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•Main text 

Tropane alkaloids have received a great deal of attention by virtue of their potent 

biological activities,[1] and some of them, such as atropine, cocaine, and scopolamine, 

have been used as efficient pharmaceuticals.[2] In addition to these simple tropane 

alkaloids, polycyclic tropanes have also recently received a lot of attention as not only 

challenging synthetic targets, but also novel lead compounds for pharmaceuticals, 

because most polycyclic alkaloids that have a tropane framework exhibit particular and 

interesting biological activities.[3] Thus, the development of an exhaustive and concise 

method of constructing novel polycyclic tropane frameworks is expected to lead to the 

discovery of new lead compounds and biofunctional molecules.[4]  

One of the most powerful synthetic approaches to tropane frameworks is a (4+3) 

cycloaddition reaction of pyrroles with oxyallyl cations, giving rise to tropinones.[5] 

Furthermore, an application of the (4+3) cycloaddition reaction to an intramolecular 

reaction is expected to afford polycyclic tropanes most efficiently. However, although 

there have been several examples of the intramolecular (4+3) cycloaddition reaction of 

furanes with oxyallyl cations,[5] reaction with pyrroles was not reported until very recently. 

Because, the use of pyrroles as four-carbon units is generally difficult due to competition 

with the Friedel-Crafts type reaction.[6] Furthermore, the high reactivity of pyrrole and 

instability of oxyallyl cation also cause a problem in the preparation of precursor for the 

intramolecular cycloaddition reaction. Very recently, Chiu et al have just reported first 

intramolecular (4+3) cycloaddition reaction of pyrroles by using epoxy enolsilanes as a 

source of the oxyallyl cation.[7] On the other hand, we have recently found that N-nosyl 

pyrrole is an efficient four-carbon unit for [4+3] cycloaddition reaction,[8] and the reaction 

with 2-(silyloxy)-acrolein 2a as a three-carbon unit is smoothly catalyzed by Cu(OTf)2 or 

Sc(OTf)3.[9-10] Therefore, we expected that an intramolecular (4+3) cycloaddition would 

be possible by the generation of an oxyallyl cation from some precursor possessing both 

N-nosyl pyrrole and 2-(silyloxy)-acrolein units as shown by A in Scheme 1. Furthermore, 

since the preparation of such a precursor might be troublesome due to the high reactivity 

of pyrroles, we planned to generate an oxyallyl cation in situ by the condensation of the 

aldehyde of 2-(silyloxy)-acrolein with nucleophiles such as hydroxyl, amino, and thiol 

groups that are tethered by the N-nosyl pyrrole. This method would provide easier 



access to a cycloaddition precursor, which is expected to be amenable to a wide range of 

substrates. Herein, we report a direct and concise method for the construction of 

polycyclic tropinones by the intramolecular (4+3) cycloaddition reaction of pyrroles with 

an oxyallyl cation. 

 

<< Scheme 1>> 

 

We first attempted the reaction of N-nosyl-2-hydroxypropyl pyrrole 1a to investigate 

whether the hydroxypropyl group could serve as the tether for the proposed cascade 

reaction (Table 1). Thus, we initially applied the conditions of the intermolecular (4+3) 

cycloaddition reaction of N-nosyl pyrroles to 1a, i.e., 1a was treated with 2a in the 

presence of a catalytic amount of Cu(OTf)2 in nitromethane at 0 °C.[9] As we expected, 

the use of 20 mol % of Cu(OTf)2 afforded the desired tricyclic tropinone 3a in 58% yield 

as a single diastereomer (entry 1). The structure of 3a was unambiguously confirmed by 

X-ray crystallographic analysis (see Supporting Information).[11] Although the yield of 3a 

was modest, the result obtained with 3a encouraged us to further optimize the reaction 

conditions. Whereas the use of Sc(OTf)3 as the catalyst slightly decreased the yield 

(entry 2), a similar reaction in hexafluoroisopropanol (HFIP) proceeded smoothly and 

increased the yield substantially even when 10 mol% of Sc(OTf)3 was used (entry 3). 

Thus, subsequent optimization was conducted with 10 mol% of catalyst in HFIP. The 

reaction using hard Lewis acids such as BF3•OEt2, Et2AlCl, and TMSOTf also proceeded 

smoothly to give 3a in 78%, 52%, and 81% yields, respectively (entries 4-6). In addition, 

the use of protic acids further increased yields, and 3a was obtained in high yields (ca. 

90%) in all cases (entries 7-9). As a bis(trifluoromethanesulfonyl)imide (Tf2NH) catalyzed 

the reaction at the fastest rate among the protic acids (entry 9), we adopted Tf2NH as the 

catalyst. A lower catalyst loading (4 mol %) showed a decline in yield, and 3a was 

obtained in 69% yield (entry 10). Similar reactions in other solvents, such as 

dichloromethane and nitromethane, barely proceeded, giving 3a in 5% and 18% yields, 

respectively, and most of the starting material 1a was recovered. Thus, it was found that 

the combination of Tf2NH as the catalyst and HFIP as the solvent is essential for the 

cascade reaction that leads to polycyclic tropinones.[12-13] In addition, the silyl enol ether 

moiety and aldehyde group of 2a were also necessary for the reaction.[14] 

 



<<Table 1>> 

 

We proposed a reaction mechanism based on the density functional theory (DFT) 

calculation as shown in Scheme 2. The reaction is likely to be initiated by a condensation 

reaction of the hydroxyl group of 1a with the protonated aldehyde moiety of 2a-H+ to 

afford the oxonium cation B through the hemiacetal A. The oxonium cation B is an 

equivalent of oxygen-stabilized oxyallyl cation TS, which is the transition state of the 

intramolecular (4+3) cycloaddition reaction. The (4+3) cycloaddition reaction with 

oxyallyl cation is generally accepted to proceed through stepwise mechanism,[15] and the 

cycloaddition reaction of B is also calclated to proceed through a stepwise mechanism, 

i.e., the Friedel-Crafts type addition of pyrrole to the oxyallyl cation initially occurred 

through an endo-type transition state, and the subsequent addition of the resulting silyl 

enol ether of IntC1-C2 was latter induced to afford C (vide infra). 

 

<<Scheme 2>> 

 

A two-dimensional (2D) relaxed potential energy surface (PES) scan for the 

intramolecular addition of pyrrole to the oxyallyl cation showed two low-energy pathways 

from the endo-type oxonium cation B along the edges of the 2D energy scan profile 

(Figure S3, Supporting Information). In both of the pathways, the transition states 

indicated a stepwise rather than concerted mechanism. The concerted pathway lies 

along the diagonal axis of the energy profile, showing a higher energy barrier compared 

to the stepwise mechanism. In order to explain the feasibility and order of the stepwise 

formation of two bonds in the intramolecular cycloaddition reaction, we calculated the 

energy profiles for both pathways. These calculations revealed that the addition of 

pyrrole moiety to the oxyallyl cation preferably occurs through the pathway involving the 

formation of a terminal C-C bond (C1-C2) at first (Scheme 3, path ‘a’) to afford the 

intermediate IntC1-C2, resulting in a ten-membered ring followed by the formation of a 

C3-C4 bond. It seems more likely that the initial cyclization of B favored a six-membered 

ring formation (IntC3-C4) through TSC3-C4 (4.4 kcal/mol vs 6.0 kcal/mol) over a 

ten-membered ring (IntC1-C2). This is because the transition states for the formation of a 

six-membered ring (TSC3-C4) in the first step showed two short attractive 

oxygen-hydrogen (O-H) interactions between oxygens at the Ns group and hydrogens 



around the bond-forming carbons (2.75 Å and 2.30 Å) (Figure S4, Supporting 

Information), which is shorter compared to those in the ten-membered ring (TSC1-C2, 2.71 

Å and 3.12 Å). However, the significant differences between the energy barrier for the 

formation of the next six-membered ring in the final step caused path ‘a’ to be preferable 

to path ‘b’. The corresponding transition states TSC3-C4 (path ‘a’) is well stabilized by two 

attractive short oxygen-hydrogen (O-H) interactions (3.05 Å and 2.21 Å, Figure 1). On 

the other hand, the similar interaction in the alternative pathway (TSC1-C2) is weak 

(Scheme 3, path ‘b’). As a result, ring closure occurs through TSC3-C4 (1.9 kcal/mol), 

resulting cationic cycloadduct C, which leads to tricyclic product 3a. In addition, the 

another similar pathway involving exo-type B and corresponding exo-transition states 

are relatively unstable requiring high energy demand compared to endo-route (Figure S5, 

Supporting information).  Moreover, we were unable to locate the transtion state for the 

conversion of IntC3-C4 to IntC1-C2. So, we cannot avoid the alternative mechanism in which, 

C3-C4 bond is formed in the first step followed by aza cope rearrangement and the ring 

closure in the final step leading to 3a. In either case, the calculation study revealed that 

the nosyl group plays a significant role in the stabilization of the transition state. Indeed, 

the corresponding polycyclic tropinones were not obtained by the reaction of an 

N-substituent other than the Ns group, such as Boc, Cbz, Ac, and free NH groups.[16-17] 

 

<<Scheme 3>>  <<Figure 1>> 

 

 

Having established a method for the single-step construction of tricyclic tropinones, we 

next examined the cascade reactions with other pyrroles leading to various tricyclic 

tropinones (Table 2). The similar reaction of pyrrole 1b possessing cis-allyl alcohol at the 

2-position afforded a desired tricyclic tropinone 3b in quantitative yield (entry 1). We next 

examined N-nosyl-2-hydroxyethylpyrrole 1c as a one-carbon dehomologated analog, 

and the desired tricyclic tropinone including the tetrahydrofuran ring 3c was obtained in 

51% yield (entry 2). The lower yield of 3c was probably due to the strained transition 

state for forming a 5,7-fused ring system, and a dilute condition (0.01 M) was needed to 

avoid the intermolecular (4+3) cycloaddition reaction prior to the condensation. On the 

other hand, in the case of one-carbon homologated analog 1d, the reaction proceeded 

smoothly to give tricyclic tropinone including oxepane ring 3c in 76% yield as a single 



diastereomer (entry 3). Surprisingly, even the reaction of further homologated analog 1e, 

leading to an eight-membered oxocane ring, also proceeded to give corresponding 

tropinone 3e in 44% yield as a single diastereomer under dilute conditions (entry 4). Next, 

enantiomerically enriched alcohol 1f (87% ee), obtained by the CBS reduction of 

corresponding ketone was examined,[18] and 3f was obtained in 50% yield as a single 

diastereomer in 85% ee, suggesting that the chirality of alcohol transfers to the tropane 

skeleton (entry 5). It is noteworthy that the cycloaddition reaction proceeded without 

losing the stereochemical integrity of the alcohol, although such benzylic alcohols are 

easily racemized under acidic conditions.[19] Furthermore, functional groups other than 

hydroxy groups, such as amines and thiols, were investigated to determine whether they 

could serve as a tether. Interestingly, the reaction of N-nosyl-2-mercaptopropyl pyrrole 

1g as a thiol tether proceeded similarly to afford the thiopyran 3g in 93% yield as a single 

diastereomer (entry 6). In clear contrast, the reaction of an amine-tethered analog such 

as N-nosyl-2-benzylaminopropyl pyrrole did not give tropinone, unfortunately, even when 

a stoichiometric amount of Tf2NH was used, and only the starting material was 

recovered.[20] Therefore, the cascade reaction was found to be applicable to the 

synthesis of various tricyclic tropinones possessing ether and thioether rings. 

 

<<Table 2>> 

 

Having synthesized various tricyclic tropinones, we next attempted to construct more 

complex polycyclic tropinones, i.e., we investigated the reaction with various pyrroles 

possessing cyclic alcohols (Table 3). We first examined pyrrole 1h, which has 

trans-cyclohexanol as a tether. Since the secondary hydroxyl group of 1h was protected 

by a TBS group, both the removal of the TBS group and the cascade reaction were 

conducted in one pot. Initial treatment of 1h with 20 mol % of Tf2NH in HFIP afforded 

deprotected secondary alcohol, and three-carbon unit 2a was then added to afford 

tetracyclic tropinone 3h in 92% yield as a sole product (entry 1). In addition, the similar 

reaction of cis-cyclohexanol derivative 1i also proceeded smoothly to give desired 3i in 

73% yield as a single diastereomer (entry 2). The five-membered ring analog 1j was also 

converted into 3j in 88% yield, and no other stereoisomers were detected (entry 3). The 

reaction was applicable to the tetrahydronaphthalene ring system, and the pentacyclic 



tropinone 3k was obtained from 1k in 67% yield (entry 4). The reaction of more a 

complicated pyrrole, 1l, which was expected to be applicable to the natural product 

synthesis, proceeded smoothly. That is, direct treatment of the mixture of TBS-protected 

1l and 2-(silyloxy)-acrolein 2a with only 10 mol% of Tf2NH afforded the tetracyclic 

tropinone 3l in 91% yield as a single diastereomer (entry 5). The structure of 3l was 

unambiguously confirmed by X-ray crystallographic analysis (see Supporting 

Information).[21] Thus, the reaction was proven to be useful for the construction of various 

complex polycyclic tropinones. On the other hand, the phenolic hydroxyl group was 

unusable as a tether, and only intermolecular (4+3) cycloadduct was obtained.[22]  

 

<<Table 3>> 

 

 

Finally, we examined the application of 3-substituted-2-(silyloxy)-acrolein to construct the 

-substituted tropinones (Scheme 4). The reaction of an E/Z mixture of 

2-(silyloxy)-3-methyl-acrolein 2b with N-nosyl-2-hydroxylpropyl-pyrrole 1a afforded 

-methyl-tricyclic tropinone 3n as a sole product in 92% yield. The stereochemical 

outcome of this reaction from the E/Z mixture of 2b suggested that the E-isomer was 

isomerized to form the most stable configuration. Furthermore, the reaction of 

3,3-dimethyl analog 2c also proceeded smoothly to give,-dimethyl tricyclic tropinone 

3o in excellent yield. This is a useful reaction for constructing both the quarternary 

carbon center and the tetra-substituted carbon center bearing nitrogen. We expect it be 

applied to the synthesis of complex biologically active compounds and natural products. 

 

<<Scheme 4>> 

 

In conclusion, a concise method of constructing a polycyclic tropinone framework was 

developed. Various tropinones, including tri-, tetra-, and pentacyclic systems, were 

synthesized in a single step by the reaction of hydroxyl-tethered N-nosyl-pyrroles with 

2-(silyloxy)-acroleins. The reaction proceeded smoothly via condensation of acrolein 

with a tethered-hydroxyl group followed by the intramolecular (4+3) cycloaddition 

reaction of pyrroles and resulting oxyallyl cation. The polycyclic tropinones were 



obtained in high yields as single diastereomers, and thus the optically active starting 

materials afford asymmetric tropinones. The computational studies suggested that the 

intramolecular cycloadditon reaction proceeds through an unexpected stepwise 

mechanism. Since the cascade reaction readily provides various complex frameworks in 

three dimensions, development of novel biologically active compounds would be 

expected. An application of this cascade reaction to the total synthesis of complex 

natural products is under way in our laboratory. 

 

•Experimental Section 

Experimental details, full data, 1H and 13C NMR spectra of each intermediate, and data of 

X-ray analysis are available in Supporting Information. 
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Scheme and Figure legends 

Scheme 1. Plan for the intramolecular [4+3] cycloaddition reaction of pyrroles. 



Scheme 2. Proposed mechanism. 

Scheme 3. Energy profile diagram of cycloaddition reaction of 1a with 2a 

Scheme 4. Direct [4+3] cycloaddition reaction of 1a with 2-(silyloxy)-3-substituted-acrolein 2b 

and 2c. 

Figure 1. Optimized transition states for stepwise mechanism (path ‘a’). Bond lengths in Å. 

 

 

 

 

 

 

 

 

 

Table 1 

Table 1. Condensation-intramolecular [4+3] cycloaddition cascade reaction leading 



to tricyclic tropinone 3c. 

 

Entry 

Acid 

(mol %) 

Solvent Time (min) Yield (%)[a] 

1 Cu(OTf)2 (20) CH3NO2 300 58 

2 Sc(OTf)3 (20) CH3NO2 300 45 

3 Sc(OTf)3 (10) HFIP 85 76 

4 BF3•OEt2 (10) HFIP 50 78 

5 Et2AlCl (10) HFIP 85 52 

6 TMSOTf (10) HFIP 60 81 

7 TFA (10) HFIP 790 91 

8 p-TsOH (10) HFIP 205 91 

9 Tf2NH (10) HFIP 30 88 

10 Tf2NH (4) HFIP 80 69 

11 Tf2NH (30) CH2Cl2 240  5[b] 

12 Tf2NH (30) CH3NO2 240   18[b] 

[a] isolated yield. [b] 1H NMR yield using CHBr3 as an internal standard. 

 

 

 

 

Table 2 



Table 2. Cascade reactions of 2 with pyrroles possessing various tethers in chains.[a] 

Entry Substrate 

Tf2NH  

(mol%) 

Product (yield)[b] 

1[c] Ns
N

OH

 

  10 
N
Ns

O
OH

 

 1b  3b (quant) 

2[d] 

Ns
N OH

 
  20 

N
Ns

O
H

O

 

 1c  3c (51%)    

3 

Ns
N OH

  10 N
Ns

O
H O

 

 1d  3d (76%) 

4[d] 

Ns
N

OH
10 N

Ns

O
H O

 

 1e  3e (44%) 

5[e] 

Ns
N

OH

 
87% ee 

10 

N
Ns

O
OH

 
85% ee 

 1f  3f (50%) 

6[d] 

Ns
N

SH
 

10 
N
Ns

O
SH

 

 1g  3g (93%) 

[a] Reaction condition: 1 (1.0 equiv), 2a (2.0 equiv), HFIP (0.2 M), 0 °C. [b] Isolated 

yield. [c] 3.0 equiv of 2a was used. [d] The reaction was conducted under a diluted 

condition (0.01 M). [e] The reaction was conducted under a concentrated condition 

(1.0 M). 

 

Table 3 



Table 3. Cascade reactions of 2a with pyrroles possessing various cyclic alcohols as 

tethers.[a] 

Entry Substrate 

Tf2NH 

(mol%) 

Product (yield)[b] 

1 

Ns
N

OTBS

 

20 
N
Ns

O
OH

H

H  

 1h  3h (92%) 

2 

Ns
N

OTBS

 

20 
N
Ns

O
OH

H

H  

 1i  3i (73%) 

3 
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N

OTBS

 

20 
N
Ns

O
OH

H

H  

 1j  3j (88%) 
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N

OH
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N
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OH

H

H  

 1k  3k (67%) 

5[c] Ns
N

OMeTBSO
H

 

10 N
Ns

O
OH

H

H

OMe

 

 1l  3l (91%) 

[a] Reaction condition: 1 (1.0 equiv), 2a (2.0 equiv), HFIP (0.2 M), 0 °C. [b] Isolated 

yield. [c] 3.0 equiv of 2a was used. 

 

 

 

 



Text for the Table of Contents 

A concise method of constructing polycyclic tropinone frameworks was developed. The 

single-step synthesis of polycyclic tropinone was accomplished by the cascade reaction of 

condensation and (4+3) cycloaddition reaction of N-nosyl-pyrrole with an oxyallyl cation 

generated in situ, and this cascade reaction afforded various polycyclic tropinones including tri-, 

tetra-, and pentacyclic systems in high yields as single diastereomers. 
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Scheme 2. 

 

 

  

Scheme 3. 

 



  

Scheme 4. 

 

 

 

 

 

 

   

Figure 1. 
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