
Thesis for the Degree of Doctor of Philosophy

Synchronous and Concurrent Transmissions for
Consensus in Low-Power Wireless

Reliable and Low-Latency Autonomous Networking
for the Internet of Things

Beshr Al Nahas

Division of Networks and Systems
Department of Computer Science and Engineering

Chalmers University of Technology

Gothenburg, Sweden 2019

Synchronous and Concurrent Transmissions for Consensus
in Low-Power Wireless
Reliable and Low-Latency Autonomous Networking for the Internet of Things

Beshr Al Nahas
ISBN 978-91-7905-180-8

Copyright © 2019 Beshr Al Nahas
Email beshr@chalmers.se, alnahas.beshr@gmail.com

Doktoravhandlingar vid Chalmers tekniska högskola
Ny serie nr 4647
ISSN 0346-718X
Technical Report 176D

Division of Networks and Systems
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

mailto:beshr@chalmers.se
mailto:alnahas.beshr@gmail.com

Synchronous and Concurrent Transmissions for Consensus
in Low-Power Wireless
Reliable and Low-Latency Autonomous Networking for the Internet of Things

Beshr Al Nahas
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

With the emergence of the Internet of Things, autonomous vehicles and the Indus-
try 4.0, the need for dependable yet adaptive network protocols is arising. Many
of these applications build their operations on distributed consensus. For example,
UAVs agree on maneuvers to execute, and industrial systems agree on set-points for
actuators. Moreover, such scenarios imply a dynamic network topology due to mobil-
ity and interference, for example. Many applications are mission- and safety-critical,
too. Failures could cost lives or precipitate economic losses.

In this thesis, we design, implement and evaluate network protocols as a step
towards enabling a low-power, adaptive and dependable ubiquitous networking that
enables consensus in the Internet of Things. We make four main contributions:
– We introduce Orchestra that addresses the challenge of bringing TSCH (Time

Slotted Channel Hopping) to dynamic networks as envisioned in the Internet
of Things. In Orchestra, nodes autonomously compute their local schedules and
update automatically as the topology evolves without signaling overhead. Be-
sides, it does not require a central or distributed scheduler. Instead, it relies on
the existing network stack information to maintain the schedules.

– We present A2: Agreement in the Air, a system that brings distributed consen-
sus to low-power multihop networks. A2 introduces Synchrotron, a synchronous
transmissions kernel that builds a robust mesh by exploiting the capture effect,
frequency hopping with parallel channels, and link-layer security. A2 builds on
top of this layer and enables the two- and three-phase commit protocols, and ser-
vices such as group membership, hopping sequence distribution, and re-keying.

– We present Wireless Paxos, a fault-tolerant, network-wide consensus primitive
for low-power wireless networks. It is a new variant of Paxos, a widely used
consensus protocol, and is specifically designed to tackle the challenges of low-
power wireless networks. By utilizing concurrent transmissions, it provides a
dependable low-latency consensus.

– We present BlueFlood, a protocol that adapts concurrent transmissions to Blue-
tooth. The result is fast and efficient data dissemination in multihop Bluetooth
networks. Moreover, BlueFlood floods can be reliably received by off-the-shelf
Bluetooth devices such as smartphones, opening new applications of concurrent
transmissions and seamless integration with existing technologies.

Keywords Industrial Internet of Things, IoT, WSN, Wireless Networks, Blue-
tooth, TSCH, Capture Effect, Consensus, Distributed Computing.

Acknowledgements

First and foremost I want to thank my mentor and supervisor Olaf Landsiedel.
His invaluable professional and scientific support were paramount to the com-
pletion of this work and my development as a researcher. While I generally
enjoyed the Ph.D., his personal advice and honest discussions were essential to
keeping the motivation in the tough times. I am honored to be his first Ph.D.
student. I want to thank Simon Duquennoy, my friend, advisor and collabo-
rator, from whom I learned a lot in my studies. I am grateful he continued
to advise me, although he changed countries and jobs and that his current
position does not formally include student supervision.
I am also indebted to my co-supervisor Philippas Tsigas for the valuable

discussions and feedback. It gives me immense pleasure as well in acknowl-
edging the support, the guidance, and the follow-up of my examiner Andrei
Sabelfeld. I am grateful to Tomas Olovsson for the long discussions, the career
advice and for being a caring manager. Special thanks are reserved to Agneta
Nilsson for lending me her ears and for working actively to ensuring a smooth
environment and high-quality Ph.D. studies.
I am honored to have Kay Römer, TU Graz, Austria, as the faculty opponent

of my thesis defense. I would like to thank my grading committee, Utz Roedig,
University College Cork, Ireland, Mikael Gidlund, Mid Sweden University,
Sweden, and Marco Zúñiga, TU Delft, Netherlands for taking the time to
review my work.
I would like to thank all the great people in the Computer Science and En-

gineering Department and the division of Networks and Systems for providing
a friendly work atmosphere and engaging discussions. I want to thank my
colleagues and friends Oliver, Valentin, Babis, Christos, Wissam, Aras, Ivan,
Boel, Hannah, Fazeleh, Amir, Dimitris, Georgia, and my new friend Yahia. I
greatly appreciate the insights and the friendly chats with the faculty; espe-
cially, Elad, Magnus, Marina, Ali, Katerina and Peter. I thank my friends and
office mates Aljoscha, Thomas and Nasser for the bright discussions, the nice
company, and for keeping the office green (Thomas).
I extend my acknowledgments to the fantastic administration with special

thanks to Eva, Marianne, and Rebecca for magically providing help with all
the practical matters from the important paperwork to office furniture. Special
thanks go to Lasse (Lars Norén) for giving the “extra” technical care and
ordering all the scientific “toys” that were crucial to perform the experiments
in this work.

vi

Finally, I could not imagine my life had I grown up in a different family.
Mum and Dad, I owe it all to both of you. No words can describe how grateful
I am to all the love and support you continually provide. Last but not least, I
thank my love in this world: Fouz, my wonderful wife, and Luna, our little girl
who lightens up the dark Swedish nights (both literally and metaphorically).
Thank you!

Beshr Al Nahas
Gothenburg, October 2019

Structure and List of Papers
This thesis follows the collection thesis structure commonly recommended in
the technical departments of the Nordic universities. The contributions pre-
sented in this thesis have previously appeared in the manuscripts listed under
the Included Papers. It shall be noted that the papers: A, H, I, J and the draft
of B were also part of my Licentiate thesis [1].

Included Papers

A. Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, Thomas Wat-
teyne.
Orchestra: Robust Mesh Networks Through Autonomously Scheduled
TSCH,
Proceedings of the Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2015.

B. Beshr Al Nahas, Simon Duquennoy, Olaf Landsiedel.
Network-wide Consensus Utilizing the Capture Effect in Low-power Wire-
less Networks,
Proceedings of the Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2017.

C. Valentin Poirot, Beshr Al Nahas, Olaf Landsiedel.
Paxos Made Wireless: Consensus in the Air,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2019.
This paper was nominated as a candidate to the best paper award.

D. Beshr Al Nahas, Simon Duquennoy, Olaf Landsiedel.
Concurrent Transmissions for Multi-Hop Bluetooth 5,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2019.
This paper received the best paper award of the conference.

viii

Other Papers

E. Beshr Al Nahas, Simon Duquennoy, Venkatraman Iyer, Thiemo Voigt.
Low-Power Listening Goes Multi-Channel,
Proceedings of the Conference Distributed Computing in Sensor Systems
(DCOSS), 2014.

F. Liam McNamara, Beshr Al Nahas, Simon Deuqennoy, Joakim Eriks-
son, Thiemo Voigt.
Demo Abstract: SicsthSense - Dispersing the Cloud,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2014.

G. Domenico De Guglielmo, Beshr Al Nahas, Simon Deuqennoy, Thiemo
Voigt, Giuseppe Anastasi.
Analysis and experimental evaluation of IEEE 802.15.4e TSCH CSMA-CA
Algorithm,
IEEE Transactions on Vehicular Technology (TVT), 2016.

H. Simon Duquennoy, Atis Elsts, Beshr Al Nahas, George Oikonomou.
TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation,
Proceedings of the Conference Distributed Computing in Sensor Systems
(DCOSS), 2017.

I. Beshr Al Nahas, Olaf Landsiedel.
Competition: Towards Low-Latency, Low-Power Wireless Networking un-
der Interference,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2016.

J. Beshr Al Nahas, Olaf Landsiedel.
Competition: Towards Low-Power Wireless Networking that Survives In-
terference with Minimal Latency,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2017.

K. Beshr Al Nahas, Olaf Landsiedel.
Competition: Aggressive Synchronous Transmissions with In-network Pro-
cessing for Dependable All-to-All Communication,
Proceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN), 2018.

The papers I, J and K are extended abstracts of our solutions of the EWSN
Dependability Competition 2016, 2017 and 2018 where we scored the third
place twice and then the fourth place.

Contents

Abstract iii

Acknowledgements v

Structure and List of Papers vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Target Applications: Classification, Requirements and Challenges 2

1.1.1 Problem Statement and Approach 3
1.1.2 Applications Classification 3
1.1.3 Requirements . 5
1.1.4 Challenges . 6

1.2 Background . 11
1.2.1 Consensus . 12
1.2.2 Low-Power Wireless Protocols 15
1.2.3 Concurrent Transmissions and the Capture Effect . . . 18

1.3 Related Work . 21
1.3.1 Conventional Networking Protocols 21
1.3.2 Low-power Channel Hopping 23
1.3.3 Synchronous Concurrent Transmissions 23
1.3.4 Network-wide Agreement and Transactions 25
1.3.5 Summary . 25

1.4 Thesis Contributions and Roadmap 26
1.4.1 Thesis Roadmap and Goals 26
1.4.2 Thesis Contributions 29

1.5 Conclusions and Outlook . 40
1.5.1 Summary and Discussions of Contributions 40
1.5.2 Possible Future Directions 45

x Contents

References . 46

2 Orchestra: Robust Mesh Networks 65
2.1 Introduction . 66
2.2 Overview . 68

2.2.1 TSCH . 68
2.2.2 RPL . 69
2.2.3 Orchestra in a Nutshell 69

2.3 A Case for TSCH in Low-power Mesh 70
2.4 Orchestra Design . 72

2.4.1 Big Picture . 72
2.4.2 Scheduling . 74
2.4.3 Performance Analysis 77
2.4.4 Example Orchestra Schedules 79

2.5 System Integration . 82
2.6 Evaluation . 83

2.6.1 Setup . 84
2.6.2 Comparison with Asynchronous MACs 86
2.6.3 Contention Control and Scalability 87
2.6.4 Energy Distribution and Bounds 88
2.6.5 Orchestra in IoT Scenarios 89
2.6.6 Comparison with Static Scheduling 90

2.7 Related Work . 92
2.8 Conclusion . 94
References . 94

3 Network-wide Consensus 103
3.1 Introduction . 103
3.2 Background . 105

3.2.1 Consensus . 105
3.2.2 The Chaos Primitive 106

3.3 A2: Agreement in the Air . 108
3.3.1 A Network-Wide Voting Primitive 109
3.3.2 Network-wide Agreement: 2PC 110
3.3.3 Network-wide Agreement: 3PC 112
3.3.4 Multi-Phase Protocols 113

3.4 A2 Services . 113
3.4.1 Bootstrapping: Join Request 113
3.4.2 Join . 114
3.4.3 Leave . 115
3.4.4 Ensuring Consistency: Sequence Numbers 116

Contents xi

3.4.5 Hopping Sequence and Key Distribution 116
3.5 Synchrotron . 116

3.5.1 Time-Slotted Design and Synchronization 116
3.5.2 Frequency Agility . 118
3.5.3 Scheduler . 118
3.5.4 Security . 119

3.6 Evaluation . 119
3.6.1 Evaluation Setup . 119
3.6.2 A2 in Action . 120
3.6.3 Packet Error Detection 122
3.6.4 Frequency Agility and Parallel Channels 124
3.6.5 Long-Term Performance of A2 125
3.6.6 Cost of Consensus . 126
3.6.7 Consistency of Consensus Primitives 127
3.6.8 Comparison to the State of the Art 130

3.7 Related Work . 131
3.8 Conclusion . 133
3.9 Acknowledgments . 133
References . 133

4 Paxos Made Wireless 143
4.1 Introduction . 143
4.2 Background . 146

4.2.1 Agreement and Consensus 146
4.2.2 The Paxos Basics . 147
4.2.3 Multi-Paxos . 149
4.2.4 Synchrotron . 150

4.3 Design Rationale . 151
4.3.1 Cost of Paxos . 151
4.3.2 Paxos Beyond Unicast? 151
4.3.3 Basic Idea: Wireless Paxos 152

4.4 Designing Wireless Paxos . 153
4.4.1 Wireless Paxos . 153
4.4.2 Wireless Multi-Paxos 155
4.4.3 System Details . 156
4.4.4 Design Discussions . 157
4.4.5 On the Correctness of Wireless Paxos 158

4.5 Evaluation . 158
4.5.1 Evaluation Setup . 158
4.5.2 Dissecting Wireless Paxos 160
4.5.3 Paxos and Primitive Latencies 161

xii Contents

4.5.4 Influence of Multiple Proposers 163
4.5.5 Comparing the Cost of Primitives 164
4.5.6 Primitives Consistency 165

4.6 Related Work . 166
4.7 Conclusion . 167
4.8 Acknowledgments . 168
References . 168

5 Concurrent Transmissions for Multi-Hop Bluetooth 5 175
5.1 Introduction . 175
5.2 Background . 177

5.2.1 Low-Power Wireless: 802.15.4 vs. BLE 178
5.2.2 Bluetooth 5 . 178
5.2.3 Bluetooth Mesh . 179
5.2.4 Bluetooth Advertisements 179
5.2.5 Concurrent Transmissions and Capture 180
5.2.6 Glossy . 181

5.3 Feasibility of CT over Bluetooth 182
5.3.1 CT Opportunities and Challenges 182
5.3.2 CT over Bluetooth: Experimental Study 184
5.3.3 Conclusion . 187

5.4 BlueFlood . 188
5.4.1 Design Elements . 189
5.4.2 Simplified Design on Modern SoCs 192

5.5 BlueFlood Evaluation . 193
5.5.1 Evaluation Setup . 193
5.5.2 Transmission Power . 195
5.5.3 Channel Hopping . 196
5.5.4 Repetitions: Number of Transmissions 196
5.5.5 Packet Size . 198
5.5.6 Compatibility with Unmodified Phones 199

5.6 Related Work . 199
5.7 Conclusion . 200
5.8 Acknowledgments . 201
References . 201

List of Figures

1.1 TSCH timeslot and example slotframe 17
1.2 Concurrent transmissions result in carrier signal beating . . . 19
1.3 Orchestra in action . 30
1.4 Two-phase commit in A2 . 34
1.5 Overview of BlueFlood . 39

2.1 Orchestra schedules . 66
2.2 Periodic Broadcast Probing Experiment 71
2.3 Illustration of the different Orchestra slot types 73
2.4 Analytical contention probability for CS slots vs. RBS and

SBS slots . 77
2.5 A slice of Orchestra running in Indriya 80
2.6 Upwards Experiments in Indriya 84
2.7 Contention in Orchestra . 86
2.8 Orchestra duty cycle . 87
2.9 Orchestra down-up experiment in the JN-IoT testbed 89
2.10 Orchestra compared to a simple static schedule 90

3.1 A2 Overview . 108
3.2 A2 Network-Wide Voting . 110
3.3 Two-phase commit example in A2 111
3.4 A2 Membership Service . 114
3.5 System architecture and details of A2. 117
3.6 A2 in action: Three-phase commit 121
3.7 A2 in action: Join . 122
3.8 The effect of parallel channels on A2 performance 125
3.9 The effect of multichannel on A2 performance 126
3.10 Cost of Consensus in A2 . 128
3.11 A2 under controlled failures 129
3.12 Performance comparison between A2 and LWB(-FS) 131

4.1 Paxos Execution Example . 147

xiv List of Figures

4.2 Synchrotron Overview . 150
4.3 Wireless Paxos Execution Example 153
4.4 Wireless Paxos in Action . 154
4.5 A Snapshot of a Typical WPaxos Round 161
4.6 Executing Wireless Paxos and Wireless Multi-Paxos 162
4.7 Cost of Competing Proposers 163
4.8 Comparing the Cost of the Different Primitives 164
4.9 Consensus Consistency Under Injected Failures 166

5.1 Bluetooth Packet Structure 180
5.2 Evaluation Setup of the CT Feasibility Study 183
5.3 Micro-evaluation of CT over Bluetooth 185
5.4 Overview of BlueFlood Operation 188
5.5 System Architecture of BlueFlood 189
5.6 Overview of BlueFlood Timeslots 190
5.7 BlueFlood Testbed . 194
5.8 BlueFlood Evaluation: TX power, multichannel and N.TX . . 197
5.9 BlueFlood Performance vs. Packet Size 198

List of Tables

1.1 Typical application requirements 4
1.2 Bluetooth 5 and IEEE 802.15.4: PHY parameters and modes 16

2.1 Orchestra testbed experiments summary 83
2.2 Orchestra measured and theoretical min and max duty cycle 88

3.1 A2 evaluation testbeds . 119
3.2 Summarizing Join performance 123
3.3 CRC collisions in A2 . 124
3.4 Long-term performance of A2 127

4.1 Estimating the Cost of Feedback 157
4.2 Evaluation Testbeds Parameters 158
4.3 Slot-length of Evaluated Protocols 159

5.1 Bluetooth 5: PHY Parameters and Modes 181
5.2 Supported platforms details 193
5.3 BlueFlood Slot-length to Send a Single iBeacon Frame 195
5.4 Used Bluetooth Channels . 196

1
Introduction

An embedded cyber-physical system consists of a computer system enclosed in
another bigger system to serve the operation of the encompassing system by
utilizing sensors, actuators and data processing to make informed operations
that potentially affect the physical environment around it. In other words,
cyber-physical systems are

physical and engineered systems whose operations are monitored, con-
trolled, coordinated, and integrated by a computing and communicating
core [116].

Cyber-physical systems are embedded around us to ease our everyday life,
e.g., in elevators, cars, and airplanes. For example, the autopilot system used
in aviation is a cyber-physical system. It depends on the feedback of sensors
measuring the relevant environment’s and system’s parameters to fly the air-
plane. Flying the plane changes the airflow around; thus, feedback is necessary
to maintain its operation. Such a complex system encompasses many coordi-
nating subsystems. For example, a car embeds hundreds of control units that
are connected through a wired network [104]. Each of these units is responsible
for a function, e.g., controlling and monitoring speed, brakes, engine temper-
ature or non-critical functions like entertainment. One side effect is that a car
has over 1 km of wires to connect these subsystems. This complicates both
manufacturing and maintenance. Therefore, car manufacturers aim to convert
these installations to wireless [150].
Moreover, networked objects are everywhere in our lives. We have become

so used to being always online that we feel nervous when we are not [142].
Our laptops and cell phones are always connected to the Internet, and even
our homes are connected, too: Alarm systems, security cameras and the smart
grid which feeds our homes with electricity and updates the utility company
with our consumption and the grid status. Industrial giants like Cisco and
Ericsson predict a growing connectivity and project 22 billion devices to be
connected by 2024, including roughly 18 billion short-range IoT devices [22].

2 1. Introduction

If this connectivity trend lives up to the predictions, a variety of appliances
will be connected either to each other’s only or the Internet – in what is called
the Internet of Things (IoT) – to enable remote control and automatic actions.
Nowadays, the hype is about autonomous and coordinating cars to enhance
safety and reduce congestion on roads. However, with this arises the need
for new connectivity methods to enable car-to-car and car-to-infrastructure
communication to support a safer and smoother mobility experience.
Apart from everyday objects, industrial actors aim to enhance the automa-

tion of their factories with sensor networks and connections to cloud services
to, for example, predict failures and trigger maintenance procedures automat-
ically, as envisioned by Industry 4.0 [49] and the Industrial Internet of Things
(IIoT). All of the aforementioned scenarios require connectivity, and with the
envisioned higher degree of connectivity, e.g., that includes moving parts, we
cannot imagine wires running all over the place. Therefore, we turn to wireless
solutions.
Having a wireless solution entails the lack of access to a wired energy source;

thus, we have a limited power source from a battery or an energy harvester,
e.g., a solar cell. Moreover, with wireless solutions, we expect data losses and
communication outages, due to interference from other technologies. However,
not only this is mildly annoying when it happens to us when we are, for
example, surfing the internet and having to wait for a website to open, it is
probably unbearable if we try to operate a wireless lamp and have to press
the button again and again as the communication between the button and the
lamp is unreliable. Besides, such a data loss could have a catastrophic impact if
it happens in a critical system, as a wireless brake system in a car, for example.
In this thesis, we design, implement and evaluate dependable network pro-

tocols that cope with the challenge of achieving a dependable operation over
low-power and lossy wireless links with limited energy sources and processing
power.

1.1 Target Applications: Classification, Requirements
and Challenges

In this section we first illustrate our problem statement and our approach, then
we discuss the industrial applications classification and their characteristics.
Next, we introduce the requirements of target applications, and the challenges
we need to overcome to achieve these requirements.

1.1. Target Applications: Classification, Requirements and Challenges 3

1.1.1 Problem Statement and Approach

With the emergence of the Internet of Things, autonomous vehicles and the
Industry 4.0, the need for dependable yet adaptive network protocols is arising.
Many of these applications build their operations on distributed consensus.
For example, networked cooperative robots and UAVs agree on maneuvers to
execute, and industrial control systems agree on set-points for actuators. Many
applications are mission- and safety-critical, too. Failures could cost lives or
precipitate economic losses.
Any wireless network connecting mission-critical devices must be depend-

able, and often energy-efficient, as many devices are battery-powered and we
expect them to last for years. Moreover, application scenarios in the Internet of
Things imply a dynamic environment with a changing network topology due
to mobility and interference, for example. Thus, the network protocol shall
be adaptive and self-organizing as well, to allow for dependable autonomous
operations, as many applications cannot afford to stop and wait for external
(re)configuration.
In this thesis, we use experimental computer science methods: We design,

implement and evaluate network protocols as a step towards enabling such
challenging ubiquitous connectivity in the Internet of Things. We contribute
the source code of our main protocols to the community as a step towards
enabling ubiquitous connectivity in the Internet of Things.

1.1.2 Applications Classification

IETF RFC 5673 [111] classifies industrial applications into three application
categories. Namely, safety, control, and monitoring. These categories have six
criticality classes ranging from the always-critical to the never-critical opera-
tions. In-time delivery is more paramount in the lower classes, i.e., with the
higher criticality and jitter is as important as latency for achieving a stable
control [111]. Moreover, Åkerberg et al. [2] and others [88, 90, 123] highlight
specific characteristics of such industrial applications. We summarize them in
the following, and we base primarily on the classification in the RFC 5673 [111]:
– Safety Category
• Class 0: Emergency action – Always critical: Dormant safety-critical

operations that activate upon failures, e.g., fire alarm and fire control.
– Control Category
• Class 1: Closed-loop regulatory control – Often critical: Factory au-
tomation systems such as robotic arms that place parts on moving
bands, or process automation systems that automatically set the op-
erating parameters to control an industrial process.

4 1. Introduction

Table 1.1: Typical requirements for industrial and home automation applica-
tions. We notice that typical closed-loop control systems require fast delivery,
e.g., in tens of milliseconds range and a low loss-rate. We mainly focus on the
slower categories, but keep an eye on the fast ones as well in our discussions.

Class Domain Update Interval Loss Rate

4, 5 Monitoring, Alerting and Logging 100 – 1000ms 10−2

3, 4, 5 Building Automation 500ms – seconds 10−3

2, 3 Open-loop and Closed-loop Supervisory Control 10 – 100ms 10−4

1, 2 Process Automation 10 – 1000ms 10−5

1 Factory Automation 500µs – 100ms 10−9

• Class 2: Closed-loop supervisory control – Usually non-critical: Super-
visory systems that report the status of the closed-loop control. Such
supervisory control systems usually operate with a human setting a
control point and monitoring from a control room.

• Class 3: Open-loop control – Human in the loop: Operator-controlled
systems where a human controls the actuator and monitors the system
reaction.

– Monitoring Category
• Class 4: Alerting – Short-term operational effect: Monitoring and su-
pervisory systems that track system status to detect machinery prob-
lems and require event-based maintenance, for example.

• Class 5: Logging and downloading / uploading – No immediate op-
erational consequence: Long-term logging and diagnostics operations
that can be used for recording history, preventive maintenance, and
interactive fault investigation, for example.

It shall be noted that home and building automation systems can be classified
under classes 3, 4 or 5; except for emergency systems such as fire alarms.
This classification can be linked to specific requirements in terms of accept-

able message loss rate and expected update intervals, end-to-end. The accept-
able end-to-end message delivery delay is usually in the order of the update
interval, and the rule of thumb is that each measurement shall arrive before
the deadline of the next one. Otherwise, the delayed measurement becomes
useless. Table 1.1 summarizes these requirements based on the work in [2, 88,
90, 98, 123].
In the following section, we discuss the requirements of a network protocol

for the targeted applications. Later, we discuss the challenges of achieving
these requirements.

1.1. Target Applications: Classification, Requirements and Challenges 5

1.1.3 Requirements

We notice that typical closed-loop control systems require fast delivery, e.g., in
tens of milliseconds range and a low loss-rate between 10−4 and 10−9. In this
thesis, we mainly focus on the slower categories that can survive a delay of
tens to hundreds of milliseconds and a loss rate between 10−3 and 10−5. We
keep the most demanding applications with 10−9 loss rate for future work, as
guaranteeing a loss rate limited to 10−3 proves to be challenging with the avail-
able low-power multihop wireless technologies. However, much of the solutions
we discuss in this thesis can be adapted to faster and more reliable wireless
technologies. We can summarize the requirements of the network protocol that
enables these applications in the following [46, 88, 132]:
Low Power One of the main motivations for deploying wireless systems is
getting rid of wired connections, to ease installations and save costs. Therefore,
in many cases, where an electrical grid connection is not available, the target
systems shall be ultra low-power [132]. It should be able to operate for five
to ten years on batteries [153] or energy harvesters, as it is not desirable
to replace batteries more often. Since the radio is one of the most energy-
consuming components in such small devices, we are interested in minimizing
its energy use. However, this might not be required for all systems, especially
those with a very high update rate, as the radio is not the energy-critical
component anymore, but the sensing and sampling components. Thus, the
enclosing device shall have an electrical power connection, which can power
the wireless communication system as well [2].
Low Latency The network protocol shall provide timely information deliv-
ery as dated information might lose its worth. For example, a smoke detector
needs to deliver a warning before a deadline, and industrial control applica-
tions require sensor readings to be delivered to the final destination before a
subsequent update.
Technology Independent The network protocol shall not depend on specific
physical layer support and can run on top of a variety of commercially available
low-power wireless standards, e.g., IEEE 802.15.4 and Bluetooth. The key is
not to be locked in a proprietary technology [132].
Supports Rapid Network-wide Consistency and Consensus Many ap-
plications in low-power wireless networks build their operation on consensus:
For example, networked cooperative robots and UAVs agree on maneuvers to
execute [7], wireless closed-loop control applications such as adaptive tunnel
lighting [21] or industrial plants [103, 105] agree on set-points for actuators.
These application scenarios exhibit key differences when compared to tradi-
tional data collection or dissemination in wireless sensor networks: They de-

6 1. Introduction

mand primitives for network-wide consensus at low-latency and highly reliable
data delivery with robustness to interference and channel dynamics [3].
Dependable Since the applications classified at levels 0 to 4 are usually
mission- or safety-critical, they shall be dependable in order to avoid tragic
life or economic losses. According to Laprie [86] and Avizienis et al. [8], de-
pendability is defined as the ability to deliver a service that can justifiably be
trusted, or the ability to avoid service failures that are more frequent and more
severe than is acceptable. Dependability entails the following attributes [8, 86]:
– availability: readiness for correct service.
– reliability: continuity of correct service. For the network protocol, this

entails that the end-to-end packet loss shall suit both non-critical and
mission-critical applications, as data loss is undesirable at best and could
be disastrous in critical scenarios. For the consensus requirement this en-
tails that the system continues to achieve progress and does not abort
transactions often due to failures.

– safety: absence of catastrophic consequences on the users and the envi-
ronment. For example, if an inconsistency causes a catastrophe, then the
consensus process shall avoid them.

– maintainability: ability to undergo modifications and repairs.
– integrity: absence of improper system alterations. For example, the cor-

ruption of a packet’s contents shall be detected.
In this thesis, we focus on the first three aspects of dependability: Availability,
reliability, and safety.
Flexible The network protocol shall be able to satisfy a variety of often
dynamic application requirements; such that it self-forms a network on its
own without relying on external components or manual configurations, and
it self-fixes the network and copes with link dynamics and node failures, to
achieve a dependable and continous operation, as failures cannot be avoided.
Finally, we shall note that security and privacy are key requirements [132],

but they are out of the scope of this thesis.
In summary, we desire a network protocol that is (i) low power, (ii) low la-

tency, (iii) not tied to a specific wireless standard, (iv) provides network-wide
consistency and consensus, (v) dependable, and (vi) flexible (self-forming and
self-fixing). We note that achieving each of these requirements alone is demand-
ing, and realizing a protocol that achieves them together is more challenging,
as we discuss next.

1.1.4 Challenges

The requirements introduced in §1.1.3 are challenging to achieve due to the na-
ture of the application scenarios. First of all, the low-power requirement neces-

1.1. Target Applications: Classification, Requirements and Challenges 7

sitates the use of resource-constrained platforms, which we demand to achieve
a timely and reliable performance. For the same reason – energy efficiency –,
we need to use low-power wireless communications that are characterized by
variable quality links. This, in turn, stipulates the need for a multihop mesh
networking topology to cover wide areas with low-power wireless. Finally, dis-
tributed consensus is a hard problem even when implemented on the more
capable devices and stable networks such as those found in data centers. Con-
sensus becomes even more challenging to realize under these constraints as
faults are inevitable in such resource-constrained low-power wireless networks.
In the following, we detail the aforementioned challenges.

Resource-constrained Embedded Platforms To satisfy the low-power
requirement, a typical computing platform in low-power wireless usually fea-
tures a small form factor and limited processing, memory, and storage com-
ponents [132]. This stipulates the use of a simple protocol logic and prohibits
complex operations. Such complex operations can be effective on other, more
powerful, platforms but are prohibitively expensive on these low-power devices.
For example, to enhance the robustness of the network we can use complex
data encoding schemes with forward error correction (FEC) [143], e.g., LDPC
and Turbo Codes. In practice, the implementation of such techniques would
consume a major part of the available memory and bandwidth on such de-
vices. Moreover, the execution of these operations would take a relatively long
time compared to acceptable latencies, e.g., tens to hundreds of milliseconds
on such limited processors [154].

A popular platform in low-power wireless research is TelosB [141] which
features a Chipcon CC2420 250Kbps radio operating in the 2.4GHz and com-
patible with IEEE 802.15.4. It features a Texas Instruments MSP430 8 bit
micro-controller operating at 4MHz with 10KB RAM and 48KB flash for
program storage. While this platform is more than a decade old and super-
seded by more powerful platforms, its moderate capabilities can fit on a tiny
SoC with the modern chip manufacturing processes. Therefore, it is still rel-
evant when considering the Smart Dust vision [144] of one cubic millimeter
sensing platforms. There are newer more powerful platforms, such as these
based on the ARM Cortex M0 to M4 32 bit MCUs with operating frequencies
up to 64MHz, up-to 64KB memory, 256KB program storage and on-SoC radio
supporting both 802.15.4 and Bluetooth. These can use frequency scaling to
operate in low-power modes while being able to boost the frequency when the
application needs more complex processing. Thus, in both platform categories,
it is desirable to have a simple protocol logic and avoid complex operations
to save power, while at the same time duty-cycling the radio and keeping it
turned off as long as possible.

8 1. Introduction

Wireless Links are Variable Low-power wireless communications are chal-
lenging in several ways:
– Unreliable Links: The wireless links are unreliable due to the noise com-

ing from the environment, electrical machines and radio interference from
other devices using the same radio frequency [52, 147]. Moreover, cross-
channel interference from adjacent channels causes a significant packet loss
rate [10];

– Asymmetric Links: The wireless links are not always symmetric; especially
when the link quality is medium or transitional, i.e., neither very high nor
very low. For such links, we cannot conclude that a node A can receive
from B even if B can receive from A. Further, the link asymmetry is not
necessarily linked with distance, nor is it always persistent [10]; and,

– Challenging Link Dynamics: The nature of radio wave propagation and
multi-path fading cause challenging link dynamics that affect the signal
strength and packet reception rate in different ways. Multi-path effects
can either strengthen or weaken the link quality depending on a number
of parameters; namely, the used frequency, the objects standing/moving
in the wireless path and the location of the transceiver [10, 145].

The result is that low-power wireless links are hard to predict and present a
continuously changing state, both spatially and temporally [10, 159].

Multihop Mesh Networks When it comes to low-power wireless communi-
cation technologies, we have two main classes: (i) The long-range (1 – 10 km),
e.g., LoRa, 802.15.4-sub-GHz, 5G-NBIoT and SigFox, and (ii) the short-range
(10 – 100m) technologies, e.g., 802.15.4-2.4GHz and Bluetooth.
Since long-range technologies can cover a whole factory or residential area,

for example, they offer a simple network topology, e.g., a star topology. It is,
therefore, tempting to consider that they solve all the connectivity problems. In
fact, the longer the range, the less spectrum-efficiency a connectivity solution
exhibits. Consider, for example, the congested WiFi spectrum where one sees
all neighbors’ WiFi networks. A similar problem will materialize for the long-
range technologies when everybody starts using them; except, the interference
range is longer, e.g., several kilometers. Specifically, the following limitations
materialize in long-range technologies:
– The channel capacity is limited: The long-range means potentially more

interferers. When using a licensed spectrum, e.g., in 5G-NBIoT, the devices
will be competing for spectrum which has to cover a long-range, and only
a limited number will be supported by one base-station; thus, requiring a
possibly expensive deployment from the telecom provider. Similarly, the
unlicensed sub-GHz ISM band will eventually be crowded; thus, resulting
in collisions;

1.1. Target Applications: Classification, Requirements and Challenges 9

– Low data rate: To achieve a long-range at a low energy budget, a com-
munication standard enhances the SNR at the receiver by narrowing its
bandwidth [73]. For example, 5G-NBIoT uses 200KHz channels. The other
alternative is to use Spread Spectrum techniques [73], i.e., the transceiver
uses wider channels but uses a larger spreading factor to achieve a higher
redundancy. For example, LoRa channel bandwidth is between 125 and
500KHz. Both strategies result in low data rate. For example, LoRa has
data rates between 0.18 and 27Kbps;

– High latency and long packet transmission time: With a low data rate, the
packet takes a longer time to be transmitted; thus, it is more susceptible to
interference. Besides, the minimum latency becomes higher. For example,
a LoRa packet can last up to several seconds. Moreover, this increases
the energy expenditure of the packet [20]; thus, making packet losses even
costlier;

– Large delay and limited channel utilization: In order to ensure a fair access
policy of the long-range ISM sub-GHz wireless medium, the channel usage
is regulated: The device can have a maximum of 1% duty-cycle, and has
an imposed channel-off time, where it cannot send before waiting a specific
time, such that at any time window, the duty cycle does not exceed the
1% limit [130]. For example, if a packet transmission takes 1 s with LoRa
in the 868MHz band, it shall avoid using the same band for 99 seconds;

– Complex configuration: The unlicensed technologies, such as LoRa and
802.15.4-sub-GHz, have tens of parameters to adjust, and choosing the
wrong mix can severely hurt the performance. For example, Bor and
Roedig [14] show that LoRa can have thousands of different combinations
of parameters’ settings, and choosing the wrong combination can increase
the energy budget for a given link quality by a factor of 100; and,

– Fault intolerance: The typical star topology with a single base station is
not fault-tolerant. Instead, several base stations shall be used with a fault-
tolerant mechanism for take over and rejoin. This presents a deviation
from the sought simplicity of the star topology. Moreover, this might be a
costly solution for licensed technologies such as 5G-NBIoT [47].

The alternative is the category of short-range technologies such as 802.15.4-
2.4GHz and Bluetooth. These low-power wireless devices have a limited trans-
mission range, especially, when operating indoors, due to the limited trans-
mission power possible at the available energy budget. For example, typical
transmission power for Bluetooth 5 is about 1mW, equaling 0 dBm, while
WiFi devices can send at 100mW (20 dBm) when operating in the 2.4GHz
band. Therefore, to cover larger areas while benefiting from the limited in-
terference range of the short-range technologies, we can extend the range by

10 1. Introduction

organizing the network as a multihop mesh. Thus, nodes cannot reach the fi-
nal destination directly, but rather have to pass messages through intermediate
nodes. Compared to the star-topology common with classic wireless networks,
e.g., mobile networks, WiFi hotspots, and legacy Bluetooth devices, this poses
several challenges:

– end-to-end connectivity is not simple anymore, as the network protocol
needs to maintain routes or consider stateless approaches such as flooding;

– nodes consume more energy and have a higher processing burden as inter-
mediate nodes shall operate as routers or forwarders to maintain network
connectivity; and,

– it is complex to achieve high end-to-end reliability as it depends on the
continuously changing quality of the forwarding links.

It shall be noted that it is possible to configure some of the long-range technolo-
gies, e.g., LoRa, to cover a shorter range with a higher bitrate. Thus, offering
a flexible alternative, for the overhead of the reduced energy efficiency and
software complexity. Nevertheless, the need for multihop mesh further com-
plicates achieving the energy, latency and reliability requirements c.f., §1.1.3;
especially, when realizing a complex service such as the network-wide consen-
sus.

Dependable Consensus in Presence of Network Partitions and Fail-
ures Dependability is threatened by the occurrence of internal or external
faults, e.g., a node’s hardware fails, or external radio interference occurs. These
faults are more pronounced when considering constrained and low power de-
vices connected through volatile wireless links in a multihop setting. Such
faults may cause a failure, e.g., a packet loss, or even a network partition. The
consensus problem is a well-studied problem in the classic distributed systems
literature. Since node failures and network partitions are common in low-power
wireless systems, achieving consensus is particularly challenging in such dis-
tributed systems where faults can happen, as illustrated by two important
results: The FLP impossibility result [43], and later, the CAP theorem [48].
FLP shows that it is impossible to achieve distributed consensus if only one
process can crash in an asynchronous setting where one cannot distinguish a
failed process (or a message loss) from a process that is simply taking a long
time to reply. The other important theorem (CAP) can be summarized in lay-
man terms as follows: It is impossible to maintain a consistent (C) and always
available (A) consensus that can sustain network partitions (P) in an asyn-
chronous setting, e.g., if even one participant can fail and stop working, or if
messages can be lost without detection. An undetected message loss is another
symptom of a process failure if the receiver cannot distinguish between the two

1.2. Background 11

cases: The message was never sent and the process crashed, or the process is
alive and the message was lost or delayed due to retransmissions.
To this end, the two-phase commit protocol (2PC) [53] is a relatively sim-

ple protocol that was designed for distributed consensus on atomic commit.
It has a known shortcoming of inability to reliably sustain failures in certain
conditions without blocking and limiting the system’s availability [53]. Despite
that, it was adopted in distributed databases, which have a common size of
several servers per cluster. Still, with this limitation and its simple design, this
protocol requires at least three group communication rounds: (i) disseminate
a proposal (one-to-all), (ii) collect votes (all-to-one), and (iii) disseminate a
decision of unanimous accept, otherwise, abort (one-to-all). While this is a
relatively simple protocol, applying it in the low-power wireless networks con-
text is challenging: The sensor networks’ sizes range from tens to hundreds.
Therefore, 2PC group communication nature and its several rounds of com-
munication have a high overhead; especially, when using classic unicast-based
protocols. Further, lossy wireless links are problematic for the execution of this
protocol, as it could block frequently and hinder progress.
Later protocols, like Paxos [82], that accomplish consistency in such asyn-

chronous settings, assume eventual synchrony: Messages eventually arrive at
their destinations, and node failures are masked by assuming stable storage
of protocol state that a recovering node can use to resume execution where it
stopped. Thus, the failure merely appears as delayed processing to other nodes.
This makes the system eventually consistent, where it has a transient incon-
sistent period while the messages get delivered, a crashed node restarts and
resumes operation, or a replacement gets elected. In practice, such protocols
are more complex than the two-phase commit protocol as they solve the gen-
eral problem of consensus, e.g., they have to deal with conflicting proposals
and provide a stronger failure tolerance. Thus, they are complex to under-
stand and correctly implement [107]. We provide more details on consensus
next in §1.2.1.

1.2 Background

In this section, we review the necessary technical background that we use in the
rest of the chapter. We discuss consensus and its main protocols: Two-phase
commit [53], three-phase commit [133] and Paxos [81]. Later, we overview
the radio physical layers and MAC protocols that we build our work on top;
namely, IEEE 802.15.4, TSCH [61], Glossy [42], and Bluetooth 5 [12]. Finally,
we discuss the radio phenomena that enable receiving one of several concur-
rently transmitted packets, under certain conditions, that otherwise result in

12 1. Introduction

a collision. Later, §1.3 provides a deeper discussion of the related work in the
low-power wireless communications and the Internet of Things.

1.2.1 Consensus

The consensus is the problem of reaching agreement among several processes
about a proposal or different proposals, i.e., to accept or decline it after a
finite time of execution. Solving consensus is key to solving many problems
in distributed systems, such as atomic commit, leader election, and group
membership. It has been shown that any of these problems reduce to the
consensus problem [79]. Thus, it is possible to derive a solution to one problem
from the solution of another [26]. A correct solution of the consensus problem
shall have the following properties [26, 79]:
– Validity: the consensus result is one of the proposed values;
– Agreement: all correct processes decide on the same value;
– Termination: every correct process decides in a bounded time; and,
– Integrity: a process cannot change its decision or decide multiple times.

Achieving consensus becomes challenging when faults may occur, that is, when
communication is lossy and processes may crash.
Two widely used, yet simple consensus protocols are two-phase commit

(2PC) [53] and three-phase commit (3PC) [133]. However, both are vulnerable
to faults, with 2PC responding by blocking in some cases, and 3PC yielding
an inconsistent outcome in other cases. We later highlight Paxos [82], which
achieves fault-tolerant consensus if the majority of nodes are non-faulty. The
faulty nodes exhibit an eventually consistent behavior, where they will have a
stale state until they receive further updates. We review these protocols next
and discuss their respective properties and limitations.

Two-Phase Commit (2PC) The two-phase commit protocol solves the
problem of transaction commit; i.e., one transaction manager proposes a trans-
action and later decides to either commit or abort it atomically. The protocol
assumes the existence of one static transaction manager, or coordinator, and a
set of participants, or cohort. As the name suggests, 2PC works in two phases,
Proposal Voting and Decision: (i) Proposal Voting: the coordinator broadcasts
a proposal to the cohort, each member replies with its vote, yes or no; (ii)
Decision: the coordinator decides to commit if the vote is yes unanimously;
otherwise it decides to abort. It then broadcasts the decision to the cohort that
will commit or abort upon receiving the decision message.
2PC is simple to realize but has the major limitation of being a blocking

protocol. Whenever a node fails, other nodes will be waiting for its next message
or acknowledgment indefinitely, i.e., the protocol may not terminate. Recovery

1.2. Background 13

schemes can be considered but fall short when it comes to handling two or more
failing nodes [54]. In particular, if the coordinator and a participant both fail
during the second phase, other nodes might still be in uncertain state, i.e., have
voted yes but have not heard the decision from the coordinator. If all remaining
nodes are uncertain, they are unable to make a safe decision as they do not
know whether the failed nodes had committed or aborted before failing. Thus,
the uncertain nodes block until the failed nodes are online again.

Three-Phase Commit (3PC) Three-phase commit mitigates the above
limitations by decoupling decision from commit. This is done with an addi-
tional pre-commit phase between the two phases of 2PC. The three phases are
as follows: (i) Proposal Voting: same as in 2PC; (ii) Pre-Commit (or abort):
the coordinator and participants decide as in 2PC, but no commit is applied
(abort is applied immediately); (iii) Do Commit: participants finally commit.
The additional phase guarantees that if any node is uncertain, then no node
has proceeded to commit.
The protocol is non-blocking in the case of a single participant failing: Re-

maining nodes time out and recover independently (commit or abort). 3PC
can also handle the failure of the coordinator and multiple nodes, by using
a recovery scheme. Nodes will then enter a termination protocol: They will
communicate and unanimously agree to commit, abort, or take over the coor-
dination role and resume operation. In the more challenging case of a network
partition, 3PC is, however, unable to maintain consistency.
Paxos is a fault-tolerant protocol for consensus [82]. It assumes an asyn-
chronous, non-Byzantine system with crash-recovery; i.e., it handles (i) both
process crash and recovery (persistent storage is needed), but not misbehaving
nodes or transient faults; (ii) delayed or dropped messages, but not corrupted
messages; and (iii) network segmentation. The protocol guarantees a cor-
rect consensus if the asynchronous network becomes eventually synchronous;
i.e., messages get delivered eventually, and nodes fail and restart with access
to permanent storage. Moreover, it is non-blocking if the majority of nodes are
available.
A node can act as either a Proposer : It proposes a value to agree on and

acts as a coordinator, or an Acceptor : It votes on proposers’ requests. Unlike
2PC and 3PC, where at most one coordinator must be present, Paxos tolerates
multiple proposers, at the cost of impeding the progress of the agreement.
The protocol consists of two phases: The Prepare phase and the Accept

phase.
1. Prepare Phase
a. A proposer starts by broadcasting a Prepare(n) request that includes a

unique proposal number n.

14 1. Introduction

b. Upon reception of a Prepare(n) request, an acceptor saves the highest pro-
posal number minProposal it heard so far. The idea is that minProposal
represents the minimum proposal number that can be accepted, as pro-
posals with higher numbers have priority. The acceptor replies with both
the last accepted proposal, if any has been accepted so far, and the corre-
sponding accepted value.

2. Accept Phase
a. Upon hearing from a majority of acceptors, the proposer adopts the value

with the highest proposal number, if any. Thus, at most one value can
be chosen. The proposer switches to the Accept Phase and sends an Ac-
cept(n,V) request to all acceptors.

b. Upon receiving an Accept(n,V), an acceptor accepts the value V if and
only if the proposal number n is higher or equal to the proposal number
the process has prepared for: minProposal. Then it replies to the request
by including the highest proposal heard (minProposal).

c. Upon receiving at least one reply with minProposal > n, the proposer
knows that its value has been rejected. This also means at least one other
proposer is present, and the process can either restart the protocol with
a higher proposal number ń to compete, or let the other proposer win.
If the proposer received a majority of replies with no rejection, the value
is chosen. The competition is on the premise that the first proposer that
succeeds to achieve a majority would have its value chosen. However, once
a value gets chosen by the majority, any later competition would adopt
the already chosen value that the proposer receives in the step 1.2.1.

UsingminProposal ensures that only the most recent proposal can be accepted
and the data returned at step 1.2.1 ensures that at most one value can be
chosen per one Paxos execution. To accept more values, we have to execute
new Paxos instances, as done in MultiPaxos.

Paxos vs. Two-phase Commit (2PC) While the two-phase commit pro-
tocol is designed to solve the problem of transaction commit, Paxos solves
the general consensus problem, i.e., agreeing on one of multiple competing
proposals from multiple proposers. Therefore, it is possible to express the two-
phase commit protocol as a special case of Paxos with a single proposer that
blocks on failures [54]. However, a practical solution would implement multiple
proposers for fault tolerance.
Next, we discuss the low-power communication standards and relevant pro-

tocols.

1.2. Background 15

1.2.2 Low-Power Wireless Protocols

ZigBee/IEEE 802.15.4 and Bluetooth Low Energy (BLE) are to-
day’s widespread technologies for low-power wireless communication in the
unlicensed 2.4 GHz spectrum. Each of them was initially designed for unique
and distinct goals: While Bluetooth traditionally targets low-range single-hop
communication with a bitrate suitable for e.g., wearable and multimedia ap-
plications, ZigBee targets longer ranges and reliable multihop communication
with a lower bitrate suitable for e.g., home automation applications or indus-
trial control. To this end, the IEEE 802.15.4 standard introduces a physical
layer in the 2.4 GHz band that utilizes O-QPSK modulation and DSSS for
forward error correction (FEC): The PHY layer groups every 4 bits to make
one PHY symbol and encodes it using 32 PHY signals or chips — each is a
half-sine that represents either a logical 0 or 1. With a chip rate of 2 M chips
per second, it supports a bitrate of 250 Kbps in 16 RF channels of 5 MHz. It
offers a packet size of up to 127 bytes.
On the other hand, both Bluetooth and 802.15.4 in sub-GHz use variants

of FSK modulation. BLE 4 uses GFSK and the latter uses 2-FSK — both
modulation schemes represent bits 0 and 1 by using a ±F frequency shift
from the central frequency. BLE 4 offers a bitrate of 1 Mbps in 40 channels
with a bandwidth of 2 MHz each without FEC and supports packets with
PDU up to 39 bytes. Overall, the design choices of the narrower channels,
a simpler modulation scheme and the lack of DSSS make Bluetooth the less
robust communication scheme of the two. Next, we discuss how the recent
Bluetooth 5 changes this.
Bluetooth 5 With the widespread availability of Bluetooth and an estimated
number of 10 billion Bluetooth devices sold, there is an increasing interest to
use Bluetooth beyond the originally targeted domain of low-range, single-hop
communication. Hence, the recent Bluetooth 5 standard [151] introduces (i)
new long-range communication modes and (ii) supports longer packets up to
255 bytes.
The physical layer of Bluetooth 5 supports four PHY modes: (i) Two modes

without forward error correction (FEC): A new, 2 Mbps mode in addition to
the backward-compatible 1 Mbps, and (ii) two new long-range modes that uti-
lize FEC driven by a convolutional code: 500 Kbps and 125 Kbps. These coded
modes support up to 4× longer range when compared to the uncoded 1 Mbps,
outdoors. We note selected low-level details: (i) The different modes have dif-
ferent preamble lengths: One byte for 1 M, two bytes for 2 M and ten bytes
for the coded modes 500 K and 125 K; (ii) the two coded modes 500 K and
125 K always transmit the header with FEC 1:8, and only afterward change
the coding rate to FEC 1:2 for the 500 K mode; and (iii) all modes share a

16 1. Introduction

Table 1.2: Bluetooth 5 and IEEE 802.15.4: PHY parameters and modes. Note
that: (a) in Bluetooth, each bit is encoded using 1, 2 or 8 symbols depending
on FEC; (b) Bluetooth coded modes 500 K and 125 K use the 1 M PHY
mode beneath, and (c) IEEE 802.15.4 uses a different terminology: one symbol
represents 4 bits and is encoded using 32 chips — a chip is the PHY layer
signal that represents a logical 0 or 1. τ stands for period.

Modulation Bitrate Symbol rate Symbol τ bit τ FEC Preamble

[bps] [Symbol/s] [µs] [µs] ratio [byte]

Bluetooth 5:
GFSK 2 M 2 M 0.5 0.5 - 2
GFSK 1 M 1 M 1 1 - 1
GFSK 500 K 1 M 1 2 1:2 10
GFSK 125 K 1 M 1 8 1:8 10

Modulation Bitrate Chip rate Chip τ Symbol τ FEC Preamble

IEEE 802.15.4 @ 2.4 GHz:
OQPSK 250 K 2 M 0.5 16 1:8 4

symbol rate of 1 M except for the 2 M mode. Table 1.2 summarizes the opera-
tion modes. When compared to 802.15.4, the physical layer of Bluetooth 5 still
maintains the narrow channels of 2 MHz and does not employ DSSS. Nonethe-
less, the standard has the potential to be an enabler for IoT applications with
a performance in terms of range, reliability, and energy-efficiency comparable
to 802.15.4.

Bluetooth Mesh part of the Bluetooth 5 standard, introduces multihop
communication to Bluetooth [57]: Bluetooth Mesh follows a publish/subscribe
paradigm where messages are flooded in the network so that all subscribers
can receive them. Thus, Bluetooth Mesh does not employ routing nor does
it maintain paths in the network. To reduce the burden on battery-powered
devices, forwarding of messages in a Bluetooth Mesh is commonly handled by
mains-powered devices. In recent studies with always-on, i.e., mains-powered,
nodes as the backbone, Bluetooth Mesh reaches a reliability of above 99% both
in simulation [96] and experiments [131], and latencies of 200 milliseconds, in
networks of up to 6 hops with a payload of 16 bytes [131].
Because Bluetooth Mesh employs flooding, it differs strongly from estab-

lished mesh and routing protocols in 802.15.4 such as CTP [50] or RPL [137].

IEEE 802.15.4-2015 Time Slotted Channel Hopping (TSCH) is a
MAC layer specified in IEEE 802.15.4-2015 [61], with a design inherited from

1.2. Background 17

MCU

MCU

Radio

Radio

Radio

MCUPre.

C
C

A Transmit

Pre.
Receive

Process

Pre.

Li
st

en

Slot

TX
R

X
 o

k
R

X
 fa

il
e.

g.
, n

o
SF

D

G
ua

rd
AèB AèC CèD

AèB AèC CèD

Time Offset

Sl
ot

fr
am

e
C

ha
nn

el
 O

ffs
et

ACK
RXG

ua
rd Process

ACK
TX

Process

Process

Process

C B

A

D

Network

Figure 1.1: Diagram of a TSCH timeslot and example slotframe. A timeslot is
typically 10 ms long and fits both frame reception or transmission, acknowledg-
ment and processing. The radio is switched on only when listening, receiving
or transmitting, and turned off otherwise to save power. Slots are grouped in
slotframes which repeat periodically.

WirelessHART and ISA100.11a. TSCH builds a synchronized mesh network.
Nodes join the network upon hearing a beacon from another. Subsequently,
they may broadcast the beacon to reach further nodes. TSCH uses both time
division (TDMA) and frequency diversity for coordinating the nodes’ multiple
access to the radio medium. Time is cut into timeslots which are grouped into
periodic slotframes (as illustrated in Figure 1.1). Slots can be dedicated or
shared, i.e., contention-free or contention-based with CSMA back-off.

Time synchronization trickles from the coordinator down to leaf nodes along
a Directed Acyclic Graph (DAG) structure. Nodes update their synchroniza-
tion relative to their time source parent every time they receive a packet from
it.
TSCH networks use channel hopping: The same slot in the schedule trans-

lates into a different frequency at each iteration of the slotframe. The result
is that successive packets exchanged between neighbor nodes are communi-
cated on different frequencies. In case a transmission fails because of external
interference or multi-path fading, its retransmission happens on a different
frequency, often with a better probability of succeeding than using the same
frequency again [145].
How the communication schedule in the TSCH network is built and main-

tained is out of the scope of the established standards.
RPL is the standard IPv6 routing protocol for low-power and lossy networks
(LLNs) [137]. It was built specifically to support the requirements of LLNs
which exhibit special characteristics such as: Limited energy, limited processing

18 1. Introduction

capabilities, and highly dynamic topologies (because of link instability and
node failures).
RPL builds a directed acyclic graph (DAG) representation of the network. A

DAG is a tree-like structure. It has a single root node that has no parents and
usually represents a border router, and each node can have multiple parents.
Thus, DAGs support redundancy naturally.
RPL supports three modes of traffic [137]:
– Point-to-point (i.e., unicast);
– One-to-Many (i.e., multicast) such as downlink traffic from root to chil-

dren; and,
– Many-to-One (i.e., converge-cast) such as uplink traffic from children to

root.
It shall be noted that the One-to-Many and Many-to-One modes are usually
implemented using unicast.
RPL can detect loops, and dynamically restore network connectivity after

node or link failures. If a node can reach neither its parent nor any backup (in
the up direction), it initiates a local repair to find another parent. Local repair
is simply done by broadcasting a DAG information solicitation (DIS) message.
Neighboring nodes reply to this by sending DAG information object messages
(DIO) back, enabling the requester to choose the best available parent. This
might result in a sub-optimal path for this part of the DAG, but it does not
require a network-wide routing update. However, the root node can trigger a
global repair, which rebuilds the whole DAG from scratch; yielding a more
optimal DAG at the cost of the increased routing information traffic. More-
over, RPL employs a data-path validation mechanism to facilitate detection of
possible loops by adding direction flags, e.g., up or down, to routed packets.
When a router detects a loop while processing these flags, it discards the data
packet and initiates local repair.

1.2.3 Concurrent Transmissions and the Capture Effect

In this section, we discuss concurrent transmissions (CT) in a generic context
that applies to both IEEE 802.15.4 (ZigBee PHY) and Bluetooth 5 PHY.
Definitions In Concurrent Transmissions (CT), or Synchronous Transmis-
sions, multiple nodes synchronously transmit the data they want to share.
Nodes overhearing the concurrent transmissions receive one of them with high
probability, due to the capture effect [87], or non-destructive interference. We
shall note that we use both terms Concurrent Transmissions (CT), and Syn-
chronous Transmissions interchangeably to mean tightly synchronized concur-
rent transmissions.

1.2. Background 19

(a) Summing sinuous waves with different
frequencies and phases results in a beat-
ing signal. Note that the two signals am-
plify and cancel each others periodically.
See the sum of the signals around t = 0 –
0.1 and 0.3 – 0.4, for example.

Time (ms)
0.20 0.60.4

0.3

0.1

0.2

0.4

M
ag

ni
tu

de
 (m

V
)

CT signal envelop

(b) Capturing the envelope of a beating
carrier in CT reception from two trans-
mitters using two nodes and a software
defined radio. The figure shows the en-
velope of the signal in the baseband af-
ter removing the carrier, and shall be a
constant line in the case of the optimal
transmitter.

Figure 1.2: Concurrent transmissions lead to a beating radio signal instead
of having a uniform magnitude. This is due to the frequency offset of the
commercial transmitters from the nominal standard frequency. Therefore, CT
might become destructive if the signal distortion is severe.

Capture effect: A receiving radio can capture one of the many colliding
packets under specific conditions related to the used technology [84, 87].
Non-destructive interference: If the colliding packets are tightly synchro-

nized and have the same contents, then it is highly probable that they do not
destruct each other; thus, enabling the receiving radio to recover the contents
with a high probability. Ferrari et al. [42] presents an in-depth evaluation of
this effect on 802.15.4, but they incorrectly assume it is constructive inter-
ference. Later work [91, 149] has shown that is not constructive in practice,
but not totally destructive either; i.e., the receiver decodes the packet with
a high probability, but the concurrent transmission link quality is lower than
the best single-transmission link. We confirm this as well when studying CT
over Bluetooth [5].
Factors Affecting the Performance of CT In summary, the performance
and practical feasibility of CT depend on four factors [149]: (i) the time delta
between the two packets, and (ii) the Received Signal Strength (RSS) delta.
Moreover, both (iii) the choices of the radio technology (modulation and encod-

20 1. Introduction

ing), and (iv) whether the concurrently transmitted packets have an identical
payload or not determine the range of the first two parameters for successful
reception and the final robustness of the CT link.

In practice, the carrier frequencies of the different transmitters are never ex-
actly equal. As a result, the concurrent transmission of the same data leads to a
beating radio signal, where the signal magnitude alternates between peaks and
valleys instead of being uniform, as illustrated in Figure 1.2. These variations
in frequency and phase distort the signal; thus, CT might become destructive
if the signal distortion is severe. It shall be noted that the radios transmit
preamble bytes to synchronize the frequency and phase of the receiver to that
of the transmitter. In the case of CT, the receiver would synchronize to the
effective sum of the different preambles. On the other hand, the concurrent
transmission of different data causes destructive interference of the signal that
is only recoverable when one transmitter signal has an RSS delta sufficiently
higher than the sum of the other CT as long as they are received within the du-
ration of the signal preamble. 802.15.4 radios in the 2.4 GHz band utilize DSSS,
where bits are encoded redundantly into chips with a 1:8 FEC redundancy,
i.e., 2 M chips/sec encode a 250 Kbps data stream, as highlighted earlier. This
encoding helps to recover bits from the distorted signal in both cases of CT
of the same and different data. Typically, in 802.15.4, the radio receives the
stronger one of the concurrent transmissions if its signal is 3 dBm stronger, the
so-called co-channel rejection, if they are synchronized within the preamble of
5 bytes, i.e., 160 µs [84]. However, in the case of CT of the same data over
802.15.4, if the nodes transmit within 0.5 µs, then no signal strength delta is
necessary [42]. On the other hand, radio standards that lack FEC mechanisms
experience challenges when it comes to receiving CT [91].

Glossy is a flooding protocol for network-wide synchronization and data dis-
semination [42]. It established the design principle of concurrent transmissions
of the same data in low-power wireless networks that are based on the IEEE
802.15.4 standard as it proved to be a highly reliable and efficient protocol.
Glossy operates in rounds, with a designated node, the initiator, that starts the
concurrent flooding. Nodes hearing the transmission synchronize to the net-
work and join the flooding wave by repeating the packet. The transmissions
are tightly synchronized to achieve non-destructive CT. Every node alternates
between reception and transmission and repeats this multiple times to spread
the information and achieve one-to-many data dissemination from the initiator
to the rest of the network.

Chaos is an all-to-all data sharing primitive for low-power wireless net-
works [84]. Unlike current approaches, Chaos essentially parallelizes collection,

1.3. Related Work 21

processing, and dissemination inside the network by building on two main
mechanisms: Concurrent transmission and user-defined merge operators.
In Chaos, nodes synchronously send the data they want to share. Nodes

overhearing these transmissions receive packets with a high probability due to
the capture effect [87]. Upon reception, nodes merge the received data with
their own and transmit the results again synchronously. Merging of data hap-
pens according to a user-defined merge operator. Chaos allows users to freely
program various merge operators, from simple aggregates to complex computa-
tions. For example, Chaos computes simple aggregates, such as the maximum,
in a 100-node multihop network within less than 90 milliseconds [84]. The
whole process is triggered by an appointed node, the initiator, but continues
in a fully distributed manner until all nodes in the network share the same
data.

1.3 Related Work

We review related work categorized in the following aspects: (i) conventional
networking protocols including (a) synchronized and scheduled MAC and (b)
asynchronous, low-power routing; (ii) low-power channel hopping; and, (iii)
concurrent transmissions.

1.3.1 Conventional Networking Protocols

This section reviews the work related to both scheduled MAC protocols and
asynchronous low-power routing.
Synchronized and Scheduled MAC A synchronized and scheduled MAC
protocol uses time division multiple access (TDMA) to manage medium ac-
cess: It divides time into slots, synchronizes nodes to a common time-reference
and schedules communications. The idea of synchronizing nodes and channel
hopping to combat multipath fading and external interference is common in
many technologies, including Bluetooth and cellular systems. It was brought to
low-power wireless networking through a proprietary protocol called Time Syn-
chronized Mesh Protocol (TSMP). Early promising results [29] resulted in stan-
dardizing the core technology of TSMP as WirelessHART [44], ISA100.11a [63]
and IEEE802.15.4e [61].
In a WirelessHART network, a central entity computes the communica-

tion schedule based on application requirements and on information it gathers
about network connectivity. The schedule is injected into the network and
continuously updated throughout the lifetime of the network [74]. In static
networks with predictable traffic patterns, commercial TSCH-like networks

22 1. Introduction

such as WirelessHART or SmartMesh IP [146] offer very high reliability (pub-
lished results include 99.999% on a 49-node industrial deployment [29], 99.95%
on a 15-node testbed [113]), and a decade of battery lifetime [148]. Note that
the centralized scheduling algorithms are not part of the standards and much
attention has been given to scheduling theory in the context of TSCH net-
works [110, 124, 125, 158].
In scenarios where the network topology and traffic patterns are not fixed,

decentralized scheduling is applicable. Tinka et al. [140] present, to the best
of our knowledge, the first paper to propose and demonstrate a decentralized
scheduling solution for TSCH networks. A common shared slot is used for
neighbor discovery and for negotiating the addition of dedicated slots. This
work motivated further approaches [101, 109, 157]. For example, Morell et
al. [101] take schedule negotiation one step further and propose a multihop
reservation through label switching.
Focusing on very low data rates and not limiting itself to TSCH, Dozer [17]

employs distributed scheduling for energy-efficient routing. Its goal of high
energy efficiency leads to significantly high latency. For example, experiments
report an average latency of 30 s and a PDR of 98.5% at a radio duty-cycle of
0.2% for a testbed of 90 nodes [40].
In October 2013, the IETF created the 6TiSCH working group, which stan-

dardizes how to use an IPv6-enabled upper stack on top of IEEE802.15.4-
TSCH. 6TiSCH specifies a number of mechanisms to manage the TSCH sched-
ule [139]. It defines a CoAP-based management protocol which can be used for
central scheduling, and a protocol for neighbor nodes to negotiate distributed
scheduling. 6TiSCH, however, leaves it to the implementer to decide which
scheduling approaches fit best. Finally, Deguglielmo et al. [58] proposed an
analytical model of the back-off mechanism in TSCH, taking into account the
occurrence of capture effect in shared slots.

Asynchronous, Low-power MAC and Routing At the other end of the
spectrum, an asynchronous protocol manages medium access by carrier sense
(CSMA): It senses the medium, delays transmissions until it believes it is free
from interference or competing transmissions, backs-off on collisions and re-
transmits. When used together with low-power routing, it enables dynamic
applications and transparently allows nodes to join and leave, without plan-
ning or scheduling. However, its packet loss can be up to several percents: For
example, CTP reports delivery ratios between 94% and 99.9% in data col-
lection depending on the network size and topology [51]. Recent approaches
such as ORW [85], ORPL [36] and BFC [114] improve in terms of energy ef-
ficiency and – in part – latency over CTP but still have an average PDR of
roughly 99%. Moreover, these do not employ scheduling and channel hopping;

1.3. Related Work 23

thus, they cannot avoid external interference, multi-path fading, or contention
efficiently. EM-MAC [138] and MiCMAC [4] integrate channel hopping into
asynchronous, low-power routing. As a result, they increase reliability, espe-
cially in the presence of external interference, but channel hopping with the
loosely synchronized operation leads to an extra overhead in terms of latency
and radio duty-cycle [4]. It shall be noted that similar techniques were stan-
dardized later in the CSL and RIT MAC modes of IEEE 802.15.4-2015 [61].

1.3.2 Low-power Channel Hopping

Using frequency diversity techniques has proven to be effective for combat-
ing interference [145]. It is wide-spread both in established standards, such as
Bluetooth [12], TSCH [61] and in the state of the art such as the top solu-
tions in the dependability competition [129]. By default, TSCH uses all avail-
able 16 channels of the IEEE 802.15.4 PHY layer. Hopping over all available
channels enables reliable operation even when a subset of the channels has
poor quality. Adaptive channel blacklisting for TSCH pushes reliability and
throughput further [39]. BLEach [135], implements IPv6 over BLE as in RFC
7668 [69]. Moreover, it enables adaptive channel blacklisting and adaptive duty
cycling to provide quality of service guarantees. However, it only supports star
networks but not multihop Bluetooth mesh networks.

1.3.3 Synchronous Concurrent Transmissions

In this section, we discuss the state of the art in the broader field of concurrent
transmissions and related phenomena such as constructive interference and
capture effect. We also discuss the protocols that base on these concepts in
Wireless Sensor Networks (WSNs) and Internet of Things (IoT).
Understanding Concurrent Transmissions While the capture effect is
not new and was first observed for FM transmitters [87], the capture effect in
low-power wireless networking was first experimentally studied by Ringwald
and Römer [121] over On-Off-Keying (OOK) modulation where they design
BitMAC, a MAC protocol that utilizes CT to implement simple in-network
aggregates to provide collision-free communication. Later, Son et al. [134] ex-
perimentally studies CT over 802.15.4 compatible radios. The success of con-
current transmissions in Glossy started a debate on how CT works and what
underlying physical phenomena enable it. The authors of Glossy argue that the
signals interfere constructively. Later, this was underlined by Rao et al. [119]
who utilize Glossy style flooding and through precise timing can also achieve
destructive interference to provide negative feedback.

24 1. Introduction

In contrast, Wilhelm et al. [149] introduce analytical models backed with ex-
periments to parameterize concurrent transmissions and show that these are
rather non-destructive interference instead. Thus, they argue that the signals
get degraded due to concurrent transmissions but still can be decoded. More-
over, they argue that coding is essential to improve the reliability of concurrent
transmissions. Similarly, Liao et al. [91] argue that DSSS and its coding is what
lets CT survive beating. While the mentioned papers are limited to 802.15.4 in
the 2.4GHz band, Liao et al. [92] have a limited study on CT over 802.15.4 in
sub-GHz. Roest [122] studies the capture effect and evaluates Chaos on BLE,
1 Mbps. To the best of our knowledge, no prior research has evaluated and
utilized CT over Bluetooth 5 extensively.

Concurrent Transmissions Protocols BitMAC [121], A-MAC [38] and
Glossy [42] pioneered the field of concurrent transmissions in WSNs. Glossy
provides network-wide flooding, i.e., from a single sender to all nodes in
the network, on a millisecond scale. Others, such as LWB [40], Splash [28],
Choco [136] base on Glossy to schedule individual network-floods to provide
data collection. Crystal [65] and its multichannel version [66] reduce the num-
ber of Glossy floods by relying on data prediction. CXFS [18], Sparkle [156]
and others [16, 68, 70, 127, 155] limit the number of concurrent transmitters
in Glossy or LWB while Sleeping Beauty [126] combines both limiting the
number of transmitters by putting them to sleep and scheduling Glossy floods
to improve energy efficiency. Baloo [71] provides a framework for easing the
development and implementation of Glossy-based synchronous transmissions
protocols.

SurePoint [9] builds an efficient concurrent network-wide flooding similar to
Glossy in UWB and leverages it to provide a localization service while Corbalán
and Picco [25] introduce concurrent ranging on UWB. In concurrent ranging,
a transceiver tag estimates the distance to anchors by exploiting the channel
impulse response (CIR) estimation of the anchors’ replies. The CIR estimation
function is available on standard UWB transceivers. SanpLoc [56] takes this
further by cleverly assigning a fixed delay for every anchor response, allowing
the tags to localize by listening to the simultaneous back-to-back responses of
anchors, without the need of previous knowledge of anchors locations.

Chaos [84] on the other hand extends the design of Glossy to utilize the
capture effect on 802.15.4 in the 2.4GHz band to let nodes transmit different
data and efficiently calculate network-wide aggregates by employing in-network
data processing. Mixer [60] and Codecast [99] utilize network coding techniques
for efficient many-to-many data sharing.

1.3. Related Work 25

However, since these approaches base on the capture of different data rather
than flooding the same data, it is more difficult to support them on uncoded
communication technologies such as the Bluetooth modes 1 and 2Mbps.

1.3.4 Network-wide Agreement and Transactions

Achieving agreement in conventional distributed systems is a mature research
field, with solutions such as 2PC [53] and 3PC [133], or PBFT [19] for the even
more challenging context of Byzantine Fault Tolerance. Paxos is a general (non-
Byzantine) fault-tolerant solution to the consensus problem [81, 82]. Paxos has
been extended and further optimized, for example with Fast Paxos [80], Cheap
Paxos [83] or Ring Paxos [95]. Raft [107] is an alternative to Paxos, designed
to be more comprehensive and easier to understand and implement as such
protocols are very complex in nature and implementations are error-prone.
Wireless sensor networks, however, bring unique challenges, in particular, the
low-power, multihop nature of the network, and the lossy links.
Existing literature covers distributed data processing and aggregation [72]

in WSN, but more demanding primitives such as atomic transactions, fault-
tolerant consensus, and reliable multicast are mostly limited to simulation or
modeling [59, 78, 93, 94]. While consensus has been studied in opportunistic
and ad-hoc networks [11, 24], practical approaches are limited to single-hop
networking [13, 27, 115] or have a latency of several seconds [41]. On one hand,
for example, JAG [13] provides a reliable agreement between pairs of neigh-
bors with a focus on interference resilience but does not address network-wide
agreement, and Moniz et al. [100] studied consensus with Byzantine failures in
single-hop networks. The 6P protocol [115] is being designed as part of IETF
6TiSCH for schedule negotiation; it offers transaction between pairs of neigh-
bors based on a 2/3-way handshake. On the other hand, Köpke [77] proposes
an adapted 2PC for WSNs, while Borran et al. [15] extends Paxos with a new
communication layer for opportunistic networks over the MAC layer of 802.11.
Both solutions build a tree to collect and route responses and suffer from the
overhead of maintaining the tree and collecting responses with unicast.

1.3.5 Summary

Conventional asynchronous protocols or even TDMA approaches such as
TSCH [35, 61] when combined with routing protocols such as RPL [137],
CTP [50] provide best-effort low-power routing. WSN rate-controlled proto-
cols [30, 67, 75, 108, 117] or TCP for 6LoWPAN [37] enable end-to-end reliabil-
ity on top of a best-effort routing protocol. While TDMA-style protocols have
high reliability, these protocols suffer from significantly higher latencies when

26 1. Introduction

adapting to the changing wireless environment as they need to recompute and
distribute schedules. Moreover, it is hard to support mobility in scheduled pro-
tocols, as opposed to the approaches based on synchronous transmissions [40,
60, 84].
Further, supporting group communication on top of a routing protocol is

a challenge per se. Solutions such as BMRF [45] or SMRF [106] provide such
feature in a RPL multicast context, but they exhibit high latencies and loss
rates of a few percents or tens of percents. Most importantly, existing group
communication protocols are best-effort, i.e., they do not provide end-to-end
reliability. The lack of end-to-end acknowledgments combined with the often
significantly higher latency makes it very challenging to realize advanced com-
munication primitives, such as group membership and network-wide consensus.
However, synchronous transmissions always need one central entity to con-

trol and initiate the synchronous transmissions. Moreover, they – inherently –
have a high channel utilization and are often limited in terms of generality such
as being restricted to periodic traffic. Therefore, conventional routed protocols
are better suited to general-purpose applications with RPL and IPv6.

1.4 Thesis Contributions and Roadmap

In this section, we first set the context of our work, identify concrete goals and
informally describe the journey we take to achieve these goals. Then, we dive
deeper with introductory summaries of the thesis contributions that give the
reader a deeper, yet concise, view of the rest of the thesis.

1.4.1 Thesis Roadmap and Goals

Based on our problem statement §1.1.1, the requirements we introduced
in §1.1.3, and the review of the related work §1.3, we list the following concrete
goals and we informally describe our journey in tackling them.

A. Goal: Standard-Compliant Highly Reliable Communication

A class of applications in the Internet of Things, such as building monitoring
and automation systems, requires highly reliable delivery of events that do not
have a specific pattern or a pre-defined schedule. At the same time, end-to-end
Internet connectivity and standard compliance are demanded for easy inter-
facing with other systems, for example, smart lights and indoor environmental
control.
We build on TSCH as synchronized and scheduled protocols have demon-

strated high reliability and low-energy. On one hand, we want to operate TSCH

1.4. Thesis Contributions and Roadmap 27

without the need of a centralized scheduler, as it takes time to react to net-
work conditions, and until the new schedule arrives, the network might change.
Thus, we will be tracking a continuously changing state, unless the network is
perfectly isolated from external interference and moving objects inside, which
is an unrealistic demand. On the other hand, decentralized schedulers need
complex algorithms and have a signaling overhead which might make them
impractical. Moreover, to support end-to-end traffic, the network needs rout-
ing that integrates with the communication schedules, such that the routes and
schedules stay consistent as well. This dictates the following options: Either
the scheduler provides routing tables, or we need another protocol to maintain
routes. We note that routing is widely studied, and RPL is the standard state
of the art routing protocol for low power and lossy networks.
Approach Support RPL over TSCH and infer schedules autonomously based
on the routing topology.
We summarize our work, Orchestra, that is tackling this issue in §1.4.2.A.

B. Goal: Network-Wide Consensus

Many applications build their operations on consensus; however, achieving
consensus requires to: (i) Disseminate a proposal, (ii) collect responses, (iii)
disseminate the decision, and optionally (iv) collect feedback. Realizing a con-
sensus service requires several one-to-many and many-to-one communication
steps. Thus, it is more suited to many-to-many communication styles, com-
monly supported by concurrent transmission protocols like Chaos [84] and
LWB [40]. On the contrary, realizing these steps using conventional unicast-
and routing-based protocols is slow and relatively expensive, and implementing
any of these steps, e.g., collecting responses, would take a latency of seconds
in state of the art conventional protocols [4, 34, 37, 102]. We conjecture that
achieving a network-wide consensus would take several seconds using conven-
tional methods. This is prohibitively slow for applications that require rapid
consensus, e.g., coordinating drones’ maneuvers.
Orchestra c.f., §1.4.2.A. is no exception, as it depends on routing. It is mostly

suited to converge-cast traffic and suffers from high latencies in the range of
seconds to minute. Moreover, we notice that the capture-effect contributes sig-
nificantly to the increased reliability of the shared links in Orchestra, so we turn
to investigate concurrent transmissions with in-network processing to speed up
consensus. Therefore, we liberate us from standard compliance and adopt the
concurrent transmissions style with in-network processing. We conjecture that
realizing rapid consensus services requires a rethinking of the design of the
conventional protocols and is more suited to concurrent transmissions based
designs.

28 1. Introduction

Approach We inspire from TSCH [62] and Chaos [84] and design a time-
slotted concurrent transmissions MAC layer. We realize network-wide consen-
sus, group membership, collection and aggregation services using two-phase
commit and in-network processing.
We summarize our work, A2, that is tackling this issue in §1.4.2.B.

C. Goal: Fault-Tolerant Consensus

Fault tolerance is a necessity in most practical systems and a must in mission-
critical systems. A regular user would like his system to continue working
despite a failure in one component, and such system failures could be catas-
trophic or incur financial losses in mission-critical systems. Besides, supporting
fault tolerance is of utmost importance in systems that build their operations
on consensus.
A2 supports network-wide consensus based on two-phase commit (2PC).

However, 2PC suffers from blocking when failures happen. For that, we turn
to Paxos, which is fault-tolerant by design but has a relatively high messaging
overhead.
Approach We adapt Paxos to the in-network processing and many-to-many
communication scheme supported in A2 and present Wireless Paxos.
We summarize our work, Wireless Paxos, that is tackling this issue in §1.4.2.C.

D. Goal: Enable Efficient Multihop Connectivity over Bluetooth 5

Bluetooth has a wide install base and a high adoption rate as it is available on
most modern phones and laptops. Moreover, the recent Bluetooth 5 presents
four operating modes that offer high data-rates of 1 and 2Mbps and slower but
more reliable modes that use forward error correction codes (FEC) with 500
and 125Kbps. However, the focus of Bluetooth has been on star networks, but
recently, Bluetooth mesh was introduced, which is based on flooding. State of
the art in Wireless Sensor Networks shows that concurrent transmission ap-
proaches, e.g., Glossy [42], are superior to other alternatives, especially, when
it comes to supporting fast and reliable network-wide flooding. Nevertheless,
most of the research has been focused on IEEE 802.15.4. Since Bluetooth has
a physical layer different from 802.15.4, the applicability of concurrent trans-
missions on top is questionable.
Approach We study the feasibility of concurrent transmissions over Blue-
tooth 5 and design a protocol for multihop Bluetooth networks.
We summarize our work, BlueFlood, that is tackling this issue in §1.4.2.D.

1.4. Thesis Contributions and Roadmap 29

1.4.2 Thesis Contributions

This section summarizes the papers that constitute the main body of the thesis.
We employ experimental computer science methodology in our research: We
design and implement protocols targeting real-world systems, and we evaluate
in both simulations and testbeds.

A. Orchestra: Robust Mesh Networks Through Autonomously
Scheduled TSCH

Context and Challenge With the emergence of the Internet of Things
(IoT), there is a need for a network protocol that is flexible, supports non-
deterministic applications and at the same time is highly reliable. Example
applications range from smart homes, e.g., smart lighting, to smart cities,
e.g., smart parking lots, including wearable consumer devices. state of the art
solutions have loss rates in the range of one percent [36, 51, 76, 85].
Such a loss rate renders these applications useless, buggy or at best cumber-

some to use. For example, in a smart lighting scenario, think about one light
not turning on, or in a paid parking garage, one car being charged though it
left, as the system failed to sign it off due to a lost message. No developer
would employ such a network protocol without end-to-end reliability, as done
in TCP, for example. However, with end-to-end reliability, losses trigger costly
re-transmissions which often come in a burst and result in a jittery perfor-
mance and wasted energy. At the other end of the spectrum, robust mesh
networking solutions that are designed for applications with explicitly sched-
uled traffic can achieve 2 or 3 orders of magnitude fewer losses, i.e., up to
one loss per 10.000 packets [17, 29, 40, 113, 145]. Often, these are tailored to
deterministic applications with periodic traffic and have strong assumptions
on the network topology and its wireless link dynamics. We investigate how to
apply such highly reliable scheduled solutions in non-deterministic scenarios
in the context of IoT.
Orchestra in a Nutshell We make a case for autonomous TSCH (Time Slot-
ted Channel Hopping [61]) scheduling in non-deterministic low-power RPL and
IPv6 networks. The key challenge we address is that of creating TSCH sched-
ules without hindering any of the flexibility of RPL networks and matching
the requirements of non-deterministic applications. We introduce Orchestra,
a new approach to scheduling in any scheduled MAC layer and any routing
protocol. The focus of this chapter is on the TSCH MAC layer and the RPL
routing protocol.
Traditional TSCH scheduling solutions such as WirelessHART [44] and

ISA100.11a [63] rely on a centralized scheduling entity, and the new standards

30 1. Introduction

Time

C

B

A

D

1 slotframe, e.g. 7 slots

C

B

A

D
C

B

A

D
C

B

A

D

Network

C

B

A

D

Schedule evolution

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 281 2 3 4 5 6 7Slot

Routing
Protocol
View of the
Network

Listen slot Transmit slotTransmit or listen slotRouting beacon
broadcast

I II III IV

Figure 1.3: Orchestra manages nodes schedules according to rules and to the
evolving network topology. This example demonstrates a converge-cast (or
data collection) example. We use two overlapping slotframes of 7 slots per
each node that repeat periodically, one for routing beacons and one for data
collection, but we draw them as one here. The first slot is reserved for beaconing
transmission and reception. As the routing protocol broadcasts beacons and
the directed routing tree is built, each parent node reserves reception slots to
listen to each of its children, and each of the children reserves a slot to transmit
to its parent.

being developed in the IETF 6TiSCH working group [139] employ schedule ne-
gotiation between neighbor nodes. Orchestra is radically different from existing
scheduling solutions in that it does not involve any extra central entity, nego-
tiation, signaling, nor multihop path reservation among nodes. Instead, nodes
employ simple periodic schedules and update the schedules automatically and
instantly as the routing topology evolves.
A TSCH schedule in Orchestra consists of a set of over-provisioned commu-

nication slots dedicated each to a specific communication plane: MAC, routing,
and application. A developer defines a set of scheduling rules that stipulates the
schedules based on the topology information, the traffic plane and a defined
period. As a result, Orchestra allows building a generic, flexible, low-power
routing backbone using RPL while benefiting from the robustness of TSCH.
An Orchestra schedule contains different slotframes of different lengths. Each

slotframe is dedicated to a particular type of traffic: TSCH beacons, RPL

1.4. Thesis Contributions and Roadmap 31

signaling traffic or application data. Nodes select slots using the scheduling
rules which reduce contention drastically or in certain cases eliminate con-
tention. This makes Orchestra particularly appealing for low-power IPv6 sce-
narios where different applications generate event-based data, without any
pre-defined (e.g., periodic) traffic pattern.
The following is a concrete example of a set of Orchestra scheduling rules:
– A dedicated broadcast slot from every node to its children for TSCH bea-

cons, repeating every X slots;
– A slot common for all nodes in the network for either broadcast or unicast

for RPL signaling, repeating every Y slots;
– A dedicated unicast slot from every node to its RPL preferred parent,

repeating every Z’ slots;
– N dedicated unicast slots from every node to each of its children, repeating

every Z” slots.
The key is that we select the time and channel offset of every slot as a

function of the sender’s or the receiver’s identifier (MAC address or a unique
network node ID). Based on these rules, Orchestra builds and evolves the
schedules as the routing topology evolves. For example, the first rule stipulates
a slot from every node to its children. Consequently, when a child node changes
its parent, it will automatically remove the slot associated with the old parent
and replace it with a slot associated with the new. Moreover, Orchestra can
either attain very low levels of contention or operate contention-free, depending
on the scheduling rules. For example, to guarantee a contention-free operation,
a scheduling rule may stipulate a slotframe’s length equal to the number of
nodes, and dedicate slots to nodes based on their IDs. Figure 1.3 illustrates
Orchestra in a data collection scenario.

Results We implement Orchestra and TSCH in Contiki [33], and experiment
in two testbeds with 98 and 25 nodes, each with a different hardware platform.
In total, our evaluation bases on 219 individual experiments, up to 72 hours
long, and a total of 1,178,601 UDP packets routed from source to destination.
We show that Orchestra enables autonomous TSCH scheduling in RPL net-
works and limits the loss rates to 10−4, end-to-end. This is an improvement
of 1 to 2 orders of magnitude over state of the art asynchronous solutions
such as RPL with ContikiMAC. We show that Orchestra achieves this strong
reliability while keeping energy and latency close to the state of the art.

Contributions This chapter makes the following contributions:
– The main contribution of this chapter is Orchestra, a system that allows

TSCH nodes to maintain their schedules autonomously, driven by the state
of the routing protocol. Orchestra operates without a centralized scheduler,
and inter-node schedule negotiation nor path reservation;

32 1. Introduction

– We demonstrate experimentally that Orchestra is practical, scalable, and
achieves end-to-end loss rates two orders of magnitude below asynchronous
low-power listening.

Besides, this chapter presents findings on how TSCH compares to low-power
listening, independent of Orchestra:
– Even without channel hopping, the time-slotted nature of TSCH improves

network connectivity and reduces medium utilization;
– Although it requires global synchronization, TSCH is practical in sparse

traffic scenarios, and helps achieve high reliability in networks running a
distributed routing protocol such as RPL [137], and

– TSCH can keep nodes tightly synchronized, enough to enable the radio
capture-effect in shared slots.

TSCH and Orchestra were contributed to the open-source project ContikiOS
and later to Contiki-ng.
Statement of Personal Contribution I am a co-designer of Orchestra and
a main implementer of the TSCH MAC layer. I implemented the static sched-
uler and co-designed and conducted the experimental evaluation comparing it
to Orchestra and participated in the write-up of the manuscript.
This chapter was published as a paper in the Proceedings of the Conference

on Embedded Networked Sensor Systems (ACM SenSys), 2015 [34].

B. A2– Agreement in the Air: Network-wide Consensus Utilizing
the Capture Effect in Low-power Wireless Networks

Context and Challenge Many applications in low-power wireless networks
build their operation on consensus: For example, networked cooperative robots
and UAVs agree on maneuvers to execute [7]; wireless closed-loop control appli-
cations such as adaptive tunnel lighting [21] or industrial plants [103, 105] agree
on set-points for actuators. Within the network stack, protocols need to agree
on which cryptographic keys to use [31], which channel hopping and transmis-
sion schedules to follow [61], or which nodes to elect as cluster heads [152].
These application scenarios exhibit key differences when compared to tradi-

tional data collection or dissemination in wireless sensor networks: They de-
mand primitives for network-wide consensus at low latency and highly reliable
data delivery with robustness to interference and channel dynamics [3]. For
example, after rolling out new cryptographic keys or channel hopping schemes
in a network, the new configuration can only be applied once a network-wide
agreement has been reached that all nodes are aware of the new data. Oth-
erwise, nodes might be excluded and would need to re-join the network. This
requires multi-phase agreement protocols such as two-phase commit [53]. Pro-
tocols for distributed consensus are mature solutions in a wired context, such

1.4. Thesis Contributions and Roadmap 33

as for data centers or databases, but have received little attention in low-power
wireless settings.

Approach We divide the operation of the applications that build on con-
sensus into two steps: (i) Decision making and agreement, and (ii) executing
the agreed-on action. For example, in the networked cooperative robots’ and
UAVs’ agreement on maneuvers, the nodes need to first agree on the action to
take, then they execute that action. The execution of the action, e.g., taking a
specific maneuver, needs specialized algorithms like closed-loop control meth-
ods, which are out of the scope of this thesis. We focus on decision making
and agreement, rather than how to execute the agreed-on action. We utilize
the distributed systems’ consensus methods for agreement, which are orthogo-
nal to the information consensus methods popular in the electrical engineering
domain, as in [120] for example.
We argue that the low latency of new approaches to synchronous trans-

missions, such as Glossy [42] and Chaos [84], are key enablers for distributed
consensus protocols in low-power wireless networks. We introduce A2: Agree-
ment in the Air, which builds on a new synchronous transmission kernel,
Synchrotron. Synchrotron extends the concepts introduced by Chaos with
high-precision synchronization through VHT [128], time-slotted operation, a
network-wide scheduler, frequency hopping and multiple parallel channels, and
security features (in part inspired by LWB [40] and TSCH [35, 61]). On top
of this robust base layer, we tackle the consensus challenge and show how
to enable two- and three-phase commit protocols (2PC and 3PC) [53, 133]
in low-power wireless settings. In addition, we address the consistent group
membership problem and build reliable primitives for nodes to join and leave
the network. Applications can use A2 to reliably agree on, for example, cryp-
tographic keys, channel-hopping sequences or set-points for actuators, even
in the presence of node or link failures. Next, we illustrate A2 concepts by
discussing how it realizes the two-phase commit primitive.

Two-phase Commit in A2 We achieve 2PC with two phases of synchronous
transmissions back-to-back within a single round. First, in the voting phase,
the coordinator proposes a value and collects the cohort’s votes. Once the result
of the voting phase reaches the coordinator, it decides to commit if and only if
all nodes accepted the proposal; else, i.e., after a timeout or after receiving one
or more votes against its proposal, it aborts. Second, in the commit or abort
phase, the coordinator disseminates the outcome of the vote, i.e., commit if
all agree, or abort otherwise. Upon reception, nodes switch to the new phase,
set their flags, adopt the final result and continue the dissemination. This way,
the two phases of voting and commit/abort are interleaved rather than strictly
segregated, for efficiency. This is illustrated in Figure 1.4.

34 1. Introduction

X 25X -

X 25- X

C

B

A

• A initiates a round by
sending its proposal

• B,C vote yes as the
proposal matches
their conditions

• B, C send concurrently
• A receives the stronger

one (capture effect)
and combines with
local state

C

B

A

C

B

A

• A sends the new
information

• After this step
• C has learned

the final vote

C

B

A

X 25X -

X 25X X

X 25X X

X 25X X

X 25- X

X 25X -

X 25X -

X 25X X

X 25- -A

B

C

X 25X -

• C sends the new
information

• Network converges
• A realizes

everybody agree

> 20

> 24

> 15

votes, proposalcondition

(a) Two-phase commit: Collect votes.

X 25 cX -

X 25 c- X

C

B

A

• A commits and
disseminates

• B, C receive and
commit

X 25 c- -A

B

C

ack, commit

• A, B, C merge and
spread the new info
they learn until all
flags are set

C

B

A

X 25cX X

X 25cX X

X 25cX X

(b) Two-phase commit: Commit on value.

Figure 1.4: Two-phase commit in A2: Node A proposes value 25. Nodes B, C
agree by voting for it. This result propagates back to the coordinator, who
initiates a commit phase. At the end of the second phase, all nodes have
reached the consensus to commit. Note how votes collection, processing, and
acknowledgment is done with in-network processing.

Results We implement and evaluate Synchrotron and A2 on four testbeds
ranging from 29 to 213 nodes. In our experiments, A2 completes a 2PC round
over 180 nodes within 475 ms at a 0.5% duty-cycle for 1-minute intervals.
3PC completes within 900 ms at a 0.85% duty-cycle under similar settings.
Synchrotron reliably aggregates the maximum value periodically from over
200 nodes with zero losses end-to-end, over an extensive experiment collecting
millions of data points.

1.4. Thesis Contributions and Roadmap 35

Moreover, we evaluate 2PC and 3PC’s liveness and consistency under em-
ulated failures. We show that our implementation behaves as expected: On
one hand, we notice that 2PC delivers on the promise of eliminating the in-
consistencies, as it orders the nodes that are in the uncertainty state to block
(i.e., those that voted yes and failed to hear the outcome). The price to pay is
liveness, as the whole protocol has to block until all nodes are available again
for recovery. On the other hand, 3PC results in few inconsistencies in favor of
liveness. We conclude that for applications that cannot afford inconsistencies,
2PC is a safe solution. For applications that cannot afford to block but can do
with little inconsistencies, 3PC is a practical option. Otherwise, a fault-tolerant
consensus protocol, like Paxos [82], shall be considered; c.f., §1.4.2.C.
Contributions This chapter makes the following contributions:
– We introduce network-wide voting, based on synchronous transmissions;
– We build network-wide consensus protocols for low-power wireless: two-

and three-phase commit;
– We devise a consistent group membership protocol based on network-wide

transactions; and
– We present Synchrotron, A2’s underlying kernel for synchronous transmis-

sions, which provides distributed schedules, the ability to utilize multiple
frequencies in parallel, and authentication and encryption to ensure robust
and fast agreement.

A2 and Synchrotron are available as open source1.
Statement of Personal Contribution I am the lead designer and im-
plementer of A2 and Synchrotron. In addition, I designed and conducted the
experimental evaluation and wrote a major part of the manuscript.
This chapter was published as a paper in the Proceedings of the Conference

on Embedded Networked Sensor Systems (ACM SenSys), 2017 [6].

C. Paxos Made Wireless: Consensus in the Air

Context and Challenge Many applications in low-power wireless networks
need a solution for fault-tolerant consensus, since such low-power wireless net-
works are prone to faults, nodes running out of battery, message losses, and
network segmentation. However, failures complicate the process of reaching an
agreement. It is even proven impossible to achieve consensus when at least one
node is never able to communicate [43].
In the distributed systems community, many solutions to the consensus prob-

lem have been proposed [82, 97, 107]. Paxos is one of the first protocols to pro-
vide fault-tolerant consensus [81, 82] in a non-Byzantine setting: Paxos will
1 https://github.com/iot-chalmers/a2-synchrotron

https://github.com/iot-chalmers/a2-synchrotron

36 1. Introduction

lead to a correct consensus as long as a majority of nodes are participating
and all nodes will eventually learn the correct outcome as long as the majority
accepted the decision. Paxos is often used in an extended and optimized form,
Multi-Paxos [82], which allows nodes to agree on a continuous stream of values
and enables state machine replication. For example, UAVs can continuously
coordinate their next destination with Multi-Paxos.
Paxos and Multi-Paxos have become the default protocols to ensure consis-

tent data replication within data-centers, e.g., Google’s Chubby locking mech-
anism [23], Microsoft’s data-center management Autopilot [64], and IBM’s
data-store Spinnaker [118].
However, the complexity of Paxos, and its many required interactions pose

key challenges in low-power wireless networks. Devices in WSNs have strong
resource constraints in terms of bandwidth, energy, and memory. Radios are,
for example, commonly duty-cycled to save energy [32, 102]. In contrast, Paxos
requires many message exchanges and high bandwidth to reach consensus.
Additionally, Paxos has been initially designed for wired networks, and is,

therefore, heavily influenced by their unicast structures. Later work shows that
Paxos overhead can be optimized by utilizing multicast [15], or by introducing
an additional logical ring to reduce communication overload [95]. However,
these approaches still rely on unicast for parts of the algorithm.
In contrast, low-power wireless networks are broadcast-oriented networks

where each transmission can be received by all neighboring nodes. Execut-
ing unicast-based schemes in wireless networks usually induces higher costs,
especially in multihop networks. Moreover, multihop networks also provide
opportunities for data aggregation and computation of intermediate results,
which are not part of Paxos’ design rationale.

Approach In this chapter, we bring fault-tolerant consensus to low-power
wireless networks. We propose WPaxos (Wireless Paxos), a new variant of
Paxos fitted to the characteristics of low-power wireless networking:
We co-design Paxos with the lower layers of the network stack to provide

network-wide consensus at low latency. Specifically, we base the design of
WPaxos on three principles:
– Broadcast-Oriented Communication: We take advantage of the broadcast

properties of the wireless medium to disseminate requests and collect re-
sponses efficiently from all nodes.

– Concurrent Transmissions: Like A2, we build on top of concurrent trans-
missions to provide low latency and high reliability.

– Local Computing and Aggregation: We distribute the decision logic to all
nodes through an aggregation function to convert Paxos to a many-to-
many scheme.

1.4. Thesis Contributions and Roadmap 37

Next, we design, WMulti-Paxos, a primitive that provides the functional-
ity of Multi-Paxos for agreement on a continuous stream of values and state
machine replication. Multi-Paxos allows multiple Paxos rounds to be executed
at once, by aggregating all the requests into one message, which results in a
lower duty cycle and lower latency. Our design also allows agreeing on multi-
ple values at once by piggybacking consecutive requests in order to reduce the
amount of data transmitted.
The overall result is a broadcast-driven consensus primitive using in-network

processing to compute intermediate results in Paxos. Our solution builds on
top of A2 and Synchrotron [6] that provide a basis for highly reliable and
low-latency networking in low-power wireless with support for in-network pro-
cessing.
Results We implement and evaluate WPaxos and WMulti-Paxos on two
testbeds — Flocklab and Euratech, of 27 and 188 nodes, respectively. In Eu-
ratech, WPaxos, and WMulti-Paxos take 289 ms and 133 ms for the agree-
ment among the majority, and it takes 633 ms and 500 ms for network-wide
dissemination of the agreement result. It shall be noted that Paxos considers a
consensus complete once a majority accepts. For comparison, 2PC has about
1.4× the latency of WMulti-Paxos, and 3PC takes 2.4×.
Moreover, we evaluate the consistency of WMulti-Paxos under injected fail-

ures. We show that it sustains a correct consensus without blocking, as opposed
to 2PC that blocks to handle failures.
Contributions This chapter makes the following contributions:
– By distributing parts of the consensus logic, we show that Paxos can be

expressed as a many-to-many communication scheme, rather than a mul-
ticast scheme;

– We present Wireless Paxos, a new variant of Paxos specifically designed to
address the challenges of low-power wireless networks, and Wireless Multi-
Paxos, an optimized extension of Wireless Paxos for continuous streams
of agreed values for constrained devices;

– We implement and evaluate our contributions on two testbeds, composed of
27 and 188 nodes and compare our results to solutions from the literature.

WPaxos and WMulti-Paxos are available as open source2.
Statement of Personal Contribution I have a minor role as a co-designer
and co-implementer of Wireless Paxos. I extended the underlying protocol
Synchrotron to improve the performance of Wireless Paxos, as well.
This chapter was published as a paper in the Proceedings of the Interna-

tional Conference on Embedded Wireless Systems and Networks (EWSN),

2 https://www.github.com/iot-chalmers/wireless-paxos

https://www.github.com/iot-chalmers/wireless-paxos

38 1. Introduction

2019 [112]. The paper was nominated as a candidate for the best paper award
at the conference.

D. BlueFlood: Concurrent Transmissions for Multi-Hop
Bluetooth 5

Context and Challenge Bluetooth is omnipresent communication tech-
nology. In 2017, more than 3.6 Billion Bluetooth-enabled devices were sold
and the overall installed base of Bluetooth devices is estimated to be roughly
10 Billion [1]. This makes Bluetooth predominant in our modern, connected
society. In the past decade, the research community has designed a plethora of
MAC, routing, and dissemination protocols for low-power wireless networking.
However, the focus for networking in low-power wireless has been nearly ex-
clusively on IEEE 802.15.4. For example, Glossy [42] made a breakthrough in
low-power wireless in disseminating information at network scale quickly and
efficiently. It utilizes concurrent transmissions of tightly synchronized packets
to realize flooding and synchronization services. As of today, Glossy is prac-
tically limited to 802.15.4 in the 2.4GHz band and – to a smaller degree –
ultra-wideband communication (UWB) [9, 25] and 802.15.4 in the sub-GHz
band [18].
Concurrent transmissions for Bluetooth, however, have been overlooked until

today. It is, for example, not shown whether the concepts of concurrent trans-
missions apply to Bluetooth, as Bluetooth uses a completely different physical
layer from the one used in IEEE 802.15.4 in the 2.4GHz band c.f., §1.2.2.

Approach We argue that adapting the concepts of concurrent transmissions
to Bluetooth can open a variety of new application scenarios due to the ubiq-
uitous availability of Bluetooth-enabled devices. In this chapter, we design and
evaluate concurrent transmissions on top of Bluetooth PHY. Later, we exploit
them in BlueFlood to provide network-wide flooding.
We present BlueFlood: A network stack based on concurrent transmissions

to provide low power, low-latency, and reliable flooding and data dissemination
to Bluetooth mesh networks that are battery operated.

Overview of BlueFlood BlueFlood utilizes CT of the same data, as depicted
in Figure 1.5. We take inspiration from Glossy and A2 [6] and design our
protocol to be a round-based and time-slotted protocol. Thus, just like in
Glossy, Chaos and A2, we schedule individual communication rounds on a
network-wide scale. In the beginning of a round, all nodes wake up aiming to
receive. A round is further split into time slots in which nodes either transmit,
listen or sleep, according to a so called transmission policy.

1.4. Thesis Contributions and Roadmap 39

Sleep or
BLE

connection

Flood
(e.g., every 2 Min.)F

1 2 3 54 6 7 8 9 10 Minutes

FF F F F

Flooding Round

1

2

3

4

N
od

es

Timeslot

T
X

Packet prep.,
TX/RX,
processing

R
X

Radio on
Channel 1
Channel 2
Channel 3

…

2

3

1

4

Source
Relay

Network

Figure 1.5: Overview of BlueFlood: It schedules rounds for network-wide dis-
semination that utilizes synchronous flooding. Each round has multiple slots in
which nodes transmit, receive or sleep, driven by the transmission policy: This
example uses RX / 4 TX. Each node hops the channel every timeslot. Between
two rounds, nodes either sleep or are free to run other Bluetooth connections.

Results We evaluate BlueFlood in a residential environment and show that
BlueFlood achieves 99% end-to-end delivery ratio in multihop networks with
a duty cycle of 0.13% for 1-second intervals. Moreover, we show the fragility
of CT over Bluetooth. We show that on one hand, the reception of concurrent
transmissions of different data is fragile when the uncoded modes are used and
only practical with the low bitrate coded mode 125Kbps. On the other hand,
the concurrent transmission of the same packet is practical, and we use it as
the base for designing BlueFlood.

Contributions This chapter makes five key contributions:

– We demonstrate the practical feasibility of concurrent transmissions on
Bluetooth PHY.

– We evaluate the performance trade-offs of the four different transmission
modes provided by Bluetooth 5 of 1 and 2Mbps and coded long-range
modes with 500 and 125Kbps, for concurrent transmissions.

– We introduce BlueFlood: a multihop, low-power concurrent flooding pro-
tocol for Bluetooth PHY.

– We demonstrate that BlueFlood is received by off-the-shelf receivers,
e.g., smartphones.

– We illustrate how modern System-On-Chip (SoC) hardware simplifies the
design of protocols based on concurrent transmissions.

40 1. Introduction

BlueFlood is available as open source3. This includes the code, the experi-
mental data and the scripts needed to reproduce our results.
Statement of Personal Contribution I am the sole designer and imple-
menter of BlueFlood. In addition, I designed and conducted the experimental
evaluation. I am also the lead author of the manuscript.
This chapter was published as a paper in the Proceedings of the International

Conference on Embedded Wireless Systems and Networks (EWSN), 2019 [5].
The paper received the best paper award of the conference.

1.5 Conclusions and Outlook

1.5.1 Summary and Discussions of Contributions

In this section, we summarize the contributions of the different building blocks
outlined in the thesis. We compare to related work and discuss the limitations
of our work and possible future extensions.

A. Orchestra

We address the challenge of bringing TSCH (Time Slotted Channel Hopping
MAC) to dynamic networks. We focus on low-power IPv6 and RPL networks
and introduce Orchestra. Orchestra integrates TSCH in the IPv6 stack, ex-
tracts topology information from RPL and uses a rule-based approach to create
communication schedules that fit the application traffic pattern while saving
power by turning the radio off when no communication is taking place.
TSCH provides a reliable communication substrate and RPL provides the

autonomous operation with self-forming and self-fixing abilities. The key idea
is to provision a set of slots for different traffic planes and to define the slots
in such a way that they can be automatically installed/removed as the routing
topology evolves. This scheme allows Orchestra to build non-planned networks
that support random traffic patterns while exploiting the robustness of TSCH.
Discussion Orchestra is significantly more reliable – by two orders of magni-
tude in our experiments – than state of the art asynchronous low-power rout-
ing while achieving a similar latency-energy balance. Compared to concurrent
transmissions, Orchestra has the advantage to support random-access traf-
fic, which makes it suitable for non-deterministic low-power IPv6 applications.
Compared to centralized and decentralized scheduling solutions, Orchestra dif-
fers in that nodes compute their own schedule locally and autonomously, based
on routing-layer information. Therefore, Orchestra could be considered a third
3 https://github.com/iot-chalmers/BlueFlood

https://github.com/iot-chalmers/BlueFlood

1.5. Conclusions and Outlook 41

scheduling option for 6TiSCH networks, or can potentially be used jointly
with other schedulers for facilitating the communication and maintenance of
optimized schedules.
Limitations and Possible Extensions Orchestra builds its schedules based
on runtime topology information from the routing protocol. This means that
the quality of its schedules depends on the robustness of the routing protocol.
Moreover, the assignment of timeslots to nodes in these schedules depends on
the node IDs (a hash of the node ID); thus, it requires either a pre-deployment
configuration, as we do in the chapter, or the realization of a join service.
Finally, the schedules are over-provisioned; thus, non-optimal. Nevertheless,
Orchestra is still a viable compromise, and applications with higher require-
ments may use it as a bootstrap method for establishing optimal schedules or
flow reservations.
Summary To the best of our knowledge, Orchestra is the first distributed
solution which does not require negotiation between nodes. We implement Or-
chestra in Contiki and demonstrate the practicality of Orchestra and quantify
its benefits through extensive evaluation in simulation and two testbeds uti-
lizing two hardware platforms. Orchestra reduces or even eliminates network
contention. In long-running experiments of up to 72 hours, we show that Or-
chestra achieves end-to-end delivery ratios of over 99.99%. Compared to RPL
in asynchronous low-power listening networks, Orchestra improves reliability
by two orders of magnitude with a loss rate of 10−4 vs. 10−2, while keeping
a good latency-energy balance with twice the energy budget: 1.4% duty cycle
for 0.5-second latency vs. 0.8% duty cycle for ContikiMAC.
To conclude, our first approach, Orchestra, builds on top of the TSCH MAC

layer and utilizes RPL to build and maintain the mesh network. Orchestra’s
integration with the IP stack fits the general-purpose applications and sup-
ports IoT connectivity out-of-the-box at the cost of code complexity and RPL
signaling overhead for maintaining the routing topology. Next, we discuss how
concurrent transmissions support low-latency and maintenance-free network
flooding.

B. A2– Agreement in the Air and Synchrotron

We address low-latency and reliable consensus in low-power wireless networks.
We argue that new approaches to concurrent transmissions, such as Glossy
and Chaos, combined with a slotted architecture and frequency diversity, as
done in TSCH for example, are key enablers for such protocols. We present A2:
Agreement in the Air, a system that brings distributed consensus to low-power
multihop networks. A2 introduces Synchrotron, a synchronous transmissions

42 1. Introduction

kernel that builds a robust mesh by exploiting the capture effect, frequency
hopping with parallel channels, and link-layer security. A2 builds on top of
this reliable base layer and enables the two- and three-phase commit proto-
cols, as well as network services such as group membership, hopping sequence
distribution, and re-keying.

Discussion Overall, synchronous transmissions enable low-latency network-
wide communication. In contrast to A2 and Chaos, nodes in Glossy always
need to transmit the same data packet to enable non-destructive interference.
As a result, they cannot exploit spatial diversity as Chaos and A2 do. More-
over, their tight timing requirements of non-destructive interference limit the
options of in-network processing of data. A2 builds on these results and pro-
vides advanced communication primitives. While consensus has been studied
in opportunistic and ad-hoc networks [11, 24], practical approaches are limited
to single-hop networking [13, 27, 115] or have a latency of several seconds [41].
In contrast, A2 builds on 2PC and 3PC to provide network-wide transactions
in WSN, over hundreds of nodes, at low-latency and high reliability.

Limitations and Possible Extensions A2 inherits Chaos packet size and
bit-flag limitations as it requires at least one bit per node. A workaround could
be possible by investigating data compression mechanisms, which in turn add
to the computational overhead of A2. Moreover, it inherits the limitations
of the capture effect; namely, scalability and technology dependence: (i) The
link quality degrades with the increase of the number of concurrent transmis-
sions, and (ii) the utility of the capture effect varies with physical-layer design,
e.g., modulation, timing, and error-correction mechanisms. For example, it was
shown that the capture-effect performance is questionable over WiFi [55] and
Bluetooth [122]. Nevertheless, A2 presents a viable design for 802.15.4 networks
with hundreds of nodes. Besides, point-to-point communications are costly as
A2 builds on all-to-all primitives. In other words, to perform a point-to-point
message delivery in A2, we would need network-wide dissemination. Moreover,
supporting random traffic patterns is costly since A2 builds on periodic op-
eration. For example, A2 would need to either waste energy waking up often
to check if there are events to serve or would adopt a low wakeup frequency
to save energy at the cost of the high latency. Therefore, new mechanisms are
needed to support an efficient event-triggered operation, as done in Crystal [65,
66], for example. Finally, A2 is not standard-compliant. However, we conjec-
ture that it is feasible to embed A2 mechanisms over TSCH as concurrent
transmission links are simply shared transmission slots in a TSCH schedule.

Summary We evaluate A2 on four public testbeds with different deployment
densities and sizes. Our extensive experimental evaluation shows that A2 (i) is
highly reliable, achieving zero losses over millions of data-points; (ii) achieves

1.5. Conclusions and Outlook 43

low power and low latency, e.g., A2 requires only 475 ms to complete a two-
phase commit over 180 nodes with a duty cycle of 0.5% for 1-minute intervals;
and (iii) enables network-wide agreement, with different consistency/liveness
tradeoffs: For example, the two-phase commit ensures transaction consistency
in A2 while the three-phase commit provides liveness at the expense of incon-
sistency under specific failure scenarios.
To conclude, A2 builds on synchronous flooding and in-network processing

methods, and extends them with time slotting and channel hopping. Syn-
chronous flooding gives a reliable and autonomous communication substrate
since flooding is a greedy strategy, and does not need to maintain the network
topology. In-network processing enhances the low latency of the communica-
tion, as it aggregates data and executes the protocol logic while communi-
cating. To this end, A2 enables the realization of reliable consensus services.
However, it does not address fault-tolerance which is paramount in practi-
cal solutions. Next, we discuss how to support fault-tolerant consensus over
low-power wireless networks.

C. Wireless Paxos

We present Wireless Paxos, a fault-tolerant, network-wide consensus primitive
that builds on top of concurrent transmissions to offer low-latency and reliable
consensus in low-power wireless networks. While established designs of con-
sensus protocols like Paxos are unfit for low-power wireless deployments due
to their dependence on unicast communications, Wireless Paxos fills this gap
by showing that Paxos can be expressed as a many-to-many communication
scheme.
Discussion Most consensus solutions rely on routing or are limited to single-
hop. In contrast, Wireless Paxos co-designs Paxos with the lower layers of
the network stack to provide an efficient and low-latency consensus primitive
for low-power wireless networks. We do not rely on any routing but utilize
concurrent transmissions to communicate in multihop networks. While our A2

provides an implementation of 2/3PC using concurrent transmissions [6], Wire-
less Paxos reuses the transmission kernel introduced by A2, but the consensus
primitives differ. A2 handles failures by delaying the decision (consistency over
availability), while Paxos handles failures through majorities.
Limitations and Possible Extensions We inherit the limitations of A2,
e.g., the limited scalability and the need for one flag bit per node, and the lim-
itations of Paxos, e.g., requiring a majority. While we design Wireless Paxos
to utilize the group communication and in-network processing features of A2,
we do not consider potential alternative designs that are better suited to the

44 1. Introduction

partially synchronous nature of A2. For example, with the support of reliable
ordered multicasts over A2, we can potentially design a simpler consensus pro-
tocol with a series of multicasts. An inspiring example protocol is NoPaxos [89]
which is designed for data centers with programmable switches.
Summary By co-designing the Paxos consensus primitive along with the
lower layers of the network stack and concurrent transmissions, we offer a
highly reliable, fault-tolerant and low-latency consensus. We experimentally
demonstrate that Wireless Paxos: (i) guarantees that at most one value can
be agreed upon; (ii) provides consensus between 188 nodes in a testbed in 289
ms, and (iii) stays consistent under injected failures.
To conclude, Wireless Paxos and A2 show how to build efficient and reliable

network-wide consensus services. Both of them utilize concurrent transmission
methods over IEEE 802.15.4 to achieve that. However, we miss a discussion
of how concurrent transmissions (CT) apply to other low-power technologies.
Next, we discuss supporting CT over Bluetooth.

D. BlueFlood

We address concurrent transmission over Bluetooth and study its feasibility in
a controlled environment. Based on the feasibility study, we build BlueFlood;
an efficient and reliable network flooding protocol inspired by Glossy.
Discussion Concurrent transmission protocols such as Glossy [42], LWB [40],
Splash [28], Choco [136], Crystal [65], CXFS [18], Sparkle [156], Sleeping
Beauty [126] and others [16, 68, 70, 127, 155] enable low-latency network-
wide communication. While none of the related protocols support Bluetooth,
the concepts are generally extendable to other technologies given that concur-
rent transmissions are supported. BlueFlood builds on these results to bring
efficient network flooding to Bluetooth mesh networks.
Limitations and Possible Extensions The scope of the feasibility analysis
of the concurrent transmissions in this chapter is limited to experimental evalu-
ation. Further studies with physical layer modeling of concurrent transmissions
are paramount. Moreover, the experimental evaluation of the BlueFlood proto-
col is limited to a single small testbed. Besides, the reliability of BlueFlood can
be improved to achieve a loss rate below 10−5 as required for mission-critical
applications. Finally, a study of the bit-error pattern in concurrent transmis-
sions could lead to a viable forward error correction mechanism to improve
reliability.
Summary Our experimental evaluation shows that: (i) although CT is more
fragile over Bluetooth PHY than it is over 802.15.4, it is a viable communi-
cation strategy for network-wide dissemination; (ii) BlueFlood achieves data

1.5. Conclusions and Outlook 45

dissemination with high reliability, low power, and low latency; (iii) the choice
of the transmission mode (125Kbps – 2Mbps) provides a tradeoff between
reliability, energy, and latency; and (iv) BlueFlood floods can be received on
unmodified off-the-shelf Bluetooth-capable devices, e.g., smartphones, and lap-
tops.

1.5.2 Possible Future Directions

In this thesis, we investigate complementary approaches to build highly reli-
able, low power and low latency autonomous wireless networks. Our solutions
run without any central scheduling entity or schedule negotiation and provide
high-reliability communication. Moreover, we present protocols that address
low-latency and reliable fault-tolerant consensus in low-power wireless net-
works as well. Finally, we show the feasibility of low-latency and reliable data
dissemination over multihop Bluetooth mesh networks. Admittedly, while we
investigate certain aspects of the aforementioned topics; we leave many open
doors, and we realize other important aspects that we overlooked through our
journey. In this section, we highlight some directions that are viable candidates
for impactful future work.

A. Thorough Understanding of Concurrent Transmissions

In our work, we build protocols based on concurrent transmissions (CT), as
CT enables efficient and reliable connectivity services. However, we only evalu-
ate CT feasibility empirically over two physical layers; 802.15.4 and Bluetooth.
Having a deeper understanding of CT would first strengthen our view of its
strengths and limitations, Second, it would potentially uncover specialized
techniques to enhance its resilience. For example, if we can uncover specific er-
ror patterns, we could design error correction techniques to specifically combat
them. Moreover, since CT has a potential of improving protocol performance,
we need to understand its applicability over other physical layers, e.g., 5G-
NBIoT and WiFi. While there have been studies on CT over WiFi [55], more
can be done to investigate what features or techniques we can use to enhance
CT quality over WiFi, for example.

B. Investigating Scheduling Mechanisms

While we have shown viable approaches for autonomously scheduled commu-
nication in Orchestra [34] and A2 [6], both are suboptimal. To have nearly
optimal results, communication scheduling shall be employed. The challenge

46 References

with scheduling is the high overhead for communicating and updating a sched-
ule that adapts to the continuously changing wireless medium. However, with
a careful balance of centrally devised, autonomous and peer-negotiated tech-
niques, it is potentially possible to come up with a solution that outperforms
both the slow classically scheduled and the suboptimal autonomously sched-
uled techniques.

C. Investigating Specialized Consensus Protocols

While we have demonstrated two alternative protocols for achieving strong
consensus (with two-phase commit in A2 [6]), and fault-tolerant eventual con-
sistency (with Wireless Paxos over A2 [112]), we still have space to potentially
achieve higher performance by carefully designing a consensus protocol that
fully utilizes the networking protocols’ features. The aforementioned proto-
cols make use of the group communication feature and in-network process-
ing. While these consensus protocols, i.e., 2PC and Paxos, are built for asyn-
chronous or eventually synchronous systems, they are not optimal for partially
synchronous systems that are synchronized and have access to a time refer-
ence. For example, with the support of reliable ordered multicasts over A2, we
can potentially design a simpler consensus protocol with a series of multicasts.
Besides, we motivate our research with factory automation and UAV maneuver
coordination, but due to the complexity of these systems and the lack of time,
we do not attempt to engineer solutions that practically solve these problems.
It would be interesting to investigate the application of distributed consensus
protocols to solve these problems.

References

[1] ABI Research. Installed Base of Bluetooth-enabled Devices Worldwide
in 2012 and 2018. Statista - The Statistics Portal. Aug. 2013. url:
https://www.statista.com/statistics/283638/installed-base-
forecast-bluetooth-enabled-devices-2012-2018/ (cit. on p. 38).

[2] J. Åkerberg, M. Gidlund, and M. Björkman. “Future research chal-
lenges in wireless sensor and actuator networks targeting industrial
automation.” In: IEEE International Conference on Industrial Infor-
matics. July 2011 (cit. on pp. 3–5).

[3] Johan Åkerberg, Mikael Gidlund, Tomas Lennvall, Krister Landerns,
and Mats Bjökman. “Design Challenges and Objectives in Industrial
Wireless Sensor Networks.” In: Industrial Wireless Sensor Networks:
Applications, Protocols, and Standards. 2013 (cit. on pp. 6, 32).

https://www.statista.com/statistics/283638/installed-base-forecast-bluetooth-enabled-devices-2012-2018/
https://www.statista.com/statistics/283638/installed-base-forecast-bluetooth-enabled-devices-2012-2018/

References 47

[4] Beshr Al Nahas, Simon Duquennoy, Venkatraman Iyer, and Thiemo
Voigt. “Low-Power Listening Goes Multi-Channel.” In: Proceedings of
the Conference Distributed Computing in Sensor Systems (DCOSS).
2014 (cit. on pp. 23, 27).

[5] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. “Concurrent
Transmissions for Multi-Hop Bluetooth 5.” In: Proceedings of the In-
ternational Conference on Embedded Wireless Systems and Networks
(EWSN). 2019 (cit. on pp. 19, 38, 40).

[6] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. “Network-
wide Consensus Utilizing the Capture Effect in Low-power Wireless
Networks.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2017 (cit. on pp. 32, 35, 37, 38, 43, 45,
46).

[7] Jude Allred, Ahmad Bilal Hasan, Saroch Panichsakul, William Pisano,
Peter Gray, Jyh Huang, Richard Han, Dale Lawrence, and Kamran
Mohseni. “SensorFlock: An Airborne Wireless Sensor Network of Micro-
air Vehicles.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2007 (cit. on pp. 5, 32).

[8] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. “Basic Concepts and Taxonomy of Dependable and Secure
Computing.” In: IEEE Transactions on Dependable and Secure Com-
puting 1 (Jan. 2004) (cit. on p. 6).

[9] B. Kempke et al. “SurePoint: Exploiting Ultra Wideband Flooding and
Diversity to Provide Robust, Scalable, High-Fidelity Indoor Localiza-
tion.” In: Proceedings of the Conference on Embedded Networked Sensor
Systems (ACM SenSys). 2016 (cit. on pp. 24, 38).

[10] N. Baccour, A. Koubâa, C. Noda, H. Fotouhi, M. Alves, H. Youssef,
M.A. Zúñiga, C.A. Boano, K. Römer, D. Puccinelli, et al. Radio Link
Quality Estimation in Low-Power Wireless Networks. SpringerBriefs in
Electrical and Computer Engineering. Springer International Publish-
ing, 2013. isbn: 9783319007748 (cit. on p. 8).

[11] Abdulkader Benchi and Pascale Launay. “Solving Consensus in Op-
portunistic Networks.” In: ICDCN. 2015. isbn: 9781450329286. doi:
10.1145/2684464.2684479 (cit. on pp. 25, 42).

[12] Bluetooth SIG. Bluetooth 5 Core Specifications. 2016. url: https :
/ / www . bluetooth . com / specifications / bluetooth - core -
specification (cit. on pp. 11, 23).

[13] C. A. Boano, M. A. Zuniga, K. Römer, and T. Voigt. “JAG: Reli-
able and Predictable Wireless Agreement under External Radio Inter-

https://doi.org/10.1145/2684464.2684479
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

48 References

ference.” In: Proceedings of the IEEE Real-Time Systems Symposium
(IEEE RTSS). 2012 (cit. on pp. 25, 42).

[14] Martin Bor and Utz Roedig. “LoRa Transmission Parameter Selection.”
In: Proceedings of the Conference Distributed Computing in Sensor Sys-
tems (DCOSS). 2017 (cit. on p. 9).

[15] F. Borran, R. Prakash, and A. Schiper. “Extending Paxos/LastVot-
ing with an Adequate Communication Layer for Wireless Ad Hoc Net-
works.” In: IEEE SRDS. 2008 (cit. on pp. 25, 36).

[16] M. Brachmann, O. Landsiedel, and S. Santini. “Concurrent Transmis-
sions for Communication Protocols in the Internet of Things.” In: Pro-
ceedings of the Conference on Local Computer Networks (IEEE LCN).
2016 (cit. on pp. 24, 44).

[17] Nicolas Burri, Pascal Von Rickenbach, and Roger Wattenhofer. “Dozer:
Ultra-Low Power Data Gathering in Sensor Networks.” In: Proceed-
ings of the Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN). 2007 (cit. on pp. 22, 29).

[18] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali. “Forwarder
Selection in Multi-transmitter Networks.” In: Proceedings of the Con-
ference Distributed Computing in Sensor Systems (DCOSS). 2013 (cit.
on pp. 24, 38, 44).

[19] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance.” In: Proceedings of the Symposium on Operating Systems Design
& Implementation (USENIX OSDI). 1999 (cit. on p. 25).

[20] Marco Cattani, Carlo Alberto Boano, and Kay Römer. “An Experi-
mental Evaluation of the Reliability of LoRa Long-Range Low-Power
Wireless Communication.” In: Journal of Sensor and Actuator Networks
2 (June 2017) (cit. on p. 9).

[21] M. Ceriotti et al. “Is there light at the ends of the tunnel? Wireless
sensor networks for adaptive lighting in road tunnels.” In: Proceed-
ings of the Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN). 2011 (cit. on pp. 5, 32).

[22] Ericsson Mobility Report - On the pulse of the Networked Society. Tech.
rep. Ericsson, Stockholm, Sweden, June 2019. url: https : / / www .
ericsson.com/mobility-report (cit. on p. 1).

[23] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. “Paxos
Made Live: An Engineering Perspective.” In: ACM PODC. 2007. doi:
10.1145/1281100.1281103. url: http://doi.acm.org/10.1145/
1281100.1281103 (cit. on p. 36).

https://www.ericsson.com/mobility-report
https://www.ericsson.com/mobility-report
https://doi.org/10.1145/1281100.1281103
http://doi.acm.org/10.1145/1281100.1281103
http://doi.acm.org/10.1145/1281100.1281103

References 49

[24] Gregory Chockler, Murat Demirbas, Seth Gilbert, Calvin Newport, and
Tina Nolte. “Consensus and Collision Detectors in Wireless Ad Hoc
Networks.” In: ACM PODC. 2005 (cit. on pp. 25, 42).

[25] Pablo Corbalán and Gian Pietro Picco. “Concurrent Ranging in Ultra-
wideband Radios: Experimental Evidence, Challenges, and Opportu-
nities.” In: Proceedings of the International Conference on Embedded
Wireless Systems and Networks (EWSN). 2018 (cit. on pp. 24, 38).

[26] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. 5th. USA: Addison-Wesley
Publishing Company, 2011. isbn: 0132143011 (cit. on p. 12).

[27] M. Demirbas, O. Soysal, and M. Hussain. “TRANSACT: A Transac-
tional Framework for Programming Wireless Sensor/Actor Networks.”
In: Proceedings of the Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN). 2008 (cit. on pp. 25, 42).

[28] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong.
“Splash: Fast Data Dissemination with Constructive Interference in
Wireless Sensor Networks.” In: Proceedings of the Symposium on Net-
worked Systems Design & Implementation (USENIX NSDI). 2013 (cit.
on pp. 24, 44).

[29] Lance Doherty, William Lindsay, and Jonathan Simon. “Channel-
Specific Wireless Sensor Network Path Data.” In: Proceedings of the
IEEE International Conference on Computer Communications and
Networks (IEEE ICCCN). 2007 (cit. on pp. 21, 22, 29).

[30] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. “When
Pipelines Meet Fountain: Fast Data Dissemination in Wireless Sensor
Networks.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2015 (cit. on p. 25).

[31] Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney,
Jonathan Katz, and Aram Khalili. “A Pairwise Key Predistribution
Scheme for Wireless Sensor Networks.” In: ACM Transactions on In-
formation and System Security (TISSEC) (2005) (cit. on p. 32).

[32] Adam Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Tech.
rep. T2011:13. Swedish Institute of Computer Science, 2011 (cit. on
p. 36).

[33] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. “Contiki - A
Lightweight and Flexible Operating System for Tiny Networked Sen-
sors.” In: Proceedings of the Conference on Local Computer Networks
(IEEE LCN). 2004 (cit. on p. 31).

[34] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas
Watteyne. “Orchestra: Robust Mesh Networks Through Autonomously

50 References

Scheduled TSCH.” In: Proceedings of the Conference on Embedded Net-
worked Sensor Systems (ACM SenSys). 2015 (cit. on pp. 27, 29, 32,
45).

[35] Simon Duquennoy, Atis Elsts, Beshr Al Nahas, and George Oikonomou.
“TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation.”
In: Proceedings of the Conference Distributed Computing in Sensor Sys-
tems (DCOSS). 2017 (cit. on pp. 25, 33).

[36] Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. “Let the Tree
Bloom: Scalable Opportunistic Routing with ORPL.” In: Proceedings
of the Conference on Embedded Networked Sensor Systems (ACM Sen-
Sys). 2013 (cit. on pp. 22, 29).

[37] Simon Duquennoy, Fredrik Österlind, and Adam Dunkels. “Lossy Links,
Low Power, High Throughput.” In: Proceedings of the Conference on
Embedded Networked Sensor Systems (ACM SenSys). 2011 (cit. on
pp. 25, 27).

[38] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike
Liang, and Andreas Terzis. “Design and Evaluation of a Versatile and
Efficient Receiver-Initiated Link Layer for Low-Power Wireless.” In:
Proceedings of the Conference on Embedded Networked Sensor Systems
(ACM SenSys). 2010 (cit. on p. 24).

[39] Atis Elsts et al. “Adaptive Channel Selection in IEEE 802.15.4 TSCH
Networks.” In: Global Internet of Things Summit. 2017 (cit. on p. 23).

[40] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. “Low-PowerWire-
less Bus.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2012 (cit. on pp. 22, 24, 26, 27, 29, 33,
44).

[41] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. “Virtual Syn-
chrony Guarantees for Cyber-physical Systems.” In: Proceedings of the
IEEE International Symposium on Reliable Distributed Systems (IEEE
SRDS). 2013 (cit. on pp. 25, 42).

[42] Federico Ferrari et al. “Efficient Network Flooding and Time Synchro-
nization with Glossy.” In: Proceedings of the Conference on Informa-
tion Processing in Sensor Networks (ACM/IEEE IPSN). 2011 (cit. on
pp. 11, 19, 20, 24, 28, 33, 38, 44).

[43] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Im-
possibility of Distributed Consensus with One Faulty Process.” In: J.
ACM (1985). issn: 0004-5411. doi: 10.1145/3149.214121. url: http:
//doi.acm.org/10.1145/3149.214121 (cit. on pp. 10, 35).

https://doi.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121

References 51

[44] HART Communication Foundation. WirelessHART Specification 75:
TDMA Data-Link Layer. HCF_SPEC-75. HART Communication
Foundation, 2008 (cit. on pp. 21, 29).

[45] Guillermo Gastón Lorente, Bart Lemmens, Matthias Carlier, An
Braeken, and Kris Steenhaut. “BMRF: Bidirectional Multicast RPL
Forwarding.” In: Ad Hoc Netw. 54 (Jan. 2017) (cit. on p. 26).

[46] M. Gidlund, S. Han, et al. “Guest Editorial From Industrial Wireless
Sensor Networks to Industrial Internet of Things.” In: IEEE Transac-
tions on Industrial Informatics 5 (May 2018) (cit. on p. 5).

[47] M. Gidlund, T. Lennvall, and J. Åkerberg. “Will 5G become yet another
wireless technology for industrial automation?” In: IEEE International
Conference on Industrial Technology (ICIT). Mar. 2017 (cit. on p. 9).

[48] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibil-
ity of Consistent, Available, Partition-tolerant Web Services.” In: ACM
SIGACT News 2 (June 2002) (cit. on p. 10).

[49] Alasdair Gilchrist. Industry 4.0: The Industrial Internet of Things. 1st.
Berkely, CA, USA: Apress, 2016. Chap. 13. isbn: 9781484220467 (cit.
on p. 2).

[50] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis. “Collection Tree Protocol.” In: Proceedings of the Con-
ference on Embedded Networked Sensor Systems (ACM SenSys). 2009
(cit. on pp. 16, 25).

[51] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis. “Collection Tree Protocol.” In: Proceedings of the Con-
ference on Embedded Networked Sensor Systems (ACM SenSys). 2009
(cit. on pp. 22, 29).

[52] António Gonga, Olaf Landsiedel, Pablo Soldati, and Mikael Johansson.
“Revisiting Multi-channel Communication to Mitigate Interference and
Link Dynamics in Wireless Sensor Networks.” In: Proceedings of the
Conference Distributed Computing in Sensor Systems (DCOSS). 2012
(cit. on p. 8).

[53] Jim Gray. “Notes on Data Base Operating Systems.” In: Operating Sys-
tems, An Advanced Course. 1978 (cit. on pp. 11, 12, 25, 32, 33).

[54] Jim Gray and Leslie Lamport. “Consensus on Transaction Commit.” In:
MSR-TR-2003-96 (Jan. 2004). ACM Transactions on Database Systems
31, 1 (2006). url: https://www.microsoft.com/en-us/research/
publication/consensus-on-transaction-commit/ (cit. on pp. 13,
14).

[55] F. Gringoli, R. Klose, M. Hollick, and N. Ali. “Making Wi-Fi Fit for
the Tactile Internet: Low-Latency Wi-Fi Flooding Using Concurrent

https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

52 References

Transmissions.” In: IEEE International Conference on Communications
Workshops (ICC Workshops). May 2018 (cit. on pp. 42, 45).

[56] Bernhard Großwindhager, Michael Stocker, Michael Rath, Carlo Al-
berto Boano, and Kay Römer. “SnapLoc: An Ultra-fast UWB-based
Indoor Localization System for an Unlimited Number of Tags.” In: Pro-
ceedings of the Conference on Information Processing in Sensor Net-
works (ACM/IEEE IPSN). 2019 (cit. on p. 24).

[57] Mesh Working Group. Bluetooth Specification: Mesh Profile. Blue-
tooth SIG. 2019. url: https : / / www . bluetooth . com /
specifications/mesh-specifications/ (cit. on p. 16).

[58] Domenico De Guglielmo, Beshr Al Nahas, Simon Deuqennoy, Thiemo
Voigt, and Giuseppe Anastasi. “Analysis and experimental evaluation
of IEEE 802.15.4e TSCH CSMA-CA Algorithm.” In: PP (99 2016) (cit.
on p. 22).

[59] G. Gupta and M. Younis. “Fault-tolerant clustering of wireless sensor
networks.” In: Proceedings of the IEEE Conference on Wireless Com-
munications and Networking (WCNC). 2003 (cit. on p. 25).

[60] Carsten Herrmann, Fabian Mager, and Marco Zimmerling. “Mixer: Ef-
ficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks.”
In: ACM SenSys. 2018 (cit. on pp. 24, 26).

[61] IEEE. 802.15.4-2015: IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs) 1: MAC sublayer. Apr. 2016 (cit. on pp. 11, 16, 21, 23, 25, 29,
32, 33).

[62] IEEE. 802.15.4-2015: IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs) 1: MAC sublayer. 2016 (cit. on p. 28).

[63] ISA. ISA-100.11a-2011 – Wireless Systems for Industrial Automation:
Process Control and Related Applications. ISA, 2011 (cit. on pp. 21,
29).

[64] Michael Isard. Autopilot: Automatic Data Center Management. Tech.
rep. Microsoft, 2007 (cit. on p. 36).

[65] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza.
“Data Prediction + Synchronous Transmissions = Ultra-low Power
Wireless Sensor Networks.” In: Proceedings of the Conference on Em-
bedded Networked Sensor Systems (ACM SenSys). 2016 (cit. on pp. 24,
42, 44).

[66] Timofei Istomin, Matteo Trobinger, Amy L. Murphy, and Gian Pietro
Picco. “Interference-Resilient Ultra-Low Power Aperiodic Data Collec-

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/

References 53

tion.” In: Proceedings of the Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN). 2018 (cit. on pp. 24, 42).

[67] Yogesh G. Iyer, Shashidhar Gandham, and S. Venkatesan. “STCP: A
Generic Transport Layer Protocol for Wireless Sensor Networks.” In:
Proceedings of the IEEE International Conference on Computer Com-
munications and Networks (IEEE ICCCN). 2005 (cit. on p. 25).

[68] J. Jeong et al. “Low-power and topology-free data transfer protocol with
synchronous packet transmissions.” In: Proceedings of the Conference
on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE
SECON). 2014 (cit. on pp. 24, 44).

[69] J. Nieminen et al. IPv6 over Bluetooth Low Energy. RFC 7668. 2015
(cit. on p. 23).

[70] J. Zhang et al. “RFT: Identifying Suitable Neighbors for Concurrent
Transmissions in Point-to-Point Communications.” In: Proceedings of
the Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (ACM MSWiM). 2015 (cit. on pp. 24, 44).

[71] Romain Jacob, Jonas Baechli, Reto Da Forno, and Lothar Thiele. “Syn-
chronous Transmissions Made Easy: Design Your Network Stack with
Baloo.” In: Proceedings of the International Conference on Embedded
Wireless Systems and Networks (EWSN). 2019 (cit. on p. 24).

[72] Shouling Ji, Jing (Selena) He, and Zhipeng Cai. “Data Gathering in
Wireless Sensor Networks.” In: The Art of Wireless Sensor Networks.
Ed. by Habib M. Ammari. Signals and Communication Technology.
Springer, 2014 (cit. on p. 25).

[73] Sokratis Kartakis, Babu D. Choudhary, Alexander D. Gluhak, Lambros
Lambrinos, and Julie A. McCann. “Demystifying Low-power Wide-
area Communications for City IoT Applications.” In: Proceedings of
the ACM International Workshop on Wireless Network Testbeds, Ex-
perimental Evaluation, and Characterization (ACM WiNTECH). 2016
(cit. on p. 9).

[74] Anna N. Kim, Fredrik Hekland, Stig Petersen, and Paula Doyle.
“When HART goes wireless: Understanding and implementing the
WirelessHART standard.” In: IEEE Conference on Emerging Technolo-
gies Factory Automation (ETFA). 2008 (cit. on p. 21).

[75] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David
Culler, Philip Levis, Scott Shenker, and Ion Stoica. “Flush: A Reliable
Bulk Transport Protocol for Multihop Wireless Networks.” In: Proceed-
ings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 2007 (cit. on p. 25).

54 References

[76] JeongGil Ko, Joakim Eriksson, Nicolas Tsiftes, Stephen Dawson-
Haggerty, Jean-Philippe Vasseur, Mathilde Durvy, Andreas Terzis,
Adam Dunkels, and David Culler. “Industry: Beyond Interoperability:
Pushing the Performance of Sensor Network IP Stacks.” In: Proceed-
ings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 2011 (cit. on p. 29).

[77] Andreas Köpke. “Engineering a communication protocol stack to sup-
port consensus in sensor networks.” PhD thesis. TU Berlin, 2012 (cit.
on p. 25).

[78] B. Krishnamachari and S. Iyengar. “Distributed Bayesian algorithms
for fault-tolerant event region detection in wireless sensor networks.”
In: IEEE Transactions on Computers 53.3 (2004) (cit. on p. 25).

[79] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing:
Principles, Algorithms, and Systems. New York, NY, USA: Cambridge
University Press, 2011. isbn: 0521189845 (cit. on p. 12).

[80] Leslie Lamport. “Fast Paxos.” In: Distributed Computing 19.2 (2006)
(cit. on p. 25).

[81] Leslie Lamport. “Paxos Made Simple.” In: SIGACT 32 (2001). url:
https : / / www . microsoft . com / en - us / research / publication /
paxos-made-simple/ (cit. on pp. 11, 25, 35).

[82] Leslie Lamport. “The part-time parliament.” In: ACM TOCS 16.2
(1998). doi: 10.1145/279227.279229. url: https://doi.org/10.
1145/279227.279229 (cit. on pp. 11–13, 25, 35, 36).

[83] Leslie Lamport and Mike Massa. “Cheap Paxos.” In: IEEE/IFIP DSN.
2004. isbn: 0-7695-2052-9. url: http://dl.acm.org/citation.cfm?
id=1009382.1009745 (cit. on p. 25).

[84] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. “Chaos: Ver-
satile and Efficient All-to-All Data Sharing and In-Network Processing
at Scale.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2013 (cit. on pp. 19–21, 24, 26–28, 33).

[85] Olaf Landsiedel, Euhanna Ghadimi, Simon Duquennoy, and Mikael Jo-
hansson. “Low Power, Low Delay: Opportunistic Routing meets Duty
Cycling.” In: Proceedings of the Conference on Information Processing
in Sensor Networks (ACM/IEEE IPSN). 2012 (cit. on pp. 22, 29).

[86] Jean-Claude Laprie. “Dependable Computing: Concepts, Limits, Chal-
lenges.” In: Proceedings of the International Conference on Fault-
tolerant Computing (FTCS). IEEE Computer Society, 1995 (cit. on
p. 6).

https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
http://dl.acm.org/citation.cfm?id=1009382.1009745
http://dl.acm.org/citation.cfm?id=1009382.1009745

References 55

[87] K. Leentvaar and J. Flint. “The Capture Effect in FM Receivers.” In:
IEEE Transactions on Communications 24.5 (1976) (cit. on pp. 18, 19,
21, 23).

[88] T. Lennvall, M. Gidlund, and J. Åkerberg. “Challenges when bringing
IoT into industrial automation.” In: IEEE AFRICON. Sept. 2017 (cit.
on pp. 3–5).

[89] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. “Just Say NO to Paxos Overhead: Replacing Consensus
with Network Ordering.” In: USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). USENIX Association, 2016.
url: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/li (cit. on p. 44).

[90] W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu, W.
Yang, and X. Zhao. “WIA-FA and Its Applications to Digital Factory:
A Wireless Network Solution for Factory Automation.” In: Proceedings
of the IEEE 6 (June 2019) (cit. on pp. 3, 4).

[91] Chun-Hao Liao, Yuki Katsumata, Makoto Suzuki, and Hiroyuki
Morikawa. “Revisiting the So-Called Constructive Interference in Con-
current Transmission.” In: Proceedings of the Conference on Local Com-
puter Networks (IEEE LCN). 2016 (cit. on pp. 19, 20, 24).

[92] Chun-Hao Liao, Makoto Suzuki, and Hiroyuki Morikawa. “Poster Ab-
stract: Toward Robust Concurrent Transmission for sub-GHz Non-
DSSS Communication.” In: Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys). 2016 (cit. on p. 24).

[93] Hai Liu, Amiya Nayak, and Ivan Stojmenović. “Fault-Tolerant Algo-
rithms/Protocols in Wireless Sensor Networks.” In: Guide to Wireless
Sensor Networks. Ed. by Subhas Chandra Misra, Isaac Woungang, and
Sudip Misra. 2009 (cit. on p. 25).

[94] X. Luo, M. Dong, and Y. Huang. “On distributed fault-tolerant detec-
tion in wireless sensor networks.” In: IEEE Transactions on Computers
55.1 (2006) (cit. on p. 25).

[95] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pedone. “Ring
Paxos: A high-throughput atomic broadcast protocol.” In: IEEE/IFIP
DSN. 2010 (cit. on pp. 25, 36).

[96] Piergiuseppe Di Marco, Per Skillermark, Anna Larmo, and Pontus
Arvidson. Bluetooth Mesh Networking. Ericsson AB. 2017. url: https:
//www.ericsson.com/assets/local/publications/white-papers/
wp-bluetooth-mesh_ver2_171115-c2.pdf (cit. on p. 16).

[97] J. -P. Martin and L. Alvisi. “Fast Byzantine Consensus.” In: IEEE
Trans. on Dependable and Secure Computing 3.3 (2006) (cit. on p. 35).

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.ericsson.com/assets/local/publications/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp-bluetooth-mesh_ver2_171115-c2.pdf

56 References

[98] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen. Building Automa-
tion Routing Requirements in Low-Power and Lossy Networks. RFC
5867 (Proposed Standard). June 2010 (cit. on p. 4).

[99] Mobashir Mohammad and Mun Choon Chan. “Codecast: Supporting
Data Driven In-network Processing for Low-power Wireless Sensor Net-
works.” In: Proceedings of the Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN). 2018 (cit. on p. 24).

[100] H. Moniz, N. F. Neves, and M. Correia. “Byzantine Fault-Tolerant Con-
sensus in Wireless Ad Hoc Networks.” In: IEEE Trans. on Mobile Com-
puting 12.12 (2013) (cit. on p. 25).

[101] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne. “Label
switching over IEEE802.15.4e networks.” In: Transactions on Emerg-
ing Telecommunications Technologies 24.5 (Aug. 2013) (cit. on p. 22).

[102] David Moss and Philip Levis. BoX-MACs: Exploiting Physical and Link
Layer Boundaries in Low-Power Networking. Tech. rep. SING-08-00.
Stanford, 2008 (cit. on pp. 27, 36).

[103] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein. “Using Chan-
nel Hopping to Increase 802.11 Resilience to Jamming Attacks.” In:
Proceedings of the Conference on Computer Communications (IEEE
INFOCOM). 2007 (cit. on pp. 5, 32).

[104] N. Nowdehi, A. Lautenbach, and T. Olovsson. “In-Vehicle CAN Mes-
sage Authentication: An Evaluation Based on Industrial Criteria.” In:
IEEE Vehicular Technology Conference (VTC Fall). Sept. 2017 (cit. on
p. 1).

[105] Tony O’donovan et al. “The GINSENG System for Wireless Monitoring
and Control: Design and Deployment Experiences.” In: ACM Transac-
tions on Senensor Networks (ACM TOSN) 10.1 (2013) (cit. on pp. 5,
32).

[106] G. Oikonomou and I. Phillips. “Stateless multicast forwarding with
RPL in 6LowPAN sensor networks.” In: IEEE International Conference
on Pervasive Computing and Communications, Workshops. 2012 (cit.
on p. 26).

[107] Diego Ongaro and John Ousterhout. “In Search of an Understandable
Consensus Algorithm.” In: USENIX ATC. 2014. isbn: 978-1-931971-10-
2 (cit. on pp. 11, 25, 35).

[108] Jeongyeup Paek and Ramesh Govindan. “RCRT: Rate-controlled Reli-
able Transport Protocol for Wireless Sensor Networks.” In: ACM Trans-
actions on Senensor Networks (ACM TOSN) 7.3 (2010) (cit. on p. 25).

[109] Maria Rita Palattella, Nicola Accettura, Mischa Dohler, Luigi Alfredo
Grieco, and Gennaro Boggia. “Traffic Aware Scheduling Algorithm for

References 57

reliable low-power multi-hop IEEE 802.15.4e networks.” In: Proceedings
of the IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC). 2012 (cit. on p. 22).

[110] Maria Rita Palattella, Nicola Accettura, Luigi Alfredo Grieco, Gennaro
Boggia, Mischa Dohler, and Thomas Engel. “On Optimal Scheduling in
Duty-Cycled Industrial IoT Applications using IEEE802.15.4e TSCH.”
In: IEEE Sensors Journal (2013) (cit. on p. 22).

[111] K. Pister, P. Thubert, S. Dwars, and T. Phinney. Industrial Routing
Requirements in Low-Power and Lossy Networks. RFC 5673 (Proposed
Standard). Oct. 2009 (cit. on p. 3).

[112] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel. “Paxos Made
Wireless: Consensus in the Air.” In: Proceedings of the International
Conference on Embedded Wireless Systems and Networks (EWSN).
2019 (cit. on pp. 35, 37, 38, 46).

[113] Wolf-Bastian Pöttner, Hans Seidel, James Brown, Utz Roedig, and Lars
Wolf. “Constructing Schedules for Time-Critical Data Delivery in Wire-
less Sensor Networks.” In: ACM Transactions on Senensor Networks
(ACM TOSN) 10.3 (2014) (cit. on pp. 22, 29).

[114] Daniele Puccinelli, Silvia Giordano, Marco Zuniga, and Pedro José Mar-
rón. “Broadcast-free Collection Protocol.” In: Proceedings of the Con-
ference on Embedded Networked Sensor Systems (ACM SenSys). 2012
(cit. on p. 22).

[115] Q. Wang and others. 6top Protocol (6P). IETF draft-ietf-6tisch-6top-
protocol-04, WiP. 2017 (cit. on pp. 25, 42).

[116] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. “Cyber-physical systems:
The next computing revolution.” In: Design Automation Conference.
June 2010 (cit. on p. 1).

[117] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and
Konstantinos Psounis. “Interference-aware Fair Rate Control in Wire-
less Sensor Networks.” In: SIGCOMM Computer Communication Re-
view 36.4 (2006) (cit. on p. 25).

[118] Jun Rao, Eugene J. Shekita, and Sandeep Tata. “Using Paxos to build
a scalable, consistent, and highly available datastore.” In: VLDB En-
dowment 4.4 (2011). url: http://dl.acm.org/citation.cfm?doid=
1938545.1938549 (cit. on p. 36).

[119] V. S. Rao, M. Koppal, R. V. Prasad, T. V. Prabhakar, C. Sarkar, and I.
Niemegeers. “Murphy loves CI: Unfolding and improving constructive
interference in WSNs.” In: Proceedings of the Conference on Computer
Communications (IEEE INFOCOM). 2016 (cit. on p. 23).

http://dl.acm.org/citation.cfm?doid=1938545.1938549
http://dl.acm.org/citation.cfm?doid=1938545.1938549

58 References

[120] W. Ren, R. W. Beard, and E. M. Atkins. “Information consensus in
multivehicle cooperative control.” In: IEEE Control Systems Magazine
2 (Apr. 2007) (cit. on p. 33).

[121] Matthias Ringwald and Kay Römer. “BitMAC: A deterministic,
collision-free, and robust MAC protocol for sensor networks.” In: Pro-
ceedings of the International Conference on Embedded Wireless Systems
and Networks (EWSN). 2005 (cit. on pp. 23, 24).

[122] Coen Roest. “Enabling the Chaos Networking Primitive on Bluetooth
LE.” MA thesis. Chalmers Univ. of Tech. and TU Delft, 2015 (cit. on
pp. 24, 42).

[123] Raúl Rondón, Mikael Gidlund, and Krister Landernäs. “Evaluating
Bluetooth Low Energy Suitability for Time-Critical Industrial IoT Ap-
plications.” In: International Journal of Wireless Information Networks
3 (Sept. 2017) (cit. on pp. 3, 4).

[124] A. Saifullah, You Xu, Chenyang Lu, and Yixin Chen. “Real-Time
Scheduling for WirelessHART Networks.” In: Proceedings of the IEEE
Real-Time Systems Symposium (IEEE RTSS). 2010 (cit. on p. 22).

[125] Abusayeed Saifullah, Paras Babu Tiwari, Bo Li, Chenyang Lu, and
Yixin Chen. Accounting for Failures in Delay Analysis for Wire-
lessHART Networks. 2012 (cit. on p. 22).

[126] C. Sarkar, R. V. Prasad, R. T. Rajan, and K. Langendoen. “Sleeping
Beauty: Efficient Communication for Node Scheduling.” In: Proceedings
of the IEEE International Conference on Mobile Ad-Hoc and Smart
Systems (IEEE MASS). 2016 (cit. on pp. 24, 44).

[127] Chayan Sarkar. LWB and FS-LWB implementation for Sky nodes using
Contiki. arXiv preprint. 2016. url: https://arxiv.org/pdf/1607.
06622.pdf (cit. on pp. 24, 44).

[128] Thomas Schmid, Prabal Dutta, and Mani B. Srivastava. “High-
resolution, Low-power Time Synchronization an Oxymoron No More.”
In: Proceedings of the Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN). 2010 (cit. on p. 33).

[129] Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Uwe
Römer. “A Competition to Push the Dependability of Low-Power Wire-
less Protocols to the Edge.” In: Proceedings of the International Con-
ference on Embedded Wireless Systems and Networks (EWSN). 2017
(cit. on p. 23).

[130] Short Range Devices (SRD) operating in the frequency range 25 MHz
to 1 000 MHz. ETSI EN 300-220. 2017 (cit. on p. 9).

https://arxiv.org/pdf/1607.06622.pdf
https://arxiv.org/pdf/1607.06622.pdf

References 59

[131] Silicon Labs. Bluetooth Mesh Network Performance. https://www.
silabs . com / documents / login / application - notes / an1137 -
bluetooth-mesh-network-performance.pdf. 2018 (cit. on p. 16).

[132] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. “Indus-
trial Internet of Things: Challenges, Opportunities, and Directions.” In:
IEEE Transactions on Industrial Informatics 11 (Nov. 2018) (cit. on
pp. 5–7).

[133] D. Skeen and M. Stonebraker. “A Formal Model of Crash Recovery in
a Distributed System.” In: IEEE Transactions on Software Engineering
SE-9.3 (1983) (cit. on pp. 11, 12, 25, 33).

[134] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. “Experi-
mental Study of Concurrent Transmission in Wireless Sensor Networks.”
In: Proceedings of the Conference on Embedded Networked Sensor Sys-
tems (ACM SenSys). 2006 (cit. on p. 23).

[135] Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, and Kay
Römer. “BLEach: Exploiting the Full Potential of IPv6 over BLE in
Constrained Embedded IoT Devices.” In: Proceedings of the Conference
on Embedded Networked Sensor Systems (ACM SenSys). 2017 (cit. on
p. 23).

[136] M. Suzuki, Y. Yamashita, and H. Morikawa. “Low-Power, End-to-End
Reliable Collection Using Glossy for Wireless Sensor Networks.” In:
IEEE Vehicular Technology Conference (VTC Spring). 2013 (cit. on
pp. 24, 44).

[137] T. Winter et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550 (Proposed Standard). 2012 (cit. on pp. 16–18, 25,
32).

[138] Lei Tang, Yanjun Sun, Omer Gurewitz, and David B. Johnson. “EM-
MAC: A Dynamic Multichannel Energy-efficient MAC Protocol for
Wireless Sensor Networks.” In: Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (ACM Mo-
biHoc). 2011 (cit. on p. 23).

[139] X. Thubert (Ed.), T. Watteyne, R. Struik, and M. Richardson. An
Architecture for IPv6 over the TSCH mode of IEEE 802.15.4e - draft-
ietf-6tisch-architecture-06. IETF Draft. Mar. 2015 (cit. on pp. 22, 30).

[140] Andrew Tinka, Thomas Watteyne, Kristofer S. J. Pister, and Alexan-
dre M. Bayen. “A Decentralized Scheduling Algorithm for Time Syn-
chronized Channel Hopping.” In: EAI Endorsed Transactions on Mobile
Communications and Applications 11.1 (2011) (cit. on p. 22).

[141] Tmote sky: Ultra low power IEEE 802.15.4 compliant wireless sensor
module. Data sheet. San Francisco, CA 94105, 2006 (cit. on p. 7).

https://www.silabs.com/documents/login/application-notes/an1137-bluetooth-mesh-network-performance.pdf
https://www.silabs.com/documents/login/application-notes/an1137-bluetooth-mesh-network-performance.pdf
https://www.silabs.com/documents/login/application-notes/an1137-bluetooth-mesh-network-performance.pdf

60 References

[142] Piercarlo Valdesolo. “Scientists Study Nomophobia — Fear of Being
without a Mobile Phone.” In: Scientific American. Oct. 2015 (cit. on
p. 1).

[143] M. C. Vuran and I. F. Akyildiz. “Error Control in Wireless Sensor
Networks: A Cross Layer Analysis.” In: IEEE/ACM Transactions on
Networking 4 (Aug. 2009) (cit. on p. 7).

[144] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer Pister.
“Smart dust: communicating with a cubic-millimeter computer.” In:
Computer (Feb. 2001) (cit. on p. 7).

[145] T. Watteyne, S. Lanzisera, A. Mehta, and K.S.J. Pister. “Mitigating
Multipath Fading through Channel Hopping in Wireless Sensor Net-
works.” In: Proceedings of the IEEE International Conference on Com-
munications (IEEE ICC). 2010 (cit. on pp. 8, 17, 23, 29).

[146] Thomas Watteyne, Lance Doherty, Jonathan Simon, and Kris Pister.
“Technical Overview of SmartMesh IP.” In: Proceedings of the Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiq-
uitous Computing. 2013 (cit. on p. 22).

[147] Thomas Watteyne, Ankur Mehta, and Kris Pister. “Reliability Through
Frequency Diversity: Why Channel Hopping Makes Sense.” In: Proceed-
ings of the ACM Symposium on Performance Evaluation of Wireless
Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN). 2009 (cit. on
p. 8).

[148] Thomas Watteyne, Joy Weiss, Lance Doherty, and Jonathan Simon.
“Industrial IEEE802.15.4e Networks: Performance and Trade-offs.” In:
Proceedings of the IEEE International Conference on Communications
(IEEE ICC). 2015 (cit. on p. 22).

[149] M. Wilhelm, V. Lenders, and J. B. Schmitt. “On the Reception of Con-
current Transmissions in Wireless Sensor Networks.” In: IEEE Trans-
actions on Wireless Communications (2014) (cit. on pp. 19, 24).

[150] “Wireless sensors replace cables and save tonnes of copper and plas-
tic.” In: Volvo Group News (Nov. 18, 2016). url: https : / / www .
volvogroup . com / en - en / news / 2016 / nov / wireless - sensors -
replace-cables-and-save-tonnes-of-copper-and-plastic.html
(visited on 09/23/2019) (cit. on p. 1).

[151] Martin Woolley. Bluetooth 5: Go Faster. Go Further. Bluetooth SIG.
2018. url: https://www.bluetooth.com/bluetooth-technology/
bluetooth5/bluetooth5-paper (cit. on p. 15).

[152] Mao Ye, Chengfa Li, Guihai Chen, and J. Wu. “EECS: an energy effi-
cient clustering scheme in wireless sensor networks.” In: IEEE Inter-

https://www.volvogroup.com/en-en/news/2016/nov/wireless-sensors-replace-cables-and-save-tonnes-of-copper-and-plastic.html
https://www.volvogroup.com/en-en/news/2016/nov/wireless-sensors-replace-cables-and-save-tonnes-of-copper-and-plastic.html
https://www.volvogroup.com/en-en/news/2016/nov/wireless-sensors-replace-cables-and-save-tonnes-of-copper-and-plastic.html
https://www.bluetooth.com/bluetooth-technology/bluetooth5/bluetooth5-paper
https://www.bluetooth.com/bluetooth-technology/bluetooth5/bluetooth5-paper

References 61

national Performance, Computing, and Communications Conference
(PCCC). 2005 (cit. on p. 32).

[153] O. N. C. Yilmaz, Y. -. E. Wang, N. A. Johansson, N. Brahmi, S. A.
Ashraf, and J. Sachs. “Analysis of ultra-reliable and low-latency 5G
communication for a factory automation use case.” In: IEEE Interna-
tional Conference on Communication Workshop (ICCW). June 2015
(cit. on p. 5).

[154] Y. H. Yitbarek, K. Yu, J. Åkerberg, M. Gidlund, and M. Björkman.
“Implementation and evaluation of error control schemes in Industrial
Wireless Sensor Networks.” In: IEEE International Conference on In-
dustrial Technology (ICIT). Feb. 2014 (cit. on p. 7).

[155] D. Yuan and M. Hollick. “Ripple: High-throughput, reliable and energy-
efficient network flooding in wireless sensor networks.” In: Proceedings
of the Symposium on a World of Wireless Mobile and Multimedia Net-
works (IEEE WoWMoM). 2015 (cit. on pp. 24, 44).

[156] Dingwen Yuan, Michael Riecker, and Matthias Hollick. “Making
‘Glossy’ Networks Sparkle: Exploiting Concurrent Transmissions for
Energy Efficient, Reliable, Ultra-Low Latency Communication in Wire-
less Control Networks.” In: Proceedings of the International Conference
on Embedded Wireless Systems and Networks (EWSN). 2014 (cit. on
pp. 24, 44).

[157] Pouria Zand, Arta Dilo, and Paul Havinga. “D-MSR: A Distributed
Network Management Scheme for Real-Time Monitoring and Process
Control Applications in Wireless Industrial Automation.” In: Sensors
13.7 (2013) (cit. on p. 22).

[158] Haibo Zhang, Pablo Soldati, and Mikael Johansson. “Optimal Link
Scheduling and Channel Assignment for Convergecast in Linear wire-
lessHART Networks.” In: Proceedings of the 7th International Confer-
ence on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOPT). 2009 (cit. on p. 22).

[159] Marco Zimmerling. “End-to-End Predictability and Efficiency in Low-
Power Wireless Networks.” Ph.D. Dissertation. ETH Zurich, July 2015
(cit. on p. 8).

