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Title:  33 

Is the firing rate of motor units in different vastus medialis regions modulated similarly during 34 

isometric contractions? 35 

 36 

Abstract: 37 

Introduction: Previous evidence suggests the fibres of different motor units reside within 38 

distinct vastus medialis (VM) regions.  Whether the activity of these motor units may be 39 

modulated differently remains unknown.  Here we assess the discharge rate of motor units 40 

detected proximo-distally from VM to address this issue. 41 

Methods: Surface electromyograms (EMGs) were recorded proximally and distally from VM 42 

while ten healthy subjects performed isometric contractions.  Single motor units were 43 

decomposed from surface EMGs.  The smoothed discharge rates of motor units identified from 44 

the same and from different VM regions were then cross-correlated. 45 

Results: During low-level contractions, the discharge rate varied more similarly for distal 46 

(cross-correlation peak; interquartile interval: 0.27-0.40) and proximal (0.28-0.52) than for 47 

proximo-distal pairs of VM motor units (0.20-0.33; P=0.006). 48 

Discussion: The discharge rates of motor units from different proximo-distal VM regions show 49 

less similarity in their variations than those of pairs of units either distally or proximally. 50 

 51 

 52 

Keywords: motor unit; vastus medialis; surface electromyography; compartmentalization; 53 

knee; quadriceps.  54 



Local modulation of vastus medialis’ motor units 3 

 

 

Introduction 55 

Architectural differences seem to account for functional differences within the vastus medialis 56 

(VM) muscle.  Previous studies reported that distal VM fibres are oriented more obliquely to 57 

the quadriceps tendon than the proximal fibres1,2.  In their review, Smith et al.3 specifically 58 

observed the orientation of VM distal and proximal fibres in relation to the quadriceps tendon 59 

respectively ranges from 40˚ to 77˚ and from 11˚ to 35˚.  Furthermore, in-vivo4,5 and cadaveric1 60 

studies reported that distal VM fibres attached directly to the medial edge of the patella.  61 

Collectively, these findings indicate the activation of fibres in different, proximo-distal VM 62 

regions results in force vectors oriented in different directions6.  Such differential, architectural 63 

organisation has led to the consideration that fibres in distinct VM regions may contribute to 64 

distinct functions2,6.  Whether the nervous system may selectively activate fibres in distinct VM 65 

regions is an open and potentially relevant issue for the rehabilitation of patients with knee 66 

musculoskeletal disorders such as patellofemoral pain syndrome7,8. 67 

 68 

The possibility of controlling distinct VM regions presumes a specific, neuromuscular 69 

organisation.  First, VM motor units (MUs) must have small territories in relation to the muscle 70 

proximo-distal axis.  Otherwise, activation of individual motor neurones would result in 71 

contraction of fibres spanning a large muscle region, resulting in force vectors with similar 72 

directions for different MUs.  Investigations using scanning electromyography indicated that 73 

in-depth territory of VM motor units is remarkably small, ranging between 2 to 8 mm in healthy 74 

subjects9.  More recently, Gallina and Vieira2 observed the action potentials of single MUs are 75 

represented locally proximo-distally in the VM, suggesting that the territory of some VM motor 76 

units is relatively small.  In agreement with this view, Lin et al.6 observed that the patella shifted 77 

medially when stimulation pulses were delivered to the distal VM region and proximally when 78 

the proximal VM region was stimulated.  In addition to MUs with small territories, the 79 
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activation of distinct VM regions demands preferential access to these MUs within the nervous 80 

system; if all VM motor neurones receive a common input, the activity of different proximo-81 

distal VM fibres would be modulated similarly. 82 

 83 

In this study, we therefore investigated whether the activity of MUs represented in surface 84 

electromyograms (EMGs) detected from different VM regions are modulated differently.  We 85 

specifically asked: is the firing rate of MUs identified proximally and distally in the VM 86 

modulated equally strongly during isometric, torque-varying contractions?  If MUs with 87 

territories in different VM regions receive different inputs, then, we expect the firing rate of 88 

pairs of MUs identified from the same VM region, either distal or proximal, to be modulated 89 

more similarly than that of pairs of units taken from different VM regions.  Addressing this 90 

question would contribute to advancing our knowledge of the functional organisation of MUs 91 

within the VM.  92 
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Methods 93 

Participants 94 

Ten healthy, male subjects (range: 24-32 years; 168-182 cm; 70-85 kg) were recruited to 95 

participate in the study.  Participants did not report any knee injuries at the time of the 96 

experiments and all provided written informed consent.  The study was conducted in accordance 97 

with the latest revision of the Declaration of Helsinki and approved by our University Hospital 98 

Ethics Committee (HUCFF/UFRJ – 127/2013). 99 

 100 

Experimental protocol 101 

Knee extension torque was measured with participants seated comfortably on a dynamometer 102 

chair (Biodex System 4, New York, USA), with their right knee flexed at 80˚ and aligned as 103 

coaxially as possible to the dynamometer axis of rotation.  Two isometric, maximal voluntary 104 

contractions (MVCs) lasting 5 s each were performed, with a rest period of at least 2 min in-105 

between.  The peak torque, averaged across the two MVCs, was considered as the maximal 106 

knee extension torque.  After that, torque-varying, isometric contractions at two force levels 107 

were applied.  Participants were asked to increase knee torque from rest to a submaximal target 108 

level in 5 s, to hold it at that level for 10 s and then to return to rest in 5 s.  This trapezoidal 109 

profile was repeated four times for each of two contraction levels, 20% and 40% MVC.  The 110 

contraction level was randomised and a rest period of at least 5 min was provided in-between.  111 

Visual feedback of knee extension torque was presented on a computer monitor.  Data 112 

collection started after participants had trained with visual feedback and could successfully 113 

follow the trapezoidal profiles; the familiarisation session started at least 3 min after MVCs. 114 

 115 

Electrode placement and EMGs recordings 116 
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Two adhesive arrays of eight, silver-bar electrodes each (10 mm inter-electrode distance; Spes 117 

Medica, Battipaglia, Italy) were used to sample surface EMGs.  The reference electrode was 118 

placed over the patella and conductive paste (TEN 20 Conductive Paste, Weaver, Aurora, USA) 119 

was used to assure electrical contact between electrodes and skin.  Prior to positioning the 120 

arrays, the skin was shaved and cleaned with abrasive paste.  With a dry array of eight silver-121 

bar electrodes (LISiN-Politecnico di Torino, Turin, Italy), EMGs were visually inspected while 122 

participants gently, isometrically loaded their knee extensors.  The array orientation was then 123 

changed until the propagation of action potentials of individual MUs could be clearly observed 124 

across electrodes; this orientation was deemed parallel to the average orientation of fibres 125 

underneath electrodes2,10.  This procedure was repeated with the dry array centred roughly at 126 

the VM distal and proximal regions, defined through palpation.  Adhesive arrays were then 127 

centred at these locations.  An example of the position of adhesive arrays and the propagation 128 

of motor unit action potentials is provided in Figure 1.   129 

 130 

Surface EMGs were recorded in monopolar derivation and amplified by a variable factor, 131 

ranging from 2,000 to 10,000 (10-900 Hz bandwidth amplifier; CMRR > 100 dB; EMG-USB2, 132 

OTBioelettronica, Turin, Italy).  EMGs and the torque signal were digitised synchronously at 133 

2048 samples/s using a 12-bit A/D converter, with 5 V dynamic range. 134 

 135 

Assessing the variation in motor unit firing rates 136 

Raw surface EMGs were first visually inspected for power line interference and contact 137 

problems.  Low-quality EMGs were not observed among the 320 (10 subjects x 8 electrodes x 138 

2 VM portions x 2 contraction levels) monopolar signals collected. 139 

 140 
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Similarities in modulation of MUs detected from different VM regions were assessed through 141 

cross-correlation.  First, monopolar EMGs were band-pass filtered with a 4th order Butterworth 142 

filter (15-350 Hz cut-off frequencies).  Filtered EMGs were decomposed into their constituent 143 

trains of motor unit action potentials11,12.  Decomposition was applied separately for each 144 

contraction level and array of electrodes, providing the firing instants of MUs recruited for 145 

different effort levels and represented in different VM regions. The coefficient of variation of 146 

the inter-spike interval was computed for each MU considering periods of constant torque.  147 

Additionally, the instantaneous firing rate of individual MUs was computed as the 148 

multiplicative inverse of the inter-spike interval, linearly interpolated at 50 Hz, smoothed with 149 

a low-pass Butterworth filter (4th order, 3 Hz cut-off frequency12) and demeaned.  For each 150 

participant, the resulting, smoothed firing rate profiles were cross-correlated for pairs of MUs: 151 

i) obtained from the same array, either proximal or distal; ii) identified from different arrays.  152 

The normalised, cross-correlation functions were calculated considering the longest period 153 

within which all MUs were active, separately for each of the four, consecutive trapezoidal 154 

contractions.  The peak of the cross-correlation function, taken for lags from -100 to 100 ms13 155 

and averaged across the four consecutive contractions, was considered a measure of how 156 

similarly the firing rate of pairs of MUs varied for each individual and contraction level. 157 

 158 

Only MUs recruited at torque levels lower than 90% of the target level were considered for 159 

analysis.  The recruitment threshold of individual units was calculated as the torque value 160 

observed at the time of the first discharge, averaged across the four, trapezoidal contractions14.  161 

Moreover, MUs whose action potentials were clearly represented in both arrays of electrodes 162 

or that did not discharge continuously (< 200 discharges; 4 repetitions x 10 s plateau x 5 163 

discharges per second) were also excluded from analysis.  Figure 2 shows examples of surface 164 

EMGs triggered and averaged at the time of the firing of individual MUs identified proximally 165 
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and distally from VM.  While each of the two MUs shown in Figure 2A is represented mainly 166 

either in the distal or proximal array, potentials of the MUs shown in Figure 2B appear clearly 167 

in both arrays. 168 

 169 

Statistics 170 

Given the data distribution was not Gaussian (Kolmogorov-Smirnov test; P < 0.029) non-171 

parametric analysis was considered for inferential statistics.  Wilcoxon rank sum test was 172 

applied to compare the recruitment threshold of MUs identified for 20% and 40% MVC.  The 173 

strength of the relationship between recruitment threshold and the interquartile interval of the 174 

MU firing rates was assessed with Pearson correlation analysis.  The Kruskal-Wallis test was 175 

applied separately for 20% and 40% MVC to test for differences in the peak of the cross-176 

correlation function computed for pairs of MUs in the same and in different VM regions; the 177 

Dunn-Sidak test was used for post-hoc comparisons.  Statistical analysis was carried out with 178 

Matlab (Version 8.5, The MathWorks Inc., Natick, Massachusetts, USA).  The level of 179 

significance was set at 5%.  180 
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Results 181 

A total of 80 MUs were identified for the ten participants.  Six MUs were excluded because 182 

their action potentials were observed in both arrays; all were identified proximally during 40% 183 

MVC.  The firing characteristics of all MUs analysed are shown in Table 1 (20% MVC) and 184 

Table 2 (40% MVC), separately for each subject and VM region.  A median of 4 MUs were 185 

analysed per subject and contraction level. 186 

 187 

Motor units recruited for the different contraction levels 188 

During the 20% MVC trapezoidal contraction, MUs first discharged when knee torque reached 189 

8.0% (6.2%-11.5%) MVC (median and interquartile interval).  Conversely, the first discharge 190 

of MUs decomposed during the 40% MVC were observed at a significantly greater torque value 191 

(25.6%, 19.0%-29.0% MVC; Figure 3; Wilcoxon test; P < 0.0005; N = 74 MUs, 40 distal and 192 

34 proximal units).  As shown in Figure 3, variations in the MU discharge rates were 193 

significantly negatively correlated with recruitment threshold, both for 20% and 40% MVC 194 

contractions (Pearson R < -0.47 and P < 0.002 for both cases).  MUs recruited at higher torque 195 

levels showed less variation in firing rate. 196 

 197 

Cross-correlation function  198 

The firing rate of MUs identified from EMGs detected proximally and distally was modulated 199 

differently.  Figure 4 shows the smoothed, instantaneous firing rate of four MUs decomposed 200 

for a representative participant and the resulting, cross-correlation functions.  All four MUs 201 

were recruited at torque values well below the target, 20% MVC torque level (Figure 4A).  Two 202 

of these units were decomposed from EMGs collected distally and their action potentials were 203 

clearly represented in the distal array of electrodes, whereas the two MUs decomposed 204 

proximally were represented predominantly in EMGs detected proximally (cf. bottom and top 205 
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traces in Figure 4B).  The cross-correlation functions calculated for pairs of MUs decomposed 206 

from the same array of electrodes showed a clear, single peak at zero lag (Figure 4C).  In 207 

contrast, pairs of units decomposed from different arrays either showed a markedly small cross-208 

correlation value around 0 s or did not show a distinct peak. 209 

 210 

Group data revealed the firing patterns of MUs decomposed for either the proximal or distal 211 

VM region were more similarly modulated than those of units decomposed proximo-distally.  212 

Cross-correlation functions were computed for 116 pairs of MUs; 28 pairs of distal units, 16 213 

pairs of proximal units and 73 proximo-distal pairs.  Of the distal, proximal and crossed pairs, 214 

17, 9 and 39 were respectively obtained for the 20% MVC contraction and, then, there were 215 

instances with no or one motor unit being identified from a given VM region.  The distribution 216 

of the peak of the cross-correlation function is shown in Figure 5 for all MU combinations.  217 

Kruskal-Wallis test revealed a significant difference in cross-correlation values between VM 218 

regions at 20% MVC.  The firing rate variation was significantly more similar for pairs of MUs 219 

identified from the same VM region, both distal (interquartile interval: 0.27-0.40) and proximal 220 

(0.28-0.52), than for pairs of units in different regions (0.20-0.33; P = 0.006).  For 40% MVC, 221 

no significant differences in cross-correlation peaks were observed for any pairwise 222 

comparisons between distal (0.23-0.40), proximal (0.27-0.36) and crossed MUs pairs (0.22-223 

0.33; P = 0.668).  224 
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Discussion 225 

Our main finding showed that MUs decomposed during 20% MVC from the same array, either 226 

distal or proximal, discharged with variations that were significantly more similar than those of 227 

units decomposed from different arrays.  As discussed below, at least for low-level contractions, 228 

these results suggest motor neurones serving predominantly either the distal or proximal VM 229 

fibres may receive different synaptic input.  The differential activation of distal and proximal 230 

VM motor units may therefore contribute to regulating the direction of the knee extension, force 231 

vector. 232 

 233 

Assessing different populations of vastus medialis motor units 234 

Notwithstanding the validity of the decomposition algorithm12,15, decomposition results are 235 

typically limited to the identification of a relatively small number of MUs16.  Among the MUs 236 

recruited, those with greater amplitude are more likely to be identified for a given, fixed 237 

contraction level17.  Results shown in Figure 3 suggest, indeed, different populations of MUs 238 

were identified for 20% and 40% MVC.  Moreover, corroborating previous findings14,18, MUs 239 

recruited at progressively greater torque levels discharged at lower rates (Figure 3).  Even 240 

though the results presented here may not be generalised to all VM MUs, they apply to MUs 241 

recruited at torque levels often elicited during daily activities19. 242 

 243 

Is the activity of proximo-distal motor units modulated differently in vastus medialis? 244 

Different methods have been proposed to assess how similarly the activity of different MUs is 245 

modulated20.  In agreement with previous studies13,21-23, here we assessed similarities in the 246 

activity of VM motor units using the cross-correlation function.  This association between 247 

motor neurone activity and cross-correlation function is a corollary following the well-248 

established notion that variations in the synaptic drive impinging upon a given population of 249 
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active motor neurones lead to a concurrent and similar variation in their firing rate18,24.  250 

Interestingly, our key results show significant differences for 20% MVC in the cross-correlation 251 

function evaluated for pairs of units detected from the same and from different VM regions.  252 

When considering pairs of units detected from the same VM region, cross-correlation values 253 

0.27-0.52 (interquartile interval) were somewhat similar to those reported in the literature for 254 

other muscles (typically within the 0.3-0.6 range13,21,22,25-27).  When considering crossed-pairs 255 

of units (proximal-distal), cross-correlation values were ~30% smaller (0.20-0.33; Figure 5).  256 

In view of these arguments, our results are consistent with the possibility that motor neurones 257 

serving fibres located in different VM regions do not share the same, synaptic input during 258 

isometric, knee extension contractions. 259 

 260 

According to the common drive principle, the firing rate of active MUs is modulated in 261 

unison23,28 with the active MUs sharing the same synaptic input.  However, it is known that 262 

activation of different volumes of individual muscles, in particular of those with broad 263 

attachment, contributes to different joint motions (e.g., deltoid29 and trapezius30).  Such 264 

selective activation of muscles sub-volumes implies that motor neurones serving different sub-265 

volumes receive distinct, net inputs.  Following this reasoning, it is possible that different pools 266 

of MUs, each elicited for a specific purpose (e.g. to regulate force direction or to endure a 267 

fatiguing contraction13,31,32), receive different inputs.  Results presented here suggest this 268 

concept may be extended, at least in VM, to motor neurones serving different, proximo-distal 269 

muscle regions. 270 

 271 

A final consideration on the regional modulation of MU firing rates concerns the different 272 

contraction levels.  During 40% MVC, the cross-correlation peak did not differ between pairs 273 

of crossed units and of units detected from the same region (Figure 5).  Different factors may 274 
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have contributed to the lack of statistical significance.  First, it is possible that the proximo-275 

distal differentiation of MUs’ activity becomes less relevant for torque demands higher than 276 

20% MVC, as a relatively greater proportion of VM motor units is recruited.  Second, as 277 

discussed below, we cannot exclude the possibility that fibres of some MUs spanned an 278 

extensive, proximo-distal VM region.  Third, in the EMGs, the interferential activity of different 279 

MUs increases markedly with the contraction level33, hampering the distinction of action 280 

potentials of individual MUs.  As a consequence, the decomposition of EMGs collected at 281 

greater force levels may not work as effectively as it does at lower contraction levels33. 282 

 283 

What are the potential causes and consequences of regional differences in motor unit 284 

modulation? 285 

In this study, MU firings observed in different arrays are expected to reflect the discharges of 286 

motor neurones innervating fibres localised proximally or distally.  Due to the close association 287 

between the location of active muscle fibres and their EMGs amplitude distribution, surface 288 

potentials are greater when collected above than far from the MU territory34.  Indeed, when 289 

regional activation is elicited through selective, intra-muscular VM stimulation, the peak of the 290 

EMGs distribution can be observed near the stimulating electrode and signals recorded from 291 

electrodes 60 mm far from the distribution peak are dramatically small35.  For these reasons, 292 

motor unit action potentials identified in either array in this study likely belong to units located 293 

predominantly proximally or distally within the VM. 294 

 295 

During low-level contractions, MUs in different VM regions may be recruited based on their 296 

function.  Due to distributed insertion along the patella medial edge4 and to variations in fibre 297 

orientation within the VM3, distinct VM regions may contribute differentially to the patellar, 298 

proximo-medial translation6.  The nervous system may take advantage of this anatomical 299 
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arrangement to preferentially recruit populations of VM fibres producing force in specific 300 

directions.  In such case, fluctuation in the neural drive would affect MUs serving fibres within 301 

relatively small VM regions2.  Our current findings seem to support this hypothesis (Figure 4 302 

and 5).  Given the spectrum of orientations of VM fibres2, the potentially weak, mechanical 303 

linkage between VM fibres6 and the differential modulation of activity of proximal and distal 304 

MUs (Figure 4 and 5), it is therefore possible the nervous system relies on the activation of 305 

different MUs to specifically control force direction in the VM.  If this is the case, subjects 306 

could learn or be trained to selectively activate distinct VM regions (for example, through EMG 307 

biofeedback), opening new fronts for the rehabilitation of patients with knee musculoskeletal 308 

disorders such as patellofemoral pain syndrome.  309 
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Abbreviations 310 

EMGs – surface electromyograms 311 

IZ – innervation zone 312 

MUs – motor units 313 

MVC – maximal voluntary contraction 314 

VM – vastus medialis  315 
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Tables 402 

Table 1: Firing characteristics of motor units analysed for 20% MVC contractions, separately 403 

for each subject and vastus medialis region. 404 

Subjects 

Number of 

MUs 
Recruitment threshold (%MVC) Mean inter-spike interval (s) 

Coefficient of variation 

of inter-spike interval 

 Prox Dist Prox Dist Prox Dist Prox Dist 

#1 3 2 4.22-6.53 7.88-8.74 0.07-0.11 0.08-0.09 0.39-0.50 0.32-0.38 

#2 2 2 2.63-6.19 5.87-11.55 0.09-0.10 0.11-0.14 0.38-0.45 0.39-0.43 

#3 2 3 7.00-13.18 11.03-16.89 0.11-0.12 0.12-0.16 0.37-0.44 0.31-0.42 

#4 1 0 16.11  0.13  0.36  

#5 2 4 6.99-8.89 5.01-8.41 0.08-0.10 0.08-0.09 0.29-0.38 0.19-0.39 

#6 2 2 4.72-8.25 6.13-10.13 0.08-0.13 0.08-0.09 0.37-0.48 0.37-0.41 

#7 2 2 13.99-14.74 2.67-6.55 0.11-0.13 0.09-0.10 0.44-0.48 0.45-0.47 

#8 1 3 14.44 7.71-16.00 0.09 0.11-0.14 0.35 0.41-0.50 

#9 0 1  10.95  0.08  0.43 

#10 2 2 6.23-8.87 4.84-11.98 0.07-0.08 0.09-0.12 0.32-0.43 0.43-0.47 

MUs: motor units; MVC: maximal voluntary contraction; Prox: proximal array; Dist: distal 405 

array.  406 
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Table 2: Firing characteristics of motor units analysed for 40% MVC contractions, separately 407 

for each subject and vastus medialis region. 408 

Subjects 

Number of 

MUs 
Recruitment threshold (%MVC) Mean inter-spike interval (s) 

Coefficient of variation 

of inter-spike interval 

 Prox Dist Prox Dist Prox Dist Prox Dist 

#1 2 2 21.61-27.13 29.79-32.24 0.08-0.09 0.09-0.14 0.36-0.38 0.41-0.49 

#2 2 2 20.38-30.14 16.42-18.31 0.10-0.11 0.07-0.09 0.37-0.49 0.32-0.43 

#3 1 1 13.02 14.12 0.08 0.08 0.36 0.34 

#4 2 3 26.88-33.53 10.90-26.25 0.11-0.11 0.10-0.10 0.40-0.41 0.44-0.48 

#5 2 2 20.01-23.84 9.47-25.46 0.10-0.11 0.08-0.10 0.32-0.45 0.37-0.40 

#6 2 3 20.06-27.56 29.12-29.92 0.08-0.09 0.09-0.12 0.35-0.38 0.39-0.44 

#7 2 1 16.56-29.01 28.59 0.11-0.12 0.09 0.49-0.50 0.44 

#8 1 2 18.98 13.13-19.05 0.11 0.08-0.11 0.50 0.36-0.41 

#9 1 1 25.75 27.83 0.08 0.11 0.46 0.50 

#10 2 2 22.22-31.65 27.82-29.78 0.12-0.13 0.09-0.10 0.46-0.47 0.35-0.39 

MUs: motor units; MVC: maximal voluntary contraction; Prox: vastus medialis proximal 409 

region; Dist: vastus medialis distal region.  410 
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Figure captions 

 

Figure 1: Electrode positioning and raw, differential electromyograms. 

A schematic representation of the position of surface electrodes over the vastus medialis (VM) 

muscle is shown in panel A.  A short epoch (100 ms) of raw, single-differential EMGs detected 

by both arrays is shown in panel B.  Innervation zone (IZ; shaded circles) and propagation 

(thick, grey lines) of motor unit action potentials are clearly seen in both VM regions, indicating 

both arrays were aligned roughly parallel to VM proximal and distal fibres. 
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Figure 2: Templates of two motor units (one distal and one proximal). 

A, shows action potentials of motor units decomposed from EMGs detected distally (left 

column; N = 668 firings) and proximally (right column; N = 861 firings).  Black traces 

correspond to the average of grey traces at the time of the motor unit firings.  Note the action 

potentials of each of the two motor units are more clearly represented in the array from which 

they were decomposed.  As shown in panel B, the action potentials of a motor unit decomposed 

from proximal EMGs, for this same participant, demonstrate similar amplitude in both arrays.  

Note innervation zones (IZ; shaded circles) and propagation (thick, grey traces) can be observed 

clearly in the signals. 
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Figure 3: Motor unit firing rates and recruitment threshold. 

The scatter plot shows how changes (ordinate; interquartile interval) in the firing rate of motor 

units varied with the torque value matching the units’ first discharge (abscissa; recruitment 

threshold).  Motor units decomposed from surface EMGs detected during 20% MVC (N = 38) 

are represented with circles whereas crosses denote units decomposed for 40% MVC 

contractions (N = 36). 

 

 

Figure 4: Example of regional modulations in the activity of vastus medialis motor units. 

A, shows the knee extension torque and the smoothed, instantaneous firing rate of four 

decomposed motor units for a single, representative participant during one trapezoidal, torque-

varying contraction.  The firing rate of units decomposed proximally is represented with black 

traces while that of distal units is shown with grey traces.  The recruitment threshold of MU1, 

MU2, MU3 and MU4 were respectively 4.8, 12.0, 8.9 and 6.2% MVC.  The spike-triggered, 

average representation of the action potential of each of the four decomposed motor units is 

shown in panel B.  Note the action potentials of units decomposed proximally and distally 
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appear respectively predominantly in the proximal and distal arrays.  C, shows the cross-

correlation functions computed for the six possible combinations of pairs of proximal and distal 

motor units.  The vertical, grey rectangle indicates the lag for which cross-correlation values 

were considered to compare how similarly the firing rate of pairs of motor units was modulated. 

 

 

Figure 5: Cross-correlations of vastus medialis motor units. 

The distribution of peak values of the cross-correlation functions computed for pairs of distal 

(black boxes), proximal (dark grey boxes) and proximo-distal (light grey boxes) motor units is 

shown separately for 20% and 40% MVC contraction levels.  Horizontal traces, boxes and 

whiskers respectively denote the median value, the interquartile interval and the distribution 

range.  Asterisk denotes statistical significance (P < 0.05). 

 


