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Abstract 

Advanced machine learning has outperformed previous benchmarks in numerous fields and applica-
tions, e.g. speech and image recognition, in an ever accelerating way during the past two decades. 
Furthermore, early evidence indicates its massive potential to improve over traditional techniques 
applied to financial market prediction tasks. 

In this study, long short-term memory (LSTM) networks are applied to G10 currency market pre-
diction task in a sample period from the beginning of 1999 to the end of 2018. The predictive factor 
set consists of past excess returns, forward premiums and seven factors capturing risk-aversion, price 
uncertainty, commodity returns and funding liquidity. The LSTM model reaches a total accuracy of 
more than 55% outperforming simple recurrent neural networks (RNN) which indicates that currency 
excess returns are partly driven by signals with more than a two-month temporal distance. 

The model predictions are used in US dollar-neutral currency trading strategy in order to exploit 
the attractiveness of this approach in terms of performance metrics and to analyse its sources of prof-
itability. The LSTM model is able to predict the profitability of carry and momentum strategies. In 
particular, the LSTM portfolio utilizes carry and long-term momentum signals during calm market 
conditions and short-term momentum signals in market turmoil. Consequently, the best performing 
LSTM portfolio delivers a Sharpe ratio of 0.32 with less tail risk than the carry portfolio that has a 
Sharpe ratio of 0.23. Furthermore, it is not exposed to the common risk factors driving currency carry 
and momentum trading strategies. 

Attractive risk-return profile and low correlation with equity markets make the LSTM portfolio 
extremely suitable to the FX risk management of an international equity portfolio. When the LSTM 
portfolio is used in the modified portfolio mean-variance optimization routine that is introduced by 
Boudoukh et al. (2018), the Sharpe ratio of an unhedged international equity portfolio is almost dou-
bled as the Sharpe ratio increases from 0.29 to 0.51.  
 Key words Foreign exchange market, machine learning, forecasting 
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Koneoppiminen ja kaupankäyntistrategiat valuuttamarkkinoilla 

Prof. Mika Vaihekoski ja KTM Valtteri Peltonen 

 

Koneoppimisen sovellutukset ovat mahdollistaneet yhä uusien käytännön ongelmien, kuten puheen 
tai kuvien tunnistamisen, tehokkaan ratkaisemisen. Kahden viime vuosikymmenen aikaisten kehitys-
askelien taustalla ovat muun muassa nopea koneoppimisen menetelmien kehitysvauhti ja laskentate-
hon kasvu. Koneoppimisen menetelmät ovat osoittautuneet monia perinteisiä menetelmiä tehokkaam-
miksi myös rahoitusmarkkinoiden ennustamisessa. 

Tässä tutkielmassa tutkitaan LSTM-verkkojen soveltuvuutta G10-valuuttojen tuottojen ennusta-
miseen vuosien 1999-2018 aikana. LSTM-verkon ominaisuudet ja valikoidut syötteet mahdollistavat 
tuotonlähteiden löytämisen tuottotrendien, korkoeron, riskiaversion, hintaheilunnan, hyödykemark-
kinan tuottojen ja likviditeetin ajallisista ja keskinäisistä suhteista. LSTM-verkolla saavutetaan yli 55 
% ennustetarkkuus, joka ylittää selkeästi RNN-verkon ennustetarkkuuden. Tästä syystä osa valuut-
tamarkkinan tuottoja ennustavista signaaleista tunnistetaan yli kaksi kuukautta ennen tuoton realisoi-
tumista. 

LSTM-verkon ennusteiden pohjalta rakennetaan kaupankäyntistrategia niiden taloudellisen mer-
kityksen ja tuotonlähteiden selvittämiseksi. Malli onnistuu maiden välistä korkoeroa hyödyntävän 
carry ja momentum -strategioiden voitollisuuden ennustamisessa. Rauhallisen nousumarkkinan ai-
kana LSTM-verkon ennusteiden pohjalta luodun strategian tuottoja selittävät carry ja pitkän aikavälin 
momentum -strategiat, kun taas epävarmuuden kasvaessa tuottoja selittää lyhyen aikavälin momen-
tum. Kaupankäyntistrategian Sharpen luku on 0.32, kun carry strategia yltää vain lukuun 0.23. Lisäksi 
LSTM-verkon ennusteiden pohjalta luotu strategia vähentää merkittävästi carry-strategialle ominaista 
suurta häntäriskiä ja altistusta carry ja momentum -strategioiden tuottoja selittäville riskitekijöille. 

LSTM-verkon avulla saavutetut hyödyt eivät rajoitu vain spekulatiiviseen kaupankäyntiin. Strate-
gian soveltaminen kansainvälisesti hajautetun osakeportfolion valuuttakurssiriskin optimaaliseen 
suojaamiseen lähes kaksinkertaistaa tuotto-riski-suhteen suojaamattomaan portfolioon verrattuna. 

 Valuuttamarkkinat, koneoppiminen, ennustaminen 
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1 INTRODUCTION

1.1 Motivation

An investor holding global equity portfolio has exposure to foreign currency (FX)
risk. It is possible to fully hedge this risk, do nothing or actively manage FX
exposures. Even though foreign currencies can be a remarkable source of volat-
ility, the risk-return profile of FX and international equity portfolios can be en-
hanced through active management of currency exposures. In particular, this
research investigates empirically if advanced machine learning can be used to ex-
ploit cutting-edge trading strategies in currency markets and further utilized in
FX risk management framework of an international equity portfolio.

In general, actively managed foreign currency positions are held for two reas-
ons: speculation and risk management. For speculation purposes, well researched
sources of systematic returns are carry, momentum and value (Asness et al. 2013).
In the carry trading strategy, one takes short positions in currencies with low
interest rate and long positions in high interest rate currencies, whereas in the
momentum strategy one goes long in currencies with the strongest recent perform-
ance and shorts currencies with the lowest performance in recent history. Finally,
in the value strategy, long-term mean-reversion behaviour is utilized.

Regarding risk management, academics do not agree on an optimal approach for
managing foreign currency risk. However, the majority of studies find evidence that
support active currency management for equity investors (see e.g. Boudoukh et al.
(2018), Barroso and Santa-Clara (2015), Topaloglou et al. (2011), Campbell et al.
(2010), Jorion (1994), Glen and Jorion (1993) and Black (1989)). On the contrary,
Froot (1993) asserts that long-term equity investors should not hedge their foreign
currency exposures. His reasoning relies on long-term mean-reverting behaviour of
real exchange rates which acts as a natural hedge. However, Schmittmann (2010)
does not find enough evidence to support Froot’s arguments.

Boudoukh et al. (2018) introduce a currency hedging procedure that almost
doubles the Sharpe ratio of an unhedged global equity portfolio by combining
speculative and risk minimizing currency portfolios into a dynamic currency al-
location framework. They divide a global equity portfolio into the three following
components: a fully hedged global equity portfolio, a foreign currency portfolio
with minimum variance and a speculative foreign currency portfolio that combines
carry, momentum and reversal signals. Boudoukh et al. (2018) suggest optimiz-
ation for the construction of the minimum variance component but a heuristic
approach for the speculative, alpha seeking component. However, they point out
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that a method based on optimization might outperform their approach applied to
the speculative portfolio if more advances techniques are utilized.

Boudoukh et al. (2018) rely on constant percentage allocation between the
speculative currency portfolio exposures. However, Filippou and Taylor (2017),
Barroso and Santa-Clara (2015) and Menkhoff et al. (2012a) argue that the prof-
itability of currency carry and momentum trading strategies are time-varying and
partly explained by financial and macroeconomic factors. Barroso and Santa-
Clara (2015) develop a dynamic multi-style currency trading strategy based on
momentum, carry and reversal. They state that the correct factors explaining the
profitability of the strategy are not yet identified due to a high and statistically
significant alpha. Consequently, Barroso and Santa-Clara (2015) argue that the
most reasonable explanation for the returns is anomaly. However, their strategy to
some extent is exposed to liquidity risk, equity volatility, foreign exchange volatil-
ity, excess returns on the equity market and carry trade risk. These findings are in
line with Lustig et al. (2011) who argue that the returns on carry trade strategies
are driven by global equity market volatility. Furthermore, Menkhoff et al. (2012a)
demonstrate that carry and momentum strategies are exposed to foreign exchange
volatility and liquidity risk.

The dynamic allocation routines developed by Filippou and Taylor (2017) and
Barroso and Santa-Clara (2015) rely on models that are not able to capture poten-
tially complex dependencies between the predictive factors and currency returns.
In fact, advanced machine learning methods have been lacking broader popular-
ity in financial market prediction despite of the tremendous amount of potential
predictors presented by the financial market research (Krauss et al. 2017; Jacobs
2015). Exploiting a vast amount of predictive factors makes standard linear mod-
els useless due to, for example, collinearity and decreasing degrees of freedom (Gu
et al. 2018). Furthermore, these techniques are not able to incorporate the complex
and likely non-linear relationships in the data (Heaton et al. 2018).

Gu et al. (2018) investigate various machine learning models in time-series
prediction of stock returns of almost 30,000 individual companies between 1957
and 2016. Furthermore, the data set used for prediction consist of more than 900
predictors. Gu et al. (2018) prove that non-linear models significantly improve
the performance over linear models. In addition, they develop a long-short equity
strategy with the S&P 500 index constituents based on the predictions of their 3-
layer neural network architecture. They demonstrate that this method generates
an exceptional Sharpe ratio of 2.35 in contrast to a Sharpe ratio of 0.89 generated
by a benchmark linear method.

Krauss et al. (2017) compare three different statistical learning methods and
their ensembles in stock market prediction. They show that an ensemble method
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that combines three individual techniques: deep neural networks, gradient boosted
trees and random forests outperforms each of the individual models. Furthermore,
they construct a long-short strategy based on their best performing model which
generates a Sharpe ratio of 1.81 after transaction costs. The Sharpe ratio is five
times larger than the Sharpe ratio of the S&P 500 index during the sample period
of 1992–2015. Fischer and Krauss (2018) show that a long short-term memory
(LSTM) recurrent neural network (RNN) further improves the performance of the
best performing model suggested in Krauss et al. (2017).

Filippou and Taylor (2017), Barroso and Santa-Clara (2015), Menkhoff et al.
(2012a) and Lustig et al. (2011) provide evidence regarding the predictability of
currencies and currency trading strategies. Moreover, the success of machine learn-
ing techniques exploiting non-linear and temporal dependencies in stock market
prediction tasks raises the question, whether advanced statistical learning tech-
niques could improve over previous benchmarks in currency markets or not (Gu
et al. 2018; Fischer and Krauss 2018; Krauss et al. 2017).

1.2 Objectives and structure

The focus of this research is to test if the LSTM discovers profitable patterns
in selected time-series data which could help to exploit trading opportunities in
currency markets. Furthermore, if the model is able to extract these predictive
signals, a currency trading strategy based on this information is constructed and
applied to the FX risk management framework of a global equity portfolio. Other
models or techniques are not considered, except the simple RNN, which perform-
ance is compared to the LSTM in order to find out if the complexity added by the
latter is necessary.

The research objectives of this study are investigated through an empirical
analysis as follows. First, the LSTM model is trained to predict the probabil-
ity that a currency outperforms the cross-median of other currencies in the next
time step in order to investigate the predictive power of the model. Next, two
techniques are compared in the construction of the LSTM portfolios. The first
portfolio is constructed as an equally weighted long-short portfolio based on the
predicted outperformance probabilities. In the second technique, the output pre-
dictions of the LSTM model are ranked and historical scenarios are modified with
entropy pooling introduced by Meucci (2008). The ranked inputs are handled
as outperformance constraints as suggested by Meucci et al. (2014). Finally, the
mean-variance optimal portfolio weights are computed based on estimated mo-
ments from the modified scenarios. The latter technique should solve the problem
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in Fischer and Krauss (2018) as their portfolio construction technique overweights
high volatility assets.

The factors used as inputs to the LSTM are chosen based on previous research
on the predictability of currency markets (Londono and Zhou 2017; Menkhoff et al.
2017; Orlov 2016; Asness et al. 2013; Mancini et al. 2013; Bakshi and Panayotov
2013; Menkhoff et al. 2012a,b; Brunnermeier et al. 2009). Selected predictive
factors are currency returns, forward premium, equity and foreign exchange mar-
ket volatilities, funding liquidity, variance risk premium, currency variance risk
premium, commodity price changes and credit risk. In fact, these factors cover
the three most informative classes of predictors found in an analysis of over 900
different variables in equity market return prediction problem by Gu et al. (2018).
Finally, aggregate variables, like 12-month momentum, are not used since the
LSTM should be able to extract these patterns from the historical data. This is
also empirically proven by Fischer and Krauss (2018).

The empirical analysis is conducted from the viewpoint of an investor whose
home currency is the United States dollar (USD). Other base currencies are not
taken into consideration. The currency pairs are formed from the G10 curren-
cies: Euro (EUR), Pound sterling (GBP), Japanese yen (JPY), Australian dollar
(AUD), New Zealand dollar (NZD), Canadian dollar (CAD), Swiss franc (CHF),
Norwegian krone (NOK) and Swedish krona (SEK), which are denoted against the
United States dollar (USD). The sample data covers the period from the 2nd of
January 1999 to the 31st of December 2018. The prediction task and portfolio
construction are conducted with a weekly observation frequency in order to solve
the problems concerning different time-zones.

The FX risk management framework is applied to an international equity port-
folio because currencies with negative correlation to global equity provide diversi-
fication and risk reduction opportunities. The MSCI World Index, that tracks the
market capitalization weighted peformance of the equity market in 23 developed
markets countries, is used as a proxy for the international equity portfolio (MSCI
2019). However, the framework investigated in this research is not applied to bond
markets since Campbell et al. (2010) show that the majority of currencies are un-
correlated with international bond portfolios. Consequently, risk-minimizing bond
investors should fully hedge their currency exposures.

Finally, practical aspects regarding leverage and turnover are covered as in
Boudoukh et al. (2018). Overall, the approach developed in this study is applicable
in practise. Consequently, the work could be implemented by asset managers and
investors who want to pursue active foreign currency management either through
hedging or speculation.

Combining portfolio construction and advanced predictive modelling with ma-
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chine learning have not been widely studied. One explanation to this could be
that it requires combining advanced techniques from multiple areas of expertise.
Consequently, the key contributions of this study can be divided into four parts.
First, the most suitable machine learning techniques and model architectures to
time-series prediction tasks in financial markets are investigated and proposed.
Second, an optimization based portfolio construction routine, that is designed to
overcome flaws detected in the previous research regarding portfolio construction
of rules based long-short trading strategies, is introduced. Third, the understand-
ing of the sources of the profitability of the machine learning portfolios is increased
through the explanatory analyses. Demystifying advanced machine learning meth-
ods should facilitate the deployment of these techniques among investment pro-
fessionals. Fourth, it is showed that the currency trading strategies developed in
this study are not only limited to currency speculation but are able to enhance
the foreign exchange risk management of any investor with international equity
exposures. Furthermore, in a broader academic context, this research contributes
to theories on market efficiency and forward premium puzzle. The former theory
has been under debate since it was first introduced by Fama (1965) and the latter
has remained unsolved.

The rest of this research is organized as follows. Section 2 introduces the two
most popular currency trading strategies: carry and momentum. Furthermore,
the literature regarding the predictability of these strategies and currency markets
in general is discussed in this section. Next, Section 3 covers feed-forward neural
networks, recurrent neural networks, long short-term memory cells and discusses
the literature covering machine learning in financial market prediction tasks.

The empirical part is divided into three parts. First, the methodology is in-
troduced by going through practical aspects and choices made regarding the data
and techniques. Second, Section 5 presents and discusses the results and, finally,
Section 6 concludes and guides the future research.
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2 CURRENCY TRADING STRATEGIES

2.1 Carry

In the carry trading strategy one goes long in currencies with high interest rates
and shorts currencies with low interest rates. These currencies are called invest-
ment and funding currencies, respectively. The carry trade pay-off consists of two
components which are ex-ante known interest rate differential and uncertain price
movement off the currency pair. Filippou and Taylor (2017) demonstrate that the
carry trade strategy has offered an annualized mean excess return w.r.t the USD of
4.24% and 2.79% for a sample of 48 currencies and a sample of the G11 currencies
(G10 plus DKK), respectively, during the time period from 1985 to 2012. Fur-
thermore, they report Sharpe ratios of 0.46 and 0.27 for the carry trade strategies
formed with these two currency samples.

Currency forwards are priced based on no-arbitrage conditions. Thus, their
prices should follow the covered interest rate parity (CIR)

f ij
t

sijt
=

1 + rit
1 + rjt

, (1)

where f ij
t and sijt denote the forward and spot exchange rates for a unit of currency

i per a unit of currency j at time t. In addition, rit and rjt denote the nominal
interest rates of zero coupon bonds denominated in currencies i and j, respectively.
Equation 1 holds for an arbitrary maturity. However, it is assumed that the
maturities of these default risk-free bonds and forward contracts coincide. (Fama
1984, 322).

If f ij
t is replaced with EQ[s

ij
t+1], where Q is a risk-neutral measure, in Equation

1, we get the uncovered interest rate parity (UIP). The UIP implies that currencies
with high interest rate should depreciate over time, whereas currencies with low
interest rate should appreciate. According to this theory, expected carry trade
pay-off should be zero, since the gain from the interest rate differential should be
exactly offset by the appreciation off the funding currency against the investment
currency. (Brunnermeier et al. 2009, 313). However, Fama (1984) finds that the
forward premium

f ij
t � sijt

has actually a negative coefficient when it is used to explain spot prices in the fu-
ture. Consequently, the funding currency is expected to depreciate against the
investment currency. This unexplained phenomenon is known as the forward
premium puzzle and it gives rise to the carry trade strategy. Since the empir-
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ical findings are against the UIP, carry trades should have a positive pay-off on
average. (Brunnermeier et al. 2009, 313).

In this research, all currency returns are calculated w.r.t. the USD unless stated
otherwise. Consequently, an appreciation or depreciation of a currency means that
it appreciates or depreciates against the USD. However, carry trade positions are
not limited to trades relative to investors’ home currencies. An investor with a
home currency A could take advantage of a country B’s high interest rate by
funding the long position in a bond denominated in B’s currency with a loan
denominated in country C’s currency. Alternatively, the exact same position could
be composed using currency futures or OTC forwards.

Academics have tried to explain the sources of carry trade profits by introducing
several explanatory factors and theories. These factors are summarized in Table
1. The coefficient column presents the sign of a factor coefficient linking the carry
trade returns to the relevant factor. Furthermore, the time frames short, mid
and long denote immediate or intra-day, one-day to one-month and one-month to
12-month lags, respectively.

Table 1: Summary of the predictive factors of currency carry trade strategies

Factor Coefficient sign Time frame Evidence provided by

Equity market volatility - short Lustig et al. (2011) ,
Brunnermeier et al. (2009)

Equity market volatility + mid and long Brunnermeier et al. (2009)
Illiquidity - short Bakshi and Panayotov (2013),

Mancini et al. (2013),
Menkhoff et al. (2012a),
Brunnermeier et al. (2009)

Illiquidity + mid and long Brunnermeier et al. (2009)
Currency market volatility - short and mid Bakshi and Panayotov (2013)

Menkhoff et al. (2012a)
Variance risk premium + mid and long Londono and Zhou (2017)
Currency variance risk premium - mid and long Londono and Zhou (2017)
Commodity prices + short and mid Bakshi and Panayotov (2013)

Lustig et al. (2011) identify that ex post over 80% of the variance in foreign
currencies relative to the USD is explained by two factors which they label as a
level and a slope factor. Their findings are based on principal component analysis.
However, they show that the latent level and slope factors, that account for 70%
and 12% of the total variance, respectively, are followed by the appreciations and
depreciations of the USD against a broad basket of foreign currencies and a carry
trade factor that is proxied by the returns of a long-short carry trade strategy.
Furthermore, Lustig et al. (2011) demonstrate that the results produced by the
carry trade factor could be replicated with a factor describing global equity mar-
ket volatility. They demonstrate that investment currencies tend to depreciate and
funding currencies tend to appreciate as equity market volatility increases. Con-
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sequently, by exploiting carry trades, investors increase their exposure to global
risk.

Brunnermeier et al. (2009) argue that currency carry trades have high tail risk.
They illustrate that investment currencies have high negative skewness when paired
with funding currencies. In particular, these findings hold in the cross section of
currency pairs despite using a physical skewness measure or risk-neutral option
implied skewness. However, Menkhoff et al. (2012a) do not find that sensitivity
to changes in carry trade portfolio’s skewness would be statistically significant
explanatory factor even though the sign of the factor price supports the explanation
made by Brunnermeier et al. (2009).

Despite the high tail risk of carry trade positions, Jurek (2014) concludes that
only one-third of the currency carry trade excess returns are explained by the
tail risk premium. Consequently, carry trade returns are not explained by peso
problems and remain high even after hedging against tail events. The evidence
provided by Menkhoff et al. (2012a) further support this explanation as they show
that foreign exchange volatility rules the premiums incorporated in currency prices
even after excluding extreme events.

In addition, Brunnermeier et al. (2009) demonstrate that highly negative im-
plied skewness of currency carry trade returns predicts less negative physical skew-
ness for the future. This is in line with the global risk and funding liquidity phe-
nomena. After a tail event, implied skewness becomes more negative as traders
are willing to pay more for hedging. Furthermore, decreased positions in the in-
vestment currencies lower the future tail risk and, consequently, affect the physical
skewness. In addition, Jurek (2014) argues that following a run of positive carry
trade returns, physical skewness becomes more negative and implied skewness be-
comes more positive. Consequently, hedging tail risk is cheap before a tail event
and expensive after the tail event has occurred.

Brunnermeier et al. (2009) demonstrate that cross section of currency carry
trades are correlated and, thus, driven by the same systematic factors. They find
co-movement amongst the investment currencies with high interest rates and co-
movement amongst the funding currencies with low interest rates. Brunnermeier
et al. (2009) provide broader risk based explanation to carry trade returns than
Lustig et al. (2011) as they argue that movements of the carry trade components
are driven by global liquidity and funding risks. However, in line with Lustig et al.
(2011), Brunnermeier et al. (2009) show that carry trade strategies experience
losses as global equity market risk increases. Furthermore, they conclude that
increased global risk or risk aversion leads to tighter funding liquidity and the de-
capitalization of carry trade positions. Brunnermeier et al. (2009) explain that this
implies losses in carry trades and increases hedging costs of tail risk. Furthermore,
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tighter funding liquidity and carry trade losses increase the margin requirements
which forces traders to unwind their carry trade positions even further.

Mancini et al. (2013) provide evidence from the period of 2007–2009 financial
turmoil that support the importance of the liquidity factor in explaining carry
trade return dynamics. They argue that the liquidities of foreign currencies co-
move over time and, thus, are able to identify a market-wide currency liquidity
factor. Moreover, Mancini et al. (2013) show that more liquid currency pairs such
as EUR/USD and USD/JPY are less sensitive to the liquidity factor, whereas this
is opposite for less liquid currency pairs such as AUD/USD and USD/CAD. They
further examine that by exploiting carry trade strategies, investors load liquidity
risk.

However, Brunnermeier et al. (2009) demonstrate that tighter funding liquidity
and increased global risk predict positive carry trade returns in the future. Lon-
dono and Zhou (2017) report similar findings as they conclude that increases in
variance risk premium predicts appreciation of investment currencies and depre-
ciation of funding currencies with a one-month horizon. They approximate the
variance risk premium as a difference between stock option-implied and realized
variances.

In addition, Londono and Zhou (2017) identify that currency variance risk
premium captures alternative dynamics of currency returns. They approximate the
currency variance risk premium as a difference between currency option-implied
and realized variances. Londono and Zhou (2017) find that an increase in global
currency variance risk premium predicts a depreciation of the investment currencies
relative to the USD, and that the predictive power is the largest with a four-month
horizon. They depict this phenomenon as a flight-to-quality or a flight-to-liquidity
effect. On the other hand, the predictive power of the variance risk premium is
statistically significant only for the investment currencies.

Bakshi and Panayotov (2013) provide evidence regarding the time-series pre-
dictability of currency carry trades. They show that carry trade returns are driven
by commodity returns, average currency volatility and global liquidity. Bakshi and
Panayotov (2013) state that commodity returns are associated with a positive slope
to returns from commodity currencies, like the AUD and the NZD. These curren-
cies are usually used as investment currencies in carry trades. Furthermore, they
demonstrate that increased average currency volatility or lower liquidity predicts
lower carry trade returns with a one-month lag. Based on these findings, Bakshi
and Panayotov (2013) construct a currency carry trade strategy that utilizes the
trading signals generated by the commodity price, average currency volatility and
global liquidity factors. This strategy enhances the Sharpe ratio and makes the
skewness less negative compared to an unconditional currency carry trade strategy.



18

In addition, Bakshi and Panayotov (2013) argue that the predictive power of the
VIX index or average equity market volatility, which are found to be significant ex-
planatory factors of carry trade returns by Lustig et al. (2011) and Brunnermeier
et al. (2009), diminishes after adding the commodity returns, average currency
volatility and global liquidity factors. Bakshi and Panayotov (2013) further con-
clude that this holds for average long term rates and average term spreads after
adding the three factors supported by their research.

Bakshi and Panayotov (2013) propose that the predictability of currency carry
trade returns is due to the predictability of the investment currencies. This is in
line with the findings regarding the currency variance risk premium investigated
by Londono and Zhou (2017) as the predictive power of this factor is statistically
significant only for the investment currencies.

In contrast to Bakshi and Panayotov (2013), Mancini et al. (2013) and Brun-
nermeier et al. (2009), Orlov (2016) finds that liquidity doesn’t affect currency
carry trade returns. Specifically, Orlov (2016) focuses on aggregate equity market
liquidity, whereas Bakshi and Panayotov (2013) and Brunnermeier et al. (2009)
use TED spread as a proxy for global liquidity. Orlov (2016) constructs the aggreg-
ate market liquidity measure as a value-weighted average of a monthly illiquidity
measure developed by Amihud (2002). Amihud’s illiquidity measure is an absolute
value of a stock return divided by the trading volume of that stock. Consequently,
it differs from the TED spread as this is more related to funding liquidity and credit
risk as it captures changes in the creditworthiness of major banks. However, the
findings provided by Orlov (2016) have some support from Bakshi and Panayotov
(2013) and Menkhoff et al. (2012a), since they argue that the predictive power of
various liquidity measures decreases significantly after currency volatility is taken
into account. In addition, Mancini et al. (2013) focus only on the illiquidity ef-
fects during the market turmoil of 2007–2009. They admit that the importance
of liquidity as an explanatory factor for carry trade returns might decrease dur-
ing normal market conditions, since currency markets are usually characterized by
high volumes and are the most liquid financial asset class.

Lustig et al. (2014) compare the high-minus-low and a dollar carry trade
strategies. The dollar carry trade strategy consists of two components: USD and
a basket of foreign currencies. In this strategy, one takes a short (long) position
in USD whenever the level of the short-term U.S. treasury rate is lower (higher)
than the average short-term interest rate of the basket of foreign countries and
takes a long (short) position in the foreign currencies. Lustig et al. (2014) show
that the dollar carry and high-minus-low carry trade strategies are uncorrelated
and driven by different factors. They argue that the dollar carry trade returns are
exposed to the U.S. economy related domestic factors, like industrial production
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growth, whereas the high-minus-low currency carry trades are exposed to global
risk factors. These findings are supported by Filippou and Taylor (2017). They
derive latent factors from an extensive data set of macro economical variables.
The latent factors identified as global variables show small R2s that are not stat-
istically significant for the dollar carry trade strategy. However, these factors are
statistically significant when explaining the returns of the high-minus-low carry
trade strategy. The opposite is true for factors identified as domestic variables as
they are only valuable in explaining the returns of the dollar carry trade strategy.
Finally, the conclusions made by Filippou and Taylor (2017) and Lustig et al.
(2014) coincide with the findings summarized in Table 1, emphasizing the nature
of the high-minus-low carry trade as a strategy that diversifies the country specific
risks away.

2.2 Momentum

In a momentum trading strategy, one takes a long position in a basket of assets
with strong recent excess returns, called winners, and a short position in a basket of
assets with weak recent excess returns, called losers. Consequently, a momentum
trade is a cross-sectional bet that the winner assets will continue to outperform
the loser assets in the future. Alternatively, a strategy that exploits the time-series
momentum of a single asset coincides with a trend following strategy. In the time-
series momentum, one takes a long (short) position in an asset when it has had
a strong (weak) recent performance. Jegadeesh and Titman (1993) identify the
momentum strategy in the U.S. equity markets and show that it yields an average
annualized excess return of 12.01%. Jegadeesh and Titman (1993) and Jegadeesh
and Titman (2001) state that these returns are not explained by exposures to
common risk factors but reflect investors’ slow reactions to news to some extent.

In contrast to the high equity momentum returns presented by Jegadeesh and
Titman (1993) and Jegadeesh and Titman (2001), Yang and Zhang (2019) and
Bhattacharya et al. (2012) show that the post-2000 equity momentum returns
have vanished as, for example, the same momentum strategy used by Jegadeesh
and Titman (1993) realizes an average annual return of 0.72% during the years
2000 to 2015. However, Yang and Zhang (2019) argue that the momentum returns
are retrieved after excluding the extreme winners from the portfolio. They show
that this prevents the momentum portfolio from momentum crashes introduced by
Daniel and Moskowitz (2016) and lifts the annualized average returns to 8.76%.

Momentum strategies have proven to be profitable in other asset classes as
well. In the bond markets, Jostova et al. (2013) demonstrate that the momentum
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strategy is profitable for non-investment grade bonds. However, this strategy does
not perform well in the investment-grade or the government bond markets (Asness
et al. 2013; Gebhardt et al. 2005). This link of credit risk and momentum profits
is in line with Avramov et al. (2007) as they conclude that the profitability of
equity momentum is significantly stronger amongst stocks with low credit rating.
Furthermore, Asness et al. (2013) find strong support for momentum returns in
commodity and G10 currency markets as the cross-sectional momentum strategy
yields on average an annual 12.4% and 3.5% return, respectively, during the years
from 1972 to 2011.

Despite the extensive academic research around the momentum phenomenon,
it still predominantly remains an anomaly. However, the factors explaining the
currency momentum returns are summarized in Table 2. The coefficient column

Table 2: Summary of the predictive factors of currency momentum strategies

Factor Coefficient sign Time frame Evidence provided by

Past returns + short and mid Daniel and Moskowitz (2016),
Asness et al. (2013),
Moskowitz et al. (2012)

Past returns - long Menkhoff et al. (2017),
Daniel and Moskowitz (2016),
Asness et al. (2013),
Moskowitz et al. (2012)

Equity market volatility - short and mid Daniel and Moskowitz (2016),
Orlov (2016)

Illiquidity - short Orlov (2016),
Asness et al. (2013)

Bear market - mid and long Daniel and Moskowitz (2016)
Credit risk - short and mid Asness et al. (2013),

Menkhoff et al. (2012b)

presents the sign of a factor coefficient linking the carry trade returns to the relev-
ant factor. Furthermore, the time frames short, mid and long denote immediate to
one-month, one-month to 12-month and longer than 12-month lags, respectively.

Asness et al. (2013) provide evidence that momentum strategies are highly
related to each other across different markets and asset classes and, thus, likely
driven by the same factors. They report that an average equity momentum strategy
has a correlation of 0.65 with an average equity momentum strategy exploited in
other equity markets. Furthermore, Asness et al. (2013) show that the correla-
tion between an average equity momentum strategy and an average non-equity
momentum strategy is 0.37.

Filippou and Taylor (2017) show that the currency momentum strategy has
offered an annualized mean of 5.17% and 1.57% for a sample of 48 currencies
and a sample of G11 currencies, respectively, during the time period from 1985
to 2012. Furthermore, they report Sharpe ratios of 0.54 and 0.18 for the mo-
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mentum strategies constructed with these two currency samples. Filippou and
Taylor (2017) extract latent factors from an extensive data set of macro econom-
ical variables and use them to predict currency momentum returns. They argue
that macro economical data performs poorly in predictive regressions of the cur-
rency momentum strategy. However, the latent factors that capture asset price
indices, money and credit variables provide some value as the adjusted R2’s of
their regressions are between 2% and 4%.

Daniel and Moskowitz (2016) argue that momentum returns show negative
skewness and relatively long periods of negative returns. These findings coincide
with the characteristics of the currency carry trades (Brunnermeier et al. 2009).
However, Menkhoff et al. (2012b) conclude that currency momentum and carry
trade strategies are unrelated to each other. Their findings are in line with Filippou
and Taylor (2017) as they show that currency momentum returns are not explained
by business cycle risk, liquidity risk or volatility risk that have proven to explain
the profitability of currency carry and dollar-carry trade strategies (Filippou and
Taylor 2017; Lustig et al. 2014; Menkhoff et al. 2012a; Brunnermeier et al. 2009).
Furthermore, Menkhoff et al. (2012b) show that currency momentum returns are
not exposed to a four-factor model proposed by Carhart (1997).

Menkhoff et al. (2012b) argue that the profitability of currency momentum
strategy is linked to country risks, since momentum profits tend to be higher
in countries with low credit ratings. The link between high momentum returns
and poor credit ratings is supported by the profitability of momentum strategies
in the equity and the bond markets (Jostova et al. 2013; Avramov et al. 2007;
Asness et al. 2013; Gebhardt et al. 2005). However, Menkhoff et al. (2012b) show
that currency momentum returns are exposed to minor currencies. This implies
higher idiosyncratic and country specific risks as well as relatively high transaction
costs that cut off approximately one half of the momentum returns. Furthermore,
Menkhoff et al. (2012b) argue that the excess currency momentum returns are
difficult to arbitrage away, since the momentum returns are unstable in the short-
term which is a characteristic supported by Daniel and Moskowitz (2016).

Daniel and Moskowitz (2016) argue that the crashes of the cross-sectional mo-
mentum strategy take place during the recovery from a bear market. They show
that during extensive financial market turmoil, momentum strategy doesn’t per-
form poorly as the market declines but crashes when the market rebounds. This
is because the betas of the loser assets increase significantly in periods of market
recovery, whereas this is not the case for the winner assets. For example, after
the market bottom of March 2009, the loser decile gained 163%, whilst the winner
decile gained only 8% over a three-month period (Daniel and Moskowitz 2016).
Consequently, momentum returns show dynamics that coincide with a short call
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position which could be explained by the Merton’s model for the equity market
(Daniel and Moskowitz 2016; Merton 1974). However, for other asset classes this
reasoning is not robust and, thus, the phenomenon could be explained by behavi-
oural theories (Daniel and Moskowitz 2016).

Orlov (2016) and Asness et al. (2013) argue that various measures of illiquidity
predict currency momentum returns with a negative slope. Orlov (2016) investig-
ate liquidity effects focusing on Amihud’s illiquidity measure computed from both
equity and currency market observations (Amihud 2002). Orlov (2016) finds that
equity illiquidity exhibits stronger predictive power than the according measure
constructed from currency markets. On the other hand, Asness et al. (2013) argue
that funding liquidity has a stronger explanatory power on momentum returns.
Furthermore, Orlov (2016) provides some support for the relationship between
lagged market volatility and currency momentum returns as presented by Daniel
and Moskowitz (2016).

Moskowitz et al. (2012) investigate time-series momentum in the equity, cur-
rency, commodity and bond futures markets. They show that this strategy yields
positive returns across all asset classes and are strongly correlated not only inside
an asset class but also between different asset classes. Moreover, Moskowitz et al.
(2012) find that the time-series momentum strategy provides the highest returns
during extreme market events with both signs as, for example, market crashes are
usually preceded by a run of more moderate losses. However, they argue that the
time-series momentum returns are not explained by exposures to standard risk
factors but rather show investors’ initial under-reaction and delayed over-reaction.
This explanation is shared by Menkhoff et al. (2012b) who provide evidence from
this phenomenon in cross-sectional currency momentum returns. Furthermore,
Moskowitz et al. (2012) argue that cross-sectional momentum is likely driven by
the persistence of asset-wise trends. For example, cross-sectional and time-series
momentum strategies deployed in currency market show a correlation of 0.75 dur-
ing the years from 1965 to 2009.

Momentum returns have shown to reverse after holding periods longer than a
year (Menkhoff et al. 2017; Asness et al. 2013; Moskowitz et al. 2012). Moskowitz
et al. (2012) argue that time-series momentum signals last a year and after that the
strategy incurs losses. This gives support to the theory that momentum returns are
a result of investors’ over-reaction. Furthermore, Asness et al. (2013) construct
a profitable cross-sectional currency trading strategy that takes a long (short)
position in a basket of currencies with the lowest (highest) 5-year real exchange
rate return, thus, capturing long term price reversals. They show that this strategy
has a strong negative correlation with the returns of the momentum strategy.
In addition, Menkhoff et al. (2017) provide support for this contrary strategy
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as they build a related currency price reversal strategy, however, utilizing more
sophisticated metrics of currency value than Asness et al. (2013).
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3 LSTM NEURAL NETWORKS

3.1 Recurrent neural networks

The following introduction of feedforward neural networks or multilayer per-
ceptrons (MLP) follows the description by Goodfellow et al. (2016, 164–168).
MLPs are used to approximate a function F ⇤. For example, the function F ⇤ could
be a binary classifier

y = F ⇤(·),

where y 2 [0, 1]. The idea of a MLP is to learn the parameters ✓ of a mapping

y = F (·, ✓).

In fact, MLP is nothing but a chain of linear mappings and activation functions
applied to the input data. For example, a two-layer MLP can be expressed by the
following two equations

h =  (Wxhx+ bh)

y = Whyh+ by,

where Wxh is a weight matrix used in the input–hidden layer mapping, Why is a
weight matrix used in the hidden–output layer mapping, x is a vector of the input
data, b is a bias vector and  is an element-wise applied non-linear activation
function.

With MLPs, it is possible to approximate any mapping given enough capacity.
However, if recurrent connections are added, it is possible to approximate any
algorithm. Recurrent neural networks (RNN) are used to process sequential data,
for example time-series data. RNNs use the same weights for multiple time steps
and they have recurrent connections. As a consequence from the former feature,
called parameter sharing, RNNs are able to process data with various lengths.
(Goodfellow et al. 2016, 367–368).

The following introduction of the RNN follows the description made by
Graves et al. (2013). A standard RNN computes the hidden vector sequence
h = (h1, h2, . . . , hT ) and the output sequence y = (y1, y2, . . . , yT ). The computa-
tion is done iteratively through time t 2 [1, 2, . . . , T ] by the equations

ht =  (Wxhxt +Whhht�1 + bh) (2)

and
yt = Whyht + by, (3)

where Wxh is a weight matrix applied to input layer, Whh and Why are weight
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matrices applied to the output from the hidden layer at time t�1 and t respectively,
x is input data, b denotes a bias vector and  is a function applied to the hidden
layer. In a simple RNN, the hidden layer function  could be for example an
element-wise application of the sigmoid function. The RNN is illustrated in Figure
1.

Figure 1: Unfolded recurrent neural network (RNN)

In order to optimize the model parameters in a RNN, gradient based back-
propagation methods are usually applied through time. This method is called back-
propagation through time (BPTT). The goal of the optimization is to minimize
an objective function, L(yt, ŷt) that determines the current error of the model. In
the objective function yt and ŷt denote the target and the current output of the
model. The choice of the objective function depends on the type of the predictive
modelling problem. For example, a mean squared error could be used as the
objective function in a predictive regression problem. The idea of the BPTT
is to compute the gradients of the model parameters with respect to the error
starting from the most recent time step and then moving step by step back in
time. After the gradients are computed, the model parameters are updated with
gradient descent. This procedure is repeated until the error is sufficiently small or
the parameters are converged.

BPTT to the parameters in the Equations 2 and 3 is given as follows. First,
gradients of the output layer are

�yt =
@L(yt, ŷt)

@yt
(4)

which are then propagated to the hidden layer according to

�ht =  0(�ytW
0
hy + �ht+1W

0
hh), (5)
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where  0 denotes the element-wise applied derivative of the activation function
and for the last time step T the term �ht+1Whh is zero. Next, the gradient descent
based update rules for the model parameters are

W

i+1
hy = W

i
hy + ⌘

TX

t=1

�yth
0
t,

b

i+1
y = b

i
y + ⌘

TX

t=1

�yt ,

W

i+1
hh = W

i
hy + ⌘

TX

t=1

�ht h
0
t�1,

W

i+1
xh = W

i
xh + ⌘

TX

t=1

�ht x
0
t�1,

and

b

i+1
h = b

i
h + ⌘

TX

t=1

�ht ,

where ⌘ is a predetermined learning rate and i denotes the number of the iteration.

3.2 Long short-term memory cells

RNN has a memory which means that it is able to use past states in predicting fu-
ture targets. Bengio et al. (1994) show that BPTT becomes increasingly inefficient
in training RNNs as the time spans of the dependencies increase. This is easily
obtained through the Equations 4 and 5 as the effect of the predictive power of
a signal to the gradient decreases exponentially as the number of time steps back
increases. This phenomenon is called vanishing gradients.

Hochreiter and Schmidhuber (1997) developed a solution to the aforementioned
problem by introducing long short-term memory cells (LSTM). LSTM cells can
be applied to RNNs by replacing the activation function  in the Equation 2 by a
composite function

it = �(Wxixt +Whiht�1 +Wcict�1 + bi)

ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf )

ct = ftct�1 + ittanh(Wxcxt +Whcht�1 + bc) (6)

ot = �(Wxoxt +Whoht�1 +Wcoct�1 + bo) (7)

ht = ottanh(ct),
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where

�(x) =
1

1 + e�x
, (8)

tanh(x) =
ex � e�x

ex + e�x
,

i, f and o are input, forget and output gate vectors, respectively. c is a cell vector
and each weight matrix that is applied to the cell to gate mapping is diagonal.
The LSTM cell is illustrated in the Figure 2.

Figure 2: Long short-term memory (LSTM) cell (Graves et al. 2013)

The LSTM RNN is able to model dependencies with an arbitrary time span
between the predictive signal and the target. The memory cell in the Equation 6

stores the temporal state values of the network and the gates, of which elements
get values between 0 and 1, control the information flow. For example, if the
values of the elements in the input gate vector are zero, new information is not
added to the temporal state. Similarly, the output vector controls the output flow
of the information that leaves the cell. The forget gate has been introduced by
Gers et al. (2000) and it allows the LSTM cell to learn to reset its memory and, as
a consequence, release internal resources. Finally, Gers et al. (2002) add peephole
connections from the cell to the gates of an LSTM cell. These connections allow
the model to learn precise timing as the gates are able to inspect the internal state
of the cell.
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3.3 Market prediction

During the past two decades, LSTM RNNs, LSTM henceforth, have been used
to win multiple competitions and to break records of popular benchmark tasks
that are based on large and complex data sets. This technique has been capable
of solving previously unsolved problems that involve, for example, modelling the
temporal distance and order of events, storing real numbers through long time
intervals and recognizing patterns extended in time from noisy input data. In
general, many of the machine learning methods, like neural networks, are proven
to be valuable predictors of noisy and complex natural phenomena. (Schmidhuber
2015)

Despite the success in other applications, machine learning techniques have
been lacking broader breakthroughs in financial market prediction, especially from
the academic literature point of view. Jacobs (2015) summarizes 100 different
market anomalies found in previous research. He divides these anomalies in 20
meta-strategy groups and demonstrates that each group has provided a positive
alpha during investment periods with varying starting dates between 1926 and
1987 and ending in 2011. However, Krauss et al. (2017) point out that none of
the strategies tested by Jacobs (2015) are utilizing advanced statistical learning
techniques.

Gu et al. (2018) emphasize the fact that machine learning is suitable for predic-
tion tasks, but these techniques cannot be used to explain the underlying economic
mechanisms. The latter is possible with standard linear techniques. However, ex-
ploiting the vast amount of potential predictors presented by financial market
research makes standard linear models inadequate in prediction tasks due to, for
example, collinearity and decreasing degrees of freedom (Gu et al. 2018). Further-
more, these techniques are not able to incorporate the complex and likely non-
linear relationships in the data (Heaton et al. 2018). Consequently, Heaton et al.
(2018) list three main characteristics of machine learning which make it more suit-
able to financial market prediction compared to traditional methods used in this
field. Firstly, all possibly relevant input data can be used in the prediction task.
Secondly, machine learning techniques are capable of capturing non-linearities and
complex interactions. Finally, over-fitting is easier to avoid in the learning process
which increases the generalization and out-of-sample performance.

Gu et al. (2018) investigate different statistical learning models in time-series
prediction of stock returns. They compare the performance of linear regression,
generalized linear models with penalization, principal component regression, par-
tial least squares, regression trees that include boosted trees and random forests
and feed-forward neural networks relying on vast amount of data. Gu et al. (2018)
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predict the excess returns of almost 30,000 individual stocks between 1957 and
2016. The data set used for prediction consists of 94 characteristics of each stock,
eight aggregate time-series variables and 74 dummy variables related to industry
sectors. Expectedly, in the class of linear models, penalization and dimension
reduction techniques improve the out-of-sample performance due to the high di-
mensional data set of more than 900 predictors. Moreover, Gu et al. (2018) show
that non-linear models further improve the performance over linear models.

Gu et al. (2018) develop a long-short equity strategy with the stocks in the S&P
500 index based on the predictions of their 3-layer neural network architecture.
They show that this method generates a Sharpe ratio of 2.35. On the other hand,
similar strategy that relies on the benchmark linear method annualizes a strikingly
lower Sharpe ratio of 0.89.

By further analysis of the used methods and data sets, Gu et al. (2018) argue
that the most important predictor classes are price trends, liquidity proxies and
volatility measures. These findings hold regardless of the model used. 12-month
momentum and both short-term and long-term reversals are amongst the most
informative price trends.

Krauss et al. (2017) compare three different statistical learning methods and
their ensembles in stock market prediction. These methods are deep neural net-
works, gradient boosted trees and random forests. Krauss et al. (2017) use only
past return observations spanning three years back in time in their time-series pre-
diction task of S&P 500 constituent stock returns. They show that the ensemble
methods that combine the three individual techniques outperform each of the in-
dividual models. Furthermore, they construct a long-short strategy based on their
best performing model which generates a Sharpe ratio of 1.81 after transaction
costs. The Sharpe ratio is five times larger than the Sharpe ratio of S&P 500 in-
dex during the sample period of 1992–2015. In line with the most important price
trends found by Gu et al. (2018), Krauss et al. (2017) show that their strategy
utilizes predominantly the returns from the past 12-month and one-week periods.
Furthermore, Krauss et al. (2017) and Gu et al. (2018) show consistent results
considering the depth of the best performing models, since they both conclude
that more shallow architectures of non-linear models outperform deep learners in
financial market prediction.

Fischer and Krauss (2018) apply LSTMs to the same sample and setting invest-
igated by Krauss et al. (2017). They conclude that LSTMs consistently outperform
the prior benchmark techniques. More specifically, also after transaction costs, the
LSTM alone provides a higher Sharpe ratio of 2.34 than the ensemble of the other
three techniques. Finally, Fischer and Krauss (2018) show that the developed
strategy utilizes mostly short-term reversals and picks high beta stocks.
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Krauss et al. (2017) and Fischer and Krauss (2018) identify that their strategies
have low exposures to well known risk factors. However, their strategies tend to
pick high volatility stocks. This feature is most likely due to their heuristic portfolio
construction technique that does not take volatilities into account. Consequently,
an optimization based approach might enhance the risk-return profile of these
strategies.

The usage of LSTMs comes with a higher computational cost, since in this
model the number of parameters to be trained is large. Fischer and Krauss (2018)
argue that the profitability of their strategy decreases significantly in the post 2010
period, fluctuating around zero after transaction costs. They explain that this is
possibly a consequence of higher computational power and broader utilization of
advanced machine learning techniques which has led the high excess returns to
be arbitraged away. Increase in the computational power is likely to explain the
success stories of deep learning techniques in general as, for example, today’s
computer has more than a million times the computational power of a desktop
computer from thw early 1990s (Schmidhuber 2015, 94).

In general, models trained with historical data generalize well to unseen data if
the dynamics of the system have not changed dramatically. This is usually the case
with natural phenomena but not with financial markets. Consequently, simpler
models that are built based on rigorous financial theories might provide greater
confidence to investment decision making compared to the black box machine
learning techniques. However, the attractive capabilities and proven success in
terms of exceptional Sharpe ratios highlight the need to fill the research gap in
advanced machine learning applications in financial markets prediction tasks. In
fact, the popularity of these techniques can be increased securely through better
understanding the dynamics of machine learning models and their implications.
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4 METHODOLOGY

4.1 Data and definitions

The data span of the sample period is from the 2nd of January 1999 to the 31st
of December 2018 and is chosen as the Euro has been traded only since 1999. The
data are obtained from the Bloomberg database. The construction of the data,
prediction task, portfolio formation and empirical analysis are conducted with a
weekly frequency for two reasons. First, the weekly frequency helps to reduce
the noise incorporated in higher frequencies. Second, weekly observations should
decrease possible problems concerning different time-zones. However, daily closing
observations are used to construct the factor proxies that require calculations of
variances.

The currencies being traded are the G10 currencies: Euro (EUR), Pound ster-
ling (GBP), Japanese yen (JPY), Australian dollar (AUD), New Zealand dollar
(NZD), Canadian dollar (CAD), Swiss franc (CHF), Norwegian krone (NOK) and
Swedish krona (SEK), which are denoted against the United States dollar (USD).
These represent the most liquid currencies in the market and, consequently, are
extremely suitable to trading strategies with higher frequencies. Price quotes from
the spot and futures markets are used to calculate the currency returns.

The excess currency returns over one period, which are used in the prediction
and portfolio construction phases, are calculated as follows

RXk,t+1 = ikt � it �
sk,t+1 � sk,t

sk,t
⇡ fk,t,t+1 � sk,t+1

sk,t
,

where ik and i denote the foreign and home country riskless interest rates whereas
fk and sk denote the mid quote futures and spot prices of an unit of a foreign
currency k per a unit of the home currency (Filippou and Taylor 2017). Moreover,
the practical feasibility of the currency portfolios are evaluated based on the port-
folio turnover and estimated transaction costs. The annualized portfolio turnover
is computed as follows

Turnover =
52

T

TX

t=1

KX

k=1

|wk,t+1 � (1 +RXk,t+1)wk,t|,

where wk denotes the dollar amount of a currency k in the portfolio and |(·)| denote
absolute value. Furthermore, K and T denote the total number of currency pairs
and the total number of weeks, respectively. The estimated annual transaction
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costs of a currency portfolio are computed as follows

Transaction costs =
KX

k=1

Turnoverk · BASk,

where Turnoverk is an annual turnover of a currency k and the average bid–ask
spread for a currency k

BASk =
1

T

TX

t=1

sbk,t � sak,t
(sbk,t + sak,t)/2

,

where sb and sa denote bid and ask spot price quotes, respectively. Finally, trans-
action costs are estimated solely based on currency spot bid–ask spreads, since
reliable data on the bid and ask quotes of the futures or forward contracts were
not available.

The factors used in the predictions are currency returns, forward premium,
equity and foreign exchange market volatilities, funding liquidity, variance risk
premium, currency variance risk premium, commodity prices and credit risk. These
factors are chosen based on the previous research findings regarding the predictab-
ility of currency markets and discussed more in depth in Section 2 (Londono and
Zhou 2017; Menkhoff et al. 2017; Orlov 2016; Asness et al. 2013; Mancini et al.
2013; Bakshi and Panayotov 2013; Menkhoff et al. 2012a,b; Brunnermeier et al.
2009). Furthermore, the chosen factors cover the three most informative classes of
predictors found in an analysis of over 900 different variables in an equity market
return prediction problem by Gu et al. (2018) as they argue that various price
trends, liquidity and volatility measures contribute the most to the prediction
performance of their model.

For price trends, aggregate variables, like a 12-month return, are not used since
LSTMs should be able to recognise these patterns from the historical data if they
have predictive power. This is also empirically proved by Fischer and Krauss
(2018). Consequently, RX is used as the first factor which proxies price trends.
The second factor, forward premium, is calculated from the futures and spot prices
as follows

FPt =
fk,t,t+1 � sk,t

sk,t
.

Considering the risk proxies, the VIX index, that measures the option-implied
volatility of the S&P 500 Index and is calculated by Cboe Options Exchange, is
used as a proxy of equity market uncertainty as by Brunnermeier et al. (2009),
whereas the approach by Menkhoff et al. (2012a, 692) is followed for the currency
market volatility factor. Consequently, the proxy for a one-month currency market
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volatility is

�FX
t =

1

K

tX

i=t�21

"
KX

k=1

| �ski |
#
,

where K is the number of currencies and �s denotes the one-day change of a
currency log spot price.

The construction of the variance risk premium and the currency variance risk
premium follows the approach in Londono and Zhou (2017). Consequently, the
proxy for the variance risk premium

V Pt = EQ
t [�

2
r,t+1]� EP

t [�
2
r,t+1], (9)

where EQ and EP are the risk-neutral and physical expectations of the stock
market variance �2

r . Londono and Zhou (2017) use a model-free option implied
variance, similar to the method used to calculate the VIX Index, as a proxy for
EQ[�2

r ] but in this study, the VIX Index is used instead. Furthermore, one-month
realized volatility of the S&P 500 index is used as a proxy for EP

t [�
2
r,t+1] as by

Londono and Zhou (2017). Consequently, the Equation 9 can be written as

V Pt =
1

12
V IX2

t �
tX

i=t�21

r2i ,

where r is a daily return of the S&P 500 Index. Furthermore, the currency variance
risk premium

XV Pt =
1

K

KX

k=1

"
EQ

t [�
2
k,t+1]� EP

t [�
2
k,t+1]

#
, (10)

where EQ and EP are the risk-neutral and physical expectations of the variance of
a single currency k. Black-Scholes at-the-money option-implied volatility, which
is calculated by Bloomberg, is used as a proxy for EQ[�2

k] and one-month realized
volatility of a currency k is used as a proxy for EP

t [�
2
k,t+1]. Consequently, the

Equation 10 can be written as

XV Pt =
1

K

KX

k=1

"
1

12
�2
t,impl �

tX

i=t�21

�s2k,i

#
,

where �impl is the option-implied volatility of a currency pair.
TED spread is used as a proxy of the funding liquidity as in (Bakshi and

Panayotov 2013; Brunnermeier et al. 2009). It is calculated as

TEDt = LIBORUSD
t � TBt,

where LIBORUSD is a three-month LIBOR (London Interbank Offer Rate) of
interbank loans denominated in the USD in London and TB denotes the three-
month U.S. treasury bill interest rate. Furthermore, the credit spread (CS) is
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calculated as a difference between the yield of a Moody’s Baa rated aggregate
corporate bond index and the yield of an aggregate U.S. treasury note with 10-
year maturities. Finally, the returns of a composite commodity index are used as a
proxy of the commodity price factor (COM) as in Bakshi and Panayotov (2013).
The commodity index used is the Rogers International Commodity Index that
tracks the performance of a basket of 37 commodity futures contracts denominated
in the USD.

4.2 Prediction routine

The goal of the prediction task is to learn K mappings

F k : Xk ! y

k,

where X

k denotes the lagged input patterns for a currency k and y

k =

[yk2 , y
k
3 , . . . , y

k
T+1] denotes the targets

ykt =

(
1 if RXk

t > mt

0 if RXk
t  mt

,

where mt is a cross-sectional median of the returns RXk
t , where k 2 K. Therefore,

the objective is to learn to predict conditional probabilities that a currency k

outperforms the cross-sectional median of all currency excess returns during the
next time step. Two types of recurrent neural networks, LSTMs and simple RNNs
are compared with two sets of input patterns. The input patterns at time t are a
vector

h
RXk

1 RXk
2 · · · RXk

t�1

i0

of past excess currency returns or a matrix
2

66664

RXk
1 FP k

1 V IX1 �FX
1 V P1 XV P1 TED1 CS1 COM1

RXk
2 FP k

2 V IX2 �FX
2 V P2 XV P2 TED2 CS2 COM2

...
...

...
...

...
...

...
...

...
RXk

t�1 FP k
t�1 V IXt�1 �FX

t�1 V Pt�1 XV Pt�1 TEDt�1 CSt�1 COMt�1

3

77775

of past excess currency returns, forward premiums and the seven factors that are
common to all currencies. Since the model parameters are trained for each of the
currencies separately, the total number of models investigated is 4⇥ 9 = 36. The
performances of the LSTM models are compared to the performances of the RNN
models in order to find out if the complexity added by the former is necessary.
As discussed in Section 2, some predictability of currency excess returns have
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been found with factor sets lagged up to even 12 months. If the LSTM models
outperform RNN models, there exists predictive patterns with more than two
months of temporal distance as a LSTM is capable to model longer temporal
relationships than a simple RNN due to e.g. the vanishing gradient problem. Two
sets of input patterns are investigated in order to analyse if the additional factors
are valuable predictors of the currency return dynamics. Finally, the currency
performances are predicted separately for two reasons. First, co-modelling the
currency performances should be irrelevant since no co-movements have been found
among the G10 currencies that would not otherwise be possible to capture from
the predictive factor sets considered in this study. Second, smaller number of input
patterns per model should significantly reduce the required computing power as
the models are less complex.

A LSTM or RNN predictor is denoted as

ŷ

k = F k(Xk; ✓k),

where ✓k is a set of model parameters {W , b}. The true parameters ✓k are unknown
and, thus, need to be estimated, i.e the model needs to be trained. The training
is done by solving

argmin✓

1

T

TX

t=1

L(ykt , ŷtk), (11)

where L(yt, ŷt) is a loss function and ŷt
k = F k(Xk

t ; ✓).
Fischer and Krauss (2018) use a softmax activation function with two output

neurons and a cross entropy loss function. In this research, however, a single
output neuron with a sigmoid activation function in Equation 8 is used with a
binary cross-entropy loss function for simplicity. The binary cross-entropy for a
single target–output pair is

L(yt, ŷt) = �
�
yt · log(ŷt) + (1� yt) · log(1� ŷt)).

The training algorithm used is RMSprop as used by Fischer and Krauss (2018).
The update rule of the parameters is similar to the gradient descent but instead of
using fixed learning rate and gradients calculated from the full sample of training
input patterns, RMSprop utilizes adaptive learning rates and mini-batches. The
learning rates are divided by the square roots of average squared magnitudes of
the gradients from the previous mini-batches and computed to each parameter
separately. (Hinton 2012). In addition, similar to Fischer and Krauss (2018),
dropout regularization is used as also adviced by Goodfellow et al. (2016, 420).
The basic idea of the method, first introduced by Srivastava et al. (2014), is to
drop out some fraction of randomly chosen units of the network during the training
steps of the model. This decreases the probability of overfitting and, consequently,
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should result in better out-of-sample performance. Finally, the input patterns of
the training data are scaled so that the standard deviation is one in-sample before
training. This speeds up the learning process and adds regularization without
changing the signs of the factor observations. Furthermore, the standard deviations
of the input patterns in the training data are used to scale the input patterns in
the validation and prediction data as well.

The data is divided into training, validation and prediction sets. The train-
ing and validation data consists of the lagged input patterns and targets. The
iterative optimization routine is started by first updating the model parameters
in the training data based on the calculated training error that is the loss in the
training data set. Next, the model and the updated parameter values are used
to make predictions on the validation set, and these predictions are then used
to calculate the validation error that is the loss in the validation data set. The
validation error is used to control the model overfitting and, consequently, to im-
prove generalization, i.e. out-of-sample performance, in the following way. After
each parameter update, the validation error is calculated and the optimization is
stopped when the validation error starts to increase or when it has been on the
same level during the last fifteen epochs, that is a full presentation of the data set
used in the learning process, as recommended by Goodfellow et al. (2016, 420).
Furthermore, the maximum number of the epochs is capped to one thousand. Fi-
nally, the model parameters with the lowest validation error are retrieved. This
routine is illustrated in Figure 3. After retrieving the optimal model parameters,
the lagged input patterns of the prediction data set are used to make predictions.
The targets of the prediction data set are used only in the performance evaluation
when the performances of the models are compared afterwards.

The data splits are handled in the following way. The 20-year sample is divided
into three parts. Three years (156 weeks) of data are used as a training set, whereas
the next two and a half years (130 weeks) are used as a validation set. The rest
of the years are used for out-of-sample predictions. However, after the model is
optimized, it is used to generate the predictions for a year (52 weeks) following
the end of the validation set. Single feature sets are 60 weeks long so that the
model could recognize patterns with longer than 13 months temporal distances.
They are constructed from the lagged observations so that a feature set used in
the prediction of next week’s performance probabilities is constructed from the
observations obtained during the preceding 60 weeks. Consequently, the data set
used in the prediction phase is rolled ahead for a week after each prediction. After
the model that has been optimized with the training and validation sets is used to
produce 52 predictions, the training set is extended by a year and the validation
set is rolled ahead for a year. Then the model is re-trained with the new data



37

Figure 3: LSTM model optimal parameter value selection

splits and used to the out-of-sample predictions of the next 52 weeks. The model
is re-trained in an annual frequency in order to save computational burden. As
an illustration, to the model that utilizes nine factors the dimension of the first
set of input patterns used in the parameter optimization is 97 ⇥ 9 ⇥ 60 and the
dimension of the output set produced is 97 ⇥ 1 ⇥ 1. The number of outputs is
smaller than the total number of time steps in the data set since one prediction
requires data from the preceding 60 time steps. However, since the input patterns
of the validation and training data sets overlap, the number of outputs produced in
the validation phase is equal to the number of weeks in the split size. Consequently,
the dimension of the input patterns of the validation set is 130 ⇥ 9 ⇥ 60 and the
dimension of the output set produced is 130⇥ 1⇥ 1. Furthermore, the respective
dimensions to the prediction data sets are 52⇥ 9⇥ 60 and 52⇥ 1⇥ 1. Note that
after splitting the data the predictions are made with a rolling sets of lagged input
patterns. Consequently, there is no look-ahead bias.

The only difference between the LSTM and RNN model architectures is that
instead of the LSTM cells, tanh activation function is used in the hidden layers
of the simple RNN. The model architectures and hyper parameters are chosen
based on experiments with the first training and validation data sets that cover
the first five and a half years. Relatively shallow architectures perform better as
models with a high number of hidden units tend to overfit. There is only minor
changes in the validation error with hidden units ranging from 4 to 15. However,
the chosen number of hidden units is 6 to the models utilizing all factors as input
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patterns and 10 to the models utilizing only past excess currency returns as input
patterns since with these the performances are the most consistent among the
models. The number of weight and bias terms in a LSTM model is calculated as
4(u(i + 1) + u2), where i is the number of input features (factors) and u is the
number of units in the hidden layer. Consequently, the numbers of weight and
bias terms are 4(6(9 + 1) + 62) = 384 and 4(10(1 + 1) + 102) = 480 to the LSTM
models with nine and one input features, respectively. Furthermore, the numbers
of parameters are one-fourth of these to the simple RNNs. Finally, the choice
to decrease the batch size, used in the parameter optimization, from one epoch
to 52 feature sets decreases overfitting and improves validation set performance.
Furthermore, tweaking the dropout ratio does not have significant effects and,
consequently, the dropout ratio is set to 0.1 as in Fischer and Krauss (2018).

The empirical analysis is conducted with Python 3.6 by Python Software
Foundation (2019). The LSTMs and simple RNNs are built with Keras by Chollet
et al. (2015) which runs on top of Tensorflow by Abadi et al. (2015).

4.3 Performance evaluation

Classification accuracy is used to evaluate the prediction performances of the
LSTM and RNN models. It measures the percentage of correct classifications
and can be written as

A(y, ŷ) =
n�

Pn
i=1 |yi � ŷi|
n

,

where y is a n ⇥ 1 vector of targets 2 (0, 1) and ŷ is a n ⇥ 1 vector of class
predictions so that

ŷi =

(
1 if Pi > 0.5

0 if Pi  0.5
,

where Pi is the outperformance probability prediction of the model. Furthermore,
in order to assess the accuracy of a model, a statistical estimate of the probability,
that a model would have achieved the prediction accuracy by change, is computed
as by Fischer and Krauss (2018). First, if the true model accuracy is 0.5, the
number of correct predictions could be presented by a binomial distribution

X ⇠ Binom(TK, 0.5),

where T is the number of time steps and K is the number of the assets. Con-
sequently, for a large TK, the randomness of the model prediction performance
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can be tested with a test statistic

BT =
TK(ā� 0.5)p

0.5nk
⇠ Norm(0, 1),

where

ā =
1

K

KX

k=1

A(yk, ŷk)

under a null hypothesis that the true model accuracy is 0.5.
The prediction performances of different models are compared as by Gu et al.

(2018) and Fischer and Krauss (2018) with a test proposed by Diebold and Mariano
(1995). In the Diebold–Mariano test, the null hypothesis states that the prediction
accuracies of models 1 and 2 are the same, whereas the alternative hypothesis states
that the prediction accuracy of the model 2 is less than the prediction accuracy of
the model 1. The test statistic

DM12 =
p
T � 1

d̄12
�d

⇠ tT�1,

where

d̄12 =
1

K · T
X

d12,

where T is the number of time steps and K is the number of the assets and

d12 = |ê1|� |ê2|,

where

êi = y � ŷi.

Finally,

�2
d =

1

K · T
X

(d12 � d̄12)
2.

The variable importance is exploited with linear models as by Gu et al. (2018)
by reporting the R2s of OLS regression models with different sets of explanatory
variables. This exercise helps to explain the dynamics of the black box machine
learning method being investigated.

4.4 Portfolio construction

At each time step t, a prediction model gives an output that represents the prob-
ability that the excess return on a given currency at time t+ 1 is higher than the
expected cross-median of all G10 currency excess returns at time t + 1. These
predictions are done based on the information available at time t. The probabil-
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ity predictions are used in portfolio construction in order to exploit whether the
models provide alpha opportunities or not.

Two portfolio construction approaches are considered. Both techniques util-
ize the cross-sectional ranking of the models’ output probabilities. Furthermore,
in both cases, the resulting portfolio is a self-financed dollar-neutral allocation.
Consequently, long positions are financed with equally large short positions.

First, a robust portfolio construction that relies on a simple heuristic approach
is utilized. Starting from the cross-section of the outperformance probability pre-
dictions, these output probabilities are ranked in an descending order. Then the
strategy takes long positions in the currencies with the highest rankings, thus,
in currencies with rankings from six to nine. Similarly, short positions are taken
in the currencies with the lowest rankings that are the ranks from one to four.
Finally, the position in a currency with the ranking five is long if the predicted
probability is higher than 0.5 and short otherwise.

After the signs of the currency positions are determined, the weights are scaled
so that the short positions sum to minus one and the long positions sum to one.
Furthermore, the long positions at time t are equally large and the short positions
at time t are equally large.

The second portfolio construction technique is based on constrained mean–
variance optimization of which inputs are processed by entropy pooling. This ap-
proach is motivated by the empirical evidence from Fischer and Krauss (2018),
which states that the robust portfolio construction technique that utilizes the
LSTM model output signals tends to overweight high volatility assets. However,
Boudoukh et al. (2018) demonstrate that mean–variance optimization is sensit-
ive to parameter uncertainty which results in extreme allocations when applied
to the G10 currency markets. They argue that more advanced signal prosessing
and parameter estimation techniques might lead to well-balanced portfolios. Con-
sequently, restrictions are imposed to the portfolio volatility and holding sizes in
order to avoid extreme allocations. Furthermore, the LSTM model predictions are
processed by entropy pooling as this is an intuitive way to translate the outper-
formance probabilities into mean–variance optimization inputs so that the asset
variance and correlation estimates are aligned with the scenario of the LSTM model
estimates.

In order to optimize the portfolio allocation, second-order cone programming
(SOCP) is utilized

z

⇤ = argmin
z

c

0
z

subject to

8
><

>:

Az = a

Bz � b

kDz � qk2  k

0
z � g

,
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where A, B and D are conformable matrices, z, c, a, b and q are conformable
vectors, g is a scalar and k(·)k2 denotes the L2-norm (Meucci 2005, 313–314).
The portfolio optimization problem reduces into a quadratically constrained linear
programming (QCLP) problem, which is a subclass of the SOCP. Consequently,
the problem formulation is presented according to the following form

u

⇤
t = argmax

u

u

0
pt+1

subject to

8
><

>:

ptu = 0

Bu � b

kCuk2  �

max

,

where u is a vector with the amounts of the U.S. dollar units to be invested in the
foreign currencies, pt+1 is a vector of the expected values of the foreign currency
positions at time t + 1 per a unit of the USD invested at time t. Values are
used instead of returns as linear returns on wealth are not defined to a zero initial
investment. Note that the maximization can be formulated back to a minimization
by taking the negative sign of the objective function. Furthermore, the first linear
equality constraint ensures that the short positions are as large as the long positions
and, thus, the strategy is self-financed. pt is a vector of the costs in the USD of the
positions in the currencies at time t. The second linear inequality constraint sets
the maximum and minimum asset-wise allocations. The matrix B =

⇥
In,�In

⇤
,

where In is an identity matrix and n is the number of the currencies. Furthermore,
the vector b =

⇥
max1, . . . ,maxn,min1, . . . ,minn

⇤
sets the asset-wise minimum

and maximum exposure limits. Finally, the third constraint limits the volatility of
the resulting portfolio to �max. The quadratic constraint

u

0⌃u  �2
max (12)

can be rewritten by decomposing the variance-covariance matrix ⌃ into two trian-
gular Cholesky decomposition matrices C (Davidsson 2011, 176). Now Equation
12 becomes

u

0
CC

0
u  �2

max

(Cu)0Cu  �2
max

p
(Cu)0Cu 

p
�2
max,

which can be expressed as a second-order cone constraint

kCuk2  �max.

In order to perform the optimization routine, pt+1 and ⌃
t+1 need to be estim-

ated.
pt+1 = pt � eµ̂+ 1

2diag(⌃̂), (13)
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where � denotes an element-wise multiplication, µ̂ and ⌃̂ are the sample estimates
for the first two moments of the posterior distribution f✓

post

derived with entropy
pooling introduced by Meucci (2008).

The prior distribution determining the profit and loss distribution of the in-
vestment universe is denoted as

X ⇠ f
✓

prior

,

where X is a set of risk factors, and ✓prior is a set of parameters that fully describe
the probability density function f of X. In case the predictions or views V t+1 62
✓prior, which could be for example views on expected values or variances of X, a
probability distribution f

✓

so that ✓ 2 V should be searched. However, at the
same time the prior should be changed as little as possible. Meucci (2008) shows
that this posterior distribution could be expressed as f

✓

post

, where

✓post = argmin
✓2V "(✓k✓prior) (14)

and

"(✓k✓prior) ⌘
Z

⇥

f
✓

(x) ln
⇣ f

✓

(x)

f
✓prior(x)

⌘
dx,

where ⇥ 2 Rn and n is the number of the risk factors.
The approach to handle ranking views proposed in Meucci et al. (2014) is

modified to outperformance constraints such that

V = [⌫1,⌫2, . . . ,⌫n],

where

⌫k = µk � µk+1 + q  0,

n is a number of constraints which is one less than the number of assets, mu

denotes the currency mean in the reference model, k is a ranking of the currency
outperformance probability and q 2 R.

After imposing the inequality views, entropy minimization has to be solved
numerically. The numerical implementation follows Meucci (2008) with scenarios
in discrete time. The reference model X is modelled with a J ⇥K -dimensional
matrix X , in which the rows have J historical scenarios for K assets. Consequently,
a row j is a single joint scenario of the assets K and a column k describes the
marginal distribution of that asset returns. As in Meucci (2008, 8), each scenario
of the reference model is assigned with a probability !j = 1/J . Finally, the same
scenarios X are used with a different set of probability weights !̃ in order to
represent the posterior distribution.

Meucci (2008, 8–9) shows that in discrete time, the numerical implementation
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of the entropy minimization problem in Equation 14 becomes

!̃ = argmin
A�+q0 "(�,!),

where !̃, ! and � are J ⇥ 1 dimensional vectors of probability weights used to
represent the posterior and prior distributions, respectively, whereas � is used in
search of !̃. Furthermore,

"(�,!) =
JX

j=1

�j(ln �j � ln!j)

and as by Meucci et al. (2014), the column k of the J ⇥ (K � 1) matrix A is

Ak = X k �X k+1, k = 1, . . . , K � 1.

Finally, q is set to a small real number. Meucci (2008) translates this into a dual
formulation which can be efficiently solved as it is a linearly constrained quadratic
programming problem (LCQP).

In order to implement the entropy pooling approach, 156 weeks of historical
excess currency returns are used as the historical scenarios X and q is set to
0.00001. After the optimal probability weights !̃ are found, the posterior scenarios
are represented by

X̃ = !̃ �XJ.

Lastly, the mean vector µ̂ and covariance matrix ⌃̂ are estimated from X̃ .
The robust approach does not distinguish between different strengths of the

predictive signals, whereas the optimization based approach gives credit to the
currencies according to their ranked predictive signals. Furthermore, the robust
approach does not take into account the riskiness of the positions or the correlation
structure. On the other hand, this means that the robust approach will not result
in an extreme allocation and is less exposed to estimation errors. However, by
limiting the portfolio volatility and assigning caps and floors for the holdings, a
well balanced allocation should be achieved with the optimized approach as well.
The targeted level of risk is set based on the volatility of an equally weighted
long-only currency basket as this is the simplest example of a currency portfolio.
The annualized volatility of this portfolio is approximately 7% during the first 286
weeks of sample data that is used in the first training and validation data split.
However, the portfolio risk is limited to 6% annual in-sample volatility as mean-
variance optimal portfolios are likely to realize higher volatilities out-of-sample.
Finally, the maximum absolute value of individual currency holdings is limited to
0.6 in order to prevent extreme concentration resulting from estimation errors.

Finally, the portfolio performances are compared to the carry and 3-month
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momentum portfolio returns. These portfolios are constructed according to the
robust approach. The performance metrics used in the comparisons are mean,
standard deviation, Sharpe ratio, skewness, excess kurtosis, 95% Value-at-Risk
and maximum drawdown.

4.5 FX risk hedging

An U.S. based investor holding euro area equities has a total exposure that is sim-
ilar to the exposure of a local equity investor in the euro area plus the currency risk
that comes from holding assets denominated in a foreign currency. The currency
risk could be hedged by taking a short position in the Euro and immediately un-
hedged by taking an additional long position in the same currency. Consequently,
an unhedged international equity portfolio EQU can be decomposed so that

EQU = (EQU � B) +B

EQU = EQ+ B,

where EQ is a fully hedged international equity portfolio and B is a basket of
foreign currencies with exposures in line with the sizes of the foreign equity in-
vestments. The resulting portfolio on the left side of the equation does not have
to be an unhedged portfolio, but the investor could freely choose any combination
of currency exposures to customize the overall exposure of the portfolio in addi-
tion to the fully hedged equity component. The return of such a portfolio can be
expressed as follows

rp = rEQ +w

0
rFX ,

where, rEQ is the return on EQ, rFX is a K ⇥ 1 vector of currency returns w.r.t.
the USD and w is a K⇥1 vector of currency weights. Naturally, an investor would
either choose w to minimize the portfolio risk or to maximize risk-adjusted returns.
Boudoukh et al. (2018) show that a hedging currency portfolio that minimizes the
variance of an international equity portfolio has weights

whedge = �⌃�1
FX⌃EQFX ,

where ⌃FX is a K ⇥K covariance matrix of the currency excess returns and

⌃EQFX =
⇥
cov(rEQ,RFX,1), cov(rEQ,RFX,2), . . . , cov(rEQ,RFX,K)

⇤0
,

where RFX,k is the kth column vector of a T ⇥K currency excess return matrix
RFX and rEQ is a T ⇥ 1 vector of returns on EQ. Consequently, Boudoukh et al.
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(2018) combine the minimum variance portfolio

EQminvar = EQ+ FXhedge,

where FXhedge is a currency basket with weights whedge.
Boudoukh et al. (2018) argue that currency weights w

⇤ that maximize the
Sharpe ratio of the portfolio are

w

⇤ = whedge + walpha,

where walpha is a K⇥1 vector of currency weights that maximize the Sharpe ratio
of a currency portfolio regardless of other asset classes and

 =
�2
EQminvar

rEQminvar

. (15)

They show that Equation 15 can be written alternatively as

 = �EQ

⇣ 1� (cor(rEQ, rFX hedge))2

SEQ � cor(rEQ, rFX alpha)SFX alpha

⌘
,

where S denotes Sharpe ratio and FXalpha is a currency portfolio with weights
walpha. Finally, Boudoukh et al. (2018) combine the modified portfolio mean–
variance optimal (MPMVO) international equity portfolio as

EQMPMVO = EQ+ FXhedge +  · FXalpha,

which return is
rMPMVO = rEQ + (whedge + walpha)rFX .

In this research, two approaches to decide walpha are tested: robust and optim-
ization based routines. These approaches are described in Section 4.4 and are
utilizing the predictions done by the LSTM models. The LSTM alpha portfolios
are then applied to the currency management of an international equity portfolio
in the MPMVO framework. The MSCI World and the MSCI World 100% hedged
to USD indices are used as a proxy for the EQU and EQ equity portfolios and are
obtained from Bloomberg. Finally, the performances of the resulting portfolios are
analysed according to the same set of metrics as described in Section 4.4.

The hedging currency portfolio weights whedge are computed as in Boudoukh
et al. (2018). However, ⌃FX and ⌃EQFX are estimated from the past two years of
weekly excess currency returns, instead of weekly returns overlapping daily, with
exponential weights

!t = (1� �)�q,

where q 2 [0, 1, 2, . . . , T�1] and � is set to 0.94 so that the most recent observation
has the largest weight. Finally, the estimated correlations are shrunk so that the
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final estimate is 0.75 of the initial estimate as done by Boudoukh et al. (2018).
Furthermore, same Sharpe ratios of 0.5 and 0.3 to EQ and FXalpha, respectively,
are used in order to calculate the . The empirical test is done fully out-of-sample
and the portfolios are rebalanced and combined weekly.
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5 RESULTS

5.1 Sample description

Table 3 reports summary statistics of the weekly G10 currency excess returns with
respect to the USD during the sample period from the beginning of 1999 to the
end of 2018. All excess currency returns have significant excess kurtosis which
highlights the high crash risk related to currency trading. However, regarding the
investment currencies, crashes are mainly sharp depreciations against the USD,
whereas the opposite is true for funding currencies. This can be interpreted from
the skewness measures in Table 3 and from the spikes in the cumulative excess
returns in Figure 4.

Table 3: Summary statistics for the currency excess returns

The table reports mean, average forward premium, standard deviation and Sharpe ratios of G10
excess currency returns w.r.t. the USD with a weekly observation frequency. These figures are
annualized. Furthermore, kurtosis, skewness and autocorrelation (ACF) of the excess currency
returns are reported. Kurtosis is excess to normal and ACF has a lag of one. The sample
covers the period from the 1st of January 1999 to the 31st of December 2018. Finally, the
excess currency returns do not include transaction cost adjustments.

Currency Mean Avg. FP St. dev. Sharpe Skewness Kurtosis ACF

EUR 0.006 -0.006 0.098 0.061 -0.167 1.323 0.026
GBP 0.006 0.010 0.092 0.065 -0.821 6.250 -0.002
JPY -0.019 -0.025 0.103 -0.184 0.348 3.200 -0.077
CHF 0.006 -0.021 0.108 0.056 0.884 12.996 -0.009
CAD 0.014 0.002 0.087 0.161 0.076 5.999 -0.028
NZD 0.045 0.018 0.134 0.336 -0.377 3.681 -0.043
AUD 0.039 0.019 0.128 0.305 -0.391 8.033 -0.067
SEK 0.003 -0.002 0.117 0.026 -0.043 1.575 -0.010
NOK 0.012 0.006 0.116 0.103 -0.227 2.069 -0.044

The cumulative time-series excess returns of the currencies in Figure 4 are split
into two categories based on their ranked average forward premiums. The overall
returns of the investment currencies with higher forward premiums are higher
than the returns of the funding currencies. However, the outperformance is not
consistent and it seems that the higher returns could be compensation from bearing
additional risks. Furthermore, the mean excess returns are not solely explained
by the forward premiums as the spot prices of the investment and the funding
currencies appreciate against the USD almost exclusively. This can be interpreted
by comparing the mean excess returns and the average forward premiums in Table
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Figure 4: Cumulative excess currency returns
The figure displays time-series of cumulative compounded G10 excess currency returns w.r.t.
the USD with a weekly observation frequency. The top (bottom) figure displays the returns
of four (five) currencies with the lowest (highest) average forward premium. The sample
covers the period from the 1st of January 1999 to the 31st of December 2018. Finally, the
excess currency returns do not include transaction cost adjustments.

3. On the other hand, due to high volatilities and relatively low percentage returns,
the Sharpe ratios are modest even for the best performing currencies.

The appreciation or depreciation trends, presented in Figure 4, of the currencies
seem to be driven by the size of the interest rate differentials between the USD
and other G10 currencies presented in Figure 5. The FED lowered the target
interest rate before the great financial crisis as a result of the domestic housing
market bubble burst. This increased the interest rate differentials and dragged the
USD down. The opposite happened to the spot prices as other countries lowered
the rates in the aftermath of the equity market crash in 2008. The interest rate
differentials remained quite stable until the end of 2015 after which the interest
rate differentials have declined due to the tightened monetary policy in the U.S.

Table 4 reports the summary statistics of the common factors used in the
currency performance predictions. Each factor has high excess kurtosis which
indicates high probability of extreme events. Furthermore, these extreme events
are more often positive for VIX, �FX , TED and CS as interpreted from the positive
skewness. They reach high values during market turmoil as visible from the spikes
in Figure 6 that presents the time-series of the common factor values. However, VP
and XVP exhibit negative skewness. Finally, the high autocorrelations in Table 4
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Figure 5: Currency forward premiums
The figure displays time-series of G10 currency 1-month forward premiums w.r.t. the USD
with a weekly observation frequency. The top (bottom) figure displays the forward premiums
of four (five) currencies with the lowest (highest) average forward premium. The sample
covers the period from the 1st of January 1999 to the 31st of December 2018.

are partly explained by the temporal overlapping used in the construction of these
factors.

Table 4: Summary statistics for the common factors

The table reports mean, maximum, minimum, standard deviation, skewness, kurtosis and
autocorrelation (ACF) of the common factors with a weekly observation frequency. Kurtosis
is excess to normal and ACF has a lag of one. The sample covers the period from the 8th of
February 1999 to the 31st of December 2018.

Factor Mean Max Min St. dev. Skewness Kurtosis ACF

VIX 0.058 0.231 0.027 0.025 2.006 6.632 0.923
�FX 0.105 0.371 0.044 0.036 2.698 12.534 0.961
VP 0.001 0.013 -0.032 0.003 -4.879 55.778 0.587
XVP 0.000 0.002 -0.005 0.000 -5.934 53.412 0.744
TED 0.004 0.046 0.000 0.004 4.034 23.897 0.952
CS 0.026 0.061 0.015 0.008 1.670 4.929 0.994
COM 0.001 0.217 -0.204 0.027 -0.242 8.203 -0.051

Next, in-sample predictions are conducted through OLS regression analysis.
This is done in order to exploit the predictive power of the factors, and to conduct
explanatory analysis before moving on to the black box predictions with recurrent
neural networks. Excess currency returns are predicted with the past excess cur-
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Figure 6: Common factors
The figure displays time-series of the common factors with a weekly observation frequency.
All observations are standardized for the ease of comparison. The top figure displays the
observations of the VIX index (VIX) and the currency volatility �FX (FX). The second
figure displays the observations of the equity and currency market variance risk premiums
(VP and XVP) whereas the third figure includes the TED and credit spreads (TED and
CS). Finally, the bottom figure displays the returns of the commodity index (COM). The
sample covers the period from the 8th of February 1999 to the 31st of December 2018.
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rency returns (RX), the forward premiums (FP) and all seven common factors,
which have one-week lags. Table 5 reports the signs of the � coefficients of each
factor for every excess currency return series. Furthermore, the statistical signific-
ance is tested with a t-test that is based on the HAC standard error estimates by
Newey and West (1987) with lags chosen based on Andrews (1993). The statistical
significance is marked with ⇤⇤⇤, ⇤⇤ and ⇤ denoting 99%, 95% and 90% confidence
levels, respectively. Finally, adjusted R2s and p-values of F -statistics with a null
hypothesis that none of the coefficients are different from zero are presented in the
last two columns on the right hand side.

Table 5: In-sample OLS regression analysis with a one-week lag

The table reports the OLS regression coefficient signs, statistical significance of the coefficients,
adjusted R2s and p-values of the F-test. The statistical significance is tested with a t-test that
is based on the HAC standard error estimates by Newey and West (1987) with lags chosen
based on Andrews (1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90%
confidence levels, respectively. The response variables are listed on the row label and the
regressors are listed on the column label. The regressor observations are lagged with one week.
Finally, the sample covers the period from the 8th of February 1999 to the 31st of December
2018.

Currency RX FP VIX �FX VP XVP TED CS COM Adj. R2 p-value

EUR + + - + + - - + - 0.002 0.247
GBP - + -⇤⇤ + +⇤⇤ + - + - 0.025 0.000
JPY -⇤ + + - -⇤⇤⇤ - + + + 0.019 0.001
CHF - + -⇤ + - + - + - 0.003 0.221
CAD - - + + + + - - + 0.022 0.000
NZD - + + + + + - + + 0.010 0.020
AUD - - + + + + - - + 0.021 0.000
SEK - + - + + + - + - 0.012 0.010
NOK - + - + +⇤⇤ - - + + 0.014 0.005

The coefficients of the past excess currency returns or forward premiums are not
statistically significant at 95% confidence level. Consequently, these coefficients do
not differ statistically significantly from zero. However, the positive signs of the
FP coefficients indicate that a relative increase in a foreign interest rate should
increase the expected return of this currency position as the UIP does not hold.
Furthermore, patterns in Figures 5 and 4 display this relationship supporting the
profitability of the dollar carry trade strategy.

The coefficient signs of V IX are mixed and statistically significant only to
GBP and CHF at 95% and 90% confidence levels, respectively. Furthermore, the
coefficient signs of the �FX and XV P are not in line with the previous findings
by Londono and Zhou (2017) and Bakshi and Panayotov (2013) nor are they
statistically significant.
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According to the results reported in Table 5, V P captures the most relevant
information compared to the other factors individually. This factor is constructed
exclusively of variables derived from the U.S. equity market and, consequently, is
more linked to the uncertainty in the U.S. economy than truly global �FX and
XV P factors. This might explain the depreciation of the USD against most other
G10 currencies after an increase in risk–aversion as also argued by Londono and
Zhou (2017). In contrast, the coefficients of TED support the safe haven phe-
nomenon, which is in line with the evidence provided by Mancini et al. (2013) and
Brunnermeier et al. (2009). In particular, during periods of poor liquidity, investors
tend to decrease their foreign currency positions, thus, causing the appreciation of
the USD.

Finally, the last two factors: CS and COM do not explain excess currency
returns in the next time step as none of the coefficients are statistically significant
at 90% confidence level. However, despite the mixed coefficient signs of the former
factor, the coefficient signs of the latter factor are in line with the findings provided
by Bakshi and Panayotov (2013). In particular, positive changes in commodity
price index are followed by appreciations of the currencies of the main commodity
exporters. Furthermore, Menkhoff et al. (2012b) find a negative link between the
creditworthiness of a country and the momentum return of its currency. Con-
sequently, the low explanatory power of the credit spread might be explained by
the sample that does not include currencies of speculative countries.

Table 6 reports the correlation structure between the common factors. Due
to the strong correlations between the uncertainty measures: V IX, �FX and CS

and the risk-aversion measures: V P and XV P , the explanatory analysis, which
results are reported in Table 5 suffer from collinearity. Consequently, the previous
interpretations of single factor coefficients might not be reliable.

Table 6: Correlation matrix of the common factors

The table reports the pair-wise correlations of the common factors with a weekly observation
frequency. The sample covers the period from the 8th of February 1999 to the 31st of December
2018.

VIX �FX VP XVP TED CS COM

VIX 1
�FX 0.71 1
VP -0.04 -0.31 1
XVP -0.20 -0.49 0.55 1
TED 0.49 0.52 -0.36 -0.24 1
CS 0.74 0.60 -0.12 -0.05 0.36 1
COM -0.15 -0.08 -0.01 0.01 -0.12 -0.08 1
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In order to overcome the issue of collinearity, the factor set is decomposed to
latent factors by first conducting a singular value decomposition (SVD)

X = U⌃W 0,

where X is a n ⇥ m -dimensional matrix with the standardized original factors
as column vectors, U is a n⇥ n -dimensional matrix, ⌃ is a m⇥m -dimensional
diagonal matrix with factor volatilities and W is a m⇥m -dimensional matrix of
right singular vectors of X i.e. factor loadings. Then the orthogonal latent factors

L = XW .

This technique is called principal component analysis (PCA).
Table 7 reports the factor loadings W of the common factors. The latent factors

in the column of the table are constructed as linear combinations of the observed
factors on the row of the table. The first latent factor L1 has largest loadings on
V IX, �FX and CS, whereas L2 loads heavily on V P and XV P . Furthermore, L3

loads almost exclusively on COM and L4 loads on TED.

Table 7: Latent factor loadings

The table reports latent factor loadings of the common factors. The loadings are computed
from the standardized time-series observations of the common factors by conducting singular
value decomposition (SVD) to the observation sample that starts from the 8th of February
1999 and ends to the 31st of December 2018.

L1 L2 L3 L4 L5 L6 L7

VIX 0.464 0.368 0.086 0.051 -0.110 -0.609 -0.571
�FX 0.512 0.034 0.102 -0.192 -0.153 0.745 -0.332
VP -0.257 0.640 0.091 -0.181 -0.625 0.090 0.291
XVP -0.310 0.547 -0.040 0.493 0.435 0.253 -0.327
TED 0.398 -0.053 -0.113 0.796 -0.331 0.009 0.287
CS 0.439 0.340 0.183 -0.170 0.520 -0.013 0.599
COM -0.095 -0.191 0.962 0.148 -0.071 -0.040 -0.013

The conclusions from the results in Table 7 are further supported by Table 8
that reports the R2s of individual OLS regressions in which the latent factors in
the column of the table are explained with the observed factors on the row of the
table separately. V IX, �FX and CS each explain over 60% of the variation of
the first latent factor L1. Consequently, L1 is named as a price risk factor PR.
V P and XV P explain approximately one half of the variation of L2 that is, thus,
named as a risk-aversion factor RA. L3 is named as a commodity price factor CP

and L4 is named as a funding liquidity factor FL since COM and TED are the
only factors capable of explaining their variations meaningfully.
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Table 8: Univariate OLS regression R2s of latent factor explanatory analysis

The table reports R2s of univariate OLS regressions, where the column response variables
are explained with the row explanatory variables. The latent factors on the column label
are principal components that are derived from the common factor observation sample by
conducting singular value decomposition (SVD). The sample covers the period from the 8th of
February 1999 to the 31st of December 2018.

L1 L2 L3 L4 L5 L6 L7

VIX 0.66 0.19 0.01 0.00 0.00 0.08 0.05
�FX 0.81 0.00 0.01 0.02 0.01 0.12 0.02
VP 0.20 0.57 0.01 0.02 0.17 0.00 0.02
XVP 0.30 0.42 0.00 0.16 0.08 0.01 0.02
TED 0.49 0.00 0.01 0.43 0.05 0.00 0.02
CS 0.60 0.16 0.03 0.02 0.12 0.00 0.07
COM 0.03 0.05 0.90 0.01 0.00 0.00 0.00

The last three latent factors are not intuitively linked to any observed factor.
In addition, they capture only a small fraction of the overall variation in the factor
set. Table 9 reports the proportional and cumulative proportional variances of the
latent factors. The first four latent factors capture almost 90% of the variation
in the standardized data. This means that the last three latent factors are rather
irrelevant. Consequently, the usage of the four first latent factors is preferred over
the usage of the full common factor set in the explanatory analysis henceforth.

Table 9: Proportional and cumulative proportional variances of the latent
factors

The first row of the table includes the variances of the latent factors in proportion to the
sum of all variances whereas the second row includes the cumulative sum of these proportional
variances. The latent factors on the column label are principal components that are derived
from the common factor observation sample by conducting singular value decomposition (SVD).
The sample covers the period from the 8th of February 1999 to the 31st of December 2018.

L1 L2 L3 L4 L5 L6 L7

�2(L
j

)P
i

�2(L
i

) 0.418 0.211 0.143 0.100 0.065 0.035 0.029

Cumulative sum 0.418 0.628 0.771 0.871 0.936 0.971 1.000

Next, the results of the OLS regression analysis are reported in Table 5. The
analysis is conducted with reduced dimensions of the factors. Excess currency re-
turns are regressed in-sample against the four first latent factors. Table 10 reports
the coefficient signs of the latent factors and their statistical significance is marked
with ⇤⇤⇤, ⇤⇤ and ⇤ denoting 99%, 95% and 90% confidence levels, respectively. In
addition, adjusted R2s and p-values of F -statistics with a null hypothesis that
none of the coefficients are different from zero are reported in the last two columns
on the right hand side.



55

Table 10: In-sample OLS regression analysis with the latent factors and a
one-week lag

The table reports the OLS regression coefficient signs, statistical significance of the coefficients,
adjusted R2s and p-values of the F-test. The statistical significance is tested with a t-test that
is based on the HAC standard error estimates by Newey and West (1987) with lags chosen
based on Andrews (1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90%
confidence levels, respectively. The response variables are listed on the row label and the
regressors are listed on the column label. The regressor variables are the first four principal
components of the common factor observation sample. Furthermore, the regressors are lagged
with one week. Finally, the sample covers the period from the 8th of February 1999 to the 31st
of December 2018.

Currency PR RA CP FL Adj. R2 p-value

EUR - + - - 0.003 0.138
GBP -⇤⇤⇤ +⇤ + -⇤⇤ 0.020 0.000
JPY +⇤⇤ -⇤⇤ + + 0.013 0.002
CHF - + + - -0.002 0.788
CAD - +⇤⇤ + - 0.022 0.000
NZD - +⇤ + - 0.013 0.002
AUD - +⇤⇤ + - 0.019 0.000
SEK - +⇤⇤ + - 0.016 0.000
NOK - +⇤⇤⇤ + - 0.014 0.001

The coefficient signs of PR and FL in Table 10 are in line with each other,
whereas RA seems to have the opposite effect on the excess currency returns. In
line with the results reported in Table 5 and with Mancini et al. (2013) and Brun-
nermeier et al. (2009), increased price uncertainty or illiquidity cause appreciation
of the safe haven assets, the USD and the JPY. In contrast, increased risk aversion
tend to weaken the USD and JPY against other currencies. This coincides with
the previous interpretation of the variance risk premium but not with the currency
variance risk premium. However, Londono and Zhou (2017) show that the depend-
ency of these two factors and the excess currency returns is at its strongest after
one to four months and, thus, might differ from the analysis based on a one-week
lag between the observations. Finally, as in Table 5, commodity prices CP are not
statistically significant.

Finally, the null hypothesis that none of the factors are capable of predicting
the excess currency returns in the next time step are reported in the last column
of Table 10. The null hypothesis is rejected for all currencies, except EUR and
CHF. Furthermore, the R2s are low for all G10 currencies, CAD having the highest
figure of 2.2%.

A concern regarding the results of the OLS regressions is the dominance of the
period around the great financial crisis since during that period, the absolute values
of the observations are significantly larger compared to calmer market conditions.
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Consequently, weighted least squares regressions 1 are conducted, as a robustness
check. However, this analysis results only in minor changes in the coefficient
signs which do not change the bigger picture. On the other hand, almost all
coefficients become more uncertain and the adjusted R2s decrease. This result is
expected, since the market is more likely driven by price uncertainty, risk-aversion
and funding liquidity during market turmoil than during calm periods as also
pointed out by Mancini et al. (2013).

To conclude, excess G10 currency returns are characterized by high probability
of extreme events and low Sharpe ratios even for the best performing currencies.
Furthermore, forward premiums or past returns do not predict excess currency
returns with one-week lags. However, currencies with relatively high interest rates
tend to appreciate, whereas currencies with relatively low interest rates tend to
depreciate over long time periods, thus, neglecting the UIP. In addition, price
uncertainty, risk-aversion and funding liquidity are driving the excess currency
returns especially during market turmoil. On the other hand, these factors explain
only a small fraction of the overall variance in the excess currency returns.

5.2 LSTM and RNN predictions

In this section, the predictive accuracies of LSTM and RNN models are reported.
Furthermore, two statistical tests are conducted in order to analyse the predictive
power of the models as well as to evaluate if the additional complexity from the
LSTM cells is necessary. Finally, the difference of prediction accuracies of the two
best performing models are analysed through an explanatory factor analysis.

Throughout this section, two different input data sets are considered. Nota-
tions RX and All refer to past excess returns and all factors (RX, FP, VIX, �FX ,
VP, XVP, TED, CS and COM), respectively. Moreover, the sample covers the
period from the 8th of February 1999 to the 31st of December 2018. However, the
predictions start from the 3rd of October 2005.

Table 11 reports out-of-sample prediction accuracies of the LSTM and simple
RNN models with two factor sets: RX and All. Accuracies are reported to each
currency separately as well as to the total accuracy of a model. Finally, probabil-
ities that the models would have achieved the total accuracies by chance are listed
on the bottom line.

Each model performance differs statistically significantly from a random guess,

1Each time step is weighted based on the inverse of the conditional variance of the currency
excess returns in hand. The conditional variances are computed with a Garch(1,1)-model and
the residuals are assumed to be normally distributed.
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Table 11: LSTM and RNN accuracies and probabilities that a model would
have achieved the total accuracy by chance

The table reports the out-of-sample prediction accuracies of the models on the column label.
RX denotes that only the excess currency returns are used as predictive factors, whereas All
denotes that the excess currency returns, forward premiums, V IX, �FX , V P , XV P , TED,
CS and COM are used as predictive factors. Furthermore, the table reports the prediction
accuracies for the currencies on the row label separately, as well as the total prediction ac-
curacies of each model choice. Finally, probabilities that the models would have achieved the
total accuracies by chance are reported in the bottom row of the table. The sample covers the
period from the 8th of February 1999 to the 31st of December 2018. However, the predictions
start from the 3rd of October 2005.

Currency LSTM (RX) LSTM (All) RNN (RX) RNN (All)

EUR 0.614 0.601 0.553 0.568
GBP 0.600 0.591 0.512 0.564
JPY 0.556 0.561 0.510 0.527
CHF 0.581 0.581 0.530 0.549
CAD 0.539 0.523 0.512 0.493
NZD 0.519 0.527 0.484 0.506
AUD 0.483 0.481 0.488 0.504
SEK 0.569 0.561 0.539 0.555
NOK 0.536 0.525 0.533 0.520
Total 0.555 0.550 0.518 0.532
BT (0.000) (0.000) (0.000) (0.000)

since the probabilities that the prediction accuracies would be 50% are practically
zero. Both LSTMs are more accurate than RNNs with AUD and NOK being the
only exceptions. However, regarding the NOK, LSTMs provide higher accuracies
than RNNs if the methods are compared along the same input data, whereas none
of the models provide valuable insight regarding the AUD. Finally, LSTMs deliver
the highest prediction accuracies for the EUR, GBP and CHF.

A statistical test proposed by Diebold and Mariano (1995) is used in order to
compare the goodness of the models. Table 12 reports the p-values of the Diebold–
Mariano test. p-value smaller than 0.05 means that the prediction accuracy of the
model in the row label is superior w.r.t. the model in the column label at 95%
confidence level. Both LSTM models deliver higher prediction accuracies than the
RNNs at confidence levels above 99%. However, the Diebold–Mariano test doesn’t
indicate statistical difference between the prediction accuracies of the LSTMs.

The difference between prediction accuracies is higher among the models using
only historical return data as a predictive factor. As a result, the model complex-
ity might be more valuable when only price trends are explored, whereas other
factors show also short-term dependencies which were also concluded by running
the in-sample OLS regressions in Section 5.1. Consequently, the LSTM most likely
captures long-term trends from the past excess return data, since a simple RNN
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Table 12: Diebold–Mariano test of model outperformance

The table reports the p-values of the Diebold–Mariano test. p-value smaller than 0.05 means
that the prediction accuracy of the model in the row label is superior w.r.t. the model in
the column label at 95% confidence level. RX denotes that only the excess currency returns
are used as predictive factors, whereas All denotes that the excess currency returns, forward
premiums, V IX, �FX , V P , XV P , TED, CS and COM are used as predictive factors. The
sample covers the period from the 8th of February 1999 to the 31st of December 2018. However,
the predictions start from the 3rd of October 2005.

LSTM (RX) LSTM (All) RNN (RX) RNN (All)

LSTM (RX) – 0.163 0.000 0.000
LSTM (All) 0.837 – 0.001 0.002
RNN (RX) 0.999 0.999 – 0.947
RNN (All) 0.999 0.998 0.053 –

is proven to miss these patterns due to the vanishing gradient problem. However,
the models utilizing all factors, might capture predictive signals from shorter tem-
poral distances, because the difference in prediction accuracies is lower between
LSTM(All) and RNN(All) than between the RX models. Even though, Fischer
and Krauss (2018) are not investigating the differences between simple RNNs and
LSTMs, they prove that LSTM outperforms less complex random forests and deep
neural networks in price trend recognition. Consequently, their findings are in har-
mony with the results reported in Tables 11 and 12.

In order to exploit the potential time variation and differences of the model
performances, 26-week rolling accuracies are presented in Figure 7. The time-series
of the RNN model accuracies are placed at the top panel, whereas the bottom panel
displays the time-series accuracies of the LSTM models. The RNN accuracies do
not follow clear pattern. Furthermore, their performances stay below the 50%
threshold several times for approximately one-year periods. On the other hand,
LSTMs show common cyclical performance with approximately 3-year cycles and
the rolling prediction accuracies fluctuate between 50% and 60%. Consequently,
the LSTM models provide not only higher but also consistently valuable prediction
performance.

Even though there is not a statistically significant difference between the LSTM
model prediction accuracies, there seems to be periods of systematic outperform-
ance between the models. Figure 8 displays the difference of the 26-week rolling
accuracies of the LSTM models. The difference is calculated as the rolling predic-
tion accuracy of the LSTM model utilizing all factors minus the rolling prediction
accuracy of the LSTM model that use only the past returns as a predictive factor.
The outperformance of LSTM(All) lasts from the end of 2005 until the mid 2010.
After this period LSTM(RX) delivers higher prediction accuracy during the next
year and a half. However, the difference fluctuates around zero until the end of
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Figure 7: LSTMs and RNNs 26-week rolling accuracies
The figure displays the time-series of a 26-week rolling total prediction accuracies of the
prediction models. The top (bottom) figure displays the time-series of the simple RNN
(LSTM) model rolling prediction accuracies. The sample of the prediction accuracy obser-
vations covers the period from the 3rd of October 2005 to the 31st of December 2018.

2015. Finally, LSTM(RX) outperforms LSTM(All) during the rest of the sample
period.

Figure 8: All minus RX 26-week rolling accuracies
The figure displays the time-series of the difference between 26-week rolling total prediction
accuracies of the LSTM(All) and the LSTM(RX) models. The sample of the prediction
accuracy observations covers the period from the 3rd of October 2005 to the 31st of December
2018.

An in-sample OLS regression analysis is conducted to provide a statistical ex-
planation on the time-variation of the prediction accuracy differences. Table 13
reports the coefficient signs, statistical significance of the coefficients, an adjus-
ted R2 and a p-value of the F-test. ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance
at 99%, 95% and 90% confidence levels, respectively. The regressors are the first
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four principal components derived from the common factor observation sample by
conducting a singular value composition plus a dummy variable FCdummy which
has a value of one between December 2007 and June 2009 and a value of zero
otherwise.

Table 13: In-sample OLS regression analysis of LSTM accuracy differences
with a lag of one

The table reports the OLS regression coefficient signs, statistical significance of the coefficients,
an adjusted R2 and a p-value of the F-test. The statistical significance is tested with a t-test
that is based on the HAC standard error estimates by Newey and West (1987) with lags
chosen based on Andrews (1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95%
and 90% confidence levels, respectively. The response variable on the row label is computed
as a difference between 26-week rolling total prediction accuracies of the LSTM(All) and the
LSTM(RX) models. The regressors are the first four principal components derived from the
common factor observation sample by conducting singular value composition plus a dummy
variable FCdummy which has a value of one between December 2007 and June 2009 and a value
of zero otherwise. This period is classified as a recession by NBER (2010). Furthermore, the
regressors are not lagged. Finally, the sample covers the period from the 8th of February 1999
to the 31st of December 2018. However, the first predictions start from the 3rd of October
2005.

Acc. Diff. PR RA CP FL FCdummy Adj. R2 p-value

LSTM: ALL - RX + - - + + 0.041 0.000

In Table 13, none of the factors are statistically significant at 90% confidence
level. The coefficient signs of price risk, commodity prices, funding liquidity and
the financial crisis dummy factors indicate that market turmoil leads to the out-
performance of the LSTM(All) model, whereas the risk-aversion factor seems to
have the opposite effect. However, in addition to the low statistical significance
of the factor coefficients, the R2 of 4.1% means that the majority of the variation
remains unexplained. This variation might be better analysed in the form of the
currency portfolios that are built based on the LSTM model predictions.

5.3 LSTM portfolios

This section provides summary statistics and an explanatory factor analysis of the
currency portfolios, which are constructed based on the predictions of the LSTM
models analysed in the previous section. Two portfolio construction methods are
applied to both LSTM model predictions, which utilize different predictive input
factor sets. Notations RX and All refer to past excess returns and all factors (RX,
FP, VIX, �FX , VP, XVP, TED, CS and COM), respectively. Furthermore, the two
portfolio construction methods are the robust and the optimized approach. In ad-
dition to comparing the performances of the LSTM portfolios, their performances
are compared against the carry and the 3-month momentum portfolio returns. The
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two latter portfolios are constructed with the robust approach which is a common
choice in the academic literature. Finally, 3-month momentum is chosen since it
is the only momentum strategy that was profitable during the sample period. The
portfolio returns are reported and analysed in the sample period from the 3rd of
October 2005 to the 31st of December 2018.

Table 14 reports the descriptive statistics of the currency portfolio returns.
Among the LSTM portfolios, the mean returns of the robust portfolios are higher
than the mean returns of the optimized portfolios. However, portfolios based on
the LSTM(All) model predictions present higher returns than the portfolios that
use the predictions of the LSTM(RX) model, even though, the prediction accuracy
of the latter model was slightly higher.

Table 14: Summary statistics of LSTM portfolio returns

The table reports mean, standard deviation and Sharpe ratios of currency portfolio returns
with a weekly observation frequency. These figures are annualized. Furthermore, excess kur-
tosis, skewness, sample 95% value-at-risk and maximum drawdown of the currency portfolio
returns are reported. The first four portfolios on the row label are built based on the LSTM
models predictions. RX denotes that only the excess currency returns are used as predictive
factors, whereas All denotes that the excess currency returns, forward premiums, V IX, �FX ,
V P , XV P , TED, CS and COM are used as predictive factors. Robust (Opt) denotes that
the robust (optimization based) portfolio construction technique is used. Furthermore, the
carry and 3-month momentum (Mom3) portfolios are constructed with the robust portfolio
construction technique. The sample covers the period from the 3rd of October 2005 to the
31st of December 2018. Finally, the currency portfolio returns do not include transaction cost
adjustments.

Mean St.dev. Sharpe Skewness Kurtosis VaR95 Max D.d.

Robust (RX) 0.018 0.083 0.217 -0.017 9.926 -0.017 -0.206
Robust (ALL) 0.022 0.068 0.324 -0.462 2.185 -0.015 -0.151
Opt (RX) 0.006 0.071 0.085 -0.501 2.199 -0.016 -0.225
Opt (ALL) 0.016 0.078 0.205 -1.232 8.680 -0.016 -0.231
Carry 0.018 0.080 0.225 -0.733 6.474 -0.017 -0.197
Mom3 0.002 0.068 0.029 0.234 7.226 -0.015 -0.212

The risk-adjusted returns reported in Table 14 in form of Sharpe ratios set
a clear difference between the portfolios utilizing all predictive factors and the
portfolios using only past returns. The carry portfolio delivers the second highest
Sharpe ratio after the Robust(RX) portfolio. However, further analysis of higher
moments and alternative performance measures show clear outperformance of the
Robust(All) portoflio relative to the other portfolios. It has less negative skewness
than the carry portfolio and the lowest excess kurtosis of all portfolios. Further-
more, the robust approach that uses all factors has less tail risk according to the
VaR and maximum drawdown measures.

The performance metrics do not reveal exposures to common risk factors in
currency trading strategies. These exposures are analysed through in-sample OLS
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regressions and the results are reported in Table 15. The table reports the OLS
regression coefficient signs, statistical significance of the coefficients, adjusted R2s
and p-values of the F-test. The regressors are the first four principal components
derived from the common factor observation sample by conducting a singular value
composition plus a dummy variable FCdummy which has a value of one between
December 2007 and June 2009 and a value of zero otherwise.

Table 15: In-sample OLS regression analysis with the latent factors and a
one-week lag

The table reports the OLS regression coefficient signs, statistical significance of the coefficients,
adjusted R2s and p-values of the F-test. The statistical significance is tested with a t-test that
is based on the HAC standard error estimates by Newey and West (1987) with lags chosen
based on Andrews (1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90%
confidence levels, respectively. The response variables are listed on the row label and the
regressors are listed on the column label. The first four portfolios on the row label are built
based on the LSTM RNN model predictions. RX denotes that only the excess currency returns
are used as predictive factors whereas All denotes that the excess currency returns, forward
premiums, V IX, �FX , V P , XV P , TED, CS and COM are used as predictive factors. Robust
(Opt) denotes that the robust (optimization based) portfolio construction technique is used.
Furthermore, the carry and 3-month momentum (Mom3) portfolios are constructed with the
robust portfolio construction technique. The regressors are the first four principal components
derived from the common factor observation sample by conducting a singular value composition
plus a dummy variable FCdummy which has a value of one between December 2007 and June
2009 and a value of zero otherwise. This period is classified as a recession by NBER (2010).
The regressor observations are not lagged. Finally, the sample covers the period from the 3rd
of October 2005 to the 31st of December 2018.

↵ PR RA CP FL FCdummy R2 p-value
Robust (RX) - -⇤⇤ -⇤⇤⇤ +⇤⇤⇤ - + 0.223 0.000
Robust (ALL) + + - +⇤⇤⇤ + - 0.040 0.000
Opt (RX) + - -⇤⇤ - - + 0.015 0.008
Opt (ALL) + - - + - + 0.010 0.039
Carry - -⇤⇤ -⇤⇤⇤ +⇤⇤⇤ - + 0.208 0.000
Mom3 + + +⇤⇤ - + - 0.040 0.000

None of the models have a statistically significant ↵. However, RA is a stat-
istically significant risk factor for Robust(RX), Robust(All), carry and 3-month
momentum portfolios and its coefficients have negative signs, except the 3-month
momentum portfolio that has a positive coefficient sign. Furthermore, CP has
positive and statistically significant coefficients for both of the robust LSTM port-
folios and the carry portfolio. Finally, the price risk factor PR has statistically
significant and positive coefficients for the carry and Robust(RX) portfolios. In
fact, these portfolios share similar risk factor exposures overall.

Robust(RX) and the carry portfolios have a significant amount of variance
explained by the five factors, which can be interpreted from the R2s of above 0.2.
By interpretation of the coefficient signs of the statistically significant factors for
these two strategies, Robust(RX) and carry portfolios tend to face losses during
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market turmoil, since the volatility and risk-aversion are likely to pick-up, while the
commodity prices are depreciating. These dynamics are in line with the findings
from Londono and Zhou (2017), Bakshi and Panayotov (2013) and Lustig et al.
(2011). In contrast, the coefficient signs of the FCdummy factor indicate that these
portfolios would perform better during the period of severe financial distress after
taking into account other factors. However, this dummy variable is not statistically
significant for any of the portfolios which also applies to the coefficients of the
funding liquidity factor FL.

Unlike with the carry and Robust(RX) portfolios, the five factors capture only
a small fraction of the variation in the returns of the best performing model, Ro-
bust(All), as well as the returns of the optimized approaches. The robust approach
that uses all factors has a positive and statistically significant coefficient sign of
the commodity price factor, whereas the Opt(RX) has a negative and statistic-
ally significant coefficient sign only for RA which is opposing to the risk exposure
of the 3-month momentum strategy. Furthermore, Opt(All) does not have any
statistically significant factor coefficients.

The time-series of the cumulative compounded returns of the LSTM portfolios
are plotted in Figure 9. The Robust(RX) and Robust(All) portfolios end up higher
than the respective optimized portfolios. However, the outperformance of the
cumulative returns is due to a massive shift in return trends, since after the long
bull run from 2009 to 2016, the optimized portfolios suffer from severe losses during
the following two years, whereas the pattern of the robust portfolio returns is
almost the opposite. The robust portfolio returns start to rebound rapidly at the
end of 2015 after a three year decline. Finally, the optimized approach utilizing all
factors outperforms the respective RX strategy consistently in terms of returns. In
addition, the risk measures in Table 15 do not differ much between the optimized
approaches and, thus, including all factors in the prediction task seems to add
value.

Despite the more attractive performance metrics of the Robust(All) portfolio
in Table 14 and lower risk exposures in Table 15, the outperformance periods of
the robust portfolios differ in Figure 9 as the Robust(All) portfolio delivers higher
returns during the financial crisis and between 2016 and the end of the sample
period. On the other hand, the Robust(RX) portfolio outperforms the Robust(All)
portfolio in the beginning of the sample period as well as during the turning point
of 2013.

Figure 10 demonstrates the time-series of the cumulative compounded returns
of the Robust(All), Opt(All), carry and 3-month momentum portfolios. The LSTM
portfolios using only past excess currency returns are excluded due to their less
attractive performances. The optimized portfolio returns are not clearly linked to
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Figure 9: Cumulative compounded LSTM portfolio returns
The figure demonstrates time-series of the cumulative compounded LSTM portfolio returns
with a weekly observation frequency. The top (bottom) figure displays the returns of the
LSTM portfolios using the RX factor (all factors) in the outperformance probability pre-
dictions. Furthermore, two portfolio construction techniques are utilized, from which opt
(robust) denotes the optimization based (robust) approach. The sample covers the period
from the 3rd of October 2005 to the 31st of December 2018.

the carry or momentum portfolios. However, the robust portfolio returns seem
to follow the momentum portfolio patterns more closely until the end of 2012.
After this period, the robust portfolio returns are more closely in line with the
carry trade returns, however, they first decline slightly more but then step into a
positive trend along with the carry portfolio.

Figure 10: LSTM (All) optimization based and robust, carry and 3-month
momentum cumulative compounded portfolio returns
The figure displays time-series of cumulative compounded LSTM (All) optimization based
and robust, carry and 3-month momentum cumulative compounded portfolio returns with
a weekly observation frequency. The sample covers the period from the 3rd of October 2005
to the 31st of December 2018.

The findings reported in Table 15 indicate that the LSTM portfolios utilizing
all factors are not exposed to the same risk factors than the carry trade returns.
Furthermore, only a small fraction of the variation is explained by the set of risk
factors proposed in the literature. However, the Robust(All) portfolio manages
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to capture the best performing periods of both carry and momentum portfolios
displayed in Figure 10. Consequently, the sources of the profitability of the LSTM
portfolios are analysed through another explanatory analysis in which the returns
on carry and five different momentum strategies are used as regressors. The uni-
variate OLS regression coefficient signs, their statistical significance and R2s are
reported in Table 16.

Table 16: Explanatory analysis of the LSTM portfolios

The table reports the univariate OLS regression coefficient signs, statistical significance of the
coefficients and R2s. The statistical significance is tested with a t-test that is based on the
HAC standard error estimates by Newey and West (1987) with lags chosen based on Andrews
(1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90% confidence levels,
respectively. The response variables are listed on the row label and the explanatory variables
of the regressions are listed in the column label. The portfolios on the row label are built based
on the LSTM RNN model predictions. RX denotes that only the excess currency returns
are used as predictive factors, whereas All denotes that the excess currency returns, forward
premiums, V IX, �FX , V P , XV P , TED, CS and COM are used as predictive factors. Robust
(Opt) denotes that the robust (optimization based) portfolio construction technique is used.
Furthermore, the carry and momentum portfolios are constructed with the robust portfolio
construction technique and the numbers after Mom indicate how many months are included
in the computation of a momentum signal. The regressor observations are not lagged. Finally,
the sample covers the period from the 3rd of October 2005 to the 31st of December 2018.

Carry Mom1 Mom3 Mom6 Mom12 Mom13

Robust (RX) +⇤⇤⇤ - -⇤ - - -
R2 0.758 0.026 0.065 0.024 0.019 0.011
Robust (ALL) +⇤⇤⇤ + + +⇤⇤ +⇤⇤⇤ +⇤⇤⇤

R2 0.330 -0.001 -0.001 0.024 0.043 0.047
Opt (RX) - - + + + +
R2 0.001 0.001 -0.001 0.000 0.012 0.019
Opt (ALL) + - - - + +
R2 0.007 0.017 0.001 0.005 -0.001 -0.001

The carry trade returns explain over 75% of the return variation of the Ro-
bust(RX) portfolio according to the high value of the R2 in Table 16. This is in
line with the similar risk factor exposures reported in Table 15 and in the analysis
thereafter. Furthermore, the performance measures of these strategies reported in
Table 14 were similar. Consequently, it seems that the LSTM model recognizes the
carry trade signals even without having any information on the forward premiums
except the implicit premiums in the historical excess currency returns.

The carry trade returns capture 33% of the return variation of the Robust(All)
strategy. Furthermore, long-term momentum returns explain some of the return
variation as well. However, 3-month momentum is not capturing any variation in
Robust(All) portfolio returns even though it delivered a similar performance during
the financial crisis as visible in Figure 10. Finally, the return variations of the
optimized portfolios remain almost completely unexplained after the explanatory
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analyses with the common risk factors and with the carry and the five momentum
portfolios.

The two best performing portfolios: Robust(All) and carry are utilizing similar
trading patterns based on the interpretation of the cumulative returns in Figure
10 and the factor analysis that reports the R2 of 33% in Table 15. However, their
performances differ substantially during the financial crisis. In fact, it seems that
the difference is due to the use of all factors in the LSTM model predictions, since
the LSTM model using only the historical excess currency returns is suffering
from the financial crisis alike the carry portfolio. Consequently, the factor set
that drives the profitability of the carry trade, might enable the LSTM model to
exploit profitable patterns during the financial crisis as the market is more sensitive
to these risk factors as interpreted earlier in the sample descriptions and as argued
by Mancini et al. (2013) and Brunnermeier et al. (2009). In order to confirm this
hypothesis, the same explanatory analyses as reported in Tables 15 and 16 are
conducted with a sample period starting from December 2007 until the end of
June 2009 as this period is classified as a recession by NBER (2010).

Table 17: In-sample OLS regression analysis with the latent factors during
NBER recession

The table reports the OLS regression coefficient signs, statistical significance of the coefficients,
adjusted R2s and p-values of the F-test. The statistical significance is tested with a t-test that
is based on the HAC standard error estimates by Newey and West (1987) with lags chosen
based on Andrews (1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90%
confidence levels, respectively. The response variables are listed on the row label and the
regressors are listed in the column label. The first four portfolios on the row label are built
based on the LSTM RNN model predictions. RX denotes that only the excess currency returns
are used as predictive factors whereas All denotes that the excess currency returns, forward
premiums, V IX, �FX , V P , XV P , TED, CS and COM are used as predictive factors. Robust
(Opt) denotes that the robust (optimization based) portfolio construction technique is used.
Furthermore, the carry and 3-month momentum (Mom3) portfolios are constructed with the
robust portfolio construction technique. The regressors are the first four principal components
derived from the common factor observation sample by conducting a singular value composition
plus a dummy variable FCdummy which has a value of one between December 2007 and June
2009 and a value of zero otherwise. This period is classified as a recession by NBER (2010).
The regressor observations are not lagged. Finally, the sample covers the period from the 3rd
of October 2005 to the 31st of December 2018.

↵ PR RA CP FL R2 p-value
Robust (RX) +⇤ - -⇤⇤⇤ +⇤⇤⇤ - 0.421 0.000
Robust (ALL) -⇤⇤ +⇤⇤⇤ + + +⇤⇤ -0.001 0.424
Opt (RX) + - -⇤⇤⇤ + -⇤ 0.081 0.031
Opt (ALL) +⇤⇤ - -⇤⇤ + -⇤⇤⇤ 0.144 0.003
Carry + - -⇤⇤⇤ +⇤⇤⇤ - 0.360 0.000
Mom3 -⇤⇤ +⇤⇤ +⇤⇤⇤ -⇤ + 0.230 0.000

Table 17 reports the OLS regression coefficient signs, statistical significance
of the coefficients, adjusted R2s and p-values of the F-test. The regressors are
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the first four principal components derived from the common factor observation
sample by conducting a singular value composition. The sample spans the NBER
recession period between December 2007 and June 2009. The table reports higher
R2s to carry, Robust(RX), Opt(All) and 3-month momentum than in Table 15.
Consequently, the returns of the common systematic sources of currency trading
are more driven by the set of risk factors during market turmoil as concluded by
Mancini et al. (2013) and Brunnermeier et al. (2009). However, liquidity does
not explain the return variation of the carry trade which contradicts with the
evidence provided by Mancini et al. (2013) and Brunnermeier et al. (2009). Bakshi
and Panayotov (2013), on the other hand, argue that the explanatory power of
liquidity proxies decreases significantly if commodity price returns and currency
market volatility are included into the analysis of the carry trade returns. In fact,
commodity price returns are a highly statistically significant explanatory factor in
Table 17 for the carry and Robust(RX) portfolios along with the risk aversion factor
that is statistically significant for all except the Robust(All) portfolio returns.
Finally, price uncertainty factor is statistically significant only for the 3-month
momentum and Robust(All) portfolio returns.

The R2s differ considerably between Tables 15 and 17. During the NBER
recession, carry and momentum portfolio returns are more driven by the latent
factors since the R2s increase from 21% and 4% during the whole sample period
to 36% and 23% during the recession. However, the risk factors are not capturing
any variation of the Robust(All) portfolio returns during the recession even though
they captured 4% of the variation during the whole sample period. Consequently,
the Robust(All) portfolio is actually less exposed to the risk factors during the
market turmoil, which contradicts with the return dynamics of the carry and 3-
month momentum returns.

The findings reported in Table 17 indicate that the Robust(All) portfolio is
not exposed to the risk factors during the market turmoil, whereas the carry and
3-month momentum portfolios are more exposed to the risk factors during this
period. Consequently, the sources of the profitability of the LSTM portfolios are
analysed through an explanatory analysis in which the returns on carry and five
different momentum strategies are used as regressors during the NBER recession
period. The univariate OLS regression coefficient signs, their statistical significance
and R2s are reported in Table 18.

According to the results reported in Table 18, Robust(RX) portfolio returns
are not only explained by the carry trade returns but also by the momentum
returns. However, their coefficients have opposite signs. This might be due to a
strong negative correlation of the carry and momentum returns during this period
which is visible in Figure 11 that displays the cumulative excess returns of the
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Table 18: Explanatory analysis of the LSTM portfolios during NBER recession

The table reports the univariate OLS regression coefficient signs, statistical significance of the
coefficients and R2s. The statistical significance is tested with a t-test that is based on the
HAC standard error estimates by Newey and West (1987) with lags chosen based on Andrews
(1993). ⇤⇤⇤, ⇤⇤ and ⇤ denote statistical significance at 99%, 95% and 90% confidence levels,
respectively. The response variables are listed on the row label and the explanatory variables
of the regressions are listed in the column label. The portfolios on the row label are built based
on the LSTM RNN model predictions. RX denotes that only the excess currency returns
are used as predictive factors whereas All denotes that the excess currency returns, forward
premiums, V IX, �FX , V P , XV P , TED, CS and COM are used as predictive factors. Robust
(Opt) denotes that the robust (optimization based) portfolio construction technique is used.
Furthermore, the carry and momentum portfolios are constructed with the robust portfolio
construction technique and the numbers after Mom indicate how many months are included
in the computation of a momentum signal. The regressor observations are not lagged. Finally,
the sample covers the period from the 3rd of October 2005 to the 31st of December 2018.

Carry Mom1 Mom3 Mom6 Mom12 Mom13

Robust (RX) +⇤⇤⇤ - -⇤⇤⇤ -⇤⇤⇤ -⇤⇤⇤ -⇤⇤⇤

R2 0.694 0.127 0.451 0.612 0.431 0.388
Robust (ALL) + +⇤ + + + +
R2 0.002 0.045 -0.002 -0.012 0.010 0.007
Opt (RX) + -⇤ - - - -
R2 0.006 0.033 0.026 0.003 -0.009 -0.012
Opt (ALL) + -⇤⇤ -⇤⇤ -⇤⇤ -⇤ -
R2 0.109 0.173 0.237 0.191 0.126 0.103

LSTM(All), carry and 3-month momentum portfolios during the NBER recession.
The same interpretation applies to the returns of the Opt(All) portfolio that has
similar but lower exposures to the carry and momentum portfolios during this
period.

Figure 11: LSTM (All) optimization based and robust, carry and 3-month
momentum cumulative compounded portfolio returns during NBER recession

The figure displays time-series of the cumulative compounded LSTM(All) optimization
based and robust, carry and 3-month momentum cumulative compounded portfolio returns
with a weekly observation frequency. The sample covers the period from the 3rd of October
2005 to the 31st of December 2018.
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The Robust(All) portfolio is driven by the 1-month momentum signals during
the recession and is the only profitable LSTM portfolio during this period as vis-
ible in Figure 12 that demonstrates the cumulative excess returns of the LSTM
portfolios during the NBER recession. However, the Robust(All) strategy utilizes
the carry and long-term momentum signals during normal market conditions. The
LSTM model that uses all factors seems to be able to recognize patterns that
predict the performances of carry and momentum strategies.

Figure 12: Cumulative compounded LSTM portfolio returns during NBER
recession
The figure displays time-series of the cumulative compounded LSTM portfolio returns with
a weekly observation frequency. The top (bottom) figure displays the returns of the LSTM
portfolios using the RX factor (all factors) in the outperformance probability predictions.
Furthermore, two portfolio construction techniques are utilized, from which opt (robust)
denotes the optimization based (robust) approach. The sample covers the period from the
3rd of October 2005 to the 31st of December 2018.

The LSTM model which predictions are based on all factors, recognizes the
most profitable trading patterns which realizes in higher returns and lower ex-
posures to common risk factors in currency trading strategies. Furthermore, the
LSTM model utilizing historical excess currency returns is able to recognize the
carry trade signals even without explicitly offered forward premiums. However,
after all predictive factors are added, the LSTM model recognizes signals that
predict not only carry trade and momentum signals but also their profitability.
In particular, based on these predictions, the robust strategy utilizes carry and
long-term momentum signals during calm market conditions, whereas it shifts to
the short-term momentum signals as uncertainty picks-up.

The choice of the portfolio construction technique seems to make a bigger im-
pact on the allocation choices than the difference between the predictive signals
from the LSTM(All) and LSTM(RX) models. The optimization based portfolio
construction technique offers high returns during calmer periods. However, the op-
timized portfolios have a high crash risk which is measured by steep drawdowns.
This might be due to the high number of parameters that need to be estimated and
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their estimation errors which are most likely higher after regime shifts. Entropy
pooling does not offer stable enough estimates, and as Boudoukh et al. (2018) state,
more robust estimates are needed. The estimation routine of the portfolio optim-
ization inputs should be more adaptive, which could be done through introducing
regime shift models. Overall, utilizing more robust optimization based portfolio
construction technique seems attractive since a 50-50 combination portfolio of the
Robust(All) and Opt(All) allocations delivers a Sharpe ratio of 0.4, cutting the
volatility to half with a similar return when compared to the characteristics of the
carry portfolio.

5.4 Application to FX risk management

In this section, the results of the foreign currency management of an international
equity portfolio are reported. Only the LSTM portfolios based on all factors and
the carry trade portfolio are included since the rest of the strategies were less
attractive from the mean–variance point of view. All strategies are run out-of-
sample and the sample covers the period from the 3rd of October 2005 to the 31st
of December 2018.

Table 19 reports descriptive statistics of the international equity portfolio re-
turns. The annualized mean return of the unhedged equity portfolio (EQU) is
improved by fully hedging the currency exposures as the fully hedged portfolio
(EQ) provides slightly higher returns. Furthermore, the risk measures of EQ are
more attractive than the risk measures of EQU since the former outperforms the
latter in terms of lower volatility and tail risk.

Table 19: Summary statistics of the international equity portfolio returns

The table reports mean, standard deviation and Sharpe ratios of international equity portfolio
returns with a weekly observation frequency. These figures are annualized. Furthermore, excess
kurtosis, skewness, sample 95% value-at-risk and maximum drawdown of the international
equity portfolio returns are reported. The sample covers the period from the 3rd of October
2005 to the 31st of December 2018. Finally, the currency portfolio returns do not include
transaction cost adjustments.

Mean St.dev. Sharpe SkewnessKurtosis VaR95 Max D.d.

EQU 0.054 0.184 0.293 -0.700 6.392 -0.042 -0.607
EQ 0.059 0.172 0.343 -0.705 5.573 -0.038 -0.573
Minvar 0.035 0.110 0.318 -1.046 3.887 -0.026 -0.479
MPMVO(Carry) 0.074 0.175 0.423 0.000 7.341 -0.036 -0.535
MPMVO(Robust) 0.070 0.138 0.507 -0.840 3.048 -0.033 -0.437
MPMVO(Opt) 0.046 0.136 0.338 -0.765 9.874 -0.031 -0.552
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The results reported in Table 19 indicate that the performance of an inter-
national equity portfolio can be improved by actively managing the currency ex-
posures. First, the Minvar portfolio that aims to minimize the overall variance,
reduces the risk significantly as the annualized standard deviation and weekly
VaR95 of 11% and -2.6%, respectively, are significantly lower when compared to
the EQ and EQU portfolios. However, the reduction in the risk metrics comes with
a price of lower returns which is, after all, quite moderate as the Minvar portfolio
delivers a Sharpe ratio similar to the Sharpe ratios of EQ and EQU.

Second, the MPMVO approach further improves the performances of the in-
ternational equity portfolios from the usage of only the hedge portfolio in Minvar
approach as in Boudoukh et al. (2018). In comparison to the Minvar portfolio,
the MPMVO also adds a dynamic allocation to an alpha seeking currency port-
folio. In the MPMVO framework, the carry portfolio delivers the highest returns
with a volatility similar to the EQ and EQU portfolios. However, the MPMVO
portfolio utilizing the LSTM based Robust(All) currency portfolio outperforms
all other approaches when the risk measures are taken into account. The MP-
MVO(Robust) portfolio delivers a Sharpe ratio of 0.507 which is almost twice the
size of the Sharpe ratio of the EQU portfolio. This approach has only a slight
increase in volatility compared to the Minvar but it doubles the returns. The
MPMVO(Robust) portfolio also has a considerably lower tail risk than the other
approaches.

Even though the Robust(All) portfolio delivers higher returns than the carry
portfolio, the MPMVO(Robust) portfolio has a lower return than the MP-
MVO(Carry) portfolio. This is due to a lower exposure to the alpha seeking
currency component in the currency basket of the MPMVO(Robust) portfolio.
The dynamic weight  realizes lower values if the correlation between EQ and
the alpha seeking currency portfolio decreases. Table 20 reports the correlations
of the alpha seeking currency portfolios and the EQ equity portfolio. The carry
portfolio has the highest correlation with the equity portfolio and, thus, has the
highest exposure in the MPMVO portfolio. This translates into higher realized
returns of the the MPMVO(Carry) portfolio during the sample period. On the
other hand, the high exposure and equity correlation of the carry portfolio results
in more volatile returns than the returns of the other MPMVO portfolios. Due
to the same dynamics, the MPMVO(Opt) has low exposure to the alpha seeking
currency component and, therefore, has lower returns.

Figure 13 demonstrates the cumulative compounded returns of the six interna-
tional equity portfolios. The two MPMVO portfolios with the carry and the robust
all factor currency allocations display close relation in return patterns. However,
Figure 14, that demonstrates the cumulative compounded portfolio returns during
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Table 20: Correlation between equity and alpha seeking cur-
rency portfolio returns

The table reports correlation between the international fully-hedged equity port-
folio EQ and the three alpha seeking currency portfolios: Robust(All), Opt(All)
and Carry. The sample covers the period from the 3rd of October 2005 to the
31st of December 2018.

Robust(All) Opt(All) Carry

EQ 0.406 0.095 0.68

the NBER recession period between December 2007 and June 2009, brings out the
strong outperformance of the LSTM approach over the carry trade strategy during
a period of market turmoil as the MPMVO(Robust) portfolio delivers even better
returns than the Minvar portfolio.

Figure 13: Cumulative compounded international equity portfolio returns
The figure displays time-series of cumulative compounded unhedged (EQU), fully-hedged
(EQ), Minvar, MPMVO(Robust), MPMVO(Carry) and MPMVO(Opt) portfolio returns
with a weekly observation frequency. The sample covers the period from the 3rd of October
2005 to the 31st of December 2018.

By active currency management, the risk-return profile of an international
equity portfolio can be improved significantly. Utilizing LSTM model predictions
in the construction of the alpha seeking component of the currency basket can
further improve the performance over using carry trade portfolios especially by
reducing risk. The carry trade strategy is highly correlated with an international
equity portfolio and driven by similar risk factors especially during market tur-
moil. The LSTM model, however, is capable of recognizing profitable patterns
in the currency carry and momentum strategies which performances vary signific-
antly in different market regimes. Furthermore, it is less exposed to the common
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Figure 14: Cumulative compounded international equity portfolio returns dur-
ing the financial crisis
The figure displays time-series of cumulative compounded unhedged (EQU), fully-hedged
(EQ), Minvar, MPMVO(Robust), MPMVO(Carry) and MPMVO(Opt) portfolio returns
with a weekly observation frequency. The sample covers the period between December 2007
and June 2009.

risk factors driving the returns of the most popular currency trading strategies.
Consequently, the LSTM model is in great value when applied to the management
of currency exposures of an international equity portfolio.

5.5 Practical aspects of implementation

This section concentrates on investigating whether the implementation of the
LSTM portfolios is practical or not. First, the turnover and transaction costs of
the currency portfolios are analysed. Second, the performance metrics and sum-
mary statistics of the currency portfolios are reported after imposing a leverage
constraint that limits the long and short positions to one. Finally, the turnover
and transaction costs of these constrained portfolios are reported.

Table 21 reports the portfolio turnover and estimated transaction costs of the
currency portfolios. These figures are annualized averages computed from the
sample period starting from the 3rd of October 2005 to the 31st of December
2018. The results are reported on the currency baskets only and do not include
equity transactions. The carry portfolio has by far the lowest turnover whereas
the Opt(All) portfolio has the highest turnover. The relatively low turnover of
the carry portfolio is most likely due to the high persistence of short-term interest
rates. Consequently, the ranking order of the forward premiums is changing slowly.
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In contrast, the 3-month momentum portfolio has more than six times higher
turnover than the carry portfolio. The high turnover is a characteristic of the
momentum strategies as concluded by Menkhoff et al. (2012b). In particular, short-
term momentum strategies have higher turnovers, since the momentum signals are
based on rolling estimation windows and, thus, the long-term momentum signals
are more persistent.

Table 21: Currency portfolio transactions

The table reports annualized turnover and transaction cost estimates of the cur-
rency portfolios that are rebalanced weekly. The sample covers the period from
the 3rd of October 2005 to the 31st of December 2018.

Turnover Transaction costs

Robust(All) 25.18 0.0177
Opt(All) 92.25 0.0664
Carry 5.65 0.0037
Mom3 36.52 0.0250
FX(Hedge) 12.27 0.0078
Robust(All)+FX(Hedge) 33.31 0.0226
Opt(All)+FX(Hedge) 61.35 0.0437
Carry+FX(Hedge) 17.51 0.0110

The turnover of the Robust(All) portfolio is between the turnover figures of the
carry and 3-month momentum portfolios. This is in line with the previous con-
clusions as the Robust(All) utilizes both carry and momentum signals. However,
the optimization based approach of the portfolio construction increases turnover
significantly as demonstrated by the figures in Table 21. In fact, the turnover
of the Opt(All) portfolio is approximately 3.7 times higher than the turnover of
the Robust(All) portfolio. The robust portfolio construction technique limits the
single currency exposures to 0.25, whereas the optimized approach limits the single
currency exposures to 0.6 and the overall portfolio volatility to 6% prior to the al-
location decision. Furthermore, the absolute size of the currency positions is always
two for the robust portfolios, whereas it practically is not capped or floored for the
optimized portfolio. Consequently, the higher turnover of the optimized portfolio
is not likely to be explained by this feature since the absolute size of the currency
positions can be smaller or higher. However, the optimized approach requires a
vast amount of parameters to be estimated in order to pursue the allocation de-
cision. In fact, there is not only uncertainty in the signal predictions but also in
the covariance matrix and reference model estimation. Therefore, the optimized
weights are more likely to fluctuate strongly and even change signs when compared
to the robust portfolio approach. Moreover, the optimized portfolio construction
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routine allows higher single currency exposures and, therefore, more extreme es-
timations have more extreme currency exposures. On the other hand, transaction
costs could be included in the portfolio optimization routine and when combined
with more robust estimates, this approach could lower the turnover significantly.

High turnover translates into high transaction costs. In particular, deducting
transaction costs from the currency portfolio returns changes the mean excess re-
turns of the Opt(All) and 3-month momentum portfolios from positive to negative.
On the other hand, the Robust(All) portfolio delivers positive excess returns after
transaction cost adjustment despite a turnover of over 25. However, deducting the
transaction costs reduces the returns of the Robust(All) portfolio by 80% whereas
the carry trade returns are reduced only 20% after the transaction cost adjustment.
Consequently, transaction costs seem to have an important role in the profitability
of the LSTM portfolios. However, rebalancing the portfolios less frequently should
decrease turnover and, thus, bring down the transaction costs. In order to proceed
with this hypothesis, an analysis if the LSTM model is able to recognize profitable
patterns also during a longer time frame than a week should be conducted.

The FX(Hedge) currency portfolio that aims to minimize the volatility of an
international equity portfolio has a relatively low turnover compared to the other
optimization based approach, Opt(All). However, in the FX(Hedge) portfolio con-
struction, only the covariance matrix and equity correlations are estimated and,
thus, it has less uncertain parameters than the Opt(All). Furthermore, these para-
meters are most likely more persistent than the LSTM model output signals which
lowers the turnover. Finally, due to the optimization based portfolio construction,
the turnover of the FX(Hedge) portfolio remains higher than, for example, the
turnover of the robust carry portfolio.

The currency components of the MPMVO portfolios have mixed turnover fig-
ures when compared to the Robust(All), Opt(All) and carry portfolios. The
turnover figures of the carry and Robust(All) portfolios increase once they are
combined with the FX(Hedge) portfolio, whereas the turnover of the Opt(All) and
FX(Hedge) combination portfolio is significantly lower than the turnover of the
Opt(All) portfolio. This might be explained by two reasons. First, the dynamic
allocation weights, which are measured by the  parameters, should be smaller for
the LSTM portfolios due to their lower correlation with the international equity
market than the highly correlated carry portfolio. In particular, Opt(All) is less
correlated with the equity market than the Robust(All) portfolio which means that
it has a lower average . Consequently, the turnover is reduced significantly, since
the Opt(All) has a significantly smaller exposure in the MPMVO portfolio than
the carry and Robust(All) portfolios. Second, negative correlation between the
changes in single currency exposures of the FX(Hedge) and the alpha portfolios
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should decrease the turnover, whereas positive correlation has an opposite effect.
Consequently, the currency exposures of the carry portfolio might change in line
with the changes of the FX(Hedge) portfolio or more likely be uncorrelated.

The transaction costs of the currency component of the MPMVO Opt(All)
portfolio are extremely high despite the lower turnover when compared to the
Opt(All) portfolio alone. However, the transaction costs of the MPMVO Carry
and Robust(All) currency components are closer to each other and more modest.
In particular, the MPMVO carry and Robust(All) portfolio returns are decreased
by approximately 15% and 30% after deducting the transaction costs, respectively.
This reduction leads to Sharpe ratios of 0.36 for the carry and 0.35 for the Ro-
bust(All) MPMVO portfolios. These Sharpe ratios are still higher than the Sharpe
ratios of EQU and EQ, even though the difference is small.

Another practical consideration is related to the portfolio leverage that is meas-
ured by the sum of the absolute portfolio weights divided by two. The leverage
restriction is imposed as by Boudoukh et al. (2018) and restricts the leverage of the
currency portfolios to 100% or less. Table 22 reports the summary statistics of the
currency portfolios after imposing the leverage constraint. Currency exposures of
the robust portfolios: carry, 3-month momentum and Robust(All) are unchanged,
since their leverage is always 100%. However, the leverage of the optimization
based approaches: Opt(All), Minvar and MPMVO portfolios might exceed 100%
and, thus, the results in the table can differ from the results in Table 19 that
reports the results without the leverage restriction.

Table 22: Summary statistics of international equity and currency portfolio
returns after leverage constraint

The table reports mean, standard deviation and Sharpe ratios of international equity and
currency portfolio returns after leverage constraint with a weekly observation frequency. These
figures are annualized. Furthermore, excess kurtosis, skewness, sample 95% value-at-risk and
maximum drawdown of the international equity portfolio returns are reported. The sample
covers the period from the 3rd of October 2005 to the 31st of December 2018. Finally, the
currency portfolio returns do not include transaction cost adjustments.

Mean St.dev. Sharpe SkewnessKurtosis VaR95 Max D.d.

Robust(All) 0.022 0.068 0.324 -0.462 2.185 -0.015 -0.151
Opt(All) 0.012 0.055 0.218 -1.260 9.779 -0.011 -0.171
Carry 0.018 0.080 0.225 -0.733 6.474 -0.017 -0.197
Mom3 0.002 0.068 0.029 0.234 7.226 -0.015 -0.212
Minvar 0.044 0.116 0.379 -1.074 3.811 -0.028 -0.490
MPMVO(Carry) 0.058 0.147 0.395 -0.705 3.484 -0.033 -0.541
MPMVO(Robust) 0.067 0.141 0.475 -0.833 3.293 -0.033 -0.480
MPMVO(Opt) 0.057 0.139 0.410 -0.850 5.190 -0.033 -0.563

Table 22 reports higher Sharpe ratios for the Opt(All) and Minvar portfolios
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than Table 19. After imposing the leverage restrictions, these portfolios have less
extreme allocations. In fact, this brings down the volatility and reduces the tail risk
of the Opt(All) portfolio significantly. In contrast, the Minvar portfolio has slightly
more tail risk but higher returns. This is intuitive, since the FX(Hedge) portfolio,
that is used with the international equity portfolio in the Minvar portfolio, has a
negative return in the sample period and is constructed to decrease the riskiness
of the equity portfolio. Consequently, smaller exposure to FX(Hedge) enhances
the return but increases the riskiness of the Minvar portfolio.

The Sharpe ratios of the MPMVO portfolios are higher for the optimized ap-
proach and lower for the carry and robust approaches after imposing the leverage
restriction. The higher Sharpe ratio of the MPMVO(Opt) portfolio is explained
by the decreased exposure to the FX(Hedge) currency component and the reas-
oning for that follows the previous discussion. In contrast, MPMVO(Robust) and
MPMVO(Carry) have lower Sharpe ratios. Their currency components have high
exposures to the alpha portfolios and, thus, decreases the overall leverage of the
currency basket bringing down the returns. However, due to a higher correlation
of the carry portfolio with the equity market and, hence, higher exposure to the al-
pha component in the currency basket than with the MPMVO(Robust) portfolio,
volatility of the MPMVO(Carry) portfolio decreases significantly as the leverage is
capped to 100%. Despite the volatility reduction of the MPMVO(Carry), its mean
return declines even more resulting in a lower Sharpe ratio. In fact, both LSTM
based MPMVO portfolios have higher Sharpe ratios than the MPMVO(Carry)
portfolio after imposing the leverage restriction.

Table 23 reports the portfolio turnover and estimated transaction costs for
currency portfolios after the leverage restriction of 100%. All portfolios affected
by the restriction have smaller annual turnover. The transaction costs of the
Opt(All) and the combination of the Opt(All) and the FX(Hedge) portfolios are
yet extremely high compared to their returns. Next, the transaction costs of
the FX(Hedge) and the combinations of the Robust(All) and the carry portfolios
with the FX(Hedge) portfolio are slightly lower than before applying the leverage
restriction. However, due to the reductions in the returns of the two latter currency
portfolios, the outperformances of the MPMVO portfolios over the EQ and EQU
equity portfolios are not as impressive as prior to the transaction cost reductions
and the leverage restriction.

After all, the transaction costs of the LSTM and MPMVO portfolios are so
high that they can not be ignored. In particular, weak persistence of the LSTM
model prediction signals and the parameter uncertainty of the optimized portfolio
construction technique, resulting in high turnover and transaction costs, impose
a challenge to the implementation of the LSTM portfolios in practice. However,
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Table 23: Currency portfolio transactions after the leverage
constraint

The table reports mean, standard deviation and Sharpe ratios of the international
equity portfolio returns with a weekly observation frequency. These figures are
annualized. Furthermore, excess kurtosis, skewness, sample 95% value-at-risk
and maximum drawdown of the international equity portfolio returns are repor-
ted. The sample covers the period from the 3rd of October 2005 to the 31st of
December 2018. Finally, the currency portfolio returns do not include transaction
cost adjustments.

Turnover Transaction costs

Robust(All) 25.18 0.0177
Opt(All) 64.49 0.0457
Carry 5.65 0.0037
Mom3 36.52 0.0250
FX(Hedge) 10.09 0.0065
Robust(All)+FX(Hedge) 26.45 0.0181
Opt(All)+FX(Hedge) 42.72 0.0302
Carry+FX(Hedge) 14.03 0.0089

changing the rebalancing frequency of the portfolio from weekly to monthly or
quarterly should decrease the turnover significantly. For example, Boudoukh et al.
(2018) show that the turnover of the MPMVO portfolio that combines carry, mo-
mentum and reversal strategies decreases from 12.4 to 6.6 when the rebalancing
frequency is changed from monthly to quarterly. Furthermore, this change has
hardly any impact on the Sharpe ratio of the portfolio. This finding should be in
line with the LSTM approach due to the similarities of their sources of returns.
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6 CONCLUSIONS

This research investigated whether a long short-term memory (LSTM) recurrent
neural network (RNN) is able to recognize profitable patterns in the G10 cur-
rency market from the 4th of January 1999 to the 31st of December 2018 or not.
The model inputs are historical excess currency returns w.r.t. the USD, forward
premiums and seven factors that capture price uncertainty, risk-aversion, com-
modity price changes and funding liquidity. Furthermore, two alternative portfolio
construction techniques, robust and optimized, are applied to the LSTM model
predictions and the resulting portfolios are compared to the well-researched cur-
rency carry and momentum strategies. Finally, the best performing portfolios are
applied to a FX risk management framework of an international equity portfolio.

First, LSTM and simple RNN model predictions are compared. The LSTM is
proven to be significantly more accurate than the simple RNN by reaching total ac-
curacies of more than 55%, which indicates that currency excess returns are partly
driven by signals with more than two months temporal distance. Second, robust
and optimized portfolio construction techniques are utilized in order to exploit
if the predictions of two alternative LSTM models can be used to build success-
ful trading strategies. The LSTM model recognizes carry trade signals from the
historical excess currency returns. However, after adding all predictive factors,
the LSTM model is able to predict the profitability of the carry and momentum
strategies. In particular, the LSTM portfolio utilizes carry and long-term mo-
mentum signals during calm market conditions and short-term momentum signals
during market turmoil. The best performing LSTM portfolio delivers a Sharpe
ratio of 0.32 with less tail risk than the carry portfolio that has a Sharpe ratio of
0.23.

Attractive risk-return profile and low correlation with equity markets make the
LSTM portfolio extremely suitable to the FX risk management of an international
equity portfolio. In fact, when the LSTM portfolio is used as an alpha seeking cur-
rency component in the modified portfolio mean-variance optimization (MPMVO)
routine introduced by Boudoukh et al. (2018), the Sharpe ratio of an unhedged
international equity portfolio is almost doubled as the Sharpe ratio increases from
0.29 to 0.51. In comparison, the carry portfolio manages to increase the Sharpe
ratio only to 0.42.

The LSTM portfolios, that utilize all predictive factors, are not exposed to the
common risk factors that are driving the currency carry and momentum returns,
especially during the financial crisis. However, the choice of the portfolio construc-
tion technique has a considerable impact on the performances in market regime
shifts. The optimization based approach, which translates the LSTM model predic-
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tions into mean-variance optimization inputs through entropy pooling, is sensitive
to parameter uncertainty, whereas the robust technique relying on heuristics is
more stable. However, their combination portfolio delivers an impressive Sharpe
ratio of 0.4. This suggests that more robust optimization based approaches might
be well-suited for this task.

After all, the substantial benefits might not fully materialize to investors trying
to implement the LSTM strategies, investigated in this research, in practise. The
restriction that limits the portfolio leverage to 100% has only limited impact on
the results, whereas high turnover and transaction costs impose a challenge to
the LSTM portfolios as a major part of the excess returns are cut off by the
trading costs. However, less frequent rebalancing frequency should decrease the
transaction costs significantly and result in a feasible trading strategy in practise.
Exploiting lower prediction and rebalancing frequencies is left for future research.
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