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Abstract

This report gives an account of the work performed by the Division of Sub-
atomic and Plasma Physics (formerly, Division of Nuclear Engineering), Chalmers,
in the frame of a research collaboration with Ringhals, Vattenfall AB, contract No.
677353-003. The contract constitutes a 1-year co-operative research work concerning
diagnostics and monitoring of the BWR and PWR units. The work in the contract
has been performed between 1 July 2018 – 30 June 2019. During this period, we
have worked with five main items as follows:

1. Investigation of possible baffle jetting in R3 with noise analysis of in-core and
ex-core detector signals;

2. Analysis of the vibrations of thimble tubes with axially dependent in-core
measurements in various radial positions;

3. Evaluation of new ex-core measurements for beam mode and tilting mode
vibrations in R3 or R4;

4. Development of a method to use the Eigenvalue Separation in noise analysis
for characterising of regional power oscillations and understanding the role of
loosely coupled cores in the development of regional instabilities;

5. Further investigations of the possibilities of using fission chamber signals for
measurement of subcritical reactivity, such as elaboration of the equivalent
of the Feynman-alpha method of pulse counting, and accounting for delayed
neutrons.

The work was performed at the Division of Subatomic and Plasma Physics,
Chalmers University of Technology by Imre Pázsit (project co-ordinator), Luis Ale-
jandro Torres (visitor from UPM, Madrid, Spain), Cristina Montalvo (research col-
laborator from UPM), Yasunori Kitamura (research collaborator from KURNS, Ky-
oto, Japan), Lajos Nagy (double degree PhD student) and Henrik Nylén, the contact
person at Ringhals.
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1. INTRODUCTION

This report gives an account of the work performed by the Nuclear Engineering
Group of the Division of Subatomic and Plasma Physics (former Division of Nuclear
Engineering), Chalmers, in the frame of a research collaboration with Ringhals,
Vattenfall AB, contract No. 677353-003. The contract constitutes a 1-year co-
operative research work concerning diagnostics and monitoring of the BWR and
PWR units. The work in the contract has been performed between July 1st 2018,
and June 30th, 2019. During this period, we have worked with five main items as
follows:

1. Investigation of possible baffle jetting in R3 with noise analysis of in-core and
ex-core detector signals;

2. Analysis of the vibrations of thimble tubes with axially dependent in-core
measurements in various radial positions;

3. Evaluation of new ex-core measurements for beam mode and tilting mode
vibrations in R3 or R4;

4. Development of a method to use the Eigenvalue Separation in noise analysis
for characterising of regional power oscillations and understanding the role of
loosely coupled cores in the development of regional instabilities;

5. Further investigations of the possibilities of using fission chamber signals for
measurement of subcritical reactivity, such as elaboration of the equivalent
of the Feynman-alpha method of pulse counting, and accounting for delayed
neutrons.

This work was performed at the Division of Subatomic and Plasma Physics,
Chalmers University of Technology by Imre Pázsit (project co-ordinator), Luis Ale-
jandro Torres (visitor from U), Cristina Montalvo (research collaborator from UPM),
Yasunori Kitamura (research collaborator from KURNS), Lajos Nagy (double degree
PhD student) and Henrik Nylén, the contact person at Ringhals.
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2. INVESTIGATION OF POSSIBLE BAFFLE JETTING IN R3
WITH NOISE ANALYSIS OF IN-CORE AND EX-CORE

DETECTOR SIGNALS

This is a newly initiated item in the project, which has not been dealt with
before. Its objective is to identify and elaborate suitable methods for detection of
incipient baffle jetting, and its localisation inside the core, as well as to monitor its
development once its presence is identified.

The background of the origin of this subject is that a so-called upflow conversion
is planned on R3, in order to minimise the risk for fuel damage from baffle jetting.
At present the coolant flow outside the baffle plates is oriented downwards in R3,
whereas it is upwards in R2 and R4. The general problem is the pressure difference
between the outer side of the baffle plates and the core, in particular at the higher
axial elevations. The bolts fixing the baffle structure are exposed to wear during
longer times (due to thermal fatigue and fast neutron irradiation), which process can
degrade the bolts, such that a gap can open at the inside corners of the baffle. Due to
the pressure difference, jet streams can arise towards the interior of the core, which
can lead to very strong vibrations of the individual fuel pins or the assemblies. Such
a phenomenon can appear quite suddenly during the cycle. If it goes undetected, it
can lead to serious damage of the fuel pins, including breakdown of the cladding.

Experience at other plants suggests that baffle jetting can be detected by neu-
tron noise measurements [1, 2, 3]. The primary means of detection is using in-core
detectors. Since baffle jetting occurs only in peripheral fuel assemblies, the in-core
measurements have to be made close to the core edge. Previous experience shows
[2] that if in-core measurements are made in several peripheral positions, then a
comparison of the power spectra (APSDs) between the detectors can reveal extra
peaks in some of the spectra, which are a clear indicator of the presence of baffle
jetting. A further indicator of baffle jetting is when several higher harmonics can be
seen in the in-core spectra.

Ex-core detectors yield more implicit information on fuel pin vibrations induced
by baffle jetting. One possibility is to use the correlations between in-core detectors
and ex-core detectors nearby. Pure ex-core measurements are used for trend anal-
ysis and to identify quadrants of the core where baffle jetting occurs, after which
dedicated in-core measurements can be performed to locate the actual area of the
core exposed to baffle jetting. An indicator of baffle jetting could be when the char-
acteristics of the shell-mode vibrations change, since these are an indication of the
changes in the structural mechanics properties of the baffles.

No dedicated in-core measurements were performed in the current Stage to this
end. Some in-core measurements were performed earlier, in Stages 12 and 13 [4, 5],
but in those measurements, the five in-core detectors were aligned along a radius of
the core (see Fig. 3.1 in the next Section). That is, only one in-core detector was
placed at the core boundary, hence no possibility exists for comparing the APSDs
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of in-core detectors in several peripheral positions. For this reason, it was decided
that in this report, only the latest ex-core measurements (i.e. those taken in this
Stage) will be analysed.

From the point of view of ex-core neutron noise, baffle jetting can possibly be
identified from the deformations it incurs in the core-barrel structure, and therefore
its effect on the ex-core neutron noise. From the mechanical nature of the problem,
baffle jetting is expected to lead to shell-type vibration modes, but also to a uniform
radial increase of the core size, i.e. core widening (zeroth asymuthal mode). Such
a phenomenon is known from the Phenix Sodium Fast Reactor measurements [6];
and it was termed “core flowering”. From the symmetry properties of the core
widening, it is clear that its presence in the detector signals can be enhanced with
the addition of all four detector signals at the same axial level, which is the same as
the enhancement of the reactivity term. However, the frequency of the core widening
effect is expected to be different from that of the reactivity effect, induced by the
individual vibrations of the fuel assemblies at 8 Hz; rather, it should lie closer to
the shell mode vibrations.

In addition, due to the thermal hydraulics conditions, such deformations are
expected to lead to larger changes at the upper part of the core than at the lower
part). Hence the effect of baffle jetting would be consistent with the amplitude of
the peak corresponding to the core widening effect, as well as to that of the shell
mode, was larger in the upper detectors than in the lower detectors.

To this end, the shell mode components and the reactivity components were
compared between the upper and lower detectors for all three measurements. Figs.
2.1, 2.2 and 2.3 show the shell mode components for the three measurements. The
shell mode is represented by the peak at 20 Hz. It is seen that in all three mea-
surements the peak at 20 Hz is larger for the upper detectors than for the lower
detectors. This is in clear contrast to the amplitudes of the beam-mode vibrations
around 8 Hz, where, for obvious reasons, the amplitudes of the peaks are larger in
the lower detectors than in the upper ones. The reversed relationship for the shell
mode vibrations could be an implicit indication of baffle jetting.

Figs 2.4, 2.5 and 2.6. show the comparison for the reactivity component between
the upper and lower detector for the three measurements. It is seen that, in addition
to the peak at 8 Hz, there is also a peak at around 15.5 - 15.6 Hz. A similar peak
was identified in the previous stage in the R4 ex-core spectra at 16 Hz, which was
interpreted as the first harmonic of the 8 Hz fuel assembly vibrations. However,
based on the discussions above, it is conceivable that this peak rather corresponds
to the core widening. This assumption is corroborated by the fact that the amplitude
of the peaks in all three measurements is higher in the upper detectors than in the
lower detectors. This amplifies the assumption that this peak is related to the core
widening effect, and it is in agreement with the observations for the shell mode
vibrations.

In summary, by identifying the reactivity-like component at 15.5 Hz as the core
widening component, it is found that both the shell mode component, as well as the
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Figure 2.1: APSDs of the shell mode in Measurement 1.

Figure 2.2: APSDs of the shell mode in Measurement 2.
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Figure 2.3: APSDs of the shell mode in Measurement 3.

Figure 2.4: APSDs of the reactivity component in Measurement 1.
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Figure 2.5: APSDs of the reactivity component in Measurement 2.

Figure 2.6: APSDs of the reactivity component in Measurement 3.
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core widening component, exhibit a larger amplitude peak for the upper detectors
than for the lower detectors. This might indicate the presence of baffle jetting.
However, because of the sparse azimuthal placing of the ex-core detectors, as well as
the global character of the ex-core signals, it is not possible to identify the position(s)
of possible baffle jetting with a resolution with respect to the azimuthal position.
Moreover, the statement on the possible presence of baffle jetting is based only
on a qualitative comparison of the peaks, and similarly to the case of beam mode
vibrations, it does not give an indication of the amplitude of the corresponding
vibrations, and hence also it cannot be used for the indication of the severity of the
vibrations. However, no indications of baffle jetting, such as wear marks on fuel
rods at spacer grid positions, could be identified during aimed inspections of fuel
assemblies at Ringhals 3 during the outages in 2018 and 2019. On the other hand,
similarly to the beam mode vibrations, the relative component amplitude can be
used for a trend analysis. To this end, the curve fitting procedure has to be applied
to quantify the relative amplitude of the 15.5 and 20 Hz peaks, which requires
some further development work. Also, to be able to detect the presence of fuel rod
vibrations from baffle jetting, more elaborated methods for spectral examinations
are probably needed. This will be done in the next Stages of the project.
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3. ANALYSIS OF THE VIBRATIONS OF THIMBLE TUBES WITH
AXIALLY DEPENDENT IN-CORE MEASUREMENTS IN

VARIOUS RADIAL POSITIONS

It is known that the thimble tubes for in-core detectors, which are led into the
instrument guide tubes of the fuel assemblies, are exposed to turbulent pressure
fluctuations below and between the lower core plate and the bottom of the fuel
assembly. These pressure fluctuations induce vibrations of the thimble tubes, and
even in the in-core detectors themselves. Excessive vibrations can damage both
the thimble tubes and the instruments guide tubes. The characteristics of these
vibrations is very varied, as they are functions of a number of different factors, such
as the fuel assembly type, the contact surface between the fuel assembly bottom
nozzle and the thimble tubes, and not the least the radial position in the core. In
adverse circumstances the vibrations can lead to a serious wear and damage of both
the thimble tubes and the instrument guide tubes.

The analysis of the thimble tube vibrations is based on the in-core measurements.
Similarly to the subject of baffle jetting, this area of investigations is new in this
collaboration project, and there are no clear guidelines, or prior experience, on how
the analysis should be performed. This area has to be developed partly with a trial
and error method during several forthcoming Stages of the project, by also taking
into account the very sparse reports on the phenomenon in the literature [7, 8].

In some of the earlier stages, such as Stages 12 and 13 [4, 5], in-core measurements
were performed in five radial positions simultaneously, at six different axial positions.
The purpose was to identify the vibrating modes of the individual fuel assemblies,
and also to assist the analysis of the ex-core measurements for the diagnostics of shell
mode vibrations. It was assumed that the individual peaks in the in-core detector
signals were due to the vibrations corresponding to the various bending modes of
the fuel assemblies. In the analysis of those measurements so far, only the APDSs
of the individual detectors were investigated.

Our previous in-core measurements, made for the diagnostics of core-barrel and
fuel assembly vibrations, showed that the in-core detector spectra exhibited a large
number of peaks, more than that of the ex-core detectors. The characteristics of
the peaks depended on the radial position, and also on the axial position of the
detectors (measurements were made in six axial in-core positions in each radial
position). These measurements were only analysed from the point of view of fuel
assembly vibrations so far, but it is obvious that the information content in these
measurements is much larger than what is relevant for core-barrel and fuel assembly
vibrations. Most likely, the variety of the peaks and their dependence on the axial
position of the detectors, could also have been affected by thimble tube vibrations.

From the diagnostic point of view, detection of thimble tube vibrations is a very
difficult task, for several reasons. One is that if a thimble tube is vibrating, it
should generate a noise analogue to that of the noise of a vibrating control rod or
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fuel assembly. This could be detected by the fact that two detectors, at opposite
sides of the vibrating thimble tube, would have opposite phase. However, due to
its smaller size and small absorption cross section, the induced neutron noise would
be rather small. In addition, one cannot be sure if it is indeed a thimble tube, or
a fuel/control rod assembly which vibrates between the two detectors. Moreover,
the above facts are only valid if only one thimble tube vibrates between the two
detectors, which cannot be taken as granted.

The other reason is that since the effect of such vibrations can only be detected by
movable in-core detectors, it may happen that one or several detectors are inserted
in vibrating thimble tubes. For such detectors, the noise due to the vibration of the
detector itself would dominate over the noise, induced by the possible vibrations of
other thimble tubes (with or without a detector).

It is thus seen that the problem to be solved contains a number of unknowns pa-
rameters, with only a few measured data, hence it is substantiatlly underdetermined.
The only way of having some insight is to progress in a heuristic trial-and-error man-
ner. In the present Stage hence we only investigate one possible scenario, namely
if no vibration of the detectors occur, only that of the thimble tubes without a
detector.

In the case of the thimble tube vibrations, the task is to determine whether
or not such vibrations occur, whereas the frequency of such possible vibrations is
not known. The axial dependence of the amplitude of the possible thimble tube
vibrations is not known either. Hence we decided to study the phase and coherence
between detectors at different radial, but identical axial positions. The hypothesis
was, based on our knowledge about the space dependence of the amplitude and the
phase of vibration induced neutron noise, that opposite phase between two detectors
at different radial positions might be an indication of the presence of a vibrating
thimble tube between the two detectors. For such cases, the frequency where the
out of phase behaviour occurs could indicate the frequency of the vibrations.

3.1 The layout of the measurements

Since no new in-core measurements were performed during the present Stage,
measurements taken in 2008 in R4 were used for the analysis. The layout of the
measurement, i.e. the radial and axial positions are shown in Fig. 3.1. The ra-
dial measurement positions are labeled from A to E. The measuremens for all five
moveable detectors were made in one sequence for the six axial positions, without
interrupting the data logging. The change of the axial position of the detectors, and
hence the end of a measurement in a given axial position, is indicated by the spike
in the signal time series, as is seen in the middle figure, and the different sections of
the measurement had to be separated manually.

3.2 Results of the analysis

Since 5 detectors can be paired in 10 different ways, the results are shown below
such that several configuations are grouped together, for a more condensed repre-
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Figure 3.1: Layout of the measuremeent
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sentation. In Figs 3.2 and 3.3 the coherence and phase between the pairs A-B, A-C
and A-D are shown for all six positions; in Figs 3.4 and 3.5 the pairs B-D, B-C and
C-D, are shown, and finally on Figs 3.6 and 3.7 the pairs A-E, B-E, C-E and D-E
are shown.

It is seen in Figs. 3.2 - 3.5, that for the four detectors in the upper right hand
side of the core horizontal cross-section, i.e. detectors A - D, there is no out of
phase behaviour. The phase is zero practically everywhere, and the coherence is
relatively high only in the low frequency region. On the other hand, there is an
out-of-phase behaviour between detector E, lying on the lower left part of the core,
and all other detectors, except A, in the low frequency region. At the same time,
the coherence is rather low over the domain of out-of-phase behaviour. There is
another, less pronounced frequency domain for the out-of-phase behaviour around
15 - 25 Hz, especially in the lower three axial positions.

3.3 Summary

From the above one could draw the conclusion that there might be a vibrating
component somewhere in the core between detector E and the other detectors and
in this case it could possibly be a thimble tube. The frequency of these hypothetical
vibrations is between 2 - 6 Hz, which is the same range as the vibration frequency
of detector tubes in BWRs. Another, significantly less pronounced possibility is
that such vibrations occur and possibly around 20 Hz. On the other hand, the fact
that detector A does not show the out-of-phase behaviour with E whereas all other
detector do show it, could indicate that the thimble tube containing detector A itself
is vibrating.

However, these are all rather indirect and highly uncertain conclusions. Fur-
ther investigations are necessary to understand the possibility of using in-core noise
measurements for the detection of such vibrations, and to use them to diagnose the
vibrations. For the verification of the method and the conclusions drawn, feedback
from the inspections is useful. However, since the measurements analysed here were
made in 2008, no such feedback from inspections is possible at this time.
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Figure 3.2: Coherence and phase between the pairs A-B, A-C and A-D for the three
upper axial positions.

–12–



Ringhals diagnostics CTH-NT-339/RR-22

Figure 3.3: Coherence and phase between the pairs A-B, A-C and A-D for the three
lower axial positions.
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Figure 3.4: Coherence and phase between the pairs B-D, B-C and C-D for the three
upper axial positions.
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Figure 3.5: Coherence and phase between the pairs B-D, B-C and C-D for the three
lower axial positions.
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Figure 3.6: Coherence and phase between the pairs A-E, B-E, C-E and D-E for the
three upper axial positions.
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Figure 3.7: Coherence and phase between the pairs A-E, B-E, C-E and D-E for the
three lower axial positions.
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4. EVALUATION OF NEW EX-CORE MEASUREMENTS FOR
BEAM MODE AND TILTING MODE VIBRATIONS IN R3

4.1 Introduction and background

The analysis of core-barrel vibration properties (often abbreviated to CBM, core
barrel motion) have been the subject of study both in Sweden and internationally
It has also been the subject of the collaboration between Chalmers and Ringhals
from the beginning, as it was reported in several previous Stages in the Ringhals
diagnostic project [9, 10, 11, 12, 13, 4, 5, 14, 15, 16, 17],

Within the last decade, a series of studies dedicated to core barrel vibrations have
been performed in order to analyse and find a suitable explanation for the recent
observations of wear at the lower and possibly of the upper core-barrel-support
structures, i.e. the lower radial key and the reactor vessel alignment pins in the
Ringhals PWRs. In the last few years the main focus in this area was put on
the investigation of a double peak observed in the Auto Power Spectrum in the
frequency region of the beam mode component, mostly in measurements made in R4.
A hypothesis was formulated about the nature of this peak, where it was suggested
that the lower frequency peak is due to the beammode vibrations of the core barrel as
a whole, and the higher frequency peak is due to individual fuel assembly vibrations.
A test of this hypothesis was one of the main goals of the analysis. A key factor of
the analysis was that since the lower frequency peak was assumed to be due to the
(coherent) vibrations of the whole core barrel, the symmetry properties of the ex-core
detector signals (in-phase and out-of-phase behaviour) could be used to enhance the
effect, as well as to condense the quantification to one single parameter by taking
combinations of the detector signals. However, as long as the higher frequency mode
was assumed to be due to the effect of the independent (incoherent) vibrations of
the individual fuel assemblies, no symmetry properties could be utilised, and the
results could not be condensed into one single parameter.

In 2014 a further, new assumption was made, in that the main effect of the
individual vibrations manifests itself through the combined reactivity effect of all
the individually vibrating fuel assemblies. This assumption, through the associated
symmetries of the reactivity component, allowed to condense the analysis of the dif-
ferent detector signals into one single parameter even for the higher frequency peak.
This hypothesis was tested with a fruitful outcome on the measurements taken at
Ringhals-4. In addition, although no double peak was visible in the APDS of the R3
measurements, with the peak separation and curve fitting technique, the two peaks
could be separated even in the R3 measurements. Thus, finally, it became possible
to distinguish between the beam mode component due to core barrel vibrations and
reactivity component associated to the single fuel assembly vibrations. In addition,
through numerical simulations, it was also possible to confirm the constant ampli-
tude within one fuel cycle for the peak belonging to the beam mode component, and
the varying (increasing) amplitude (within one cycle) of the reactivity component
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(individual fuel assembly vibrations), which were in very good agreement with the
original hypothesis.

The work in the continuation was therefore not concentrated any longer on the
test and proof of the hypothesis, and the associated trend analysis of the evolution
of the peak amplitudes during the cycle, rather on checking whether there is any
major change in the amplitude and frequency of the beam mode peaks, as compared
to the previous measurements, which could indicate an increased play in the lower
radial key support. A special circumstance in this aspect is that in 2015, the total
power of Ringhals-4 was increased by 18.6 %. Another aspect is that some structural
changes took place in R4 relatively recently. The hold-down springs were replaced
during the outage in 2013, and the interior parts were lifted out during the outage in
2014 for an inspection. As it was seen and reported in the previous Stage [17], this
has changed the shape of the spectra around the beam mode frequency such that
the visibility of former double peak has ceased and only one peak could be observed
visually. These changes further made the continuation of the CBM analysis and
surveillance relevant.

Last but not least, as it was described in the previous stages [16, 17], a new
type of pivotal vibration mode, which we named as “tilting” or “wobbling” mode,
was discovered. The separation of the tilting mode from the other components is
made with methods similar to the other mode separation methods with adding and
subtracting the signals in various combinations. The only difference is that for the
separation of the tilting mode from the other components, all 8 detectors (the four
ex-core detectors at two axial elevations) need to be used. Hence in the routine
analysis, the separation of all four components (beam, shell, reactivity and tilting
modes) were made, and this is included into this Section.

In the present Stage, the ex-core measurements were made in R3, in which only a
smaller fraction of the measurements were made earlier. Hence it will be interesting
to see how the results of the present measurements compare with the previous ones.

4.2 Details of the measurements in R3

Three sets of measurements were analysed. The measurements were performed
in R3 in cycle 36, on 25 October 2018, as well as on 16 January and 26 March 2019.
For simplicity, these will be referred to as Measurement 1, 2 and 3, respectively. The
sampling frequency was 62.5 Hz for all three sets of measurements. The measurement
points are shown in Table 2. More detailed data regarding settings and general
parameters can be found in the measurement protocols from previous measurements,
which were performed in an identical manner [18, 19, 20]. Some sample spectra,
showing the APSD for each of the 8 individual ex-core detectors, calculated from
the corresponding measurement will be presented in the next section.
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Table 4.1: The measurement data of the three measurements in Ringhals 3 during
2018-19

Channel Measurement point

0 Time

1 N41U DC

2 N42U DC

3 N43U DC

4 N44U DC

5 N41L DC

6 N42L DC

7 N43L DC

8 N44L DC

9 N41U AC

10 N42U AC

11 N43U AC

12 N44U AC

13 N41L AC

14 N42L AC

15 N43L AC

16 N44L AC
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4.3 Analysis of the measurements made on 2018-10-25 (Measurement 1)

4.3.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.1. All
signals show the two familiar peaks around 8 and 20 Hz for the beam and shell
modes, respectively. Similarly to the previous measurements made in R3, as well
as in the latest measurements in R4, no double peak is visible at 8 Hz. Rather,
similarly to the latest measurements in R4, a small peak is visible around 6 Hz,
i.e. it is much more separated from the 8 Hz peak in frequency. On the other
hand, the two peaks that can be identified with the beam mode and the reactivity
mode (corresponding to the noise induced by the individual fuel assembly vibrations)
cannot be visibly separated. This will be reflected in the detailed analysis below.
A general observation is that after the replacement of the hold-down springs in R4
during the outage in 2013, and lifting out the interior parts during the outage in
2014 for an inspection, the ex-core detector spectra in R4 and R3 look now rather
similar.

Figure 4.1: APSD of all 8 ex-core detector signals from Measurement 1
.

4.3.2 Results of the mode separation

The beam mode, shell mode, reactivity component and the tilting modes were
separated according to the detector signal combination principles as in the previous
work. The results are shown for the upper detectors in Fig. 4.2, and for the lower
detectors Fig. 4.3. The result of the separation is rather similar for the two cases,
as well as to that of the results for R4 in the previous Stage. It is seen that the
amplitude of the beam mode is larger for the lower detectors, as expected, whereas
the amplitude of the other components is very similar for the upper and lower
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Figure 4.2: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 1.

detectors. A detailed inspection by enlarging the figures shows that the frequency
of the reactivity mode is somewhat higher than that of the beam mode, confirming
that they can be identified as Mode 2 and Mode 1 in the previous terminology.
Hence the results are in agreement with the results from the previous stages.

One peculiar fact is that the shell mode, which does not show a peak at 8 Hz in
the upper detectors signals (which is expected) has a quite distinct peak at 8 Hz in
the lower detector signals (not expected). This is somewhat surprising, and there
is no direct explanation of it. This phenomenon did not appear in the previous R4
measurements, although in some of the spectra the shell component shows a small,
but noticeable peak around 8 Hz [17].

As already mentioned in Section 2, similarly to the results of the previous Stage,
reporting on measurements made in R4, one notes a small peak around 15.5 Hz in
both the upper and the lower detector signals in the reactivity component. In the
previous Stage our interpretation was that since this frequency is twice that of the
pendular fuel vibration frequency at 8 Hz, which is also identified as a reactivity
effect, the peak at 16 Hz can be attributed to the higher harmonics of the fuel
assembly vibrations at the fundamental frequency 8 Hz. However, based on the
analysis of the baffle jet effect, and the discussion given in Section 2, it is more
likely that this peak is due to the “core flowering” effect, i.e. the zeroth azimuthal
mode of the core barrel.
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Figure 4.3: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 1

4.3.3 Phase and coherence relationships between the upper and lower
detectors

An analysis of the coherence and the phase relationships between detectors both
at the same as well as different axial levels was performed, similarly to that in
the previous two stages. The coherence and phase between the diagonally opposite
detectors N41 and N42, for both the same and for different axial levels, is shown in
Fig. 4.4, and the same for detectors N43 and N44 in Fig. 4.5. The coherence and
phase between the upper and lower detectors at the same radial position, for all four
detectors, is shown in Fig. 4.6.

The type of phase relationships shown in Figs. 4.4 - 4.6 were reported starting
only from Stage 2015, which only concerned measurements in R4. Therefore a
comparison with earlier similar plots from R3 is not possible. A comparison with
the results from the R4 measurements shows that for the detector pair N41 - N42,
Fig. 4.4, the phase behaviour is similar, but the coherence is rather different. Unlike
in the R4 measurements, the coherence around 8 Hz is very low, which is rather
surprising, given the fact that the APSD peaks are the highest in this fequency
region, and the phase is rather solidly 180◦, without much scatter, up to about 8
Hz, where it shifts to zero. The coherence has though a medium large peak at
around 2 - 3 Hz, which is somewhat more resembling to the former measuremens
in R4. One possible explanation of the low coherence at 8 Hz could be if the beam
mode vibrations are highly anisotropic, and are perpendicular to the line connecting
the detectors N41 - N42. Another possibility is an interference with the tilting mode,
which is not investigated in detail in this report.
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Figure 4.4: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 1.

The phase behaviour is in line with the previous R4 measurements, and also with
the hypothesis that just below 8 Hz the beam mode vibrations dominate, which is
the cause of the out of phase behaviour, after which, at a slightly higher frequency,
the reactivity effect of the fuel assembly vibrations take over, which is the cause of
the zero phase above 8 Hz.

The picture is rather different for the detector pairs N43 - N44, Fig. 4.5. In a way,
it is opposite to the detector pair N41 - N44 in that now the coherence resembles
more to the former R4 measurements, but the phase behaviour is different. The
coherence is now appreciably higher around 8 Hz, although it is really high (about
0.8) for the combinations N43U - N44U and N43U - N44L, whereas for the other
two combinations there are only two smaller peaks with a coherence value about 0.4
each. On the other hand, the phase behaviour differs completely from the previous
patterns. Like the coherence, it is different for the combinations N43U - N44U and
N43U - N44L and for the other two. All of them start from ±180◦, and then tend
linearly to zero which they reach at around 6 Hz, after which they continue to rise
linearly again, reaching 180◦ again at 7 Hz, after which they decrease again linearly,
but with a much smaller slope. This also means that there is no zero phase region
above 8 Hz.

This type of phase behaviour is unknown from previous measurements, and it
is actually rather difficult to interpret. A linear phase between two detectors is an
indicator of a (deterministic) time delay between the two signals, which is hardly
conceivable for the ex-core detector signals induced by vibrations. One cannot ex-
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Figure 4.5: The coherence and the phase of the CPSD calculated for the N43U-
N44U, N43L-N44L, N43U-N44L and N44U-N43L detector pairs in Measurement 1.

Figure 4.6: The coherence and the phase of the CPSD calculated for the N41U-N41L,
N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 1.
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clude though the possibility that the vibrations are periodic and not random, in
which case the conclusions drawn from the coherence and phase are not valid, since
these are only defined for random processes. However, the large qualitative dif-
ference between the phase and coherence between the pairs N41 - N42 on the one
hand and N43 - N44 on the other, further amplifies the assumption that the CBM
is highly anisotropic. It would be therefore worth following up the CBM analysis in
further measurements in R3.

Regarding the axial coherence and phase between detectors at the same radial
position, Fig. 4.6, these are partially similar to the previous R4 measurements.
There is a dip in the coherence and a deviation from zero phase at 6 Hz only for
the detectors N44 upper and lower. All other three radial pairs have high coherence
and zero phase throughout this region.

4.4 Analysis of the measurements made on 2019-01-16 (Measurement 2)

4.4.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.7. These
look very similar to those in Measurement 1. A moderate increase of the amplitude
of the 8Hz peak is seen, whereas the amplitude of the peak at 6 Hz has decreased
significantly. These features are in line with the observations regarding the earlier
R4 measurements.

Figure 4.7: APSD of all 8 ex-core detector signals from Measurement 2
.
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4.4.2 Results of the mode separation

The results for the separation of the beam mode, shell mode, reactivity compo-
nent and the tilting modes are shown for the upper detectors in Fig. 4.8, and for the
lower detectors in Fig. 4.9. These results are very similar to those of Measurement
1. That is, the amplitude of the beam mode is larger for the lower detectors, and the
frequency of the reactivity mode is somewhat higher than that of the beam mode,
as expected. Again the shell mode shows a peak at 8 Hz in the lower detectors.

Figure 4.8: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 2.

4.4.3 Phase and coherence relationships between the upper and lower
detectors

The coherence and phase between the diagonally opposite detectors N41 and
N42, for both the same and different axial levels, is shown in Fig. 4.10, and the
same for detectors N43 and N44 in Fig. 4.11. The coherence and phase between
the upper and lower detectors at the same radial position, for all four detectors, is
shown in Fig. 4.12.

Similarly to the individual spectra and those from the results of the mode sepa-
ration, these coherence and phase plots show a full resemblance to those in Measure-
ment 1. Hence the interpretation and remarks remain the same as for the previous
measurement.
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Figure 4.9: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 2

Figure 4.10: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 2.
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Figure 4.11: The coherence and the phase of the CPSD calculated for the N43U-
N44U, N43L-N44L, N43U-N44L and N44U-N43L detector pairs in Measurement 2.

Figure 4.12: The coherence and the phase of the CPSD calculated for the N41U-
N41L, N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 2.
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4.5 Analysis of the measurements made on 2019-03-26 (Measurement 3)

4.5.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.13. These
look again similar to those the previous two measurements. The amplitude of the
peak at 6 Hz is still low.

Figure 4.13: APSD of all 8 ex-core detector sigals from Measurement 3
.

4.5.2 Results of the mode separation

The results for the separation of the beam mode, shell mode, reactivity compo-
nent and the tilting modes are shown for the upper detectors in Fig. 4.14, and for
the lower detectors in Fig. 4.15. One difference as compared to the previous two
measurements is that the peak in the shell mode at 8 Hz is now clearly visible even
in the upper detector signals.

4.5.3 Phase and coherence relationships between the upper and lower
detectors

The coherence and phase between the diagonally opposite detectors N41 and
N42, for both the same and different axial levels, is shown in Fig. 4.16, and the
same for detectors N43 and N44 in Fig. 4.17. The coherence and phase between
the upper and lower detectors at the same radial position, for all four detectors, is
shown in Fig. 4.18.

Again, apart from some minor differences, the structure of all these plots is
similar to the previous two measurements. The deviation of the phase from zero
around 7 Hz between the detectors N44U - N44L is now more pronounced.
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Figure 4.14: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 3.

Figure 4.15: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 3
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Figure 4.16: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 3.

Figure 4.17: The coherence and the phase of the CPSD calculated for the N43U-
N44U, N43L-N44L, N43U-N44L and N44U-N43L detector pairs in Measurement 3.
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Figure 4.18: The coherence and the phase of the CPSD calculated for the N41U-
N41L, N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 3.

4.6 Trend analysis

As there were three measurements made during the cycle, it was meaningful to
try to perform a trend analysis of the amplitudes of the beam and the reactivity
peaks at 7 - 8 Hz. In the previous Stage, due to the fact that the two peaks lay
so close to each other in frequency, the fitting procedure was incapable to produce
useful results for the reactivity mode, hence only a trend analysis of the beam mode
peak was made. The situation is somewhat similar in the present case, in that the
two peaks lie very close to each other in frequency even in the present measurements.
However, with some considerable further effort, in the end it was possible to perform
the fitting even for the reactivity component. The results are illustrated in Fig. 4.19
for both the upper and the lower detectors from Measurement 1 and Measurement
3.

The result of the trend analysis for both components is shown in Fig. 4.20.
What regards the beam mode, it is rather similar to the last measurements in R4 of
the previous Stage, i.e. it is increasing monotonically, and appreciably, during the
cycle. Therefore, like the last R4 measurement, it deviates from the previous results,
and it is also in disagreement with our assumption that the beam mode amplitude
does not increase during the cycle. Also the reactivity component, attributed to the
individual fuel assembly vibrations, behaves slightly differently from the previous
measurements. For the lower detectors, it shows the expected increase during the
cycle, in a higher rate than that of the beam mode peak. However, for the upper
detectors, the amplitude increases quite markedly between the first and the second

–33–



Ringhals diagnostics CTH-NT-339/RR-22

Figure 4.19: Results of the curve fitting for Measurement 1 and 3 to the peak at 8
Hz beam mode (right side) and reactivity component (left side), the upper detectors
(upper side) and the lower detectors (lower side).

Figure 4.20: Trend analysis of the amplitude and frequency of the beam mode (Mode
1) and the Reactivity component (Mode 2) at 8 Hz for the three measurements made
during the cycle.
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measurement, but then decreases in the third measurement.

The explanation of this trend behaviour is most likely the same as what we
made in the previous Stage, namely that the trend analysis is not reliable when the
frequencies of the two peaks (beam mode and reactivity mode) lie too close to each
other. Even if, formally, the curve fitting method yields quantitative data for the
peak amplitudes, the accuracy of these quantitative data might be low, due to the
fact that the mode separation is not sufficiently effective for the curve fitting, and
the separated componenets might be “contaminated” with each other.

However, one can at least claim that the results of the CBM analysis of the R3
measurements, performed in the present Stage, are in a qualitative agreement with
the last measurements made in R4. Further analysis of measurements in R3 would
be advantageous to see the consistency of these results.
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5. DEVELOPMENT OF A METHOD TO USE THE EIGENVALUE
SEPARATION IN NOISE ANALYSIS FOR CHARACTERISING

OF REGIONAL POWER OSCILLATIONS AND
UNDERSTANDING THE ROLE OF LOOSELY COUPLED CORES

IN THE DEVELOPMENT OF REGIONAL INSTABILITIES

The space-time properties of the response of reactor cores to various types of
perturbations have been studied extensively in the past. One of these methods
is based on the concept of “eigenvalue separation”, introduced by Stacey [21] to
characterise the space-time behaviour of reactor cores under transients, including
space-dependent xenon oscillations. The expression is commonly abbreviated in
text as ES, in some cases as EVS, and its quantitative value in expressions as (E.S.)
or (E.S.)n.

The ES between the static eigenfunctions φn and φ0, n > 0 is defined as

(E.S.)n =
1

kn
− 1

k0

≥ 0 (5.1)

where kn and k0 are the corresponding eigenvalues, k0 being the effective multi-
plication factor. The case n = 1 has a special significance, hence it is often used
without an index, and in many cases the term “eigenvalue separation” is used for
this quantity:

(E.S.) ≡ (E.S.)1 =
1

k1

− 1

k0

≥ 0. (5.2)

The potential of the concept has been investigated in the past extensively both
for describing space-time behaviour under perturbations, the coupling constant of
coupled cores, as well as determination of the eigenvalue separation from flux tilt
measurements and noise correlation measurements [22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37]. These investigations confirmed that a small ES increases
the proneness of the system to instabilities and enhances the space dependent be-
haviour of the system. Systems consisting of loosely coupled regions (such as early
types of breeder reactors with highly enriched regions separated by blankets contain-
ing depleted uranium or other fertile material) have a small eigenvalue separation,
hence they show strongly space dependent kinetic properties.

At the same time it has to be noted that the objective of these studies was
mostly the determination of the ES by numerical or experimental methods, nearly
exclusively performed by static methods, or by measurement of the inherent neutron
noise in the unperturbed system. A great deal of work was spent on studying the
dependence of the magnitude of the ES on static system parameters, including
the comparison of non-perturbed and perturbed static systems, without explicitly
solving the time- or frequency dependent problem. In other words, the dependence
of the dynamic response of the core for a certain perturbation on the magnitude of
the ES has not been a subject of study.
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The main objective of the present study is to fill this gap. We shall here in-
vestigate the significance of the ES on the dynamic response of a system to small
stationary perturbations, leading to what is called power reactor noise. The space
dependent character of the dynamic response of a core to perturbations, in terms
of point kinetic or space-dependent behaviour has traditionally been characterised
in terms of system size and the frequency [38]. These conclusions are drawn di-
rectly from the form of the space- and frequency dependent Green’s function of the
system, without the need of calculating higher order eigenfunctions and eigenval-
ues. Expressing the neutron noise in form of an expansion in static eigenfunctions
with frequency dependent coefficients lends the possibility of investigating these
properties in terms of the eigenvalue separation, thus it gives an alternative way of
description. This will also illuminate the role of the ES, and will, among others,
give alternative insight into already known characteristics, such as the appearance of
global and regional oscillations in boiling water reactors (BWRs) from a new angle
of view.

In the following, first it will be shown that a general formal solution for the
neutron noise in terms of the static eigenfunctions automatically leads to the ap-
pearance of the ES in the equations. The characteristics of the neutron noise will
then be discussed in terms of the ES and that of the perturbation. After that the
relationship between the ES and the coupling strength in a multi-region system will
be illustrated in an extreme, in fact pathological, case, which is nevertheless useful
to give deepened insight. Finally a quantitative investigation of the dependence of
the properties of the neutron noise in a loosely coupled system on the ES will be
performed and the results discussed.

5.1 General principles: neutron noise in terms of the ES

The ES will now be put into the context of neutron noise theory, which concerns
the response of the system to small stationary perturbations. One of the basic
questions in the theory of neutron noise is the spatial character of the response to a
small perturbation, i.e. whether it is point kinetic or space dependent, and how the
system behaves in the limit of low frequencies.

The theory of power reactor noise is described in Ref. [38], here only a condensed
description will be given in one-group diffusion theory in a slab reactor model (1-D
geometry) with one group of delayed neutron precursors. As usual in noise analysis
problems, the discussion in the forthcoming refers to systems which are initially
critical, i.e. k0 ≡ k = 1. The corresponding static one-group diffusion equation
reads as

∆φ0(r) +B2
0φ0(r) = 0 (5.3)

with the one-group theory expression of the static buckling as

B2
0 =

νΣf − Σa

D
(5.4)

The system will then be perturbed around the critical state by small stationary
fluctuations of the cross sections, which will lead to a time (frequency) dependence
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of the neutron flux. For simplicity it will be assumed that only the absorption cross
section is fluctuating1, i.e.

Σa(r)→ Σa(r, t) = Σa(r) + δΣa(r, t). (5.5)

The resulting space- and time-dependent neutron flux will also be split into a mean
value (the critical flux) and fluctuations around it, i.e.

φ0(r)→ φ(r, t) = φ0(r) + δφ(r, t). (5.6)

After linearisation, a temporal Fourier transform and elimination of the delayed
neutron precursors, the space- and frequency dependent neutron noise will be given
as the solution of the equation [38]

∆δφ(r, ω) +B2(ω)δφ(r, ω) = S(r, ω) ≡ δΣa(r, ω)φ0(r)

D
(5.7)

where the temporal Fourier transform δφ(r, ω) of δφ(r, t) is defined as

δφ(r, ω) =

∫ ∞
−∞

e− i ωtδφ(r, t)dt, (5.8)

and similarly for δΣa(r, ω). The frequency dependent buckling B2(ω) is given as

B2(ω) = B2
0

(
1− νΣf

(νΣf − Σa)G0(ω)

)
= B2

0 −
νΣf

DG0(ω)
= B2

0

(
1− 1

ρ∞G0(ω)

)
(5.9)

with G0(ω) being the zero power reactor transfer function

G0(ω) =
1

iω
(
Λ + β

iω+λ

) ; Λ =
1

vνΣf

(5.10)

and
ρ∞ = 1− 1

k∞
=
νΣf − Σa

νΣf

(5.11)

being the infinite system reactivity.

The usual discussion on the properties of the system response is based on the
solution for the Green’s function of Eq. (5.7), obeying the equation

∆rG(r, r′, ω) +B2(ω)G(r, r′, ω) = δ(r − r′). (5.12)

For homogeneous systems, B2(ω) is space-independent, and the Green’s function can
be given analytically. Its properties can then be analysed in terms of the dependence
of B2(ω) on the system size (related to ρ∞) and the frequency (through G0(ω)). The
analysis readily shows that for perturbations having a non-zero reactivity effect, in
the limit of small frequency or small system size, the system behaves in a point
kinetic manner, with the amplitude of the response diverging when ω → 0.

1Including fluctuations of the fission cross section is straightforward; they are neglected here
only for the transparency and clarity of the description.
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The discussion of the same properties in terms of the ES is based on the rep-
resentation of the space and frequency dependent neutron noise in the form of a
series expansion by the static spatial eigenfunctions multiplied by frequency depen-
dent amplitudes. The first term in such a series is the point kinetic component of
the noise, whereas the rest , i.e. the aggregate of all higher order eigenfunctions,
represents the space dependent component. For this we define the higher order
eigenfunctions as

∆φn(r) +B2
nφn(r) = 0 (5.13)

where now

B2
n =

νΣf

kn
− Σa

D
(5.14)

Formally, Eq. (5.14) is valid also for the fundamental mode, i.e. for n = 0, with
k0 = 1, since the unperturbed system is critical.

The solution of Eq. (5.7) is now constructed by an expansion into the spatial
eigenfunctions φn(r) with frequency dependent coefficients:

δφ(r, ω) =
∞∑
n=0

an(ω)φn(r) = a0(ω)φ0(r) +
∞∑
n=1

an(ω)φn(r) (5.15)

Here, the splitting of the sum by separating its first term is only made because
it is equal to the point kinetic component of the noise. Similar expansions of the
perturbed flux, although for static cases, were considered in connection with the
eigenvalue separation in [22, 25, 30].

Substituting (5.15) into (5.7), and using Eq. (5.13) for φn(r) yields

∞∑
n=0

an(ω)
[
−B2

n +B2(ω)
]
φn(r) =

δΣa(r, ω)φ0(r)

D
(5.16)

Using the definition of the eigenvalue separation (5.1) and the form of B2(ω) and
B2

0 given by Eqs (5.4), (5.9) and (5.14), one finds readily that

D
[
−B2

n +B2(ω)
]

= −νΣf

[
(E.S.)n +G−1

0 (ω)
]
, (5.17)

where, obviously (E.S.)0 = 0. Hence, Eq. (5.16) can be re-written in the form

−
∞∑
n=0

an(ω)νΣf

[
(E.S.)n +G−1

0 (ω)
]
φn(r) = δΣa(r, ω)φ0(r) (5.18)

For a homogeneous system, i.e. when B2(ω) is space-independent, the equations
for the an(ω) for different values of n decouple, due to the orthogonality relations
of the static eigenfunctions φn(r). Hence, multiplying (5.18) by φk(r), integrating
over the reactor volume VR, and also utilising (5.9) (5.13) and (5.14), one obtains

ak(ω) = −
∫
VR
δΣa(r, ω)φ0(r)φk(r)dr

νΣf

[
(E.S.)n +G−1

0 (ω)
] ∫

VR
φ2
k(r)dr

; k = 0, 1, 2 . . . (5.19)
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Using this in (5.15) and also by recalling the perturbation formula of calculating the
reactivity in first order of the perturbation yields

δφ(r, ω) = ρ(ω)G0(ω)φ0(r) +
∞∑
n=1

δρn(ω)[
(E.S.)n +G−1

0 (ω)
]φn(r) (5.20)

Here the definition

δρn(ω) =
−
∫
VR
δΣa(r, ω)φ0(r)φn(r)dr

νΣf

∫
VR
φ2
n(r)dr

; n = 0, 1, 2, . . . (5.21)

was introduced. It is to be stressed that δρn(ω) has nothing to do with the static
higher order reactivity ρn = 1 − 1/kn, which is a property of the unperturbed
system; rather, it stands for the higher order reactivity effect of the perturbation
which excites the nth higher order mode in the response of the system2 [22]. In
other words, δρn(ω) can be considered as the generalisation of the conventional
perturbation theory formula for the reactivity. In analogy with the conventional
reactivity ρ(ω) ≡ δρ0(ω), which is the projection of the perturbation S(r, ω) to the
fundamental mode φ0(r) and which excites the fundamental mode (i.e. the point
kinetic or “reactivity” component of the noise), for n ≥ 1, the term δρn(ω) can be
interpreted as the projection of the perturbation to the n-th higher harmonic, and
which thus excites the n-th higher order eigenfunction.

From Eqs (5.20) and (5.21) an analysis of the induced reactor noise, similar to
the one based on the analytic solution for the Green’s function mentioned above,
can be made as follows.

1. For ω → 0, G0(ω)→∞. Since (E.S.)0 = 0, whereas (E.S.)n > 0 for n ≥ 1, if
ρ(ω) 6= 0, the first term will dominate, and point kinetic behaviour will prevail.

2. If the perturbation is spatially homogeneous (space-independent), i.e. δΣa(r, ω) =
δΣa(ω), then, due to the orthogonality relationships between φ0 and φn for
n > 0 in Eq. (5.21), δρn(ω) = 0 and hence an(ω) = 0 for n ≥ 1. Thus point-
reactor behaviour exists for any ω (i.e. even for arbitrarily high frequencies).

3. If δΣa(r, ω) is an odd (asymmetric) function of r, or more generally, in any
case when ∫

VR

δΣa(r, ω)φ2
0(r)dr = 0, (5.22)

one has ρ(ω) = 0, and hence the reactivity term (point-reactor term) equals
zero. That is, in such cases, point-reactor behaviour never exists, not even for
very low frequencies.

2Actually, for full consistency, ρ(ω) should also be denoted as δρ0(ω). However, the zero index
and the prefix δ was dropped because the notation ρ(ω) has been widely used for the traditional
reactivity effect of a stationary perturbation. Hopefully this will not lead to any confusion.
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These remarks will now be complemented with further aspects which are related
to the eigenvalue separation. Assume now that in Eq. (5.20), one has (E.S.)1 ≡
(E.S.) = ε << 1, more concretely ε << β, which implies k1 ≈ k0. We will
also assume that (E.S.)n >> (E.S.), and for the sake of the argument also that
(E.S.)n > β for n ≥ 2. Then, separating out the first term of the sum in the r.h.s.
of (5.20), one can write

δφ(r, ω) = ρ(ω)G0(ω)φ0(r) +
δρ1(ω)

ε+G−1
0 (ω)

φ1(r) +
∞∑
n=2

δρn(ω)[
(E.S.)n +G−1

0 (ω)
]φn(r)

(5.23)

Since at the plateau frequencies λ ≤ ω ≤ β/Λ, the amplitude of the zero power
transfer function is |G0(ω)| ≈ 1/β, with the above assumptions (and provided that
all the ρn are larger than zero and of comparable order of amplitude), at the plateau
frequencies, on the right hand sidek of Eq. (5.23) the first two terms will dominate
over the rest. Thus, for plateau frequencies one can write

δφ(r, ω) ≈ ρ(ω)G0(ω)φ0(r) + δρ1(ω)G0(ω)φ1(r) (5.24)

This form is of course only valid at plateau frequencies and below, but only until
|G0(ω)| < 1/ε. For any given value of (E.S.) = ε, in the limit ω → 0, if ω is
sufficiently small, eventually the first term (the point kinetic term) on the right hand
side of Eqs (5.23) or (5.24) will dominate. However, if ε is sufficiently small, this will
happen only at very low frequencies. That is, the form (5.23) will remain valid, with
its second term being comparable to the point kinetic term, and if |δρ1(ω)| > |ρ(ω)|,
it will even dominate over it, even for frequencies far below the plateau region.
This means that space-dependent behaviour, i.e. deviation from the point kinetic
behaviour, will prevail for much lower frequencies than usual.

The above is of course a consequence of the fact that in this case even the
first harmonic is “close to critical”. A non-zero, but sufficiently small ES means,
according to the above analysis, that space dependent behaviour will be sustained
even for low frequencies, way below the plateau frequencies, and also the amplitude
of the space dependent part of the response can be rather high. In the hypothetical
case of (E.S.) = 0 (such a pathological case will be discussed below), a perturbation
which can excite the first higher order mode will lead to a diverging amplitude for
ω → 0, for exactly the same reasons as for the point kinetic term in the cases when
ρ(ω) 6= 0.

The influence of the ES on the stability of the system can thus be refined in
view of the above analysis. Let us define a stable system as one characterised with
a small amplitude response to a certain perturbation and an unstable system as
one with a large amplitude response to the same perturbation. Then, one can say
that systems with a large ES are unstable for perturbations with a reactivity effect
at low frequencies, but are stable for perturbations without (or with a very small)
reactivity effect. Systems with a very small ES are still unstable for perturbations
with a reactivity effect at low frequencies, but they will be also unstable for pertur-
bations without a reactivity effect, as long as δρ1(ω) 6= 0. Since, in reality, many
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perturbations are of local character (moving of an individual control rod, fuel or
control rod vibrations in a PWR, local channel blockage in a BWR etc), for these
cases it is valid that |δρ1(ω)| ≈ |ρ(ω)|. For an asymmetric perturbation, for which
Eq. (5.22) holds exactly or approximately, one has even |δρ1(ω)| >> |ρ(ω)|. For
such perturbations, a systems will become unstable for low frequencies if it has a
small ES, despite that there is no reactivity perturbation. This is for instance the
case of regional (out-of-phase) BWR oscillations [39, 40, 41, 42].

One drawback of the discussion so far, which makes it somewhat trivial, is that
the formulae are only valid for homogeneous systems. For homogeneous systems
the only way of achieving a small (E.S.) is to have a large system size. In that
case not only the fundamental (E.S.) but all the higher order (E.S.)n will be small,
and the separation of the first higher eigenfunction as in (5.23) is not justified.
Physically, this means that generally, many modes will be excited simultaneously.
A localised perturbation will hence lead to a space-dependent response, in which a
large number of higher order modes co-exist (such as in a localised response), and
the first harmonic is not favoured over the others in general.

To have a small (E.S.) but much larger (E.S.)n for n > 1, one needs a loosely
coupled core, i.e. an inhomogeneous system. A typical, and for the practical ap-
plications most relevant case is a piecewise homogeneous system, in which high
multiplication areas (the fissile regions) are separated by low multiplication regions
(e.g. breeding blanket regions). For such systems, in which νΣf , and hence the
prompt neutron generation time 1/(v νΣf ) are different for the different regions, the
corresponding frequency-dependent functions of the respective regions, which are
analogous in frequency dependence to the traditional G0(ω), will also be different
for the different regions in (5.18) (c.f. Eq. (5.10)).

Because of this, the orthogonality relations separating the equations for the an(ω)
are not valid any longer. Thus, the equations for the ai(ω) for different i values will
not decouple, and their determinaton becomes cumbersome. Although, then, the
conclusions drawn in the previous derivations related to homogeneous systems on the
asymptotic behaviour of the ai(ω) are not directly transferable to inhomogeneous
systems, on physical grounds it can be expected (and our quantitative studies in
Section 5.3.2 will confirm it) that the solution can still be approximated by the first
two terms as

δφ(r, ω) ≈ a0(ω)φ0(r) + a1(ω)φ1(r), (5.25)

although the quantities a0 and a1 will not be simply expressible with the reactivities
δρn(ω), and the zero power reactor transfer function G0(ω) of the full system.

On the other hand, in a simple one-dimensional system of two homogeneous
coupled cores separated with a homogeneous region of low or no multiplication,
analytical solutions can be obtained for the full space-frequency dependent case by
constructing closed form analytical solutions in each region, with coefficients that are
determined from the interface and boundary conditions. From the full solution, the
frequency dependent coefficients of the various modes can be extracted by projection
of the full solution to the respective eigenfunctions, and their frequency dependence
investigated quantitatively. Such a case will be considered in Section 5.3.2. Before
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turning to such a realistic case, we will consider an extreme model case with exactly
zero eigenvalue separation, because it will give insight into the properties of the ES
and its influence on the system behaviour.

5.2 Illustration in a simple extreme case

The system to be considered is admittedly pathological, because it will consist of
two cores completely separated from each other by e.g. a “black” absorbing material.
This means that there is no neutronic coupling between the two cores. Of course, in
practice there is no reason why one should treat two independent cores as one system.
However, they can be considered as the limiting case of two loosely coupled systems,
in which the coupling strength tends to zero, hence it is an extreme (unrealistic)
limit of a realistic case.

We will use a one-dimensional one-group model, the two cores lying symmetri-
cally around the origin with the extrapolated boundaries of the outer edges of the
two cores lying at x = ±a, with an extrapolated thickness H each, H < a. By hav-
ing no coupling, both cores can be critical, supercritical or subcritical individually,
and the compound system is critical, supercritical or subcritical if, asymptotically,
the flux is constant at least in one of the systems and not diverging in the other,
or diverging at least in one of the cores, or vanishes in both cores, respectively. For
simplicity, we chose the same material for both cores, hence they will be critical,
subcritical or supercritical simultaneously, and we will consider the initial system as
critical. That means that one has

B0 =
π

H
(5.26)

and k0 = 1. An important point is that the kn eigenvalues refer to the aggregate
system (for the two cores together as one system), i.e. no different kn or B2

n values
are permitted separately for the two cores. The corresponding fundamental mode
flux, φ0(x) is equal to

φ0(x) = A0 sin[B0(x+ a)] for − a < x < −a+H;

φ0(x) = A0 sin[B0(x− a+H)] for a−H < x < a; (5.27)
φ0(x) = 0 otherwise.

with A0 > 0. An illustration for the case a = 200, H = 150 and A0 = 1 is given in
Fig. 5.1.

Actually, the amplitudes in the left and right cores do not necessarily need to be
equal; they were here chosen to be equal for convenience. However, if there exists a
homogeneous absorbing material between the two cores, the two amplitudes will be
equal. So if one treats a decoupled system as a limit of a previously loosely coupled
system, the choice of the symmetric amplitudes is obvious.

The interesting aspect comes when we want to determine the first harmonic
solution φ1(x) in this system. We find that a solution which is orthogonal to φ0(x),
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Figure 5.1: The fundamental mode φ0(x) in the system of two decoupled cores

and hence is an independent solution, is given as

φ1(x) = −A1 sin[B0(x+ a)] for − a < x < −a+H;

φ1(x) = A1 sin[B0(x− a+H)] for a−H < x < a; (5.28)
φ1(x) = 0 otherwise.

This case is illustrated in Fig. 5.2, with A1 = 1.

-200 -50 50 200

x

-1

1

Φ1HxL

Figure 5.2: The first higher order eigenfunction φ1(x) in the system of two decoupled
cores

The fact that the buckling appearing in expression (5.28) is the same as the
critical buckling B0 yields that k1 = k0 = 1, and hence one has the case of (E.S.) = 0.
It is also easy to confirm that for n > 1, one has (E.S.)n > 0.

It is now straightforward to interpret how a divergent space-dependent noise
arises (or the fact that point kinetic behaviour does not become dominating) in
such a pathological system for ω → 0. Assume now a frequency-independent (white
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noise) localised perturbation of the variable absorber type at the centre of the right
hand side core3:

δΣa(x, ω) = γδ(x− a+H/2) (5.29)

The position of the perturbation is indicated with a red vertical line at x = 125 cm
in Fig. 5.3, which shows both the fundamental mode φ0(x) and the first harmonic
φ1(x) together. In the right hand side core, i.e. from x = 50 to x = 200 cm, φ0(x)
completely overlaps with φ1(x). Assume now for simplicity of the reasoning equal

ϕ1(x)

ϕ0(x) ϕ0(x) andϕ1(x)

-��� -�� �� ���
x

-�

�

ϕ0(x) and ϕ1(x)

Figure 5.3: The first two lowest order eigenfunctions φ0(x) and φ1(x) of the decou-
pled system, together with the indication of a localised perturbation. In the right
hand side core, φ0(x) and φ1(x) are identical.

amplitudes of the two eigenfunctions, i.e. A0 = A1, which corresponds to how the
figure is plotted. (It can be shown that the final conclusion of the forthcoming
discussion does not depend on the equality of the flux amplitudes). Then, from the
perturbation formula one obtains that ρ(ω) = δρ1(ω) = const ≡ ρ. Letting now
ω → 0, the last term on the right hand side (r.h.s.) of (5.23) can be neglected in
comparison to the first and second terms, yielding

δφ(x, ω) ≈ ρG0(ω) [φ0(x) + φ1(x)] (5.30)

As it is also seen in Fig. 5.3, the sum of the two eigenfunctions is zero in the left
hand side slab, and is equal to 2φ0(x) in the right hand side slab. As is obvious,
this behaviour is neither point kinetic, nor fully space dependent (i.e. without a
point kinetic term); it has equal contributions from both the fundamental mode

3For a spatial Dirac-delta type perturbation, the induced noise has a discontinuous space deriva-
tive in the point of perturbation. Thus, in general, a series expansion in terms of the static unper-
turbed eigenfunctions is not effective, due to slow convergence. However, even for such a case, at
low frequencies, all higher order modes will be negligible compared to the first two modes.
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(point kinetic component) and the first higher order mode (a full space dependent
component).

This is of course a somewhat artificial result which considers simultaneously
two cores that are not connected. The same result could be obtained in a simpler
way, by noting that if only one of two decoupled cores is perturbed, then only that
core can have any response, so the fact that there will be no response in the other
core, and which we derived in the foregoing as a result of the cancellation of two
quantities of opposite sign, will be trivial if we treat the two cores separately. On
the other hand the fact that we got the correct result, verifiable by other means,
for the aggregate system, shows the correctness of the first harmonic φ1(x), whose
construction might have felt artificial. If we only consider the perturbed core, then
of course the response in that core will be point kinetic at low frequencies. Even
quantitatively, we obtain the same result; (5.30) will yield for the noise in “core II”
(the right hand side slab) the result

δφ(x, ω) ≈ ρG0(ω) 2 sin[B0(x− a+H)]. (5.31)

This is the same result as what we obtain by only considering core II. For this case,
one will have

φ0(x) = sin[B0(x− a+H)] (5.32)

and
φ1(x) = sin[2B0(x− a+H)] (5.33)

That is, B1 = 2B0, hence k1 6= k0 and (E.S.) 6= 0. Therefore, the second term of
Eqs (5.23) can be neglected, and (5.30) and (5.31) will hence take the form

δφ(x, ω) ≈ ρ1coreG0(ω) sin[B0(x− a+H)] (5.34)

where ρ1core is the reactivity effect of the perturbation if only one core is considered.
This is naturally larger than the reactivity effect in the two-core system. One has

ρ1core = 2 ρ (5.35)

because ∫
V2cores

φ2
0(x)dx = 2

∫
V1core

φ2
0(x)dx (5.36)

(cf. also Eq. (5.21)). This shows that we get exactly the same result as when con-
sidering a system of two cores simultaneously, which shows that the results obtained
from the latter are justified.

One can even go one step further and consider the aggregate effect of two per-
turbations, by adding another localised perturbation in the middle of core I, i.e.
the left hand side one, to the previous one, Eq. (5.29) representing an absorber of
variable strength, but fluctuating in opposite phase. The absorption cross section
fluctuation will then have the form

δΣa(x, ω) = −γδ(x+ a−H/2) + γδ(x− a+H/2) (5.37)
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As it is also easy to see intuitively, the total reactivity effect of this perturbation is
zero, i.e. ρ(ω) = 0 whereas δρ1(ω) 6= 0. Trivially, δρ1(ω) will be twice as big as in
the previous case, when it was equal to ρ, i.e. it was equal to the reactivity effect of
the perturbation when the two cores were considered as one system. So we write

δρ1(ω) = 2ρ (5.38)

where we shall remember that ρ stands for the reactivity effect of the previous
perturbation. In view of the fact that the reactivity in the present case is zero, the
noise can be approximated for low frequencies as

δφ(x, ω) ≈ 2ρG0(ω)φ1(x) (5.39)

It is seen from (5.30) or (5.31) that the result is that in core II the response will
be exactly the same as before, which is expected, since a perturbation in core I
cannot influence what happens in core II. The response in core I will, on the other
hand, have the same magnitude and space dependence as in core II, but oscillating
in opposite phase. Considering the two cores separately, both show a point kinetic
behaviour, which is expected, since as individual cores, their ES is not zero and
the reactivity effect of the perturbation is not zero, hence their behaviour is point
kinetic at low frequencies. Considering the two cores together, their ES is zero, the
reactivity effect of the perturbation is zero, hence they show pure space dependent
behaviour, with a noise amplitude which diverges for vanishing frequencies.

So far it was only demonstrated that in the case of considering two completely
decoupled cores, the ES will become zero and the noise component proportional to
the first higher eigenfunction will have the same asymptotic properties with vanish-
ing frequencies as the point kinetic component in strongly coupled systems, i.e. it
will diverge for ω → 0. This example may appear as artificial and only interesting
conceptually. However, one can consider a case when the two cores are not com-
pletely decoupled, only very loosely coupled. This case is by no means pathological,
rather it can occur in realistic cases. One such case is the old design of breeder
reactors, where highly enriched concentric regions in the core were separated by fer-
tile material. Examples are the breeder experiments ZPPR in Idaho Nat Lab [43].
Another case is the core loadings, usually in a BWR, with a control rod pattern
which separates the core into loosely coupled quadrants. It is usually claimed in the
literature that such a core is more prone to BWR instabilities; and in particular for
regional (out-of-phase) or local instabilities [44, 45, 46].

For loosely coupled, but not completely disconnected cores, the ES will not
be zero, but will be small, and hence much of the reasoning and interpretation
of the previous artificial case will still hold qualitatively. For instance, the shape
of the fundamental mode and the first harmonic will look like the one in Fig. 1
of Ref. [35]. Obviously, the space dependent component will not diverge for low
frequencies, but can increase parallel with the point kinetic component down to
quite low frequencies, preventing point kinetic behaviour even long below plateau
frequencies. Another consequence of a small ES is that the amplitude of the system
response to a localised perturbation with small reactivity effect can be still high
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at low frequencies. If the space dependence of the perturbation is orthogonal to
the fundamental mode, the first higher order harmonics will be driven with a high
amplitude, which is the case in regional BWR oscillations with control rod patterns
which separate the two halves of the core.

5.3 Eigenvalue separation and dynamic behaviour in a coupled core sys-
tem

5.3.1 General derivation

We will now turn to the more realistic case of a one-dimensional system consisting
of two multiplying cores separated with a depleted region (blanket). By changing the
properties of the blanket region, one can change the system properties from strongly
coupled to loosely coupled and investigate the system behaviour quantitatively. As
mentioned before, in such a system both the static and the dynamic equations can
be solved analytically. The static eigenfunctions and the eigenvalue separation were
investigated in such systems in several works in the past [30, 31, 35, 36].

The system extrapolated boundaries will lie at x1 and x4, with the fuel-blanket
interfaces being situated at x2 and x3. Hence the fuel regions are situated in (x1, x2)
and (x3, x4), whereas the blanket region lies between (x2, x3). The two fuel regions
have the same material properties. The strength of the coupling will be controlled
by the absorption properties of the blanket region. The static eigenvalue equation
reads as

D(i) d
2

dx2
φ

(i)
j (x) +

(
νΣ

(i)
f (x)

kj
− Σ(i)

a (x)

)
φ

(i)
j (x) = 0, (5.40)

where (i) denotes the region number, i = 1,2,3, j stands for the mode number, and
the coefficients are piecewise constant functions, i.e. D(i), νΣ

(i)
f and Σ

(i)
a are constant

in each region. Vacuum boundary conditions are assumed with vanishing of the flux
at the extrapolated boundaries, and continuity of the flux and the current at the
interfaces between the three regions. In each region the general solution can be
given in an analytical form with unknown coefficients for each eigenfunction, and
the coefficients are determined from the boundary and interface conditions. The
procedure is standard [47], and no details are necessary to give here.

The dynamic case will be solved in a similar manner for the Green’s function of
the system. The equation for the Green’s function (by neglecting the notation on
the region number) reads as

∂2

∂x2
G(x, x′, ω) +B2(ω)G(x, x′, ω) =

δ(x− x′)
D

, (5.41)

Here again, B2(ω) and D are piecewise constant functions of space. The position
x′ will lie in one of the fuel regions, and we shall assume that x1 < x′ < x2.
An analytical solution can be obtained by designating x′ as an interface point,
and specifying the continuity of the Green’s function and the discontinuity of its
derivative, arising from the delta function r.h.s. of (5.41). General solutions in
closed analytical form can be obtained for the Green’s function in each region, and
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the coefficients of the basic solutions can be determined from the boundary and
interface solutions by a numerical inversion of the matrix equation for the frequency
dependent coefficients. This procedure was employed e.g. in Ref. [47].

As is known, the Green’s function G(x, xp, ω) is proportional to the neutron noise
induced by an absorber of variable strength located at the position xp at frequency
ω, hence in the continuation the Green’s function will be interpreted as the neutron
noise with regards to its space and frequency dependence:

δφ(x, ω) = c ·G(x, xp, ω) (5.42)

with c = γ φ0(xp), where γ stands for the (frequency independent) amplitude of the
strength variations of the absorber (assumed to have white noise character in time,
i.e. having a constant frequency spectrum).

Our goal now is to derive expressions for a0(ω) and a1(ω), for which the obvious
procedure would be to apply the expansion of the noise (Green’s function) into the
spatial eigenfunctions. However, this would constitute a considerably complicated
task. Partly, because the determination of each individual eigenfunction is quite
involved, and the solution is semi-analytical due to the numerical step in the de-
termination of the frequency dependent coefficients of the spatial solutions in each
region. Partly, because unlike for a homogeneous system, where direct (decoupled)
equations for the ai(ω) could be obtained, here an infinite system of complicated
coupled equations should be solved. This could be achieved only by applying a clo-
sure condition at a high order of the eigenfunctions, i.e. replacing the infinite sum
with a finite one, and solving the resulting finite set of equations, again numerically.
In other words, one needs to determine all ai(ω) up to a large value of i, even if one
is only interested in the first two of these.

A more straightforward way of determining the quantities a0(ω) and a1(ω) is
to utilise the relative ease with which the full solution can be obtained, as follows.
From the full solution δφ(x, ω) obtained as described above, the frequency dependent
mode amplitudes ak(ω) from the expansion (5.15), which is reproduced here for
convenience as

δφ(x, ω) =
∞∑
k=0

ak(ω)φk(x), (5.43)

can be obtained by using the orthogonality properties of the various eigenfunctions.
These are readily obtained from Eq. (5.40) as∫ x4

x1

φk(x)νΣf (x)φj(x)dx = δkj

∫ x4

x1

φ2
j(x)νΣf (x)dx. (5.44)

Accounting for the orthogonality property, from Eq. (5.43) the fundamental and
first higher order mode frequency dependent coefficients are obtained as

a0(ω) =

∫ x4
x1
δφ(x, ω)νΣf (x)φ0(x)dx∫ x4
x1
φ2

0(x)νΣf (x)dx
, (5.45)

a1(ω) =

∫ x4
x1
δφ(x, ω)νΣf (x)φ1(x)dx∫ x4
x1
φ2

1(x)νΣf (x)dx
. (5.46)
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.

The behaviour of the coefficients a0(ω) and a1(ω) will be investigated quantita-
tively in the next Section.

5.3.2 Quantitative analysis

Quantitative studies were performed on three different systems with different
coupling properties of the blanket region with the parameters given in Tables 5.1
and 5.2. Table 5.2 shows the parameters for the different blanket regions and also
the corresponding values of the eigenvalue separation. In the loosely coupled system
the (E.S.) is significantly lower than in the other two systems.

Table 5.1: Parameters for the reference system (given for each spatial reactor region
separately ).

Parameter Value used
a [cm] 180
H = 2a [cm] 360
x1 = −a [cm] −180
x2 [cm] −60
x3 [cm] 60
x4 = a [cm] 180
Σ0
tr1 [cm−1] 0.15

Σ0
tr2 [cm−1] 0.15

Σ0
tr3 [cm−1] 0.15

D0
1 [cm] 1

3Σ0
tr1

D0
2 [cm] 1

3Σ0
tr2

D0
3 [cm] 1

3Σ0
tr3

Σ0
a,1 [cm−1] 0.01

Σ0
a,2 [cm−1] 0.0005

Σ0
a,3 [cm−1] 0.01

k∞ 1.01
νΣ0

f,1 [cm−1] Σa,1 · k∞
νΣ0

f,2 [cm−1] 0
νΣ0

f,3 [cm−1] Σa,3 · k∞
λ1 [s−1] 0.1
λ3 [s−1] 0.1
β1 0.0065
β3 0.0065
v1 [cm/s] 1.755 · 107

v2 [cm/s] 1.755 · 107

v3 [cm/s] 1.755 · 107

The space dependence of the static fluxes, showing the fundamental mode and
the first higher order mode is shown in Fig. 5.4 for the three systems, starting with
the loosely coupled system on to the strongly coupled system. These figures are in
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correspondence with similar results such as those in [30, 31, 35, 36].

Table 5.2: Parameters for the systems with different coupling properties.
Parameter Loosely-coupled system Reference system Strongly-coupled system
Σ0
a,2 [cm−1] 6 · 10−3 5 · 10−4 5 · 10−5

k0 = keff 0.90597 0.945 0.969
k1 0.90580 0.928 0.934
[E.S.]0 0 0 0
[E.S.]1 0.00021 0.0193 0.0387
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Figure 5.4: Space dependence of the fundamental and first modes for the systems
with various coupling properties (obtained by modifying Σa,2 in the second reac-
tor region): loosely-coupled (upper left figure), reference (upper right figure) and
strongly coupled (bottom figure).

The frequency dependence of the corresponding modes is shown in Fig. 5.5. The
figure shows that, as expected, the amplitude of the fundamental mode, which is
equal to the point kinetic component, diverges with decreasing frequencies. The be-
haviour of this mode is the same for all three systems. This is the generic behaviour
in all critical systems subjected to a perturbation with a non-zero reactivity effect.

The behaviour of the first higher mode, on the other hand, is quite different in
the loosely coupled system from that in the other two systems. In the reference and
the strongly coupled systems, its amplitude is basically constant below the plateau
frequency, having essentially the same value as at the plateau frequencies. In these
systems, therefore, point kinetic behaviour is established quickly below the plateau
frequency (in the strongly coupled system, actually the point kinetic component
dominates even at plateau frequencies). For the loosely coupled system, on the
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other hand, the amplitude of the first mode shows the same increasing trend with
decreasing frequency as the point reactor component over two orders of magnitude
of the frequency below the plateau. In other words, such a system remains deeply
space dependent, with the first mode having comparable amplitude to that of the
fundamental mode. Choosing an asymmetric perturbation with much smaller reac-
tivity effect would even lead to the dominance of the first mode in such a system
down to rather low frequencies.
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Figure 5.5: Frequency dependence of the amplitude of the fundamental and first
mode components of the neutron noise for the systems with different coupling prop-
erties: loosely-coupled (upper left figure), reference (upper right figure) and strongly
coupled (bottom figure) (x = −120 cm, xp = −150 cm).

It is also seen from the figures that the fundamental and first mode together
make up for the total noise, hence the contribution from the higher order modes
is negligible. Thus it is seen that in a system with two loosely coupled cores, the
response essentially consists of the first two modes, and the contribution of the first
higher order mode to the system response is significant down to very low frequencies.

5.4 Conclusions

The simple considerations offered in this study serve to illuminate the role of
the eigenvalue separation in reactor dynamics and neutron noise theory. Through a
simple example, it was shown how in a system of loosely coupled cores the smallness
of the eigenvalue separation enhances the weight of the first higher order mode in
the system response which prevents the dominance of point kinetic behaviour down
to very low frequencies. These considerations are in agreement with, and hence
serve as confirmation of the origin and the characteristics of regional oscillations in
a BWR.
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6. FURTHER INVESTIGATIONS OF THE POSSIBILITIES OF
USING FISSION CHAMBER SIGNALS FOR MEASUREMENT

OF SUBCRITICAL REACTIVITY, SUCH AS ELABORATION OF
THE EQUIVALENT OF THE FEYNMAN-ALPHA METHOD OF

PULSE COUNTING, AND ACCOUNTING FOR DELAYED
NEUTRONS

In zero power noise experiments, such as the determination of subcritical reactiv-
ity under start-up, the subcritical reactivity is determined from the statistics of the
number of individual counts. Two methods utilising this technique are the Rossi-
alpha method (temporal correlations) and the Feynman-alpha method (the relative
variance of the number of detection as a function of the measurement time). From
the temporal correlations, or the dependence of the variance to mean on the mea-
surement time, the prompt neutron decay constant, and from that the subcritical
reactivity, can be determined.

These methods encounter difficulties at high count rates, due to dead-time prob-
lems. This could be circumvented by the use of fission chambers in the current
mode. However, this requires the elaboration and test of a method for extracting
the same information from the statistics of the continuous detector current of fission
chambers as from the pulse counting methods.

In the previous Stage, we managed to generalise the theory of fission chamber
currents to make it possible to extract the time correlations from the detector cur-
rent. It was shown that the prompt neutron decay constant can be extracted from
the auto-covariance of the detector current, although the procedure is more compli-
cated than in the case of pulse counting, since the decay constant of the detector
pulse also appears in the formulae. These calculations were made in a model with
only prompt neutrons. In the present Stage, the theory was extended to include also
the current mode equivalent of the Feynman-alpha method (variance to mean). The
work was performed in two steps. First, the results were derived by neglecting the
delayed neutrons. This work will be presented in some detail in this Chapter. The
conditions, under which the prompt neutron decay constant can be distinguished
from the detector pulse decay constant, were also identified. Hence the possibilities
of performing some experimental study, or verification of the method, can also be
investigated in the continuation. These results are based on Ref. [48]. Details of
the calculations are found there. Here, only the main results are summarised.

In the next step, the calculations were extended to the case when delayed neu-
trons are also accounted for. This work was performed by our visiting scientist,
Yasunori Kitamura. The calculations are very involved, and they confirm the fact,
known from the traditional Feynman-alpha theory, that the results obtained by ne-
glecting the delayed neutrons can be applied with some modifications to the prompt
part of the signal, to evaluate measurements where obviously delayed neutrons are
involved. Hence these calculations will not be included here, we only refer to the
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journal paper in which the results are published [49].

6.1 Reformulation of the previous results for the covariance

Derivation of the current-based theory of the Feynman-alpha method will require
the use of the covariance of the detector signal, hence we start with a re-capitulation
of the previous results. In the previous Stage, based on the results of [50], an
expression for the autocovariance of the detector signal was derived (Eq. 7.64) for
the case when the detector pulse distibution ϕ (x, t) had the form

ϕ (x, t) = Qx2te−xt, 0 ≤ t < +∞, (6.1)

w (x) = δ (x− αe) , αe 6= α. (6.2)

Here, αe is the time constant of the neutron detector system, and Q the amplitude
factor, which is related to the collected charge.

In this report, following the notations of [48], we first re-write this formula.
Introducing the notations

Φ =
λdλfQ 〈ν (ν − 1)〉α4

e

α2 (α2
e − α2)2 , (6.3)

Ψ1 = −α
2 (3α2

e − α2)

2α4
e

Φ +
Q

2
, (6.4)

Ψ2 = −α
2 (α2

e − α2)

2α4
e

Φ +
Q

2
, (6.5)

the auto-covariance function cov (τ) can be written in the form

cov (τ) = acf (τ)− 〈η1〉2

=
1

2
α 〈η1〉Φe−α|τ | +

1

2
αe 〈η1〉Ψ1e−αe|τ | +

1

2
αe 〈η1〉Ψ2αe |τ | e−αe|τ |.

(6.6)

where 〈η1〉 stands for the expectation (first moment) of the detector current. It is
this form which we will use for the application of the variance to mean technique
with the continuous detector signals.

6.2 Variance to mean function technique

In this technique, one uses the mean and the variance of the integral value of
continuous neutron detection current signal, in the hope that it will contain the
prompt neutron decay constant in a form that makes it possible to unfold it from
the expression, similarly to the case of the traditional discrete pulse counting. Hence,
one defines the random variable

A (T ) =

∫ T

0

dt y (t) , (6.7)
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where y (t) is the neutron detector current signal at time t, and T is the integration
time interval. Then, the variance to mean method is given by the formula

σ2
A(T )

〈A (T )〉
=
〈A2 (T )〉 − 〈A (T )〉2

〈A (T )〉
, (6.8)

The practical determination of the variance to mean is made similarly to the tradi-
tional pulse counting method, i.e. the random variable A(T ) is repeatedly measured
for a given value of T , and the mean and the variance are estimated from these
measured values. Repeating the procedure by varying the measurement time T , the
variance to mean ratio as a function of the integration time interval is obtained.
Hence, hereafter this technique is referred to as the variance-to-mean function tech-
nique.

One would recognize a similarity of the variance-to-mean function technique to
the traditional Feynman-alpha one [51, 52], as well as to that of the auto-covariance
function one to the traditional Rossi-alpha one [53]. At the same time, this recogni-
tion recalls an expectation that the variance-to-mean function technique would have
the same type of advantage over the auto-covariance function technique with regard
to the statistics.

As is known [54], the expectation and the variance of the integral A (T ) are
expressed as follows:

〈A (T )〉 = E [A (T )] =

∫ T

0

dt E [y (t)] , (6.9)

and

σ2
A (T ) = E

[
A2 (T )

]
− E ([A (T )])2 =

∫ T

0

dt1

∫ T

0

dt2 cov(t1, t2). (6.10)

Since

E [y (t)] = 〈η1〉 , (6.11)

the mean and the variance are derived as

〈A (T )〉 =

∫ T

0

dt 〈η1〉 = 〈η1〉T, (6.12)
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σ2
A (T ) =

∫ T

0

dt1

∫ T

0

dt2 cov (t2 − t1)

=
1

2
α 〈η1〉Φ

{∫ T

0

dt1

∫ T

t1

dt2 e−α(t2−t1) +

∫ T

0

dt2

∫ T

t2

dt1 e−α(t1−t2)

}
+

1

2
αe 〈η1〉Ψ1

{∫ T

0

dt1

∫ T

t1

dt2 e−αe(t2−t1) +

∫ T

0

dt2

∫ T

t2

dt1 e−αe(t1−t2)

}

+
1

2
αe 〈η1〉Ψ2


∫ T

0

dt1

∫ T

t1

dt2 αe (t2 − t1) e−αe(t2−t1)

+

∫ T

0

dt2

∫ T

t2

dt1 αe (t1 − t2) e−αe(t1−t2)


= 〈A (T )〉 {Φf1 (αT ) + Ψ1f1 (αeT ) + Ψ2f2 (αeT )} .

(6.13)

Here the functions appearing in the final form of σ2
A (T ) are defined as

f1 (χ) = 1− 1− e−χ

χ
(6.14)

and

f2 (χ) = 1 + e−χ − 2
1− e−χ

χ
. (6.15)

Finally, by substituting Eqs. (6.12) and (6.13) into Eq. (6.8), the theoretical formula
for the variance to mean is derived as follows:

σ2
A(T )

〈A (T )〉
≡ vtm(T ) = Φf1 (αT ) + Ψ1f1 (αeT ) + Ψ2f2 (αeT ) . (6.16)

where the abbreviation vtm(T ) was introduced for the variance to mean, which will
be used in the next subsection, to simplify notations.

In the variance to mean function technique, the integral value of continuous
neutron detection current signals is to be measured. Such measurement can be
made by a special analogue circuit that integrates continuous current signals. A
commercially available fast ADC equipment that acquires digital waveforms would
also be useful with the trapezoid rule procedure shown in Appendix A of Ref. [48].

One also notices that the functional form of the first two terms of the variance
to mean in Eq. (6.16) are identical with the Y (T ) function of the traditional pulse
counting method, where (accounting only for prompt neutrons, like in the present
work), the variance to mean of the discrete detector counts Z during a measurement
interval is given as

σ2
Z(T )

〈Z (T )〉
= 1 + Y (T ) (6.17)

with Y (T ) = f1(αT ). At the same time, one notes that the variance to mean of the
discrete pulse counting method starts from unity for small values of T , whereas the
variance to mean of Eq. (6.16) starts from zero.
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The reason for this difference is that A(T ) is the integral of a continuous random
variable, whereas Z(T ) is the sum of a continuous parametric discrete process. For
the former, the variance is expressed by (6.10), whereas for the latter one has

σ2
Z (T ) = 〈Z (T )〉+

∫ T

0

dt1

∫ T

0

dt2 cov(t1, t2). (6.18)

A derivation of (6.18), where the continuous parametric discrete random variable is
the neutron number as a function of the phase space variables, is found e.g. in [55]
and [56].

From the comparison of (6.10) and (6.18), it is now easy to interpret the differ-
ences between the variance to mean of the detector current, Eq. (6.16), and that of
the pulse counting method, Eq. (6.17). The appearance of the expectation 〈Z〉 on
the r.h.s. of (6.18), which is the reason of the appearance of the unity on the r.h.s.
of (6.17), is due to the fact that for infinitesimally small times ∆(T ), for Z ≥ 1, one
has

PZ(∆T ) ∝ δZ,1 ∆T + o((∆T )2). (6.19)

Hence, in first order of ∆T , one has 〈Z〉 = 〈Z2〉, whereas 〈Z〉2 is second order of ∆T ,
and thus σ2

Z(∆T ) = 〈Z(∆T )〉. In other words, the variance and the mean both tend
to zero linearly, and with the same linearity coefficient, when ∆T goes to zero. In
contrast, the variance of the integral of the continuous random variable tends to zero
faster than the mean when the integration interval ∆T goes to zero. This explains
the difference what regards the expressions for small measurement intervals.

On the other hand, the similarity between (6.16) and the second term of (6.17)
is due to the similarities of the corresponding covariance functions. The covariance
function of the discrete detector counts, as given by the Rossi-alpha formula, has
the same e−α|τ | form as the first two terms on the r.h.s. of (6.6), hence the integrals
of the covariance functions will also be of the same functional form. The third term
on the r.h.s. of (6.6) is of a different form, this is the reason of the appearance of
the term proportional to f2(αeT ) in Eq. (6.17).

It is also seen, that in the traditional Feymnan-alpha formula of pulse counting,
the information about the prompt neutron decay constant is in the function Y (T ),
i.e. in the deviation of the variance to mean from unity, which can be much smaller
than unity if the detector efficiency is small; whereas in the present method, based
on the continuous current of the detector, the whole variance to mean function is
the information career. At least in principle, this might lend some advantage in the
practical applications.

6.3 Experimental conditions for the time-domain techniques

In this subsection, with regard to the auto-covariance and the variance to mean
function techniques, the experimental conditions under which they can be success-
fully applied to subcriticality measurements will be discussed.

For convenience, the respective terms in the right hand side of Eq. (6.6) are
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separately defined as follows:

cov1 (τ) =
1

2
α 〈η1〉Φe−α|τ |, (6.20)

cov2 (τ) =
1

2
αe 〈η1〉Ψ1e−αe|τ |, (6.21)

cov3 (τ) =
1

2
αe 〈η1〉Ψ2αe |τ | e−αe|τ |. (6.22)

Similarly, the respective terms on the right hand side of Eq. (6.16) are defined as
follows:

vtm1 (T ) = Φf1 (αT ) , (6.23)

vtm2 (T ) = Ψ1f1 (αeT ) , (6.24)

vtm3 (T ) = Ψ2f2 (αeT ) . (6.25)

In Figs. 9 and 10, comparisons of the time dependences of the respective terms
of the auto-covariance and the variance-to-mean functions are plotted with respect
to various ratios ε of the detector pulse decay constant αe and the prompt neutron
decay constant α, i.e.

ε =
αe
α
. (6.26)

The coloured lines in Fig. 9 are defined as follows:

|cov1 (τ)|
max {|cov1 (τ)|}

=

∣∣∣∣cov1 (τ)

cov1 (0)

∣∣∣∣ = e−α|τ |, Red line,

|cov2 (τ)|
max {|cov2 (τ)|}

=

∣∣∣∣cov2 (τ)

cov2 (0)

∣∣∣∣ = e−αe|τ |, Blue line,

|cov3 (τ)|
max {|cov3 (τ)|}

=

∣∣∣∣ cov3 (τ)

cov3 (α−1
e )

∣∣∣∣ = αe |τ | e1−αe|τ |, Green line.

(6.27)

With regard to Fig. 10, these are defined as follows:

|vtm1 (T )|
max {|vtm1 (T )|}

=

∣∣∣∣ vtm1 (T )

vtm1 (+∞)

∣∣∣∣ = f1 (αT ) , Red line,

|vtm2 (T )|
max {|vtm2 (T )|}

=

∣∣∣∣ vtm2 (T )

vtm2 (+∞)

∣∣∣∣ = f1 (αeT ) , Blue line,

|vtm3 (T )|
max {|vtm3 (T )|}

=

∣∣∣∣ vtm3 (T )

vtm3 (+∞)

∣∣∣∣ = f2 (αeT ) , Green line.

(6.28)
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On the other hand, comparisons of the absolute amplitudes of the respective terms
of the auto-covariance and the variance-to-mean functions are plotted in Figs. 11
and 12, respectively. The coloured lines in Fig. 11 are defined as follows:

max {|cov1 (τ)|}
max {|cov1 (τ)|}

=

∣∣∣∣cov1 (0)

cov1 (0)

∣∣∣∣ = 1, Red line,

max {|cov2 (τ)|}
max {|cov1 (τ)|}

=

∣∣∣∣cov2 (0)

cov1 (0)

∣∣∣∣ , Blue line,

max {|cov3 (τ)|}
max {|cov1 (τ)|}

=

∣∣∣∣cov3 (α−1
e )

cov1 (0)

∣∣∣∣ , Green line.

(6.29)

With regard to Fig. 12, these are defined as follows:

max {|vtm1 (T )|}
max {|vtm1 (T )|}

=

∣∣∣∣vtm1 (+∞)

vtm1 (+∞)

∣∣∣∣ = 1, Red line,

max {|vtm2 (T )|}
max {|vtm1 (T )|}

=

∣∣∣∣vtm2 (+∞)

vtm1 (+∞)

∣∣∣∣ , Blue line,

max {|vtm3 (T )|}
max {|vtm1 (T )|}

=

∣∣∣∣vtm3 (+∞)

vtm1 (+∞)

∣∣∣∣ , Green line.

(6.30)

The parameters that were used in calculating the quantitative values plotted in Figs.
9 – 12 are listed in Table 1.

When one determines the prompt neutron decay constant α by the auto-covariance
function technique, one has to extract cov1 (τ) from the total auto-covariance func-
tion cov (τ). When αe is close to α, one immediately recognizes from Fig. 9 that
the range of τ on which cov1 (τ) shows a strong dependence on τ coincides with the
range in which the remaining terms also have their strong dependence.

Therefore, it is hard to extract cov1 (τ) from total cov (τ) when αe is close to α.
When αe is much smaller than α, one sees from Fig. 9 that cov2 (τ) and cov3 (τ) do
not show a marked dependence on τ . It hence seems that cov1 (τ) could be easily
distinguished from the remaining terms under such conditions. However, according
to Fig. 11, the amplitudes of cov2 (τ) and cov3 (τ) are much larger than that of
cov1 (τ) when αe is much smaller than α. Therefore, as a result, it is hard to extract
cov1 (τ) because cov1 (τ) is buried to the remaining terms. On the other hand,
when αe is much larger than α, one understands from Fig. 11 that the amplitudes of
cov2 (τ) and cov3 (τ) are not much larger than that of cov1 (τ). Furthermore, from
Fig. 9, one finds that cov2 (τ) and cov3 (τ) disappear much faster than cov1 (τ).
Therefore, it is expected that the neutron decay constant can be determined by the
following simplified formula of the auto-covariance function under such a condition:

cov (τ) ' 1

2
α 〈η1〉Φe−α|τ |, αe � α, excluding τ ' 0. (6.31)

When one determines the neutron decay constant α by the variance-to-mean
function technique, one has to extract vtm1 (T ) from the total variance-to-mean
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function vtm (T ). When αe is close to α, one immediately recognizes from Fig. 10
that the range of T on which vtm1 (T ) shows a strong dependence on T is overlapped
with those on which the remaining terms show their strong dependence. Therefore,
it is hard to extract vtm1 (T ) from the total variance to mean when αe is close
to α. When αe is much smaller than α, one sees from Fig. 10 that vtm2 (T ) and
vtm3 (T ) do not show a strong dependence on τ . It hence seems that vtm1 (T ) could
be easily distinguished from the remaining terms. However, according to Fig. 12,
the amplitudes of vtm2 (T ) and vtm3 (T ) are much larger than that of vtm1 (T )
when αe is much smaller than α. Therefore, again, it is hard to extract vtm1 (T )
because vtm1 (T ) is buried to the remaining terms. On the other hand, when αe is
much larger than α, one understands from Fig. 12 that the amplitudes of vtm2 (T )
and vtm3 (T ) are smaller than that of vtm1 (T ). Furthermore, from Fig. 10, one
finds that vtm2 (T ) and vtm3 (T ) saturate much faster than vtm1 (T ). Therefore,
it is expected that the neutron decay constant can be determined by the following
simplified formula of the variance-to-mean function under such a condition:

vtm (T ) ' Φf1 (αT ) + Ψ0, αe � α, excluding T ' 0, (6.32)

where

Ψ0 = Ψ1 + Ψ2. (6.33)

6.4 Accounting for delayed neutrons

The calculations were extended to the case when delayed neutrons are also ac-
counted for. Although the extension is rather straightforward conceptually, the
actual calculations get even more involved than before, and exceedingly lengthy.
The work was performed by our visiting scientist, Yasunori Kitamura, by using
the symbolic computation code Mathematica. The final results of the extensive and
complicated calculations confirm the fact that, similarly to the traditional Feynman-
alpha theory, the results obtained by neglecting the delayed neutrons can be applied
with some modifications to the prompt part of the signal, to evaluate measurements
where obviously delayed neutrons are involved. In particular, the result for the vari-
ance to mean can be written in a form similar to Eq. (6.16), with the only difference
that the former α = ρ/Λ has to be replaced with (ρ − β)/Λ, and the definition
of the coefficients Φ and Ψi, i = 1, 2, changes. However, this latter fact does not
have any effect on how the prompt neutron decay constant α is evaluated from the
measurements by curve fitting. Hence these calculations will not be included here,
we only refer to the journal paper in which the results are published [49].
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Figure 6.2: Comparisons of time dependences of respective terms in variance to
mean — the red, the blue, and the green lines stand for the 1st, the 2nd, and the
3rd terms, respectively.
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Figure 6.3: Comparison of absolute amplitudes of respective terms in cov (τ) — the
red, the blue, and the green lines stand for the 1st, the 2nd, and the 3rd terms,
respectively.
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Figure 6.4: Comparison of absolute amplitudes of respective terms in variance to
mean — the red, the blue, and the green lines stand for the 1st, the 2nd, and the
3rd terms, respectively.
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6.5 Conclusions

A novel time-domain reactor noise technique that analyses the variance-to-mean
function of integral values of continuous neutron detector current signals of ioniza-
tion chambers such as the fission chamber was derived. This technique and the
one described in the previous Stage, which uses the auto-covariance function of
current signals, were elaborated as an alternative to pulse counting methods, to
avoid the count-loss effect due to the dead time of pulse couting neutron detector
systems. With regard to these two techniques, the experimental conditions under
which they successfully work were discussed to apply them to subcriticality mea-
surement through determination of the prompt neutron decay constant.

It was concluded that the prompt neutron decay constant could be determined
by using simplified formulae of these two techniques when the time constant of neu-
tron detector systems is much larger than the prompt neutron decay constant (the
detector pulse width is much smaller than the lifetime of the subcritical prompt
chain). With the currently used fission chambers and corresponding electronics,
at least in thermal systems close to critical, this condition is likely to be fulfilled.
Measurements, as well as numerical simulations (with Monte-Carlo methods) could
bring further light into the question, not the least because measurement errors and
back- ground noise cannot be modelled in the analytical investigations. Such ex-
perimental and simulation work is underway, and the results will be reported in the
next Stage of the project.
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Figure 6.1: Comparisons of time dependences of respective terms in cov (τ) — the
red, the blue, and the green lines stand for the 1st, the 2nd, and the 3rd terms,
respectively.
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7. PROPOSAL FOR 2019

1. Further investigation of possible baffle jetting in R3 with noise analysis of
in-core and ex-core detector signals.

2. Further nalysis of vibrations of thimble tubes with axially dependent in-core
measurements in various radial positions.

3. Evaluation of new ex-core measurements for beam mode and tilting mode
vibrations in R3 or R4.

4. Experimental work and simulations in support of the use of fission chambers
in the current mode for reactor diagnostics, as an alternative of pulse counting
methods.

5. Development of a new method to determine the axial velocity profile of the
void in the core of a BWR by using four permanent in-core LPRMs and a TIP
detector.
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