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CHAPTER1  

General introduction 

Bird movement response to wind should significantly affect on its travel duration, energy expenditure and 

probability the birds can reach destination properly, and, hence, these effects will influence the fitness of the 

individuals (Chapman et al. 2011). Bird movement response to wind is characterized by external factor (wind) 

and internal factors (Nathan et al. 2008). Internal factors can be categorized to some components. The First 

component is movement strategy of birds. The birds’ adjustment of their heading and airspeed and large-scale 

path planning in response to wind patterns can significantly affect on the time and energetic cost of the travel 

(Alerstam and Lindström 1990, McLaren et al. 2014, 2016, Chapman et al. 2016). To enable these movement 

strategies, the other components of birds’ internal factors play important role. The first is navigation capacity; 

the ability of birds to sense their locations and/or wind direction and speed (Kramer 1953, Chapman et al. 

2015). The second is movement capacity of birds; the flight style of birds such as flapping, gliding and 

thermal soaring and dynamic soaring (Norberg 2012). In the following, details of these components and which 

areas of these components have been intensively studied (or not studied) are explained. 

 The movement strategy of birds relates to two effects of wind components; tailwind and crosswind 

components. Tailwind component increases the ground speed of birds and, hence, reduces time and energy 

cost to reach the goal (Butler et al. 1997, Liechti and Bruderer 1998, Weber and Hedenström 2000). Many 

studies reported migrating birds tend to depart their stopover sites when wind is blowing to their destination 

(Åkesson and Hedenström 2000, Dänhardt and Lindström 2001, Åkesson et al. 2002). Overall, birds prefer 

tailwind as it assists their travel (Fig. 1-1A). However, perfect tailwind condition (wind direction coincides 

with the preferred direction) may be rare and there may exist some degree of crosswind component. The 

crosswind component is, on the contrary, unfavorable for birds as it deviates bird’s track from intended course. 
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To deal with this crosswind effect, the bird should adjust its heading to windward, that is called wind 

compensation. An illustrative example of a bird response to flow can be constructed in which the bird’s 

preferred direction is northwards but the wind is blowing approximately eastwards. If a bird is to align its 

heading vector (the bird’s speed and direction relative to the surrounding fluid, hereafter referred to as the 

heading speed and heading, respectively) with the preferred direction (northwards), the direction of the track 

vector (the bird’s speed and direction relative to the ground) would be northeast, deviating from the preferred 

direction (Fig. 1-1B). In other words, the bird would be drifting due to the flow (known as full drift). The bird 

would be able to reduce the drift by directing its heading vector point somewhat into the flow (Fig. 1-1CD). 

This is generally referred to as flow compensation. Especially, in the case in which the bird’s track direction 

coincides with the preferred direction, it is known as complete compensation (Fig. 1-1D) and, otherwise, 

partial compensation (Fig. 1-1C). The compensation for flow drift is a adaptive response to crosswind as it 

increases the reliability of the bird reaching its destination and reduces the time spent travelling and thus 

minimizes its total energy cost (Chapman et al. 2011, McLaren et al. 2016). Our understanding of wind 

compensation of birds has been developed by studies using radar (Lack 1958) and recent advanced animal 

tracking techniques. All three movement strategies mentioned above (full drift, partial compensation and full 

compensation) has been observed. Especially, whether birds can compensate wind above the open sea has 

been an interested problem since the pioneering work of David Lack as it provides us the knowledge about 

their navigation capacities (Lack 1958, Alerstam and Ulfstrand 1974, Alerstam 1975, 1976). Birds flying over 

land are expected to use landmarks for referencing their position relative to the ground to prevent drifting due 

to lateral wind. Contrary to this, birds moving over the ocean such as seabirds, where landmarks are absent, do 

not have any referencing beacons (Alerstam 1976). Hence, if birds flying over the sea showed wind 

compensation, it indicates birds have map sense that they can know their location relative to their goal without 

visual cues (Kramer 1953, Able 2001, Orchan et al. 2016).  
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 However, the approach investigating birds navigation capacity from response to wind of 

free-ranging birds flying landmark poor environment have been rare (One of the hindrances was technical 

difficulty to acquire detailed wind and bird orientation information as radar sites are restricted on land). 

Rather, the navigation capacity of birds has been intensively studied by experiment using caged birds and 

anatomical and physiological approaches. Using the caged bird and artificially controlling the external cues, it 

was shown that birds use directional information from cues the such as sun (Kramer 1952) and stars (Emlen 

1967a, 1967b) and even the Earth’s magnetic field (Wiltschko et al. 1971, Wiltschko and Wiltschko 1972). 

Magnetic information is also considered to be important for animals to find their location, i.e. map sense. In 

loggerhead sea turtles and Caribbean spiny lobsters, use of magnetic cues for map was supported by exposing 

animals in water-filled arena to altered magnetic field that corresponds to that of the distant locations and 

investigation their moving direction (Fischer et al. 2001, Lohmann et al. 2001, Boles and Lohmann 2003). In 

birds homing pigeon was used to test the use of magnetic map. Although use of geomagnetic cues for map 

sense was partially supported, there are possibility that olfactory cues and landmarks also play important roles 

(Gagliardo et al. 2009, Wiltschko et al. 2009). Our understanding on physiological and molecular mechanism 

of birds to sensor magnetic field has been also advanced last few decades. There are two promising candidate 

mechanisms. First one is using ferromagnetic materials. Anatomical studies revealed clusters of ferromagnetic 

materials exist in upper beak of pigeons (Fleissner et al. 2003, 2007). Pulse remagnetization that apply a brief, 

strong magnetic pulse to bird changed their behavior and this result also support the ferromagnetic sensor 

(Wiltschko et al. 1994, Beason et al. 1995, Holland et al. 2009). The second candidate is magnetically 

sensitive biochemical reactions that proceed via light-induced electron transfer between two molecules (Ritz 

et al. 2000, Maeda et al. 2008, 2012). Identified ultraviolet/violet cones in birds’ eye as a probable 

magnetroreceptors (Nießner et al. 2011).  

 The movement capacity is another important component that underpin the birds movement strategy 
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in relation to wind. The movement capacities of birds itself have been intensively studied both theoretically 

and experimentally in the field of biomechanics (Dickinson et al. 2000, Videler et al. 2004, Pennycuick 2008, 

Norberg 2012). On the other hand, the integrative understanding on how movement capacity of birds affect on 

their movement strategy in response to wind seems to be poor. For example, in the movement strategies of 

birds in response to wind, birds’ flight style is implicitly assumed to be flapping flight. However, if birds 

adopt different flight style such as formation flight exploiting upwash generated by other birds (Portugal et al. 

2014) or soaring that exploit updraft (Weimerskirch et al. 2016) or wind shear on the sea (Sachs 2004), the 

optimal movement strategy of birds can change from that of simple flapping flier. 

 In this study, the movement of seabirds in response to wind is studied. Seabirds have some unique 

points worth to be studied and potentially enhance our knowledge about the unrevealed area of movement 

strategy in response to wind, navigation capacity and movement capacity of birds. In chapter 2, whether 

seabirds could compensate crosswind was investigated. As mentioned above, movement strategy of birds in 

response to wind over the sea has been important problem yet to be investigated. Here, homing tracks of 

streaked shearwaters (Calonectris leucomelas) was analyzed. In homing, birds were flying in cross wind, and 

which orientation strategy (Fig. 1-1B,C, and D) in response to cross wind did birds adopt was investigated. In 

chapter 3, it is shown that movement capacity (flight style) of birds can drastically change the movement 

strategy of birds. Wandering albatrosses (Diomedea exulans) avoided tailwind even if wind was blowing to 

their goal (Fig. 1-1A) and showed large-scale zigzag movement. Using physical model for soaring birds, it 

was revealed that their curious movement stems from their unique soaring flight style and tailwind avoidance 

is an efficient homing way for soaring birds.  

In both chapter, wind and birds’ heading vector are important information but difficult to directly 

measure. This technical difficulty is one of the reasons that hindered the advance of our understanding of birds’ 

movement in response. To overcome this difficulty, I employed an “inverse problem approach” to estimate 
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the causal factors affecting animal movement by using their tracks to quantify navigational decisions in 

response to environmental disturbance (e.g., wind). The inverse problem approach is widely used in physics 

and engineering to estimate unobservable causal factors from observed output data (Groetsch 1993). However, 

the use of this approach remains uncommon in biology (Ishihara and Sugimura 2012, Kondo et al. 2013), 

especially in animal ecology, because it requires sufficiently large datasets. Another important hindrance is 

the lack of relevant underlying theory that describes how the model and its parameters that are to be inferred 

relate to the datasets. The bio-logging technique, whereby data loggers are attached temporarily to free-living 

animals in the wild, and the high-resolution data it produces now enables the use of the inverse problem 

approach in this research field. In the first part of chaphter 2, a new method was proposed to estimate both 

heading and flow vectors to reveal animal decision-making in response to the flow, using tracking data only 

based on the inverse problem approach. For this, a model is needed that quantitatively relates the observation 

data (i.e., track data) with the parameters to be estimated (i.e., heading and wind vectors). Such a model was 

constructed by using a (Biased) Random Walk model, one of the basic theories for animal movement analysis 

that describe the direction and length of the animal track vector using probability densities (Turchin 1998, 

Okubo and Levin 2001, Codling et al. 2008, Benhamou 2014). A model introduced in chapter 2 is simple 

model that added flow effect to Biased Random walk. The method is applied to the homing tracks of streaked 

shearwaters recorded at a resolution of one location per minute. Although the wind was successfully estimated, 

the simple model required to assume the wind and heading vectors are constant in the analyzing time window. 

This assumption can restrict the portion of track data where the model can be fitted such as relatively directed 

movement. To realize more robust estimation and deal with the temporal change of wind and heading vector, 

an advanced model was developed in the first part of chapter 3. The advanced model was applied to the track 

data of wandering albatrosses.  
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Fig. 1-1. Conceptual framework of the “inverse problem approach” with bio-logging data. The black and red 

arrows between boxes indicate the process by which the movement path (the line at the bottom right) of an animal is 

generated and how the “inverse problem approach” is applied, respectively. In general, the animal’s movement is 

affected by both external factors (e.g., wind or currents) and internal factors (e.g., the internal state, animal navigation 

capacity and motion capacity). In this study, information relating to animal heading (internal factors) and ocean wind 

(external factors) were simultaneously estimated by analyzing time-series data recorded by bird-borne GPS loggers. (A, 

B, C, D) Patterns of an animal response to flow: (A) Downstream orientation. (B) Full drift. (C) Partial compensation. 

(D) Complete compensation. The red, blue, and black arrows from (A) to (D) indicate the heading vector, flow vector, 

and track vector, respectively. The green arrow indicates the preferred direction of the animal (the direction of the 

destination). 
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CHAPTER2  

Seabirds’ wind compensation over the sea 
 

Introduction 

In this chapter, the orientation strategy of pelagic seabirds, streaked shearwaters (Calonectris leucomelas: Fig. 

2-1), in response to wind was investigated. Streaked shearwaters spend most of their life on/over the sea, and, 

in breeding season, they nest in offshore islands mainly in Japan. Streaked shearwaters breeding in 

Funakoshi-Ohsima Island, Iwate Prefecture, Japan was tracked using small GPS (Fig. 2-2). In breeding season, 

they commute between the nesting island and foraging areas of the sea to capture preys for the chicks and 

themselves. Sometimes, they make very long foraging trips that range to the south coast of Hokkaido (Fig. 

2-2). When they return from Hokkaido to their home, they fly over the open sea approximately 300 km. As 

landmarks are poor over the sea, whether they can compensate wind is not obvious and important to test their 

navigation ability. However, the knowledge of wind compensation of birds over the sea has been very limited, 

although wind response of birds flying over the land (where landmarks are available) has long been studied. 

This is because of the technical difficulty to measure wind and heading direction of birds flying over the sea 

on fine-scale.  

 Here, a new method is proposed to estimate the heading and flow vectors to reveal animal 

decision-making in response to the flow, using tracking data only. For this, a model that quantitatively relates 

the observation data (i.e., track data) with the parameters to be estimated (i.e., heading and wind vectors) is 

required. Here, such a model is constructed by using a (Biased) Random Walk model, one of the basic 

theories for animal movement analysis that describe the direction and length of the animal track vector using 

probability densities. This formulation has the following three advantages: (Property 1) The model can deal 

with random fluctuation observed in animal movement paths (Kareiva and Shigesada 1983). (Property 2) 
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Variation of the probability density parameter allows the models to describe various types of movement 

modes, from exploratory searching to directed movement toward a particular direction or location (Codling et 

al. 2008). (Property 3) It is easy to fit the model to the real data and find the best-fit parameter values by 

formulating the maximum likelihood function and/or state-space modeling framework (Morales et al. 2004, 

Jonsen et al. 2013, Hooten et al. 2017). The new model is similar to previous models in respect of the above 

three properties, but which differs in terms of the implementation of the random walk; that is, “inversely” 

estimating the environmental factor (flow vector) and the internal decision making (heading vector) of 

animals from the “resultant” animal tracks. This method was applied to the homing tracks of streaked 

shearwaters and their orientation strategy over the sea was investigated. 

  

Materials and method 

The key idea of the model 

First, the key point of the model, which is based on the Biased Random Walks [BRW: (Codling et al. 2010)], 

is explained. The BRW is a simple model for describing animal directed movement toward a particular goal 

direction or location. It describes the length (speed) and direction of a track vector with mutually independent 

probability densities and the density of the direction has a peak in the goal direction. This independency 

between the direction and length of the track vector assumes a symmetric distribution of the track vector along 

its mean. What this assumption asserts is that, when you are walking in a particular direction, there should be 

some degree of fluctuation in each of the steps, but the fluctuation should not be different between the left side 

and right side relative to the mean track direction. This assumption seems intuitively natural. However, if you 

are walking on moving ground, such as a glacier, your track vector (movement relative to the “earth”) does  

not necessarily fluctuate symmetrically along its mean, but the velocity relative to the glacier should fluctuate 

symmetrically and thus obey the BRW. This is also the case with flying or swimming animals when an animal 
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is moving towards a particular destination through a moving fluid. The heading vector is distributed 

“symmetrically” along its mean vector (Fig. 2-3A) but the track vector should be distributed “asymmetrically” 

along its mean vector via the effect of the flow (Fig. 2-3B). In other words, the heading vector should obey 

BRW, but not the track vector. This is the key point of the method and overlooked in random walk models in 

movement ecology. This key point eventually enables to estimate the heading and wind vector only from track 

data as explained in the following sections. The model is described in the next section (The model). Then, 

how to apply the model to real track data (The model fitting) is described.  

 

The model 

When an animal moves while subjected to flow, its resultant track reflects the combined effects of the 

animal’s movement relative to the fluid and drift caused by the flow. The condition is considered in which the 

animal’s position in the x- and y-directions (!!Xk ) are recorded at discrete time points k = 0,1,…,N with the 

fixed time interval ∆t. The animal’s track vector at time point k is defined as !!!vT ,k = vT ,k ,uT ,k( ) , the 

subtraction of consecutive positions divided by the time elapsed. 

!!!
vT ,k ≡

Xk −Xk−1
Δ t

 [2-1] 

The track vector is the sum vector of the animal’s heading vector at time point k,!!!vH ,k = uH ,k , vH ,k( ) , and the 

flow vector at time point k, !!!wk = wk , x ,wk , y( )      

!!!vT ,k = vH ,k +wk  [2-2] 

The aim of the method is to estimate the mean heading vector and flow vectors from the time series of the 

track vector !!! vT ,1 , vT ,2 ,!, vT ,N{ } , which can be easily calculated from the tracking data. For this purpose, 
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!!!vT ,k  is formulated as a stochastic variable generated from a particular probability density function 

characterized by the heading vector and flow vector.  

Followings were assumed about the heading vector and flow vector. First, heading vector !!!vH ,k  is 

a stochastic variable whose probability density of the length (the animal speed relative to the fluid, air-speed 

for flying animals, and swim-speed for swimming animals, hereafter referred to as the heading speed; 

!!!sH ,k = vH ,k ) is not affected by that of the direction (heading; !!!θH ,k = arg vH ,k ). Second, the animal 

movement relative to flow is directional. In other words, the probability density of the heading has a single 

peak at the particular mean heading φ . As probability densities that satisfy these two assumptions, the 

Weibull distribution !!f sH ,k ι ,ρ( )  is used for the heading speed, 

!!
f sH ,k ι , ρ( ) = ρ

Γ 1+1 ρ( )
ι

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ρ

sH ,k
ρ−1 exp −

Γ 1+1 ρ( ) sH ,k
ι

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ρ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

where ι  is the mean heading speed, ρ is the so-called shape parameter and !!Γ(x)  is gamma function ; and 

the von-Mises distribution !!g θH ,k φ ,κ( )  is used for the heading, 

!!
g θH ,k φ ,!κ( ) = exp κ cos θH ,k −φ( ){ }

2πI0 κ( )  

 where φ  is the mean heading, κ  is the concentration parameter that characterizes the variance of the 

distribution and I0 (κ) is the modified Bessel function of the fist kind and zero order. From these two 

distributions the probability density of !!!vH ,k = uH ,k , vH ,k( ) , represented by !!pH uH ,k ,vH ,k ι ,ρ ,φ ,κ( ) , can be 

derived. 

 

!!
pH uH ,!k , vH ,k γ , ρ ,φ ,κ( ) = f sH ,k γ , ρ( )g θH ,k φ ,κ( ) ∂ sH ,k ,θH ,k( )

∂ uH ,!k , vH ,k( )  
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where 
!!
∂ sH ,k ,θH ,k( )
∂ uH ,!k , vH ,k( )  is the Jacobian required for the variable transformation of the probability density. Note that 

it is symmetrically distributed along its mean heading vector (Fig. 2-3A). This model is the BRW which has 

been widely used for modeling the “track vector” (Codling et al. 2008). However, as explained in “The key 

idea of the model”, it was found that the “heading vector” should obey BRW for animal movement in fluid. 

The final assumption is that flow vector !!!wk = wx ,k ,wy ,k( )  can be approximated by a spatiotemporally 

constant vector!!!w = wx ,k ,wy ,k( )  during the unit of model fitting. Under the assumption of this constant flow 

vector, the flow-induced drift effect usually ignored in previous models of animal movement was added. 

Using the relation, !!!vT ,k = vH ,k +w  the probability density of the track vector 

!!pT uT ,k , vT ,k ι , ρ ,φ ,κ ,wx ,wy( )  can be derived from that of the heading vector  !!pH uH ,k , vH ,k ι , ρ ,φ ,κ( )  

by transforming its variables from !! uH ,k , vH ,!k( )  to !! uT ,k , vT ,k( )  as

 

!!

pT uT ,k , vT ,k ι , ρ ,φ ,κ ,wx ,wy( )
= pH uH ,k , vH ,k ι , ρ ,φ ,κ( ) ∂ uH ,k , vH ,k( )

∂ uT ,!k , vT ,k( )
= f sH ,k ι , ρ( )g θH ,k φ ,κ( ) ∂ sH ,k ,θH ,k( )

∂ uT ,!k , vT ,k( )
=
ρΓ 1+1 ρ( )ρ
2πιρI0 κ( ) uT ,k −wx( )2 + vT ,k −wy( )2{ }

ρ−2
2

×exp −
Γ 1+1 ρ( )

ι
uT ,k −wx( )2 + vT ,k −wy( )2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ρ

+κ
uT ,k −wx( )cosφ + vT ,k −wy( )sinφ

uT ,k −wx( )2 + vT ,k −wy( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 

The equation 
!!
∂ sH ,k ,θH ,k( )
∂ uH ,!k , vH ,k( )

∂ uH ,k , vH ,k( )
∂ uT ,!k , vT ,k( ) =

∂ sH ,k ,θH ,k( )
∂ uT ,!k , vT ,k( )  was used to transform the first line to the second line. The 

equation 
!!

∂ sH ,k ,θH ,k( )
∂ uT ,!k , vT ,k( ) =

1
uT ,k−wx( )2+ vT ,k−wy( )2

 was used to convert the second line to the third line. The  
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!!pT uT ,k , vT ,k ι , ρ ,φ ,κ ,wx ,wy( )  corresponds to !!pH uH ,k , vH ,k ι , ρ ,φ ,κ( ) translated to w (Fig. 2-3AB). The 

important prediction of the model is that the track vectors should be distributed asymmetrically along the 

mean track vector (Fig. 2-3B). Note that the flexibility of Random Walk models (Property 2 mentioned in the 

Introduction) enables the formulation of the animal movement in moving fluid, and the random fluctuation of 

animal track described by Random Walk models (Property 1) is crucial in this model. 

 

 

The model fitting  

(i) Parameter estimation 

 When the track vector data !!! vT ,1 , vT ,2 ,!, vT ,N{ } are given, the likelihood of the model can be calculated as 

follows: 

!!
L ι , ρ ,φ ,κ ,wx ,wy( ) = pT uT ,k , vT ,k ι , ρ ,φ ,κ ,wx ,wy( )

k=1

N

∏  [2-3] 

Using the Maximum Likelihood estimation (MLE), the parameters !!ι ,ρ ,φ ,κ ,wx  and!
wy  can be 

estimated (Property 3). Accordingly, the mean heading vector and flow vector can be estimated by fitting the 

model to the track vector data. By conducting this estimation for the simulated movement data, the effect of a 

small sample size, the fluctuation of wind, and measurement error on the accuracy of parameter estimation 

was tested (MLE was conducted using “optim()” of R version 3.2.0). It was found that, in some respects, these 

factors could be problematic for estimations; thus, five conditions to exclude these problems were specified 

(see Supplementary Note 1 and 2 for detailed information). 

Condition 1: Only one result was accepted for which the estimated probability density of the heading vector is 

anisotropic and more widely distributed along the perpendicular direction relative to the axis of the mean 

heading vector than along the axis of this vector (specific representation is provided in Supplementary Note 1 
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Eq. S1-3).  

Condition 2: Only one result is accepted in which the angle between the mean heading and the mean track 

vector is less than 90 degrees. 

Condition 3: Although the heading was estimated accurately, the mean heading speed widely fluctuated and 

deviated from the value that was obtained as an answer with only 50 data points. Accordingly, the mean 

heading speed ι  is assigned a priori. In this study, a value of 9.63 m s-1 (34.7 km h-1) was used, which is the 

mean speed relative to the ground for streaked shearwaters reported in a previous work (Shiomi et al. 2012). 

Condition 4: The standard deviation of the distance between the animal’s true fixed position and the observed 

fixed position is less than 5% of the distance between successive observed fixed positions.  

Condition 5: The flow fluctuation is smaller than that of the animal heading vector. 

Thus, assuming condition 4 and 5 are satisfied and conducted the MLE under condition 3, fixed the 

mean heading speed value (ι ) to 9.63 m s-1, and if the estimated parameters satisfied conditions 1 and 2, the 

goodness of model fit was checked as follows. 

(ii) Goodness of fit tests 

The goodness of fit of the estimated distribution of the data was verified using statistical tests. First, 

it was checked whether the data related to the heading and heading speed were distributed according to the 

estimated distributions by using a Kolmogorov-Smirnov test. Second, it was tested whether the heading and 

heading speed were uncorrelated by using Pearson’s correlation test. If the estimated distribution passed these 

tests, it was accepted that the model fits the data. 

 

Field experiment 

Streaked shearwaters (Calonectris leucomelas) breeding at Funakoshi-Ohshima Island, Japan (Fig. 2-2) 

(39.240° N, 141.590° E), were tracked from August to September in 2013 and 2014, which corresponds with 
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the chick-rearing period. A GPS data logger was attached to each bird’s back with waterproof tape (Tesa, 

Hamburg, Germany) and glue, (LOCTITE LBR-005, Henkel Japan, Tokyo, Japan). Two models of GPS 

loggers, GiPSy-2 (2013, N = 11 birds; 2014, N = 14 birds) and GiPSy-4 (2013, N = 9 birds; 2014, N = 13 

birds), were used (Technosmart, Italy). GiPSy-2 was configured to record the position of the bird every 

minute and GiPSy-4 every 30 seconds (but resampled to 1 minute in the analysis to homogenize the sampling 

interval between GiPSy-2 and GiPSy-4). Recaptures of the birds at the colony to recover the loggers were 

began approximately 1 week after deployment. The overall mass of the logger was approximately 25 g for 

both models, which corresponded to less than 5% of the body mass of each bird. 

 

Fitting the model to real track data 

The foraging trips recorded by the GPS loggers were analyzed as follows. First, their homing start position 

was identified using a method developed in a previous study (Shiomi et al. 2012). The method defines the last 

phase of the track during which the distance from the colony continues to decrease as the homing phase and, 

in that phase, the first point where the approach speed to the colony exceeds15 km h-1 was defined as homing 

start point. Then, to eliminate the possibility that the birds used land features to navigate, only bird tracks in 

which the homing start position was located more than 200 km away from the colony were included for 

analysis. In addition, only birds that started homing further east than the longitude of the colony were 

analyzed. Among the recorded foraging trips, 33 trips stisfied these conditions and analyzed in the following 

(Fig. 2-2). 

This method was applied to the homing portions of the tracks. As the animal movement pattern and 

flow vector are expected to change spatiotemporally, the model fitting was conducted as follows. Fifty-one 

minutes of position data for each bird were selected every consecutive minute in a sliding time window. Using 

the position data in each time window, the mean bird heading and wind (flow) vector were estimated every 
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consecutive minute at time point t, averaged between t-25 min to t+25 min. The bird position data were not 

analyzed when birds were near land, i.e., when the location of the bird at the center of the time window was 

closer to land than the blue dashed line, as shown in Fig. 2-2. For each time window, the track vector was 

derived by calculating the distance between successive GPS positions on the x- and y-axes and then dividing 

it by the elapsed time. As there were some missing GPS data points, the track vector was excluded from 

analysis when the elapsed time between points at which the GPS coordinates were fixed exceeded 1 minute. 

When the track vector was less than 15 km h-1, the bird was assumed to be resting on the sea surface, i.e., not 

flying (Shiomi et al. 2012). It was ensured that the bird heading vector and wind vector were accurately 

estimated by fitting the model only when at least 45 over-track vector data points were contained in each 

window. Then, parameter estimation and goodness of fit tests for the probability density function of the bird 

track vector were calculated.  

 

Comparing the wind vector estimated from bird tracks with the wind vector simulated by the 

atmospheric model  

The validity of the model estimation was evaluated by correlating the estimated wind vectors with wind data 

from the Japan Meteorological Agency Mesoscale Model re-analysis datasets (at a height of 10 m above sea 

level), which was calculated every 3 hours. When the re-analysis data at time t was available, the mean vector 

of the re-analysis data was calculated and compared with the estimated wind vector at approximately time t. 

First, the estimated wind vectors with a time difference from t of less than 25 min were selected. The mean 

vector of the selected wind vector was calculated. This vector was defined as the mean estimated wind vector 

at time t. Next, using the wind vectors from the re-analysis data at time t, the wind vector data were selected 

that were within 5 km of the recorded positions of the bird from t-50 min to t+50 min except for the bird 

positions not contained in any time window that fit the model. The mean vector of these wind vectors was 
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defined as the mean re-analysis data wind vector at time t. The correlation between the mean estimated wind 

vector and the mean re-analysis data wind vector was examined using the generalized vector correlation 

coefficient (Crosby et al. 1993, Adams and Flora 2010) that takes into account both wind speed and direction 

and takes a value between 0 (no correlation) and 2 (complete correlation). The correlation of the wind speed 

was examined using Pearson’s correlation coefficient and the correlation of the wind direction was examined 

using the Jammalamadaka-Sarma correlation coefficient [calculated using the package ‘circular’ of R (Pewsey 

et al. 2013)]. 

 

Testing the bird response to the wind over the sea 

Using the track vector direction and the estimated bird heading direction, the degree of compensation and 

preferred direction were calculated by the method proposed in a previous study (Green and Alerstam 2002). 

First, the tracks were separated into three sections: the northern coast (NC), offshore (OS), and the western 

coast (WC). For each section and each track, the track vector direction and the angular difference between the 

track and heading vectors ( ) were averaged. Then, the average track direction was linearly regressed on 

average . The degree of compensation and preferred direction corresponds to the slope and intercept of the 

regression line (Green and Alerstam 2002). A slope of 1 signifies full drift (Fig. 1-1B), a slope of 0 means 

complete compensation (Fig. 1-1D), and the case 0 < slope < 1 means partial compensation (Fig. 1C).  

 In addition, to investigate the extent to which the preferred direction differs from that of the bird’s 

nesting colony (i.e., the final goal), the locations with median longitude and latitude of the tracks in each 

section were defined as the median locations and calculated the direction of the colony from there. 

 

Results 

Model fitting to the track data 

α

α
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The model was applied to the homing portions of the GPS tracks of streaked shearwaters (N = 33; represented 

by the colored part in Fig. 2-2). Examples of tracks and estimated vectors are shown in Fig. 2-4ABC. Note 

that the asymmetry (or symmetry during light wind) of the track vector distribution predicted by the model 

(Fig. 2-3B) was also observed in the real data (Fig. 2-4DEF). The other three trips did not fit the model at any 

point and were excluded from the analysis.  

 

Comparison between the wind vectors estimated from bird tracks and simulated by the atmospheric 

model  

 There were 32 time points at which wind vectors estimated from the bird tracks and atmospheric model 

matched. There was a significant correlation between the mean estimated wind vector and the mean 

re-analyzed data wind vector (Fig. 2-5A; generalized vector correlation coefficient =1.29 that takes a value 

between 0 (no  

correlation) and 2 (complete correlation), P < 0.0001, N = 32). The wind speed (Fig. 2-5B; P = 0.0019) and 

direction (Fig. 2-5C; Fisher-Lee correlation coefficient 0.20, P = 0.0013) of the two velocities were also 

significantly correlated. Although the bird-based wind speed was strongly correlated with that of the 

re-analyzed wind data, the wind speed was 37% lower than that of the re-analyzed data (Fig. 2-5B). The 

difference between the bird-based wind direction and re-analyzed data was larger in light wind (Fig. 2-5D). 

  

Wind compensation over the sea 

 In all three sections (NC, OS, and WC in Fig. 2-6E), the slope was significantly lower than 1 (Table 2-1, 

Fig. 2-6BCD), indicating that the birds were compensating for wind drift irrespective of the distance from the 

coastline. The degree of compensation and preferred direction differed among the sections. When birds were 

flying relatively near the coast (NC and WC sections in Fig. 2-6E), the slope was lower than for offshore 
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flight (OS section in Fig. 2-6E) and not significantly different from 0, indicating that the birds completely 

compensated for wind. On the other hand, when the birds were flying over the open sea (OS section in Fig. 

2-6E), the slope was significantly higher than 0, indicating that the birds partially drifted, although they still 

compensated for wind to an extent (partial compensation). When the birds were flying far from the colony 

(NC section in Fig. 2-6E), the direction of the colony was within 95% CI of the preferred direction. However, 

when the birds flew offshore or approached the coast (OS and WC sections in Fig. 2-6E), the preferred 

direction deviated from the direction of the colony in that it lay to the north of the colony (Table 2-1 and Fig. 

2-6E). 

 

Discussion  

The Biased Random Walk model, the model that is commonly employed for animal directed movement, 

assumed an explicitly or implicitly symmetrical distribution of the track vector along its mean vector (Codling 

et al. 2008). However, the track vector should be distributed asymmetrically along its mean vector, because 

flows distort the distribution. Rather, it is reasonable to assume that the heading vector is distributed 

symmetrically. The wind and birds’ heading vectors over the range across which the free-ranging birds moved 

were obtained from GPS data only by utilizing the asymmetric distribution of the GPS track vector along its 

mean vector. 

 Two points should be considered in relation to the method. First, the estimated wind speed was lower 

than that of the reanalysis wind data. The reason for this was previously addressed (e.g., the difference in the 

estimated height of ocean winds between the bird-based (less than 5 m) and satellite-based method (10 m) 

(Yonehara et al. 2016)). Second, the method assumes constant heading speed (condition 3) and does not take 

into account animals adjusting their heading speed in response to the wind direction and speed for 

energetically optimal flight (Liechti et al. 1994, Kogure et al. 2016, Hedenström and Åkesson 2017) because 
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the purpose of this study is to propose a simple model and to test whether the asymmetrical distribution of the 

track vector contains the information of the wind and heading vectors. Although including the air speed 

adjustment in the model would complicate the model, it may be more realistic and valuable for future research. 

However, the assumption that the mean air speed of a bird is constant irrespective of wind did not affect the 

validity of the findings; firstly, because the estimated wind vector correlated with the reanalysis wind data 

sets; secondly, because the method estimated the heading direction in good precision irrespective of condition 

3 as shown in the numerical simulation (see Supplementary Note 1); thirdly, because the regression method of 

(Green and Alerstam 2002) to estimate the preferred direction and the degree of compensation only requires 

the track vector direction and the heading direction that were successfully estimated (see above). Note that the 

airspeed was not required, which was assumed to be constant, indicating that the assumption does not affect 

the conclusions of shearwaters’ orientation strategy. 

It was showed that homing shearwaters could compensate for wind by adjusting their direction of 

flight such that they head into the wind depending on the degree of lateral wind. This homing behavior should 

be evaluated in the context of flight control and cognitive mechanism. When an animal compensates for cross 

winds, the animal should head in a direction away from the preferred direction. This might be easy with 

landmarks available; in contrast, however, it requires skillful flight-control ability when the animal is moving 

over the ocean surface. In particular, shearwaters and albatrosses adopt an unique flying style; dynamic 

soaring, i.e., the direction in which they are heading continuously changes within the scale of a few seconds 

(in this research, the mean values of the heading directions during a 50-min period were estimated), which 

makes wind compensation more demanding than that in the case of flapping birds, whose heading directions 

remain within a small range. Thus, the shearwaters were likely to correctly evaluate the wind conditions they 

experience and control their flight direction during dynamic soaring, which results in optimal navigation 

toward their goal.  



 20 

The result also suggests the high cognitive ability of seabirds to solve an orientation task over the 

ocean. The possibility, known as vector orientation, could be excluded that the shearwaters continued heading 

in one particular direction, as turtles and the young birds of some species do (Perdeck 1958, Berthold 2001, 

Gaspar et al. 2006, Yoda et al. 2017). For vector orientation, only a sense of direction, i.e., the ability to detect 

direction using a magnetic, sun, or stellar compass, is employed. However, more complex orientation ability is 

required for the flow compensation the shearwaters use to return to their colony after foraging. This ability 

can often be termed a map sense: the ability to know where one is on the earth and the distance and direction 

to one’s destination without any landmarks (Able 2001). As there are very few landmarks over the ocean, the 

finding that shearwaters compensate for the wind indicates that they possess a map sense. Their map sense 

over the ocean might be based on a magnetic map, olfactory map, or wave patterns (Alerstam 1976, Gagliardo 

et al. 2013).  

The analysis also elucidated that the birds changed their orientation strategy (degree of 

compensation and preferred direction) during their homing. Intriguingly, the degree of compensation was 

higher when birds were flying over the sea near the coast (NC and WC sections) than over open sea (OS 

section), indicating that in the former regions they might be able to see the coast and obtain the corresponding 

navigational cues that were not available when flying over the open sea. In addition, the preferred direction 

changed with respect to the regions. The intended goal direction of birds was accurately toward the colony 

(final goal) at the beginning of homing flights (NC section). However, as they approached the colony (OS and 

WC sections), their preferred direction deviated from the colony, indicating that they tried to reach the 

coastline which can be used as an additional navigational cue. Thus, although birds have a map sense and can 

compensate for wind over the open sea, they may try to use landmarks depending on their availability. 
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Fig. 2-1. A streaked shearwater with a data logger on its back. 

 

Fig. 2-2. Tracks of streaked shearwaters. Tracks of streaked shearwaters (N = 33). In the tracks, the parts used for 

analysis, i.e., those in which the bird is in the homing phase and not on land (the boundary is indicated by blue dashed 

lines), are indicated by colored lines. The orange dot is the nesting colony on the study site (destination). 
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Fig. 2-3. Heading and track vector distributions of model prediction. (A) An example of probability distributions of 

heading vector 		pH(uH ,vH ) , distributed symmetrically along the mean heading vector (red arrow). (B) An example of a 

probability distribution of a track vector !!pT(uT ,vT ) , gained by moving  !!pH(uH ,vH )  
to the wind vector (blue arrow). 

It is asymmetric along the mean track vector (black arrow).  
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Fig. 2-4. Track vector distribution of real track. (A, B, C) The black lines, red arrows, blue arrows, and orange dots 

indicate the homing tracks, the estimated heading vectors, the estimated wind vectors, and the study site, respectively. (D, 

E, F) The track vectors calculated from the position data in the 51-min time window (the part of the track colored green 

in [A, B, C] is plotted [green dots]). The black, red, and blue arrows represent the mean track vector, the model-estimated 

mean heading vector and wind vector, respectively. The light blue dashed arrow represents the re-analysis wind data. (F) 

The upper right panel is a magnification of the estimated and re-analysis wind vectors in the main panel. The track 

vectors are distributed asymmetrically along its mean vector when a cross wind exists and almost symmetrically when 

the wind is weak as predicted by the model in Fig. 2-3B.  

D

E
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Fig. 2-5. Comparison between the wind vectors estimated by the model and by the re-analysis dataset. (A) 

Comparison of wind vector (N = 32). The first and second rows show the mean re-analysis wind vector (wind which is 

calculated by the atmospheric simulation model) and the mean estimated wind vector (wind which is estimated using bird 

tracks), respectively. The length of the line indicates the wind strength and the direction indicates the direction in which 

the wind blows. (B) Comparison of wind speed. The red solid line is the regression line (y = 0.37 x + 1.7) and the red 

dashed line represents y = x. (C) Comparison of wind direction. The red dashed line is where y = x. (D) Relation between 

wind speed and difference between estimated and re-analyzed wind direction. 
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Fig. 2-6.Orientation strategies of streaked shearwaters. (A) Definition of . (B, C, D) Mean direction of track 

vector plotted against in three sections: northern coast (B), offshore (C) and western coast (D). The slope of the 

regression line corresponds to the degree of compensation and the intercept (the value of the track direction at ) 

corresponds to preferred direction. The pink dashed line (slope = 1) corresponds to birds that do not compensate (full 

drift) and the gray dashed line (slope = 0) indicates a bird that completely compensated for wind drift. (E) (Left side) 

gray lines are homing tracks and orange, light blue, and purple lines show the NC, OS, and WC sections. The orange, 

blue, and purple points are median locations (the location with median latitude and longitude of tracks in each sections) 

of the NC, OS, and WC sections. Green arrows are the preferred direction and the red point is the nesting colony (final 

goal). (Right side) The preferred direction (green arrows) and nest direction from the median location (black dots) in 

each section. The green lines are 95%CI of the preferred direction. The patterns of wind response of birds in each section 

are shown. The red, blue, and black arrows indicate the heading, wind, and track vector, respectively. 
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Table 2-1 Slope and intercept of the linear regression. The directions of the colony from each of the 

median locations (the median locations of the tracks in each of the sections. See also Fig. 6E) are also shown.  

 

 

 

  

Section N(Trip) Slope 
(95% CI) 

Intercept (PD) 
(95% CI) 

Direction of the colony 
from the median location R2 

Northern coast 
(NC) 18 0.17 

(-0.15-0.50) 
203° 

(197°-209°) 201° 0.07 

Offshore 
(OS) 26 0.33 

(0.08-0.59) 
211° 

(204°-217°) 199° 0.23 

Western coast 
(WC) 24 0.24 

(-0.08-0.55) 
213° 

(206°-220°) 190° 0.10 
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CHAPTER 3 
本章の内容は学術論文として出版する計画があるため公表できない。
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CHAPTER 4   

本章の内容は学術論文として出版する計画があるため公表できない。  
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Supplementary Note 1: Numerical simulation test for checking the effect of 
realistic sample size on model fitting 

The accuracy of parameter estimation was tested by estimating simulated movement data. Artificial 

track vector data, random numbers generated from the probability distribution 

!!pT uT ,k , vT ,k ι
* , ρ * ,φ * ,κ * ,wx

* ,wy
*( )  for k=1,.., N, was prepared. The sample size N was set to 20, 50, or 300. 

!!ι
* , ρ * ,φ * ,κ * ,wx

*  and !!wy
*  are parameter values used for generating artificial data. Because the accuracy of 

estimation is expected to depend on the shape of the probability distribution of the heading vector, a variety of 

heading vector distributions were simulated. The !! σ H ,!  is defined the index to characterize the shape of 

heading vector probability distribution; the standard deviation of the heading vector distribution along the 

mean heading vector (corresponds to the standard deviation of heading speed). 

!! σ H ,! = ι Γ 1+ 2
ρ( ) Γ 1+ 1

ρ( )2 −1  [S1-1]  

In addition, σ!,!is defined as the product of the mean heading speed (ι ) and standard deviation of 

the heading  ( !
!
; derived by approximating the von-Mises distribution as a Gaussian distribution by assuming 

a large value for κ), which can be regarded as the approximated standard deviation of the heading vector 

distribution to the perpendicular direction relative to its mean direction. 

!!
σ H ,⊥ =

ι
κ

 [S1-2]  

The mean heading speed (!ι* ) was set to 10 (m s-1) and !! σ H ,! ,σ H ,⊥( )  to 7 combinations, which are 

{(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)} (m s-1), and the corresponding ! ρ
* ,!κ *( )  were numerically calculated 

from Eq. S1-1,2. The probability distributions of the heading vector for each combination are shown in Fig. 

S1-1, which shows that these parameters characterize the variance of distribution around the mean heading 

vector. The mean heading and flow vector !! φ
* ,wx

* ,wy
*( )  was set to seven combinations, as shown in Fig. 



 31 

S1-2. Accordingly, 7×7=49 combinations of parameter sets were tested. Note that, for all these parameter sets, 

the mean track vector is the same vector whose speed is 10 m s-1 and direction is 0 degrees. For each 

parameter set, 100 data sets were generated, for each of which a maximum likelihood estimation (MLE) was 

conducted and the values of parameters that maximize the likelihood of the data, the so-called maximum 

likelihood estimates that are denoted !!ι
MLE( ) , ρ MLE( ) ,φ MLE( ) ,κ MLE( ) ,wx

MLE( ) , and !
wy

MLE( )  were numerically 

computed in the following. The MLE was conducted by using the function “optim()” of R version 3.2.0. As 

the likelihood function may be multimodal and the estimation result may be affected by the initial values of 

parameters, the MLE was conducted with 12 combinations of the initial values of the parameters and selected, 

from the estimated parameters, the one that provides the highest likelihood as the maximum likelihood 

estimates. The initial value of φ  was set from -150 degrees to 180 degrees in steps of 30 degrees. The initial 

value of ι  was set to the mean speed relative to the ground calculated from the data. The initial value of σ  

was set to 15. The von-Mises distribution was fitted to the direction of artificial track vector data and used the 

derived concentration parameter of the fitted von-Mises distribution as the initial value of κ .  

The difference between the mean heading used for generating the data and mean heading of 

maximum likelihood estimates, !!φ
MLE( ) −φ *  , is shown in Fig. S1-3 for each combination of !! σ H ,! ,σ H ,⊥( ) . 

Although the estimated mean heading was close to the true value, there were some cases in which it deviated 

from the true value around ±90 or 180 degrees and the frequency of this deviation increased as the sample 

size decreased and the ratio !! σ H ,⊥ σ H ,!  approached 1. 

Two conditions were instituted to exclude cases in which the estimated headings deviated from the 

true values. First, only results were accepted that estimated the probability density of the heading vector to be 

anisotropic and were more than twice widely distributed along the perpendicular direction to the mean 

heading vector than along the mean heading vector (condition 1):  
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!! 

σ H ,⊥

σ H ,!
=

Γ 1+ 1
ρ( )

κ Γ 1+ 2
ρ( )−Γ 1+ 1

ρ( )2{ }
≥2  

[S1-3]  

This condition is intended to reject cases in which the heading vector distributes almost 

symmetrically (!! σ H ,⊥ /σ H ,! ≅1 ) and the estimation accuracy deteriorates and also cases in which the 

estimated mean heading !φ
MLE( )  deviates about ±90 degrees from true value !φ

* . This deviation means that 

the heading vector distribution is more widely (narrowly) distributed in the perpendicular direction than the 

parallel direction relative to the mean vector direction is wrongly estimated as the distribution more widely 

(narrowly) distributed to the parallel direction than the perpendicular direction. To exclude this 

miss-estimation, the direction (perpendicular or parallel) in which the heading vector distributes more widely 

need to be selected. As animals’ heading speeds should be bounded around the particular heading speed to 

maintain their flight in air, the probability density of real animals’ heading vector are likely to be more widely 

distributed in perpendicular direction than the parallel direction relative to the mean heading vector direction 

(which is condition 1). 

 Second, only results were accepted in which the angle between the mean heading and the mean 

track vector was less than 90 degrees (condition 2). When an estimated result does not satisfy this condition, 

there are two possible explanations. The first possibility is that the animal was flying against an extremely 

strong flow whose parallel component to the animal’s heading vector was higher than the animal’s heading 

speed, but such a situation is expected to be rare. The second, more likely, possibility is that, even though the 

angle between the true mean heading of the bird and the mean track vector was less than 90 degrees, the 

estimated heading deviated 180 degrees from the true value because of the small sample size. 

Among the estimated parameter sets, results that satisfied these two conditions were selected, and 

the estimated mean heading and mean heading speed are shown in Fig. S1-4. If the heading vector is correctly 
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estimated, the flow vector is also well estimated because the flow vector is derived from subtracting the mean 

heading vector from the mean track vector. Although the heading is estimated accurately, the mean heading 

speed widely fluctuated and deviated from the value of the result. This problem is likely to stem from a small 

sample size and indicates that estimating the heading speed accurately with only 50 data points is difficult. 

Accordingly, the third condition is presented, namely that the mean heading speed ι  is provided a priori 

(condition 3). In this study, a value of 9.63 m s-1 (34.7 km h-1), the mean speed relative to the ground reported 

in previous work (Shiomi et al. 2012), was used. 

 

 

Fig. S1-1. Probability distributions of heading vector for five combinations of !! σ H ,! ,σ H ,⊥( )  are shown. The 

red circle indicates the contour lines of the distributions. The value of !! σ H ,! ,σ H ,⊥( )  characterizes the heading 
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vector fluctuation around the mean heading vector (red arrow). In this figure, the mean heading speed !γ
*  is 

set to 10 m s-1 and the heading !φ
*  is set to 0 as an example. 

 

 

Fig. S1-2. Mean heading vector (red arrow), mean track vector (black arrow), and flow vector (blue arrow) for 

seven combinations of parameters !! φ
* ,wx

* ,wy
*( ) . The orange circles indicate contour lines of the examples of 

probability distribution of the track vector at which !! σ H ,! ,σ H ,⊥ ,ι( )  are set to (1,2,10).  
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Fig. S1-3. Histogram of difference between the value of the estimated and true headings for each 

!! σ H ,! ,σ H ,⊥( )  and sample size. The peak around zero means the heading was estimated well. There are also 

peaks around ± 90 and 180, which indicates the estimated heading deviated from the true value. These peaks 

were excluded using condition 1 and 2. As the ratio !! σ H ,⊥ σ H ,!  deviates from 1 and as the sample size 

decreases, the accuracy of the estimation improves.  
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Fig. S1-4. Histograms of results that comply with conditions 1 and 2: Upper row: differences between the 

value of the estimated heading direction and true heading direction; Lower row: estimated mean heading 

speeds. Although the heading seems well estimated, the heading speeds still deviate from the true value (10 m 

s-1; indicated by red dashed line in lower row figures). Accordingly, condition 3 was instituted. 

  

H H H H H H H H H H H H
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Supplementary Note 2: Numerical simulation test to assess the effect of variation 

of flow and track location quality on model fitting 

Although the model neglects to take into account the fluctuation of flow and the measurement error 

associated with fixing positions, these effects exists in real situations and affect the estimation results. The 

extent to which flow fluctuation and measurement error was permissible by the model was tested. Artificial 

track vector data that incorporated the flow fluctuation and measurement error were generated. The model was 

applied to these data and tested the accuracy of estimation. 

The 50 points of artificial track vector data !!!vT ,k  (k = 1,…,50) was generated as follows. First, 

heading vectors !!!vH ,k = uH ,k , vH ,k( )   (k = 1,…,50) are random numbers generated from

!!pH uH ,k , vH ,k ι
* ,ρ * ,φ * ,κ *( ) . Flow vectors !!!wk = wx ,k ,wy ,k( )  (k = 1,…,50) are random numbers generated 

from the two-dimensional Gaussian whose mean is !! wx
* ,wy

*( )  and the standard deviation along the mean 

vector direction, 
!!
tan−1 wy

*

wx
*  , is !! σ w ,!  and the perpendicular direction relative to mean vector is !!σ w ,⊥ . Then, 

the observed fix at time step k, !!Xk
obs( ) , is computed, setting !!X0

obs( ) = 0,!0( ) . The measurement error is 

modeled by using a Gaussian distribution with standard deviation !σ obs . 

!!
Xk

obs( ) = uH , j +wx , j( )Δt +δ x ,
j=1

k

∑ vH , j +wy , j( )Δt +δ y
j=1

k

∑⎛

⎝⎜
⎞

⎠⎟
  [S2-1]  

!! δ x ,δ y ∼N 0,σ obs( )   [S2-2]  

Where !Δt  (sec) denotes the sampling and !!N a,b( )   denotes the Gaussian with mean !a  and standard 

deviation !b . Finally, the track vector data was calculated by dividing the difference of successive fixes by 

elapsed time 
!!!
vT ,k

obs( ) = Xk
obs( ) − Xk−1

obs( )( ) Δt . For the mean heading vector and the mean flow vector, the seven 
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combinations of parameter values shown in Fig. S1-2 were used. The fluctuation of the heading vector is fixed 

to !! σ H ,⊥ ,σ H ,!( )  = (2, 0.5) (m s-1). For the fluctuation of the flow vector, nine combinations of parameters are 

used, !! σ w ,! ,σ w ,⊥( )  = {(0.25, 0.25), (0.5, 0.5), (1, 1), (0.5, 0.25), (1, 0.5), (2, 1), (0.25, 0.5), (0.5, 1), (1, 2)} 

(m s-1), as shown in the first column of Fig. S2-1. The observation noise is transformed as 

!!!
σ obs =ΩE Xk+1

obs( ) −Xk
obs( )( )  ( ! 

E !( )  denotes the mean value of ⋯ . In this simulation, 

!!!
E Xk+1

obs( ) −Xk
obs( )( ) =10Δt  (m) as the mean speed relative to the ground is set to 10 m s-1). Four values of  

Ω  as (0, 0.05, 0.1, 0.15) were tested. For example, when Ω  is 0.05, the standard deviation of the distance 

between the true fixed position of the animal and the observed fixed position is 5% of the distance between 

successive observed fixed positions. Therefore, 7×9×4 =252 parameter sets were simulated. For each 

parameter set, 50 artificial data sets were generated. The model was fitted to each data set and conducted 

vector estimation following the procedure described in (i) and (ii) of the section titled “The model fitting.” For 

each combination of flow fluctuation and the degree of observation error !! σ w ,⊥ ,σ w ,! ,σ obs( ) , seven 

combinations of mean heading vector and flow vector are simulated and, accordingly, 7×50=350 trials are 

conducted for each !! σ w ,⊥ ,σ w ,! ,σ obs( ) . Using the result of 350 trials, the “model fitted ratio,” which is the 

ratio of the trials model fitted in 350 trials, was calculated. Then, for the parameter values !! σ w ,⊥ ,σ w ,! ,σ obs( )
whose success ratio was more than 10% of the standard deviation of the difference between the heading of 

maximum likelihood estimates and the true heading (
!!
SD φ MLE( ) −φ *( ) , where SD(⋯) denotes the standard 

deviation of ⋯), was calculated as the index for estimation accuracy. To calculate 
!!
SD φ MLE( ) −φ *( ) for each 

!! σ w ,⊥ ,σ w ,! ,σ obs( ) , Trials were conducted for each seven combinations of the mean heading vector and flow 
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vector until the number of model fitted trials reached 50 and 
!!
SD φ MLE( ) −φ *( )  were computed using the 

results of 7×50 model fitted trials. 

 The model fitted ratio and 
!!
SD φ MLE( ) −φ *( )  for each !! σ w ,⊥ ,σ w ,! ,σ obs( )  are shown in Fig. S2-1. 

As the observation noise increases, the model fitted ratio decreases and, if 
!!!
σ obs E Xk+1

obs( ) −Xk
obs( )( )  exceeds 

0.1, the model fitted ratio falls below 20%. Accordingly, the value of the measurement error 

!!!
σ obs E Xk+1

obs( ) −Xk
obs( )( ) is preferred to be less than 0.05. In other words, the standard deviation of the distance 

between the true fixed position of the animal and its observed fixed position should be less than 5% of the 

distance between successive observed fixes. As the flow fluctuation increases, the model fitted ratio decreases 

and the 
!!
SD φ MLE( ) −φ *( )  increases. In particular, when the flow fluctuation is as large as the animal’s 

heading vector, such as !! σ w ,! ,σ w ,⊥( )  = {(1, 1), (2, 1), (1, 2)}, the model fit was poor and estimation accuracy 

was low.  

  In conclusion, the model requires two additional conditions. The first is that the standard deviation 

of the distance between the true fixed position of the animal and its observed fixed position is less than 5% of 

the distance between successive observed fixed positions (condition 4). The second condition is that the flow 

fluctuation is smaller than that of the animal heading vector (condition 5). 
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Fig. S2-1. Dependence of model fitted ratio (second column) and estimation accuracy (third column) on flow 

fluctuation and location observation error. The first column shows the distribution of the heading vector and 

flow vector used for simulation. The red arrow indicates the mean heading vector and the blue arrow indicates 

the flow vector. The seven combinations of the mean vectors, shown in Fig. S1-2 are used for the simulation.  
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Supplementary Note 3: Specific representation of observation process (equation [3-8]) 

本章の内容は学術論文として出版する計画があるため公表できない。 

 

Supplementary Note 4: Equation of motion for soaring birds and gliders 

本章の内容は学術論文として出版する計画があるため公表できない。 

 

Supplementary Note 5: A collocation approach 

本章の内容は学術論文として出版する計画があるため公表できない。 
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