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Abstract 

 

The work presented in this thesis contributes to long-term protein phase behavior research. 

Long-term protein phase behavior plays a pivotal role in biotechnological product and 

process development. One of the largest product groups in biotechnological industries are 

recombinant proteins. For instance, lactases for dairy processing in the food industry and 

insulin to manage diabetes in the biopharmaceutical industry. The strong market position 

of recombinant proteins is earned due to their highly specialized functionalities, such as 

the ability to target specific cells and processes in the human body. However, proteins have 

a narrow stability window. The influence of environmental conditions, such as temperature 

and pH, on conformational and colloidal stability causes proteins to lose their functionality 

outside the required environment. Deviations from their physiological environment do not 

only jeopardize product efficacy, but also product safety. The extreme sensitivity to sub-

optimal environmental conditions is particularly problematic at the end of production, after 

which protein-based products are required to remain stable during a defined shelf life of 

typically 18-24 months. Formulation studies, where protein phase behavior is monitored 

over time as a function of different environmental conditions, are needed to ensure the 

defined shelf life. These experiments must be conducted in real-time, meaning the 

experimental time equals the required shelf life of 18-24 months. Experimental time and 

effort can be reduced by means of knowledge-based experimental design, where prior 

knowledge on protein stability defines the experimental setup. Knowledge-based 

experimental design requires an understanding of the responsible forces and protein 

properties that regulate long-term protein stability as a function of environmental 

conditions. The obtained understanding can subsequently be employed to identify short-

term properties to report on long-term protein phase behavior and to work towards the 

development of predictive approaches. In order to obtain such knowledge, protein phase 

behavior studies are coupled to biophysical screenings, where responsible forces and 

protein properties are characterized. Both these experimental setups are commonly 

performed in high-throughput to screen wide ranges of environmental conditions. Such 

high-throughput experimental setups generate large data sets, which inevitably leads to a 

bottleneck on the side of data processing, analysis, and utilization. This bottleneck is 

currently present in long-term protein phase behavior analysis, and has created a need for 

computational methods to support and advance data processing and analysis.  

 

Studying protein phase behavior is commonly performed by means of protein phase 

diagrams, where protein formulations are stored for a prolonged period of time to obtain 

knowledge about the effects of the applied environmental conditions. After the storage 

period, data evaluation of such experiments typically involves manual inspection of 
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obtained formulation images, to report on the presence of instable proteins in the form of 

insoluble aggregates and their morphology. Due to the workload involved with manual 

image evaluation, most studies focus solely on the end point image, which is the image 

taken on the last day of storage. However, state-of-the-art automated imaging can record 

data during the whole storage period. For a typical protein stability experiment, this means 

that end point image evaluation only accounts for roughly 1% of the generated data. The 

end point evaluation thereby neglects the kinetic aspect of protein phase behavior 

represented by the other 99% of the images. Yet this kinetic aspect is also influenced by 

the applied solution conditions and can contribute to a more complete understanding of 

protein phase behavior. The challenge with incorporating kinetic data into a protein phase 

diagram lies in the resulting multidimensionality of the data. This dimensionality issue was 

resolved in this thesis by employing the empirical phase diagram (EPD) method, an 

unsupervised machine learning approach developed to combine multidimensional data for 

visualization purposes. The EPD method was applied to compile kinetic and end point 

image-based data from protein phase diagram studies into one figure. The resulting so-

called multidimensional protein phase diagram (MPPD) allowed for a comprehensive and 

more in-depth evaluation of protein phase behavior data under different environmental 

conditions. Another issue encountered during protein phase diagram evaluation, is the 

time-intensive task of manual extraction of kinetic and end point data in order to construct 

MPPDs. This workload can be significantly reduced with computational approaches, such 

as image recognition by supervised machine learning algorithms. Utilization of image 

recognition algorithms in the field of protein phase behavior studies is not uncommon, 

nevertheless their performance can still be improved. More advanced machine learning 

approaches, such as artificial neural networks, can be employed to improve the 

performance. However, increasing computational complexity decreases user-transparency 

and requires more expertise. Another image recognition performance enhancing approach 

is the generation of more diverse information to capture more distinctive properties 

between different protein phase behavior morphologies, without complicating the 

computational method itself. In this thesis, the advantages of incorporating multiple light 

sources (visible, UV, and cross polarized light) and kinetic data was explored to obtain 

higher image recognition accuracy. Compared to standard visible light end point image 

classification (balanced accuracy of 69.3%), an increase in balanced accuracy of 17.3 

percent point (to 86.6%) was obtained upon implementation of multi-light source and 

kinetic data. In addition, the image recognition algorithm was coupled to the construction 

of MPPDs. This combination led to a computational workflow which uses raw protein 

phase behavior images captured over time to automatically generate an MPPD, thereby 

visualizing both kinetic and end point protein phase behavior. 
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The subsequent study presented in this thesis investigated the correlation between long-

term protein phase behavior and short-term measurable forces and protein properties, 

where short-term empirical data was obtained on the same day as the formulation 

preparation. This was done as the ultimate goal in the field of formulation development is 

to control and predict protein phase behavior within a time frame of weeks, instead of real-

time storage experiments that take months to years. As the underlying forces and properties 

are not known beforehand, the required analytical techniques cannot be decided on prior 

to experimentation. Therefore, multiple analytical techniques were employed to cover a 

range of potentially responsible pathways. In this work, static light scattering, dynamic 

light scattering, Fourier transform infrared spectroscopy, intrinsic fluorescence 

spectroscopy, mixed mode measurement of phase analysis light scattering, and the 

stalagmometric method were employed. These analytical techniques monitored protein 

aggregation onset temperature, apparent hydrodynamic radius, secondary structure 

content, melting temperature, zeta potential, and apparent surface hydrophobicity, 

respectively, of hen egg-white lysozyme (HEWL) in 120 different formulations. This led 

to a collection of short-term empirical data from the sources mentioned above, which was 

processed, evaluated, and subsequently correlated to long-term phase behavior. The EPD 

multidimensional visualization method was applied to represent short-term empirical data 

in a so-called empirical protein property diagram (EPPD). This allowed for a systematic 

and data-dependent identification of short-term parameters that reported on forces and 

properties responsible for observed long-term protein phase behavior.  

 

The aforementioned computational methods were developed with the use of HEWL 

formulations. The applicability of the developed workflow for other protein formulations 

was investigated by the means of an industry case study. The objective of this case study 

was to screen glycerol-poor and glycerol-free food protein formulations, as EU authorities 

have raised concerns about the safety of high glycerol content in food products. Redesigned 

formulations were required to maintain a similar long-term protein stability compared to 

the original product, but with reduced or no glycerol content. The combination of short-

term empirical protein properties and long-term protein phase behavior revealed that 

several redesigned formulations presumably resulted in long-term stability via a similar 

pathway as the original product, as they displayed a comparable apparent protein surface 

hydrophobicity. In addition, the workflow also identified an increase of electrostatic 

repulsive forces as an alternative approach to achieve long-term stability. This case study 

illustrated how short-term empirical studies can be used to create an in-depth product 

understanding and support the design of long-term stable formulations, leading the way 

towards knowledge-based experimental design.   
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Knowledge-based experimental design is also aided by prior knowledge obtained from 

computational methods such as protein property extraction from three-dimensional (3-D) 

structures. These approaches utilize molecular dynamics (MD) to simulate 3-D protein 

structures under varying environmental conditions, which allows for the extraction of 

protein properties as a function of the simulated environment. The required 3-D protein 

structures need to fulfill certain quality parameters prior to MD simulation, as poor 

structure quality causes unreliable results. The refinement of 3-D protein structures is 

currently a bottleneck when multiple different structures are needed, since refinement is 

done via a manual multi-step procedure. An illustrative example is screening virus-like 

particle (VLP) drug candidates. VLPs are a promising biopharmaceutical product that is 

able to target multiple high-profile diseases, such as cancer and Alzheimer’s disease. 

Relatively small structural changes to the viral capsid proteins that constitute the complete 

VLP affect its efficacy, safety, and manufacturability, which typically leads to screening 

hundreds of modified structures. The required refinement of hundreds of modified 

structures to support preliminary drug candidate screening is not feasible with the current 

manual 3-D structure refinement protocol. In this thesis, an automated, data-dependent, 

and high-throughput compatible computational pipeline for 3-D structure preparation is 

presented and applied to dimeric VLP capsid protein structures. Efficiency of the 

computational pipeline was demonstrated by refining 31.2%-69.2% of the structural errors 

in only 3.6-12.5% of the total refinement time. The complete refinement was performed 

within 6.6-37.5 hours per structure and sufficient 3-D protein structure quality for MD 

simulations was obtained. In addition, a robust protein property extraction approach was 

developed, which takes into account the contribution of inherent structural fluctuations 

during an MD simulation. This was done to work towards an improved correlation between 

in silico and empirical protein properties.  

 

This thesis contributes to the field of long-term protein phase behavior by combining 

unsupervised machine learning for multidimensional data visualization and supervised 

machine learning for image recognition purposes to automatically extract end point and 

kinetic data from long-term protein phase behavior studies. Subsequently, the unsupervised 

multidimensional data visualization technique was applied to investigate the correlation 

between short-term empirical properties measured directly after formulation preparation 

and long-term protein phase behavior. This workflow was applied on a case study, which 

led to the identification of product-specific short-term properties related to long-term 

stability. This thesis also contributed to the advancement of in silico approaches and their 

role in long-term stable formulation development. This was achieved by developing a high-

throughput computational pipeline to efficiently produce high quality 3-D protein 

structures for MD simulations. The presented computational methods contribute to the 
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design of an infrastructure required to advance long-term protein phase behavior analysis 

and its prospective prediction. 
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Zusammenfassung 

 

Die in dieser Thesis vorgestellten Arbeiten tragen zum Feld des Langzeitphasenverhaltens 

von Proteinen bei. Das Langzeitphasenverhalten von Proteinen spielt in der Produkt- sowie 

Prozessentwicklung biotechnologischer Produkte eine ausschlaggebende Rolle. Eine der 

größten Produktgruppen in der biotechnologischen Industrie sind rekombinante Proteine. 

Beispiele hierfür sind Laktase zur Verarbeitung von Milchprodukten oder Insulin als 

Pharmazeutikum zur Behandlung von Diabetes. Rekombinante Proteine haben eine starke 

Marktposition, die sich aus ihrer hochspezifischen Funktionalität ergibt, die es ihnen 

ermöglicht, Zellen und Prozesse im menschlichen Körper gezielt zu beeinflussen. Zu 

beachten ist allerdings das schmale Stabilitätsfenster der meisten Proteine. 

Umgebungsbedingungen wie Temperatur oder pH - Wert haben einen signifikanten 

Einfluss auf ihre Konformations- und Kolloidstabilität und können zum Verlust der 

Proteinfunktion außerhalb passender Bedingungen führen. Abweichungen von den 

physiologischen Bedingungen des jeweiligen Proteins können sowohl die Wirksamkeit als 

auch die Sicherheit des Produktes gefährden. Die extreme Sensitivität gegenüber 

suboptimalen Umgebungsbedingungen ist besonders gegen Ende des 

Produktionsprozesses problematisch, da finale Formulierungen typischerweise für 18 bis 

24 Monate stabil sein müssen. Um die Haltbarkeit der finalen Formulierung über die Zeit 

zu gewährleisten, sind Formulierungsstudien nötig, bei welchen das Phasenverhalten von 

Proteinen in Abhängigkeit von verschiedenen Umgebungsbedienungen überwacht wird. 

Diese Experimente müssen in Echtzeit durchgeführt werden, was bedeutet, dass die Zeit 

für das Experiment der Haltbarkeitsdauer des Produkts von 18 bis 24 Monate entspricht. 

Der Aufwand und die benötigte Zeit für diese Experimente kann durch wissensbasiertes 

Versuchsdesign reduziert werden, bei dem Vorkenntnisse über die Proteinstabilität den 

Versuchsaufbau bestimmen. Derartige wissensbasierte Experimente erfordern ein 

Verständnis der Kräfte und Proteineigenschaften, welche die Langzeitstabilität 

beeinflussen. Das daraus gewonnene Wissen kann anschließend genutzt werden, um 

kurzfristig messbare Eigenschaften mit der Langzeitstabilität der Proteine zu verknüpfen 

und Methoden zur Vorhersage von Proteinstabilität zu treffen. Um dieses Verständnis zu 

erlangen, wird das Phasenverhalten der Proteine im Zusammenhang mit biophysikalisch 

messbaren Größen untersucht, wobei die relevanten Kräfte und Proteineigenschaften 

charakterisiert werden. Um eine weite Bandbreite an Umgebungsbedingungen testen zu 

können, werden sowohl das Phasenverhalten als auch die biophysikalischen Eigenschaften 

üblicherweise in Hochdurchsatzexperimenten untersucht. Hochdurchsatzexperimente 

führen unweigerlich zu sehr großen Datensätzen die verarbeitet und analysiert werden 

müssen. Dieser Engpass in der Datenverarbeitung hat die Entwicklung computergestützter 

Methoden zum Vorantreiben der Datenverarbeitung und -analyse notwendig gemacht. 
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Das Phasenverhalten von Proteinen wird in der Regel mit Hilfe von Phasendiagrammen 

untersucht. Hierzu werden verschiedene Formulierungen angesetzt und über einen 

längeren Zeitraum gelagert um Informationen über den Einfluss der 

Umgebungsbedingungen auf die jeweilige Formulierung zu erhalten. Nach der Lagerzeit 

beinhaltet die Datenauswertung typischerweise eine manuelle Auswertung der Fotos der 

Formulierungen, um das Vorhandensein von instabilen Proteinen in Form unlöslicher 

Aggregate und deren Morphologie zu erkennen. Aufgrund des großen Arbeitsaufwands bei 

der manuellen Auswertung solcher Bilder fokussieren sich die meisten Studien zu diesem 

Thema auf das Auswerten des Endpunktes, also des Fotos vom letzten Tag der Lagerzeit. 

Moderne, automatisierte Bilderfassungssysteme ermöglichen es allerdings während der 

gesamten Lagerzeit Fotos aufzunehmen. Für ein typisches Proteinstabilitätsexperiment 

beutetet dies, dass die Auswertung des Endpunktes nur ungefähr 1 % der erzeugten Daten 

verwendet. Des Weiteren vernachlässigt die reine Endpunktanalyse alle kinetischen 

Aspekte des Proteinphasenverhaltens, die von den restlichen 99 % des Datensatzes 

abgebildet werden. Da diese kinetischen Eigenschaften auch von den gewählten 

Lösungsbedingungen abhängen, könnten sie genutzt werden, um ein umfassenderes 

Verständnis des Proteinphasenverhaltens zu erhalten. Die Herausforderung der Integration 

kinetischer Daten in ein Proteinphasendiagramm liegt in der resultierenden 

Mehrdimensionalität der Daten. In dieser Arbeit wird das empirische Phasendiagramm 

(empirical phase diagram, EPD) vorgestellt, das als Ansatz für nicht-überwachtes, 

maschinelles Lernen entwickelt wurde, um multidimensionale Daten zu 

Visualisierungszwecken zu kombinieren. Das EPD wurde angewandt, um die Kinetikdaten 

und Endpunktanalyse aus den Proteinphasendiagrammen in einer gemeinsamen Grafik zu 

visualisieren. Das daraus resultierende multidimensionale Proteinphasendiagramm 

(multidimensional protein phase diagram, MPPD) ermöglichte eine tiefergehende Analyse 

des Phasenverhaltens von Proteinen bei verschiedenen Umgebungsbedingungen. Eine 

weitere Herausforderung beim Auswerten der Proteinphasendiagramme ist die sehr 

zeitintensive manuelle Extraktion der Kinetik- und Endpunktdaten zur Konstruktion der 

MPPDs. Dieser Arbeitsaufwand kann durch die Verwendung von computergestützten 

Methoden, wie der Verwendung von maschinellen Lernalgorithmen zur Bilderkennung, 

deutlich reduziert werden. Bilderkennungsalgorithmen zu verwenden, ist im Bereich der 

Proteinphasendiagramme nicht ungewöhnlich, allerdings kann ihre Leistungsfähigkeit 

noch gesteigert werden. Fortgeschrittene Methoden für maschinelles Lernen, wie 

künstliche neuronale Netze (artificial neural network, ANN), können verwendet werden, 

um die Ergebnisse zu verbessern. Die zunehmende Komplexität der Methode senkt jedoch 

die Transparenz und erfordert mehr Fachwissen vom Nutzer. Eine weitere Möglichkeit, die 

Leistung der Bilderkennung zu erhöhen, ist es von vornherein mehr Information aus den 

Phasendiagrammen zu extrahieren, um die Unterschiede prominenter herauszuarbeiten 



xi 
 

ohne die Auswertemethode an sich zu verkomplizieren. In dieser Thesis wurden zu diesem 

Zweck die Vorteile der Integration von mehreren Lichtquellen (sichtbares, UV- und 

kreuzpolarisiertes Licht) mit Kinetikdaten untersucht, um eine Erhöhung der Genauigkeit 

der Bilderkennung zu erreichen. Im Vergleich zu herkömmlicher Analyse von 

Endpunktdaten basierend auf sichtbarem Licht (durchschnittliche Genauigkeit von 69,3 %) 

konnte durch die Verwendung von mehreren Lichtquellen und Kinetikdaten eine 

Verbesserung um 17,3 Prozentpunkte auf 86,6 % erreicht werden. Zusätzlich wurde der 

Bilderkennungsalgorithmus an die Erstellung von MPPDs gekoppelt. Durch diese 

Kombination wurde ein automatisierter computerbasierter Arbeitsablauf entwickelt, der 

zeitaufgelöste Rohbilder von Proteinphasendiagrammen verwendet und daraus MPPDs 

erstellt, wobei sowohl die Kinetik- als auch Endpunktdaten des Phasenverhaltens 

visualisiert werden. 

 

Die darauffolgende Studie, die in dieser Arbeit vorgestellt wird, untersucht den 

Zusammenhang kurzfristig messbarer empirischer Kräfte und Proteineigenschaften der 

Proteinformulierung mit dem Langzeitphasenverhalten, wobei die kurzfristigen 

empirischen Daten am selben Tag aufgenommen wurden, an dem die Formulierung erstellt 

wurde. Die Korrelation von kurzfristig messbaren Eigenschaften mit der Langzeitstabilität 

ist relevant, da das große Ziel in der Formulierungsentwicklung die Kontrolle und 

Vorhersage von langfristigem Proteinphasenverhalten aus kurzen Messkampagnen anstelle 

von aufwändigen Echtzeitversuchen ist. Da die zugrundeliegenden Kräfte und 

Eigenschaften vorher nicht bekannt sind, können die benötigten analytischen Methoden 

nicht vor den Experimenten festgelegt werden. In dieser Arbeit wurden deshalb 

verschiedene Analytiken verwendet, um eine große Bandbreite an möglichen Ursachen für 

das Phasenverhalten abzudecken. Dazu wurden statische Lichtstreuung, dynamische 

Lichtstreuung, Fouriertransformations-Infrarotspektroskopie, intrinsische 

Fluoreszensspektroskopie, Mixed-Mode-Messung zur Phasenanalyse der Lichtstreuung 

(M3-PALS) und die Stalagmometermethode verwendet. Mit diesen Analytiken konnten 

die Aggregationsstarttemperatur, effektiver hydrodynamischer Radius, 

Sekundärstrukturelemente, Schmelzpunkt, Zetapotenzial und die effektive 

Oberflächenhydrophobizität von Lysozym aus Hühnereiweiß (hen egg-white lysozyme, 

HEWL) in 120 verschiedenen unterschiedlichen Formulierungen gemessen werden. Diese 

führte zu einer Sammlung von kurzfristig messbaren, empirischen Datenpunkten aus 

verschiedenen Quellen, welche zusammengefasst, ausgewertet und mit dem 

Langzeitphasenverhalten korreliert wurden. Die multidimensionale 

Visualisierungsmethode EPD wurde dann verwendet, um ein sogenanntes empirisches 

Proteineigenschaftsdiagramm (empirical protein property diagram, EPPD) zu erstellen. 

Dies ermöglichte eine systematische und datenabhängige Identifizierung von kurzfristig 
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messbaren Parametern, die Hinweise auf Kräfte und Eigenschaften geben, die das 

Proteinphasenverhalten beeinflussen. 

 

Die oben genannten computergestützten Methoden wurden mit Hilfe von HEWL 

Formulierungen entwickelt. Die Anwendbarkeit der entwickelten Arbeitsabläufe auf 

andere Proteinformulierungen wurde anhand einer Fallstudie in Zusammenarbeit mit 

einem Industriepartner gezeigt. Das Ziel dieser Fallstudie war es, glyzerinarme und 

glyzerinfreie Lebensmittelproteinformulierungen zu untersuchen, da EU-

Regulierungsbehörden Bedenken bezüglich hoher Glyzeringehalte in Lebensmitteln 

haben. Die Anforderung an die für die Fallstudie zu entwickelnde neue Formulierung war 

es, trotz niedrigem oder keinem Glyzeringehalt ähnliche Langzeitstabilität zu erreichen. 

Die Kombination der Ergebnisse aus kurzzeitig messbaren empirischen 

Proteineigenschaften und langfristigem Proteinphasenverhalten ergab, dass der 

Langzeitstabilität einiger der neu entwickelten Formulierungen wahrscheinlich ein 

ähnlicher Mechanismus zu Grunde liegt wie der des Originalprodukts, da die 

Oberflächenhydrophobizität ähnliche Werte zeigten. Zusätzlich wurde durch die 

Steigerung der elektrostatisch abstoßenden Kräfte eine mögliche Alternative zur 

Steigerung der Langzeitstabilität identifiziert. Diese Fallstudie zeigt somit einen Weg auf, 

wie kurzfristig durchführbare empirische Studien verwendet werden können, um ein tiefer 

gehendes Produktverständnis zu gewinnen, die Entwicklung von langzeitstabilen 

Formulierungen zu unterstützen und den Weg zur wissensbasierten Experimentalplanung 

zu ebnen.  

 

Wissensbasiertes Experimentaldesign kann auch durch Vorwissen aus anderen 

computergestützten Methoden wie der Extraktion von Merkmalen aus dreidimensionalen 

(3D) Proteinstrukturen unterstützt werden. Bei derartigen Ansätzen werden 

Molekulardynamiksimulationen (MD) verwendet, um dreidimensionale Proteinstrukturen 

unter verschiedenen Umgebungsbedingungen zu simulieren und Eigenschaften der 

Proteine als Funktion der simulierten Umgebungsbedingungen zu extrahieren. Hierbei ist 

es essenziell, dass die Proteinstrukturen, die als Grundlage für die Simulationen verwendet 

werden, gewissen Qualitätsanforderungen entsprechen um verlässliche Ergebnisse zu 

erhalten. Die Verfeinerung der 3D Strukturen wird in einem schrittweisen manuellen 

Verfahren durchgeführt und kann dadurch leicht zum zeitlimitierenden Schritt werden. Ein 

anschauliches Beispiel ist die Kandidatenvorauswahl von virusähnlichen Partikeln (virus-

like particle, VLP) die als Pharmazeutika eingesetzt werden sollen. VLPs sind ein neues 

vielversprechendes biopharmazeutisches Produkt, das für diverse hochrelevante 

Krankheiten wie Krebs oder Alzheimer eingesetzt werden könnte. Eine Herausforderung 

bei der Produktion von VLPs ist, dass kleine strukturelle Änderungen am Kapsid, aus 
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welchen die VLPs bestehen, ihre Wirksamkeit, Sicherheit und Produzierbarkeit 

beeinflussen. Dies führt wiederum dazu, dass für eine Vorauswahl möglicher Kandidaten 

eine große Anzahl unterschiedlicher Strukturen vorbereitet werden muss, was mit 

bisherigen manuellen Methoden zur Strukturvorbereitung nicht praktikabel ist. In dieser 

Arbeit wird eine automatisierte, datenbasierte und hochdurchsatzkompatible 

Vorbereitungsmethode für die Vorbereitung der dreidimensionalen Strukturdaten 

vorgestellt und für dimere VLP Hüllenproteine angewendet. Die Effizienz der 

automatisierten Methode zeigte sich dadurch, dass 31,2 %-69,2 % der Strukturfehler in 

3,6 %-12,5 % der Vorbereitungszeit beseitigt werden konnten. Die gesamte 

Vorbereitungszeit betrug damit 6,6-37,5 Stunden pro Struktur um Strukturdaten von 

geeigneter Qualität zu erhalten. Zusätzlich wurde eine robuste Methode zur Extraktion von 

Proteineigenschaften aus Strukturdaten entwickelt, die die Fluktuationen, die während der 

MD-Simulation auftreten, berücksichtigt. Dies wurde durchgeführt, um auf eine 

verbesserte Korrelation zwischen in silico und empirischen Proteineigenschaften 

hinzuarbeiten. 

 

Diese Thesis trägt zum Feld der Untersuchung des Langzeitphasenverhaltens von 

Proteinen bei, indem nicht überwachte Methoden für maschinelles Lernen zur 

Datenvisualisierung und überwachte Lernmethoden zur Bilderkennung kombiniert 

wurden, um automatisch Endpunkt- und Kinetikdaten aus Langzeitstudien zum 

Phasenverhalten von Proteinen zu extrahieren. Anschließend wurde die unüberwachte 

multidimensionale Datenvisualisierungsmethode zur Untersuchung der Korrelation 

zwischen kurzfristig messbaren Eigenschaften, die direkt nach der Vorbereitung der 

Formulierung gemessen wurden und dem Langzeitphasenverhalten der Proteine in der 

jeweiligen Formulierung verwendet. Der Arbeitsablauf wurde auch auf eine Fallstudie 

angewandt bei der produktspezifische, messbare Eigenschaften identifiziert werden 

konnten die einen Einfluss auf die Langzeitstabilität haben. Weiterhin leistet diese Arbeit 

einen Beitrag zu computergestützten Methoden und ihrer Rolle für die Entwicklung bei der 

Verbesserung von langzeitstabilen Formulierungen. Erreicht wurde dies durch die 

Entwicklung einer hochdurchsatzkompatiblen Methode für die Vorbereitung qualitativ 

hochwertiger Proteinstrukturdaten für MD-Simulationen. Die vorgestellten 

computergestützten Methoden tragen dazu bei, die benötigte Infrastruktur zu etablieren, 

die für die Analyse des Langzeitphasenverhaltens von Proteinen und schlussendlich für 

dessen Vorhersage unerlässlich ist. 
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1 Introduction 

 

With the insertion of functional recombinant DNA into Escherichia coli in 19731, the era 

of modern biotechnology had started. Since this first genetically modified organism, 

biotechnology has expanded into a wide variety of fields. The molecular genetics field 

targeted the $1000 genome to rapidly unravel more genetic codes2. Obtained genetic codes 

map out the possible cellular protein content and contribute to the identification proteins 

of interest, for instance disease-related proteins3. Fields such as proteomics4 and systems 

biology5 put the possible cellular protein content into perspective, which allows for an 

understanding of protein production pathways, functionality, and physiological effects. In 

its turn, the field of genetic engineering uses this information to modify organisms for the 

application of interest, such as the production of biopharmaceuticals6 or crop modification7. 

The relatively young field of synthetic biology is moving towards engineering entire 

cellular systems, in order to expand the range of applications8,9. The field of biochemical 

engineering utilizes modified organisms for manufacturing of biotechnological products 

and is responsible for the design of production processes to match the consumer demand10.  

 

Considering specifically the biopharmaceutical industry, technological advances seen in 

all aforementioned fields have led to a shift of focus from drug discovery to drug 

development11,12. One of the most widely used biopharmaceutical products are 

recombinant proteins13. Beside their use as biopharmaceuticals, recombinant proteins are 

also used in other industries, such as agriculture14 and food15. Recombinant proteins are 

proteins expressed using recombinant DNA techniques for a specific environment and 

application, which is of interest for most biopharmaceuticals due to the high biological 

complexity of the human body. For example, bacterial cells are used as expression system 

to produce recombinant human insulin in order to circumvent the immune response of the 

human body to animal-derived insulin16. For successful recombinant protein drug 

development, the following three criteria should be met11: (1) safety and efficacy for the 

patient population, (2) scalable and economic manufacturing to meet production demands, 

and (3) a demonstrated shelf life of at least 18-24 months17. However, the unique 

combination of amino acid chains, the higher dimensional structure, and possible chemical 

modifications, which allow for proteins’ specific functionalities, also causes their marginal 

stability16. This means that proteins are prone to chemical and physical degradation when 

1 
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environmental conditions deviate from their native, physiological environment in which 

they should perform their function18–20. Chemical and physical degradation usually leads 

to protein aggregation, which in turn may negatively affect product safety and efficacy21. 

Degradation susceptibility is of importance throughout product process development, as 

environmental conditions, such as temperature, pH, and additives, change throughout the 

entire manufacturing process. This includes the final product formulation22. In order to 

demonstrate the product’s relatively long shelf life, drug development efforts are 

challenged to overcome physical and chemical instability over time11.  

 

To tackle issues concerning protein product shelf life, an understanding of the 

environmental effects in relation to protein characteristics on long-term protein phase 

behavior is needed. Such formulation studies require an experimental approach to probe a 

wide range of variables, which includes the protein itself, formulation additives, and 

solutions conditions20. High-throughput biophysical characterization to monitor the effects 

of a wide variety of experimental conditions is therefore becoming increasingly 

important20. Knowledge obtained from high-throughput biophysical characterization 

experiments is also useful for long-term protein phase behavior modification, and may 

allow for its prediction in the future23. However, the typically large data sets produced by 

such high-throughput biophysical characterization experiments cannot be interpreted 

without well-designed data evaluation workflows, as was also recognized when generating 

massive data sets during the race towards $1000 genome24. With the ability to generate 

more data to study and understand long-term phase behavior of protein products, a 

bottleneck occurred on the side of data analysis20. In the following sections, a theoretical 

background of protein stability is presented, as well as an overview of analytical techniques 

employed in this thesis to monitor protein stability. The final section addresses data 

analysis techniques required to correlate theoretical information to empirical data in more 

detail.  

 

1.1 Protein stability 

Protein stability is a complex phenomenon, as each protein is chemically and physically 

unique, which consequently results in unique stability behavior18,21. Despite proteins’ 

distinct behavior, common stability characteristics have been identified. In order to 

evaluate protein stability and the effects on long-term protein phase behavior, an overview 

of general aggregation pathways and environmental effects is presented in the following 

sections.  
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1.1.1 Aggregation pathways 

The ability of proteins to form aggregates is determined by either conformational stability 

or colloidal stability, or both, where the predominant factor depends on environmental 

conditions18. In Figure 1.1 an overview of the main aggregation pathways is shown. A 

schematic describing colloidal and conformation stability of a protein is shown in Figure 

1.1 as well.  

 

 

Figure 1.1: (a) Colloidal stability: interaction energy (W) as a function of surface distance between two 

spherical particles. The total W is the sum of the electrostatic repulsion and the van der Waals attraction, 

and ΔW1 represents the maximum interaction energy barrier. (b) Conformational stability: protein 

aggregation reaction coordinate diagram with curved lines as transition energy barriers, and an indication 

of the activation energy for unfolding (ΔGunf) and aggregation (ΔG‡). (c) Flowchart of aggregation 

pathway 1, 2 and 3. Different protein state abbreviations are listed. (d) Schematic of aggregation pathway 

4 and 5. This figure is adapted from literature18,25,26. 

 

Figure 1.1a depicts colloidal stability, where the protein-protein interaction as a function 

of the distance between particles is described by the Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory27,28. The DLVO theory takes into account the contribution of electrostatic 

double-layer repulsive forces and van der Waals attractive forces on colloidal stability of 

proteins, which are considered to be hard spheres. The schematic in Figure 1.1a shows that 

the total interaction energy becomes smaller for shorter distances, as van der Waals 

attractive forces become more dominant. At larger distances, a positive total interaction 

energy indicates prevention of particle interaction by electrostatic double-layer repulsive 

forces. In short, colloidal stability decreases with decreasing particle distance, where 
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particle interaction occurs when the maximum interaction energy barrier (ΔW1) is 

overcome. This achieved by screening of electrostatic repulsive forces, domination of van 

der Waals forces, hydrophobic interactions, crowding effects, or excluded volume 

repulsion12.  

 

Conformational stability of protein is illustrated in Figure 1.1b by means of activation 

energies for conformational transitions of a protein. The native structure (N) can transform 

to a denatured state (D) or intermediate state (I) when overcoming the unfolding activation 

energy (ΔGunf) or activation energy (ΔG‡), respectively. For the intermediate state (I), it is 

assumed to be thermodynamically favorable to move towards an aggregated product (AI 

and A)18. The value for ΔGunf and ΔG‡ depends on multiple forces contributing to protein 

folding, such as disulfide bonds, electrostatic interactions, hydrophobic interactions, 

hydrogen bonds, and van der Waals interactions19. These forces can be influenced by 

environmental factors, such as pH, salt type and concentrations, and temperature.  

 

Simply stated, a protein molecule needs to overcome ΔW1 or ΔG‡ in order to form 

aggregates. The formation of aggregates can follow one of the five main aggregation 

pathways26,29, which are depicted in Figure 1.1c and Figure 1.1d. The first pathway results 

in aggregation through partial unfolding, which means ΔG‡ should be overcome. The 

protein surface can become more hydrophobic upon unfolding, which consequently 

decreases colloidal stability20. Previously, it was thought that completely unfolded protein 

structures (indicated by state D in Figure 1.1d) should display similar behavior as the 

intermediate state, but it has been noted that mainly intermediate states are prone to 

aggregation18,20,26. Nevertheless, the D state are able readily aggregate and undergo 

chemical degradation26, as indicated by Figure 1.1d. The second pathway results in 

aggregation through self-association. This means that ΔW1 is overcome and colloidal 

instability dominates. Self-association of proteins is usually an effect of environmental 

conditions, but self-association can also occur by chemical linkage, such as disulfide bonds. 

The third pathway involves chemical degradation, for instance oxidation, deamidation, or 

hydrolysis23. Chemical degradation changes the protein molecule and may cause a decrease 

in colloidal and conformation stability20. The fourth pathway typically occurs during the 

formation of visible or insoluble precipitates. Here, addition of monomers to a critical 

nucleus, an aggregate of a particular size or an impurity, is thermodynamically favored 

over the formation of smaller aggregates out of monomers. The fifth pathway occurs due 

to presence of surfaces or interfaces, such as an air-water interface. Interaction with a 

surface or interface decreases conformation stability in order to increase the protein-surface 

contact area. Conformational changes can result in aggregate formation while the protein 

is still in contact with the surface/interface or when the altered structure is released back 
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into solution. Within these five common pathways, a distinction between reversible and 

irreversible aggregation can be made. Reversible aggregation, where aggregates can 

dissociate into the native form, typically occurs when no or minor structural changes lay at 

the foundation of aggregation and when aggregates are still small26.  

 

1.1.2 Factors influencing protein aggregation 

The previously presented protein aggregation pathways can be induced or prevented by 

various environmental factors, such as temperature, pH, salt, protein concentration, and 

additives18. Combining information on the aggregation pathway with the point of 

engagement of these environmental factors contributes to understanding long-term protein 

phase behavior, as it allows for the identification of the underlying causes. Therefore, the 

effects of common environmental variables are presented in the following sections.  

 

1.1.2.1 Temperature 

Increasing the temperature influences conformational and colloidal stability of proteins by 

secondary structure disruption, activation energy (ΔGunf and ΔG‡) reduction, increased 

diffusion which leads to more energetic collisions between protein molecules (thereby 

overcoming ΔW1), and increased chemical degradation rates18,21,26,30. Not only high 

temperatures, but also low temperatures affect colloidal and conformational stability. For 

example, at temperatures below the freezing point of water, proteins can adsorb to the 

solid-liquid interface of ice crystals31. In addition, ice formation changes the liquid 

environment in such a way that unfavorable high protein, salt, or additive concentrations 

may occur32. Conformational stability can decrease as a result of cold denaturation. This is 

caused by preferential hydration of the protein’s nonpolar groups at low temperatures, 

which makes the unfolded state thermodynamically favorable33.  

 

1.1.2.2 Solution pH 

The solution pH influences the type (positive or negative), the distribution, and net protein 

charge by determining the protonation state of amino acid residues34. The resulting charge 

characteristics affect both conformational and colloidal stability18. For increasing net 

charge within the protein, conformation stability decreases. This is due to a greater charge 

density of the native structure in comparison to the charge density of the denatured 

structure. This means a state of lower electrostatic free energy is found for the unfolded 

structure, and therefore thermodynamically favorable35. Contrarily, conformational 

stability can be enhanced by specific interactions of charged ion pairs present on the protein 

surface35. Colloidal stability is equally dependent on the net protein charge type and its 

distribution, and therefore influenced by solution pH as well18,20. For a relatively smaller 

net charge, the electrostatic double-layer repulsion is minimized and ΔW1 is reduced. From 
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this point of view, the isoelectric point (pI) should theoretically result in the lowest 

colloidal stability as the net protein charge equals zero at this solution pH. However, 

different protonation states of amino acids along the protein surface can still result in a 

charge distribution over the protein surface at a pH equal to the protein pI. Such a protein 

surface charge distribution has been shown to maintain colloidal stability36,37. 

 

1.1.2.3 Salt 

Salt ion concentration can affect both conformational and colloidal stability. Colloidal 

stability can be decreased by lowering ΔW1 as a result of screening protein surface charges, 

and thereby diminishing electrostatic repulsive forces28. At low salt concentrations 

shielding is the predominant effect, but at higher salt concentrations preferential binding 

can decrease the thermodynamic stability of the native conformation18. In addition to 

concentration, the salt type plays a role as well. Depending on the salt ion type, 

conformational instability may result as an effect of preferential binding to the nonnative 

protein state18. On the other hand, conformation stability may be enhanced when salt ions 

are preferentially excluded by the protein38.  

 

Not only the various influences of salt ions on protein stability, but also its dependence on 

protein charge, makes the influence of salt a highly complex phenomenon. For example, 

solution pH influences the effect of anions on colloidal stability, which is often ranked 

according to the Hofmeister series39. Initially, the Hofmeister order was considered an 

effect of disruption or ordering the hydrogen bond structure of water, thereby preventing 

or promoting protein-protein interaction, respectively. However, it has been demonstrated 

that the hydrogen bond structure of water is not influenced outside of the first solvation 

shell of the salt ion40. Other research demonstrated the specific influence of pH for different 

anions, where the direct Hofmeister order is followed when the solution pH is above the 

protein pI and anions serve as counterions. A reverse order of the Hofmeister series was 

found for solution pH values below the protein pI, when anions serve as co-ions41. In 

addition, salt concentration effects on the Hofmeister order have been reported42. 

Currently, there is no universal explanation of the direct or reverse Hofmeister series under 

varying conditions43. 

 

1.1.2.4 Protein concentration 

When higher protein concentrations are used, the distance between protein molecules 

decreases and their collision frequency increases26,44. Both these effects decrease colloidal 

stability. In addition, the self-association aggregation pathway is promoted due to excluded 

volume effects, where the systems free energy is reduced by minimizing the total excluded 

volume44. 
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1.1.2.5 Additives 

Additives can be used to prolong shelf life by influencing protein stability, where some 

additives stabilize the native structure, some destabilize the native structure, and others are 

used to suppress protein-protein interactions45. In this work, additives are defined as all 

molecules that are added to formulations in addition to protein, salt, and buffer 

components. A comprehensive overview of additives used for protein-based products can 

be found elsewhere, where key mechanisms such as electrostatic interactions, preferential 

hydration, dispersive forces, and hydrogen bonding are discussed as well46. 

 

Widely used solution additives include sugars, polyols, amino acids, surfactants, and 

preservatives. Additives such as sugars and polyols are preferentially excluded from the 

protein surface46–48. This promotes conformation stability, as the total effect is to increase 

the energy gap between the native and denatured state, which translates to an increase in 

ΔGunf and ΔG‡ 23. However, this may decrease colloidal stability as the free energy is also 

reduced by self-association45. Amino acids, such as histidine and methionine, can increase 

protein stability via preferential binding, their buffering capacity, or chemical degradation 

prevention, such as oxidation46. Addition of non-ionic surfactants, such as polysorbate 8049, 

prevents aggregation as a result of surface adsorption. Protein unfolding is prevented by 

outcompeting protein molecules for hydrophobic surfaces, such as air-water interfaces or 

hydrophobic surfaces during processing. Non-ionic surfactants can also directly interact 

with hydrophobic regions of the protein, thereby preventing hydrophobic protein-protein 

interactions46.  

 

Besides chemical and physical protein stability, microbial stability is also of importance 

for successful product development. The focus of this thesis is on protein stability, but 

additives utilized to prolong product shelf life by ensuring microbial stability, such as 

benzyl alcohol, have been reported to affect protein aggregation18. This indicates the 

importance of evaluating all additives that are part of the final product formulation, and not 

only additives that are used to ensure long-term chemical and physical protein stability. 

 

1.2 Analytical characterization 

Information on the nature and magnitude of inter- and intramolecular forces that determine 

long-term protein phase behavior contributes to its overall understanding. Analytical 

techniques applied in this work to obtain such information, are presented in the following 

four sections. In the first section, long-term protein phase behavior experiments are 

discussed. The second and third sections present the applied analytical techniques to 

monitor colloidal and conformational stability, respectively. The fourth section presents 

the analytical techniques applied to determine protein surface properties.  
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1.2.1 Protein phase behavior 

Protein phase behavior as a function of time is studied in formulations that contain water, 

protein, and additives in combination with buffer components to obtain a protein phase 

diagram50,51. Four main techniques can used to generate such diagrams, namely vapor 

diffusion, free interface diffusion (FID), batch, and dialysis52. A schematic protein phase 

diagram is shown in Figure 1.2, as well as the pathways of these four main techniques 

through the protein phase diagram. 

 

 

Figure 1.2: (a) Schematic protein phase diagram indicating the pathway of four main crystallization 

techniques: free interface diffusion (FID), dialysis, vapor diffusion, and batch. Undersaturation and 

supersaturation are separated by the solubility line (broad dashed line). In the supersaturation zone, the 

metastable (above the broad dashed line), nucleation (above the dashed line), and precipitation zone (above 

the dotted line) are indicated. (b) Pictograms of the four crystallization techniques. This figure is adapted 

from literature52. 

 

As depicted in Figure 1.2a, a protein phase diagram contains two main zones, namely the 

undersaturated zone and the supersaturated zone. The undersaturated zone contains 

conditions where proteins remain in solution, while the supersaturated zone contains 

solutions where protein aggregation occurs. The supersaturation zone is 

thermodynamically unstable and will move towards an equilibrium53. This equilibrium is 

found at the protein solubility concentration where aggregation and dissociation rates are 

equal51. This equilibrium is represented by the solubility line (broad dashed line in Figure 

1.2a). Subzones such as the metastable, nucleation, and precipitation zone have been 

incorporated in Figure 1.2a to represent different aggregation kinetic stages52. In the 

metastable zone, supersaturation is too low for nucleation to take place within a reasonable 

amount of time. In the nucleation zone, crystal nuclei are spontaneously formed. In the 

precipitation zone, the level of supersaturation is too high for structured aggregation and 

precipitation occurs. It should be noted that the qualitative boundaries of these zones are 

kinetic phenomena and not well-defined50,52.  
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Different techniques can be employed to obtain information about protein phase behavior, 

of which four are shown in Figure 1.2b. The difference between the techniques is the 

method to reach supersaturation to induce protein aggregation. FID uses diffusion to mix 

a protein solution with a precipitant solution, thereby allowing the solution to move into 

supersaturation. Dialysis uses diffusion to increase the precipitant concentration in the 

protein solution to reach supersaturation as well, but by means of a semi-permeable 

membrane. Vapor diffusion is based on the diffusion of volatile species (usually water) in 

a closed system. Dehydration of a sitting or hanging formulation drop occurs as vapor 

equilibrium occurs between the undersaturated drop and the reservoir containing a higher 

precipitant concentration. Dehydration of the formulation drop results in a protein and 

precipitant concentration increase towards supersaturation. For batch experiments, solution 

conditions are not altered during the experiment and supersaturation is reached directly 

after formulation preparation. Batch experiments are employed in this work. Despite the 

different approaches to reach supersaturation, a common disadvantage of the presented 

techniques is the lack of fundamental information that can be extracted from the observed 

protein phase behavior. Protein phase diagrams may provide some insight in the 

responsible aggregation pathways, as some assumptions about protein conformation or 

colloidal instability have been correlated to observed insoluble aggregate morphologies54. 

However, fundamental knowledge, such as the forces responsible for conformational or 

colloidal instability, cannot be directly extracted from protein phase diagrams. Another 

common disadvantage of the presented techniques, the element of time, may be eliminated 

with a more complete understanding of the fundamental forces. Currently, accelerated 

studies are performed but remain solely applicable as support for long-term stability 

studies17. This is due to the inherent assumption during accelerated studies that the external 

stress applied to induce protein aggregation in a shorter amount of time (such as 

temperature increase or pH stress) results in a comparable mechanism of physical or 

chemical degradation as the protein would experience over prolonged periods of time. 

However, this is usually not the case26,30. Understanding fundamental forces which lie at 

the basis of observed protein phase behavior may allow for the identification of short-term 

parameters, obtained under comparable conditions, which correlate well to long-term 

protein phase behavior. 

 

1.2.2 Colloidal stability 

This work employs static light scattering (SLS) and dynamic light scattering (DLS) as 

analytical techniques to monitor colloidal stability. A variety of other analytical techniques 

to monitor colloidal stability are elaborately discussed elsewhere29,55,56. 
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1.2.2.1 Static light scattering 

SLS uses the relationship between light scattering intensity and particle mass and 

concentration57, where the scattering intensity is proportional to the sixth power of the 

particle diameter58. This technique is often used to determine the colloidal stability of 

proteins in defined formulations under the influence of thermal stress. A schematic 

representation of SLS is shown in Figure 1.3. 

 

 

Figure 1.3: Overview of static light scattering (SLS) measurement results to determine the aggregation 

temperature (TAgg). (a) Depiction increasing scattering intensity as a result of aggregation due to increasing 

temperature. (b) Schematic of a typical SLS measurement result. Scattering intensity at 473 nm or 266 nm 

is obtained for different temperatures, where the start of the intensity gradient is defined as TAgg. Pictogram 

is adapted from 59. 

 

As mentioned previously, increasing temperature causes protein structure unfolding and 

increases aggregation propensity. As scattering intensity is related to the size of particles, 

the scattering intensity increases for increasing temperature due to the increasing presence 

of the aggregated proteins, as depicted in Figure 1.3a. Temperature ramps are used to 

extract the onset aggregation temperature (TAgg), which is defined as the starting point of 

scattering intensity increase. This is depicted in Figure 1.3b. TAgg is used as a measure of 

colloidal stability, where a higher TAgg value reflect a higher colloidal stability. 

 

1.2.2.2 Dynamic light scattering 

DLS monitors scattered light fluctuations as a result of the Brownian motion of protein 

molecules57. Brownian motion causes scattered light fluctuations over time due to changing 

distances between particles. Monitoring such fluctuations allows DLS to obtain 

information about the time scale of the movements, which in turn correlates to particle size. 

A schematic overview of DLS is shown in Figure 1.4. 
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Figure 1.4: Overview of a dynamic light scattering measurement to determine the (apparent) 

hydrodynamic radius (RH). (a) Effect of Brownian motion on the scattering intensity over time for two 

particle sizes. (b) Scattering intensity over time for multiple measurements are correlated into a 

correlogram. The correlogram can be used in combination with (c) Equation 1 and 2 for (d) cumulant 

analysis to obtain an average RH (z-average) and polydiversity index (PDI), or for (e) distribution analysis 

to obtain a RH distribution. Graphs were adapted from literature60. Equations were obtained from 

literature57. 

 

As depicted in Figure 1.4a, smaller particles move relatively fast, which leads to a faster 

change in scattered light. Figure 1.4b shows how the scattering changes over time, where 

the decrease of the correlation coefficient relates to particle speed. With the use of the 

decay rate (Equation 1, Figure 1.4c) and Einstein-Stokes equation (Equation 2, Figure 

1.4c), the diffusion coefficient and hydrodynamic radius (RH) can be calculated, 

respectively. Two types of analysis are applicable to the measured data, the cumulants 

analysis and distribution analysis. As depicted in Figure 1.4d, the former is used to 

determine the sample’s average particle size (z-average) and the polydiveristy index (PDI), 

which represents the sample’s diversity of particle sizes. The latter analysis results in an 

intensity-based size distribution, as depicted in Figure 1.4e. This allows for the 

identification of multiple particle sizes present in a sample instead of solely an average 

particle size.  

 

Equation 2 in Figure 1.4c reveals that DLS measurements are influenced by solution 

viscosity, temperature, protein size, and protein shape. What is not covered by this 

equation, is the fact that RH is also dependent on protein-protein interactions61. Protein-

protein interactions result in larger apparent particle sizes, as movement is reduced by 

attractive forces. Vice versa, repulsion between particles may cause an underestimation of 

particle size. Therefore, it must be considered that DLS often provides solely an apparent 

RH when measuring at non-dilute conditions, and not a true RH, as found for dilute 
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systems55. For this work, DLS is applied to determine the presence of larger protein species, 

to represent aggregates, and detect minor changes in hydrodynamic radius as an effect of 

protein-protein interactions.  

 

1.2.3 Conformational stability 

An overview of available techniques to monitor conformational stability can be found 

elsewhere19,23,56. Fourier transform infrared (FTIR) spectroscopy and intrinsic fluorescence 

spectroscopy were used in this thesis and are described below. 

 

1.2.3.1 Fourier transform infrared spectroscopy 

FTIR spectroscopy uses the unique stretch vibrations of molecular bonds to identify the 

presence of secondary structural elements in proteins, such as an α-helix or β-sheet19. The 

measured stretch vibrations are a result of molecular bonds undergoing a change in dipole 

moment upon infrared radiation absorbance. The most distinct stretch vibration for proteins 

is found for the carbonyl group, referred to as the C-O stretch62,63. Secondary motifs present 

in protein structures have been empirically correlated to particular wavenumbers that fall 

within the FTIR spectral range of the C-O stretch, referred to as the Amide I region64. A 

schematic overview of an FTIR spectroscopy measurement is shown in Figure 1.5. 

 

 

Figure 1.5: Overview of a Fourier transform infrared (FTIR) spectroscopy measurement. (a) Depiction of 

the carbonyl groups (highlighted in blue) in secondary structure motifs that influence the Amide I band. 

(b) Sample and background interferograms are transformed with a fast Fourier transform (FFT) into single 

beam spectra. (c) The background and sample single beam spectra are ratioed to obtain a transmittance 

spectrum, which can be converted into an absorbance spectrum. (d) 2nd derivative of the absorbance 

spectrum in the Amide I range is used to identify present secondary structure motifs listed in (f). (e) 

Common data preprocessing steps used for the construction of (d). Graphs and pictogram were adapted 

from literature65. Data in (f) was obtained from literature64. 
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Figure 1.5a shows a schematic overview of the α-helix, β-sheet, and β-turn, and highlights 

the different position of the carbonyl group. The different positions of the amino acids and 

corresponding hydrogen bonds influence the stretch vibrations. Figure 1.5b shows an 

interferogram, the raw signal obtained from an FTIR measurement. This signal is 

transformed using a fast Fourier transform (FFT) into a single beam spectrum. To obtain 

an infrared absorbance spectrum, the single beam spectrum of the background and the 

sample are ratioed to obtain the transmittance spectrum. In turn, the transmittance spectrum 

is converted into an absorbance spectrum. This procedure is depicted in Figure 1.5c. The 

C-O stretch vibrations are mainly captured in the Amide I wavenumber range, 1700 cm-1 

to 1600 cm-1, which is highlighted in the exemplary absorbance spectrum in Figure 1.5c. 

With use of the listed data preprocessing steps in Figure 1.5e and the second derivative of 

the absorbance for the Amide I band, the spectrum in Figure 1.5d is obtained. The second 

derivative absorbance spectrum is the typical data format used to identify peak area and 

location, which corresponds to the relative amount and type of secondary structure motifs, 

respectively64. Figure 1.5f shows a comprehensive overview of wavenumber (WN) 

positions of several secondary structural motifs. 

 

1.2.3.2 Intrinsic fluorescence spectroscopy 

Intrinsic fluorescence spectroscopy utilizes the influence of environmental polarity on 

tryptophan fluorescence, namely the red shift (shift to a higher wavelength) of its intensity 

maximum for increasing polarity66,67. This shift is used to determine tertiary structure 

stability as a function of thermal stress. Thermal stress is gradually applied to induce 

structural unfolding, which can be monitored by fluorescence as tryptophan’s environment 

becomes more polar due to increasing solvent exposure. A depiction of an intrinsic 

fluorescence measurement is shown in Figure 1.6. 

 

 

Figure 1.6: Overview of intrinsic fluorescence spectroscopy measurement results to determine the protein 

melting temperature (TM). (a) Depiction of the change in fluorescence intensity wavelength upon protein 

unfolding. (b) Exemplary plot of fluorescence intensity obtained for two different temperatures. The 

wavelength peak position for each temperature is plotted and the derivative is calculated to determine the 

maximum gradient of the peak position plot. The maximum gradient is defined as TM. The pictogram is 

adapted from literature59. 
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Figure 1.6a depicts how the maximum tryptophan fluorescence intensity shifts towards a 

wavelength of 350 nm due to protein unfolding. Figure 1.6b shows a simplified spectrum 

at a starting temperature and a higher temperature, where a shift in absolute intensity and 

intensity maximum is depicted. The maximum intensity wavelength, referred to as the peak 

position, is extracted and plotted against the applied temperature gradient. This data is used 

to extract the temperature at which ΔGunf is zero. At this point, where native and unfolded 

proteins are present in equal amount, is referred to as the melting temperature (TM). TM is 

defined as the maximum gradient in the peak position-temperature plot and can be 

determined by means of its derivative, as shown in Figure 1.6b. The TM of a protein is a 

measure of its conformational stability, where a higher TM value indicates higher 

conformational stability. It has been observed that aggregation propensity often correlates 

inversely to the relative TM
20. However, it should be noted that TM cannot be used as an 

aggregation propensity predictor when the dominant aggregation pathway is not dependent 

on (partial) protein unfolding68. 

 

1.2.4 Protein surface properties 

Protein surface properties, such as charge and hydrophobicity, play a significant role in 

protein aggregation. Two surface properties are monitored in this work, namely the zeta 

potential and apparent surface hydrophobicity. These properties are determined by mixed 

mode measurement of phase analysis light scattering (M3-PALS) and the stalagmometric 

method, respectively. Both methods are described below. A presentation of other analytical 

techniques to determine protein charge and hydrophobicity can be found elsewhere69,70. 

 

1.2.4.1 Mixed mode measurement of phase analysis light scattering 

M3-PALS utilizes light scattering to track the movement of charged proteins under the 

influence of an electric field. Protein motion caused by means of an electric field is called 

electrophoretic mobility71. Electrophoretic mobility is induced during M3-PALS by 

switching poles, referred to as field reversals, which causes the protein to change its 

direction. The magnitude and nature of the protein surface charge can be extracted by 

tracking protein movement as a function of field reversal, as it determines the speed and 

direction of the motion, respectively. An overview of an M3-PALS is depicted in Figure 

1.7. 
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Figure 1.7: Overview of a mixed mode measurement of phase analysis light scattering (M3-PALS) to 

determine the zeta potential (ζ). (a) Depiction of different potentials as a function of the protein surface 

distance. (b) M3-PALS includes a slow field reversal (SFR) and fast field reversal (FFR), where the blue line 

indicates electroosmosis. Phase shift between the sample and reference beam is recorded over time. This 

provides information on (c) the mean electrophoretic mobility (UE) and (d) its distribution, respectively. The 

combination of FFR and SFR results in (e) a UE-intensity distribution. The ζ can be calculated with (f) the 

Henry equation, Equation 1. Pictograms and graphs were adapted from literature60,72. 

 

Figure 1.7a shows a schematic representation of the electrical double layer that exist around 

a charged protein. The first layer, the Stern layer, is a layer of relatively strong bound ions, 

which carry the opposite charge of the protein charge. The second layer is called the diffuse 

layer, where weakly associated ions are found. Upon movement of a protein through a 

solution, there is a boundary between the ions in the diffuse layer that move with the protein 

and ions that do not. This boundary is the so-called slipping plane. The potential at the 

slipping plane is the zeta potential. The nature and magnitude of the zeta potential play a 

role in electrostatic repulsive forces, which in turn influence colloidal interactions55.  

 

Figure 1.7b depicts how M3-PALS is used to determine electrophoretic mobility. Two field 

reversal methods are applied during a measurement, namely the fast field reversal (FFR) 

and the slow field reversal (SFR). The two field reversal approaches are used in order to 

determine an accurate and precise electrophoretic mobility, respectively. Light scattering 

fluctuations due to the subsequent protein movement is determined by comparing the phase 

of the light from a beam passing through the sample to the phase of a reference beam that 

did not pass the sample. This results in a phase plot as depicted in Figure 1.7b. FFR allows 

for the determination of an accurate mean electrophoretic mobility (Figure 1.7c), as it 

prevents the influence of electroosmosis73. Electroosmosis is the movement of liquid under 

the influence of an electric field. For each field reversal speed, electroosmosis is 
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schematically depicted by the blue line in Figure 1.7b. This liquid movement influences 

protein movement and causes an overestimation of its electrophoretic mobility. However, 

the order of magnitude at which a liquid reacts to a field reversal is roughly in the order of 

ten milliseconds72. As the response of protein particles to the field reversal is faster, an 

accurate particle electrophoretic mobility can be determined with FFR. Nonetheless, a 

precise electrophoretic mobility cannot be obtained with FFR as the velocity distribution 

is unavailable. A precise electrophoretic mobility distribution is measured with SFR 

(Figure 1.7d). A both accurate and precise electrophoretic mobility distribution can only 

be obtained by combining both results, as depicted in Figure 1.7e. The zeta potential can 

be calculated from the electrophoretic mobility, using the Henry equation (Equation 1 in 

Figure 1.7f), wherein the measured electrophoretic mobility depends on the zeta potential, 

the applied electric field strength, dielectric constant of the solution, and the solution 

viscosity. In addition, Henry’s function (f(Ka)) shows the influence of the protein radius 

(a) and the Debye parameter (K), which represents the thickness of the electrical double 

layer.  

 

1.2.4.2 Stalgmometric method 

The stalagmometric method depends on the relationship between the required gravitational 

force to detach a formulation droplet and the adhesive force of the droplet to the dispensing 

tip to determine the apparent protein surface hydrophobicity74. A schematic overview of 

the stalagmometric method is shown in Figure 1.8.  

 

Figure 1.8: Overview of the stalagmometric method to determine the apparent surface hydrophobicity. (a) 

Depiction of the air-liquid interface for different droplet sizes. (b) Overview of equations used to determine 

the surface tension. (c) Solutions required during a measurement with the stalagometric method. (d) Schematic 

of typical measurement results, where the mass of dispensed droplets is plotted over time. The average mass 

of a single droplet (mdrop) is defined as the difference between the mass plateaus. 
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Figure 1.8a depicts two formulation droplets, where the upper droplet shows a formulation 

without protein interface adsorption, and the lower droplet shows a formulation with 

protein interface adsorption. The adhesive forces, FA, are dependent on the radius of the 

dispensing tip (r) and the formulation surface tension (γ), as shown by Equation 1 in Figure 

1.8b. FA equals the weight forces (F’W) upon droplet detachment, where F’W is defined by 

the droplet mass (mdrop), the gravitational acceleration (g), and an instrument correction 

(finst), as indicated by Equation 2 in Figure 1.8b. Thus, the mass of a detached droplet is 

proportional to the surface tension, which described by Tate’s law75 (Equation 3, Figure 

1.8b). The resulting formulation droplet mass decreases for decreasing surface tension. 

Figure 1.8d shows an exemplary result of a stalagmometric measurement, where droplet 

mass is measured over time by means of an automated liquid handling station76. Each 

plateau indicates a droplet falling on a precision scale, which measures the weight 

continuously. The obtained average droplet mass, defined as the average difference 

between the plateaus, is used to determine the surface tension. This is done by comparison 

to a reference solution, typically water, and Equation 4 in Figure 1.8d. Figure 1.8c shows 

three different droplets to be measured to gain information on the apparent protein surface 

hydrophobicity. Besides the reference solution (water) and the formulation itself, a blank 

sample is measured. The difference between a blank droplet and a formulation droplet 

provides information on the contribution of protein molecules to the surface tension.  

 

1.3 Data handling 

Experiments employing multiple analytical techniques to monitor various biophysical 

protein properties, in combination with kinetic long-term protein phase behavior, result in 

large and multidimensional data sets. Such multidimensional data sets to study protein 

stability can be found throughout literature77–82, but interpretation of these data sets is not 

straightforward. The following three sections describe procedures of computer-assisted 

mining and interpretation of such data sets. It has been stated that this type of computational 

support is of great importance for the advancement of the biotechnological field83. The first 

section presents data processing steps, the second section discusses approaches for data 

visualization, and the third section presents approaches to utilize the generated data for 

mining and prediction purposes.  

 

1.3.1 Data processing 

Raw experimental data is usually not immediately suitable for evaluation. Data 

preprocessing is the first step to obtain data that can be utilized for information mining 

purposes. Data preprocessing usually involves, among others, data transformation, data 

normalization, standardization, smoothing, and outlier detection84. After preprocessing, 

one can decide whether further processing is needed or not. One optional additional 
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processing step is called feature extraction, which can be performed in a supervised or 

unsupervised manner. The terminology supervised and unsupervised will be discussed in 

more detail in section 1.3.3. Feature extraction is often applied when the data format is 

inconvenient, such as the case for image data, or when data includes redundant 

information85,86. Besides extraction of relevant information, feature extraction has also 

shown to reduce model training times, enhance prediction performance, and lower 

computation expenses associated with generation, storing, and processing of data sets87. 

 

1.3.2 Data visualization 

Creating a comprehensive visual representation of experimental data is of importance for 

obtaining a deeper understanding, as well as to present data to external parties. The 

applicability of particular data visualization techniques is dependent on data 

dimensionality. For example, histograms are applicable for univariate data sets, while 2-D 

scatterplots are suitable for bivariate data sets. An overview of applicable visualization 

techniques when handling multidimensional data sets can be found elsewhere88. In this 

work, the empirical phase diagram (EPD) visualization technique was used to represent 

multidimensional data sets78,89. This unsupervised machine learning method employs a 

data dimension reduction approach. This allows for the representation of multidimensional 

data in three dimensions, which is converted into an RBG color code for simplified 

interpretation of trends based on colors. Other biopharmaceutical studies that have 

successfully employed the EPD method are listed elsewhere90. An expansion of the EPD 

method to enhance data interpretation, involving the representation of reduced 

multidimensional data by means of radar charts91, has also been applied in this work.  

 

1.3.3 Data utilization 

The combination of machine learning and experimental data can be applied for data 

visualization, but also for data utilization. The term data utilization means employing 

mined data sets for pattern recognition or training of predictive models. In general, this is 

achieved using two main machine learning approaches, namely supervised and 

unsupervised learning. A schematic workflow for each machine learning approach is 

shown in Figure 1.9. 
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Figure 1.9: Schematic workflow of (a) supervised and (b) unsupervised machine learning algorithms, 

where supervised machine learning involves model training and validation. The last panel indicates what 

types of algorithms are used for each machine learning approach, where (a) employs classification or 

regression algorithms and (b) employs clustering algorithms. 

 

Figure 1.9a illustrates supervised machines learning and Figure 1.9b depicts unsupervised 

machine learning. The main difference between supervised and unsupervised is the 

labelling of the input data for supervised learning. The goal of supervised machine learning 

is to predict a class or value, which is achieved by training and validating algorithms with 

said labelled input data. The resulting predictive models can be categorized as classification 

or regression models, which are applicable for discrete or continuous output data, 

respectively. Typical algorithms that are used for classification are support vector 

machines, discriminant analysis, decision trees, or neural networks. Regression models can 

include linear regression, ensemble methods, or neural networks. An overview of 

classification and regression algorithms can be found elsewhere92–95. To prevent 

overfitting, model bias, or overoptimistic model performance, it is essential to carefully 

select the size and class or value distributions of the training and validation sets96,97. In 

addition, corresponding model evaluation parameters need to be selected in order to 

describe the outcome of both internal and external validation of the model, and to evaluate 

the overall model performance. It is also possible to evaluate the prediction confidence, 

which allows for the identification of possible prediction errors92.  

 

For unsupervised machine learning approaches, the goal is to identify patterns in the data. 

This approach is often applied for data exploration to extract labels that may define 

different groups92. Such labels, often comprised of different data features, should therefore 

contain information that can separate objects from one another and identify similarities to 

recognize similar objects. There are several algorithms that can be used for this application, 

such as k-means clustering, principal component analysis, singular value decomposition, 

and neural networks. An overview of applicable algorithms can be found elsewhere92,93. 
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Protein phase behavior is a multidimensional phenomenon and therefore the corresponding 

data required for investigating protein phase behavior is multidimensional as well. Even 

though this has been recognized in the field, there are still opportunities to implement 

computational methods, such as machine learning approaches, to advance protein phase 

behavior analysis. Opportunities lie in the comprehensive visualization of protein phase 

diagrams, where not only protein phase behavior after a prolonged storage time should be 

visualized, but where also the kinetic phenomena monitored during storage are depicted. 

Data mining from protein phase diagram experiments (image-based data) remains a 

manual, time-consuming, and subjective procedure98. Therefore, data mining in protein 

phase behavior studies would greatly benefit from supervised image recognition 

algorithms, especially in combination with automated feature extraction approaches. 

Opportunities in data utilization can also be found for characterizing protein phase behavior 

by means of the responsible forces and protein surface properties. As multiple analytical 

techniques are needed to monitor the possible aggregation pathways, this thesis presents a 

machine learning workflow that can correlated short-term empirical properties to long-term 

protein phase behavior in order to generate a better understanding of environmental effects 

on the observed protein phase behavior.  

 

Another interesting subject where computational workflows could be incorporated in the 

field of protein phase behavior, is in silico extraction of protein properties obtained from 

molecular dynamics (MD) simulations. By employment of supervised machine learning 

approaches, protein surface properties based on three-dimensional (3-D) protein structures 

can be used to model experimental observations or serve as an additional, new source of 

knowledge to obtain an efficient experimental design. However, the computational 

extraction of such properties is highly dependent on the quality of the 3-D protein structures 

that are used during MD simulations99. In addition, in order to obtain reliable models, a 

large amount of structures is needed to determine the statistical significance of the 

correlation between theoretical and experimental data100,101. Preparation of 3-D structures 

for MD simulations is typically a manual procedure. This hampers the implementation of 

MD simulations as supportive computational method during formulation development, as 

it currently cannot compete with the screening numbers achievable with high-throughput 

experiments. 
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2 Thesis outline 

 

2.1 Research proposal 

Protein-based products are developed in biotechnology sectors such as agriculture, food, 

and biopharmaceutics. Stability for each protein-based product needs to be demonstrated, 

where the desired protein phase state, such as soluble or crystallized protein, should be 

maintained over a prolonged period of time (e.g., months or years) in order to assure its 

safety and functionality. High-throughput and accelerated experiments were implemented 

during product development to minimize material use as well as experimental time required 

to perform long-term protein phase behavior screenings. Consequently, optimizing these 

screenings led to an increase of available experimental data. Upon evaluation, 

interpretation, and understanding the generated data, a knowledge-based approach can be 

adopted to further accelerate protein-based product development. This leads to the 

identification of short-term empirical parameters which correlate to long-term protein 

phase behavior, targeted phase behavior modification, and partially paves the way for 

protein phase behavior prediction. However, the generated information is not used in its 

complete capacity due to insufficient data extraction and data analytical techniques. The 

full potential of knowledge-based experimental design will only be realized when the gap 

between data acquisition and data utilization is bridged.  

 

The objective of this research is to develop computational methods that advance long-term 

protein phase behavior analysis. Protein phase behavior is a multidimensional 

phenomenon, where an interplay between a multitude of environmental factors, such as 

additives and pH, and protein-specific properties, such as charge and size, determines the 

protein phase outcome. To understand, modify, and ultimately predict a multidimensional 

phenomenon such as protein phase behavior, computational approaches are required that 

incorporate complexity while maintaining a straight-forward data interpretation. In 

addition, a data-dependent design of said approaches is required to ensure its applicability 

for a wide range of protein-based products. However, extensive data extraction and 

processing increases the experimenters’ workload. This is prevented by implementation of 

automated approaches, which simultaneously controls objectivity and standardization, 

which is hard to enforce with manual approaches. Besides protein phase behavior data 

evaluation, the ability to characterize the observed protein phase behavior is required to 

2 
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obtain a more in-depth understanding. A more in-depth understanding of protein phase 

behavior will allow for identification of short-term protein phase behavior optimization 

targets and a decrease in experimental work. Furthermore, a broader understanding serves 

as a stepping stone towards the design of in silico descriptors suitable for protein phase 

behavior prediction. To generate such in silico descriptors, a computational pipeline that 

allows one to process the in silico equivalent of high-throughput experimental data is 

required in order to become a helpful tool during product development.  

 

To bridge the gap between data acquisition and data utilization for long-term protein phase 

behavior experiments, the first part of this work focusses on data-dependent visualization 

of image-based protein phase behavior data. The aim was to prevent information loss 

during data evaluation by combining static and kinetic long-term protein phase behavior 

data. The visualization method was subsequently coupled to an automatic data extraction 

algorithm, where protein phase behavior was classified using data obtained with a hardware 

combination of multiple light sources. Identification of short-term protein properties 

responsible for long-term protein phase behavior was established by combining the 

multidimensional image-based protein phase behavior data with empirical protein 

properties obtained directly after formulation preparation. A case study was performed to 

illustrate the application of this approach for formulation development. In this case study, 

novel formulations were identified based on short-term properties which led to similar 

phase behavior over time as the original formulation properties. Short-term protein 

properties that determine long-term protein phase behavior are potential parameters that 

can be used for protein phase behavior prediction based on in silico descriptors extracted 

from 3-dimensional (3-D) protein structures. To move towards such short-term descriptor 

predictions, a high-throughput 3-D protein structure preparation pipeline was developed. 

This computational pipeline was designed to support high-throughput structure processing, 

data-dependent structure curation, and robust in silico descriptor extraction. 
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2.2 Manuscript overview 

This subsection presents a compendious list of manuscripts written within the scope of the 

thesis. The corresponding chapter and page number are indicated per manuscript, followed 

by a brief summary.  

 

Chapter 3. Application of empirical phase diagrams for multidimensional data 

visualization of high-throughput microbatch crystallization 

experiments...........................................................................................................25 

M.E. Klijn, J. Hubbuch 

Journal of Pharmaceutical Sciences (107), 2018, p. 2063-2069 

This paper presents a data visualization methodology, which allows for the representation 

of kinetic and static protein phase behavior data in one figure without the loss of 

information or comprehensiveness. Subsequently, this multidimensional protein phase 

diagram was used to discuss the observed static and kinetic protein phase behavior of 

model protein hen egg-white lysozyme in the context of environmental changes. This 

resulted in a detailed interpretation and understanding of the obtained protein phase 

behavior data. 

 

Chapter 4. Time-dependent multi-light source image classification combined 

with automated multidimensional protein phase diagram construction for 

protein phase behavior analysis………………..………………………………37 

M.E. Klijn, J. Hubbuch 

Journal of Pharmaceutical Sciences, In Press 

This study shows an automated workflow which starts with raw images obtained from 

long-term protein phase behavior experiments and visualizes multidimensional protein 

phase behavior. This was accomplished by enhancing automated image classification with 

static and kinetic image-based features obtained from visible light, cross polarized light, 

and ultraviolet light. Predicted classification data was subsequently used to automatically 

construct a multidimensional protein phase diagram. 

 

Chapter 5. Correlating multidimensional short-term empirical protein 

properties to long-term protein physical stability data via empirical phase 

diagrams................................................................................................................57 

M.E. Klijn, J. Hubbuch 

International Journal of Pharmaceutics (560), 2019, p. 166-174 

This paper investigates the usability of the empirical phase diagram method to overcome 

common shortcomings during protein phase behavior characterization, such as limited data 

set size or simplistic visualization. This resulted in a systematic and data-dependent 
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workflow which created a comprehensive overview of short-term protein properties in an 

empirical protein property diagram. These short-term properties could be partially related 

to trends observed in long-term multidimensional protein phase diagrams, which led to a 

straight-forward characterization of long-term protein phase behavior. 

 

Chapter 6. Redesigning food protein formulations with empirical phase 

diagrams: A case study on glycerol-poor and glycerol-free formulations…...75 

M.E. Klijn, J. Hubbuch 

Food Research International (125), 2019, p. 108609 

The case study presented in this manuscript served as an example of an industrial 

application for the methodology presented in Chapter 5. The combination of short-term 

empirical protein property data and long-term protein phase behavior was utilized to 

redesign a protein-based food product formulation. The combination of an empirical 

protein property diagram and multidimensional protein phase diagram led to the 

identification of new long-term stable formulations based on short-term properties similar 

to the original formulation. 

 

Chapter 7. High-throughput computational pipeline for 3-D structure 

preparation and in silico protein surface property screening: A case study on 

HBcAg dimer structures………………………………..……………..…..……95 

M.E. Klijn†, P. Vormittag†, N. Bluthardt, J. Hubbuch (†contributed equally) 

International Journal of Pharmaceutics (563), 2019, p. 337 - 346 

This manuscript describes a computational pipeline which automatically performs 

homology modelling and subsequent data-dependent curation of 3-D protein structures. 

Such a preparative pipeline is required before predictive descriptors can be extracted from 

the 3-D protein structures, but this is usually a manual procedure. An automated approach 

is of interest when a large amount of candidate structures is screened, as seen during the 

development of hepatitis B core antigen (HBcAg) virus-like particles. Fast curation 

simulations, relatively high quality structures, and surface charge descriptors that 

correlated to experimental data indicated the potential of the proposed pipeline. 
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3  Application of empirical phase diagrams 
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Abstract 

Protein phase diagrams are a tool to investigate cause and consequence of solution 

conditions on protein phase behavior. The effects are scored according to aggregation 

morphologies such as crystals or amorphous precipitates. Solution conditions affect 

morphological features, such as crystal size, as well as kinetic features, such as crystal 

growth time. Commonly used data visualization techniques include individual line graphs 

or phase diagrams based on symbols. These techniques have limitations in terms of 

handling large data sets, comprehensiveness or completeness. To eliminate these 

limitations, morphologic and kinetic features obtained from crystallization images 

generated with high-throughput microbatch experiments have been visualized with radar 

charts in combination with the empirical phase diagram method. Morphologic features 

(crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal 

and precipitate onset and growth time) are extracted for 768 solutions with varying chicken 

egg white lysozyme concentration, salt type, ionic strength, and pH. Image-based 

aggregation morphology and kinetic features were compiled into a single and easily 

interpretable figure, thereby showing that the EPD method can support high-throughput 

crystallization experiments in its data amount as well as its data complexity. 
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3.1 Introduction 

Protein phase behavior is of interest for formulation, purification process development, and 

3-dimensional (3D) structure analysis. Protein phase behavior is dependent on protein 

properties, such as net surface charge and structural stability, which are in turn influenced 

by physical and chemical parameters of the solution18,102–104. Resulting protein-protein (PP) 

and protein-solvent (PS) interactions determine protein phase behavior. The desired protein 

phase behavior can differ between applications. For example, interplay of PP and PS 

interactions ideally results in long-term stable pharmaceutical formulations105,106, whereas 

particular purification processes are dependent on phase transitions such as 

crystallization107. Crystallized proteins can also be used to obtain 3D structure 

information108,109. Although the application defines the desired phase behavior, finding 

corresponding solution conditions is carried out using a similar approach. Solution 

conditions are varied to map their effect on protein phase behavior, where protein 

concentration, additive type, additive concentration, pH, pressure, or temperature are 

altered110–115. Ternary (e.g., water, additive, and protein concentration)112,116 or binary (e.g., 

temperature-pressure or protein-additive concentration)51,117 protein phase diagrams are 

frequently used to present optically visible protein phase behavior effects. This information 

is not only used to identify optimal solution conditions but is also used as a basis for 

understanding107,112,115,118, manipulation119,120, and prediction77,82,121,122 of protein phase 

behavior. The visible effect on protein phase behavior is scored in the following 

morphology categories: clear solution, crystallization, precipitation, skin formation, 

gelation, or phase separation54,123. Different morphological subtypes have been observed 

within these morphology categories77,114,124. For example, crystal subtypes may include 

micro crystals, sea urchins, needles, plates, and 3D crystals123,125,126. These crystal types 

differ in growth rates, size, and morphology, which are dependent on the growth 

mechanism and thus dependent on underlying PP and PS interactions110,111,118,127–130. 

Aggregation mechanisms can also determine precipitation size, color, and texture. 

Amorphous precipitation is considered to originate from nonnative aggregation and 

appears in darker colors while crystalline precipitation permits native conformation and 

has a more sandy appearance54,131,132. Details of phase behavior morphology provide 

necessary information that leads to better understanding of PP and PS interactions.   

 

Detailed information on protein phase behavior under multiple conditions, such as 

morphology subtypes and kinetic features, results in a multidimensional dataset and that is 

not easily visualized or interpreted. The most simple visualization approach is plotting a 

single morphologic or kinetic feature as a function of 1 to 3 different solution 

conditions110,111,127,130,133–137. Visualizing high-throughput data with this approach, where 

more than 3 solution conditions are varied, would result in multiple different figures per 
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feature. This leads to a loss of overview on trends between observed features as well as 

their connection to all tested solution conditions. Alternatively, symbols are used to capture 

the morphology effects of solution conditions in binary phase diagrams82,115,138. Here, 

different symbols are used to represent 6 general morphology categories. Adaptations of 

symbol-based phase diagrams use more symbol types to represent morphology 

subclasses121,139. Symbol-based phase diagrams are easy to interpret and compatible with 

large data sets. However, kinetic features are not included, and subsetting of morphologic 

categories is prone to subjectivity98. To account for the former, symbol sizes have been 

scaled to represent kinetic information140. Capturing morphology subclasses as well as 

kinetic parameters results in numerous symbol types and sizes. This makes figures more 

difficult to interpret, and subjective subsetting is not eliminated. Next to symbols, 

crystallization images itself have been used to show morphological features and kinetic 

features, where kinetic features are presented by showing images taken at multiple time 

points114,124,125,127,129,135,137,141,142. Crystallization images contain all desired information, 

but the data format is inconvenient. Next to the required image size for proper morphology 

visualization, the use of multiple images over time for high-throughput data becomes 

highly impractical. This leads to showing examples instead of the complete dataset. The 

need and generation of experimental protein phase behavior data has become a 

multidimensional problem but means for data visualization and interpretation are currently 

insufficient. This makes data evaluation challenging and potentially incomplete. Therefore, 

a high-throughput compatible comprehensive figure that can present a complete 

nonsubsetted data set is required143,144. 

 

A method of combining multidimensional data into one comprehensive figure is the 

empirical phase diagram (EPD). The EPD was originally developed to combine data 

obtained from high-throughput experiments on protein conformational states as a function 

of solvent conditions and stress78,89. Multidimensional data is reduced to 3 dimensions, 

which provides the means to visualize and interpret data with the use of colors, where 

changes in colors represent differences in underlying features. Three adaptations of the 

EPD have been previously explored91. The first alternative includes a color indexed EPD 

using predefined colors that correspond to specific protein structural states. The other two 

proposed adaptations use arbitrary colors in combination with radar plots or Chernoff 

diagrams to represent underlying multidimensional data. The Chernoff diagrams do not 

allow for easy interpretation as facial features are used to represent underlying data changes 

instead of axis, as seen for radar charts. Combining the EPD and radar chart offers the 

possibility to visualize a large image-based protein phase behavior data set without 

compromising in data completeness or ease of interpretation. This has not been achieved 

in previous protein phase behavior studies.  
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This study uses data on phase behavior of chicken egg white lysozyme during a long-term 

storage (40 days) microbatch crystallization experiment under 768 different solution 

conditions at 20 °C. Solution conditions cover 4 pH values (pH 3, 5, 7 and 9), 2 salts 

(sodium chloride and ammonium sulfate), 12 ionic strengths (0 – 275 mM), and 8 protein 

concentrations (5-125 g/L). These solution conditions are selected to capture a wide pH 

range and incorporate 2 commonly used salts which reportedly have ion specific effects116. 

Increments of 25 mM in ionic strength have been chosen to challenge visualization of 

subtle ionic strength effects, and a wide range of lysozyme concentration is to cover both 

low and highly concentrated protein solutions. Long-term storage under the selected 

variety of conditions results in multidimensional data, which challenges previously 

discussed shortcomings of visualization techniques. Morphologic and kinetic feature 

extraction was used to prevent loss of protein phase behavior information and minimize 

subjective morphology category subsetting. Morphologic features describe absolute 

average crystal size, variation in crystal axial ratio, and the amount of crystals. Precipitation 

features describe size and color intensity. Kinetic features include onset and growth time 

of precipitates and crystals. This data set is used to show the benefits of multidimensional 

visualization techniques for comprehensive and complete presentation of detailed protein 

phase behavior data using the EPD method in combination with radar plots. For 

convenience, the term multidimensional protein phase diagram (MPPD) is used for the 

EPD, which represents the protein phase behavior information. 

 

3.2 Material and Methods 

3.2.1 Buffer preparation 

The effect of buffer components on protein phase behavior was excluded by using a 

multicomponent buffer with a 10 mM buffer capacity145. Buffer components were CHES 

(6.13 mM; Applichem), TAPS (14.61 mM; Applichem), MOPS (7.00 mM; Roth), sodium 

acetate trihydrate (3.01 mM; Merck) and citric acid monohydrate (13.86 mM; Merck). The 

pH was adjusted using 4 M sodium hydroxide (Merck) as titrant, using a five-point 

calibrated pH-meter (HI-3220; Hanna Instruments, Woonsocket, RI) equipped with a 

SenTix 62 pH electrode (Xylmen Inc., White Plains, NY). The pH was adjusted to 3, 5, 7, 

or 9 with ±0.05 pH unit accuracy. The effect of ionic strength for each buffer was excluded 

by adjusting conductivity of each buffer to the conductivity measured for the pH 9 buffer. 

Buffer conductivity was measured with a conductivity probe (Radiometer Analytical, Lion, 

France). Sodium chloride (Merck) or ammonium sulfate (Applichem) was used for 

conductivity adjustment. Afterwards, the buffers were filtered using a 0.2 μm cellulose 

acetate filter (Sartorius, Göttingen, Germany). This buffer served as buffer with a relative 

ionic strength of 0 mM. A stock buffer with a relative ionic strength 1050 mM was made 

with sodium chloride and ammonium sulfate for each pH. 
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3.2.2 Protein stock preparation 

A stock solution of 150 g/L lysozyme from chicken egg white (Hampton Research, Aliso 

Viejo, CA) was made. Lysozyme was weighed and dissolved in the appropriate 0 mM ionic 

strength buffer. The protein solution was filtered using a 0.2 μm cellulose acetate filter 

(VWR, Radnor, PA). The filtered protein solution was desalted with a PD-10 column (GE 

Healthcare Life Sciences, Uppsala, Sweden), employing the manufacturer’s centrifugation 

protocol. The concentration of the stock solution was determined with a Nanodrop 2000c 

UV-Vis spectrophotometer (Thermo Fischer Scientific, Waltham, MA). An E1% (280 nm) 

extinction coefficient of 22.00 was used. The protein stock solution was prepared on the 

same day of crystallization plate preparation. 

 

3.2.3 Long-term storage 

All protein solutions were stored in duplicate for 40 days at 20°C in a Rock Imager 54 

(Formulatrix, Bedford, MA). The long-term storage experiment was carried out according 

to the method described by Baumgartner et al. with the following adaptations. Salt and 

protein dilutions were mixed in a 1:5 ratio by pipetting up and down twice, with a final 

volume of 24 μL per well. This resulted in lysozyme concentration of 125, 112, 100, 75, 

50, 25, 12, and 5 g/L and a relative ionic strength of 0 to 275 mM sodium chloride or 

ammonium sulfate with a 25 mM step size. Each well was photographed daily during 

storage with visible light, and more frequently during the first 8 days. All visible light 

photographs consisted of five focus levels to obtain an averaged sharp picture. After 40 

days of storage, UV light imaging was used additional to visible light. UV light exposure 

time was set to 400 ms, signal amplification (gain) was set to 14.92 dB, and midtone 

contrast adjustment (gamma) was set to 1.4. A 2.5X zoom was used, and 12 focus levels 

per well were taken. 

 

3.2.4 Image Features 

Precipitation onset time is defined here as the time point when first light precipitation was 

observed. Precipitation growth cessation time is defined as the time point when the 

precipitate stopped to change in size and intensity. Crystal onset time is the time point when 

nuclei were first optically visible (minimum detectable size of ~5 μm). The corresponding 

growth cessation time is defined as the time point when crystal dimensions did not increase 

anymore. The difference between the onset and cessation time of precipitates and crystals 

was calculated as their growth time. Crystal dimensions and precipitate diameter were 

measured in μm with the ruler tool in the Rock Maker software (version 2.3.0.83). Four 

crystals were selected to extract their dimensions to form a representative sample group. 

Four crystal lengths were averaged to represent the absolute average crystal size. In 

addition, 4 axial ratios were calculated as quantification of crystal shapes. Subsequently, 
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the interquartile range of these values was calculated to represent the diversity of crystal 

shapes. 

 

3.2.5 Multidimensional data visualization 

Each extracted image feature was averaged between the duplicates and normalized between 

zero and one. A representation of duplicate data is shown in Supplementary Figure A1. 

Before construction of the MPPDs, all features were evaluated based on internal correlation 

using the Pearson correlation coefficient. The EPD construction method used is described 

in literature78,91. In short, the dimensionality of the data was reduced to 3 dimensions using 

singular value decomposition (SVD). The (x,y,z)-values of the 3D data were normalized 

between zero and one to obtain (x,y,z)-values that can be used as a RGB color value. The 

optimal number of clusters between 1 and 9 was selected by the function evalcluster, 

available in Matlab, version 2016b. Cluster evaluation used the k-means cluster algorithm 

with a silhouette criterion based on squared Euclidean distance metric. The optimal cluster 

number was used as input for the k-means clustering function (kmeans, available in Matlab, 

version 2016b) to cluster the 3D SVD data using 100 replicates, a maximum of 1000 

iterations, and randomly chosen initial cluster centroid positions. The average RGB color 

value for each cluster was calculated using the normalized (x,y,z)-values of each data point 

within the cluster. With R (version 1.0.136, using ggplot2 and fmsb library) each data point 

was plotted against all solution conditions (pH, salt, ionic strength, and protein 

concentration) and colored with their corresponding average cluster color. In addition, a 

radar plot was constructed for each cluster to represent the median value of the image 

feature, as well as the median absolute deviation to represent distribution of the image 

feature.  

 

3.3 Results and Discussion 

3.3.1 Image scoring 

Images obtained with visible and UV light were used for morphology and kinetic feature 

extraction after 40 days of storage. One application of UV light images was to determine 

whether observed change in phase behavior was a result of protein or non-protein 

insolubility109,146. Examples of visible and UV light images for comparison between clear 

solutions, crystallized solution, non-protein precipitation, and protein precipitation are 

depicted in Supplementary Figure A2. Absence of UV signal indicated that all precipitation 

observed under visible light images were non-protein. On the contrary, all crystals were 

visible under UV and thus consist of protein. Apart from 3D crystals, no other 

morphological crystal subtypes were seen in this dataset. 
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3.3.2 Data treatment and clustering 

The use of various features may result in features to correlate to one another and 

subsequently favor a certain phase behavior property within the dataset. 

Overrepresentation of a phase behavior property was evaluated based on internal 

correlation using the Pearson correlation coefficient. The Pearson correlation coefficient 

matrix is shown Supplementary Table A1. The set threshold of 0.850 was violated by 

precipitate intensity and precipitation diameter, indicating that precipitate intensity 

increased as size increased. Precipitate intensity was therefore removed from the dataset. 

Remaining image features, their corresponding absolute value ranges, and phase behavior 

property descriptions are summed up in Figure 3.1a. Normalized values of the listed image 

features were used for SVD dimension reduction. This resulted in a 3D data set with an 

energy value of 95%, which means a 5% loss of information on data variance. This falls 

within the general rule, where an energy value of 90% is considered the minimum for 

reduced dimension data representation147. An optimal number of 5 clusters was determined 

with this three dimensional dataset. 

 

The median cluster value for each image feature is represented within the radar charts using 

a colored surface, shown in Figure 3.1b. Dispersion of image features in each cluster, 

represented by the median absolute deviation, is shown as a dotted lined. Cluster 1 

corresponds to clear solutions, as all extracted features are equal to zero in images without 

crystals and precipitates. Coexistence of protein crystals and non-protein precipitation is 

represented by cluster 2. Here, protein crystals fill roughly 50% of the crystallization well 

after storage. Crystal nuclei form after 350 ± 40 h and grow for 300 ± 70 h to a reach 

median size of 48 ± 6 μm. Non-protein precipitation appears after 120 ± 15 hours and grows 

65 ± 10 h. The median precipitation diameter is 345 ± 30 μm. Solely crystallized solutions 

are represented by clusters 3, 4, and 5. Similar to cluster 2, cluster 3 crystals fill half of a 

crystallization well. Crystal nuclei are observed after 175 ± 20 h of storage, which is earlier 

compared to cluster 2. Crystals grow for 240 ± 20 h to a size of 36 ± 5 μm. In cluster 4 an 

increase in crystal number is seen, where wells were almost completely filled after 40 days 

of storage. A crystal onset time of 90 ± 17 h is lower compared to cluster 3. Growth time 

is increased to 720 ± 50 h, which resulted in a median crystal size of 96 ± 6 μm. Cluster 5 

shows entirely filled wells, where crystals are formed within the first few hours of storage. 

Growth time has a median of 3 ± 3 h, and the median crystal size is 36 ± 3 μm. The axial 

ratio interquartile range varies between 0.124 ± 0.06 for cluster 5 to 0.279 ± 0.235 for 

cluster 2. Crystal shape diversity shows only small deviations for each identified cluster. 

 

 

 



32 
 

3.3.3 Multidimensional protein phase diagram 

Results of long-term chicken egg white lysozyme storage at 20 °C using chicken egg white 

lysozyme under 768 different solution conditions are represented by MPPDs in Figure 3.1c. 

The top row of Figure 3.1c shows MPPDs for protein solutions containing ammonium 

sulfate and the bottom row presents the MPPDs where sodium chloride was added to 

protein solutions. For each individual MPPD, the y-axis indicates lysozyme concentration 

(ranging 5-125 mg/mL) and x-axis indicates ionic strength of the corresponding salt 

(ranging 0-275 mM, 25mM increments).  

 

In protein phase diagrams an undersaturated and supersaturated zone can be identified50. 

The undersaturated zone, represented by cluster 1, contains solutions conditions where no 

change in protein phase behavior is observed. The supersaturation zone, clusters 2-5, 

represent solution conditions causing protein aggregation. Figure 3.1c shows cluster 

transformation and increasing supersaturated zone area for increasing pH values, for both 

ammonium sulfate and sodium chloride. Solubility dependency on pH is expected as pH 

affects amino acid residue protonation states34. This determines the type, total, and 

distribution of protein surface charge. In turn, these surface properties influence how the 

protein electrostatically interacts with the solvent and other solutes. Under these conditions, 

the surface charge of chicken egg white lysozyme (theoretical isoelectric point (pI) of 

11.35148) shifts from highly positively charged towards less positively charged (pH 3-pH 

9). Protein solubility decreases for solution pH values close to the protein pI as repulsive 

electrostatic forces diminish. Solubility is at a minimum at a pH equal to the pI26,34. In this 

work, increasing pH values decrease protein solubility and therefore cause larger 

supersaturated zones.  

 

Protein solubility can also be influenced by specific ions and their ionic strength26,118. 

Proteins can display increasing and decreasing solubility for increasing ionic strength, 

called salting-in and salting-out, respectively149. Solutions containing sodium chloride, 

depicted in bottom MPPDs in Figure 3.1c, show only salting-out for all pH values. Salting-

out becomes more effective for increasing pH indicated by increasing supersaturation zone 

area. Both observations are in agreement with previously published work116,150. On the 

contrary, ammonium sulfate has no effect on protein solubility at pH 3 and pH 5, whereas 

salting-in for pH 7 and pH 9 is observed. Salting-in becomes less effective for increasing 

pH values. Salting-in and salting-out effectiveness of anions and cations is related to its 

position in the Hofmeister series41. Currently, there are many conditions for which a direct 

or an inverse effectiveness order has been identified151. Lysozyme with a net positive 

surface charge and in presence of relatively low ionic strength range (<300 mM) follows a 

reversed Hofmeister series42,152.   
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Figure 3.1: (a) Overview of symbols and descriptions of image features including the absolute value range. 

(b) Radar charts for color based clusters with a legend to indicate the position of image features. The 

colored surface indicates the normalized median image feature for each cluster. The dotted line indicates 

the image feature median absolute deviation. (c) Empirical protein phase diagram for lysozyme under 

varying protein concentrations (y-axis), salt ionic strengths (x-axis), pH values (grid columns), and salts 

(grid rows). Five identified color clusters are indicated by mean color as well as a cluster number. Dashed 

lines are added to highlight regions and guide the eye. 
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The existence of reversed Hofmeister series has indicated that the classic theory, where 

only salt hydration properties influences protein solubility based on ion-water interactions, 

should be expanded by including cosolutes-protein surface interactions38,41,151,153,154. In this 

work, a dominant role of protein surface charge is highlighted by increasing salting-out 

and decreasing salting-in effectiveness for increasing pH values. However, a unified 

molecular interaction mechanism explaining salting-in and salting-out is still unknown154. 

Possible molecular salting-in and salting-out mechanisms of lysozyme under tested 

conditions are interesting phenomena, but it is considered to be outside the scope of this 

study and therefore not further discussed. The focus lies on combining morphologic and 

kinetic image-based features into a complete and comprehensive multidimensional protein 

phase diagram to support straight-forward accessibility of protein phase behavior 

information via appropriate data visualization. 

 

Figure 3.1c shows cluster transformations from cluster 3 to 5 in direction of higher 

lysozyme concentrations and higher sodium chloride ionic strength. For ammonium 

sulfate, a similar cluster transformation is seen in direction of higher lysozyme 

concentration but, in contrast to sodium chloride, for lower ammonium sulfate ionic 

strength. The similarity in cluster transformation shows that there is no ion specific effect 

on the resulting morphology and kinetics. The transformations are similar, but respective 

cluster areas are different for each salt. For example, cluster 5 is dominating the 

supersaturation zone at pH 9 in combination with sodium chloride, whereas cluster 4 and 

5 are equal in size for pH 9 in combination with ammonium sulfate. This shows that the 

degree of supersaturation is affected by ion type when all other solution conditions are kept 

constant. Higher degrees of supersaturation, increasing lysozyme concentration at similar 

solubility or lowering solubility (e.g. by pH or salt) at equal lysozyme concentration, 

increases the probability for spontaneous homogeneous crystal nucleation50,155. Higher 

probability results in faster nuclei formation and higher crystal numbers, which 

corresponds to the differences in both crystal onset time and crystal abundance between 

cluster 3, 4, and 5 as well as the respective cluster identification at increasing protein 

concentration, ionic strength, or pH. Previously reported positive correlations between the 

effects of increased crystal nucleation and degree of supersaturation are in agreement with 

this observation111,134–136,156,157. The change in crystal onset time and crystal abundance 

between cluster 3, 4, and 5 is also accompanied by a difference in average absolute crystal 

size. Crystal size is dependent on growth duration as well as speed, which in turn relies on 

underlying growth mechanisms, response on surface poising (i.e., impurity incorporation 

or incorrect molecule positioning on the surface), or available amount of protein127,155,158. 

Differently from nucleation, crystal size is not directly correlated to the degree of 

supersaturation158. For pH 3, 5, and 7, crystal size and crystal growth time increase in the 

direction of higher supersaturation, but at pH 9, the crystal size and crystal growth decrease 
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in the same direction. This is represented by the transformation of cluster 3 to cluster 4 and 

cluster 4 to cluster 5, respectively. Such an optimum in lysozyme crystal size has been 

reported before under different conditions136. Clusters 3 and 5 both represent similarly 

small crystals (~36 μm) in different parts of the supersaturated zone. The combination of 

kinetic data and crystal size suggests that solubility limitations and underlying growth 

mechanisms are responsible. Cluster 3, identified at the frontier of the supersaturation zone, 

shows a growth time of ~240 h before it reaches its terminal crystal size. An increase in 

protein concentration leads to crystals identified by cluster 4, where crystal growth time 

and crystal size increase simultaneously. Crystal growth cessation can occur when protein 

molecules still in solution reach the solubility limit as a result of crystal growth155. It is 

suggested that crystal size in cluster 3 was limited by the amount of available material as a 

lysozyme concentration increase for similar conditions results in further crystal growth. On 

the other side of the crystal size optimum, at higher supersaturation, cluster 5 is identified. 

Size limitation may be because of high supersaturation, which increases the number of 

crystal nuclei. Growth of many nuclei may not be supported by the available amount of 

material which causes growth cessation135,158. However, protein concentrations ranging 

from 25 to 125 g/L belong to cluster 5, but a lysozyme concentration increase under similar 

conditions does not influence crystal size or growth time. This indicates that the underlying 

growth mechanism is limiting. Formation of well-ordered crystals requires proper 

molecule positioning155. Proper molecule positioning on the crystal surface is achieved by 

moderate interaction between available crystal contacts and the molecule. This should 

allow for rearrangement of less favorable orientations before incorporation. Strong 

attractive interactions, which occur at higher supersaturation, may trap molecules in a less 

ordered state. Such changes to the crystal surface can cause growth cessation155. The 

maximum crystal size of ~96 μm, identified in cluster 4, lies within a region where growth 

can be supported in terms of available material without extreme nucleation and strong 

interactions as seen for higher supersaturation. This combination is suggested to be the 

cause of the crystal size optimum. 
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3.4 Conclusion 

This study shows that multidimensional data visualization using the EPD method allows 

for comprehensive and complete representation of lysozyme phase behavior under 768 

unique solution conditions using 4 morphological and 4 kinetic image-based features in a 

single figure. Data-dependent clustering resulted in 4 of 5 clusters for a single crystal 

subtype. This indicates that subtle changes in protein phase transitions, such as crystal onset 

time, growth time, and crystal size, can be identified. Feature differences as an effect of 

protein concentration, salt type, ionic strength, and solution pH are easily identified with 

colored clusters. The combination of morphologic and kinetic features gave insight into the 

route of crystal formation belonging to a similar morphology subcategory. It was shown 

that MPPDs are capable of handling large amounts of phase behavior data without 

challenging data interpretation, a characteristic currently missing in high throughput 

protein phase behavior experiments. In terms of data handling, improvements are 

necessary. Image feature extraction was preformed manually for this study, which is time 

and labor intensive and prone to subjectivity. Image recognition algorithms to substitute 

manual morphology and kinetic feature extraction would greatly improve time and labor 

consumption. Image recognition algorithms would also offer the opportunity to use image 

recognition based features to describe protein phase behavior more systematic and 

accurate. 
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Abstract 

Image-based protein phase diagram analysis is key for understanding and exploiting 

protein phase behavior in the biopharmaceutical field. However, required data analysis has 

become a notorious time-consuming task since high-throughput screening approaches were 

implemented. A variety of computational tools have been developed to support analysis, 

but these tools primarily use end point visible light images. This study investigates the 

combined effect of end point and time-dependent image features obtained from cross 

polarized and UV light features, supplementary to visible light images, on the classification 

of protein phase diagram images. In addition, external validation was performed to evaluate 

the classification algorithm’s applicability to support protein phase diagram scoring. The 

predicted protein phase behavior classes were subsequently used to automatically construct 

multidimensional protein phase diagrams (MPPDs) to prevent image information loss 

without complicating the employed image classification algorithm. Combining end point 

and time-dependent features from three light sources resulted in a balanced accuracy of 

86.4 ± 4.3%, which is comparable to or better than more complex classifiers reported in 

literature. External validation resulted in a correct formulation classification rate of 91.7%. 

Subsequent automated construction of the MPPDs, using predicted classes, allowed 

visualization of details such as crystallization rate and protein phase behavior type co-

existence. 
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4.1 Introduction 

Protein phase behavior plays an important role in various sectors of the biopharmaceutical 

field. Knowledge on protein phase behavior indirectly aids in unraveling protein’s three 

dimensional structure which requires a crystalline phase108,109, but is also essential for 

downstream processing107 and formulation development105,106. Protein phase behavior is 

often characterized with protein phase diagrams, which are used as a source of information 

on protein solubility159, insoluble aggregate morphology114,115,119, and aggregation 

kinetics160 .  

 

Currently, most protein phase diagram data is obtained via automated imaging systems161. 

Subsequent scoring and analysis of the obtained image datasets is a time-consuming task 

as typical screenings with an automated imaging system consist of a multitude of 96-well 

plates. In addition, scoring subjectivity has been raised as a concern. Subjectivity can 

influence the number of scoring classes that are used, but also the consistency of scoring 

by experimenters162,163. Workload and error reduction by means of computational 

classification algorithms has therefore been explored in the field. This resulted in a variety 

of protein phase behavior image classification approaches. An elaborate overview of 

published work regarding image classification approaches can be found elsewhere164. The 

amount of reports shows how desirable an accurate classification algorithm is for protein 

phase behavior research. However, some classification algorithm properties and 

classification performance measures are specifically designed for certain protein phase 

behavior applications. For example, most classification algorithms focus on the 

identification of optimal crystallization conditions165, preferably applicable in real-time 

during experiments166,167. The work presented in this paper focuses on the application of 

an image classifier to aid protein phase behavior analysis after conclusion of experimental 

work. This work aims to use the retrieved information to understand effects of different 

environmental factors to manipulate and potentially predict protein phase behavior. 

Computational speed is less important here than for real-time applications, as the retrieved 

empirical data is examined after experiments instead of during experiments. In addition, 

not solely the identification accuracy of crystals but the identification accuracy of all types 

of protein phase behavior morphologies is considered important.  

 

One of the major issues in protein phase behavior image classification is the number of 

protein phase behavior types, sub-types, and the co-existence of these (sub)types168. For 

example, crystallization can be in the form of needle crystals or three dimensional crystals. 

In addition, these subtypes can co-exist in a single formulation or co-exist with another 

protein phase behavior type, such as precipitates. Incorporation of more classes to cover 

the wide variety of possible morphology types has shown a decrease in classification 
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accuracy compared to simpler class systems169–172. However, high accuracy for more 

advanced approaches is required to fully capture the complexity of protein phase behavior. 

A strategy to improve the accuracy of classification models is the employment of different 

data sources, which have been explored to find more distinctions between protein phase 

behavior (sub)types. Evaluated sources include, but are not limited to, protein trace-

labeling in combination with green fluorescence168,173,174, second-order nonlinear imaging 

of chiral crystals (SONICC)175, ultraviolet (UV) light176,177, and two-photon excited UV 

fluorescence178. Despite these alternatives, the main data source remains images obtained 

with visible light. Another property of the majority of image classification studies is the 

use of one image per formulation, which is usually the image taken at the end of a protein 

phase behavior experiment (end point image). However, incorporation of information 

obtained during protein phase behavior experiments (time-dependent information) has 

shown to aid crystallization screenings98,179.  

 

To explore improvements of protein phase behavior classification, this study aims to 

combine time-dependent and end point features obtained from multi-light source images 

and assess the impact by means of a random forest classification algorithm. A random 

forest classification algorithm was selected because the optimization of protein phase 

behavior classification via more complex algorithms was considered outside the scope of 

this work. Light sources used in this study are visible light, cross polarized light, and UV 

light. To the best of the authors’ knowledge, no previous studies report on the effects of 

features extracted from this combination of light sources for protein phase behavior 

classification. The use of time-dependent data for protein phase behavior classification 

purposes has also not been reported on before. To evaluate the impact of multiple light 

sources and time-dependent information on protein phase behavior classification, internal 

validation of the classification performance has been compared to performances using only 

end point features obtained from visible light images and performances reported in 

literature. External validation, by means of scoring 96-well format microbatch 

experiments, was used to evaluate the applicability of this classification approach for 

scoring protein phase diagrams.  

 

The classification algorithm in this work used four classes (clear, crystal, precipitate, and 

other). Classification of protein phase behavior images with a 4-class system generates 

information on aggregate morphology. However, protein phase diagram images captured 

over time contain information on aggregate properties and kinetics as well, which is lost 

when scoring solely protein phase behavior types. Construction of multidimensional 

protein phase diagrams (MPPDs) allows for the objective representation of aggregate 

properties and kinetics180. This can include aggregation extent, aggregate size, and 
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aggregate growth time. In previous work, MPPDs were constructed with manually 

extracted image-based features180. In this work, the extraction of the image features has 

been automated. The combination of image classification and subsequent MPPD 

construction was investigated to determine its potential to aid and innovate computational 

protein phase behavior classification. By focusing on main protein phase behavior types 

during classification, the accuracy of the classifier is thought to remain relatively high, 

while an objective interpretation of the classified protein phase behavior properties can be 

obtained from the corresponding MPPD.  

 

In total three topics are covered in this study. First, the impact of multi-light source and 

time-dependent image features on protein phase behavior classification was evaluated via 

interval validation. Second, an external validation is performed to assess the applicability 

of the image classification model for scoring protein phase diagrams. Third, MPPDs were 

automatically constructed using the predicted classes from external validation, where class-

based extraction of aggregate growth time and dimensions was used to visualize details on 

protein phase behavior. The combination of these three topics exemplifies the diversity of 

image classification approaches, the advantages of additional image sources, and the 

potential of expanding classification algorithms with automated visualization of 

multidimensional image-based data. 

 

4.2 Material and Methods 

4.2.1 Image dataset 

Images were obtained with microbatch crystallization experiments, where 96-well MRC 

Under-Oil crystallization plates (Swissci, Neuheum, CH) were placed in the automatic 

image system Rock Imager 54 (Formulatrix, Bedford, MA, USA). Storage time was either 

14 days or 30 days. Visible light images were taken at least daily, and cross polarized and 

UV light images were taken at least six times during the storage period. A total of 57 and 

67 images per well were taken during 14 and 30 days of storage, respectively. A detailed 

overview of the employed image schedules can be found in Supplementary Table B1. The 

settings for each light source have been previously described180. After storage, the end point 

image (i.e., the image taken at the last time point) of each well was scored using a 4-class 

system: “clear”, “precipitate”, “crystal”, and “other”. Scoring was performed based on 

visual inspection of the corresponding visible, cross polarized, and UV light images. In 

addition, the difference between initial formulation protein concentration and supernatant 

concentration after storage (data not shown) was taken into consideration. The class “other” 

was assigned to formulations which did not remain clear over time, but showed no 

illumination in the UV images and no change in supernatant protein concentration 

compared to the starting formulation protein concentration. Formulations where co-
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existence of precipitates and crystals occurred were scored as “crystal”. This resulted in a 

4-class dataset of 4416 formulations (~63% “clear” (2797), ~3% “precipitate” (149), ~24% 

“crystal” (1039), and ~10% “other” (431)). An example image of each class for each light 

source is shown in Supplementary Material Figure B1. 

 

4.2.2 Feature extraction 

Image features were extracted from thumbnail images (200x150 pixels) using MATLAB 

(version R2015b, MathWorks, Natick, MA, USA). Boundaries of the well and plate were 

replaced with black pixels (i.e., masked) for each visible light and cross polarized image in 

order to remove irrelevant information from the image. An example of the masked-out 

region can be found in Supplementary Figure B2. This was not needed for the UV light 

images, as a 7x zoom was used during UV light imaging instead of 2.5x zoom during 

visible light and cross polarized light imaging. The applied 7x zoom eliminated the well 

walls from the images. Feature extraction for an entire 96-well plate took ~200 seconds 

(14 days of storage) and ~400 seconds (30 days of storage). Two types of images features 

were extracted per well: (1) end point features and (2) time-dependent features. All features 

were extracted for each of the three light sources. The end point features resulted in 

extraction of 150 features from the final image. These features can be subdivided in three 

categories: (1) histogram features, (2) blob features, and (3) gray-level co-occurrence 

matrix (GLMC) features. A complete list of extracted image features can be found in 

Supplementary Material Table B2. Histogram features were extracted for each color level 

and the gray image employing the MATLAB function imhist. The gray image was obtained 

using the MATLAB function rgb2gray. Blobs were identified by using the Sobel edge 

detection method with a diamond as structural element set with a distance of 2 pixels from 

the origin to the points (MATLAB function strel). After edge detection, the edges were 

closed (MATLAB function imclose) and filled (MATLAB function imfill). After closing 

and filling, a second mask (with a smaller radius: original mask + 2 pixels) was added to 

remove the edges of the initial mask from the blob identification. Similar to the initial 

masking, the second mask was not used for UV light images. Blob properties were 

retrieved with MATLAB function regionprops, and the total pixel area and blob count were 

calculated. The GLMC of each image was obtained with the MATLAB function 

graycomatrix. Corresponding features were extracted with function GLCM_Feature1, 

which is available via MathWorks file exchange181. For the time-dependent feature, every 

image was subtracted from the first image of the corresponding formulation. This was done 

to determine the mean pixel intensity change over time. The mean pixel intensity of the 

end point difference image (start point image – end point image) was used in the classifier 

as time-dependent feature. The course of mean pixel intensity of difference images over 

time was used for the construction of multidimensional protein phase diagrams. The mean 
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pixel intensity of each individual image was also determined at each time point, where the 

start point and end point intensity were used for the construction of the multidimensional 

protein phase diagrams.  

 

4.2.3 Feature selection 

All computational steps after feature extraction were performed with MATLAB version 

R2018b. Feature selection was performed via two subsequent steps. First, the internal 

correlation between features was used as a filter to minimize overrepresentation of 

particular system characteristics. The Pearson correlation coefficient was determined for 

the complete feature dataset. A threshold of 0.950 for positive and negative linear 

dependency between features was set. All features with a Pearson correlation coefficient 

outside this threshold were eliminated. The remaining features were processed with the 

second step. To minimize the incorporation of noise, features were evaluated and selected 

based in their feature importance for the classification problem under investigation. This 

was done with an embedded feature selection method by employing the MATLAB function 

TreeBagger. A bagged (bootstrap aggregated) random forest consisting of 100 trees was 

built and the relative importance of each feature during classification was extracted. The 

number of trees was determined by inspection of the obtained out-of-bag error as a function 

of number of incorporated trees. The results used to select the number of trees can be found 

in Supplementary Material Figure B3. A cut-off feature importance value was set for the 

selection of features. The cut-off value was defined as the 50th percentile of the feature 

importance values of the entire feature set. All features with a feature importance value 

above the threshold were selected for training the classification model.  

 

4.2.4 Cross-validation 

A stratified 10-fold cross-validation was used to evaluate the image classification model 

performance. Each cross-fold preformed feature selection, as described in Section 4.2.3, 

and trained a random forest classification model using the selected features and the 

MATLAB function TreeBagger. Similar to feature selection, 100 trees were used in the 

classification model. The evaluation parameters to quantify the classifier performance were 

recall, precision, accuracy, and balanced accuracy, as defined by equation 4.1, 4.2, 4.3, and 

4.4, respectively. 

 

𝑅𝑒𝑐𝑎𝑙𝑙   
𝑇𝑃

𝑇𝑃 +  𝑁
 (4.1) 

𝑃 𝑒𝑐𝑖𝑠𝑖𝑜𝑛   
𝑇𝑃

𝑇𝑃 +  𝑃
 (4.2) 
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𝐴𝑐𝑐𝑢 𝑎𝑐𝑦   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝑃 +  𝑁
 (4.3) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢 𝑎𝑐𝑦   
𝑃 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 
 (4.4) 

 

The evaluation parameters were defined by the true positive count (TP), the true negative 

count (TN), the false positive count (FP), and the false negative count (FN). These variables 

were obtained from a confusion matrix after classification. To determine the overall 

performance after cross validation, an overall average of each evaluation parameter was 

calculated using the evaluation parameters per class.  

 

4.2.5 External validation 

Next to 10-fold cross-validation, the performance of image classification was evaluated for 

an experimental dataset by means of external validation. The dataset was divided into a 

model training set and external test set. Three 96-well crystallization plate results (plate A, 

B, and C) were selected as external test set and the rest of the images (4128 images) were 

used as model training set. These three plates were selected based on the observed protein 

phase behavior after storage, to ensure the inclusion of all identified classes during external 

validation. Plate A contained formulations classified as “clear”, “precipitate”, and 

“crystal”. In addition, plate A showed formulations with precipitate and crystal co-

existence. Plate B contained “crystal” and “clear” formulations, and plate C contained 

mostly “clear” and “other” formulations. The external validation image classification 

model was trained with similar settings as mentioned for the 10-fold cross-validation in 

Section 4.2.4. External validation was evaluated based on the correct classification rate 

within an entire 96-well plate, and quantified by percentage of correctly scored 

formulations per plate. Data was visualized by representing the classes obtained from the 

external validation model as symbols in a 96-well plate format: a scatter plot with eight y-

axis values and twelve x-axis values. Class determination by the external validation model 

returned the probability of the identified class as well (i.e., the probability of the 

observation to truly belong to the returned class). This classification probability was 

incorporated in the scatter plot by adjusting the size of the symbol that indicates the position 

of the formulation in the 96-well plate. This was carried out by multiplying the probability 

value, when it fell below 0.750, with the default symbol size. This means smaller symbols 

were obtained for lower probability values. The overall probability of the classification was 

quantified by the mean value of all 96 probability values. 
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4.2.6 Automated multidimensional protein phase diagram (MPPD) construction 

An MPPD was automatically constructed to retrieve detailed information on the classified 

formulations. Automated construction of an MPPD was performed with end point and 

time-dependent features. An overview of the employed image features for the MPPD can 

be found in Supplementary Figure B3. Each of the listed features were extracted for all 

three light sources. This means that each main feature listed in Supplementary Figure B3 

consisted of three sub-features, namely one for each light source. After extraction, the three 

sub-features were averaged to represent the corresponding main feature. The time-

dependent feature growth time was determined as follows. The intensity difference over 

time (extraction is explained in Section 4.2.2) was fitted with a smoothing spline function 

by employing the MATLAB function fit and a smoothing parameter of 1·10-4. The fitted 

function was used to calculate the first derivate. The first zero value (in time) of the 

derivative was extracted, which represents the point in time at which intensity change 

ceased. This point in time was used as the definition for the end of aggregation growth, and 

thus aggregation growth time. If a zero point could not be found, the last time point was 

set as growth time.  

 

The image features listed in Supplementary Table B3 were extracted for formulations that 

were scored as “precipitate” or “crystal” by the external validation classification model. 

Formulations scored as “clear” or “other” were not included during feature extraction for 

the MPPD data set, as aggregate properties are non-existent in these formulation. All values 

for “clear” and “other” classified formulations were set to zero. The data of all three plates 

was used to construct an MPPD for each plate. Methods used to obtain the MPPD, such as 

dimensionality reduction and visualization, have been previously been described by Klijn 

et al.180. The optimal cluster number was set to range from 1 to 6 and a Pearson correlation 

coefficient cut-off value of 0.850 was used. 

 

4.3 Results and Discussion 

4.3.1 Feature set evaluation by 10-fold cross-validation 

The effect of incorporating different light sources and a time-dependent image feature on 

the classification of protein phase diagram images was evaluated. This was done by 

performing 10-fold cross-validation for multiple image feature sets and determining the 

accuracy, balanced accuracy, precision, and recall. Balanced accuracy (the average of 

recall and precision) was used as an evaluation parameter because protein phase diagram 

image datasets often deal with a class imbalance168,182. This class imbalance is not only an 

aspect to take into account during model training via proper class representation, but also 

during model evaluation. Six feature sets have been evaluated in this study: (1) image 

features extracted from visible light end point images (Vis); (2) Vis feature set combined 
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with a time-dependent image feature extracted for all three light sources (Vis+Time); (3) 

Vis feature set combined with image features extracted from cross polarized end point 

images (Vis+CP); (4) Vis feature set combined with image features extracted from UV 

light end point images (Vis+UV); (5) all features extracted from end point images for each 

light source (Vis+CP+UV); and (6) time-dependent features combined with the fifth 

feature set (Vis+CP+UV+Time). For each feature set, and each fold during cross-

validation, feature selection and classification model training was performed. It was 

observed that feature selection did not return different features between the 10 folds for the 

same feature set (data not shown). An overview of the selected image features per evaluated 

feature set can be found in Supplementary Figure B4. Figure 4.1 shows the mean evaluation 

parameters for each feature set after 10-fold cross-validation. Accuracy was added to the 

evaluation parameters as it is often used in studies when evaluating image classification 

models. Therefore, accuracy may be of interest for other work as comparable evaluation 

parameter. However, for the reasons mentioned above, the balanced accuracy will be used 

as the overall performance measure in the discussion of this work.  

 

 

Figure 4.1: Recall, precision, accuracy, and balanced accuracy in percentages for six different feature set. 

Vis: visible light end point image features; Time: time-dependent feature from each light source; CP: cross 

polarized light end point image features; and UV: ultraviolet light end point image features. Error bars 

represent the standard deviation calculated for each evaluation parameter obtained after internal 10-fold 

cross validation. 

 

The poorest classification model performance was obtained for the Vis feature set. The 

evaluation parameters show a recall, precision, and balanced accuracy of 63.0 ± 6.8%, 75.5 

± 5.6%, and 69.3 ± 4.3%, respectively. Note that evaluation parameters are mentioned as 
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mean ± standard deviation which was calculated with the evaluation parameters of each 

fold and each class obtained during 10-fold cross validation. The performance of all other 

feature sets are compared to performance of the Vis feature set, as visible light end point 

images are most often used to classify protein phase behavior images. An increase in 

classification model performance was seen for each addition to the Vis feature set. The 

addition of end point image features obtained with cross polarized light (Vis+CP) showed 

the smallest increase. The balanced accuracy increased from 69.3 ± 4.3% (Vis) to 70.7 ± 

4.6% (Vis+CP). Recall and precision increased with 0.5 percent point and 2.4 percent 

point, up to 63.5 ± 5.6% and 77.9 ± 5.4%, respectively. The addition of time-dependent 

features (Vis+Time) showed a 4.9 percent point increase in balanced accuracy (74.2 ± 

4.5%) compared to the classification using solely Vis (69.3 ± 4.3%). Recall and precision 

increased from 63.0 ± 6.8% and 75.5 ± 5.6% to 68.1 ± 5.8 and 80.3 ± 5.5%, respectively. 

The largest increase compared to Vis was seen for the addition of features extracted from 

the end point images obtained with UV light (Vis+UV). Balanced accuracy increased up 

to 82.2 ± 4.7%. Recall and precision showed an increase of 14.3 percent point (77.3 ± 

6.4%) and 11.6 percent point (87.1 ± 4.4%), respectively, compared to the performance 

when using Vis. The addition of cross polarized light feature images to the Vis+UV feature 

set, to obtain the Vis+CP+UV feature set, resulted in a classification performance 

comparable to the Vis+UV feature set. The observed increase of 0.2 percent point upon 

comparison of Vis+UV and Vis+UV+CP in terms of recall, precision, and balanced 

accuracy falls within the standard deviations of the performance evaluation parameters of 

the Vis+UV+CP feature set (77.4 ± 5.5%, 87.3 ± 4.1%, and 82.4 ± 4.0%, respectively). 

This observation corresponds to the small increase in performance when comparing the 

Vis and Vis+CP feature set. The lack of relevant information from cross polarized light 

images in this classification problem may be due to the limited dataset size and diversity. 

It could also be due to the extraction of similar features for each light source. Future work 

can determine whether specific image-based features for specific light sources increases 

the light source’s relevance. Addition of time-dependent features (Vis+CP+UV+Time) 

resulted in the best performance of all tested feature sets. A balanced accuracy of 86.6 ± 

3.9%, a recall of 83.4 ± 6.2%, and precision of 89.8 ± 3.7% were obtained. The evaluation 

parameters of Vis+CP+UV+Time showed a relatively small increase from the 

Vis+CP+UV feature set, namely an increase of 5.9, 2.5, and 4.2 percent point, respectively. 

Nevertheless, compared to the Vis feature set, addition of different light source features 

and time-dependent features resulted in an overall increase of 20.4, 14.3, and 17.3 percent 

point for recall, precision, and balanced accuracy, respectively. 

 

Table 4.1 lists the mean evaluation parameters for all four classes obtained during 10-fold 

cross-validation with the Vis+CP+UV+Time feature set. The evaluation parameters per 

class are shown for this feature set as it showed the best classification performance in this 
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study. Mean evaluation parameters obtained during cross-validation per class for all other 

feature sets can be found in Supplementary Table B5. 

 

Table 4.1: Average recall, precision, accuracy, and balanced accuracy listed in percentage per protein 

phase behavior class obtained for 10-fold cross-validation using the image feature set containing visible, 

cross polarized, ultraviolet light image features in combination with a time-dependent feature. The values 

are listed as mean ± standard deviation. This was calculated based on the 10 folds obtained from internal 

cross-validation. 

 

Table 4.1 shows that the “other” class resulted in the lowest performance. This is 

represented by a recall and precision of 66.9 ± 7.3% and 77.9 ± 5.9%, respectively. The 

accuracy does not reflect this poor performance (95.1 ± 0.9%), which highlights the role 

of an imbalanced class distribution on performance evaluation. The balanced accuracy 

paints a more realistic picture of the classification model performance, with 72.4 ± 5.3% 

for the “other” class. The balanced accuracy also reflects that the classifier performs well 

for classes “clear” and “crystal”, represented by 93.8  0.8% and 92.6   1.6%, respectively. 

However, recall for the “crystal” class is lower than the “clear” class (86.4   3.0% versus 

96.9 ± 1.1%), while the opposite is seen for precision (90.8   1.5% for “clear” and 96.8   

1.6% for “crystal”). This reflects that crystal formulations show a higher false negative 

rate, which means that crystallized formulations are more often missed than clear 

formulations. On the other hand, “clear” formulations showed a higher false positive rate. 

The higher false positive rate of the “clear” class and the low performance of the “other” 

class are both attributed to misclassifications between “clear” and “other” images. This can 

be deducted from the individual confusion matrices of the Vis+CP+UV+Time feature set, 

shown in Supplementary Material Table B6. The “precipitate” class showed a moderate 

balanced accuracy of 88.6 ± 7.8%. A recall of 83.2 ± 13.6% reflects a relatively high false 

negative rate and a large deviation between the folds. The large deviation is presumable 

due to the small contribution of the “precipitate” class to the total dataset (~3%). The 

corresponding precision for the “precipitate” class of 93.9   5.8% reflects a low false 

positive rate.  

 

A considerable amount of research has been published concerning image recognition for 

protein phase behavior studies164. However, due to the wide range of classification classes, 

image sources, training/test sets sizes, algorithms, and classification optimization targets, 

it is difficult to put new protein phase behavior classification work into perspective. Three 

 Recall [%] Precision [%] Accuracy [%] Balanced Accuracy [%] 

Clear 96.9 ± 1.1 90.8 ± 1.5 91.8 ± 1.1 93.8 ± 0.8 

Precipitate 83.2 ± 13.6 93.9 ± 5.8 99.1 ± 0.6 88.6 ± 7.8 

Crystal 86.4 ± 3.0 96.8 ± 1.6 96.2 ± 0.7 91.6 ± 1.6 

Other 66.9 ± 7.3 77.9 ± 5.9 95.1 ± 0.9 72.4 ± 5.3 
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studies have been selected to put the work presented in this study into perspective. The data 

is shown in Table 4.2. The studies have been selected based on the available data, number 

of classification classes, and type of classifier. The available published performance 

parameters have been converted to match the definitions as described in Section 4.2.4. The 

number of classification classes are considered as a selection criterion, as the number of 

classes shows a large influence on the evaluation parameters. High class systems tend to 

show a poor performance, while two class systems show a relatively good performance.  

 

Table 4.2: Overview of the average recall, precision, accuracy, and balanced accuracy in percentages for 

literature data and the work presented in this study. The values are given in mean ± standard deviation, 

which are determined based on the corresponding evaluation parameters for all considered classes. 

 

The work of Bruno et al. employs similar classes (“clear”, “crystal”, “precipitate”, 

“other”)167, while Sigdel et al. and Cumbaa et al. employed a 3-class system (“clear”, 

“crystal”, “other”)168,171. In addition to the classes, the type of classifier was taken into 

account. As listed in Table 4.2, deep convolutional neural networks (CNNs) were used by 

Bruno et al., while a random forest classifier was used by the Sigdel et al. and Cumbaa et 

al. The type of classifier is of interest because of the required computational time and 

expertise to design and train a classification model. Deep CNNs classification algorithms 

are considered advanced and computational expensive, while random forest classification 

algorithms are considered more transparent and computational inexpensive. For the 

application of a classification model in a laboratory with powerful yet ordinary computers 

and scientists with moderate programming skills, it would be beneficial to keep algorithms 

computational inexpensive and accessible. However, simpler classification algorithms tend 

to be less accurate.  

 

Table 4.2 shows deep CNNs as the best performing classifier. The percent point difference 

between the work by Bruno et al. and the work presented here is 5.3, 3.1, and 4.2 for the 

average recall, precision, and balanced accuracy, respectively. Even though the deep CNNs 

performance is better on average, the simplistic approach and basic features that are used 

in this study already result in a classification performance that lies within the standard 

deviation range. This highlights the potential of time-dependent and multi-light source data 

 
Bruno et al.167 Cumbaa et al.171 Sigdel et al.168 This study 

 

Classified type CNN RF RF RF 

Number of training images 442930 124816 714 4234 

Number of classes 4 3 3 4 

Recall [%] 88.7 ± 11.3 87.5 ± 7.9 85.6 ± 14.3 83.4 ± 6.2 

Precision [%] 92.9 ± 3.2 80.0 ± 16.9 87.9 ± 8.4 89.8 ± 3.7 

Accuracy [%] 97.2 ± 1.0 91.0 ± 4.0 96.5 ± 2.3 95.5 ± 0.8 

Balanced accuracy [%] 90.8 ± 7.2 83.7 ± 10.9 86.8 ± 10.3 86.6 ± 3.6 
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for image classification accuracy improvement, while employing a simple and transparent 

classification algorithm. The use of more complex features from visible light end point 

image by Cumbaa et al. resulted in 4.1 percent point higher recall compared to the study 

presented here. Contrarily, the precision and balanced accuracy are 9.8 and 2.9 percent 

point lower for the work by Cumbaa et al., respectively. Performance parameters of Sigdel 

et al. are comparable to performance parameters of the current study. The main difference 

between the current study and the work presented by Sigdel et al. is the higher standard 

deviation reported for the latter. This is represented by an 8.1, 4.7, and 6.7 percent point 

higher standard deviation for recall, precision, and balance accuracy, respectively. In 

general, the standard deviation for the current study is smaller compared to the three 

literature studies, which indicates that the performance between classes is more consistent.  

 

Presented internal validation results and the subsequent comparison with previously 

published work shows the advantage of information obtained from multiple light sources 

as well as information obtained over time for protein phase behavior image classification. 

The full potential of this classification approach can be assessed in future work, where the 

effects of more complex and light source-specific features, a rigorous feature optimization 

workflow, and a larger and more complex image dataset should be investigated.  

 

4.3.2 Protein phase diagram prediction 

Cross-validation was performed to obtain an estimation of the model performance, but the 

application of the classification model would be to classify protein phase diagram images 

after an experiment is completed. To evaluate the performance for this application, an 

external validation was carried out using the best performing feature set during internal 10-

fold cross-validation, namely the combination of visible light, cross polarized light, UV 

light, and a time-dependent feature. To evaluate the external validation, images obtained 

from three 96-well microbatch crystallization plates were selected to be classified. These 

plates were selected so that all four classes were part of the external validation. All other 

4128 formulations were used to train the classification model. Before training the external 

validation classification model, feature selection was performed. Feature selection resulted 

in the removal of 94 features based on internal correlation coefficient and 28 based on 

feature importance. The corresponding correlation coefficient matrix and feature 

importance graph can be found Supplementary Figure B4 and Figure B5, respectively. A 

total of 28 features remained to train the classification model, which are listed in Table 4.3. 

The resulting classification of the three excluded plates by the obtained classification 

model is depicted in Figure 4.2.  

  



50 
 

Table 4.3: Overview of selected image feature for the external validation classification model. 

Number Feature description Light source 

1 - 3 Entropy color level red, green, and blue 

Visible light 

4 Mean pixel intensity color level red 

5 - 6 Pixel variance color level red and blue 

7 Total count of blobs 

8 Contrast obtained from GLMC 

9 Correlation obtained from GLMC 

10 Cluster shade obtained from GLMC 

11 Energy obtained from GMLC 

12 Entropy obtained from GMLC 

13 Measure of correlation 2 obtained from 

GLMC 

14 Total intensity difference 

15 Entropy color level red 
Cross polarized 

light 
16 Total area of blobs 

17 Total intensity difference 

18 Entropy color level red 

UV light 

19 Mean pixel intensity color level red 

20 - 21 Skewness and kurtosis color level red 

22 - 23 Total area and count of blobs 

24 Contrast obtained from GLMC 

25 Correlation obtained from GLMC 

26 Cluster shade obtained from GLMC 

27 Energy obtained from GMLC 

28 Total intensity difference  

 

Colored symbols in Figure 4.2 represent the predicted class, where the size of the symbol 

is adjusted for its classification probability. A smaller symbol represents a lower 

classification probability, which was thought to help identify a possible misclassification. 

A circle around the symbol indicates that the formulation was incorrectly classified. The 

true class can be identified by the color of the circle, which is similar to the color of the 

symbol classes. The correct classification rate and mean probability of the entire plate is 

shown below each plate. Figure 4.2a shows a correct classification of 94.8% and a 

corresponding mean probability of 0.919 for plate A. For plate B in Figure 4.2b, 3 out of 

96 formulations were incorrectly classified, represented by a correct identification value of 

96.9%. Figure 4.2c (plate C) shows an incorrect classification of 16 out of 96 formulations, 

which is reflected by a correct identification percentage of 83.3%. The overall probability 

is also lowest for plate C, with a value of 0.770. The misclassifications in plate C 

correspond to confusion matrices obtained after 10-fold cross-validation (Supplementary 

Table B6) for the Vis+CP+UV+Time feature set. Confusion matrices show that “other” 

misclassifications are most often classified as “clear” and vice versa. In combination with 

a mean recall of 66.9   7.3% it is not unexpected that 8 out of 23 (~35%) of the “other” 

formulations were misclassified.  
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Figure 4.2: Classification results of external validation for (a) plate A, (b) plate B, and (c) plate C. The 

correct classification percentage and total plate probability is listed below each plate. Symbols represent 

the four predicted classes: (1) clear (blue dot), (2) precipitation (red asterisk), (3) crystal (yellow diamond), 

and (4) non-protein (gray dot). Symbol size is adjusted to the individual classification probability. Open 

circles represent the true class in case of misclassification. Colors represent the four true classes: (1) clear 

(blue), (2) precipitation (red), (3) crystal (yellow), and (4) non-protein (gray). 

 

Misclassification of crystallized formulations in plate A (B10 and B12) was most likely 

due to inability to recognized ~7 small crystals (<50 μm) in co-existence with precipitation. 

Considering the misclassified crystallized formulation in plate B (C9, C12, D4) and plate 

C (A1), which also contains a few small crystals, it can be concluded that the classifier 

does not perform well for the classification of a few small crystals. A hardware related 

limitation was found when inspecting the other misclassified crystallized formulation in 

plate A (D6). This formulation showed small crystals near the well walls, which are missed 

by the UV light images. This is due to the available minimal zoom for UV light images (7x 

for UV light versus 2.5x for visible and cross polarized light images), which results in an 

image lacking the outer part of the liquid formulation. Precipitates and crystals occurring 

at the well wall are therefore not captured in UV light images. It is assumed this issue can 

be resolved by applying a smaller zoom to capture the entire liquid formulation in UV light 

images. Class probability was incorporated in the symbol-based protein phase diagram to 

target uncertain model classifications for closer manual inspection more easily. However, 

external validation showed that not all incorrect classification have a corresponding low 

probability. For plate A, the probability for the misclassifications ranges from 0.570 to 

1.000 with a mean of 0.760. Plate B shows a range from 0.580 to 1.000, with a mean of 

0.810. Plate C shows a wider range of 0.500 to 0.970, with a mean of 0.720.  

 

External validation resulted in an overall correct classification value of 91.7% and overall 

classification probability of 0.881. These results indicate that the classification model in 

A B C

Clear Precipitation Crystallization Non-protein

Predicted class True class

Correct: 96.9% Total probability: 0.953Correct: 94.8% Total probability: 0.919 Correct: 83.3% Total probability: 0.770
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the current state is applicable as a fast, but solely preliminary assessment of protein phase 

diagrams. Elimination of human interpretation is not yet possible. Further development, as 

suggested in Section 4.3.1, is required to obtain a more reliable classification model. An 

additional approach that would be of particular interest to enhance the identification of 

uncertain classifications in protein phase diagrams, is the use of two or more parallel 

classification algorithms as presented by Buchala and Wilson172. The combined probability 

of multiple classifiers could enrich the classification outcome by a more accurate 

representation of classification uncertainty. 

 

4.3.3 Automated multidimensional protein phase diagram (MPPD) 

Image-based protein phase diagram studies are information-dense experiments. Besides 

information on the resulting protein phase behavior, imaging experiments contain 

information on aggregate dimensions such as crystal size, as well as information on 

aggregation kinetic properties, such as growth time. In previous work, construction of 

MPPDs showed how this rich information can be visualized and how MPPDs can aid 

protein phase diagram interpretation180. Extraction of aggregate dimensions and kinetic 

properties was previously done manually. In this work, results obtained from the protein 

phase behavior classification algorithm allowed for subsequent automated extraction of the 

information required to construct an MPPD. MPPD construction resulted in the clustering 

of features describing the total aggregated area (image feature: total blob area), the crystal 

count (image feature: number of blobs), the crystal length (image feature: mean blob major 

axis length), and the aggregation growth time (image feature: time point at which no 

intensity change was observed anymore). These features were reduced to three dimensions, 

with an energy loss of 1.4%. This energy loss falls within the accepted 10% energy loss 

after dimension reduction147. The obtained three dimensional dataset was used to cluster 

formulations together that show similar properties. These clusters are displayed as a 

uniform group in MPPDs. The results for plate A, B, and C are shown in Figure 4.3.  

 

Figure 4.3 shows three MPPDs (left) and five radar charts to represent data-dependently 

identified formulation clusters (right). Radar charts show a median value for each extracted 

feature as a color surface and a dashed line to indicate the median absolute deviation within 

clusters. Cluster 1 represents the formulations that were classified as “clear” or “other” as 

all image feature values equal zero. Cluster 2 represent “precipitate” formulations, as 

crystal specific features equal zero. Cluster 3, 4, and 5 represent “crystal” formulations. 

The fact that three clusters were identified to represent “crystal” formulations, shows that 

more information can be obtained without complicating the initial protein phase behavior 

classification algorithm. 
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Figure 4.3: Multidimensional protein phase diagrams for plate A, B, and C. Formulation clusters are 

indicated by color and number. Clusters are separated by a dashed line to guide the eye. Formulation 

cluster numbers correspond to radar chart numbers. Each radar chart represents the median value of the 

image features shown in the legend radar chart with a colored surface. The black dashed line inside each 

radar chart represents the median absolute deviation. 

 

Crystal length is comparable (~7 pixels) for all three crystal clusters, but differences were 

observed for aggregated area, growth time, and crystal count. Cluster 3 formulations 

showed a median aggregated area of 280 ± 101 pixels, with a median crystal count of 22 ± 

11 which grew for a median of 90 ± 16 hours. Note that cluster values are mentioned as 

median ± median absolute deviations. Cluster 4 formulations show a larger aggregation 

area (median of 291 ± 157 pixels) compared to cluster 3 formulations, which was obtained 

over a longer period of time (median of 279 ± 21 hours). However, cluster 4 formulations 

contained a comparable crystal count (median of 21 ± 9) as cluster 3 formulations. A 

comparable crystal count and crystal length combined with a larger aggregation area is 

presumably a consequence of the co-existence of crystals and precipitates, which was not 

seen for cluster 3 formulations. Results for cluster 4 indicate that co-existence can 

potentially be excluded from image classifiers as a (sub)class and be identified with 

complementary MPPDs. This benefits protein phase behavior classification, as recognition 

of co-existing phases is one of the main issues168. Cluster 5 shows a further increase in 

aggregated area (median of 771 ± 101), which was obtained in 94 ± 25 hours. The increase 

of crystal count (54 ± 10) indicates that the increase in aggregated area is a result of 

increased formation of crystals, and not co-existence with precipitates as seen for cluster 
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4. In addition, the higher crystal count also represents an increased nucleation rate for 

cluster 5 formulations compared to cluster 3 and cluster 4. The quantification and 

visualization of nucleation rates allows one to assess the level of super saturation.  

 

The discussed workflow from raw multi-light source images to symbol-based protein phase 

diagrams and complementary MPPDs showed the diversity of image-based information in 

the field of protein phase behavior studies. Prior to application of the proposed workflow 

for classification of screening experiments, the impact of the employed UV light on the 

protein in question should be assessed beforehand. This is noted as protein aggregation 

propensity may be affected by the use of UV light imaging183. Future work should focus 

on optimized MPPD information extraction for each light source and test a larger image 

database with more protein phase behavior (sub)types. The small scale and relative 

simplicity of the presented study indicates that more advanced techniques and data sets 

could increase its potential to aid analysis of protein phase behavior studies. 
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4.4 Conclusion 

This study presented three topics concerning image-based data for protein phase behavior 

analysis. The first topic demonstrated that combining multiple light sources (visible, cross 

polarized, and UV light) with time-dependent features improves the classification accuracy 

of protein phase behavior images. A balanced accuracy of 86.4 ± 3.9% was achieved during 

10-fold cross-validation. This was a 17.3 percent point increase compared to 10-fold cross-

validation with only visible light image features extracted from end point images. 

Evaluation of multiple image feature sets showed that features obtained from UV light 

images were most influential, followed by the time-dependent feature. The second topic 

covered the external evaluation of the image classification model to determine its 

applicability to protein phase diagram scoring. External validation resulted in an overall 

correct protein phase behavior classification of 264 out of 288 formulations (91.7%). The 

third topic used the external validation classification results to investigate the combination 

of image classification and objective multidimensional data visualization to exploit the 

information-rich image data without complicating the classification algorithm. It was 

shown that automated MPPDs can complement automatically classified protein phase 

diagrams by distinguishing phase co-existence and changing nucleation rates within the 

“crystal” class. The results presented for these three topics indicate that merging different 

approaches allows protein phase behavior research to benefit from the strength of each 

aspect. Hardware variety aids the distinction between protein phase behavior types, 

employing different visualization techniques allows one to capture several levels of 

information, and implementation of automated computational approaches minimize the 

workload. 
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Abstract 

Identification of long-term stable biopharmaceutical formulations is essential for 

biopharmaceutical product development. Reduction of the number of long-term storage 

experiments and a well-defined formulation search space requires knowledge-based 

formulation screenings and a detailed protein phase behavior understanding. To achieve 

this, short-term analytical techniques can serve as predictors for long-term protein phase 

behavior. Protein phase behavior studies that investigate this concept commonly display 

shortcomings such as limited and small datasets, sample adjustments, or simplistic data 

analysis. To overcome these shortcomings, 150 unique lysozyme solutions were analyzed 

using six different short-term analytical techniques. Lysozyme’s structural properties, 

conformational stability, colloidal stability, surface charge, and surface hydrophobicity 

were obtained directly after formulation preparation. Employing the empirical phase 

diagram method, this short-term data was correlated to long-term physical stability data 

obtained during 40 days of storage. Short-term protein properties showed partial 

correlation to long-term phase behavior. Identification of different structural conformations 

related to changing surface properties, colloidal stability, and conformation stability as a 

function of formulation conditions. This study contributes to long-term protein phase 

behavior research by presenting a systematic, data-dependent, and multidimensional data 

evaluation workflow to create a comprehensive overview of short-term protein analytics in 

relation to long-term protein phase behavior.  

  

5 
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5.1 Introduction 

Protein phase behavior characterization is necessary to identify stable formulation 

conditions for long-term storage of biopharmaceuticals. Stable biopharmaceutical product 

formulations are found via prolonged periods of storage time (6 to 60 months) of the 

biopharmaceutical compound in question under varying formulation conditions184. This 

approach of searching for optimal formulation conditions is time consuming, has a trial-

and-error nature, and experience is required for solution parameters selection. Therefore, 

it is desired to reduce development time and costs by rational design of protein 

characterization experiments and move towards long term protein phase behavior 

prediction12,185. This can be done by identifying short-term measurable protein properties 

which correlate to long-term protein phase behavior. This requires that short-term protein 

properties capture protein-protein, protein-solvent, and protein-cosolute interactions that 

induce long-term physical instability. The strength and type of these interactions are 

dependent on intrinsic protein properties, which are in turn influenced by physical and 

chemical parameters of the formulation and the protein itself 18,26,104. Observed protein 

phase behavior can result from various aggregation pathways due to different underlying 

aggregation mechanisms20,29. In this study, physical instability refers to insoluble and 

optically visible aggregate formation, such as crystals or amorphous precipitates.   

 

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory describes the dependency of 

intermolecular protein-protein interactions (i.e., colloidal stability) on long-range 

electrostatic repulsion and weak, short-range van der Waals attraction27. High protein 

concentration formulations have shown that non-DLVO forces, such as hydrophobic forces 

and hydrogen bonding, influence colloidal stability as well as excluded volume186–189. In 

addition to colloidal stability, conformational stability plays a key role in protein 

aggregation as well and is dependent on solvation and intramolecular properties47. 

Therefore, a quantification of colloidal and conformational stability is necessary to 

characterize protein aggregation. Analytical techniques to assess colloidal and 

conformational stability are elaborately discussed in available reviews23,46,190. Specific 

protein properties, such as protein charge and surface hydrophobicity, should be taken into 

account as well when investigating long-term protein aggregation. These properties can 

determine the occurrence and degree of colloidal or conformation stability and are 

therefore an important part of investigating cause and consequence of protein physical 

instability21,191. Therefore, investigation of the correlation between short-term empirical 

protein properties and long-term physical stability requires multiple analytical techniques. 

The requirement of combining analytical techniques has been recognized and has been 

used to investigate protein phase behavior as a function of formulation conditions in several 

different studies47,77,82,139,188,192–195. These combinations of experiments can increase 
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protein phase behavior understanding, which in its turn aids rational formulation screening 

design and predictive parameter identification23. Some studies have already used empirical 

short-term properties to investigate the predictive power in relation to long-term protein 

phase behavior82,193,195,196. Based on the reported combinations of analytical techniques it 

can be stated there is a continuing need to generate data and knowledge on formulation-

dependent long-term protein physical stability. In particular, there is a need to continue this 

type of research while simultaneously eliminating specific shortcomings. Reported studies 

show limitations that can be described with one or more of the following four issues: (1) 

incomplete datasets by including only conformational stability or colloidal stability, or a 

general lack of protein properties measurements to determine properties such as protein 

surface charge; (2) relative small datasets (n < 30); (3) analytical techniques that require 

formulation condition adjustments, such as dyes or sample dilution; (4) simplistic data 

analysis techniques which hinders data visualization and interpretation.  

 

This study seeks to overcome these limitations while investigating the correlation between 

short-term empirical protein properties and long-term protein phase behavior. To avoid 

incomplete and small data sets, the first and second shortcoming, the model protein chicken 

egg white lysozyme was formulated in 150 unique solution conditions and analyzed using 

six different analytical techniques. The employed analytical techniques included dynamic 

light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, static light 

scattering (SLS), intrinsic fluorescence (IF) spectroscopy, mixed-mode measurement 

phase analysis light scattering (M3-PALS), and stalagmometry to represent formulation 

condition effects on inter-particle interactions, secondary structure, colloidal stability, 

conformational stability, surface charge, and surface hydrophobicity, respectively. None 

of the employed techniques required formulation adjustments, thereby eliminating the third 

shortcoming. The extracted short-term empirical protein properties were lysozyme’s 

apparent hydrodynamic radius, FTIR peak region areas, aggregation onset temperature, 

melting temperature, zeta potential, and normalized surface tension. Formulations were 

designed to cover a wide range of conditions. The conditions covered 4 pH values (pH 3.0, 

5.0, 7.0, and 9.0), 2 salts (ammonium sulfate and sodium chloride), 4 ionic strengths (0, 

50, 175, and 275 mM) and 5 lysozyme concentrations (25, 50, 75, 100, and 125 g/L). Long-

term phase behavior of lysozyme under identical formulation conditions was monitored 

with 96-well format microbatch experiments, where formulations were stored for 40 day 

at 20 °C 115,180. The fourth shortcoming, data visualization and interpretation, was resolved 

by using an advanced method of compiling multidimensional data into a comprehensive 

figure called the empirical phase diagram (EPD)78,89. Reducing multidimensional empirical 

data to three dimensions provides the means to visualize and interpret data more easily by 

making use of color clustering. Colors were used to distinguish differences in empirical 

data as a function of formulation conditions. Radar charts can complement EPDs by 
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providing an overview of underlying empirical data for each color cluster. The 

effectiveness of this visualization technique was demonstrated with protein structural 

data91. Both the short-term and long-term dataset were visualized with the EPD method. 

Visualization of the large formulation dataset required a systematic data processing 

workflow, which resulted in a comprehensive presentation, exploration, and discussion of 

the correlation between evaluated short-term empirical protein properties and long-term 

phase behavior. 

 

5.2 Material and Methods 

5.2.1 Buffer preparation 

A multicomponent buffer with 10 mM buffer capacity was used to exclude buffer 

component effects on protein phase behavior 145. Buffer components were CHES 

(Applichem, 6.13 mM), TAPS (Applichem, 14.61 mM), MOPS (Roth, 7.00 mM), sodium 

acetate trihydrate (Merck, 3.01 mM) and citric acid monohydrate (Merck, 13.86 mM). 

Buffer pH was adjusted using a 5-point calibrated pH-meter (HI-3220, Hanna Instruments, 

Woonsocket, RI, USA) equipped with a SenTix 62 pH electrode (Xylmen Inc., White 

Plains, NY, USA) using 4 M sodium hydroxide (Merck) as titrant. The pH was adjusted to 

3.0, 5.0, 7.0, or 9.0 with 0.05 pH unit accuracy. Equal ionic strength between buffers with 

different pH values was obtained by addition of sodium chloride (Merck) or ammonium 

sulfate (Applichem) while stirring and monitoring the conductivity with a conductivity 

probe (Radiometer Analytical, Lion, France). After conductivity adjustment, the buffers 

were filtered over a 0.2 μm cellulose acetate filter (Sartorius, Göttingen, Germany). These 

buffers served as buffers with a relative ionic strength of 0 mM. Buffers with a relative 

ionic strength of 50, 175, 275, and 1050 mM were made with either sodium chloride or 

ammonium sulfate. The buffers were stored for a maximum of one month and the pH was 

routinely checked. 

 

5.2.2 Protein stock preparation 

A 150 g/L stock solution of lysozyme from chicken egg white (Hampton Research, Aliso 

Viejo, USA) was made in the appropriate 0 mM ionic strength buffer. The obtained protein 

solution was filtered over a 0.2 μm cellulose acetate prefilter (VWR, Radnor, PA, USA). 

After filtering, the protein solution was desalted with a PD-10 column (GE Healthcare Life 

Sciences, Uppsala, Sweden). Depending on the volume of the protein solution a mini or 

normal PD-10 column was used, employing the centrifugation protocol as provided by the 

manufacturer. Lysozyme stock solution concentration was determined with a Nanodrop 

2000c UV-Vis spectrophotometer (ThermoFischer Scientific, Waltham, MA, USA). An 

E1% (280 nm) extinction coefficient of 22.00 g-1·L·cm-1 was used.  
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5.2.3 Sample preparation 

Samples for protein analytical measurements were prepared on the same day as the 

experiments and measured within 6 hours. A mixing ratio of 5:1 (protein:salt) was used to 

obtain protein samples with a protein concentration of 125, 100, 75, 50 and 25 g/L and a 

relative ionic strength of 0, 50, 175 and 275 mM sodium chloride or ammonium sulfate. 

To obtain the desired protein concentration and ionic strength for the 5:1 mixing ratio, 

protein and salt stock solutions were pre-diluted with the appropriate relative 0 mM ionic 

strength buffer.  

 

5.2.4 Stalagmometry 

Protein surface hydrophobicity was determined by measuring solution surface tension 

using a fully automated liquid handling station based high-throughput stalagmometer 76. 

The following changes in the setup have been made to reduce the sample volume and 

decrease experimental time: samples were measured with four technical replicates using a 

sample volume of 80 μL and repeating sample drop-wise dispense twice using low volume 

PTFE coated tips (Tecan, Crailsheim, Germany). Sample volume reduction and fewer 

repeat dispenses showed a 3.4% increase in relative standard deviation of measured water 

drop masses (data is shown in Supplementary Figure C1). This was considered an 

acceptable error as the total relative standard deviation remained below 5% while reducing 

sample volume a six-fold and experimental time to 3.5 hours, instead of ~9.5 hours, for a 

complete 96-well microtiter plate. Samples were transferred and measured in round, clear 

bottom 96-well microtiter plates (Greiner Bio-One GmbH, Frickenhausen, Germany). 

Plates were sealed with Duck Brand HD Clear sealing tape (ShurTech Brands, Avon, OH, 

USA) to prevent evaporation. Scalpel slits were made in the sealing tape prior to 

measurements. Ultrapure water, purified with a PURELAB Ultra (ELGA LabWare, Bucks, 

UK), was used as a reference solution with a surface tension of 72.62 mN/m197. Data 

processing and evaluation was preformed using an in-house developed MATLAB script 

(version R2017b, MathWorks, Natick, MA, USA). Obtained protein solution surface 

tensions were normalized with the corresponding buffer surface tension. 

 

5.2.5 Dynamic light scattering (DLS) 

DLS measurements were performed with a Zetasizer Nano ZSP (Malvern Instruments Ltd, 

Malvern, United Kingdom) using a ZEN2112 quartz cuvette (Hellma GmbH & Co. KG, 

Muellheim, Germany). Each sample was measured in duplicate, where each measurement 

contained two runs with 15 sub runs. Cuvettes were washed once with ddH2O and twice 

with 40 μL of the appropriate buffer before each measurement. A sample volume of 40 μL 

was used. Zetasizer software used the default distribution analysis to obtain a diffusion 

coefficient distribution from the correlogram. An in-house developed MATLAB script 
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(version R2017b, MathWorks, Natick, MA, USA) was used to calculate the radius 

distribution from the obtained diffusion distribution and correct for sample viscosity61. The 

radius distributions were used to obtain the apparent hydrodynamic radius (RH App) of 

lysozyme by extracting intensity peak between 0.5 nm and 4 nm.  

 

5.2.6 Mixed-mode measurement, phase analysis light scattering (M3-PALS) 

Electrophoretic mobility was measured with the Zetasizer Nano ZSP (Malvern Instruments 

Ltd, Malvern, United Kingdom). Folded capillary cells (DTS1070, Malvern Instruments 

Ltd, Malvern United Kingdom) were filled with the corresponding buffer and 20 μL of the 

samples was pipetted into the bottom of the cell with a 200 μL round 0.5 mm thick Corning 

Costar gel-loading pipet tip (Corning Incorporated, Corning NY, USA) to employ the 

diffusion barrier technique. Each sample was measured twice at 25 °C, where each 

measurement consisted of 120 seconds equilibration time and two runs with a maximum 

of 15 sub runs. The applied voltage was set to 60 mV and the automatic measurement mode 

was selected. A reflective index of 1.45 and absorption of 0.01 was used. The dispersant 

was set equal to water. An in-house developed MATLAB script (version R2017b, 

MathWorks, Natick, MA, USA) was used to extract the average electrophoretic mobility 

and calculate the average zeta potential. The average zeta potential was calculated with the 

corresponding sample solution viscosity61, a dielectric constant of 78.54 and 

Smoluchowski’s approximation of 1.5198. Due to the varying conductivity of the samples, 

only the average electrophoretic mobility was extracted. An electrophoretic mobility 

distribution can only be obtained in the automated mode when the sample solution 

conductivity is below 5 mS/cm, which was not the case for all samples.  

 

5.2.7 Static light scattering (SLS) and intrinsic fluorescence (IF) 

SLS and IF were used to determine the aggregation onset temperature (TAgg) and melting 

temperature (TM), respectively, using an Optim2 (Avacta Analytics, Yorkshire, UK). A 

temperature range from 20 °C to 90 °C with a 1 °C per minute step gradient and a 

temperature hold time of 60 seconds was set. The UV 266 nm and blue 473 nm laser 

attenuation was set to filter 4 and filter 1, respectively. The samples were loaded into a 

micro-cuvette array (MCA) in three-fold, with a sample volume of 9 μL. Each MCA also 

contained a 2 g/L lysozyme solution (dissolved in water) as a reference sample to monitor 

the measurement quality. The peak position of the barycentric mean of fluorescence as a 

function of temperature was extracted from the IF measurement. The maximum gradient 

of the slope, which defines TM, was found using an in-house developed MATLAB script 

(version R2017b, MathWorks, Natick, MA, USA). Light scattering counts at 473 nm as a 

function of temperature were obtained from SLS measurements. An in-house MATLAB 

script (version R2017b, MathWorks, Natick, MA, USA) was used to determine the start of 
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the intensity gradient, which defines TAgg. The start of the intensity gradient was defined 

based on a linear fit of at least three data points for which intensity increased consecutively 

between the minimum and maximum intensity and for which the first data point showed a 

minimum of 10% intensity increase from the starting intensity. The identified data points 

were fitted to a linear equation to extract the x-intercept (TAgg) at the starting intensity.  

 

5.2.8 Fourier transform infrared (FTIR) spectroscopy 

FTIR spectroscopy was used to determine changes in protein secondary structure. A 

Nicolet iS5 with an iD7 ATR detector (Thermo Fischer Scientific, Waltham, MA, USA) 

was used. Sample and blank absorbance were scanned 150 times with a spectral resolution 

of 2 cm-1 from wavenumber 3500 to 1000 cm-1. Each blank was measured once and each 

protein sample was measured twice, using a volume of 5 μL. A background spectrum was 

recorded with 254 scans. An in-house developed MATLAB script (version R2017b, 

MathWorks, Natick, MA, USA) was used for data evaluation. The average protein sample 

single beam spectrum was calculated using the duplicate single beam spectral data. The 

transmittance spectrum of the average protein sample and blank sample were obtained via 

normalization using the background single beam spectrum. The transmittance spectrum 

was converted to an absorbance spectrum and the blank spectrum was subtracted from the 

corresponding protein sample spectrum. The subtracted spectrum was vector normalized 

(i.e., standard normal variate normalization)199, the second derivative was calculated and 

smoothed with Savitsky-Golay smoothing using a 3rd order polynomial and a window 

length of 33. Within the amide I range (1600 to 1700 cm-1) the absolute area under 1648 ± 

2 cm-1, 1656 ± 2 cm-1, and 1667 ± 1 cm-1 was extracted using the trapz function available 

in MATLAB version 2017b. These areas were selected based on a data-dependent 

wavenumber absorption variation analysis.  

 

5.2.9 Empirical phase diagram construction 

Each experimental protein property was normalized between zero and one. Before 

visualization, internal correlation between all experimental protein properties was 

evaluated using the Pearson correlation coefficient with a cut-off value of 0.750 and -0.750 

for positive and negative internal correlation respectively. The selected experimental 

protein properties were used to build an EPD. The EPD construction method used is 

described in literature78,91. In brief, singular value decomposition (SVD) was used to reduce 

dataset dimensionality to three dimensions. The three-dimensional (3D) data was clustered 

to identify formulation conditions that display similar experimental protein properties. The 

optimal number of clusters was determined by iterating 100 times over the evalcluster 

function available in MATLAB version R2017b (MathWorks, Natick, MA, USA). For 

each iteration, an optimal cluster number between 5 and 10 was selected using the k-means 



64 
 

cluster algorithm with a silhouette criterion based on squared Euclidean distance metric. 

The final cluster number was selected as the mode optimal cluster number. The 3D SVD 

data was clustered with the k-means clustering function (kmeans, available in MATLAB 

version 2017b), using the optimal cluster number, a maximum of 1000 iterations, and 

randomly chosen initial cluster centroid positions. A RGB color for each data point was 

calculated by normalization of (x,y,z)-values between zero and one. The average cluster 

RGB color value was defined as the mean RBG color based on each data point within the 

cluster. With R (version 1.0.136, using ggplot2 and fmsb library) the 3D color data was 

visualized. The mean cluster color was plotted against all solution conditions (pH, salt, 

ionic strength and protein concentration). A radar plot was constructed for each cluster to 

represent the median value of empirical protein properties, as well as the median absolute 

deviation to represent distribution of empirical protein properties within the cluster. 

 

5.3 Results and Discussion 

5.3.1 Data processing 

Extraction of multiple empirical protein properties may lead to internal correlation between 

features due to overrepresentation of a single system property within the dataset. To 

prevent this, internal correlation between all empirical protein properties was evaluated 

with the Pearson correlation coefficient. The obtained correlation coefficient matrix is 

shown in Supplementary Table C1. The set threshold of a Pearson correlation coefficient 

of 0.750 and -0.750 for positive and negative linear dependency, respectively, was not 

reached. Data dimension reduction and clustering was therefore preformed with all 

features: 3 FTIR region areas (1648 ± 2.0 cm-1; random coil, 1656 ± 2.0 cm-1; α-helix, 1667 

± 1.0 cm-1; β-turn), apparent hydrodynamic radius of lysozyme (RH App), melting 

temperature (TM), aggregation onset temperature (TAgg), normalized surface tension (γN), 

and mean zeta potential (ζ-potential). An overview of the used empirical protein properties, 

corresponding short descriptions, and value range within the dataset are shown in Table 

5.1. Before these empirical protein properties could be used to cluster formulation 

conditions, dataset dimensionality was reduced with SVD. After data dimension reduction 

an energy value of 96.8% was obtained. This implies an information loss of 3.2%. This 

percentage of information loss falls within the general rule of thumb for SVD, where a 10% 

loss is considered the maximum147. A number of six formulation clusters was determined 

to be optimal with the obtained 3D data set.  
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Table 5.1: List of symbols and description of empirical protein properties used to compile the empirical 

protein property diagram, including the absolute value range. 

Symbol Min Max Description 

R
H App

 1.0 3.2 Apparent hydrodynamic radius of lysozyme [nm] 

ζ -14.1 9.5 Zeta potential charge [mV] 

γN 0.99 1.21 Normalized surface tension of the protein solution [-] 

T
Agg

 20 90 Aggregation onset temperature [°C] 

T
M

 61 82 Melting temperature [°C] 

β-turn 1.9 24.3 Area under 1666 – 1668 cm
-1

 [AU/(cm
-1

)
2
] ·10

5
 

α-helix 34.5 134.5 Area under 1654 – 1658 cm
-1

 [AU/(cm
-1

)
2
] ·10

5
 

Coil 9.9 66.3 Area under 1646 – 1650 cm
-1

 [AU/(cm
-1

)
2
] ·10

5
 

 

5.3.2 Empirical protein property diagram (EPPD) 

Figure 5.1a shows the EPPD and six radar charts based on empirical protein property data. 

Each radar chart represents a cluster of formulations that resulted in similar empirical 

protein properties. The median value of each empirical protein property for each 

formulation cluster is represented by the radar chart using a colored surface. Value 

distribution within each formulation cluster is represented by the median absolute deviation 

(MAD), shown as a dashed line in the radar chart. Exact median and MAD values of each 

identified cluster can be found in Supplementary Table C2. Cluster colors and characters 

were used to visualize formulations in the EPPD below the radar charts. Grid columns refer 

to formulation pH value (pH 3.0-9.0), where the top grid row refers to formulations with 

ammonium sulfate (NH4(SO4)2) and the bottom grid row refers to formulations with 

sodium chloride (NaCl). Individual diagrams show lysozyme concentration (25-125 g/L) 

on the y-axis and ionic strength (0-275 mM) of the respective salt type on the x-axis. Figure 

5.1b shows previously published data that was used to construct a multidimensional protein 

phase diagram (MPPD)180. The MPPD is based on experimental long-term stability data 

obtained for similar formulations stored in duplicate at 20 °C for 40 days. Image-based 

data obtained during storage, describing aggregate dimensions and time-dependent 

aggregation features, was extracted and visualized with the EPD method. Table 5.2 lists 

the extracted image-based features, corresponding short descriptions, and the obtained 

value range.  
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Table 5.2: List of symbols and description of image features obtained from long-term microbatch 

experiments used to compile the multidimensional protein phase diagram, including the absolute value 

range. Data obtained from180. 

Symbol Min Max Description 

L
C
 0 192 Absolute crystal size. Defined as average length of four crystals [μm] 

Ɖ
L:W

 0 3.1 Diversity in crystal shape. Defined as inter quartile range of four crystal 

axial ratios [-] 

Δt
P
 0 520 Growth time precipitate [h] 

t
P
 0 324 Onset time precipitate [h] 

D
P
 0 920 Absolute precipitation size. Defined as diameter of precipitate [μm] 

Δt
C
 0 959 Growth duration [h] 

t
C
 0 696 Onset time crystal [h] 

n
C
 0 100 Number of crystals. Scored between 0 and 100, where 100 is a well filled 

with crystals 

 

The observed phase behavior morphology based on extracted image-based features is 

stated above the radar charts. Results of Figure 5.1b will only be briefly discussed in this 

study as the data was solely used to investigate the correlation between empirical protein 

properties obtained directly after formulation preparation and observed physical stability 

of identical formulations after 40 days of storage at 20 °C. In short, Figure 5.1b shows 

physically stable formulations as part of cluster I and instable formulations were identified 

as cluster II, III, IV, and V. Increasing supersaturation was assigned from cluster II to 

cluster V based on the crystal size, crystal amount, and crystal growth time. Formulations 

with sodium chloride showed salting-out behavior for all pH values, while formulations 

with ammonium sulfate showed salting-in behavior for pH 7.0 and pH 9.0.  

 

Correlating short-term empirical protein properties to long-term physical stability via EPDs 

starts with the comparison of identified formulation clusters. A uniform identification of 

stable formulations (cluster I) during 40 days storage at 20 °C for all pH 3.0 and pH 5.0 

ammonium sulfate formulations is shown in Figure 5.1b, the MPPD. Figure 5.1a, the 

EPPD, shows four clusters for similar formulations based on empirical protein properties, 

namely cluster A, B, C, and D. Identification of multiple EPPD clusters for stable 

formulations is due to a higher resolution and diversity of the obtained empirical data. The 

difference between EPPD clusters A, B, C, and D is mainly defined by RH App, but also by 

secondary structure (α-helix region area and random coil region area), TAgg, γN, and ζ-

potential. The identification of four different formulation clusters that correspond to 

physical stability over time emphasizes the multidimensionality of protein phase behavior. 

Formulations with sodium chloride were also grouped in multiple EPPD clusters at pH 3.0 
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and pH 5.0, while the MPPD shows crystal formation (cluster IV) in addition to stable 

formulations (cluster I). At pH 3.0, the crystallized formulation with 275 mM sodium 

chloride and 125 g/L lysozyme was identified as EPPD cluster E. This corresponds to the 

identification of cluster E for other crystallized formulations. However, formulations with 

sodium chloride at pH 5.0 that crystallized at 125 g/L and 100 g/L lysozyme with 275 mM 

sodium chloride were identified as EPPD cluster A and cluster B. This is not in agreement 

with other formulations, where cluster A and cluster B formulations remained stable over 

time. These observations indicate there is at least a certain degree of positive correlation 

between the EPPD and MPPD for this dataset. This is also demonstrated by EPPD cluster 

C and cluster D formulations. Cluster C and cluster D were identified at pH 5.0 and pH 7.0 

for both salt types. All ammonium sulfate and sodium chloride formulation at pH 5.0 

identified as cluster C or cluster D remained stable during 40 days of storage at 20 °C, 

while at pH 7.0 both salt types showed physical instability for cluster C and cluster D 

formulations. Similar discrepancies are seen for EPPD cluster E and cluster F. 

Formulations at pH 9.0 for both salt types show a correlation between increasing 

supersaturation (MPPD transformation from cluster IV to V) and EPPD cluster E and 

cluster F. A comparable trend is seen for formulations at pH 7.0 with sodium chloride but 

not for formulations at pH 7.0 with ammonium sulfate. At pH 7.0 with ammonium sulfate, 

cluster E and cluster F were identified as stable formulations.  

 

Initial MPPD and EPPD evaluation showed a partial correlation between observed phase 

behavior after 40 days of storage at 20 °C and the empirical protein properties measured 

directly after formulation preparation. To discuss this correlation as a function of 

formulation conditions, a stability percentage for each EPPD cluster was calculated. The 

stability percentage in this context is defined as the percentage of stable formulations after 

storage within each EPPD cluster. A decrease in stability percentage is seen from cluster 

A (95.3%) and cluster B (96.4%) to cluster F (8.0%). Cluster C, D and E have a stability 

percentage of 74.3%, 62.5% and 18.7%, respectively. Small increments of ionic strength 

showed EPPD cluster transformations for both salt types. For example, a cluster transition 

from cluster A to cluster B can be seen for formulations at pH 3.0 for increasing sodium 

chloride. The stability percentage for these clusters is similar, but the ionic strength 

increase from 50 mM to 175 mM by sodium chloride causes a lower colloidal stability 

(TAgg), a decrease in ζ-potential, and a larger RH App. Salt type dependent cluster 

transformations were also observed. For example, the previously mentioned transformation 

of cluster A to cluster B by sodium chloride at pH 3.0 is also seen for ammonium sulfate 

formulations at pH 3.0, but was already present between 25 mM and 50 mM ionic strength. 

This indicates that ionic strength increases at pH 3.0 by sodium chloride has a similar effect 

on lysozyme as ionic strength increase by ammonium sulfate, but the evaluated protein 

properties were more sensitive to the latter.  
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Figure 5.1: (a) Empirical protein property diagram (EPPD) and (b) multidimensional protein phase diagram 

(MPPD) for varying lysozyme concentrations (y-axis), ionic strength (x-axis), formulation pH value (grid column), 

and salt type (grid row). The MPPD is adjusted from data presented in180. Clusters are indicated with a cluster 

color and character within each diagram. Dashed lines are used to guide the eye between adjacent clusters within 

the diagrams. A legend radar chart is given to indicate the position of the properties compiled in the EPPD and 

MPPD radar charts. The colored surface of the radar charts shows the normalized median value for each property 

within the cluster and the dotted line indicates the median absolute deviation for each property. 
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Cluster transformations for increasing lysozyme concentration were identified as well. 

Formulations at pH 7.0 in the presence of 275 mM ammonium sulfate showed such a 

transformation, where cluster E transforms in cluster F for increasing lysozyme 

concentration. This illustrates how a higher protein concentration can influence properties 

such as secondary structure. Cluster transformations are visible for each separate grid 

diagram but formulation pH dominates cluster transformations. This is indicated by the 

identification of similar EPPD clusters for each salt type for each formulation pH value, 

which is a result of the relatively large pH range used in this study.  

 

Growing supersaturation zones were identified for increasing formulation pH value, as 

shown in the MPPD by increased identification of cluster V. Supersaturation increase was 

attributed to the loss of positive charge, as the formulation pH moves towards lysozyme’s 

isoelectric point (pI) of ~11.3148. Formulation pH affects amino acids residue protonation 

and can thereby diminishing the repulsive electrostatic forces closer to the protein’s pI 26,34. 

This is in accordance with the decreasing stability percentage seen in the EPPD clusters, 

shown by the transformation from cluster A to cluster F. This trend was independent of the 

salt type. Lysozyme’s RH App also showed a trend from formulation cluster A to cluster F, 

as seen for stability percentage, where it increased from 1.4 ± 0.2 nm (cluster A) to 2.6 ± 

0.3 nm (cluster F). Note that the mentioned empirical protein property values are median 

± MAD, which represents the central tendency and distribution within each formulation 

cluster. Lysozyme’s RH App dependence on changing formulation pH is in agreement with 

literature, where a RH App increase above pH 6.0 was measured using dielectric 

spectroscopy200,201. It was stated that lysozyme’s RH App increased from approximately 1.8 

nm at pH 4 to approximately 2.6 nm at pH 10, which was interpreted as an index of 

aggregation due to loss of positive charge along lysozyme’s surface as the formulation pH 

shifts towards its pI200. Loss of electrostatic repulsive forces may be identified upon further 

inspection of RH App as a function of lysozyme concentration using the data from individual 

formulations202. In Supplementary Figure C2, four examples are shown where a shift from 

repulsive to attractive protein-protein interactions as a function of pH and ionic strength 

can be observed. This indicates that an increasing RH App resulted from diminishing 

electrostatic repulsive forces which allows for attractive protein-protein interactions. This 

is also reflected by a decrease in colloidal stability, represented by TAgg, from cluster A 

(88.5 ± 0.9 °C) to cluster F (35.2 ± 4.6 °C). Nevertheless, a similar stability percentage was 

found for cluster A and cluster B formulations. This shows that the corresponding 

formulations remained physically stable during the long-term experiment despite short-

term observed changes in RH App (from 1.4 ± 0.2 nm to 1.8 ± 0.3 nm, respectively) and TAgg 

(from 88.5 ± 0.9 °C to 56.7 ± 5.9 °C, respectively). A further increase of RH App (2.2 ± 0.2 
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nm) and corresponding decrease in TAgg (37.4 ± 3.2 °C) for cluster C formulations resulted 

in decreased stability percentage (74.3%). This indicates a threshold for the short-term 

parameters which results in critically low colloidal stability causing an increased 

aggregation propensity. 

 

The loss of electrostatic repulsion is also partially confirmed by the measured surface 

charge. In the EPPD, lysozyme surface charge is represented by the ζ-potential. The median 

ζ-potential decreased from cluster A (3.8 ± 2.1 mV) to cluster E (-1.5 ± 1.8 mV), but cluster 

F formulations showed a ζ-potential of 3.1 ± 1.9 mV while displaying the largest RH App 

(2.6   0.3 nm). Lysozyme’s secondary structure can be used to obtain a more detailed 

understanding of RH App and ζ-potential. FTIR peak regions were used in this study to 

represent secondary structural changes. The FTIR peak regions have been empirically 

assigned to secondary motifs, where a decrease in FTIR spectral region area indicates a 

loss of the corresponding secondary structure 64,203. The EPPD shows similar median values 

for FTIR region areas in formulation cluster A, B, and C. This suggests that there was no 

secondary structural change due to corresponding changes in formulation conditions. 

Cluster D formulations showed secondary structure changes and a further decrease in 

stability percentage (62.5%). Secondary structure changes were quantified by a maximum 

median random coil region of 34 ± 8.0 AU/(cm-1)2 and a maximum median α-helix region 

area of 97.3 ± 13.6 AU/(cm-1)2. These structural properties were accompanied by the 

dataset maximum γN, with a median value of 1.17 ± 0.02, a RH App of 2.1 ± 0.3 nm, and a 

ζ-potential of 0.2   1.7 mV. A γN of 1.17 reflects a 17% increase of surface tension after 

adding lysozyme to the formulation in question. Presumably, surface tension increased as 

a result of water molecules entering the altered lysozyme structure 204,205. Cluster D 

formulations also resulted in a low colloidal stability, represented by a median TAgg of 39.0 

± 3.5 °C, but a conformational stability (TM of 68.9 ± 3.5 C) comparable to cluster A, B, 

and C. The obtained median TM for cluster A, B, C, and D formulations (~67 °C) is 

relatively lower compared to reported literature values (approximately between 68 – 82 °C 

) 206–208. This may be due to the use of a multicomponent buffer system 208. In addition, it 

should be noted that for cluster C to cluster F the obtained TAgg lies ~30 °C below TM. This 

may indicate that thermal aggregation mainly consists of native lysozyme structures, or 

that aggregation already starts when only small amount of unfolded structures was present 
209.  

 

In contrast to cluster D, cluster E formulations resulted in a dataset minimum for the median 

random coil region area (16.4 ± 3.0 AU/(cm-1)2) and median α-helix area (73.1 ± 12.8 

AU/(cm-1)2). Secondary structure loss presumably contributed to the relatively low median 

TAgg (33.1 ± 1.9 °C) obtained for cluster E formulations. Next to low colloidal stability, 
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secondary structure changes may also be the reason for the observed γN decrease (median 

value of 1.04 ± 0.03). A decrease in surface tension due to protein unfolding was previously 

observed for whey protein isolate dispersions. The observed decrease in surface tension 

was attributed to an increase in structure flexibility that led to an increased air-water 

interface adsorption210. This suggests that the observed γN decrease may represent (partial) 

structural unfolding under cluster E formulation conditions. Cluster F formulations resulted 

in a dataset maximum for the median β-turn region area (18.9 ± 1.1 AU/(cm-1)2), while all 

other clusters show a comparable median β-turn region area (~16 AU/(cm-1)2). The median 

random coil FTIR peak region obtained in cluster F formulations was comparable to cluster 

E, while the median α-helix FTIR peak region was comparable to cluster A, B, and C. 

Compared to cluster E, cluster F displayed a similar γN (1.04 ± 0.02), TM (63.2 ± 2.6 °C), 

and TAgg (35.2 ± 4.6 °C). Considering the combination of secondary structure changes and 

corresponding effects on γN, colloidal stability, and conformation stability, it is assumed 

that lysozyme aggregated directly after formulation preparation under the corresponding 

conditions.   

 

The evaluated formulation conditions resulted in different protein structural conformations. 

Formulations part of cluster A, B, and C did not show secondary structural change, based 

on the similarities in FTIR peak region areas. A stability percentage decrease was observed 

from cluster A to cluster C, which was presumably a result of decreased repulsive 

electrostatic forces causing increased protein-protein interaction. Cluster D formulations 

resulted in a secondary structure change which showed similar conformational stability as 

the structures found for cluster A, B, and C. On the contrary, cluster E and F resulted in 

(partially) unfolded structures, which was reflected by secondary structure changes and 

surface tension decrease. Structural unfolding is regarded as the main reason for the 

stability percentage drop of cluster E and cluster F (<19%) compared to the other EPPD 

clusters (>62%). Coupling back to the correlation between the EPPD and the MPPD, 

supersaturation was identified in the MPPD by a large amount of fast growing, small 

crystals after 40 days of storage. Crystal growth cessation is proposed to be an effect of 

improper implementation of lysozyme molecules or surface poisoning155. With EPPD data 

showing lysozyme’s unfolding for supersaturated formulations, surface poisoning by 

incorporation of unfolded molecules is considered the reason for crystal growth cessation.  

 

In general, it is expected that near the protein’s pI solubility increases for low ionic strength 

and decreases for higher ionic strength 211. However, sodium chloride formulations show 

solely increasing physical instability for increasing ionic strength and increasing 

formulation pH. This phase behavior has been reported by other studies as well150,152,212. 

The lack of salting-in behavior for lysozyme formulations with sodium chloride was 
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attributed to screening of electrostatic repulsive forces150. The EPPD depicts that sodium 

chloride formulations at pH 9.0 showed no influence of ionic strength, represented by the 

uniform identification of cluster E and cluster F for different ionic strengths. This 

observation is also in accordance with work by Retailleau et al., where it was hypothesized 

that chloride ion adsorption caused a pI shift to approximately pH 9.5150. A recent 

molecular dynamics (MD) simulation study attributed an apparent unfolded state to 

dominant interactions with the sodium ion compared to interactions with the chloride 

ion213. Despite the lack of direct evidence of specific protein-ion interactions in the EPPD, 

observations obtained from the reported MD simulations correspond to changes in the 

secondary structure for increasing sodium chloride ionic strength seen in the EPPD.  

 

Interactions at the basis of salting-in behavior, as observed for ammonium sulfate 

formulations, remains speculative as well. Salting-in effects primarily occur because of 

interactions between the protein and salt ions153. Ammonium sulfate formulations show 

lysozyme unfolding for pH 7.0 at higher ionic strength which resulted in physical stability 

over time, while formulations at lower ionic strength containing more stable structures 

showed crystallization. Salting-in behavior observed for ammonium sulfate formulations 

at pH 7.0 corresponds to work regarding the effect of anions on salting-in and salting-out 

behavior, where an inverse Hofmeister series was identified for positively charged 

lysozyme under relatively low ionic strength (<300 mM) conditions42. The underlying 

anion interactions are dependent on the positive protein charge, and therefore it can be 

assumed that salting-in becomes less pronounced towards lysozyme’s pI. This may cause 

the observed decrease in physical stability for ammonium sulfate formulations for 

increasing pH value, as seen when moving from pH 5.0 to pH 7.0 and from pH 7.0 to pH 

9.0 for similar ionic strength. For ammonium sulfate formulations at pH 9.0, structural 

unfolding is seen for all formulations but it is more pronounced for lower ionic strength. 

Decreased supersaturation at pH 9.0 formulations for increasing ionic strength by 

ammonium sulfate may be due to ammonium ions adsorption to hydrophobic amino acid 

side-chains. This was demonstrated to cause aggregation deceleration in a thermal 

unfolding study of lysozyme 192.  

 

The use of the empirical phase diagram method as visualization technique resulted in a 

comprehensive overview of multidimensional data, which allowed for an uncomplicated 

investigation of the correlation between long-term phase behavior and short-term empirical 

protein properties. The transition from long-term stable formulations to long-term instable 

formulations was partially represented, but short-term empirical protein properties were 

unable to fully capture the observed phase behavior. Inclusion of additional empirical 

properties could lead to a closer match between EPPD formulation clusters and MPPD 
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phase behavior clusters. Possible additional empirical properties to extend the 

multidimensional dataset could include quantification of protein-protein interaction 

strength (e.g., rheological data122,187,214), identification of multimeric protein species, or 

quantification of protein-salt ion interactions. Based on the presented dataset it is evident 

that there is not a single straightforward combination of analytical techniques to evaluate 

long-term physical stability using short-term analytics. The required combination of 

analytical techniques cannot be determined beforehand without prior knowledge of the 

aggregation pathway. An advantage of the data evaluation workflow presented in this study 

is its applicability for other proteins, different formulation conditions, and various 

analytical techniques. Further investigation of different experimental designs in 

combination with the presented data evaluation workflow can expand understanding of 

underlying cause and consequence regarding long-term protein phase behavior, which is 

required to move towards knowledge-based formulation screenings and phase behavior 

prediction. 
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5.4 Conclusion 

This study employed the EPD method to correlate long-term physical stability of 150 

unique lysozyme formulations to empirical protein properties that can be determined right 

after formulation preparation. This was done to overcome commonly seen protein phase 

behavior evaluation limitations involving dataset completeness and size, sample 

adjustment prior to analysis, and subsequent data visualization and interpretation. For this 

purpose, six different analytical techniques were used to determine the effects of 150 

unique formulation conditions on the lysozyme’s colloidal and conformational stability, 

secondary structure, as well as surface charge and hydrophobicity. The EPD method 

allowed for the representation of both the long-term and the short-term dataset in a single 

figure. This resulted in a systematic and comprehensive visualization and interpretation of 

MPPD data in relation to EPPD data for all 150 unique formulations. A correlation between 

short-term and long-term data was found based on increased formulation cluster 

supersaturation and decreased formulation cluster stability percentage. The decrease of 

long-term storage stability was found mainly a result of loss of repulsive electrostatic 

interaction and loss of secondary structure. It was shown that changing formulation 

conditions leaves a different fingerprint in terms of structural properties, colloidal stability, 

conformation stability, and surface properties. Both physically stable and instable EPPD 

clusters showed varying protein property sets, which emphasizes the multidimensionality 

of protein properties determining protein phase behavior. Biopharmaceutical formulation 

screening studies can benefit from the presented multidimensional data evaluation 

workflow as it allows for a comprehensive overview and uncomplicated interpretation of 

large datasets. There are no limitations regarding screening targets, analytical techniques, 

or conditions that can be evaluated with this method. For protein phase behavior studies, 

trends observed throughout multidimensional datasets can provide detailed insight, but it 

can also provide targets for phase behavior optimization through combined information on 

aggregation kinetics and empirical protein properties. Detailed insight and optimization 

targets can guide knowledge-based formulation screening design and aid short-term 

predictive parameters development for long-term protein phase behavior. 
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Abstract 

Redesigning existing food protein formulations is necessary in situations where food 

authorities propose dose adjustments or removal of currently employed additives. 

Redesigning formulations involves evaluating substitute additives to obtain similar long-

term physical stability as the original formulation. Such formulation screening experiments 

benefit from comprehensive data visualization, understanding the effects of substitute 

additives on long-term physical stability, and identification of short-term optimization 

targets. This work employs empirical phase diagrams to reach these benefits by combining 

multidimensional long-term protein physical stability data with short-term empirical 

protein properties. A case study was performed where multidimensional protein phase 

diagrams (1152 formulations) allowed for identification of stabilizing effects as a result of 

pH, methionine, sugars, salt, and minimized glycerol content. Corresponding empirical 

protein property diagrams (144 formulations) resulted in the identification of normalized 

surface tension as a short-term empirical protein property to reach long-term physical 

stability presumably similar to the original product, namely via preferential hydration. 

Additionally, changes in pH and salt were identified as environmental optimization targets 

to reach stability via repulsive electrostatic forces. This case study shows the applicability 

of the empirical phase diagram method to rationally perform formulation redesign 

screenings, while simultaneously expanding knowledge on protein long-term physical 

stability. 
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6.1 Introduction 

Food additives are used to enhance and ensure product quality aspects such as sensory, 

microbial, enzymatic, and long-term physical stability215,216. The safety of food additives 

for these purposes is assessed by the European Food Safety Authority (EFSA). Re-

evaluations occur when changes, such as new scientific findings, come to light217. In the 

period from 2013 to 2018, over 130 reports were produced by the EFSA concerning re-

evaluation of food additives218. Re-evaluation mainly results in confirmation of the existing 

regulations219–221 or dose adjustments222–224. If re-evaluation results in a regulatory change 

such as a dose adjustment, it may be necessary to (partially) remove the food additive in 

question from the current formulation. When an existing product formulation needs to be 

redesigned, the new formulation should meet product quality aspects similar to the original 

formulation. An example of a recent dose adjustment is glycerol223. The re-evaluation 

report states that side effects, such as headaches and nausea, can be induced from a dose of 

125 mg/kg body weight per hour. It was noted that this dose is easily reached in infants 

and toddlers upon consumption of a 330 mL flavored drink. Glycerol is a food additive 

whose properties include, but are not limited to, enhancing microbial and long-term 

physical stability225–227. Complete, or even partial removal of glycerol from an existing 

product formulation requires the addition of one or more substitute additives to obtain a 

similar microbial and long-term physical stability compared to the original formulation.  

 

This case study investigates glycerol-poor (75 g/L instead of 1050 g/L) and glycerol-free 

protein formulations with respect to long-term physical protein stability. In this case study, 

long-term physical instability is defined by the formation of visible, insoluble aggregates, 

such as crystals or amorphous precipitates. Protein-protein, protein-solvent, and protein-

additive interactions determine long-term physical stability228–230. These interactions are 

governed by protein properties such as protein structure, surface charge, conformational 

stability, and colloidal stability21,191,231. In turn, these protein properties are influenced by 

formulation additives, environmental conditions, and the protein itself104,229,232. Glycerol, 

like other polyols, is known to enhance a protein’s conformational stability via preferential 

hydration189,227,233. Preferential hydration is used to describe the depletion of additives, 

such as glycerol, from the protein surface. The exclusion of glycerol is thermodynamically 

unfavorable, as it increases the protein’s chemical potential. This leads to a protein surface 

area minimization in order to reduce unfavorable interactions between the protein and the 

solvent. Thus, the native folded protein state is thermodynamically favorable over unfolded 

state, which results in a higher conformational stability227. In addition to preferential 

hydration, it has been demonstrated that in some cases glycerol can decrease attractive 

interactions between protein molecules via preferential interaction with hydrophobic 

patches on the protein surface234,235. Preferential hydration of protein molecules can also 
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be caused by sugars48. It has been shown that a variety of sugars can increase protein 

conformational stability236–238. Sugar effects are dependent on the sugar type (e.g., 

monosaccharide or disaccharide)48,236 and sugar concentration236,238. For these reasons, two 

monosaccharides (fructose, glucose) and two disaccharides (lactose and sucrose) were 

considered in this case study as glycerol substitutes at three different concentrations (30, 

60, and 80 g/L).  

 

Long-term physical stability can decrease via protein oxidation239,240. Non-site-specific 

oxidation, such as oxidation by the presence of oxidants, is dependent on the exposure of 

amino acids to the environment. Oxidation can be limited or prevented by addition of an 

antioxidant240. For example, free methionine molecules can act as sacrificial agent that will 

be oxidized instead of the product241,242. In the presented case study, approximately 15% 

of the total solvent accessible amino acids residues of the investigated protein are made up 

from amino acids prone to oxidation, namely cysteine, methionine, tryptophan, histidine, 

and tyrosine240. To investigate the effectiveness of methionine to improve long-term 

physical stability in glycerol-poor and glycerol-free formulations, methionine was tested 

at two different concentrations (1.45 g/L and 9.50 g/L) in this case study. The methionine 

concentration of 1.45 g/L was used as it is comparable to the concentration of the original 

formulation. To determine the potential beneficial effect of an increased methionine 

concentration, a formulation with 9.50 g/L methionine was evaluated.  

 

Other environmental conditions, such as formulation pH and salt, can affect physical 

stability as well34,229. Formulation pH determines protein charge, which plays an important 

role in physical stability as it influences both conformational stability and colloidal 

stability21,191. For this case study it was chosen to stay above the protein isoelectric point 

(pI) and relatively close to the pH of the original formulation. In total three pH values (pH 

5.0, 5.5, and 6.0) were included in the formulation search space. Salts can influence long-

term physical stability via various mechanisms such as preferential exclusion, preferential 

interaction with the protein surface, and screening of repulsive electrostatic forces239. The 

mechanism at action depends on the formulation conditions, salt type, and salt 

concentration211,243,244. Therefore, this case study included two salts (sodium chloride and 

potassium chloride) at four different concentration ratios (100:0, 60:37, 40:55, 0:90 g/L, 

sodium chloride to potassium chloride, respectively).  

 

As mentioned before, glycerol is also used to increase microbial stability. Sodium lactate 

can be used as a substitute for glycerol to enhance the microbial stability aspect245. Even 

though sodium lactate is typically used to ensure microbial stability, but not protein 

stability, it was still added to the formulation search space in this case study. This was done 
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because a substitute additive that enhances one aspect of formulation stability, such as 

microbial stability, may adversely influence another, such as protein stability246,247.  

 

The number of considered substitutes for glycerol-poor and glycerol-free formulations 

illustrates the multidimensionality and magnitude of such screening experiments. This 

results in a considerable experimental workload and a large amount of data which 

complicates data evaluation. To reduce the experimental workload, a high-throughput 

storage setup was employed to monitor long-term physical stability via automated imaging, 

where formulations were stored for 30 days at 20 °C115. This experimental setup results in 

a multidimensional output by combining final physical stability data after storage and 

aggregation kinetics during storage 180. Formulation conditions that lead to long-term 

physical instability can be found with the final physical stability data, while the aggregation 

kinetics allows for the identification of potential formulation optimization targets by 

quantifying the degree of instability as a function of the applied conditions. Processing and 

evaluation of such multidimensional data was facilitated by employing the empirical phase 

diagram (EPD) method78,89 to construct a multidimensional protein phase diagram (MPPD) 
180.  

 

Faster, smaller, and efficient screening methods can reduce experimental workload, but the 

necessary storage time remains equally long. The desire for accelerated screenings resulted 

in the search for long-term physical stability predictors from short-term empirical protein 

properties82,121,193,195. Screenings for new formulations can also benefit from short-term 

predictors as these can minimize time and efforts to reach original formulation quality, as 

well as provide insight on the responsible interactions. Therefore, short-term empirical 

properties (apparent hydrodynamic radius of the protein, mean apparent hydrodynamic 

radius of high weight species, protein surface hydrophobicity, conformational stability, and 

colloidal stability) were experimentally determined directly after formulation preparation 

to investigate the correlation between the original formulation and new formulations, as 

well as the corresponding long-term physical stability. The obtained multi-source empirical 

protein property dataset encounters issues concerning data evaluation as well. These issues 

were resolved with a systematic and data-dependent workflow, which also employs the 

EPD method for visualization. This approach combines all multi-source data into one 

single empirical protein property diagram (EPPD)248.  

 

This case study presents an MPPD screening dataset including 1152 formulations to 

investigate the influence of 4 sugars at 3 different concentrations, 3 pH values, 2 salts at 4 

different ratios, 2 methionine concentrations, and sodium lactate, on long-term protein 

stability in glycerol-poor and glycerol-free formulations. A corresponding EPPD was 
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constructed with a subset of 144 formulations. This subset of formulations was selected 

based on physical stability transitions in the MPPD. The aim of this case study was to 

identify new formulations which have similar long-term stability compared to the original 

formulation. It was investigated whether short-term empirical properties are similar 

between long-term stable redesigned formulations and the original formulation, as it is 

assumed that similar short-term properties lead to similar long-term behavior. An 

additional aim was to use the MPPD and EPPD approach to identify short-term empirical 

properties that are not similar to the original formulation, but still display similar physical 

stability after long-term storage. This was done to create a better understanding of 

underlying interactions that determine long-term physical stability. Thus, this study 

combined multidimensional long-term physical stability data with multi-source empirical 

protein property data to rationally approach screening for new formulations by means of a 

case study with glycerol-free and glycerol-poor formulations. 

 

6.2 Material and Methods 

6.2.1 Buffer preparation 

Buffer solution with a pH value of 5.0, 5.5, and 6.0 were made with 0.1 mol/L citric acid 

(Merck KGaA, Darmstadt, DE) and 0.1 mol/L sodium acetate (Merck KGaA, Darmstadt, 

DE) solutions. Buffer pH was adjusted with a 0.05 pH unit accuracy using a five-point 

calibrated pH-meter (HI-3220, Hanna Instruments, Woonsocket, RI) equipped with a 

SenTix 62 pH electrode (Xylmen Inc., White Plains, NY, USA) using either 0.1 mol/L 

citric acid or 0.1 mol/L sodium acetate as titrant.  

 

For each pH, 1.45 g/L and 9.50 g/L L-methionine (Alfa Aesar, Haverhill, MA, USA) buffer 

solutions were made. This corresponds to roughly 0.1% (w/w) and 1.0% (w/w) of L-

methionine, where % (w/w) refers to the weight percentage of the respective compound 

per total weight of the formulation. For each pH and methionine concentration, a buffer 

was made with 100 g/L sodium lactate (Sigma-Aldrich, Saint Louis, MO, USA), 

corresponding to roughly 8.50% (w/w).  

 

For each of the 12 obtained buffer solutions (that is 3 pH values, with 1.45 g/L or 9.50 g/L, 

and with or without 100 g/L sodium lactate) four different sugars were added with a 

concentration of 30 g/L, 60 g/L, and 80 g/L (corresponding to roughly 2% (w/w), 4% 

(w/w), and 6% (w/w), respectively). The employed sugars were D-fructose (Merck KGaA, 

Darmstadt, DE), D(+)-glucose monohydrate (Merck KGaA, Darmstadt, DE), sucrose 

(Thermo Fisher Scientific, Waltham, MA, USA) and lactose monohydrate (Merck KGaA, 

Darmstadt, DE). In addition, four different mixtures of sodium chloride (NaCl) (Merck 

KGaA, Darmstadt, DE) and potassium chloride (KCl) (Alfa Aesar, Haverhill, MA, USA) 
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were made. Mixing ratios of NaCl:KCl were as following: (1) 100 g/L:0 g/L, (2) 60 g/L:37 

g/L, (3) 40 g/L:50 g/L, (4) 0 g/L:90 g/L. The ratios correspond to roughly (1) 7.5:0.0, (2) 

5.0:2.5, (3) 2.5:5.0, and (4) 0.0:7.5% (w/w). The maximum salt and sugar concentrations 

were determined based on the solubility limit. The systematic dilution was chosen to 

capture the effect of different salt and sugar concentrations on long-term physical protein 

stability. All the obtained mixtures were also prepared with the additions of 75 g/L glycerol 

(Merck KGaA, Darmstadt, DE), which corresponds to roughly 5% (w/w). Prior to use, all 

buffer solutions were filtered over a 0.2 μm cellulose acetate filter (Sartorius, Göttingen, 

Germany) and the pH value was checked, and adjusted when necessary. 

 

6.2.2 Protein solution preparation 

Freeze-dried protein, an enzyme (30-45 kDa) referred to as protein I, was kindly provided 

by DSM Biotechnology Center (Delft, NL). For protein phase diagram preparation, a 12 

g/L protein I solution was prepared for each pH value, in combination with each L-

methionine concentration and each sodium lactate concentration. For analytical 

measurements a concentration of 3 g/L protein I was prepared in the identical solution as 

mentioned for the protein phase diagram. Lyophilized protein I was dissolved and filtered 

using a 13 mm 0.2 μm Supor® pre-syringe filter (Pall Corporation, New York, NY, USA). 

The resulting concentration of protein I was determined with a Nanodrop 2000c UV-Vis 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).  

 

6.2.3 Long-term storage 

Protein crystallization plates were prepared with a Tecan liquid handling (LiHa) station 

(Tecan, Maennedorf, CH). Sugar and salt stock solutions were prepared in 1.5 mL 

Eppendorf tubes (Eppendorf, Hamburg, DE) and mixed with the LiHa to obtain appropriate 

mixing ratios. Protein stock of 12 g/L was mixed 1:1 with the appropriate buffer, with and 

without 150 g/L glycerol. Salt and sugar solutions were mixed with the diluted protein 

solutions using a 1:1 mixing ratio to obtain 3 g/L protein I in a final volume of 24 μL in a 

96-well crystallization plate (Swissci, Neuheum, CH). The long-term storage experiment 

was carried out according to the method developed in our lab115 with the following 

adaptation: protein solutions were stored in duplicate for 30 days at 20°C in a Rock Imager 

54 (Formulatrix, Bedford, MA, USA). The employed imaging method was similar to 

previous work180. Protein phase behavior was evaluated after storage based on aggregation 

surface coverage in the well, aggregation onset time, and aggregation growth time. In this 

case study, aggregation could be in the form of crystals or precipitates. For crystalline 

aggregation the crystal length and crystal width were extracted. The image-based features 

where processed with MATLAB (version 2017b, Mathworks, Natick, MA, USA) and 

served as data for the multidimensional protein phase diagram construction. All further 
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operations performed with MATLAB mentioned in this work also used version 2017b and 

in-house developed scripts.  

 

6.2.4 Short-term empirical protein properties 

Five short-term empirical protein properties (apparent hydrodynamic radius of protein I 

and high weight species, aggregation onset temperature, melting temperature, and 

normalized surface tension) were obtained with four different analytical techniques 

(dynamic light scattering, static light scattering, intrinsic fluorescence, stalagmometry). All 

applied operational settings and corresponding data analysis have been described 

elsewhere248, unless stated otherwise. 

 

Dynamic light scattering was used to determine the apparent hydrodynamic radius of 

protein I and high weight species, using a Zetasizer Nano ZSP (Malvern Instruments Ltd, 

Malvern, United Kingdom). The intensity peak between 1 nm and 10 nm was used to 

extract the apparent hydrodynamic radius of protein I. The mean apparent hydrodynamic 

radius of high weight species was based on the mean intensity peaks above 10 nm. Before 

extraction of hydrodynamic radii, all radius distributions were corrected with the 

corresponding bulk viscosity. Buffer viscosity was determined with duplicate samples (200 

μL sample volume) at 25  C using a density sensor (Integrated Sensing Systems, Inc., 

Ypsilanti, MI, USA) and pure water as a reference viscosity value. Viscosity was 

determined for all buffers at pH 6.0 with 1.45 g/L methionine. The viscosity of buffers with 

a methionine concentration of 9.50 g/L was not determined, as it was established that 

buffers containing 9.50 g/L methionine returned similar viscosity values compared to 

buffers containing 1.45 g/L methionine (data not shown). Obtained viscosity values for all 

buffers at pH 6.0 with 1.45 g/L methionine can be found in Supplementary Table D1.  

 

Static light scattering and intrinsic fluorescence were used to determine the aggregation 

onset temperature and melting temperature, using an OPTIM2 (Avacta Analytics, 

Yorkshire, UK). These short-term empirical protein properties were used to represent 

colloidal and conformational stability, respectively. Device settings and data extraction 

protocols were similar to those presented in previous work248.  

 

Normalized surface tension was determined with a fully automated LiHa station-based 

high-throughput stalagmometer74. This short-term empirical protein property was used to 

represent apparent surface hydrophobicity. The experimental procedure was carried out as 

presented in previous work248 but with a sample volume of 120 μL.  
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6.2.5 Data handling 

Data (pre)processing and visualization was performed with MATLAB and R (version 

1.0.136), respectively. The multidimensional protein phase diagram was constructed as 

described in previous work180, selecting the optimal number of clusters between five and 

eight clusters. The empirical protein property diagram was constructed as described in248, 

selecting the optimal cluster number between three and ten clusters. 

 

6.3 Results and Discussion 

6.3.1 Multidimensional protein phase diagram (MPPD) 

Figure 6.1 depicts the extracted image features for all 1152 conditions monitored during 

30 days of storage at 20 °C. The absolute value range for each image feature and 

corresponding description is shown in Figure 6.1a. Data processing resulted in a 3D dataset 

with an energy value of 95.5%. This means there was a 4.5% information loss due to 

singular value decomposition (SVD) dimension reduction. This information loss is 

considered acceptable as it falls within the general rule, where 10% information loss is 

considered the maximum147. Based on this 3D dataset, the optimal number of formulation 

clusters was determined to be eight. For each of the eight clusters, image feature median 

values were calculated and depicted as a colored surface in the corresponding radar charts 

in Figure 6.1b. The median absolute deviation (MAD) of the image features was calculated 

for each cluster as well, shown as a dotted line in the radar charts in Figure 6.1b. A 

representative image for each cluster can be found in Supplementary Figure D1 and an 

overview of median ± MAD image feature values per MPPD cluster can be found in 

Supplementary Table D2. 

 

The MPPD allows for identification of different supersaturation zones based on 

aggregation kinetics and aggregation dimension data, as was shown in a previous study 

using hen egg-white lysozyme180. Cluster 1 represents undersaturated formulations that 

showed long-term physical stability, as all extracted image features (shown in Figure 6.1b) 

are equal to zero when no precipitates or crystals are observed. Cluster 2 and 3 correspond 

to relatively high supersaturation, reflected by precipitate formation. This was identified 

by a crystal size (LC) and crystal width (WC) equal to zero in Figure 6.1b. Both cluster 2 

and 3 represent formulations that precipitated directly after preparation, indicated by an 

onset time (tO) of 0 h. 
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Figure 6.1: (a) Symbols, description, and absolute value range of image features. (b) Cluster radar charts 

with a legend to indicate the position of image features. The normalized median value of each image 

feature is represented with a colored surface. The dotted line represents the median absolute deviation 

within each cluster for each image feature. (c) Multidimensional protein phase diagram (MPPD) for 

changing sodium lactate content (major grid columns), pH values (major grid rows), methionine 

concentrations (minor grid columns), glycerol-poor or glycerol-free conditions (minor grid rows), sodium 

chloride (NaCl) to potassium chloride (KCl) ratios (y-axis), and sugar types and concentration (x-axis). 

The eight identified clusters are visualized in the MPPD using the mean cluster color and cluster number 

similar to the radar charts in (b). MPPD cluster regions are highlighted with a dashed line to guide the eye. 

 

Lower supersaturation was found for cluster 2 compared to cluster 3, based on the amount 

of aggregation (nAGG of 9.3 ± 9.3 % versus 52.5 ± 7.4 %, respectively) and growth time (tG 

of 361 ± 2 h versus 2 ± 1 h, respectively). Note that all mentioned cluster values consist of 

the median ± MAD for representation of the distribution within a formulation cluster. 

Differences in supersaturation can also be identified for crystallized formulations, which 

were found for cluster 4, 5, 6, 7, and 8. A combination of increased nucleation rate (i.e., a 
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larger nAGG), earlier crystal onset time (tO) and decreased growth time (tG) indicates 

increasing supersaturation. These properties were identified for MPPD cluster 8, where 

41.2 ± 7.4 % of the well was covered by relatively small crystals which formed at 0 h and 

grew for 361 ± 10 h. Contrarily, MPPD cluster 4 shows a relatively low nucleation rate 

(0.5 ± 0 %) and little crystal growth (onset at 174 ± 62 h and growth of 198 ± 62 h), which 

indicates low supersaturation. Based on the clusters found in the MPPD, the order of crystal 

clusters regarding level of supersaturation is proposed to be the following: 8>7>6>5>4, 

where cluster 8 represents the highest supersaturation level. Transformations to lower 

supersaturation identify optimization targets to reach physical stability with minor 

formulation adjustments. For example, glycerol-free formulations at pH 5.0 with 9.50 g/L 

methionine and 0 g/L sodium lactate show a transformation to lower supersaturation 

(MPPD cluster 6 to 5 to 4) for increasing KCl concentration. This indicates that similar 

formulations with a higher KCl concentration or lower ionic strength are likely remain 

physically stable over time. Another example of such a cluster transformation is seen for 

increasing formulation pH. Glycerol-free formulations at pH 5.5, with 1.45 g/L methionine 

and 100 g/L sodium lactate, were mostly identified as high supersaturation formulations 

(cluster 8 and 6). Similar formulations at pH 6.0 showed a shift towards MPPD cluster 5 

identification. This indicates that a higher formulation pH is likely to result in long-term 

physical stability, even though long-term physical stability was not observed in the 

evaluated formulation condition range. 

 

6.3.1.1 Stability percentage 

Solutions depicted in Figure 6.1c present 77% physically stable new formulations as a 

result of different formulation conditions. To discuss the effects of each formulation 

variable on long-term physical stability, a percentage was calculated per formulation 

variable representing formulations that remained physically stable during long-term 

storage (i.e., formulations part of MPPD cluster 1). This stability percentage is listed in 

Table 6.1. This percentage was calculated with the number of formulations that showed an 

MPPD cluster transformation upon changing the respective variable. This means that the 

listed percentage is not a percentage of all 1152 formulations, but a percentage of 

formulations that were affected by the respective variable. For example, 96 formulations 

with 9.50 g/L methionine at pH 6.0 remained physically stable independent of the addition 

of sodium lactate. This means sodium lactate did not affect these 96 formulations. Similar 

formulations, but with 1.45 g/L methionine, showed cluster transitions for 44 out of 96 

formulations. The formulations that showed a cluster transformation were considered 

affected by sodium lactate. Formulation selection took into account any type of cluster 

transformation as an effect of the respective formulation variable. For example, this 

selection resulted in a total of 220 formulations that were affected by sodium lactate. An 

overview of percentages for all MPPD clusters per formulation variable and the number of 
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formulations taken into account per formulation variable can be found in Supplementary 

Table D3.  

 

Table 6.1: List of stability percentages per formulation variable. The stability percentage is calculated 

based on the number of formulations that showed a cluster transformation upon changing the respective 

variable in the multidimensional protein phase diagram. 

 

Variable Unit Value Stable [%] 

Sodium lactate [g/L] 
0 79 

100 0 

Glycerol [g/L] 
0 0 

75 86 

pH 

 5.0 5 

- 5.5 68 

 6.0 75 

Methionine [g/L] 
1.45 37 

9.50 40 

Salt ratio 
NaCl:KCl 

[g/L:g/L] 

100:0 6 

60:37 20 

40:55 20 

0:90 31 

Sugar type - 

Fructose 37 

Glucose 14 

Lactose 19 

Sucrose 20 

Sugar concentration [g/L] 

30 19 

60 10 

80 38 

 

6.3.1.2 Glycerol 

Glycerol showed the largest physical stability increase, reflected by a stability percentage 

of 86% upon addition of 75 g/L glycerol listed in Table 6.1. This indicates that partial 

removal of glycerol (75 g/L instead of 1050 g/L) still resulted in long-term physical 

stability. Protein aggregation inhibition upon glycerol addition corresponds to previous 

research235,249,250. This may be an effect of preferential hydration resulting in higher 

conformational stability227 or a reduction in attractive protein-protein interactions due to 

preferential interaction with hydrophobic patches on the protein surface234,235.  
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6.3.1.3 pH  

Increasing the formulation pH value resulted in an increase of physical stability as well, 

represented by stability percentages of 5% (pH 5.0), 68% (pH 5.5), and 75% (pH 6.0). 

Increased physical stability of formulations for pH values further away from the pI of 

protein I correlates well with general protein aggregation theory. Electrostatic repulsive 

forces become stronger as a protein becomes more charged which results in higher colloidal 

stability 21.  

 

6.3.1.4 Sodium lactate 

Figure 6.1 shows that addition of 100 g/L sodium lactate resulted in 0% stable 

formulations. It has been observed that sodium lactate decreases protein conformational 

stability via surface tension decrease due to formation of lactoyl lactic acid251. However, 

the concentration of 100 g/L sodium lactate (~8.5% (w/w)) which was used in this case 

study is lower than the range for which this effect was observed (>20% (w/v)). According 

to the same study, concentrations below the range for which lactoyl lactic was formed, 

were found to increase conformational stability. This observation does not correspond to 

data published in another study, where millimolar addition of lactic acid, which is present 

when sodium lactate is dissolved in an aqueous solution, resulted in protein denaturation 
252. Lactic acid was also investigated for its effectiveness of whey protein gelation, a 

process that requires protein denaturation253,254. Despite the divergent information of 

sodium lactate effects on protein denaturation, our results, as presented in Figure 6.1c, 

confirm long-term physical instability upon sodium lactate addition. Based on the 

previously mentioned protein denaturation studies, this effect is assumed to be a result of 

a destabilized conformation of protein I. This would also support the stabilizing effect of 

glycerol, as glycerol can increase conformational stability via preferential hydration.  

 

6.3.1.5 Methionine 

A 3% stability percentage difference between the two tested methionine concentrations 

reflects a weak influence of an increase in methionine concentration on long-term physical 

stability. However, this number is does not fully represent the trends seen in Figure 6.1c as 

increased long-term physical stability is shown for both concentrations. For pH 5.5 and pH 

6.0, an increase in long-term physical stability is seen upon addition of 9.50 g/L 

methionine, while for pH 5.0 formulations a decrease was observed for the same 

methionine concentration. Increased long-term physical stability for increasing methionine 

concentration at pH 5.5 and pH 6.0 was expected. Free methionine can act as sacrificial 

agent and has shown to increase physical stability255–257. This contradicts the decrease in 

physical stability for pH 5.0 formulations. Decreasing methionine oxidation rate can be 

excluded because methionine oxidation rates were found stable between pH 2 and pH 8258. 
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It has been demonstrated that solvent accessibility can control oxidation rates, but this 

would not influence free methionine258,259. It has been stated that antioxidant additives can 

also influence local dynamics and solvent accessibility of reactive groups, which may lead 

to instability23. However, to the best of our knowledge, no prior studies have described the 

loss of physical stability for increasing methionine concentration under comparable 

conditions. For other amino acids which are often used to enhance long-term stability, such 

as arginine, different optimal concentrations and destabilizing effects have been reported 

for two IgG1 monoclonal antibodies260. Nevertheless, the nature, use, and mechanism of 

stabilization of arginine is not comparable to methionine261. At pH 5.0, the formulation pH 

is closest to the pI of protein I. It can be speculated that methionine influences the solubility 

or conformational stability independent of its antioxidant effects, due to a close to neutral 

protein net charge. It can be speculated that methionine influences the colloidal or 

conformation stability, independently of its antioxidant effects, due to a close to neutral 

protein net charge. A neutral protein charge allows for enhanced protein-protein interaction 

due to the reduction of electrostatic repulsive forces. Protein-protein interactions may be 

further promoted by methionine as a result of preferential exclusion from the protein 

surface. This is just speculative as the molecular mechanism behind the observed decrease 

in long-term physical stability for higher methionine concentrations at pH 5.0 remains 

unknown based on the data obtained in this case study. 

 

6.3.1.6 Salt 

Different salt compositions were also evaluated in the formulation search space. The 

highest physical stability percentage (31%) was found for formulations with 90 g/L 

potassium. Mixed salt ratios (60:37 and 40:55 g/L) of sodium chloride and potassium 

chloride resulted in a physical stability percentage of 20% and formulations with 100 g/L 

NaCl resulted in a physical stability percentage of 6%. The effect of salt on physical 

stability is often related to its position in the Hofmeister series262. Under the evaluated 

formulations, it is assumed that protein I carries a net negative charge as the solution pH 

lies above its pI. A negative net protein charged combined with salt concentrations >1.0 

mol/L means a direct Hofmeister series applies263. Salts used in this case study differ in 

cation (potassium and sodium) while the anion (chloride) remains constant. The direct 

Hofmeister series shows that potassium is slightly more kosmotrope. This indicates 

potassium is slightly more prone to promote conformational stability and salting-out 

compared to sodium. However, this is not reflected by a higher long-term stability 

percentage for potassium (31%) compared to sodium (6%). It should be noted that the 

Hofmeister series positions of potassium and sodium are relatively close, which means 

other factors influencing the observed stability difference should be considered as well. 

Based on the used salt concentrations it can be calculated that the employed ratios resulted 

in different formulation ionic strength. Gram per liter ratios, ordered from high to low NaCl 
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content, correspond to approximately 1.7 mol/L, 1.5 mol/L, 1.4 mol/L, and 1.2 mol/L ionic 

strength. Increasing ionic strength is known to increase aggregation propensity by 

screening electrostatic repulsion, as it lowers a protein’s colloidal stability239. Screening 

effects support the decrease in stability percentage for increasing formulation ionic 

strength. In addition, such screening effects diminish close to the pI, which supports lack 

of influence of the salt ratio on physical stability seen in Figure 6.1c for glycerol-free 

formulations at pH 5.0 with sodium lactate. 

 

6.3.1.7 Sugar 

Evaluating the influence of sugar type resulted in the highest stability percentage for 

fructose (37%) and lowest for glucose (14%), while lactose and sucrose resulted in a similar 

stability percentage (~20%). Sugar concentrations resulted in a minimum stability 

percentage for 60 g/L (10%), and the highest stability percentage was found for 80 g/L 

(38%). As previously stated, sugars can increase conformational stability due to 

preferential hydration of protein molecules48, where disaccharides were found more 

effective236. In this work, the higher effectiveness of disaccharides cannot be confirmed 

due to the use of similar concentrations of monosaccharides (fructose and glucose) and 

disaccharides (lactose and sucrose). From a molar perspective, roughly twice as many 

fructose and glucose (0.16 mol/L and 0.44 mol/L, respectively) molecules are present in 

the formulations compared to lactose and sucrose (0.08 mol/L and 0.23 mol/L, 

respectively). The relatively high stability percentage for fructose concurs with other 

research, where fructose was compared to glucose and sucrose236. Increasing stability 

percentage for increasing sugar concentration was also in accordance with previous 

research, where it was reported that a minimum amount of sugar is needed to induce 

preferential hydration effects238. 

 

6.3.2  Empirical protein property diagram 

Moving towards faster identification and possibly prediction of long-term physically stable 

formulations requires short-term predictive parameters which can be obtained right after 

formulation preparation. In this study, the applicability of such short-term empirical protein 

properties for the use of screening for new formulations was investigated from two 

perspectives. The first perspective is based on the original formulation, which is known to 

remain physically stable during long-term storage. Therefore, it is desired for glycerol-poor 

and glycerol-free formulations to display similar short-term empirical protein properties as 

the original formulation, because similar properties are thought to result in similar long-

term physical stability. The second perspective relies on the multidimensionality of 

physical stability. Different mechanisms may lead to long-term physical stability, which 

can be a result of different protein properties or different combinations of these properties. 
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This means that glycerol-poor and glycerol-free formulations displaying different 

empirical properties than the original formulation may still show long-term physical 

stability. Multiple analytical techniques were used to generate information on the apparent 

hydrodynamic radius of protein I (RH App), the mean apparent hydrodynamic radius of high 

weight species (RH HWS), normalized surface tension (γN), melting temperature (TM) and 

aggregation temperature (TAgg) for a subset of 144 formulations right after formulation 

preparation.  

 

The selected formulations contained 100 g/L sodium lactate for all three pH values. 

Fructose, glucose, lactose, and sucrose were tested at 30 g/L and 80 g/L in combination 

with either 100 g/L sodium chloride or 90 g/L potassium chloride. These formulations were 

tested glycerol-free in combination with 1.45 g/L and 9.50 g/L methionine. Glycerol-poor 

formulations were also tested, but only in combination with 1.45 g/L methionine. Figure 

6.2a lists the empirical properties, a short description, and the corresponding value range. 

Data dimension reduction of empirical protein property data resulted in a 3.5% information 

loss. Clustering of the 3D dataset resulted in an optimum of five clusters.  

 

Figure 6.2b shows a legend, five EPPD cluster radar charts (Roman numerals I to V), and 

a radar chart displaying empirical protein properties obtained for the original formulation. 

The radar charts representing cluster I to V depict the median value of each empirical 

property as a colored surface and the empirical property cluster MAD as a dotted line. An 

overview of median ± MAD values for each empirical property per EPPD cluster can be 

found in Supplementary Table D4. Radar charts in Figure 6.2b can be used to identify 

glycerol-free and glycerol-poor formulations that show empirical properties similar to the 

original formulation. In addition, a stability percentage for each formulation cluster is 

shown below the corresponding radar chart. The stability percentage is defined as the 

formulation percentage within each respective EPPD cluster that showed long-term 

physical stability (i.e., formulations that were also part of MPPD cluster 1). For example, 

cluster II has a stability percentage of 45% which means that 45% of the formulations part 

of cluster II remained physically stable during the long-term storage experiment. Further 

elucidation of the MPPD cluster content of each EPPD cluster can be found in 

Supplementary Table D5. Visualization of the clusters for each considered formulation 

variable is shown in Figure 6.2c, the EPPD. 
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Figure 6.2: (a) Symbols, description, and absolute value range of empirical protein properties (EPPs). (b) 

Cluster radar charts with a legend to indicate the position of each EPP. The normalized median value of 

each EPP is represented with a colored surface. The dotted line represents the median absolute deviation 

within each cluster for each EPP. The EPPs obtained for the original formulation are shown in the Orignal 

radar chart. (c) Empirical protein property diagram (EPPD) for 100 g/L sodium lactate (major grid 

column), varying pH values (major grid rows), different methionine concentrations (minor grid columns), 

glycerol-poor or glycerol-free conditions (minor grid rows), 100 g/L sodium chloride (NaCl) or 90 g/L 

potassium chloride (KCl) (y-axis), and different sugar types at 30 g/L or 80 g/L (x-axis). The five identified 

clusters are visualized in the EPPD using the mean cluster color and cluster Roman numeral similar to the 

radar charts in (b). EPPD cluster regions are highlighted with a dashed line to guide the eye. 

 

The EPPD shows a near uniform identification of cluster V for glycerol-poor formulations 

at pH 5.0 and pH 5.5, while at pH 6.0 glycerol-poor formulations show an almost uniform 

identification of cluster III. Both EPPD clusters show a relatively high stability percentage 

(V = 75% and III = 65%), indicating that the measured empirical protein properties relate 

to long-term physical stability. Cluster III and cluster V show a relatively high value for γN 

(0.97 ± 0.04 and 0.95 ± 0.03, respectively) and a similar RH App of ~3.2 nm. The RH App of 

the original formulation is smaller (2.4 nm) but γN is comparable (1.01). In this case study, 

RH App was assumed to differ between new formulations and the original formulation as a 

result of inter-particle interactions because the measurements were corrected for the bulk 

viscosity61,264. A relative smaller RH App for the original formulation, compared to new 

formulations, was attributed to interaction between glycerol and the protein surface234,235. 

The higher glycerol content in the original formulation was assumed to result in a greater 

loss of attractive protein-protein interactions. The γN is comparable between cluster III, 

cluster V, and the original formulation, where a γN of ~1.00 indicates there is no effect on 

the formulation surface tension upon addition of protein I. As previously mentioned, 
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glycerol influences physical stability via preferential hydration or preferential interaction 

with hydrophobic patches on the protein surface. Both effects would minimize the apparent 

protein surface hydrophobicity and thereby minimize the surface tension change upon 

addition of protein I74,265. Some glycerol-free formulations have also been identified as 

being part of cluster III or V, which means these formulations result in similar short-term 

empirical protein properties without the addition of glycerol. Such glycerol-free 

formulation can be found at pH 5.5 with 90 g/L potassium chloride, where each formulation 

with 80 g/L sugar was identified as cluster V.  

 

Cluster V and cluster III showed comparable values for yN and RH App, but differences were 

observed for TM (76.1 ± 2.3 °C to 72.9 ± 1.4 °C, respectively) and TAgg (62.3 ± 2.6 °C to 

55.1 ± 1.5 °C, respectively). The decrease in conformational and colloidal stability was 

caused by an increased formulation pH. This effect can also be observed for glycerol-free 

formulations, represented by cluster IV at pH 6.0. Cluster IV is characterized by the lowest 

TM (67.7 ± 1.2 °C) and TAgg (56.1 ± 1.1 °C), when compared to all other EPPD clusters. 

Nevertheless, TM and TAgg of cluster IV were still comparable to the original cluster (TM = 

65.5 °C and TAgg = 54.2 °C), which means that colloidal and conformational stability were 

comparable. Different from the original formulation, cluster IV formulations show a 

relatively low γN of 0.88 ± 0.03. The relatively low γN was considered a consequence of 

glycerol’s absence and confirms that apparent protein surface hydrophobicity was 

minimized upon addition of glycerol in glycerol-poor formulations. Despite the differences 

in γN and TM, cluster IV and cluster III have comparable stability percentages (67% and 

65%, respectively). Cluster III’s long-term physical stability was attributed to either the 

prevention of denaturation and subsequent aggregation via preferential hydration or 

reduction of attractive protein-protein interaction by hydrophobic interaction between the 

protein surface and glycerol, while cluster IV formulations are assumed to remain 

physically stable due to repulsive electrostatic forces obtained by the increased positive net 

charge of protein I239. These repulsive forces diminished for increasing ionic strength (from 

90 g/L potassium chloride to 100 g/L sodium chloride) and for lower formulation pH 

values. This is reflected by the increased identification of cluster I and cluster II for these 

formulation condition changes. Cluster II and cluster I show a decreasing stability 

percentage of 45% and 6%, respectively. Based on the large RH HWS (796 ± 120 nm) and 

lack of RH App, it can be concluded that cluster I formulation conditions caused immediate 

aggregation. Cluster II formulations resulted in a RH App of 3.4 ± 0.5 nm and a RH HWS of 

396 ± 213 nm. This indicates that aggregation was present immediately after formulation 

preparation, as seen in cluster I formulations, but to a lesser extent. The effect of methionine 

can be observed by cluster I and cluster II as well. For glycerol-free formulations at pH 

5.5, the addition of methionine causes a decrease in cluster I identification frequency. This 

indicates that aggregation tendency decreases for a higher methionine concentration. A 
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similar cluster transformation can be observed for glycerol-free formulations at pH 6.0. At 

pH 5.0 a decrease in long-term physical stability was observed for 9.50 g/L methionine in 

the MPPD. A corresponding increase in aggregation propensity (i.e., a transformation from 

cluster II to cluster I) is not unambiguously reflected by the EPPD at pH 5.0 between the 

two methionine concentrations.  

 

Cluster V and III represent glycerol-poor and glycerol-free formulations that showed a γN 

comparable to the original formulation, in combination with a stability percentage of 75% 

and 65%. This indicates that screening new formulations for a γN close to 1.00 should result 

in physical long-term stability which is reached via the same mechanism as the original 

formulation. However, none of these new formulations displayed a similar RH App value. 

Presumably, the decrease of inter-particle attraction or increased conformational stability, 

as seen for the original formulation, could not be reached with the relatively low glycerol 

and sugar concentrations used in this case study. Formulation adjustments to optimize and 

match this property of the original formulation might result in higher stability percentages. 

Glycerol-free formulations part of cluster IV at pH 6.0 showed a relatively high stability 

percentage as well (67%). These formulations displayed a lower γN, but TM and TAgg values 

comparable to the original formulation. Based on the corresponding formulation 

conditions, it was assumed that long-term physical stability for cluster IV is obtained via 

repulsive electrostatic forces. Further characterization of new formulations by including 

additional short-term analytical techniques might confirm these results and resolve open 

questions about the observed effects on long-term physical stability as a function of the 

evaluated formulation conditions. Such analytical techniques could include quantification 

of the secondary structure, strength of protein-protein interactions, or surface charge 

measurements. Nevertheless, this case study demonstrates the application of short-term 

empirical data to rationally screen for new formulations based on short-term empirical data 

of a stable original formulation. The use of MPPDs and EPPDs for such an application was 

not shown before. In addition, this case study underlines the ability to obtain an increased 

understanding of observed long-term physical stability due to correlation of MPPD data to 

EPPD data. This allowed for the identification of possible alternative long-term protein 

stabilization routes compared to the original formulation, as well as environmental 

conditions that can be used as a target for optimization of the system under investigation. 
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6.4 Conclusion 

The presented work applied a combination of multidimensional long-term physical 

stability data (1152 formulations) and multi-source short-term empirical protein property 

data (144 formulations) to redesign a protein food formulation containing 1050 g/L 

glycerol. The empirical phase diagram method was applied to present and analyze the 

multidimensional data. The obtained results were employed to identify redesigned 

formulations that resulted in similar long-term stability, but with minimized glycerol 

content. Long-term stability of redesigned formulations was found for two instances. In the 

first instance, redesigned formulations showed a similar short-term normalized surface 

tension compared to the original formulations. This short-term property was found for all 

glycerol-poor (75 g/L) formulations, and for glycerol-free formulations at pH 5.5 and pH 

6.0, containing 90 g/L potassium chloride and 80 g/L sugar. This was observed for all sugar 

types. The comparable short-term empirical property profile and corresponding long-term 

stability of these redesigned formulations indicated a similar stabilization pathway as the 

original formulation. For the second instance, glycerol-poor formulations at pH 6.0 in 

combination with 90 g/L potassium chloride showed a relatively high long-term stability 

percentage (67%) as well. This was attributed to the increasing net protein charge as a 

result of a formulation pH value further away from its isoelectric point, thereby inducing 

repulsive electrostatic forces. This indicated that the combination of the MPPD and EPPD 

identified a different stabilization pathway compared to the original formulation.  

 

The case study illustrated the potential of the multidimensional data visualization and 

analysis methods to rationally design screening experiments for new formulations of an 

existing product. In addition, straightforward identification of underlying short-term 

empirical protein properties provided a more detailed insight to long-term protein physical 

stability. In a broader perspective, the applied method can also be used to screen 

formulations for other product quality aspects that are sensitive to formulation additives, 

such as enzymatic stability studies. Further development of multidimensional data analysis 

might lead to knowledge-based long-term screening experiments, which can include 

predictive cluster classification models using short-term empirical protein properties as 

input. 
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Abstract 

Knowledge-based experimental design can aid biopharmaceutical high-throughput 

screening (HTS) experiments needed to identify critical manufacturability parameters. 

Prior knowledge can be obtained via computational methods such as protein property 

extraction from 3-D protein structures. This study presents a high-throughput 3-D structure 

preparation and refinement pipeline that supports structure screenings with an automated 

and data-dependent workflow. As a case study, three chimeric virus-like particle (VLP) 

building blocks, hepatitis B core antigen (HBcAg) dimers, were constructed. Molecular 

dynamics (MD) refinement quality, speed, stability, and correlation to zeta potential data 

was evaluated using different MD simulation settings. Settings included 2 force fields 

(YASARA2 and AMBER03) and 2 pKa computation methods (YASARA and H++). MD 

simulations contained a data-dependent termination via identification of a 2 ns Window of 

Stability, which was also used for robust descriptor extraction. MD simulation with 

YASARA2, independent of pKa computation method, was found to be most stable and 

computationally efficient. These settings resulted in a fast refinement (6.6 – 37.5 hours), a 

good structure quality (-1.17 - -1.13) and a strong linear dependence between dimer surface 

charge and complete chimeric HBcAg VLP zeta potential. These results indicate the 

computational pipeline’s applicability for early-stage candidate assessment and design 

optimization of HTS manufacturability or formulability experiments. 
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7.1 Introduction 

Virus-like particles (VLPs) are macromolecular assemblages, which in their simplest form 

consist of multiple copies of one viral structural protein266. Their particulate and highly 

repetitive structure invokes an immune response similar to that of native viruses, but VLPs 

are incapable of reproduction as viral nucleic acids are lacking266,267. VLPs can therefore 

provide immunization against the virus they were derived from, as was done for hepatitis 

B virus (HBV; Engerix B, Recombivax)268 and human papilloma virus (HPV: Cervarix, 

Gardasil)269. Immunization unrelated to the native virus can be achieved with chimeric 

VLPs, which are VLPs containing a foreign antigenic epitope. These antigenic epitopes 

can be inserted into a capsid forming protein at either the N-terminus, C-terminus, or major 

immunodominant region (MIR)270. This insertion aims to trigger an immune response, 

adjuvanted by the particulate and repetitive VLP structure271. Chimeric VLPs are 

increasingly used in preclinical and clinical studies272. An example of a chimeric VLP that 

received positive opinion of the European Medical Agency is a malaria vaccine based on 

a HBV surface antigen VLP with an inserted segment of the Plasmodium falciparum 

circumsporozoite protein273. Another platform for chimeric antigen display is the HBV 

core antigen (HBcAg) protein. Chimeric HBcAg VLPs with foreign and self-epitopes have 

been shown to induce strong B cell responses, a characteristic that can be used to develop 

VLPs for the treatment of cancer274–276.  

 

Chimeric VLP development involves screening large numbers of candidate epitope 

insertions277. During screenings, chimeric VLPs are evaluated based on immunogenicity, 

structure stability, and assembly-competence267,278. For example, fewer than 50% of 

inserted peptides in the HBcAg platform resulted in a properly assembled and soluble VLP 
279. Structural stability and solubility are not only desired in the final formulation to ensure 

product efficacy, quality, and safety, but also throughout downstream processing to ensure 

manufacturability278,280,281. During manufacturing, VLPs are exposed to different 

environmental conditions such as changes in pH, ionic strength, and temperature. These 

conditions influence physicochemical properties of VLPs, which in turn determine critical 

evaluation parameters such as the structural stability and assembly-competence282. High-

throughput screening (HTS) experiments allow for workload reduction in virus and VLP 

studies to determine optimal processing283,284 and formulation285 parameters. HTS design 

for VLP studies can be further optimized by search space minimization and 

manufacturability assessment using prior knowledge of physicochemical properties 

obtained computationally from 3-D protein structures278,286,287. Physicochemical properties 

that are most important for virus particles include electrostatic surface charge288–290. 

Research on bacteriophage MS2 showed correlation between experimentally determined 

virus surface charge using zeta potential measurements and computationally calculated 
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protein charge291. Moreover, experimentally determined protein zeta potential showed 

stronger correlation with calculated protein charge using only capsid surface atoms 

compared to protein charge calculated using all MS2 capsid atoms. Other research showed 

that calculated protein charge using the surface of a single MS2 capsid protein was in 

agreement with theoretically determined protein surface electrostatic potential of the entire 

MS2 capsid292. Ionizable groups of a protein determine protein properties such as surface 

charge, structure, and stability293. Therefore, both 3-D structure preparation and in silico 

determination of surface charge require an estimation of the pKa of titratable groups. Fast 

and fairly accurate pKa estimation methods have been developed, such as methods to 

monitor pKa shifts during an MD simulation294 or to process a large number of structures 

parallelized in a short time295. 

 

Candidate chimeric VLP 3-D structures have to be available for computational 

physicochemical property extraction. As it would be impractical to produce all candidates 

and experimentally determine their 3-D structures, an in silico 3-D structure preparation 

approach is needed. This approach would require an automated and high-throughput 

framework to support screening a large number of chimeric VLPs to minimize manual 

effort. These requirements can be met with homology modeling, also known as 

comparative modeling. With this method, unknown 3-D protein structures are created 

based on known template structures296. Homology modeling can be performed using 

several approaches297,298, but all resulting 3-D structures remain only an estimation of 

reality. Further model refinement is needed to meet structure quality requirements and 

should therefore include a molecular dynamics (MD) simulation step99. Structure 

refinement requires the selection of a force field. The choice depends on the application 

and it can be notoriously difficult to identify the best-performing force field for a particular 

application. Novel self-parameterizing knowledge-based force fields, such as YASARA2, 

have been developed to improve the calculation of torsional angles and have shown to be 

useful and accurate for the physical correction of proteins by energy minimization299. 

Several authors have analyzed the performance of different open-source force fields by 

comparing in silico structural data to NMR experimental data300–302. In general, modern 

force fields perform reasonably accurate and reproducible for MD simulation of 

proteins303.  

 

For VLPs, in silico experiments have most frequently been applied to study capsid stability 

using complete VLP capsid 3-D structures. All-atom MD simulations of complete capsids 

are as challenging as they are computationally expensive and can only be done using 

relatively short in silico timescales. Reported simulations reach <10 ns per day on super-

computers304–306 or 30 ns/day when using constrained bond-lengths307. However, modeling 
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VLP structural transitions (e.g., self-assembly, capsid disintegration) requires a much 

larger timescale (μs or ms)308. Compared to all-atom MD simulations, computational 

expense has been reduced to reach these relatively large timescales using coarse-grained309–

311 or multi-scale312–316 models in various capsid studies. Supercomputers, such as the Blue 

Waters supercomputer with 128000 cores, were used and a simulation duration of several 

days for a single capsid was reported306. In silico candidate screening would require an 

equal amount of simulations as available chimeric VLP candidates. Depending on the 

application, this could involve screening of hundreds of chimeric VLP candidates. In this 

case, simulation time would increase to a timespan of a year, even with the use of a 

supercomputer. Time requirement, super computer availability, and respective expertise 

hamper the implementation of these methods in computational high-throughput candidate 

screenings. Simulation simplification, by using only a single capsid protein or capsid 

building block models317,318, aids in resolving these limitations. Monomers and pentamers 

were compared to an entire VLP 3-D capsid model to evaluate the applicability to 

immunogenicity prediction314. Joshi and coworkers showed that the immunogenicity 

predictor (epitope flexibility) was dependent on the complete capsid construct and thus a 

complete VLP capsid 3-D model was required to capture this effect. This requirement is 

not expected for the evaluation of surface charge as it has been shown that MS2 capsid 

protein surface charge descriptors have a high correlation to experimental zeta potential 

data of the entire structure291,292. In addition, this case study used chimeric HBcAg 

structures that differ only in the epitope located on the outer VLP surface. Therefore, the 

influence of dimer contact area on possible zeta potential changes observed for entire 

chimeric HBcAg VLP structures was considered to be minimal. Thus, surface charge after 

3-D structure preparation of HBcAg dimers was evaluated based on its correlation to 

experimental zeta potential obtained for entire HBcAg VLP structures. Monomers were 

not considered as model simplification, since only dimers or larger assemblies (i.e., 

capsids) are present under physiological conditions319.  

 

This study presents a computationally inexpensive, high-throughput, and entry-level 

pipeline to obtain 3-D protein structures. Time and computational effort were minimized 

by automated homology modeling including novel, data-dependent, and stepwise MD 

simulation for homology model refinement. Refinement termination was determined data-

dependently via identification of a 2 ns Window of Stability (WoS) consisting of 1000 

structural snapshots. The WoS was used to calculate the median structure quality and 

median surface charge based on all 1000 structural snapshots to account for MD simulation 

fluctuations. As a case study, three chimeric HBcAg dimer structures were processed under 

similar environmental conditions, each with a unique antigenic epitope insert. Homology 

model construction and subsequent refinement performance was evaluated based on 

simulation quality, speed, and stability. The median surface charge was used to investigate 
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the application of the prepared structures for surface property extraction. This was 

evaluated based on the correlation between in silico calculated surface charge extracted 

from chimeric HBcAg dimers and experimental zeta potential obtained with complete 

chimeric HBcAg VLPs. To identify performance sensitivity, MD simulations using 2 

different force fields (YASARA2 and AMBER03) and 2 high-throughput methods for pKa 

value computation (H++ and YASARA) were compared. The presented case study of three 

chimeric HBcAg dimers was performed to show the potential of the proposed high-

throughput and automated structure preparation pipeline to explore computationally 

determined physicochemical protein surface properties. 

 

7.2 Material and Methods 

7.2.1 Sample preparation 

Recombinant chimeric HBcAg constructs used in this study (referred to as VLP A, VLP 

B, and VLP C irrespective of being a HBcAg dimer or VLP) were modified in the MIR to 

display foreign epitopes on the VLP surface. Constructs were expressed and purified 

according to the production protocol generously provided by BioNTech Protein 

Therapeutics GmbH (Mainz, DE). Purified and assembled VLPs were stored at -20 °C and 

dialyzed into a 50 mM Tris (Merck KGaA, Darmstadt, DE) buffer at pH 7.2 containing 

100 mM NaCl (Merck KGaA, Darmstadt, DE) for analysis. Buffer was prepared with 

ultrapure water (PURELAB Ultra, ELGA LabWater, Lane End, UK) and filtered through 

a 0.20 μm pore size Supor® filter (Pall, Port Washington, NY, USA). Samples were 

brought to room temperature and filtered through a 0.20 μm polyethersulfone (PES) filter 

(VWR International, Radnor, PA, USA) before measurements. Required VLP sample 

concentrations were obtained using Vivaspin® 20 filters with a 30 kDa pore rating 

(Sartorius, Goettingen, DE). VLP concentration was determined with a NanoDrop2000c 

UV-Vis spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA). The E1% 

(280 nm) extinction coefficient was calculated by the online Swiss Institute of 

Bioinformatics ProtParam tool (https://web.expasy.org/protparam.html) based on the 

primary structure of the HBcAg monomer320.  

 

7.2.2 Zeta potential 

Electrophoretic mobility measurements were performed with the Zetasizer Nano ZSP 

(Malvern Instruments Ltd., Malvern, UK). Folded disposable capillary cells (DTS1070, 

Malvern Instruments Ltd., Malvern, UK) were filled with the appropriate buffer and 50 μL 

of a 1 g/L VLP sample. VLP samples were inserted by employing the diffusion barrier 

technique321 using a 200 μL round, 0.5 mm thick Corning Costar gel-loading tip (Corning 

Inc., Corning NY, USA). Six replicates were measured at 25 °C in automatic mode, where 

each measurement consisted of 120 seconds equilibrium time and five runs with a 
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maximum of 15 sub runs. The applied voltage was set to 60 mV and the dispersant was set 

to water. A material refractive index of 1.45 and absorption of 0.001 AU was used. The 

average zeta potential was calculated by Zetasizer Software (version 7.12, Malvern 

Instruments Ltd., Malvern, UK) with the measured average electrophoretic mobility, a 

viscosity of 0.8872 mPas, a dielectric constant of 78.54, and Smoluchowski’s 

approximation of 1.5198. For each VLP sample, outlier detection was performed with 

MATLAB (version 2017b, MathWorks, Natick, MA, USA), using the interquartile range 

rule with a whisker length of 0.75322, followed by median zeta potential calculation.   

 

7.2.3 Computational methods 

Figure 7.1 depicts the computational pipeline used to compute surface property information 

from dimer chimeric HBcAg structures. Required input is a template 3-D structure, the 

target sequences, and experimental conditions (i.e., oligostate, pH, and salt concentration). 

3-D structure curation and MD scene preparation, described in section 7.2.3.1 (p. 100), 

were performed fully automated by employing an in-house developed MATLAB script 

(version 2017b, MathWorks, Natick, MA, USA).  

 

All depicted steps in section Curation and Preparation in Figure 7.1 were an automated 

operation of either MATLAB, YASARA (version 16.9.23, YASARA Biosciences GmbH, 

Vienna, AT), Modeller (version 9.18, University of California, San Francisco, CA, 

USA)323, H++ (Virginia Tech, Blacksburg, VA, USA, biophysics.cs.vt.edu) or Python 

(version 2.7.13, Python Software Foundation, Wilmington, DE, USA) sub scripts. These 

steps resulted in prepared scenes for MD simulation of each VLP construct. MD simulation 

of the prepared scene is described in section 7.2.3.2 (p.102) and extraction of VLP surface 

properties is described in section 7.2.3.3 (p.103). The 3-D structure quality was monitored 

throughout the workflow with the quality Z-score. This is the mean value of the WHAT IF 

parameters Packing1, PhiPsi and Backbone299,324. Quality parameters were calculated 

using the YASARA2 force field in a TIP3P water filled cubic cell325, with walls extended 

10 Å from the 3-D structure.  

 

7.2.3.1 Structure and scene preparation 

The three HBcAg structures used in this study were based on C-terminally truncated and 

histidine(His)-tagged HBcAg, which were modified in the MIR. All experimental 

structures have an identical C-terminus. Therefore, it was assumed that the His-tag would 

not have a significant impact on the relative assessment of 3-D structural biophysical 

parameters. To avoid homology modeling of the His-tag, the C-termini of the input target 

sequences matched the template structure C-terminus. 
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Figure 7.1: Computational pipeline for high-throughput homology model surface property data extraction. 

Four stages are depicted: (1) Curation: epitope insertion using homology modeling (Modeller), followed 

by an energy minimization run (YASARA); (2) Preparation: computed pKa values (H++) are assigned, 

followed by an energy minimization in a simulation cell (YASARA); (3) Simulation: 3-step data-

dependent molecular dynamics (MD) simulation (YASARA) terminated by identification of a 2 ns 

window of stability (WoS); (4) Evaluation: surface area selection and extraction of surface property data 

for each snapshot in the WoS (YASARA). 
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The 3-D crystal structure of C-terminally truncated (1-149) hexameric HBc Y132A was 

obtained from the online research collaborator for structural bioinformatics protein data 

bank (RCSB PDB, www.rcsb.org), under PDB ID 4BMG with a resolution of 3 Å326,327. 

All non-protein molecules were removed and the hydrogen bonding network was 

optimized with YASARA 328. The multimeric state was corrected to obtain a dimeric 3-D 

structure, which resulted in the template structure shown in Figure 7.1. Subsequently, 

homology modeling was performed to adjust the template structure to the target sequence 

using Modeller. The automodel function constructed five homology models, where gap 

initiation and extension penalties for sequence alignment were set to -600 and -400, 

respectively. Obtained homology models were superposed in YASARA and their atom 

coordinates averaged (referred to as homology structure). The hydrogen network was 

optimized and an energy minimization was run with the averaged structure at experimental 

pH and using the AMBER99 force field329. After steepest descent minimization, the 

procedure continued by simulating annealing using 2 fs time steps. Atom velocities scaled 

down by 0.9 every 10th step until the energy improved by less than 0.05 kJ/mol per atom 

during 200 steps. The resulting structure is referred to as the curated structure in Figure 

7.1. The curated structure was uploaded to the H++ webserver using a Python web scraping 

algorithm (selenium library) to compute pKa values295. The external and internal dielectric 

constant were set to 80 and 10, respectively, and salinity and pH were set equal to 

experimental conditions (i.e., 0.1 molar salinity and pH 7.2). Obtained pKa values and the 

resulting 3-D structure were automatically downloaded and used to build an MD simulation 

cell. Additionally, to investigate the effect of H++ computed pKa values, pKa values 

computed by YASARA were used instead of H++294. The simulation cell contained the 

prepared 3-D structure, which included computed pKa values as well as (de)protonated 

termini based on the experimental pH and computed pKa values. Cell walls were built at a 

distance of 10 Å from the refined 3-D structure. After simulation cell construction, a 

neutralization run was performed. TIP3P water molecules325 were added to the simulation 

cell (water density was set to 0.997) as well as salt ions (set to experimental conditions).The 

final step of MD scene preparation was an energy minimization using identical settings as 

described before. This resulted in the prepared MD scene depicted in Figure 7.1. 

 

7.2.3.2 Molecular dynamics 

Prepared MD scenes with H++ pKa values were simulated using the YASARA2 or the 

AMBER03 force field330, and with YASARA pKa values using YASARA2299,331, with a 

cutoff of 7.86 Å332 and long range Coulomb interactions using the particle mesh Ewald 

method333. Temperature was controlled by rescaling velocities using a modified Berendsen 

Thermostat332,334. Hardware consisted of two Windows 10 computers with an Intel i7-6700 

CPU and a GeForce GTX 1080 GPU. Results of the second computer are shown in 

Supplementary Material Figure E2, Figure E3, Figure E4, and Figure E5. Intramolecular 
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forces were calculated every 2 fs (1 fs for AMBER03) and intermolecular, non-bonded 

Van der Waals, and electrostatic forces every 4 fs (2 fs for AMBER03) to improve 

performance and subsequently scaled by 2335. MD scene snapshots were saved every 2 ps 

and superposed on the prepared structure to calculate a root-mean-square deviation 

(RMSD) of atom coordinates. The simulation was automatically performed in three 

RMSD-controlled steps. In step 1, only the epitope and five adjacent amino acids were 

simulated. All other amino acid atom positions were constrained. In step 2, 18 additional 

amino acids towards the N-terminus and ten amino acids towards the C-terminus (i.e., the 

dimer spike consisting of two alpha-helical hairpins) were simulated without position 

constraints. Other amino acids were simulated with free side chain atoms but fixed 

backbone atom positions. In step 3, all atom positions were unconstrained. All H-bonds 

were constrained during step 1 and step 2 using the linear constraint solver (LINCS) 

algorithm336. In step 3, all H-bond constraints were removed after 0.2 ns and the time steps 

for intermolecular forces and intramolecular forces were reduced to 2 fs and 1 fs, 

respectively. The simulation advanced to the next step when the moving average (window: 

0.15 ns, sampling rate: 10 ps) RMSD change was below a set threshold of 0.75 Å/ns for 

0.1 ns. A penalty of 0.02 ns was used if the rate of RMSD change was above the threshold. 

Step 3 was terminated based on the RMSD coefficient of variance (CV) in a window of the 

last 2 ns of simulation. MD simulation was terminated when the window CV fell below 

2.5%, using a sampling rate of 2 ps. The snapshots of the obtained window of stability 

(WoS) were used for the calculation of quality and descriptors. Simulations that did not 

reach a WoS within 30 ns were manually stopped. 

 

7.2.3.3 Data processing 

The homology structure and all MD snapshots of the WoS obtained with H++ or YASARA 

pKa values and YASARA2 or AMBER03 force field were analyzed based on their solvent 

accessible surface area (SASA). Structure SASA was calculated by finding all points a 1.4 

Å water probe’s oxygen nucleus can reach while rolling over the protein surface 

approximated by YASARA’s numeric algorithm. Contribution of the intra-dimer surface 

was excluded. Molecular parameters were automatically extracted using similar settings as 

in the MD simulation. Surface charge was calculated for all atoms contributing to the 

SASA and the resulting surface charge was divided by the total SASA. This was done to 

exclude size effects that can occur between different epitope insertions. In silico zeta 

potential values were obtained via linear transformation of surface charge data. Linear 

transformation included normalization of in silico data between 0 and 1 and transformation 

using the minimum and maximum of the experimental data, as shown by Equation 7.1. 

 

𝑦   𝑛𝑠 𝑜    [�̃�𝑛𝑜   ∙   𝑦  𝑥 − 𝑦 𝑖𝑛 ] + 𝑦 𝑖𝑛 (7.1) 
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Normalized in silico data is indicated as ỹnorm, experimental minimum and maximum data 

are represented by ymax and ymin, respectively. Descriptors derived from each snapshot in 

the WoS are reported as medians and corresponding median absolute deviation (MAD). 

Correlation between linear transformed in silico data and experimental data was evaluated 

based on the Pearson correlation coefficient (PCC). PCC was calculated with the corrcoef 

function available in MATLAB. The error between in silico and experimental data was 

evaluated with the mean squared error (MSE), obtained with Equation 7.2.  

 

𝑀𝑆𝐸   
1

𝑛
 ∑ 𝑦𝑖 − �̃�𝑖 

 

𝑛

𝑖=1

  (7.2) 

 

where n is the sample size, yi experimental data, and ỹi in silico generated data. 

 

7.3 Results and Discussion 

7.3.1 Quality 

Figure 7.2 shows an overview of structural quality Z-scores during curation, preparation, 

and simulation of each chimeric HBcAg dimer. The structural quality Z-score is an average 

of three parameters: (1) 3-D direction-dependent packing normality, (2) position normality 

of residues and secondary structural motifs in the Ramachandran plot, and (3) backbone 

conformation normality299. A value below -2 is considered to represent a poor structure 

and Z-scores close to or above zero indicate more reliable structures. Separate parameter 

values can be found in Supplementary Material Figure E1.  

 

Quality Z-score differences were observed throughout the structure preparation workflow 

and between different identified windows of stability. The template structure quality Z-

score (-1.18, gray dashed line) increased after homology modeling with 0.12 and 0.16 for 

VLP B and VLP C, respectively. VLP A showed a 0.03 quality Z-score decrease compared 

to the template structure. Underlying parameters showed that VLP A’s backbone 

conformation quality decreased roughly 1.5 times more than the other constructs. This is 

attributed to the amount of additional atoms included in the homology model. VLP A 

contains 17% additional atoms compared to the template structure, while VLP B and VLP 

C contain 13% and 11% additional atoms, respectively. The other two underlying quality 

parameters (packing normality and Ramachandran plot position normality) show a similar 

trend between VLP constructs when comparing the template and homology structure (data 

shown in Supplementary Material Figure E1). 
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The observed quality improvement of homology structures VLP B and VLP C, which is 

dominated by Ramachandran position normality parameter improvement, might be an 

effect of the restraint-based homology modeling and knowledge-based loop modeling used 

by Modeller298,337. Quality Z-scores of curated and prepared structures were between -1.44 

and -1.62, which is between 22% and 37% lower compared to the template structure. Both 

structures are evaluated after energy minimization at experimental pH, where prepared 

structures included H++ computed pKa values and the curated structures did not. Energy 

minimization is used to remove global errors in 3-D structures, such as steric clashes. 

However, optimization of global and local structural quality with an energy minimization 

run is not trivial. Energy minimization may result in lower quality structures because global 

errors are removed but local errors accumulate299,338. This may explain quality decrease of 

curated and prepared structures, when compared to the template and homology structures. 

A similar decrease in quality Z-score after energy minimization with an AMBER99 force 

field has been reported before 299. Structural issues present in curated and prepared 

structures were resolved by running an MD simulation with the YASARA2 force field, 

independent of the used pKa computation method. Mean quality Z-scores of all VLP 

constructs for MD simulation WoS without H++ (-1.17) and MD simulation WoS with 

H++ (-1.13) were comparable to the template. This shows there is no quality loss after 

 

Figure 7.2: Overview of quality Z-scores for the template, homology structure, curated structure, window 

of stability (WoS) without H++ and the YASARA2 force field (“WoS w/o H++”), the prepared structure, 

WoS obtained with H++ and the AMBER03 force field (“WoS A03”), and WoS obtained with H++ and 

the YASARA2 force field (“WoS”). The quality Z-score is an average value of the WHAT IF quality 

factors 3-D packing (QUACHK), Ramachandran Z-score (RAMCHK) and backbone conformation 

(BBCCHK)299. A median value and median absolute deviation as error bar is shown for the WoS quality 

Z-scores. The gray dashed line represents the quality Z-score of the template structure. 
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completing the proposed structure preparation pipeline with the YASARA2 force field. 

Additionally, the coefficients of quality Z-score variance of 4.72% and 1.79% for the MD 

simulation with and without H++ pKa values, respectively, reflected that there is no quality 

influence of the inserted epitope length. However, a decrease in quality is seen for the WoS 

obtained with the MD simulation using the AMBER03 force field (WoS A03), represented 

by a mean quality Z-score of -1.86 considering all VLP constructs. This corresponds to 

observations previously reported about diverse structure quality values obtained with 

different force fields 339. Quality Z-scores for intermediate structures and final MD 

simulation WoS showed that chimeric HBcAg dimer structure quality in this dataset was 

mostly influenced by the force field and an MD simulation, independent of the used pKa 

computation method.  

 

7.3.2 MD simulation 

All chimeric HBcAg homology models were refined with MD simulations. This was done 

because MD simulations correct structural errors present in homology models99. An MD 

simulation results in a change of atom coordinates, which is measured by the RMSD of 

those atom coordinates. Structure refinement is achieved upon stabilization of atom 

positions, referred to as the equilibrium state. This state is identified by a plateau of the 

RMSD value over simulation time. Plateau identification is frequently done subjectively 

based on visual inspection of RMSD plots. This approach is not recommended as it was 

shown to be biased in a survey among researchers in the field340. To avoid subjective 

plateau identification, this study employed automated equilibrium state determination 

based on the average RMSD slope or CV. Automated determination was used within a 3-

step MD simulation. In each step, a growing part of the chimeric HBcAg dimer structure 

was refined until an equilibrium was identified. Separate refinement of structure parts was 

used to reduce simulation time in addition to automated identification of the equilibrium 

state. The simulation was terminated when equilibrium was reached for the full chimeric 

HBcAg dimer structure. This state is referred to as the WoS, which was defined as a 2 ns 

simulation window where the RMSD CV in step 3 was below 2.5%. The 3-step MD 

simulation was specifically implemented for the HBcAg dimer structure, as sequences 

differ only in the MIR. For other applications, (i.e., formulation condition screening of a 

single protein or a diverse protein dataset) a 3-step MD simulation may not be necessary 

and a WoS could be determined in one simulation step.  

 

Figure 7.3 shows the progress of 3-step MD simulations with the YASARA2 force field 

and H++ computed pKa values for all three VLPs. The atom coordinate RMSD was 

calculated every 0.002 ns by superposing a simulation snapshot on the prepared structure.  



107 
 

 

Figure 7.3: Progress of molecular dynamics (MD) simulations for VLP A, B, and C presented by root-

mean-square deviation (RMSD) of atom coordinates (Å) over simulation time (ns). Three different 

simulation steps are separated by vertical lines, where vertical lines indicate simulation transition points. 

From 0 ns to dotted line: simulation of epitope and five adjacent amino acids; from dotted to dashed line: 

simulation of Hepatitis B core antigen (HBcAg) dimer spike; from dashed line to the end of simulation: 

full dimer simulation. The highlighted area is defined as the 2 ns window of stability (WoS). 

 

Overall simulation time ranged from 4.0 ns to 19.9 ns and the absolute RMSD increased to 

2.10 ± 0.04 Å to 7.52   0.15 Å during MD simulation. The in silico time span difference 

between structures to reach the WoS is in agreement with other work, where structure 

stability was achieved earlier, later, or not at all, depending on the protein99. VLP C showed 

the lowest RMSD increase (2.1 Å ± 0.04 in the WoS) and shortest simulation time (6.6 h; 

in silico: 4.01 ns). VLP A resulted in the largest RMSD increase (7.52   0.15 Å in the WoS) 

and longest simulation time (37.5 h; in silico: 19.89 ns). Simulation time increased from 

VLP C to VLP B to VLP A, which corresponds to the number of inserted atoms of 11%, 

13%, and 17%, respectively. Step 1, which simulates the inserted epitope and five adjacent 

amino acids, showed 32.1% to 69.2% of the total RMSD change. This is a relatively large 

percentage considering step 1 accounted for 3.6% to 12.5% of the total simulation time. 

The epitope was not part of the template 4BMG crystal structure and therefore it was 

inserted with homology modeling. Homology models typically have errors in the 

secondary structure and atomic packing which should be resolved during MD simulation99. 

This is presumably one factor contributing to the relatively large RMSD change observed 

in step 1, which only refined the inserted epitope and five adjacent amino acids. Another 
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factor that can influence the observed RMSD profile of the epitope is its flexible design. It 

was stated that epitope flexibility allows for efficient presentation to the immune system341, 

but increased structure flexibility can also result in larger RMSD change during MD 

simulation. Other parts of the HBcAg dimer are less flexible. Therefore, only small 

deviations in atom coordinates of the less flexible and conserved region of chimeric HBcAg 

(i.e., the molecule base and lower part of the spike) were observed when comparing MD 

simulation steps. This is also illustrated by Figure 7.4, where the RMSD per residue number 

is shown. Figure 7.4 shows that regions around the epitope have higher RMSD values than 

other regions.  

 

Figure 7.4: Local structural changes during molecular dynamics (MD) simulation represented by root-

mean-square deviation (RMSD) of atom coordinates (Å) over residue number (-). Initial structures were 

compared with last MD simulation snapshots of VLP A, B, and C, respectively, with the YASARA2 force 

field and H++ computed pKa values. Vertical lines mark the inserted epitope exemplarily for VLP A. 

 

Simulation speed improved due to bond and regional atom constraints and due to an 

increased time step for force calculation in the first two steps of the simulation. On average, 

step 1 was 72% (21.26 ns/day) and step 2 was 69% (20.82 ns/day) faster compared to step 

3 without constraints and with a smaller time step (12.32 ns/day). This supports the 

expected simulation speed improvement by employing a data-dependent 3-step method. 

This corresponds to the previous statement that simulation design should be adjusted to the 

application and starting structure to obtain optimal speed and stability output. With the 

used simulation approach, the 2 ns WoS of three chimeric HBcAg dimers were created on 

a Windows 10 computer with an Intel i7-6700 CPU and a GeForce GTX 1080 GPU in 

66.0 h of computational time using the YASARA2 force field and H++ computed pKas. 

Simulations with H++ pKa values and YASARA2 as force field were also run on another 

computer containing similar hardware to evaluate reproducibility. No significant difference 

in simulation outcome was found, including calculation of quality and surface charge. 
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More detailed information on reproducibility can be found in Supplementary Material 

Figure E2 to Figure E5. 

 

Two additional simulations were performed, the first to evaluate the effect of different pKa 

value computation methods, and the second to compare MD simulation with YASARA2 

to a standard force field for protein simulations, AMBER03. Figure 7.5a shows the 

progress of MD simulations using the YASARA2 force field and with YASARA computed 

pKas (without H++; w/o H++) and Figure 7.5b shows MD simulations with the AMBER03 

force field with H++ computed pKas (A03).  

 

During MD simulations w/o H++, RMSD increased by 2.46 ± 0.05 Å to 8.95 ± 0.17 Å in 

5.5 ns to 12.6 ns corresponding to 11.0 h to 30.5 h of computational time. The total 

computational time of 59.6 h for MD simulations without H++ computed pKa values was 

comparable to 66.0 h for MD simulations with H++ pKa values. This shows that the pKa 

calculation method did not have a significant influence on MD simulation performance. 

MD simulations with AMBER03 resulted in RMSD values of 5.10 ± 0.16 Å to 13.66 ± 

0.25 Å. MD simulation took 18.42 ns to 30.0 ns which corresponds to a total computational 

time of 156 h. For A03, the MD time step had to be reduced to 1 fs for intramolecular and 

to 2 fs for intermolecular forces to avoid simulation failure. Structure instability also 

prevented the transition to MD simulation step 3 for VLP A, which is elucidated by a 

fluctuating RMSD curve in Figure 5. Furthermore, VLP C did not reach a WoS within 

30 ns. Both results indicated that using AMBER03 resulted in less stable simulations 

 

Figure 7.5: Progress of molecular dynamics (MD) simulation for VLP A, B, and C presented by root-

mean-square deviation (RMSD) of atom coordinates (Å) over simulation time (ns) for (a) MD simulation 

without H++ with YASARA2 as force field (“w/o H++”) and (b) MD simulation with H++ and 

AMBER03 as force field (“A03”). Three different simulation steps are separated by vertical lines, where 

vertical lines indicate simulation transition points. From 0 ns to dotted line: simulation of epitope and 

five adjacent amino acids; from dotted to dashed line: simulation of Hepatitis B core antigen (HBcAg) 

dimer spike; from dashed line to the end of simulation: full dimer simulation. The highlighted area is 

defined as the 2 ns window of stability (WoS). 
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compared to simulations with YASARA2. Simulations with H++ or YASARA computed 

pKa values using the YASARA2 force field have shown the best performance based on 

simulation time, simulation stability, and overall completion of the 3-step MD simulation 

method. This indicates that MD simulations evaluated in this study benefitted from the 

empirical data that is embodied in a force field containing knowledge-based 

potentials299,342. Evaluation of this method based on other (refined) force fields and other 

software platforms would give more detailed insight into simulation performance. 

 

7.3.3 Zeta potential 

Zeta potential was experimentally determined for all three HBcAg VLP constructs and 

compared to in silico determined total surface charge based on the HBcAg dimer structures. 

This was done to determine the applicability of the prepared structures for computational 

surface property extraction. It was assumed that the observed zeta potential differences that 

occur due to the changes on the outer surface of the entire VLP structure are captured by 

the dimeric HBcAg structure343. The obtained in silico surface charge extracted from the 

homology model and three different WoS, for each of the three chimeric HBcAg dimer 

structures, are shown in Figure 7.6.  

 

Figure 7.6: In silico computed zeta potential (mV) plotted against experimentally determined zeta potential 

(mV). Symbols represent in silico data based on the homology structure (“Homology”, red open circle), 

window of stability (WoS) obtained without H++ and with YASARA2 (“WoS w/o H++”, purple diamond), 

WoS obtained with H++ and AMBER03 (“WoS A03”, purple square), and WoS obtained with H++ and 

YASARA2 (“WoS”, blue filled circle). The diagonal line represents theoretical data with a Pearson 

correlation coefficient of 1 (PCC = 1). X-axis error bars represent the median absolute deviation (MAD) 

of experimental data and y-axis error bars represent MAD for in silico data points. For each in silico data 

series the PCC and mean squared error (MSE) are calculated (n = 3) and listed. 

 

Linear transformation of in silico data was applied to obtain comparable scales and 

different MD simulation refinement settings were used to determine the effects on in silico 

Structure MSE PCC

Homology 0.64 0.915

WoS w/o H++ 0.38 0.954

WoS A03 0.58 0.922

WoS 0.45 0.946
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generated data and the respective correlation to experimentally determined zeta potential. 

Linear transformation resulted in ranking three VLPs according to their zeta potential. 

Figure 7.6 shows that zeta potentials of complete chimeric VLPs were ranked correctly by 

all dimer structures, which causes overlaying symbols at [-11.70, -11.70] and [-7.94, -7.94]. 

The main difference is seen for VLP C, which has an experimental zeta potential of -9.50 

± 0.69 mV. This data point was used to evaluate the influence of pKa value computation 

method and force field selection on in silico surface charge calculations. The evaluation 

parameters, PCC and MSE, are listed for each data series in Figure 7.6. A PCC value above 

0.900 indicates a strong linear dependency with experimental data344. This was seen for all 

evaluated data series because of the limited dataset size, but small differences were 

observed for VLP C’s surface charge. WoS simulated without H++ pKa values and WoS 

with H++ pKa values showed the highest PCC, with values of 0.954 and 0.946, 

respectively. Transformed VLP C surface charges for WoS w/o H++ (-8.44 ± 1.18) and 

WoS with H++ (-8.33 ± 1.43) were also comparable, which resulted in a 0.07 MSE 

difference in favor of WoS w/o H++. The WoS transformed surface charge distribution, 

represented by the MAD, shows an overlap between these two values. This indicates there 

is no significant influence of the used pKa value computation methods in correlation to 

experimental data. This result was reproducible (data shown in Supplementary Material 

Figure E2 to Figure E5). Transformed surface charges based on the homology structure (-

10.89) and WoS A03 (-10.82 ± 1.11) showed a weaker correlation than the WoS previously 

discussed. This is shown by MSE values of 0.64 and 0.58, respectively. Linear dependency 

is also weaker compared to the other two WoS, where the homology structure showed a 

PCC of 0.915 and WoS obtained with AMBER03 showed a PCC of 0.922. As mentioned 

during the discussion of the MD simulations, VLP A did not complete step 2 and VLP C 

did not reach a WoS when the AMBER03 force field was used during MD simulation. 

Presumably this also caused the decreased correlation to experimental data. This leads to 

the conclusion that for this case study the largest positive effect was obtained with the 

YASARA2 force field, regardless of the used pKa values, when evaluating the correlation 

between in silico HBcAg dimer surface charge and complete chimeric VLP zeta potential. 

The observed force field effect should be confirmed with a larger dataset. Nevertheless, 

results indicate that surface properties extracted from structures obtained with the presented 

pipeline can represent experimental behavior. It should be noted that the applicability of 

chimeric dimer 3-D structure surface charge to quantitatively predict complete chimeric 

VLP zeta potential lies outside the scope of this case study, and should be investigated 

using a more diverse sample space.   

 

All evaluated WoS show a relatively large coefficient of variation (10% – 16%) regarding 

the in silico zeta potential, which means there is a significant variation in protein surface 

property value within the WoS. For example, VLP A simulated with H++ pKa values and 
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the YASARA2 force field resulted a maximum in silico zeta potential of -5.74 mV and 

minimum of -11.07 mV within its 2 ns WoS. This emphasizes cautiousness regarding the 

use of a single MD simulation snapshot because a snapshot can theoretically take any 

random value within the WoS. The use of a single snapshot can decrease correlation 

accuracy and thereby reduce the reliability of computational protein structure-based 

models. Therefore, a robust central tendency describing statistic which is less sensitive for 

outliers, such as the median345, is considered appropriate for the extraction of protein 

surface property information within a WoS. The presented computational pipeline did not 

only show the potential of a high-throughput approach for 3-D structure preparation, but 

also how a WoS can provide an objective MD simulation termination to reduce 

computational effort and a robust descriptor extraction platform. The approach could be 

used for other proteins, such as antibodies, and other prediction targets, such as assembly 

competence, solubility, or surface hydrophobicity. A variety of proteins and other 

prediction targets should be investigated to determine the full potential of the proposed 

computational 3-D structure preparation pipeline. 
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7.4 Conclusion 

A computationally inexpensive, fully automated, and data-dependent pipeline for high-

throughput 3-D protein structure preparation and refinement was constructed and evaluated 

using a case study of three chimeric HBcAg dimers. Structure quality, computational 

speed, simulation stability, and zeta potential correlation have been evaluated for three 

different simulation settings. This was done by homology modeling and subsequent 

structure refinement with 2 different force fields (YASARA2 or AMBER03) and 2 

different pKa values (H++ or YASARA computed pKa values). All evaluation parameters 

showed to be mainly influenced by the choice of force field, where YASARA2 showed a 

more stable performance than AMBER03. YASARA2 simulations using either pKa 

computation method resulted in comparable average quality Z-score (-1.17 and -1.13). All 

three chimeric HBcAg dimer structures, modelled and refined with YASARA2, were 

obtained within 59.6 to 66.0 hours (in silico time of ~4 ns to ~20 ns per structure) on a 

powerful yet ordinary desktop computer. These simulation times were ~2.4 times shorter 

than simulations using the AMBER03 force field. Computational efficiency was achieved 

by designing a 3-step MD simulation refinement complementary to the structures in 

question. This design resulted in simulating 31.2% to 69.2% of the total RMSD change in 

3.6% to 12.5% of the simulation time. In addition, homology model refinement included a 

data-dependent simulation termination based on a 2 ns window of stability, which was also 

used for robust surface property descriptor extraction. Validity of the calculated surface 

property was exemplarily evaluated by correlating in silico determined surface charge, 

based on the chimeric HBcAg dimer structures, to experimental zeta potential of the entire 

VLP structure. The use of dimers instead of entire VLP structures contributed to the relative 

short simulation time, while a high correlation (PCC of ~0.950) to experimental zeta 

potential was maintained. The case study showed promising results for high-throughput in 

silico surface property screening, but its full potential should be further explored with a 

larger dataset. The simple, standardized, and automated framework allows for the 

implementation of the computational pipeline in manufacturability and formulability 

screening studies for early candidate assessment. 
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8  Conclusion 

 

This thesis focused on the design and implementation of computational methods applicable 

for the analysis of long-term protein phase behavior. The employed computational methods 

include unsupervised and supervised machine learning approaches, with an emphasis on 

data-dependent automation of what were previously manual procedures. Unsupervised 

multidimensional data visualization was applied for a comprehensive and complete 

representation of data obtained from long-term protein phase behavior experiments. The 

resulting MPPDs allowed for the identification of subtle kinetic and morphological changes 

as a function of applied environmental conditions. A supervised image recognition 

algorithm was implemented to reduce the manual effort required for image-based feature 

extraction, a necessary step to construct MPPDs. To improve image recognition accuracy 

for automated evaluation of long-term protein phase behavior studies, the combination of 

three light sources (visible, cross polarized, and UV light) and kinetic features was 

investigated. The additional information returned by cross polarized light, UV light, and 

kinetic data resulted in a 17.3 percent point increase in balanced accuracy compared to the 

use of only end point visible light images. Subsequent connection of the supervised image 

recognition algorithm to unsupervised multidimensional MPPD construction resulted in an 

automated workflow that mines raw images to classify protein phase diagrams and 

constructs MPPDs.  

 

Unsupervised multidimensional data visualization was also applied to investigate the 

correlation between empirical properties obtained directly after formulation preparation 

and long-term protein phase behavior. This resulted in the construction of an EPPD, a 

figure containing short-term data from six different analytical techniques. The EPPD 

showed partial correlation to long-term protein phase behavior represented by the MPPD. 

This indicated the applicability of short-term empirical data for the design of rational and 

knowledge-based long-term stability screenings. The developed workflow was 

subsequently applied to an industry case study to identify long-term stable glycerol-poor 

and glycerol-free food protein formulations. This led to the identification of apparent 

protein surface hydrophobicity and electrostatic repulsive forces as product-specific targets 

to enhance stability.  

 

8 
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To construct predictive models for long-term protein phase behavior based on in silico 

generated protein properties by means of MD simulations, an automated pipeline for high-

throughput 3-D structure preparation and refinement was developed and evaluated. Due to 

its computational inexpensiveness and data-dependent framework, the largest structural 

errors were refined within only 3.6-12.5% of the total computational time, leading to an 

automated refinement within 6.6-37.5 hours. A case study was performed with a relatively 

small set of three dimeric VLP capsid protein structures, which indicated the advantages 

of the presented automated structure preparation pipeline for large scale screening 

purposes.  

 

In conclusion, this thesis explored and applied computational methods to automatically 

extract data from protein phase behavior experiments and visualize such multidimensional 

dataset for straightforward interpretation. The obtained information was used to assess the 

correlation between long-term protein phase behavior and short-term multidimensional 

empirical data sets. In addition, a contribution was made for the in silico generation of 

protein properties by developing of a high-throughput 3-D protein structure preparation 

pipeline. The efforts reported in thesis and in literature, in combination with the challenges 

that still need to be resolved, shape an outline of the computer-supported and knowledge-

based infrastructure required to rationally and systematically develop long-term stable 

protein formulations in a shorter time frame.  
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9  Outlook 

 

The correlation between short-term empirical properties and long-term protein phase 

behavior was shown retrospectively in this thesis, as long-term protein phase behavior 

experiments were performed for the verification of the found short-term empirical profiles. 

This time-consuming step will still be required when other proteins are investigated due to 

the unique stability behavior of different proteins, or when different additives are used 

which may lead to different stabilizing pathways. Thus, an internal standard representing 

the protein and its corresponding potential stabilizing pathways is currently necessary in 

order to verify the correlation between short-term empirical data and long-term phase 

behavior. A standard-free and indisputable verification of the predictive capacity of short-

term measurable or computable properties is the most challenging task to complete in order 

to eliminate the long experimental time required for the demonstration of protein-product 

shelf life. Without a reliable correlation between short-term effects and results obtained 

with the established long-term methods, short-term protocols cannot be accepted by 

regulatory agencies as a stand-alone product assessment. To verify the correlation, 

advanced, well-defined, physically realistic in silico simulations are required, in addition 

to short-term empirical measurements and machine learning approaches trained on 

previous protein-product formulations results. Key to the construction of such an 

infrastructure is the collaboration between the biotechnology industry and academia. Over 

the past decades a large amount of data for successful long-term formulation has been 

generated. In addition, there is even more data available on the many failed attempts, which 

should not be considered unimportant. Currently, this large amount data acquired on 

successes, and even more failures, in long-term protein phase behavior studies is not shared 

between industry and academia. One of the first steps to solve this mutual knowledge gap 

is mining these important sources.  

 

The presented short-term characterization and visualization of protein phase behavior 

under a variety of environmental conditions is not only applicable to study long-term 

protein phase behavior for effective formulation development. In fact, environmental 

conditions are continuously changed during downstream processing (DSP) in order to 

obtain a pure product. In addition, fluctuations in the environment during upstream 

processing (USP) influence product stability due to variations in system properties such as 

9 
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impurity content. A correlation between USP and DSP environmental conditions, short-

term empirical properties, and protein stability would be interesting to investigate. This 

may lead to machine learning approaches that do not only select process parameters 

optimized towards yield and purity, as is currently done for USP and DSP, but also 

incorporate protein stability as an optimization target.  

 

As mentioned above, the prediction of protein stability will undoubtedly include in silico 

generated protein properties. However, standardized guidelines and quality control 

protocols for the development of MD simulation workflows to reliably extract the desired 

in silico protein property data are currently missing. The know-how of computational 

workflows should be more widely discussed in order to obtain higher quality studies which 

focus on the generation and exploration of these in silico generated protein properties. The 

guidelines should include, but are not limited to, the required number of protein structures 

in training sets, an assessment on a representative variety of biophysical protein properties 

in training sets, standardized protocols for probing MD simulation settings, and comparable 

evaluation parameters. Once a well-defined infrastructure is realized, it would be desired 

to generate an in silico protein property diagram to complement the EPPD and MPPD. In 

addition, the generation of predictive models for analytical techniques, such as for M3-

PALS to obtain the zeta potential or the stalagmometric method to obtain the apparent 

surface hydrophobicity, would be of interest to move towards an in silico predicted EPPD.  

 

In general, machine learning is increasingly applied in the biotechnological field. 

Currently, so-called black box algorithms, such as artificial neural networks, are used to 

identify data patterns in dimensions experimenters cannot comprehend or interpret. 

However, the obtained patterns should be translated to biologically relevant and transparent 

information, which will allow experimenters to move away from black box approaches. In 

turn, pattern interpretation allows for data utilization to control and predict current 

biological uncertainties. Inherent to the use of machine learning approaches for pattern 

recognition or data utilization, is the need for consistent data acquisition in order to retrieve 

reliable information. Experimental deviations should be minimized via reproducible, high-

throughput, automated, and systematic approaches. In addition, limitations of applied 

algorithms should be carefully evaluated and discussed in order to prevent an under- or 

overestimation of its applicability. To reach the desired understanding and control, future 

research requires a continuing exploration and expansion of the symbiotic relationship 

between experimenters, robotics, sensors, and data handling algorithms in all stages of 

biotechnological product development. 
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Appendix A  

 

Supplementary Material Chapter 3 

A.1 Internal feature correlation 

Strong internal correlation between image features is not desired, as two (or more) 

correlated features may over represent a phase behavior property compared to a phase 

behavior property represented by one feature. The Pearson correlation coefficient is used 

as a measure of internal correlation strength. A threshold of 0.850 for either positive or 

negative correlation is used in this work. Supplementary Table A1 shows the results for 

each of the extracted image features. With the set threshold the precipitation diameter and 

the precipitation intensity are strongly correlated, indicated in red. This led to the removal 

of the precipitation intensity from the feature dataset. 

 

Table A1: Pearson correlation coefficient matrix between all extracted image features. Red highlighted 

numbers indicate a violation of the set threshold (-0.850 < x < 0.850). 

 

 

  

1 2 3 4 5 6 7 8 9

1 Length crystal

2 Number of crystals 0.826

3 Crystal onset time 0.334 0.289

4 Crystal growth time 0.802 0.625 0.475

5 Precipitation diameter 0.319 0.327 0.266 0.212

6 Precipitation intensity 0.297 0.319 0.240 0.207 0.952

7 Precipitation onset time 0.269 0.295 0.429 0.218 0.794 0.752

8 Precipitation growth time 0.136 0.168 0.223 0.089 0.528 0.536 0.581

9 IQR ratio crystal length-width 0.531 0.478 0.441 0.489 0.184 0.184 0.253 0.108
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A.2 Feature reproducibility 

Each stored condition was made in duplicate. To show the level of reproducibility of the 

phase behavior, an overview of 6 image features for each of the duplicate conditions for 

lysozyme at pH 9 in the presence of ammonium sulfate is shown in Supplementary Figure 

A1. 

 

Figure A1: Untreated extracted image features for replicates plates containing lysozyme at pH 9 in the 

presence of ammonium sulfate. The crystal length (LC) in μm, number of crystals (nC), crystal onset time 

(tC) in hours, crystal growth time (ΔtC) in hours, precipitation onset time (tP) in hours and precipitation 

diameter (DP) in μm are colored according to their value. White indicates the minimum value and blue 

indicates the maximal value. 
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A.3 Visible and UV light images 

UV light imaging is used to distinguish between protein and non-protein crystallization 

and/or precipitation based on UV light signal. In Supplementary Figure A2 example images 

for visible and UV light are shown for 5 different observations. 

 

 

Figure A2: Examples of visible light (first column) and UV light (second column) images for (A) clear 

solution, (B) crystallized protein, (C) precipitated protein, (D) non-protein precipitation, and (E) 

crystallized protein in the presence of non-protein precipitation. 

  

White light UV light

A. Clear

B. Crystal

D. Non-protein precipitate

C. Protein precipitate (20 g\L lysozyme, 2.2M NaCl)

E. Crystal + non-protein precipitate
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Appendix B 

 

Supplementary Material Chapter 4 

B.1 Example class images 

An overview of example images can be found in Figure B1.  

 

 

Figure B1: Examples of visible light (first column), cross polarized light (second column), and UV light (third column) 

images for the employed classification classes “clear”, “crystal”, “precipitate”, and “other”. For the class “other”, 

three examples are shown.  

 

Figure B1 shows examples of obtained images for each class. The class “other” shows 

three different examples, where the first example shows light precipitation, which does not 

light up in the corresponding UV image. The second example shows microbial instability 

and the third example shows the presence of a hair/dust particle in the formulation well.  
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B.2 Image schedule 

The employed image schedules are listed in Table B1. 

Table B1: Detailed overview of the imaging schedule used per storage time, for each light source. 

 

The imaging schedules in Table B1 resulted in a total of 57 images per well for 14 days of 

storage and 67 images per well for 30 days of storage.  

 

B.3 Image masking 

Images obtained with visible light and cross polarized light were cropped with black pixels 

(also known as a mask) to remove irrelevant data from the images. The well walls and part 

of the plate were considered to be irrelevant. Masking was also used for visible light and 

cross polarized light images after edge detection. The second mask was used to remove 

sharp lines a mask leaves in an image, which are often recognized as edges. An example 

of the first and second mask is shown in Figure B2, for all light sources. 

 

Figure B2: Example images during image feature extraction. First column, “Original”: original image for 

each light source (visible, cross polarized, and UV light); second column, “Cropped”: cropped visible light 

and cross polarized light images; third column, “Edge detection”: edge detection results for all light images 

using the image in the previous column; fourth column, “2nd cropping”: removal of the mask wall for 

visible light and cross polarized light images. 

 

14 days 30 days 

Visible light 
Cross polarized and 

UV light 
Visible light 

Cross polarized and 

UV light 

Day 0 to 1: Every 2 hours 

Day 1 to 2: Every 4 hours 

Day 2 to 6: Every 6 hours 

Day 6 to 14: Every 24 hours 

Hours: 0 and 4 

Day: 1, 4, 7, 10, and 14 

Day 0 to 2: Every 2 hours 

Day 2 to 6: Every 6 hours 

Day 6 to 30: Every 24 hours 

Hours: 0 and 22 

Days: 5, 10, 20, and 30 

Original Cropped

Visible

Cross polarized

UV

Edge detection 2nd cropping
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Figure B2 shows different images throughout the image extraction workflow, for each light 

source. The original image shows that visible light and cross polarized light capture the 

liquid formulation and a part of the plate well. UV light images are obtained with a larger 

zoom, 7x instead of 2.5x. Therefore, a close up of what is seen in visible light and cross 

polarized light images is visible in UV light images. This is also the reason why cropping 

is not needed for UV light images. The cropped version of visible light and cross polarized 

light images is seen in the second column, “Cropped”. The cropped image is used for edge 

detection, the result is shown in the third column (“Edge detection”). Edge detection with 

visible light and cross polarized light images resulted in a mask edge as well. This was 

resolved by masking the result of edge detection once more. The fourth column (“2nd 

cropping”) shows the final image. 
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B.4 Overview all image features 

Table B2 lists all image features that were extracted for each light source image.  

Table B2: Overview of all image features extracted for each light source. 

Histogram features Description 

ER Entropy of the red color level image 

EG Entropy of the green color level image 

EB Entropy of the blue color level image 

EGray Entropy of the gray image  

MR Mean pixel level of the red color level image 

MG Mean pixel level of the green color level 

MB Mean pixel level of the blue color level 

MGray Mean pixel level of the gray image  

VR Variance of the image histogram for the red color level 

VG Variance of the image histogram for the green color level 

VB Variance of the image histogram for the blue color level 

VGray Variance of the image histogram for the gray image 

SDR Standard deviation of the image histogram for the red color level 

SDG Standard deviation of the image histogram for the green color level 

SDB Standard deviation of the image histogram for the blue color level 

SDGray Standard deviation of the image histogram for the gray image 

SkR Skewness of the image histogram for the red color level 

SkG Skewness of the image histogram for the green color level 

SkB Skewness of the image histogram for the blue color level 

SkGray Skewness of the image histogram for the gray image 

KtR Kurtosis of the image histogram for the red color level 

KtG Kurtosis of the image histogram for the green color level 

KtB Kurtosis of the image histogram for the blue color level 

KtGray Kurtosis of the image histogram for the gray image 

GLMC features Description 

autoc Autocorrelation 

contr Contrast 

corm Correlation (MATLAB) 

corrp Correlation 

cprom Cluster prominence 

cshad Cluster shade 

dissi Dissimilarity 

energy Energy 

entro Entropy 

homom Homogeneity (MATLAB) 

homop Homogeneity 

maxpr Maximum probability 

sosvh Sum of squares (variance) 

savgg Sum of average 

svarh Sum of variance 

senth Sum of entropy 

dvarh Difference variance 

denth Difference entropy 

inf1h Information measure of correlation1 

infh2 Information measure of correlation2 
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indnc Inverse difference normalized 

idmnc Inverse difference moment normalized 

Blob features Description 

BlobArea The total area of all identified blobs 

BlobAmount The total number of identified blobs 

Features over time Description 

Intensity  Total sum of pixel intensity of the gray scale image, for each time point 

Intensity difference Total sum of pixel intensity of the obtained difference image t0 - tx, for each time point 

 

B.5 Overview of multidimensional protein phase diagram 

features 

Table B3 lists all image features that were extracted to construct the multidimensional 

protein phase diagrams.  

 

Table B3: Image-based features extracted from visible, cross polarized, and UV light images for the 

automated construction of a multidimensional protein phase diagram. 

Blob  Description Extraction class 

Aggregation area Sum of the area of all blobs Crystal/Precipitate 

Crystal area Mean area of all blobs Crystal 

Crystal count Total number of blobs  Crystal 

Crystal length Mean blob major axis length  Crystal 

Intensity  Description Extraction class 

Intensity difference Total pixel intensity of the difference between the last and first 

image (tend – t0) 

Crystal/Precipitate 

Start intensity Total pixel intensity of the first image  Crystal/Precipitate 

Time-dependent Description Extraction class 

Growth time Time point at which a plateau in the intensity change was identified Crystal/Precipitate 

 

The extraction class is indicated to show for which predicted class the features were 

extracted. 
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B.6 Number of trees determination 

The number of trees that are needed to construct a random forest classification model was 

determined by investigating the effect of the number of trees on the Out-of-Bag 

classification error. This was investigated with the Vis+CP+UV+Time feature set and the 

results are shown in Figure B3.  

 

Figure B3: Out-of-Bag classification error over the number of trees. 

 

Based on the results shown in Figure B3, the number of trees was set to 100. 
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B.7 Selected features per feature set 

Image feature selection was performed for each fold and each image feature set during 

internal 10-fold cross validation. Between different folds for the same image feature set, 

similar features were selected. The selected features are listed in Table B4 per feature set.  

 

Table B4: Overview of features selected during 10-fold cross validation for all evaluated feature sets. 

 

 

  

 Vis Vis+Time Vis+CP Vis+UV Vis+CP+UV Vis+CP+UV+Time 

1 EB_Vis EG_Vis ER_Vis ER_Vis ER_Vis ER_Vis 

2 MR_Vis MR_Vis EG_Vis EG_Vis EG_Vis EG_Vis 

3 VR_Vis VR_Vis EB_Vis EB_Vis EB_Vis EB_Vis 

4 KtR_Vis AmountBlobs_Vis MR_Vis BlobArea_Vis VR_Vis VR_Vis 

5 BlobArea_Vis contr_Vis VR_Vis AmountBlobs_Vis VB_Vis BlobArea_Vis 

6 AmountBlobs_Vis energ_Vis VB_Vis contr_Vis BlobArea_Vis AmountBlobs_Vis 

7 contr_Vis inf2h_Vis KtR_Vis dissi_Vis AmountBlobs_Vis contr_Vis 

8 energ_Vis EndInt_Vis BlobArea_Vis inf2h_Vis contr_Vis corrm_Vis 

9 inf2h_Vis EndInt_CP AmountBlobs_Vis ER_UV corrm_Vis dissi_Vis 

10  EndInt_UV contr_Vis MR_UV cprom_Vis energ_Vis 

11   energ_Vis SkR_UV cshad_Vis entro_Vis 

12   inf2h_Vis KtR_UV dissi_Vis inf2h_Vis 

13   EB_CP BlobArea_UV entro_Vis EndInt_Vis 

14   VR_CP AmountBlobs_UV inf2h_Vis ER_CP 

15   VB_CP contr_UV AmountBlobs_CP AmountBlobs_CP 

16   SkB_CP corrm_UV ER_UV EndInt_CP 

17   BlobArea_CP cshad_UV MR_UV ER_UV 

18   AmountBlobs_CP  SkR_UV MR_UV 

19   corrm_CP  KtR_UV VR_UV 

20     BlobArea_UV SkR_UV 

21     AmountBlobs_UV KtR_UV 

22     contr_UV BlobArea_UV 

23     corrm_UV AmountBlobs_UV 

24     cshad_UV contr_UV 

25     energ_UV corrm_UV 

26     inf1h_UV cshad_UV 

27     inf2h_UV inf2h_UV 

28      EndInt_UV 
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B.8 Evaluation parameters per class per feature set 

Recall, precision, accuracy, and balanced accuracy were obtained for each class separately 

during 10-fold cross validation. Table B5 lists all evaluation parameters per class for each 

feature set. 

 

Table B5: Overview of all evaluation parameters (recall, precision, accuracy, and balanced accuracy) for 

all evaluated feature sets, shown per classification class. The values are given as mean ± standard 

deviation, obtained by each fold during 10-fold cross validation.  

Feature set: Vis 

 Recall [%] Precision [%] Accuracy[%] Balanced accuracy [%] 

Clear 95.0 ± 1.0 81.0 ± 1.5 82.8 ± 1.5 88.0 ± 0.9 

Precipitate 63.4 ± 12.2 81.7 ± 7.7 97.8 ± 0.4 72.5 ± 5.8 

Crystal 64.1 ± 4.9 85.6 ± 3.5 89.1 ± 1.1 74.8 ± 2.8 

Non-protein 29.5 ± 8.8 53.9 ± 9.5 91.0 ± 1.0 41.7 ± 7.8 

Feature set: Vis + Time 

 Recall [%] Precision [%] Accuracy[%] Balanced accuracy [%] 

Clear 95.5 ± 1.8 83.2 ± 1.1 84.9 ± 1.2 89.3 ± 1.0 

Precipitate 64.3 ± 11.7 83.9 ± 7.3 98.0 ± 0.6 74.1 ± 8.4 

Crystal 67.1 ± 3.6 88.7 ± 3.6 90.3 ± 1.0 77.9 ± 2.5 

Non-protein 45.6 ± 4.2 65.5 ± 9.9 92.5 ± 1.1 55.5 ± 6.0 

Feature set: Vis + CP 

 Recall [%] Precision [%] Accuracy[%] Balanced accuracy [%] 

Clear 96.3 ± 1.0 81.8 ± 1.1 84.1 ± 1.3 89.0 ± 0.9 

Precipitate 61.3 ± 10.4 85.6 ± 7.6 97.9 ± 0.5 73.4 ± 7.0 

Crystal 68.9 ± 3.7 90.1 ± 2.7 90.9 ± 1.0 79.5 ± 2.4 

Non-protein 27.7 ± 7.5 54.2 ± 10.1 91.0 ± 1.1 41.0 ± 8.0 

Feature set: Vis + UV 

 Recall [%] Precision [%] Accuracy[%] Balanced accuracy [%] 

Clear 97.1 ± 0.8 87.9 ± 1.5 89.7 ± 1.2 92.5 ± 0.8 

Precipitate 82.8 ± 14.2 94.2 ± 5.8 99.1 ± 0.7 88.5 ± 8.8 

Crystal 86.5 ± 2.8 97.2 ± 1.5 96.3 ± 0.7 91.9 ± 1.5 

Non-protein 42.6 ± 7.7 69.3 ± 8.7 92.9 ± 1.0 56.0 ± 7.7 

Feature set: Vis + CP + UV 

 Recall [%] Precision [%] Accuracy[%] Balanced accuracy [%] 

Clear 97.1 ± 0.9 88.0 ± 1.2 89.8 ± 1.0 92.6 ± 0.7 

Precipitate 84.2 ± 12.7 94.5 ± 5.5 99.1 ± 0.6 89.4 ± 7.5 

Crystal 87.1 ± 2.2 96.6 ± 1.9 96.3 ± 0.7 91.8 ± 1.6 

Non-protein 41.3 ± 6.1 70.1 ± 7.9 92.8 ± 0.9 55.7 ± 6.4 
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B.9 Correlation coefficient matrix 

The first step during feature selection was filtering based on internal correlation with the 

Pearson correlation coefficient. A correlation coefficient matrix is often used to visualize 

the correlation coefficient between variables in a dataset. The correlation coefficient matrix 

consisting of all features extracted for the Vis+CP+UV+Time dataset is shown in Figure 

B4. 

 

Figure B4: Correlation coefficient matrix, based on the Pearson correlation coefficient, for all 150 

extracted image features. The color bar indicates the Pearson correlation coefficient value, where +1 (red) 

indicates a strong positive linear dependency and -1 (blue) indicates a strong negative linear dependency 

between variables. 

 

All image features with a linear dependency higher than +0.950 or lower than -0.950 have 

been removed from the dataset during feature selection.  
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B.10 Feature importance 

The second step during feature selection was selecting features based on their relative 

importance to the classification problem in question. The feature importance per evaluated 

feature is shown in Figure B5. 

 

Figure B5: Feature importance of all features that remained after feature removal based on internal 

correlation. The red line indicates the cut-off value at the 50th percentile of the feature importance. 

 

All image features depicted in Figure B5 with a feature importance below the 50th 

percentile value were removed during feature selection.  

 

B.11 Confusion matrix Vis+CP+UV+Time 

Table B6 lists all confusion matrices obtained during 10-fold cross validation using the 

Vis+CP+UV+Time feature set. 
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Table B6: List of all confusion matrices obtained during 10-fold cross validation with the Vis+CP+UV+Time feature set. 

 Fold #1 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 290 0 2 4 

Precipitate 1 19 0 0 

Crystal 14 0 95 1 

Non-protein 12 0 0 32 

 Fold #2 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 289 0 2 6 

Precipitate 3 16 1 0 

Crystal 9 0 101 0 

Non-protein 11 0 0 33 

 Fold #3 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 291 0 1 5 

Precipitate 2 18 0 0 

Crystal 12 2 95 1 

Non-protein 15 0 0 29 

 Fold #4 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 285 2 2 8 

Precipitate 2 17 0 1 

Crystal 14 1 94 1 

Non-protein 16 0 1 27 

 Fold #5 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 289 1 2 5 

Precipitate 1 16 2 0 

Crystal 17 1 89 3 

Non-protein 21 0 0 24 

 Fold #6 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 292 0 1 4 

Precipitate 4 14 1 0 

Crystal 15 0 93 2 

Non-protein 14 0 2 28 

 Fold #7 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 285 0 3 9 

Precipitate 1 18 0 0 

Crystal 13 1 94 2 

Non-protein 17 0 0 27 

 Fold #8 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 288 0 1 8 

Precipitate 1 18 0 0 

Crystal 16 0 94 0 

Non-protein 14 0 0 30 

 Fold #9 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 282 0 3 12 

Precipitate 1 17 2 0 

Crystal 9 2 97 1 

Non-protein 10 0 0 34 

 Fold #10 Predicted class 

T
r
u

e 
c
la

ss
  Clear Precipitate Crystal Non-protein 

Clear 284 0 2 10 

Precipitate 6 10 4 0 

Crystal 9 1 98 2 

Non-protein 13 0 0 31 
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Appendix C 

 

Supplementary Material Chapter 5 

C.1 Stalagmometer 

To decrease experimental time and sample volume, the high-throughput stalagmometer 

setup was adjusted to a lower sample volume and fewer repeat dispenses. The results of an 

evaluation run with water is shown in Figure C1.  

 

Figure C1: Difference between the (a) original and (b) adjusted experimental setup for stalagmometer 

measurements. The standard deviation (standard dev) and relative standard deviation (relative st. dev.) are 

used as evaluation parameters. In addition, the mean weight and number of drops is listed. 

 

Due to a lower dispense volume, the drop mass decreased from 20.4 milligram to 12.5 

milligram. The number of drops decreased from 7079 to 613 due to the decrease in sample 

volume and number of repeat dispenses. Less dispensed drops resulted in a 2.5-fold shorter 

experimental time. The adjustments resulted in 2-fold increase of standard deviation 

(3.22·10-4 to 6.18·10-4 gram) and a 3.4% higher relative standard deviation. 

  

80 µl 

2x dispensing 

Mean [gram] 0.0125

Standard dev [gram] 6.18·10-4

Relative st.dev. 4.95%

Number of drops 613

500 µl 

5x dispensing 

Mean [gram] 0.0204

Standard dev [gram] 3.22·10-4

Relative st.dev. 1.58%

Number of drops 7079
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C.2 Internal correlation 

Strong internal correlation between empirical protein properties is not desired, as two (or 

more) correlated properties may over represent a single system property. The Pearson 

correlation coefficient is often used as measure for internal correlation strength. A 

threshold of 0.750 for either positive or negative correlation is used in this study. Table C1 

shows the results for each of the extracted empirical protein properties. No properties were 

removed based on the set threshold.  

 

Table C1: Pearson correlation coefficient matrix for all empirical protein properties. 

 

  

 
RH App ζ γ TAgg TM β-turn α-helix Coil 

RH App 1 
       

ζ -0.345 1 
      

γ -0.263 -0.287 1 
     

TAgg -0.717 0.351 0.145 1 
    

TM -0.496 -0.020 0.265 0.255 1 
   

β-turn 0.185 0.122 -0.058 -0.168 -0.393 1 
  

α-helix 0.138 -0.284 0.385 -0.150 0.173 -0.069 1 
 

Coil -0.226 -0.232 0.392 0.182 0.470 -0.438 0.568 1 
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C.3 Cluster information 

An overview of the exact median and median absolute deviation values for the clusters 

presented in the empirical protein property diagram are shown in Table C2. 

 

Table C2: Overview of median ± median absolute deviation of the empirical protein properties per cluster 

identified in the empirical protein property diagram.  

 

  

 
A B C D E F 

RH App [nm]  1.4 ± 0.2 1.8 ± 0.3 2.2 ± 0.2 2.1 ± 0.3 2.3 ± 0.1 2.6 ± 0.3 

ζ [mV]  3.8 ± 2.1 2.6 ± 1.3 1.1 ± 1.1 0.2 ± 1.7 -1.5 ± 1.8 3.1 ± 1.9 

γ [-]  1.14 ± 0.02 1.07 ± 0.02 1.14 ± 0.03 1.17 ± 0.02 1.04 ± 0.03 1.04 ± 0.02 

TAgg [°C]  88.5 ± 0.9 56.7 ± 5.9 37.4 ± 3.2 39.0 ± 3.5 33.1 ± 1.9 35.2 ± 4.6 

TM [°C]  67.2 ± 4.0 68.8 ± 3.3 67.8 ± 3.4 68.9 ± 3.5 63.7 ± 2.2 63.2 ± 2.6 

β-turn [AU/(cm-1)2] · 105
  16.2 ± 1.8 15.0 ± 2.1 16.2 ± 2.0 15.2 ± 3.7 16.6 ± 2.3 18.9 ± 1.1 

α-helix [AU/(cm-1)2] · 105 80.0 ± 8.1 83.2 ± 6.3 86.5 ± 7.1 97.3 ± 13.6 73.1 ± 12.8 84.2 ± 7.4 

Coil [AU/(cm-1)2] · 105 28.1 ± 6.9 28.4 ± 2.9 29.7 ± 4.0 34.0 ± 8.0 16.4 ± 3.0 16.5 ± 3.9 
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C.4 Dynamic light scattering data 

Exemplary plots of the apparent hydrodynamic radius (RH App) as a function of lysozyme 

concentration are shown in Figure C2.  

 

Figure C2: Apparent hydrodynamic radius (RH App) plotted against lysozyme concentration for (a) 0 mM 

ammonium sulfate ((NH4)2SO4); (b) 175 mM (NH4)2SO4; (c) 0 mM sodium chloride (NaCl); (d) 175 mM 

NaCl at pH 3 (gray), pH 5 (black), pH 7 (green), and pH 9 (blue). The equation for a linear fit is given for 

each data series and the error bars represent the standard deviation. 

 

Figure C2 shows the RH App plotted against lysozyme concentration for ammonium sulfate 

(Figure C2a and Figure C2b) and sodium chloride (Figure C2c and Figure C2d) at two 

different ionic strengths (0 and 175 mM) four pH values (pH 3, 5, 7, and 9). Each subplot 

shows a negative slope for pH 3 that increases for increasing formulation pH. Increasing 

ionic strength also increases the slope, but to a lesser extent compared to formulation pH. 

A negative slope for increasing lysozyme concentrations indicates repulsive electrostatic 

interactions between the protein molecules, while a positive slope represents attractive 

interactions.   
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Appendix D 

 

Supplementary Material Chapter 6 

D.1 Viscosity 

Viscosity measurements were performed to correct the intensity-size distribution plots 

obtained with dynamic light scattering. The viscosity was measured by dissolving the 

additives in a pH 6.0 buffer containing 1.45 g/L methionine. An overview of the results is 

shown in Table D1.  

 

D.2 Image examples 

Figure D1 shows a representative example for each cluster identified in the 

multidimensional protein phase diagram (MPPD).  

 

 

Figure D1: Representative example images for each identified multidimensional protein phase diagram cluster. 

 

Cluster 1 Cluster 5
(Cross polarized

light to highlight

crystals)

Cluster 2 Cluster 6
(Cross polarized

light to highlight

crystals)

Cluster 3 Cluster 7
(Cross polarized

light to highlight

crystals)

Cluster 4
(UV-light to

highlight

crystals)

Cluster 8
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Table D1: Overview of mean viscosity values (mean η in kg/m·s) obtained for the listed formulation 

conditions, including the coefficient of variation (CV in %). 

D.3 MPPD cluster information 

Sugar type Sugar [g/L] NaCl [g/L] KCl [g/L] Glycerol [g/L] Mean η [kg/m·s] CV [%] 
Fructose 30 100 0 0 0.0017 0.31 
Fructose 80 100 0 0 0.0019 0.31 
Fructose 30 100 0 5 0.0022 0.26 
Fructose 80 100 0 5 0.0026 0.23 
Fructose 30 0 90 0 0.0020 0.41 
Fructose 80 0 90 0 0.0018 0.20 
Fructose 30 0 90 5 0.0024 0.23 
Fructose 80 0 90 5 0.0023 0.30 
Sucrose 30 100 0 0 0.0019 0.35 
Sucrose 80 100 0 0 0.0019 0.33 
Sucrose 30 100 0 5 0.0024 0.30 
Sucrose 80 100 0 5 0.0025 0.20 
Sucrose 30 0 90 0 0.0020 0.49 
Sucrose 80 0 90 0 0.0017 0.31 
Sucrose 30 0 90 5 0.0019 0.32 
Sucrose 80 0 90 5 0.0022 0.31 
Glucose 30 100 0 0 0.0017 0.35 
Glucose 80 100 0 0 0.0018 0.27 
Glucose 30 100 0 5 0.0022 0.24 
Glucose 80 100 0 5 0.0023 0.28 
Glucose 30 0 90 0 0.0016 0.28 
Glucose 80 0 90 0 0.0023 0.31 
Glucose 30 0 90 5 0.0020 0.34 
Glucose 80 0 90 5 0.0023 0.29 
Lactose 30 100 0 0 0.0017 0.29 
Lactose 80 100 0 0 0.0021 0.30 
Lactose 30 100 0 5 0.0023 0.29 
Lactose 80 100 0 5 0.0028 0.72 
Lactose 30 0 90 0 0.0016 0.41 
Lactose 80 0 90 0 0.0019 0.31 
Lactose 30 0 90 5 0.0021 0.30 
Lactose 80 0 90 5 0.0023 0.31 
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Each cluster identified within the MPPD consists of six image features. Each feature has a 

median and median absolute deviation within such a cluster. An overview of these values 

is shown in Table D2, per MPPD cluster.  

 

Table D2: Overview of median ± median absolute deviation values for all image-based features per 

multidimensional protein phase diagram cluster 
 

L
C
 [μm] W

C 
[μm] W

C
:L

C
 [-] t

0
 [hours] t

G
[hours] n

AGG
 [%] 

Cluster 1 0 ± 0 0 ± 0 0.0 ± 0.0 0 ± 0 0 ± 0 0 ± 0 
Cluster 2 0 ± 0 0 ± 0 0.0 ± 0.0 0 ± 0 361 ±2  9.3 ± 9.3  
Cluster 3 0 ± 0 0 ± 0 0.0 ± 0.0 0 ± 0 2 ± 1 52.5 ± 7.4 
Cluster 4 21 ± 5 13 ± 3 1.6 ± 0.3 174 ± 62  198 ± 62  0.5 ± 0.0 
Cluster 5 64 ± 17 39 ± 13 1.5 ± 0.3 312 ± 53 384 ± 53 1.5 ± 0.7 
Cluster 6 71 ± 21 45 ± 21 1.6 ± 0.3 168 ± 44 480 ± 71 3.0 ± 3.0 
Cluster 7 75 ± 17 43 ± 7 1.7 ± 0.4 0 ± 0 648 ± 107 28.8 ± 13.0 
Cluster 8 55 ± 25 39 ± 14 1.3 ± 0.2 0 ± 0 361 ± 10 41.2 ± 7.4  
 

A stability percentage per formulation condition was calculated based on the formulation 

for which the respective formulation condition showed an influence. The stability 

percentage represents the percentage of formulations that became stable after adjustment 

of the respective formulation condition. However, more cluster transformation were 

observed which did not result in physical stability. To quantify these transformations, a 

percentile contribution of all MPPD clusters was calculated per formulation conditions. 

These values are listed in Table S3. In addition, the number of formulations that were 

influence by the respective formulation condition is listed in Table D3 as well.  
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Table D3: Overview of all formulation percentages, based on the formulations where a change in physical 

stability or morphology was observed upon changing the respective variable.  
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D.4 Empirical protein property diagram cluster information 

Each cluster identified within the empirical protein property diagram (EPPD) consists of 5 

empirical protein properties. Each empirical protein property has a median and median 

absolute deviation within such a cluster. An overview of these values is shown in Table 

D4, per EPPD cluster.  

 

Table D4: Overview of median ± median absolute deviation values for all empirical protein properties 

per empirical protein property diagram cluster. Empirical properties obtained with the original 

formulation are also listed. 
 

R
H App

 [nm] R
H HWS

 [nm] T
M

 [°C] T
Agg

 [°C] γ
N
 [-] 

Cluster I 0.0 ± 0.0 743 ± 120 72.4 ± 3.0 65.1 ± 4.9 0.92 ± 0.04 
Cluster II 3.4 ± 0.5 396 ± 213 72.8 ± 1.2 61.1 ± 4.1 0.92 ± 0.04 
Cluster III 3.2 ± 0.4 78 ± 44 72.9 ± 1.4 55.1 ± 1.5 0.97 ± 0.04 
Cluster IV 3.3 ± 0.4 110 ± 47 67.7 ± 1.2 56.1 ± 1.1 0.88 ± 0.03 
Cluster V 3.2 ± 0.4 131 ± 82 76.1 ± 2.3 62.3 ± 2.6 0.95 ± 0.03 
Original 2.4 47 65.5 54.2 1.01 

 

A stability percentage was calculated per EPPD cluster. This was based on the percentage 

of formulations that were part of MPPD cluster 1, which represented physical stability. An 

overview of the composition of each EPPD cluster in terms of all MPPD cluster is shown 

in Table D5.  

 

Table D5: Overview of the composition of empirical protein property diagram clusters shown as the 

formulation percentage per MPPD cluster 
 

Cluster I Cluster II Cluster III Cluster IV Cluster V 
Cluster 1 12% 45% 64% 67% 75% 
Cluster 2 12% 6% 7% 0% 2% 
Cluster 3 24% 18% 18% 0% 4% 
Cluster 4 0% 0% 0% 6% 2% 
Cluster 5 0% 0% 7% 17% 8% 
Cluster 6 24% 6% 0% 6% 0% 
Cluster 7 24% 18% 0% 6% 8% 
Cluster 8 6% 6% 4% 0% 0% 
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Appendix E 

 

Supplementary Material Chapter 7 

E.1 Quality parameters 

Quality Z-score for each intermediate structure and WoS obtained in the proposed structure 

preparation pipeline is defined as the mean value of three separate WHAT IF parameter. 

The separate values are shown in Figure E1 for each intermediate structure and WoS for 

each VLP construct. 

 

Figure E1: Overview of WHAT IF quality factors for the template, homology structure, curated structure, 

window of stability (WoS) without H++ and the YASARA2 force field (“WoS w/o H++”), the prepared 

structure, WoS obtained with H++ and the AMBER03 force field (“WoS A03”), and WoS obtained with 

H++ and the YASARA2 force field (“WoS”). WHAT IF quality factors 3-D packing (QUACHK, black), 

Ramachandran Z-score (RAMCHK, dark gray) and backbone conformation (BBCCHK, light grey)299. 

 

Figure E1 shows 3 quality parameters for each VLP construct for each intermediate 

structure and WoS obtained with the proposed 3-D structure preparation workflow. The 

backbone parameter shows a decrease from the template to the homology model for each 

VLP structure. The backbone and 3-D packing quality parameter values for all VLP 

constructs and obtained structures are smaller than the template. The Ramachandran 

quality parameter shows fluctuation between intermediate structures and MD simulation 

WoS. The fluctuations are similar between VLP constructs. The lowest Ramachandran 

quality parameter is found for WoS A03, followed by the curated, prepared and template 

structure. The homology structure, WoS w/o H++, and WoS show an increase of the 

Ramachandran quality parameter. 

 

  

VLP A VLP B VLP C
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E.2 Reproducibility 

To determine the reproducibility of the proposed protein 3-D structure preparation pipeline, 

all VLP constructs were simulated on two different computers using H++ computed pKa 

values and the YASARA2 force field. The hardware setup of the second computer was 

similar, using a Windows 10 computer with an Intel i7-6700 CPU and a GeForce GTX 

1080 GPU. Reproducibility is evaluated based on obtained structure quality parameters, 

RMSD course during MD simulation, and correlation between the subsequent extracted 

surface charge descriptor and experimental zeta potential data. Figure E2 shows the quality 

Z-score plot for all intermediate structures and WoS obtained with the proposed structure 

preparation pipeline. All data is similar to the data presented in the main research article, 

except the WoS which was obtained using a different computer.   

 

Figure E2: Overview of quality Z-scores for the template, homology structure, curated structure, window 

of stability (WoS) without H++ and the YASARA2 force field (“WoS w/o H++”), the prepared structure, 

WoS obtained with H++ and the AMBER03 force field (“WoS A03”), and WoS obtained with H++ and 

the YASARA2 force field (“WoS”) on the second computer. The quality Z-score is an average value of 

the WHAT IF quality factors 3-D packing (QUACHK), Ramachandran Z-score (RAMCHK) and 

backbone conformation (BBCCHK) ) 299. A median value and median absolute deviation as error bar is 

shown for the WoS quality Z-scores. A dashed line is used to guide the eye between the different quality 

Z-scores. 

 

Figure E2 shows a quality Z-score of -1.16 ± 0.13, -1.20 ± 0.13, and -1.16 ± 0.14 for VLP 

A, B, and C, respectively. These quality Z-scores have a mean difference of 0.07 compared 

to the quality Z-scored obtained with the first computer. An overview of the separate 

quality parameter obtained for the VLP constructs simulated with the second computer are 

shown in Figure E3. 

VLP A

VLP B

VLP C

Template
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Figure E3: Overview of WHAT IF quality factors for the template, homology structure, curated structure, 

window of stability (WoS) without H++ and the YASARA2 force field (“WoS w/o H++”), the prepared 

structure, WoS obtained with H++ and the AMBER03 force field (“WoS A03”), and WoS obtained with 

H++ and the YASARA2 force field (“WoS”) on the second computer. WHAT IF quality factors 3-D 

packing (QUACHK, black), Ramachandran Z-score (RAMCHK, dark gray) and backbone conformation 

(BBCCHK, light grey)299. 

 

Figure E3 shows 3 separate WHAT IF quality parameters. A mean difference of 0.06, 0.10, 

and 0.06 was calculated using all VLP constructs simulated on the second computer in 

values for 3-D packing normality, Ramachandran plot position normality, and the 

backbone conformation, respectively. This indicates that quality was not influenced by 

simulation of identical constructs on another computer. The course of the MD simulation, 

represented by the change of atom coordinates over time was monitored for the simulations 

with the second computer as well. The obtained data is shown in Figure E4.  

 

VLP A VLP B VLP C
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Figure E4: Reproducibility run of MD simulations for VLP A, B, and C presented by root-mean-square 

deviation (RMSD) of atom coordinates (Å) over simulation time (n), using a second Windows 10 computer 

with an Intel i7-6700 CPU and a GeForce GTX 1080 GPU. Three different simulation steps are separated 

by vertical lines, where vertical lines indicate simulation transition points. From 0 ns to dotted line: 

simulation of epitope and five adjacent amino acids; from dotted to dashed line: simulation of Hepatitis B 

core antigen (HBcAg) dimer spike; from dashed line to the end of simulation: full dimer simulation. The 

highlighted area is defined as the 2 ns window of stability (WoS). 

 

Figure E4 shows the MD simulation course of three VLP constructs when simulated with 

the second computer. VLP A reached the WoS after 15.08 ns instead of 19.89 ns seen in 

the main research article. VLP B and VLP C reached the WoS later compared to the first 

computer, with a difference of 1.19 ns and 4.36 ns, respectively. The simulation time is 

still in accordance with the length of epitope insertion, where VLP A contains the largest 

insert. The maximum RMSD reached for each VLP construct is different compared to the 

RMSD shown in the main research article. VLP A, B, and C have a median WoS RMSD 

of 3.21 ± 0.06 Å, 2.86 ± 0.06 Å, and 2.33 ± 0.05 Å, respectively, in the simulation on the 

second computer. This should be compared to the median WoS RMSD of 7.52 ± 0.15 Å, 

3.45 ± 0.07 Å, and 2.09 ± 0.04 Å on the first computer.  

The influence of a different simulation course is also evaluated based on the prediction of 

complete HBcAg VLP zeta potential. The results are shown in Figure E5. 

VLP A

VLP B

VLP C

Start Step 2

Start Step 3

WoS
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Figure E5: In silico computed zeta potential (mV) plotted against experimentally determined zeta potential 

(mV). Symbols represent in silico data based on the homology structure (“Homology”, red open circle), 

window of stability (WoS) obtained without H++ and with YASARA2 (“WoS w/o H++”, purple diamond), 

WoS obtained with H++ and AMBER03 (“WoS A03”, purple square), and WoS obtained with H++ and 

YASARA2 (“WoS”, blue filled circle). The diagonal line represents theoretical data with a Pearson 

correlation coefficient of 1 (PCC = 1). X-axis error bars represent the median absolute deviation (MAD) 

of experimental data and y-axis error bars represent MAD for in silico data points. For each in silico data 

series the PCC and mean squared error (MSE) are calculated (n = 3) and listed. 

 

Figure E5 shows that the WoS obtained with the second computer resulted in a in silico 

zeta potential of -8.84 ± 1.14 mV for VLP C, which shows a lower MSE (0.14) compared 

to the first computer (MSE = 0.45). The PCC also increases from 0.946 to 0.981. In silico 

zeta potential obtained with the second computer simulation also overlays with in silico 

zeta potential obtained without H++ pKa values. This supports the initial observation, 

where the used pKa values do not influence the surface charge description. 

 

 

Structure MSE PCC

Homology 0.64 0.780

WoS w/o H++ 0.16 0.998

WoS A03 0.58 0.791

WoS 0.14 0.997


