cnr.it/
http://dx.doi.org/10.1016/S0082-0784(77)80450-5
http://dx.doi.org/10.1098/rspa.1984.0019
http://dx.doi.org/10.1098/rspa.1991.0090
http://dx.doi.org/10.1016/S0082-0784(06)80034-2
http://dx.doi.org/10.1016/0360-1285(85)90012-7
http://dx.doi.org/10.1016/j.proci.2008.08.002
http://dx.doi.org/10.1016/j.pecs.2004.07.001
http://dx.doi.org/10.1016/j.proci.2016.07.076
http://dx.doi.org/10.1007/BF00785062
http://dx.doi.org/10.1016/0010-2180(93)90055-8
http://dx.doi.org/10.1016/0010-2180(87)90003-4
http://dx.doi.org/10.1017/S0022112091002823
http://dx.doi.org/10.1016/0010-2180(93)90019-Y
http://dx.doi.org/10.1016/j.pecs.2009.07.001
http://dx.doi.org/10.1146/annurev-fluid-010816-060104
http://dx.doi.org/10.1016/j.combustflame.2010.12.030


Fluids 2019, 4, 31 12 of 13

21. Wabel, T.M.; Skiba, A.W.; Driscoll, J.F. Turbulent burning velocity measurements: Extended to extreme levels
of turbulence. Proc. Combust. Inst. 2017, 36, 1801–1808. [CrossRef]

22. Kerstein, A.R.; Ashurst, W.T.; Williams, F.A. Field equation for interface propagation in an unsteady
homogeneous flow field. Phys. Rev. A 1988, 37, 2728–2731. [CrossRef]

23. Yu, R.; Lipatnikov, A.N.; Bai, X.S. Three-dimensional direct numerical simulation study of conditioned
moments associated with front propagation in turbulent flows. Phys. Fluids 2014, 26, 085104. [CrossRef]

24. Yu, R.; Bai, X.S.; Lipatnikov, A.N. A direct numerical simulation study of interface propagation in
homogeneous turbulence. J. Fluid Mech. 2015, 772, 127–164. [CrossRef]

25. Yu, R.; Lipatnikov, A.N. Direct numerical simulation study of statistically stationary propagation of a reaction
wave in homogeneous turbulence. Phys. Rev. E 2017, 95, 063101. [CrossRef] [PubMed]

26. Yu, R.; Lipatnikov, A.N. DNS study of dependence of bulk consumption velocity in a constant-density
reacting flow on turbulence and mixture characteristics. Phys. Fluids 2017, 29, 065116. [CrossRef]

27. Eswaran, V.; Pope, S.B. An examination of forcing in direct numerical simulations of turbulence. Comput.
Fluids 1988, 16, 257–278. [CrossRef]

28. Lamorgese, A.G.; Caughey, D.A.; Pope, S.B. Direct numerical simulation of homogeneous turbulence with
hyperviscosity. Phys. Fluids 2005, 17, 015106. [CrossRef]

29. Yu, R.; Bai, X.S. A fully divergence-free method for generation of inhomogeneous and anisotropic turbulence
with large spatial variation. J. Comp. Phys. 2014, 256, 234–253. [CrossRef]

30. Bradley, D.; Lau, A.K.C.; Lawes, M. Flame stretch rate as a determinant of turbulent burning velocity.
Phil. Trans. R. Soc. London A 1992, 338, 359–387.

31. Lipatnikov, A.N.; Chomiak, J. Turbulent flame speed and thickness: Phenomenology, evaluation, and
application in multi-dimensional simulations. Prog. Energy Combust. Sci. 2002, 28, 1–74. [CrossRef]

32. Lipatnikov, A.N.; Li, W.Y.; Jiang, L.J.; Shy, S.S. Does density ratio significantly affect turbulent flame speed?
Flow Turbul. Combust. 2017, 98, 1153–1172. [CrossRef] [PubMed]

33. Burluka, A.A.; Griffiths, J.F.; Liu, K.; Orms, M. Experimental studies of the role of chemical kinetics in
turbulent flames. Combust. Explos. Shock Waves 2009, 45, 383–391. [CrossRef]

34. Fogla, N.; Creta, F.; Matalon, M. The turbulent flame speed for low-to-moderate turbulence intensities:
Hydrodynamic theory versus experiments. Combust. Flame 2017, 175, 155–169. [CrossRef]

35. Lipatnikov, A.N.; Chomiak, J.; Sabelnikov, V.A.; Nishiki, S.; Hasegawa, T. A DNS study of the physical
mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames.
Combust. Theory Modelling 2018, 22, 131–155. [CrossRef]

36. Smith, K.G.; Gouldin, F.G. Turbulence effects on flame speed and flame structure. AIAA J. 1979, 17, 1243–1250.
37. Liu, C.C.; Shy, S.S.; Peng, M.W.; Chiu, C.W.; Dong, Y.C. High-pressure burning velocities measurements for

centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant
Reynolds numbers. Combust. Flame 2012, 159, 2608–2619. [CrossRef]

38. Kido, H.; Kitagawa, T.; Nakashima, K.; Kato, K. An improved model of turbulent mass burning velocity.
Memoirs Faculty Engng, Kyushu University 1989, 49, 229–247.

39. Daniele, S.; Jansohn, P.; Mantzaras, J.; Boulouchos, K. Turbulent flame speed for syngas at gas turbine
relevant conditions. Proc. Combust. Inst. 2011, 33, 2937–2944. [CrossRef]

40. Kobayashi, H.; Tamura, T.; Maruta, K.; Niioka, T.; Williams, F.A. Burning velocity of turbulent premixed
flames in a high-pressure environment. Symp. Int. Combust. 1996, 26, 389–396. [CrossRef]

41. Kobayashi, H.; Kawabata, Y.; Maruta, K. Experimental study on general correlation of turbulent burning
velocity at high pressure. Symp. Int. Combust. 1998, 27, 941–948. [CrossRef]

42. Poludnenko, A.Y.; Oran, E.S. The interaction of high-speed turbulence with flames: Turbulent flame speed.
Combust. Flame 2011, 158, 301–326. [CrossRef]

43. Sabelnikov, V.A.; Yu, R.; Lipatnikov, A.N. Thin reaction zones in highly turbulent medium. Int. J. Heat Mass
Transfer 2019, 128, 1201–1205. [CrossRef]

44. Zel’dovich, Y.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. The Mathematical Theory of Combustion
and Explosions; Plenum Publ. Corp.: New York, NY, USA, 1985.

45. Wenzel, H.; Peters, N. Direct numerical simulation and modeling of kinematic restoration, dissipation and
gas expansion effects of premixed flames in homogeneous turbulence. Combust. Sci. Technol. 2000, 158,
273–297. [CrossRef]

http://dx.doi.org/10.1016/j.proci.2016.08.013
http://dx.doi.org/10.1103/PhysRevA.37.2728
http://dx.doi.org/10.1063/1.4891735
http://dx.doi.org/10.1017/jfm.2015.211
http://dx.doi.org/10.1103/PhysRevE.95.063101
http://www.ncbi.nlm.nih.gov/pubmed/28709298
http://dx.doi.org/10.1063/1.4990836
http://dx.doi.org/10.1016/0045-7930(88)90013-8
http://dx.doi.org/10.1063/1.1833415
http://dx.doi.org/10.1016/j.jcp.2013.08.055
http://dx.doi.org/10.1016/S0360-1285(01)00007-7
http://dx.doi.org/10.1007/s10494-017-9801-6
http://www.ncbi.nlm.nih.gov/pubmed/30069153
http://dx.doi.org/10.1007/s10573-009-0048-y
http://dx.doi.org/10.1016/j.combustflame.2016.06.023
http://dx.doi.org/10.1080/13647830.2017.1390265
http://dx.doi.org/10.1016/j.combustflame.2012.04.006
http://dx.doi.org/10.1016/j.proci.2010.05.057
http://dx.doi.org/10.1016/S0082-0784(96)80240-2
http://dx.doi.org/10.1016/S0082-0784(98)80492-X
http://dx.doi.org/10.1016/j.combustflame.2010.09.002
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.098
http://dx.doi.org/10.1080/00102200008947337


Fluids 2019, 4, 31 13 of 13

46. Peters, N. Laminar flamelet concepts in turbulent combustion. Symp. Int. Combust. 1986, 21, 1231–1249.
[CrossRef]

47. Gülder, Ö.L.; Smallwood, G.J. Inner cutoff scale of flame surface wrinkling in turbulent premixed flames.
Combust. Flame 1995, 103, 107–114. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0082-0784(88)80355-2
http://dx.doi.org/10.1016/0010-2180(95)00073-F
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method of Research 
	Results 
	Discussion 
	Conclusions 
	References

