

RANS Investigation of Blowing and Suction for Turbulent Flow Control on a Wing Section

<u>G. Fahland</u>, D. Gatti, B. Frohnapfel & A. Stroh M. Atzori, R. Vinuesa & P. Schlatter

Institute of Fluid Mechanics (ISTM) KIT, Linné Flow Centre KTH

Institut für Strömungsmechanik

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Boundary Layer Control Scheme

Uniform Suction/Blowing

- Active Control Scheme
- Low Blowing Intensity (0.025-2% of U_∞)

2

Flat plat: 80% drag reduction

Developing Boundary Layer

- Blowing $\rightarrow \delta \uparrow, \tau \downarrow$
- Suction $\rightarrow \delta \downarrow, \tau \uparrow$

Motivation / Objective

Airfoil requirements

- Lift
- Efficiency
- Momentum
- Stall properties
- Control surfaces
- Re
- Mach
- **.**...

<u>Means</u>

- Shape
- Flaps, etc.
- Boundary Layer Control (BLC)

Methodology - Mesh

- Different Airfoils (7)
- Different *Re*
- \rightarrow Automated mesh generation

 \approx 40 Meshes

Validation – DNS/LES data Δ to reference Ε C_l C_d LES (KTH) 0,842 0,0202 41,7 -6,2% RANS 0,829 0,0204 40,6 -6,6% 0.03**BLC-region** τ $c_f = \frac{1}{\frac{1}{2}\rho U_{\infty}}$ 0.02 c_f Reference 0.01Blowing 0 0.20.40.6 x_{tr} 0.80 Naca4412, $Re = 2 \cdot 10^5$, $\alpha = 5^{\circ}$, $v_{BLC} = 0.1\% U_{\infty}$

Polar: α - Dependency

Re-Dependency

11 01.02.2019

Beneficial Blowing SS possible?

14

01.02.2019

Conclusion / Lookout

Summary:

- Beneficial in General:
 - Blowing for higher *Re*
 - Blowing PS for low c_l
 - Suction SS for high c_l
- Beneficial Blowing-on-SS-Setup also possible

Next steps of Interest:

- Higher *Re* and *Mach*
- More Airfoil types
 - Transonic (negatively S-shaped Camber-Line)
 - Airfoils with Flaps/Slats
- Airfoil geometry Matching BLC
- Unsteady Stall Assessment

- Unfavorable
 - Suction for higher *Re*
 - Blowing SS
 - Suction PS

Varied Parameters

α [°]		-3 12
Re		1e52e7
Airfoil		Naca4412, Clark-Y, Naca23012, AH80-136
General Geometry	Camber	Naca5412, Naca6412
	Thickness	Naca4409, Naca4415
Flow Rate v_{BLC} [% u_{∞}]		0.025 2
Configurations	Literature configurations	KTH
		Reder
		Fukagata
		Gersten
	Enhancements	Stratford Blowing Combined SS-Suction + PS- Blowing

Methodology – Mesh Generation

Matlab workflow:

- 1. Assessement of mesh requirements with XFOIL
 - $\tau_{max} \rightarrow h_{min}: y_{min}^+ \approx 1$
 - $d_{Prism} = f(\delta_{\theta}, \alpha = 5^{\circ})$
 - $h_{tr} = f(\delta_{\theta}(\mathbf{x} = x_{tr}), \alpha = 5^{\circ})$
- 2. Meshing with gmsh
- 3. Transform to OpenFOAM
- 4. Generating control sets for transition handling

 x_{tr}

Validation – Experimental Data Naca23012

Polarendiagramm Re = 1.5M

- ----Daten Stuttgarter Profilkatalog
- Daten xfoil n_crit=13
- -----Tripping ohne Turbulenzkontrolle

Agenda

- 1. Motivation/Objective
- 2. Methodology and Validation
- 3. Results:

19

01.02.2019

- *α* dependency
- *Re* dependency
- intensity- dependency
- Influence of configurations

