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Preface 

 With the explosion of energy demand and the drastic growth of environmental issues 

associated with the rapid industrialization in a global scale, renewable and environmentally friendly 

energy resources alternative to fossil fuels have been exhaustively explored during these decades. 

Among a number of possible candidates for the alternative energy resources, hydrogen fuel generated 

through the photocatalytic or photoelectrochemical water splitting is considered to be the most 

promising one, since it only needs the abundant resources (water and sunlight) and only emits the 

harmless product (water).  

Most of the photocatalysts and photoelectrodes are semiconductors, and their activities are 

strongly related to their fundamental properties. In particular, semiconductor photocatalyts that consist 

of mixed ion compounds such as oxynitrides and solid solutions have been getting wide attention due 

to the broad range of controllability of their fundamental properties resulting from the wide variety of 

their structural features. Nevertheless, there still remains a crucial difficulty in understanding the 

relation between their properties and structural factors owing to their complexity, and thus the 

guidelines to control their properties have not been fully obtained. 

   Hence, in this thesis, the author tried to investigate the structural and the electronic features 

of such mixed ion compounds by means of first-principle calculations, in order to directly relate the 

two complex features. Furthermore, by understanding the relation between the structural and 



ii 

 

electronic features, the author aimed to provide the guidelines to control their properties and to enhance 

their photocatalytic or photoelectrochemical activities for water splitting. The author finally 

accomplished the theoretical studies on four different mixed ion compounds in this thesis: 

conventional perovskite oxynitrides (CaTaO2N and MgTaO2N), perovskite solid solution (LaMgxTa1-

xO1+3xN2-3x), and chalcopyrite solid solution ((ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15). The contents of this 

thesis are outlined as follows. 

 In chapter 1, the general background of this thesis is introduced including the basic 

knowledge of the photocatalyst and photoelectrodematerials such as their reaction processes, historical 

overviews, and present status. The author especially shed light on the importance and the difficulty of 

investigating the mixed ion compounds in order to demonstrate the motivation of the research 

objectives of this thesis. 

In chapter 2, the theoretical framework to calculate the electronic structures of solids from 

first principle is introduced. In particular, the author focused on how the electronic structures of 

materials are obtained from the geometry of their constituent atomic nuclei, and traced the 

development of the theories basing on the fundamental quantum mechanics. Additionally, the 

approximate methods used in the calculations of the electronic structures of many body systems such 

as solids are introduced, and their influence on the description of the electronic structures are explained. 

In chapter 3, the study on the specific anionic arrangements of O/N (= anion ordering) in 
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CaTaO2N is presented. In particular, the correlation between the anion ordering and the photocatalytic 

related properties such as bandgaps, carrier effective masses, and band edge positions is investigated, 

and consequently the guidelines to modify the properties of CaTaO2N by controlling its anion ordering 

are provided. 

In chapter 4, the applicability of MgTaO2N, a theoretically predicted novel oxynitride 

photocatalyst, is discussed by investigating the effect of octahedral-tiltings and crystal polymorphism 

that had not been considered in the previous theoretical studies. Here, the fundamental properties of 

MgTaO2N in perovskite polymorph with octahedral-tiltings and in ilmenite polymorph are 

investigated, and their applicability as water splitting photocatalysts are estimated. Besides, based on 

the calculation results, the relation between the octahedral-tiltings and the photocatalyst related 

properties in perovskites are disclosed.  

In chapter 5, the author focused on LaMgxTa1-xO1+3xN2-3x (0 ≤ x ≤ 2/3), a solid solution 

photocatalyst that had achieved overall water splitting under visible light. Here, I investigated the 

dependence of its photocatalyst related properties on its composition in order to reveal the factor that 

made the photocatalytic activity of LaMgxTa1-xO1+3xN2-3x reach the maximum at x = 1/3.   

 In chapter 6, I focused on (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15, a solid solution photocathode 

material consisting of p-type semiconductor. Here, I investigated the structures and the properties of 

the point defects in (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 in order to unravel the origin of the p-type 
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characteristics of this material. I also estimated the dependence of the concentrations of such defects 

and the positive carriers on the external conditions, such as partial pressures, to obtain a guideline to 

enhance its photocathodic activities.  

Finally, in chapter 7, I summarized the research topics, results, and the conclusions reported 

in the previous chapters, and subsequently presented the concluding remarks based on the insights 

obtained through this thesis. Furthermore, a future outlook was provided in order that the next 

challenges to develop the photocatalytic research field may be presented for the researchers in the 

future generations. 

Here, I would like to express my deepest gratitude to the people who had supported my work 

in my Ph.D. program. First, I would like to appreciate Professor Koichi Yamashita for providing me 

great guidance and encouragement on my studies as the supervisor. He also gave me many 

opportunities to gain a wide range of experience by supporting me to join conferences, workshops, 

internships, and collaborative researches with experimentalists. It was really a meaningful time for me 

to engage in academic research under him for five years.  

I’m also grateful to Associate Professor Hiroshi Ushiyama for giving me a lot of advice on 

my studies. Especially, I really thank him for having offered me a beneficial counseling when I need 

any advice and comments on preparing for academic presentations and reports.  

As the examiners for my defense from other laboratories, I would also like to show my 
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Chapter 1. 

General Introduction 

 

1-1. Photocatalyts and photoelectrode systems for hydrogen 

production 

Starting with the industrial revolution occurred in the United Kingdom in the 18th century, 

we, the human race, have established a lifestyle based on fossil fuels such as coals and petroleum oil 

as indispensable energy resource. However, as the energy demand expands drastically due to the 

world population explosion and rapid industrialization after the middle of the 20th century, the 

depletion of such fossil fuels is getting more and more accelerated. Furthermore, the increasing of the 

greenhouse effect gas such as CO2 associated with the consumption of fossil fuels has been causing 

serious problems such as massive weather disasters and global ecological destruction through 

accelerating the global warming. Therefore, it has been an urgent issue for the human family to secure 

a new and clean energy resources alternative to fossil fuels.  

One of the promising candidates for the alternative energy resources is hydrogen. Hydrogen 

is a fuel that can be directly converted to electrical energy by using fuel cells, only emitting water as 

a by-product (Eq (1.1)).  

2H2 + O2 → 2H2O + energy (1.1) 
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Thus, hydrogen is considered to be a clean fuel that doesn’t causes any environmental problem. Also, 

hydrogen is rather suitable to the existing energy infrastructure, since it has been already utilized in 

fuel cell vehicles and some private power systems. However, most of the hydrogen fuels currently 

used are produced through steam methane reforming (Eq (1.2) and Eq (1.3)), accompanying the 

consumption of fossil fuels and the emission of CO2 [1].  

CH4 + H2O → CO + 3H2 

CO + H2O → CO2 + H2 

Therefore, in order to utilize hydrogen as an alternative fuel to the conventional fossil fuels, we need 

to establish more clean and renewable processes for hydrogen productions.   

 Hence, recently, the hydrogen production through water splitting using the energy of 

sunlight has been attracting wide attention, since both water and sunlight are ubiquitous and abundant 

resource that will never be exhausted. In particular, the total amount of the solar energy that reaches 

to the surface of the earth is estimated to be about 8.5×1016 W, which means that only the energy of 

an hour’s irradiation corresponds to the annual energy consumption of the world [2]. Besides, since 

only oxygen will be emitted as the by-product of the hydrogen production through water splitting, they 

will never destroy the global environment. For these reasons, water splitting using the solar energy 

will make the hydrogen fuel a clean and renewable energy resource. 

 Indeed, water splitting using solar energy has already been accomplished by several different 

(1.2) 

(1.3) 
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ways. One is to electrolyze water using the electric power generated by photovoltaic cells. In this 

manner, about 24 % of solar-to-hydrogen conversion efficiency (STH) have been achieved in a 

previous study [3]. The second way is to split water directly using a photocatalyst, a compound that 

works like a catalyst only under the light irradiation. Using such water splitting photocatalysts, it has 

already succeeded to produce hydrogen at the efficiency more than 1 % of STH [4]. The third one is 

to split water using a photoelectrode system, which consists of two electrodes that are made of 

photocatalyst materials suitable to oxidize and reduce water, respectively. In this manner, 

experimentalists have also achieved overall water splitting at nearly 1 % of STH [5]. Among these 

methods, water splitting using photocatalyst and photoelectrodes systems are considered to be 

advantageous in terms of the costs that will be incurred in practical use, since they consist of rather 

simple systems than the combination of photovoltaic cell and electrolysis apparatus. Hence, the 

developments of highly efficient photocatalysts and photoelectrode systems are strongly desired in 

order to realize the mass production of hydrogen fuels utilizing the energy of sunlight.  
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1-2. Basic process of photocatalyts and photoelectrodes 

Generally, both photocatalysts and photoelectrode materials used in water splitting consist 

of semiconductors. Semiconductors have an energy gap (bandgap: Eg) between their valence band 

(VB) and conduction band (CB), and thus can absorb photons through the electronic excitation 

between both bands. The energy of the absorbed light through the inter-band excitation is utilized to 

split water in both photocatalysts and photoelectrode systems, and thus the basic processes of the water 

splitting in the two systems are quite similar. 

The basic processes of the water splitting reaction using a photocatalyst can be explained as 

follows (and also depicted in Figure 1-1). First, when a photocatalyst achieved a light irradiation, the 

electrons in their valence band will be exited to the conduction bands to generate photoexcited 

electrons with negative charges and residual holes with positive charges. Then, the charged carriers 

will diffuse in the crystals, and some of them will reach the surface of the photocatalysts. Finally, these 

carriers will be transferred to the absorbed species such as water molecules and protons at the 

photocatalyst surface and produce hydrogen and oxygen through the redox reactions (Eq (1.4) and Eq 

(1.5)).   

2H+ + 2e- → H2 

2H2O + 4h+ → O2 + 4H+ 

  

(1.4) 

(1.5) 
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Figure 1-1. The schematic illustration of the basic processes of photocatalytic water splitting.  

 

 Usually, the activities of the water splitting photocatalysts are strongly related to the 

fundamental properties of the constituent semiconductors, as also depicted in Figure 1-1. For instance, 

the ranges of the wavelengths which can be absorbed by the photocatalysts are determined by the 

width of their bandgaps. Besides, the degrees of the carrier diffusion are influenced by the carrier 

effective masses that are related to the extent of their band dispersions, and the abilities to redox water 

are determined by the position of their band edges relative to the redox potentials (0 V vs. NHE for H2 

evolution and 1.23 V vs. NHE for O2 evolution). Therefore, it is considered that one can efficiently 

control the activities of photocatalysts by modifying their fundamental properties.  

On the other hand, the basic processes of photoelectrode systems are a little bit more 

Band edge position 

Band edge position 

Bandgap 

Effective mass 

Effective mass 
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complicated. As mentioned in the previous section, a water splitting photoelectrode system consists 

of a photoanode for oxygen evolution and a photocathode for hydrogen evolution, connected to each 

other by an electric lead (Figure 1-2). Usually, n-type and p-type semiconductors are used as 

photoanodes and photocathodes, respectively, and the band edge positions (VB maximum: VBM, and 

CB minimum: CBM) of the former are more positive than those of the latter. Therefore, an upward 

and a downward band bending occurs in a photoanode and a photocathode, respectively, when they 

are connected to each other. Here, as the light irradiated to the system, photoexcited electrons in the 

photocathode and holes in the photoanode will be moved toward the surface and thus hydrogens and 

oxygens will be produced respectively. On the other hand, the residual holes in the former and 

photoexcited electrons in the latter will move to the opposite electrode through the electric lead, 

producing a photocurrent. Hence, the activities of photoelectrode systems are usually evaluated by the 

degree of their photocurrents. 

Generally, the photocurrents of the electrode are strongly influenced by the extent of their 

band bending, which depends on their electrode potential, and thus the photocurrents also depend on 

the electrode potentials. Conventionally, the dependence of the photocurrent on the electrode potential 

is represented by a current density versus potential curve (Figure 1-3), where the intersection of the 

curve and the voltage axis (the voltage where the photocurrent begins to flow) is called the onset 

potential. Usually, the curves of the photocathodes are negatively sloped, and those of photoanodes 
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are positively sloped. In addition, the degrees of photocurrents generated in the two connected 

electrodes have to be the same, and thus this will be represented by the intersection of the two curves 

of both electrodes (as depicted in Figure 1-3(c)). Therefore, in order to increase the photocurrent of 

the photoelectrodes system, one needs to improve the photocurrent of each electrode, or widen the 

difference between the onset potentials of the electrodes. Since the degree of the photocurrent and the 

onset potential of each electrode are determined by the positions of its band edges and Fermi energy, 

modifying these properties will be efficient to improve the activities of photoelectrode systems.  

 

 

 

 

 

 

 

Figure 1-2. The schematic illustration of a photoelectrode system and the basic processes of 

photoelectric water splitting. 
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Figure 1-3. The schematic illustration of the current density versus potential curves for (a) 

photocathodes, (b) photoanodes, and (c) both electrodes superimposed in a single graph.  

(a) (b) 

(c) 
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1-3. Historical overview and present status 

 The researches on photocatalyst and photoelectrode systems had started with Honda-

Fujishima effect [6], which was reported in 1972. They had developed an electrode system consisting 

of TiO2 and Pt metal connected in water, and discovered that water molecules were split into oxygens 

and hydrogens in stoichiometric ratio on the surface of each electrode, respectively, under the 

irradiation of ultraviolet (UV) light. Here, TiO2 had functioned as photoanode and Pt metal had 

functioned as photocathode. 

 Thereafter, it was revealed that the similar water splitting reactions occur not only in the 

above photoelectrode system but also on the particle photocatalyst which consists of TiO2 particle with 

Pt nanoparticles deposited on its surface [7]. It is considered that the Pt nanoparticles capture the 

photoexcited electrons to produce hydrogens, and the remaining holes move toward the surface of 

TiO2 photocatalyts to produce oxygens. As well as TiO2, there had been discovered a large number of 

novel photocatalyst materials such as SrTiO3[8], K4Nb6O17[9], BaTi4O9[10], ZrO2[11], NaTaO3[12], 

ZnGa2O4[13], Sr2SnO4[14], most of which consists of metal oxides with d0 or d10 electronic state. 

 However, there was a serious drawback in those metal oxide photocatalysts – their bandgaps 

are so large that they can only absorb the energy of UV light. Generally, the valence bands of metal 

oxides consist of O 2p orbitals whose electronic levels are relatively deep, and thus their bandgaps 

tend to be as large as the energy of UV light (Eg > 3 eV). However, UV light dominates only 6 % of 
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the entire solar spectrum, and most of the remaining part consists of visible-light (52 %) and infrared 

light (42 %) [15]. Therefore, one needs to collect not only UV light but also visible-light with much 

longer wavelength in order to utilize the energy of sunlight more efficiently.  

 In accord with that, a number of visible-light responsive photocatalysts have been developed 

after 2000’s. In particular, Domen et al. has succeeded in achieving visible-light responsibility by 

using nitrides (Ta3N5[16]), oxynitrides (LaTiO2N [17], TaON [18], GaN:ZnO [19], ATaO2N(A=Ba, Sr, 

Ca) [19]), sulfides (ZnIn2S4 [20]), and oxysulfides (LnTi2S2O5 (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Ho, and 

Er) [21]) as novel photocatalysts. These photocatalysts have the contribution of N 2p or S 3p orbitals, 

whose energy levels are more negative than those of O 2p orbitals, in their valence bands, and thus 

they had realized higher valence band positions and narrower bandgaps which corresponds to the 

energy of visible-light. 

 Now, it is well known that N3- and S2- are more susceptible to a self-oxidation reaction than 

O2-. Hence, nitrides and sulfides are usually inferior in the stabilities to oxides under aqueous 

environments. On the other hand, oxynitrides and oxysulfides have the properties intermediate 

between nitrides (or sulfides) and oxides, and this enables them to balance the two competing factors, 

smaller bandgaps and higher stabilities [22]. Therefore, the mixed anion compounds like oxynitrides 

and oxysulfides have become the central research area of photocatalysts during these decades. 

 Furthermore, novel photocatalysts that consist of solid solutions between existing materials 
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have been newly reported these days. For instance, LaMgxTa1-xO1+3xN2-3x, a solid solution between 

LaTaO2N and LaMg2/3Ta1/3O3 have accomplished overall water splitting under visible light irradiation 

with the wavelength up to 600 nm [23]. There also exists a number of other examples such as LaSrxTa1-

xO1+2xN2-2x [23], CuxAgyInx+yZn2(1-x-y)S2[24], Zn1-2x(CuGa)xGa2S4 [25], La5Ti2Cu(S1−xSex)5O7 [26], 

and NaxLa1-xTaO1+2xN2-2x [27] on which photocatalytic activities have been reported. These kind of 

photocatalysts have a remarkable advantage in possible fine tuning of their band structures by 

changing their compositions [27- 29]. In other words, solid solution photocatalysts have expanded the 

controllability of the band structures in a great deal. 

 A similar trend can also be seen in the researches on photoelectrode materials. Since the 

discovery of Honda-Fujishima effect, there have been reported a great number of novel materials for 

photoelectrodes with a transition from simple compounds to complex compounds. For example, a 

group of typical semiconductors such as InP [30, 31], Si [32], GaP [33], and GaAs [34] have been used 

as photocathode materials after 1980’s, while a kind of mixed cation compounds such as 

CuIn0.7Ga0.3Se2 (CIGS) are now under investigation as highly effective novel photocathodes [35]. 

Additionally, Kaneko et al. very recently reported that the onset potential of CIGS will be greatly 

improved in a form of solid solution with ZnSe, and such solid solution is now considered as one of 

the most promising photocathode materials [5]. 

 Accordingly, in the research field of both photocatalysts and photoelectrode systems, mixed 
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ion compounds such as oxynitrides, CIGS, and the solid solutions of them have been reported as 

promising candidates. The most advantageous feature of such compounds is, as previously mentioned, 

the broad range of controllability of their properties due to the huge variety of their structural features. 

Therefore, it is expected that such mixed ion compounds will be the central area of this research field 

in terms of searching, designing, and controlling the materials and their properties. 

 However, there is a huge barrier to investigate the structural and electronic features of these 

mixed ion compounds, since their complex structural features make it a challenging task to measure 

them microscopically or to relate them to their fundamental properties. For instance, the relative 

position of each ion is often incompletely understood in the materials where more than one cations or 

anions occupy identical sites such as solid solutions, although their ionic arrangements in the crystals 

should have strong effects on their properties. As another example, it is still impossible to identify the 

structures of point defects in solids experimentally with current technologies, although they often play 

critical roles, especially in semiconductors. Consequently, the relation between microscopic structural 

features and macroscopic properties in mixed ion compounds have not been fully understood yet, and 

thus the guidelines to control and enhance the properties of photocatalysts and photoelectrode 

materials consisting of such compounds are still under exploration.   
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1-4. Research objectives 

 In this research, I will tackle such issue by means of first principle calculations. In many 

cases, first principle calculations are quite suitable to clarify the relation between the structural factors 

and fundamental properties of a given material, since they are essentialy the methodologies for 

obtaining the electronic structures of a given system only from the structural imput information. In 

addition, it has become more feasible to adopt such calculations on large-scale systems owing to a 

remarkable progress in recent computational technologies. For instance, one can now calculate the 

electronic structures of the systems consisting of more than hundreds of atoms without any empirical 

parameters by using density functional theory (detailed in chapter 2), which is one of the most 

frequently used methods of first principle calculations. 

Indeed, first principle calculations have already been used in the research area of 

photocatalyts. For instance, they are often used to identify the constituent orbitals in valence and 

conduction bands, or to specify whether their bandgaps are direct or indirect, by calculating the band 

structures and the DOS (Density of States) plots [36-38]. There also exist a number of examples where 

the fundamental properties such as carrier effective masses [39,40], band edge positions [41-43], 

defect formation energies[44-46], and defect levels of the materials [47,48] were theoretically obtained 

by analyzing the calculated band structures, electronic densities, or the total energies. Additionally, 

associated with the recent improvement in computational speeds, first principle calculations have also 
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been adopted to the material search for novel photocatalysts in forms of computational screening for 

more that thausands of candidate compounds [49-51]. Thus, first principle calculations are now 

becoming a powerful tool for the researches on photocatalyts and photoelectrode materials. 

However, in spite of such progress and popularization of computational technologies, there 

have been only a few reports on first-principle calculations on mixed ion compounds, mainly due to 

the difficulties in modeling the structurals and performing the calculations. In many cases, it becomes 

a puzzling task to prepare the structural models of such compounds with mixed ions since the datails 

of the ionic arrangements in the crystals are not fully clarified. Furthermore, the structural models of 

such compounds need a large number of atoms (generally, a “supercell” generated by multiplying a 

unit cell of the compound is used in the structural modelling) to represent the complex arrangements 

of the ions in the crystals, and thus the calculation cost becomes significantly large compared to the 

calculations of simple oxides or pure solids.   

Therefore, in this thesis, I challenged to develop appropriate structural models of mixed ion 

compounds, starting from the elucidations of the characteristics and origins of ionic arrangements, and 

to subsequently estimate their photocatalytst related properties from first principle, as illustrated in 

Figure 1-4. In the first half of the thesis, I dealt with rather simple oxynitrides to understand the 

physical origins and the effects of microscopic structural factors such as the specific arrangements of 

anions (anion orderings, in chapter 3) and the distortions of bond angles (octahedral-tiltings, in chapter 
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4). Then, in the second half, I tackled solid solutions like LaMgxTa1-xO1+3xN2-3x (chapter 5) and 

(ZnSe)x(CuIn0.7Ga0.3Se2)1-x (chapter 6) in order to realize the modelization of more complex mixed 

ion compounds based on the insights obtained in the previous chapters. Furthermore, by clarifying the 

relation between the structural features and the fundamental properties in each compound, I aimed not 

only to give an explanation for the experimental trends, but also to provide the guidelines to control 

the properties and to enhance photocatalytic or photoelectrochemical activities for water splitting 

through structural modifications. 

 

 

 

 

 

 

 

 

Figure 1-4. A schematic illustration of the research subjects of this thesis (red dotted frames) and their 

positions compared to the experimental progress and theoretical issues surrounding the research field 

of photocatalyst and photoelectrode materials.  
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Chapter 2.  

First Principle Approaches to the Electronic Structure 

of Solids 

 

2-1. Schrodinger equation and basic quantum mechanics 

2-1-1. The particle and the wave nature of the electron 

Since the discovery of Maxell equation, light is considered to be a kind of wave over a period 

of time. However, light was also revealed to be a kind of particle in the photon hypothesis [1] proposed 

by Einstein in 1905. Based on such insights, de Broglie substituted the speed of light 𝑐 = 𝜈𝜆 (𝜈 and 

𝜆 represent the frequency and the wavelength of light, respectively) and the mass of light 𝑚 = 0 for 

𝑐  and 𝑚  in the equation that describes the mass-energy equivalence which was discovered by 

Einstein in the special relativity theory [2],   

 𝐸 = ඥ(𝑝𝑐)ଶ + (𝑚𝑐ଶ)ଶ 

where 𝑝 represents the momentum of the particle, and consequently obtained the following equation. 

𝐸 = 𝑝𝜆𝜈 

Then, comparing this to an energy-frequency relation proved in the photon hypothesis,   

𝐸 = ℎ𝜈 

where ℎ is Planck’s constant, he derived the equation which is called de Broglie relation [3], 

(2.1) 

(2.2) 

(2.3) 
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𝜆 =
ℎ

𝑝
 

where 𝜆, which represents the wave nature, and 𝑝, which represents the particle nature, was proved 

to be related via Planck’s constant. By this relation, it was also strongly indicated that electrons should 

have wave nature as well as particle nature, as in the case with the light, which was subsequently 

demonstrated by experiments.  

Here, Eq (2.2) and Eq (2.3) can be deformed using the relations for the wave number 𝑘 and 

angular momentum 𝜔 of the light,  

𝑘 =
2𝜋

𝜆
 

𝜔 = 2𝜋𝜈 

into the following relations,  

𝐸 = ℏ𝜔 

𝑝 = ℏ𝑘 

where ℏ is a Dirac constant, which equals Planck’s constant ℎ divided by 2 

ℏ =
ℎ

2𝜋
 

  

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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2-1-2. Schrödinger equation 

2-1-2-1. Schrödinger equation of free electrons 

Based on the insights from the de Broglie relation, electrons were also described using a 

wave function. The definition of a wave is a physical quantity which propagates spatially and 

temporally, and thus, a wave function is generally described as a function of time 𝑡 and position 𝑥 

as follows,     

𝛹(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) 

or 

𝛹(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡) 

where A represents the amplitude of the wave.  

 Here, Schrödinger [4] had expanded the wave function to the complex one, 

𝛹(𝑥, 𝑡) = 𝐴exp{𝑖(𝑘𝑥 − 𝜔𝑡)} 

and subsequently derived the following wave function of electrons by substituting Eq (2.7) and Eq 

(2.8) for 𝑘 and 𝜔 in Eq (2.12).  

𝛹(𝑥, 𝑡) = 𝐴exp ൜𝑖(
𝑝

ℏ
𝑥 −

𝐸

ℏ
𝑡)ൠ = 𝐴exp ቀ𝑖

𝑝

ℏ
𝑥ቁ exp ൬−𝑖

𝐸

ℏ
𝑡൰ 

This formula can be deformed to  

−
ℏଶ

2𝑚

𝜕ଶ𝛹(𝑥, 𝑡)

𝜕𝑥ଶ
=

𝑝ଶ

2𝑚
𝛹(𝑥, 𝑡) 

using its second order derivative with respect to 𝑥 with its both sides multiplied by −ℏଶ/2𝑚.  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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On the other hand, Eq (2.13) can also be deformed to  

𝑖ℏ
𝜕𝛹(𝑥, 𝑡)

𝜕𝑡
= 𝐸𝛹(𝑥, 𝑡) 

using its first order derivative with respect to 𝑡 with its both sides multiplied by 𝑖ℏ. Here, Since the 

momentum 𝑝 and the energy 𝐸 are related by  

𝐸 =
𝑝ଶ

2𝑚
 

the right sides of Eq (2.14) and Eq (2.15) are equal. Thus, an equation 

𝑖ℏ
𝜕𝛹(𝑥, 𝑡)

𝜕𝑡
= −

ℏଶ

2𝑚

𝜕ଶ𝛹(𝑥, 𝑡)

𝜕𝑥ଶ
 

can be derived, which is called a Schrödinger equation for a one-dimensional free electron. 

From Eq (2.14) and Eq (2.15), one can obtain the following relations between the physical 

quantities and the operators, 

𝐸 → 𝑖ℏ
𝜕

𝜕𝑡
 

𝑝 → −𝑖ℏ
𝜕

𝜕𝑥
 

Additionally, one can also obtain the Schrödinger equation for a three-dimensional free electron, by 

substituting the variable 𝑥 with a three-dimensional positional vector 𝒓 = (𝑥, 𝑦, 𝑧), and the variable 

𝑝 with a three-dimensional momentum vector 𝒑 = (𝑝௫, 𝑝௬, 𝑝௭). Since according to Eq (2.19) each 

element in the momentum vector can be related to the corresponding operator as follows,   

𝑝௫ → −𝑖ℏ
𝜕

𝜕𝑥
 

𝑝௬ → −𝑖ℏ
𝜕

𝜕𝑦
 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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𝑝௭ → −𝑖ℏ
𝜕

𝜕𝑧
 

the Schrödinger equation for a three-dimensional free electron can be written as,  

𝑖ℏ
𝜕𝛹(𝒓, 𝑡)

𝜕𝑡
= −

ℏଶ

2𝑚
ቆ

𝜕ଶ

𝜕𝑥ଶ
+

𝜕ଶ

𝜕𝑦ଶ
+

𝜕ଶ

𝜕𝑧ଶ
ቇ 𝛹(𝒓, 𝑡) = −

ℏଶ

2𝑚
∇ଶ𝛹(𝒓, 𝑡) 

and the wave functions of free electrons in the three-dimensional space can be obtained by solving 

this equation.  

Here, it is widely considered that the wave functions represent the existence probability of 

the particles, as proposed in Born’s rule [5], where the probability density function for the observation 

of the particle at a position 𝒓 at a time 𝑡, 𝑃(𝒓, 𝑡), will be given by 

𝑃(𝒓, 𝑡) = |𝛹(𝒓, 𝑡)|ଶ 

 

2-1-2-2. Schrödinger equation of electrons in external potential 

In the previous section, the Schrödinger equation for a three-dimensional free electron was 

derived. However, the electrons in real atoms, molecules, and crystals usually move in the potential 

fields generated by the atomic nuclei and the other electrons. Therefore, in this section, the Schrödinger 

equation for the electrons in a certain potential 𝑉(𝒓, 𝑡) will be derived. Such Schrödinger equation 

can be obtained by adding a potential energy term 𝑉(𝒓, 𝑡) to the kinetic energy operator in Eq (2.23).  

𝑖ℏ
𝜕𝛹(𝒓, 𝑡)

𝜕𝑡
= ቊ−

ℏଶ

2𝑚
∇ଶ + 𝑉(𝒓, 𝑡)ቋ 𝛹(𝒓, 𝑡) 

Here, the operators in the right side are called Hamiltonian, since it corresponds to the Hamiltonian 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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function (𝐻 = 𝑇 + 𝑉, where 𝑇 and 𝑉 are the kinetic and the potential energy, respectively) that 

appears in classical analytical mechanics.  

𝐻(𝒓, 𝑡) = −
ℏଶ

2𝑚
∇ଶ + 𝑉(𝒓, 𝑡) 

Using this term, the Schrödinger equation can be rewritten as,  

𝑖ℏ
𝜕𝛹(𝒓, 𝑡)

𝜕𝑡
= 𝐻(𝒓, 𝑡)𝛹(𝒓, 𝑡) 

 

2-1-2-3. Time-independent Schrödinger equation 

In Eq (2.25), the external potential was considered as a function of time 𝑡 and position 𝒓. 

However, the potentials generated in real substances are usually independent on the time in their 

equilibrium state. Therefore, in this section, the Schrödinger equation for the electron which moves in 

the time-independent potential 𝑉(𝒓) will be derived.  

Here, the wave function of the electron is described as a product between its spatial part 

𝜓(𝒓) and temporary part 𝑓(𝑡).  

𝛹(𝒓, 𝑡) = 𝜓(𝒓)𝑓(𝑡) 

Then, by plugging this wave function 𝛹(𝒓, 𝑡) and the potential 𝑉(𝒓) in the Schrödinger equation 

described in Eq (2.25), one will obtain the deformed equation where the variables 𝒓 and 𝑡  are 

separated. 

𝑖ℏ

𝑓(𝑡)

𝑑𝑓(𝑡)

𝑑𝑡
=

1

𝜓(𝒓)
ቊ−

ℏଶ

2𝑚
∇ଶ𝜓(𝒓) + 𝑉(𝒓)𝜓(𝒓)ቋ = 𝑐𝑜𝑛𝑠𝑡. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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By rewriting the constant as 𝐸′, the equation, 

𝑖ℏ
𝑑𝑓(𝑡)

𝑑𝑡
= 𝐸′𝑓(𝑡) 

will be derived from the left side, and the temporary part of the wave function,   

𝑓(𝑡) = 𝐶exp ቆ−
𝑖𝐸ᇱ𝑡

ℏ
ቇ 

will be obtained as the solution of the equation Eq (2.30). Further, by comparing Eq (2.31) to the 

temporary part of Eq (2.13),  

exp ൬−𝑖
𝐸

ℏ
𝑡൰ 

one can easily notice that the constant 𝐸ᇱ indeed corresponds to the energy 𝐸. 

On the other hand, the equation for the spatial part of the wave function 

ቊ−
ℏଶ

2𝑚
∇ଶ + 𝑉(𝒓)ቋ 𝜓(𝒓) = 𝐸′𝜓(𝒓) 

will be obtained from the right hand of Eq (2.29). This can be rewritten also using 𝐸ᇱ = 𝐸 and the 

expression for the Hamiltonian Eq (2.26) to 

𝐻(𝒓)𝜓(𝒓) = 𝐸𝜓(𝒓) 

which is called a time-independent Schrödinger equation. The wave functions of the electrons in the 

time-independent potentials such as those in atoms or molecules can be obtained from solving Eq 

(2.34). Here, the total energy of the system,𝐸, will be given as an eigenvalue of this differential 

equation, which can be obtained as an expectation of the Hamiltonian as follows,  

𝐸 = න 𝑑𝜏 𝜓∗𝐻𝜓 ൬= න 𝑑𝜏 𝜓∗𝐸𝜓 = 𝐸 න 𝑑𝜏 𝜓∗𝜓൰ 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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where 𝜓∗ is a complex conjugate of 𝜓. Besides, it has also been proved that the eigen functions of 

the Schrödinger equation are orthogonal to each other as described in Eq (2.36), 

න 𝑑𝜏 𝜓௜
∗𝜓௝ = 𝛿௜,௝ 

given that all the wave functions above are normalized, 

න 𝑑𝜏 𝜓∗𝜓 = 1 

and the wave functions that satisfy both Eq (2.36) and Eq (2.37) are generally called orthonormal 

functions. 

 Hereafter, the frequently used integrals like Eq (2.35) and Eq (2.36) will be described using 

Dirac’s notation as Eq (2.38) and Eq (2.39) for the simplicity.  

න 𝑑𝜏 𝜓∗𝐻𝜓 ≡ ⟨𝜓|𝐻|𝜓⟩ 

න 𝑑𝜏 𝜓∗𝜓 ≡ ⟨𝜓|𝜓⟩ 

 

  

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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2-1-3. Variational principle 

The wave function 𝜓଴ , which corresponds to the minimum eigen value 𝐸଴  of the 

Hamiltonian, is called the wave function of the ground state. And here, it has been proved that any 

expected value of energy of the Hamiltonian for the arbitrary wave function 𝜓 cannot be lower than 

𝐸଴, as described Eq (2.40), which is called a variational principle.  

𝐸଴ = ⟨𝜓଴|𝐻|𝜓଴⟩  ≤ ⟨𝜓|𝐻|𝜓⟩ = 𝐸 

According the variational principle, one can obtain the eigen value and the eigen function 

of the ground state for the Schrödinger equation by minimizing the energy expectation Eq (2.35) under 

the normalization condition Eq (2.37). This can be achieved by using Lagrange's method of 

undetermined multipliers where the value 𝐼,  

𝐼 ≡ ⟨𝜓଴|𝐻|𝜓଴⟩ − ⟨𝜓|𝜓⟩ 

is minimized with respect to 𝜓.  

  

(2.40) 

(2.41) 
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2-2. Hartree-Fock Approximation 

2-2-1. Schrödinger equation for many body systems 

Using the Schrödinger equations introduced in the previous section, in principle, one can 

obtain the wave functions of the electrons moving in the potentials generated by the atomic nuclei of 

molecules and solids. In other words, the electronic densities and total energies of any substances can 

be obtained by solving such Schrödinger equation. Here, the Hamiltonian for a system with more than 

one electrons can be described as Eq (2.42) (note that the atomic units are used hereafter),  

𝐻(𝒓) = ෍ ൜−
1

2
∇௜

ଶൠ

ே

௜ୀଵ

+ ෍ ൝෍ ෍ 𝑉ே௘(𝒓𝒊𝑨)

ெ

஺ୀଵ

ே

௜ୀଵ

ൡ

ே

௜ୀଵ

+
1

2
෍ 𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯

ே

௜,௝

 

where each term corresponds to the sum of the kinetic energy of each electron, the sum of the potential 

energies between each electron and atomic nucleus, and the sum of the potential energies between two 

different electrons. The detailed formulation of each potential in Eq (2.42) is as follows,   

𝑉ே௘(𝒓𝒊𝑨) = −
𝑍஺

|𝒓𝒊𝑨|
 

𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯ =
1

ห𝒓𝒊 − 𝒓𝒋ห
 

However, it has been known that the Schrödinger equations for more than three electrons 

cannot be solved analytically (three-body problem). Therefore, to get the electronic structures of the 

real substances, one need to apply some approximation.  

  

(2.42) 

(2.43) 

(2.44) 
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2-2-2. Hartree approximation using one-electron wavefunction 

Thus, the Hartree approximation, where the many-electron wavefunction 𝛹(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) 

is described as a product of the one-electron wavefunctions 𝜓௜(𝒓𝒊)(𝑖 = 1, 2, … , N) , had been 

proposed [6-8].  

𝛹(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) = 𝜓ଵ(𝒓𝟏)𝜓ଶ(𝒓𝟐) … 𝜓ே(𝒓𝑵) 

Additionally, the term corresponding to the potential energies between the electrons in the Hamiltonian 

Eq (2.42) was approximated to the set of effective potentials 𝑉௘௙௙(𝒓𝒊), where the interactions between 

each electron were ignored, and alternatively it was assumed that each electron moves in the averaged 

potential field generated by the other electrons, as follows.  

 𝑉௘௙௙(𝒓𝒊) = ෍ න 𝒅ଷ𝒓௝

|𝜓௝൫𝒓𝒋൯|ଶ

ห𝒓𝒊 − 𝒓𝒋ห
௝ஷ௜

 

Due to such approximation, the many-electron Hamiltonian Eq (2.42) can be rewritten as a summation 

of Hamiltonians for each single electron,  

𝐻(𝒓) = − ෍
1

2
∇௜

ଶ

ே

௜ୀଵ

+ ෍ ෍ 𝑉ே௘(𝒓𝒊𝑨)

ெ

஺ୀଵ

ே

௜ୀଵ

+ ෍ 𝑉௘௙௙(𝒓𝒊)

ே

௜ୀଵ

= ෍ ℎ(𝒓𝒊)

ே

௜ୀଵ

 

where, 

ℎ(𝒓𝒊) =
1

2
∇௜

ଶ + 𝑉ே௘(𝒓𝒊𝑨) + 𝑉௘௙௙(𝒓𝒊) 

 Here, one can obtain the energy expectation 𝐸 of the Hamiltonian in Eq (2.47) with the 

approximated wave function Eq (2.45) as Eq (2.49), according to the orthonormal condition of each 

one-electron wave function 𝜓௜(𝒓𝒊).  

(2.45) 

(2.46) 

(2.47) 

(2.48) 
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𝐸 = ⟨𝛹|𝐻|𝛹⟩ = ෍⟨𝜓௜|ℎ|𝜓௜⟩

ே

௜ୀଵ

 

Subsequently, by adopting the variational principle, the set of one-elecron wave functions that 

minimizes the above expectation value will be obtained as the solutions of the following one-electron 

equations.  

ℎ(𝒓𝒊)𝜓௜(𝒓𝒊) = 𝜀௜𝜓௜(𝒓𝒊) 

Then, since the Schrödinger equations for the whole system can be deformed as 

𝐻(𝒓) 𝛹(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) = ෍ ℎ(𝒓𝒊)

ே

௜

𝜓ଵ(𝒓𝟏)𝜓ଶ(𝒓𝟐) … 𝜓ே(𝒓𝑵) 

= ෍ 𝜀௜

ே

௜

𝜓ଵ(𝒓𝟏)𝜓ଶ(𝒓𝟐) … 𝜓ே(𝒓𝑵) = 𝐸𝛹(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) 

 the total energy 𝐸 cam be obtained as the sum of each eigenvalue of Eq (2.50).  

𝐸 = ෍ 𝜀௜

ே

௜

 

  

(2.49) 

(2.50) 

(2.51) 

(2.52) 
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2-2-3. Hartree-Fock approximation using Slater determinant 

  Nevertheless, there still remains a critical problem in the Hartree approximation described 

in the previous section – the antisymmetricity, that is, the sign reversal of the wave function associated 

with a permutation of two electrons Eq (2.53), had not been included in the approximation.  

𝛹൫𝒓𝟏, 𝒓𝟐, … , 𝒓𝒊, … , 𝒓𝒋, … , 𝒓𝑵൯ = −𝛹൫𝒓𝟏, 𝒓𝟐, … , 𝒓𝒋, … , 𝒓𝒊, … , 𝒓𝑵൯ 

  Hence, Slater proposed to describe a multi-electron wave function using a determinant 

whose elements consist of one-electron wave functions [9],  

𝛹(𝝃𝟏, 𝝃𝟐, … , 𝝃𝑵) =
1

𝑁!
อ
𝜒ଵ(𝝃𝟏) … 𝜒ଵ(𝝃𝑵)

⋮ ⋱ ⋮
𝜒ே(𝝃𝟏) … 𝜒ே(𝝃𝑵)

อ 

≡
1

𝑁!
det {𝜒ଵ(𝝃𝟏), … , 𝜒ே(𝝃𝑵)} 

where 

𝜒௜(𝝃𝒊) = 𝜓௜(𝒓𝒊)𝛼(𝜎) 

Here, the antisymmetricity of the electrons are inherently described due the basic characteristics of 

determinants. Note that each one-electron wave function was described as a product of a spatial orbital 

𝜓௜(𝒓𝒊) and a spin orbital 𝛼(𝜎) with spin coordinates 𝝃𝒋, so that the difference in the interactions 

depending on spins will be taken into account. 

Then, the many-body Hamiltonian in Eq (2.42) was divided into two parts, one for the 

single-electron operators, and the other for the two-electron operators. 

(2.53) 

(2.54) 

(2.55) 
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𝐻(𝒓) = ෍ ൝−
1

2
∇௜

ଶ + ෍ 𝑉ே௘(𝒓𝒊𝑨)

ெ

஺ୀଵ

ൡ

ே

௜ୀଵ

+
1

2
෍ 𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯

ே

௜,௝

 

= ෍ ℎ(𝒓𝒊)

ே

௜ୀଵ

+
1

2
෍ 𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯

ே

௜,௝

 

where, 

ℎ(𝒓𝒊) ≡ −
1

2
∇௜

ଶ + ෍ 𝑉ே௘(𝒓𝒊𝑨)

ெ

஺ୀଵ

 

Subsequently, the energy expectation will be obtained using the Slater determinant Eq (2.54) and the 

Hamiltonian Eq (2.56) as follows,  

𝐸 = ⟨𝛹|𝐻|𝛹⟩ 

= ෍⟨𝜒௜|ℎ|𝜒௜⟩

ே

௜ୀଵ

+
1

2
ൻ𝜒௜𝜒௝ห𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯ห𝜒௜𝜒௝ൿ −

1

2
ൻ𝜒௜𝜒௝ห𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯ห𝜒௝𝜒௜ൿ 

Finally, by adopting the variational principle for Eq (2.58) with Lagrange's method of undetermined 

multipliers as Eq (2.40), the set of one-electron wave functions｛𝜒௜(𝝃𝒊)｝that minimizes the energy 

expectation will be obtained as the solutions of the following equations, 

ℎ(𝒓𝒊)𝜒௜(𝝃𝒊) + ෍ න 𝑑𝜉௝𝜒௝
∗൫𝝃𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜒௝൫𝝃𝒋൯

ே

௝ୀଵ

𝜒௜(𝝃𝒊) 

− ෍ න 𝑑𝜉௝𝜒௝
∗൫𝝃𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜒௜൫𝝃𝒋൯𝜒௝(𝝃𝒊)

ே

௝ୀଵ

= 𝜀௜𝜒௜(𝝃𝒊) 

which can also be deformed to the equation for the set of one-electron orbitals 𝜓௜(𝒓𝒊) by eliminating 

the spin orbitals 𝛼(𝜎) by integrating Eq (2.59) with respect to 𝜎 in accordance with the orthonormal 

condition. Thus, one will obtain 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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ℎ(𝒓𝒊)𝜓௜(𝒓𝒊) + ෍ න 𝑑𝑟௝𝜓௝
∗൫𝒓𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜓௝൫𝒓𝒋൯

ே

௝ୀଵ

𝜓௜(𝒓𝒊) 

− ෍ න 𝑑𝒓𝒋𝜓௝
∗൫𝒓𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜓௜൫𝒓𝒋൯𝜓௝(𝒓𝒊)

ே

௝ୀଵ

= 𝜀௜𝜓௜(𝒓𝒊) 

where the third term only accounts for the electrons with parallel spins.  

 Here, Eq (2.60) can be rewritten by using the operators 𝐽௝(𝒓𝒊) and 𝐾௝(𝒓𝒊) defined as, 

න 𝑑𝑟௝𝜓௝
∗൫𝒓𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜓௝൫𝒓𝒋൯ 𝜓௜(𝒓𝒊) ≡ 𝐽௝(𝒓𝒊)𝜓௜(𝒓𝒊) 

න 𝑑𝒓𝒋𝜓௝
∗൫𝒓𝒋൯𝑉௘௘൫𝒓𝒊, 𝒓𝒋൯𝜓௜൫𝒓𝒋൯𝜓௝(𝒓𝒊) ≡ 𝐾௝(𝒓𝒊)𝜓௜(𝒓𝒊) 

to 

𝐹(𝒓𝒊)𝜓௜(𝒓𝒊) = 𝜀௜𝜓௜(𝒓𝒊) 

where 

𝐹(𝒓𝒊) = ℎ(𝒓𝒊) + ෍ 𝐽௝(𝒓𝒊)

ே

௝ୀଵ

− ෍ 𝐾௝(𝒓𝒊)

ே

௝ୀଵ

 

like one-electron equations derived in the Hartree approximation in the previous section. Eq (2.63) is 

called a Hartree-Fock equation [10], and the wave function and the energy of a many-electron system 

can be obtained by solving this equation. 

It should be noted that 𝐽௝(𝒓𝒊)  corresponds to the electrostatic potential between the 

electrons according to the analogy with the potential term appeared in the Hartree approximation in 

Eq (2.46). On the other hand, 𝐾௝(𝒓𝒊) corresponds to a quantum mechanical interaction between the 

electrons with parallel spins that arises from the Pauli exclusion principle. 𝐾௝(𝒓𝒊) is widely called an 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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exchange potential, and is always negative since the electrostatic repulsion between the two electrons 

with parallel spins will be reduced due the Pauli repulsion. 
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2-3. Density Functional Theory  

2-3-1. The Thomas-Fermi approximations 

As explained in the previous section, the procedure to obtain the many-electron wave 

function using a set of differential equations for one-electron wave functions had been established as 

Hartree-Fock approximation. Nevertheless, it still remains a laborious task to perform such procedure, 

since the integral terms involving the operators defined in Eq (2.61) and Eq (2.62) include two orbitals 

for different electrons (= two-electron integral), and thus the computational cost gets significantly 

expensive. Hence, Hartree-Fock approximation is not suitable to a system that contains a large number 

of electrons, such as solids. 

Therefore, unlike with Hartree-Fock approximation, there had been proposed another 

method to obtain the electronic structure of a many-electron system, by formulating its Hamiltonian 

using the potentials that are described as the functionals of its electron density 𝑛. Consequently, 

Thomas and Fermi had derived the kinetic energy term as a functional of the electron density 𝑛 using 

homogeneous electron gas model [11,12]. 

𝑇்ி[𝑛] =
3

10
(3𝜋ଶ)ଶ/ଷ න 𝑑ଷ𝒓𝑛(𝒓)

ହ
ଷ 

Additionally, they had also described the electrostatic interaction term as the functional of the electron 

density in accordance with classical electromagnetics, and obtained the energy functional as follows, 

 

(2.65) 
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𝐸்ி[𝑛] 

=
3

10
(3𝜋ଶ)ଶ/ଷ න 𝑑ଷ𝒓𝑛(𝒓)

ହ
ଷ + න 𝑑ଷ𝒓𝑉௘௫௧(𝒓)𝑛(𝒓) +

1

2
න 𝑑ଷ𝒓𝑑ଷ𝒓′

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
            

where the second and the third term corresponds to the electron-nuclei interaction and the electron-

electron interaction, respectively. 

Afterward, Dirac had also derived the functional for the exchange energy, which had been 

originally discovered in Hartree-Fock approximation, using homogeneous electron gas model [13]. 

𝐸௑
஽[𝑛] = −

3

4
൬

3

𝜋
൰

ଵ
ଷ

න 𝑑ଷ𝒓𝑛(𝒓)
ସ
ଷ 

This functional is called a local density approximation (LDA) functional, since it only depends on the 

local electron density. This is indeed the only form of the exact LDA exchange functional. 

 On the other hand, Weizsäcker had proposed the correction term of kinetic energy as the 

functional of both electron density 𝑛 and its gradient ∇𝑛 [14].  

𝑇ௐ[𝑛, ∇𝑛] =
1

8
න 𝑑ଷ𝒓

|∇𝑛(𝒓)|𝟐

𝑛(𝒓)
 

This functional is considered as the first generalized gradient approximation (GGA) functional, which 

is explained in the later section. 

 Finally, the total energy and the electron density of a many-electron system in its ground 

state will be obtained by minimizing the energy functional with respect to 𝑛, within the constraint of 

න 𝑑ଷ𝒓𝑛(𝒓) = 𝑁 

where the number of the electrons must be a constant. Here, since the energy functional only takes the 

(2.66) 

(2.67) 

(2.68) 

(2.69) 
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electron density 𝑛, which is a function of only three variables, as its argument, one can perform the 

calculation with less computational cost compared to Hartree-Fock approximation where the two-

electron integrals have been involved. 
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2-3-2. The Hohenberg-Kohn Theorems 

 Despite the groundbreaking idea proposed in the previous section, there still remained a 

critical issue to apply such method to the calculations of electronic structures – the validity of 

describing the energy as the functional of the electron density had not been theoretically confirmed.  

 To solve such issue, Hohenberg and Kohn had theoretically proved the existence of the 

energy functional of electron density, by disclosing the relationship between the electron density and 

the external potential. To be more precise, they had proved the following two theorems as the 

Hohenberg-Kohn theorems [15]. 

 

Theorem 1. The external potential 𝑉(𝒓)௘௫௧ of a system can be uniquely specified by its ground-state 

electron density. 

Theorem 2. The exact ground-state electron density gives the global minimum of the energy 

functional. 

 

The proof of each theorem is described below. 

 

The proof of theorem 1: 

Suppose that there exist two distinct Hamiltonians 𝐻(ଵ)  and 𝐻(ଶ)  whose external 
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potentials 𝑉(𝒓)௘௫௧
(ଵ)  and 𝑉(𝒓)௘௫௧

(ଶ)  differ by more than a constant, while giving the same electron 

density 𝑛଴(𝒓). Here, the difference between the two Hamiltonians can be written as,  

𝐻(ଵ) − 𝐻(ଶ) = 𝑉(𝒓)௘௫௧
(ଵ)

− 𝑉(𝒓)௘௫௧
(ଶ)  

Then, given that 𝛹(ଵ) and 𝛹(ଶ) are the ground-state wave functions of 𝐻(ଵ) and 𝐻(ଶ), respectively, 

the following inequality holds according to the variational principle (see section 2-1-3).  

𝐸(ଵ) = ൻ𝛹(ଵ)ห𝐻(ଵ)ห𝛹(ଵ)ൿ < ൻ𝛹(ଶ)ห𝐻(ଵ)ห𝛹(ଶ)ൿ 

Now, since the last term can be deformed as  

ൻ𝛹(ଶ)ห𝐻(ଵ)ห𝛹(ଶ)ൿ = ൻ𝛹(ଶ)ห𝐻(ଶ)ห𝛹(ଶ)ൿ + න 𝑑ଷ𝒓 ቂ𝑉(𝒓)௘௫௧
(ଵ)

− 𝑉(𝒓)௘௫௧
(ଶ)

ቃ 𝑛଴(𝒓) 

= 𝐸(ଶ) + න 𝑑ଷ𝒓 ቂ𝑉(𝒓)௘௫௧
(ଵ)

− 𝑉(𝒓)௘௫௧
(ଶ)

ቃ 𝑛଴(𝒓) 

the inequality Eq (2.71) can be rewritten as  

𝐸(ଵ) < 𝐸(ଶ) + න 𝑑ଷ𝒓 ቂ𝑉(𝒓)௘௫௧
(ଵ)

− 𝑉(𝒓)௘௫௧
(ଶ)

ቃ 𝑛଴(𝒓) 

In a similar way, the following inequality 

𝐸(ଶ) < 𝐸(ଵ) − න 𝑑ଷ𝒓 ቂ𝑉(𝒓)௘௫௧
(ଵ)

− 𝑉(𝒓)௘௫௧
(ଶ)

ቃ 𝑛଴(𝒓) 

can also be obtained. However, by adding Eq (2.73) and Eq (2.74), a contradicting inequality 

𝐸(ଵ) + 𝐸(ଶ) < 𝐸(ଵ) + 𝐸(ଶ) 

will be obtained. This proves that there is a false in the initial assumption, where the two distinct 

external potentials differing by more than a constant give the same ground-state electron density 

𝑛଴(𝒓). In other words, by reductio ad absurdum, the theorem 1 has been proven. 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

(2.75) 



Chapter 2.  First Principle Approaches to the Electronic Structure of Solids 

  45 

 

The proof of theorem 2: 

Suppose that the total energy of any system can be described as 𝐸ு௄[𝑛] , which is a 

functional of the electron density. Also, suppose that the ground-state electron density which 

corresponds to the external potential 𝑉௘௫௧(𝒓) is given by 𝑛(ଵ) , and any other different electron 

density is given by 𝑛(ଶ). Here, 𝐸ு௄ൣ𝑛(ଵ)൧ is equal to the expectation value of the Hamiltonian 𝐻(ଵ) 

that corresponds to 𝑉௘௫௧(𝒓) with its ground-state wave function 𝛹(ଵ), as described as,  

𝐸ு௄ൣ𝑛(ଵ)൧ = ൻ𝛹(ଵ)ห𝐻(ଵ)ห𝛹(ଵ)ൿ 

On the other hand, 𝐸ு௄ൣ𝑛(ଶ)൧ is equal to the expectation value of the same Hamiltonian with the 

wave function 𝛹(ଶ) that corresponds to 𝑛(ଶ).  

𝐸ு௄ൣ𝑛(ଶ)൧ = ൻ𝛹(ଶ)ห𝐻(ଵ)ห𝛹(ଶ)ൿ 

Now, according to the variational principle, the following inequality holds between Eq(2.76) and 

Eq(2.77).  

𝐸ு௄ൣ𝑛(ଵ)൧ = ൻ𝛹(ଵ)ห𝐻(ଵ)ห𝛹(ଵ)ൿ < ൻ𝛹(ଶ)ห𝐻(ଵ)ห𝛹(ଶ)ൿ = 𝐸ு௄ൣ𝑛(ଶ)൧ 

Thus, the energy functional has been proven to be variational to the electron density. 

 

 Here, it should be noted that the Hamiltonian of a system can be fully formulated when its 

external potential was identified, and thus the wave functions of the system can also be fully obtained. 

Therefore, the theorem 1 has proved that the property of the system can be described as the functional 

(2.76) 

(2.77) 

(2.78) 
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of the ground-state electron density 𝑛଴(𝒓) since the density uniquely specifies the external potential 

of the system. Additionally, by theorem 2, it has also been proved that one can obtain the energy and 

the electron density of the ground-state by minimizing the energy functional with respect to 𝑛(𝒓) due 

to the variational principle.  
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2-3-3. The Kohn-Sham equations  

By the Hohenberg-Kohn theorems introduced in the previous section, the validity of 

describing the energy of many-electron system as functional of electron density had been proven. 

Nevertheless, the specific formulation of the energy functional had not been given in those theoretical 

frameworks, and thus the procedures to obtain the energy and electron density of the ground-state of 

a system had not been established. 

 Hence, Kohn and Sham subsequently derived the formulations to obtain the ground-state 

energy and the electron density of many-electron systems based on the Hohenberg-Kohn theorems 

[16]. First, they assumed an auxiliary system consisting of 𝑁 non-interacting electrons, instead of the 

real 𝑁-electron system where the electrons interact to each other [16]. It was supposed that the 

electron density of the auxiliary system is exactly the same as that of the interacting system. Here, the 

Hamiltonian for the independent electrons in the auxiliary system can be written as,  

𝐻௔௨௫
ఙ = −

1

2
∇ଶ + 𝑉ఙ(𝒓) 

where the first and the second term corresponds to the kinetic and the potential energy of each electron, 

respectively, and the index 𝜎 corresponds to its spin. Then, the set of wave functions of such auxiliary 

system {𝜓୧
ఙ(𝒓)} was given as the ground-state wave functions of this one-electron Hamiltonian, and 

thus the electron density of the system was given as,  

𝑛(𝒓) = ෍ 𝑛ఙ(𝒓)

ఙ

=
1

2
෍ ෍|𝜓௜

ఙ(𝒓)|ଶ

ே഑

௜ୀଵఙ

 

(2.79) 

(2.80) 
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where the index 𝑖 runs over the number of electrons.  

Subsequently, Kohn and Sham formulated the total kinetic energy of the auxiliary system 

using the set of its wave functions {𝜓௜
ఙ(𝒓)} as follows,  

𝑇௦ = −
1

2
෍ ෍⟨𝜓௜

ఙ(𝒓)|∇ଶ|𝜓௜
ఙ(𝒓)⟩

ே഑

௜ୀଵఙ

= −
1

2
෍ ෍ න 𝑑ଷ𝒓|∇𝜓௜

ఙ(𝒓)|ଶ

ே഑

௜ୀଵఙ

 

while the electrostatic interactions were described using the electron density defined in Eq (2.80), as  

𝐸௘௘[𝑛] =
1

2
න න 𝑑ଷ𝒓𝑑ଷ𝒓′

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 

for the electron-electron interactions, and as 

𝐸ே௘[𝑛] = න 𝑑ଷ𝒓𝑉௘௫௧(𝒓)𝑛(𝒓) 

for the nucleus-electron interactions. Then, using the above terms and two additional terms 𝐸௑஼[𝑛] 

(exchange-correlation term that will be explained below), 𝐸ூூ  (electrostatic interactions between 

nuclei that will be given as a constant), the energy functional of the auxiliary system was formulated 

as follows.  

𝐸௄ௌ[𝑛] = 𝑇௦[𝑛] + 𝐸௘௘[𝑛] + 𝐸ே௘[𝑛] + 𝐸௑஼[𝑛] + 𝐸ூூ 

Note, that the forth term 𝐸௑஼[𝑛] corresponds to the exchange-correlation energy, where all the many-

body effects that had not been described in Eq (2.81) and Eq (2.82) have been included. In other words, 

𝐸௑஼[𝑛] can be defined by the following formulas,  

𝐸௑஼[𝑛] = 𝑇[𝑛] − 𝑇௦[𝑛] + 𝐸௜௡௧[𝑛] − 𝐸௘௘[𝑛] 

where 𝑇[𝑛] is the kinetic energy of the interacting system and 𝐸௜௡௧[𝑛] is the electron-electron 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 
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interaction in the interacting system.   

 Then, finally, the energy functional Eq (2.84) were minimized according to the variational 

principle proven in the Hohenberg-Kohn theorem 2, within the constraint of  

⟨𝜓௜
ఙ|𝜓௜

ఙ⟩ = 1 

where the wave functions of the auxiliary system had been normalized. Subsequently, the ground-state 

energy and the ground-state electron density of the auxiliary system were obtained by the following 

stationary condition,  

𝛿

𝛿𝜓௜
ఙ∗(𝒓)

቎𝐸௄ௌ[𝑛] − ෍ ෍ 𝜀௝
ఙᇲ

൛ൻ𝜓௜
ఙᇲ

ห𝜓௜
ఙᇲ

ൿ − 1ൟ

ே഑

௜ୀଵఙᇲ

቏ 

=
𝛿𝑇௦[𝑛]

𝛿𝜓௜
ఙ∗(𝒓)

+
𝛿𝑛ఙ(𝒓)

𝛿𝜓௜
ఙ∗(𝒓)

ቈන 𝑑ଷ𝒓′
𝑛(𝒓ᇱ)

|𝒓 − 𝒓ᇱ|
+ 𝑉௘௫௧(𝑟) +

𝛿𝐸௑஼[𝑛]

𝛿𝑛ఙ(𝒓)
቉ − 𝜀௜

ఙ𝜓௜
ఙ(𝒓) = 0                   

where the derivatives of 𝑇௦ and 𝑛ఙ(𝒓) can be deformed to 

 
𝛿𝑇௦[𝑛]

𝛿𝜓௜
ఙ∗(𝒓)

= −
1

2
∇ଶ𝜓௜

ఙ(𝒓) 

𝛿𝑛ఙ(𝒓)

𝛿𝜓௜
ఙ∗(𝒓)

= 𝜓௜
ఙ(𝒓) 

according to Eq (2.80) and Eq (2.81). Thus, the differential equation Eq (2.87) can be rewritten as,  

𝐻௄ௌ,ఙ(𝑟)𝜓௜
ఙ(𝒓) = 𝜀௜

ఙ𝜓௜
ఙ(𝒓) 

where 

𝐻௄ௌ,ఙ(𝑟) ≡ −
1

2
∇ଶ + න 𝑑ଷ𝒓ᇱ

𝑛(𝒓ᇱ)

|𝒓 − 𝒓ᇱ|
+ 𝑉௘௫௧(𝑟) +

𝛿𝐸௑஼[𝑛]

𝛿𝑛ఙ(𝒓)
 

whose form is similar to the one-electron equation derived in the Hartree-Fock approximation. 

 Thus, Kohn and Sham had succeeded to formalize of the energy functional predicted in the 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 
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Hohenberg-Kohn theorems, and to establish the procedure to obtain the electronic structures of many-

electron systems from the energy functional with respect to the electron density as its argument.   
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2-3-4. The classification of exchange-correlation functionals 

 Although the feasible procedures to obtain the energy and the electron density of many-

electron systems based on the Hohenberg-Kohn theorem had been established as the Kohn-Sham 

equations, there also remains an important issue to be solved – the formalism of 𝐸௑஼[𝑛], the exchange-

correlation functional, was not yet obtained. Indeed, 𝐸௑஼[𝑛] is the only term that cannot be exactly 

formalized among the terms appeared in the Kohn-Sham equations, and thus a kind of approximations 

is needed to obtain its formalism. Therefore, there have been proposed a great number of 

approximative exchange-correlation functionals since the establishment of the Kohn-Sham equations. 

Here, in this section, the formalisms of the exchange-correlation functionals which are used in this 

thesis will be introduced.  

 

2-3-4-1. LDA functionals 

One of the representative examples of the exchange-correlation functional is the localized 

density approximation (LDA) functionals, where the local exchange-correlation energy 𝜀௑஼  is 

assumed to be dependent only on the electronic density at each position 𝒓.  

𝐸௑஼
௅஽஺[𝑛] = න 𝑑𝒓𝑛(𝒓)𝜀௑஼([𝑛], 𝒓) 

Such approximation is based on the consideration that the term 𝐸௑஼[𝑛] can be regarded as a local one 

since it was defined as the residual part of the energy of the many-electron system from which the 

(2.92) 
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non-local terms such as the kinetic energy and the electrostatic energy had been subtracted as shown 

in Eq (2.85).  

 Here, the exchange part of 𝐸௑஼
௅஽஺[𝑛] consists of the formalization described in Eq (2.67) 

which is derived by Dirac, since it is the only exchange functional that is theoretically exact. On the 

other hand, the correlation part of 𝐸௑஼
௅஽஺[𝑛]  is usually obtained by the parameter fitting to the 

numerically calculated correlation energies using the Monte Carlo methods on homogeneous electron 

gas systems. One of these examples is a PW-LDA correlation functional [17], which is used in chapter 

6 of this thesis, as described as,  

𝐸஼
௉ௐି௅ [𝑛] = −2a න 𝑑ଷ𝒓𝑛(1 − 𝛼𝑟௦)𝑙𝑛

⎣
⎢
⎢
⎢
⎡

1 +
1

2𝑎 ቆ𝛽ଵ𝑟௦

ଵ
ଶ + 𝛽ଶ𝑟௦ + 𝛽ଷ𝑟௦

ଷ
ଶ + 𝛽ସ𝑟௦

ଶቇ
⎦
⎥
⎥
⎥
⎤

                          

where a = 0.031097, 𝛼 = 0.21370, 𝛽ଵ = 7.5957, 𝛽ଶ = 3.5876, 𝛽ଷ = 1.6382, 𝛽ସ = 0.49294, and 𝑟௦ 

is the Wigner-Seitz radius that is defined as,  

 
4

3
𝜋𝑟௦

ଶ =
1

𝑛
 

 

2-3-4-2. GGA functionals 

 Next, the generalized gradient approximation (GGA) functionals, which are also 

representative as well as LDA functionals, will be explained. Within the generalized gradient 

approximation, the exchange-correlation energy is described as the functional of both electron density 

(2.93) 

(2.94) 
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𝑛(𝒓) and its gradient ∇𝑛(𝒓). The general formalism of a GGA functional is as follows. 

𝐸௑஼
ீீ஺[𝑛] = න 𝑑𝒓𝑛(𝒓)𝜀௑஼(𝑛(𝒓), ∇𝑛(𝒓) , 𝒓) 

 Here, the exchange part of 𝐸௑஼
ீீ஺[𝑛] is usually formulated as, 

𝐸௑
ீீ஺[𝑛] = −

1

2
෍ න 𝑑ଷ𝒓𝑛ఙ

ସ/ଷ
𝐾ఙ

ఙ

 

where 𝐾ఙ is described using a following dimensionless parameter 𝑥ఙ.  

𝑥ఙ =
|∇𝑛ఙ|

𝑛ఙ
ସ/ଷ

 

For instance, in the PBE (Perdew–Burke-Ernzerhof) functional [18], one of the most widely used GGA 

functionals as also was the case in chapter 3 to chapter 5, 𝐾ఙ in the exchange part is given as,  

𝐾ఙ
௉஻ா = 𝐾ఙ

௅஽஺ ൤1 + 𝜅 −
𝜅

1 + 𝜇𝑠ఙ
ଶ/(48𝜋ଶ)ଶ/ଷ𝜅

൨ 

𝐾ఙ
௅஽஺ = 3 ൬

3

4𝜋
൰

ଵ/ଷ

 

where μ = 0.21951 and κ = 0.804. 

 On the other hand, the correlation part of 𝐸௑஼
ீீ஺[𝑛] is usually obtained by adding a GGA 

correction term to the corresponding LDA correlation functional. In the case for PBE, the correlation 

functional is given as,  

𝐸஼
௉஻ா[𝑛, 𝜁, 𝑡] = 𝐸஼

௉ௐି [𝑛] + න 𝑑ଷ𝒓𝑛(𝑟)𝐻[𝑛, 𝜁, 𝑡]  

𝐻[𝑛, 𝜁, 𝑡] = 𝛾𝜙ଷ𝑙𝑛 ቈ1 +
𝛽

𝛾
𝑡ᇱଶ ቆ

1 + 𝐴𝑡ᇱଶ

1 + 𝐴𝑡ᇱଶ + 𝐴ଶ𝑡ᇱସ
ቇ቉ 

𝐴 =
𝛽

𝛾
ቈexp ቆ−

𝐸ത஼
௉ௐି [𝑛]

𝛾𝜙ଶ𝑛
ቇ − 1቉

ିଵ

 

𝜙 =
1

2
ൣ(1 + ζ)ଶ/ଷ + (1 − ζ)ଶ/ଷ൧ 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 
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where 𝛾 =
ଵି௟௡ଶ

గమ
= 0.031091 and 𝛽 = 0.066725. 

 

2-3-4-2. Hybrid functionals 

 On a final note, the hybrid functionals, which were used in estimating the bandgaps in 

chapter 3 to chapter 5, will be introduced. The Hybrid functional is the one whose exchange functional 

is modified by incorporating a portion of the exact exchange energy obtained in the Hartree-Fock 

approximation. Such modification is based on the consideration that there inevitably arise non-

negligible self-interaction errors, which correspond to the unphysical electrostatic interaction between 

the electron and the electronic potential generated by the electron itself, in the derivation of the energy 

functionals (see Eq (2.82) and Eq (2.84)), while such self-interaction errors are fully cancelled in the 

formulation of the Hartree-Fock approximation by the exchange energy term (see Eq (2.60) to Eq 

(2.62)). In other words, the unphysical self-interaction errors are intended to be canceled by 

incorporating a portion of Hartree-Fock exchange energy term in the exchange functional used in the 

Kohn-Sham equations. 

 As for the HSE (Heyd-Scuseria-Ernzerhof) hybrid functional, which was used in this thesis, 

the Hartree-Fock exchange energy term is divided into two parts, a short-range part 𝐸௑
ௌோିுி(ω) and 

a long-range part 𝐸௑
ௌோିுி(ω), with respect to the parameter ω controlling the short-rangeness of the 

interaction, and only the former part is incorporated in the exchange functional [19]. Then, using the 
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mixing parameter 𝑎, the HSE exchange functional is given as,  

𝐸௑
ுௌா = 𝑎𝐸௑

ௌோିு (ω) + (1 − a)𝐸௑
௉஻ா(ω) + 𝐸௑

௉஻ா(ω) 

where 𝑎 = 0.25 and ω = 0.2 in case for HSE06. Such dividing of the Hartree-Fock exchange energy 

was proposed since the long-range part of the exchange energy had been empirically known to 

overestimate the bandgap energy, and thus the HSE functionals are considered to be superior in 

calculating bandgaps. 

 

  

(2.104) 
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Chapter 3. 

Effects of Anion Ordering in Perovskite Oxynitride: 

A Demonstration on CaTaO2N 

 

3-1. Introduction to anion ordering in perovskite oxynitrides 

3-1-1. Perovskite oxynitride photocatalysts 

 During these decades, a wide range of water-splitting photocatalysts [1-9] have been 

discovered from a class of compounds with perovskite structure. “Perovskite” is originally the name 

of CaTiO3 mineral, and the compounds that have the same type of crystal structures as CaTiO3 are 

classified to perovskite compounds. Generally, perovskite compounds have ABX3 chemical formulas 

like CaTiO3, with anions X coordinating to cations B to shape BX6 octahedral-units, sharing their 

apices forming a 3D network, and cations A (which is called A site cations) filling the gaps between 

the BX6 octahedral-units (Figure 3-1). For many years, the class of perovskite compounds, in both 

their fully inorganic and hybrid organic−inorganic [10,11] structures, has been investigated for its 

ferroelectric features [12], the superconductivity [13], the colossal magnetoresistance effects [14], the 

recently observed superior features in photovoltaic applications [15-18], the low thermal conductive 

properties [19], as well as water-splitting photocatalysts, and thus they are considered to be one of the 

central research areas for functional materials. 
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Figure 3-1. Schematic illustration of perovskite structure with ABX3 chemical formula. Green, yellow, 

and pink are A, B, and X, respectively. 

 

 Among perovskite compounds, there also have been reported a lot of visible light-responsive 

oxynitride photocatalyts, such as BaTaO2N [7], SrTaO2N [7], CaTaO2N [6,7], LaTiO2N [8]. Very 

recently, overall water splitting under visible light irradiation has been achieved on CaTaO2N [6], 

although its activity is still low. BaTaO2N has also succeeded in producing hydrogen and oxygen 

independently from sacrificial aqueous solutions in the form of solid solution with BaZrO3[20] under 

visible light. As explained in the chapter 1, these oxynitride photocatalyts have the valence bands that 

consist of O 2p and N 2p orbitals, and this makes the bandgaps narrow enough to utilize the energy of 

visible light. Therefore, perovskite oxynitrides are nowadays considered the most promising 

candidates for the water splitting photocatalysis process [21].  
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3-1-2. Anion ordering in perovskite oxynitrides 

 In the crystal of perovskite oxynitrides, O2- and N3- occupies X sites to coordinate to the 

transition metal cation center. Surprisingly, their anion arrangements of in the crystals (anion ordering, 

hereafter also called aor) have been found to be partially specific. For example, it is well known that 

N3- coordinate to the cation center in cis configuration. Furthermore, Neutron [22-25] and electron 

[26] diffraction analyses have already shown specific anion distributions in the crystals of some 

perovskite oxynitrides. 

 Such ordered motifs are considered responsible for piezoelectricity [27] and ferroelectricity 

[28], as a consequence of the local distortion induced in the crystals of perovskite oxynitrides [29]. 

Subsequently, due to the nature of perovskite oxynitride VB, that, as said, mainly consists of O 2p and 

N 2p orbitals, it is evident that an impact of aor on the band structure of the final system exists. They 

are similarly reported to be controllable, leading to a further “tailorability” of the perovskite oxynitride 

electronic features [30], either by tuning temperature conditions [25] or via the cooling rate after the 

calcination [31], making the aor a potentially powerful factor for modifying the optical and electronic 

features of such compounds. 

 However, it is still difficult to clarify the details of anion ordering in oxynitride crystals, 

since only the O/N occupation on each site can be experimentally measured by the state of art method. 

There also exists some controversial data indicating the nature of one-dimensional (1D) [22], two-
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dimensional (2D) [25], and three-dimensional (3D) ordering [32] have been reported from different 

experimental groups. Besides, it is also a challenging task to synthesize perovskite oxynitrides with a 

specific anion arrangement, and such limitations makes the investigation on anion ordering a puzzling 

issue. Therefore, the band structure variation ascribed to the change in aors is still unclear, and thus 

the relation between aors and their electronic properties has not been fully analyzed yet. In addition, 

to the best of our knowledge, no data have been reported focusing on possible improvements of the 

photocatalytic activity as a function of the aor motif. 

 

 

 

 

  



Chapter 3.  Effects of Anion Ordering in Perovskite Oxynitride: A Demonstration on CaTaO2N 

  62 

 

3-1-3. Objective of this work 

To overcome these issues, a theoretical, unbiased understanding of the relation between aors 

and the electronic structure of this class of materials is mandatory. Thus, in this research, by means of 

first-principles calculations, I aim to clarify the relation between the aor (structural features) and 

perovskite oxynitride band structures (electronic features). In particular, our analysis will mainly focus 

on CaTaO2N, a material whose ability to split water under visible light irradiation is well documented 

[6,7]. I aim to demonstrate the tunability of the band structure by controlling its anion ordering, thus 

providing a guideline to possibly improve the photocatalytic properties of CaTaO2N. 
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3-2. Computational details 

Several initial guesses of CaTaO2N were prepared with different aors following the available 

neutron diffraction data [22], relaxing them by means of a density functional theory (DFT) based 

approach, as implemented in the VASP code [33-36]. The projector augmented wave (PAW) method 

[37,38] with the GGA-PBE exchange-correlation functional [39] was used with a cutoff energy of 500 

eV. All the structures were optimized using a 10 × 7 × 10 Γ-centered k-point sampling of the Brillouin 

zone (BZ) until the forces on all atoms were smaller than 0.01 eV/Å.  

According to the available data [22], CaTaO2N has a unit cell with space group Pnma, and 

the O/N ratio is about 1:1 on the axial sites and 3:1 on the equatorial sites. It is well-known that more 

electronegative anions in the octahedral (Oh) units of perovskites usually have a cis configuration with 

respect to the central metal cation, as mentioned in the previous section [40]. Neglecting the tilting of 

the TaO4N2 Oh unit (octahedral-tilting [41]), six N3− arrangements within the cis configuration are 

possible, which satisfy the mentioned O/N occupations, as shown in the first column of Figure 3-2. 

On the other hand, including the tilting, it was finally able to model 13 different aors (structures on 

the right side of Figure 3-2). Since N3− are arranged in a 2D fashion in A−D and in a 3D one in E−F, 

the former will be called “two-dimensional (or 2D) aors” and the latter will be called “three-

dimensional (or 3D) aors”. 
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Figure 3-2. Initial structure of each anion ordering, without (left) and with (right) Oh tilting considered 

[brown, red, and blue are Ta, O, and N atoms, respectively]. Ca atoms are omitted. These had derived 

from an exhaustive arrangement of O/N according the experimentally obtained occupation ratio at 

each site, and consequently 22 × 42 = 64 different O/N arrangements was obtained (where 22 and 42 

are the number of possible outcomes at axial and equatorial sites, respectively). Then, since some of 

them are essentially the same ones due to their symmetries, they are reduced to 13 anion arrangements.   
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 The electronic properties were calculated by means of a 12 × 9 × 12 Γ-centered k-point 

sampling of the BZ. At variance with the hybrid organic−inorganic halide perovskites for which the 

relativistic effect impact on the final electronic features is massive [16,17], the different nature of the 

band edges makes the same inclusion in our systems ineffective, with the final bandgaps that remain 

unaltered. 

 According to the parabolic approximation, the effective masses of holes (𝑚୦*) and of 

electrons (𝑚ୣ*) were estimated as result of the fit of the dispersion relation described in Eq (3.1). 

Starting from the CBM (VBM), the curvature of the bands was calculated within a k-point range of ± 

0.05 Å−1. In order to include the anisotropic effects of the dispersion in the BZ, the effective masses 

calculated from the band edges along the direction toward the other seven high symmetry points were 

averaged as their harmonic mean (see Eq (3.2)). Tables 3-1 (a) and (b) list the effective masses 

calculated for the directions considered. 

𝑚*=ħଶ ቈ
∂ଶ𝜀(𝑘)

∂𝑘ଶ
቉

ିଵ

 

1

𝑚ୟ୴ୣ*
=

1

𝑁
෍

1

𝑚୧*

ே

୧ୀଵ

 

Here 𝜀(𝑘) are the band edge eigenvalues, 𝑘 is the wavevector, 𝑚୧* is the effective mass along each 

direction, i, and 𝑚ୟ୴ୣ* is the averaged effective mass. 

 Band edge positions are calculated as orbital energies referred to the vacuum level [42]. In 

detail, both vacuum level and orbital energies are calculated by means of slab models whose bulk and  

(3.1) 

(3.2) 
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Table 3-1. (a) Hole effective mass along each direction. B2 and C have their VBMs on U point. 

( = 0.0, 0.0, 0.0; X = 0.5, 0.0, 0.0; Y = 0.0, 0.5, 0.0; Z = 0.0, 0.0, 0.5; S = 0.5, 0.5, 0.0; 

T = 0.0, 0.5, 0.5; U = 0.5, 0.0, 0.5; R = 0.5, 0.5, 0.5). 

 

 

 

 

 

 

 

Table 3-1. (b) Electron effective mass along each direction.  

(BZ special point coordinates as in Table 3-1 (a)) 

 

 

 

 

 

  

 T TR TS TU TX TY T  Z Ave 

A1 1.72 4.44 0.88 5.25 1.07 1.24 7.24 1.74 

A2 1.43 4.69 2.45 1.41 1.51 4.67 0.59 1.52 

B1 3.14 1.94 1.30 2.07 1.45 3.86 2.14 2.00 

D 0.51 1.35 0.80 0.55 0.41 1.50 0.78 0.69 

E1 1.65 1.89 195 1.71 11.1 1.52 1.31 2.16 

E2 -7.5 2.66 6.14 2.04 17.1 13.8 1.38 3.99 

E3 1.35 3.12 3.41 1.32 1.73 3.76 0.61 1.52 

F1 1.25 1.64 1.85 0.77 0.98 2.06 0.83 1.17 

F2 4.85 0.92 1.17 0.86 1.80 1.56 0.75 1.20 

F3 1.26 1.65 1.86 3.29 2.32 2.06 0.82 1.60 

F4 5.72 1.92 1.81 1.30 3.19 1.65 0.76 1.65 

 U UR US UT UX UY UZ Ave  

B2 7.34 1.43 2.02 2.69 2.47 4.05 4.61 2.72 

C 1.19 51.2 2.41 3.57 2.27 1.32 2.69 2.24 

 R S T U X Y Z Ave 

A1 0.63 0.63 0.68 0.62 0.62 0.68 0.68 0.65 

A2 0.51 0.65 0.71 0.52 0.76 0.51 0.88 0.62 

B1 0.45 0.58 0.57 0.46 0.79 0.39 0.75 0.54 

B2 0.50 0.67 0.57 0.55 1.07 0.38 0.75 0.59 

C 0.98 1.75 1.01 0.86 1.54 0.91 1.12 1.10 

D 0.50 0.67 0.60 0.53 0.90 0.45 0.77 0.60 

E1 0.55 0.60 0.76 0.55 0.69 0.52 0.87 0.63 

E2 0.95 0.69 1.11 0.94 0.74 0.62 1.08 0.84 

E3 0.83 0.75 0.77 1.09 0.85 0.61 1.26 0.83 

F1 0.63 0.77 0.61 0.69 1.05 0.40 0.86 0.66 

F2 0.73 0.66 0.72 0.76 0.70 0.62 0.75 0.70 

F3 1.00 0.61 0.61 2.11 1.05 0.40 0.85 0.74 

F4 0.90 0.74 0.75 1.14 1.03 0.49 0.94 0.80 
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vacuum regions are thick enough to minimize the quantum confinement effects and to avoid spurious 

effects among replicas of the slabs along the direction normal to the surface. It is straightforward that 

such a method does not apply to the slab models which have a net dipole vertical to their surface planes 

[42,43]. Since, in CaTaO2N, Ta−N and Ta−O bonds have different charge distributions (dipoles), only 

the slab models assembled from certain aors, which expose specific facets that are suitable for 

calculating the vacuum level. Furthermore, it remains quite cumbersome to discuss the difference of 

the band edge positions among different aors, due to the strong dependence of the calculated vacuum 

levels on the slab surface structures [44]. Accordingly, to better assess our results, I have considered 

only one type of slab model, i.e. that for which the difference between the potential in the bulk region 

of the slab model (𝑉ୠ୳୪୩ିୱ୪ୟୠ) and that of the bulk (𝑉ୠ୳୪୩) is minimized [45]. 

 First, the potentials in both the vacuum (𝑉୴ୟୡିୱ୪ୟୠ) and bulk regions (𝑉ୠ୳୪୩ିୱ୪ୟୠ) and the 

energies of the CBM (𝜀େ୆୑ିୱ୪ୟୠ) and the VBM (𝜀୚୆୑ିୱ୪ୟୠ) were calculated by using the nonpolar, 

symmetric, and thermodynamically more stable slab (𝐸ୱ୳୰୤ as in Eq (3.3), where  𝐸ୱ୪ୟୠ is the total 

energy of the slab model, 𝑛 is the number of the bulk unit cells in the slab,  𝐸ୠ୳୪୩ the energy of the 

bulk per unit formula, and A is the superficial area of the slab).  

𝐸ୱ୳୰୤ =  
 𝐸ୱ୪ୟୠ − 𝑛 ×  𝐸ୠ୳୪୩

2𝐴
 

Second, the potential in the bulk model (𝑉ୠ୳୪୩) and its band edge energies ( 𝜀େ୆୑,  𝜀୚୆୑) 

were calculated by using the bulk models of each aor, respectively. In addition, their bandgaps have 

(3.3) 
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also estimated by using the hybrid functional HSE06 [46-48] in order to compensate the 

underestimation of the pure DFT calculated bandgaps and compare the band edge positions to the 

water redox potentials. 

Finally, assuming that the two bulk potentials coincide (𝑉ୠ୳୪୩ିୱ୪ୟୠ ≅ 𝑉ୠ୳୪୩), hypothetical 

vacuum potentials (𝑉୴ୟୡ
ᇱ ) were calculated for each aor as in Eq (3.4). Then their band edge positions 

were determined and corrected as in Eq (3.5) and Eq (3.6), provided that the calculated bandgap is that 

of Kohn−Sham, as in our case, and assuming the fact that conventional DFT can reproduce 

theoretically the exact position of the band gap center [49]. 

𝑉୴ୟୡ
ᇱ =  𝑉ୠ୳୪୩ + (𝑉୴ୟୡିୱ୪ୟୠ − 𝑉ୠ୳୪୩ିୱ୪ୟୠ) 

𝐸େ୆୑(୚୆୑) =   𝜀େ୆୑(୚୆୑) − 𝑉୴ୟୡ
ᇱ  

𝐸େ୆୑(୚୆୑) →  𝐸େ୆୑(୚୆୑) ± 
1

2
൛𝐸୥ − ( 𝜀େ୆୑ −  𝜀୚୆୑)ൟ 

I have thus prepared six initial models (shown in Figure 3-3) and compared their surface 

energies. All the slab models are 32 Å long (6-unit layers) along the direction normal to the surface 

plane plus an 18 Å vacuum region along the same direction. As a result, E2(001)_O rich, a slab model 

of the pristine E2 bulk aor, whose surface consists of an oxygen-terminated (001) facet, have been 

selected. 

  

(3.4) 

(3.5) 

(3.6) 
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Figure 3-3. Lateral views of the three nonpolar slab models considered (Brown: Ta; red: O; light blue: 

N; blue: Ca). (a, b) E2 with (001) surface, (c, d) F2 with (100) surface, and (e, f) F4 with (100). Right: 

N-rich surface slabs. Left: corresponding O-rich surface slabs. 
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Starting from the very well converged structure (vide supra) of the bulk, for the slab models 

the convergence is achieved using reduced sampling (compared to the bulk case) of the BZ. In this 

case, it was sufficient to relax the slab ionic positions using a 4 × 4 × 1 Γ-centered k-point sampling 

until the forces were smaller than 0.05 eV/Å. On the optimized structures, their electronic properties 

were calculated until their total energies were converged within 10−4 eV, using a 4 × 6 × 1 Γ-centered 

mesh. 

For all the considered slab models, the bandgap in the bulk regions (𝐸୥(slab)) minimizes the 

difference with that of the corresponding bulk models (𝐸୥) (Δ𝐸୥ ≤ 0.13 eV). Table 3-2 reports the 

surface energies and bandgaps of each slab model here investigated. 

 

 

Table 3-2 Surface energies and bandgaps of each slab model. 

 

 

 

 

  

 Esurf [mJ/m2] Eg (slab) [eV] Eg [eV] 

E2(001)_Orich 983.1 1.95 1.84 

E2(001)_Nrich 1261.5 1.86 1.84 

F2(100)_Orich 1002.6 2.14 2.01 

F2(100)_Nrich 1429.1 2.06 2.01 

F4(100)_Orich 1077.7 2.15 2.07 

F4(100)_Nrich 1337.7 2.15 2.07 
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3-3. Impacts of anion orderings on photocatalyst related 

properties 

I start discussing the impact of the aor motif on the bandgaps. Figure 3-4 shows the bandgap 

vs formation energy trend. Interestingly, the formation energy range of all the considered structures 

almost coincides with the thermal energy at room temperature (26 meV), indicating that various aors 

can coexist in CaTaO2N crystals. 

  

 

 

 

 

 

 

 

 

 

Figure 3-4. Bandgaps vs formation energy of each anion ordering. Zero on the y axis is the energy 

of the most stable anion ordering. Blue: 2D aors, Red: 3D aors.  
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Concerning the bandgap, marked differences among/the considered aors, up to 0.5 eV, can 

be observed with the 3D motifs (E−F) characterized by larger values of the gap. It is thus likely that 

the absorption wavelength of CaTaO2N can be tuned by changing the aor. Still, Figure 3-4 suggests 

that the more stable the aor, the larger the bandgap, supporting the idea of the VBM stabilization for 

3D motifs. 

In Figure 3-5 I report both the electron (𝑚ୣ*) and hole (𝑚୦*) effective mass change as a 

function of the aor. Interestingly enough, the variation range of the hole effective mass is about 5 times 

that of the electron, indicating the hole mobility, and thus oxygen evolution reaction (OER), is more 

likely to be affected by the nature of the aor. Changes in valence band structures are observed as well 

in the different anisotropies of the carrier effective mass (Tables 3-1) and bandplots (Figure 3-6): 𝑚ୣ* 

is the minimum along the direction of Γ→ Y in almost all aors, while 𝑚୦* has a more heterogeneous 

trend. To further confirm it, Figure 3-6 clearly shows that the CB shapes are similar in each aor, while 

those of the VB are quite different. 
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Figure 3-5. Carrier effective masses for each anion ordering 
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Figure 3-6.  Bandplots of each anion ordering (BZ special point path coordinates as in Table 3-1.) 
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Finally, the variation of the band edge positions and its relation with the aor were analyzed. 

From Figure 3-7, the VBM positions vary within the range 1.14 to 1.66 V (vs NHE), while CBM 

remains almost unaltered. 

Furthermore, 3D aors have a more positive VBM than 2D ones, indicating additional 

stabilization of the valence bands for the former motifs. In all cases, CBM positions largely exceed 

the H2O reduction potential, indicating the high potentiality to produce hydrogen, while VBM 

positions only appeared near the oxygen evolution potential, confirming previous experimental and 

theoretical findings [6,50]. Since all the 3D aors have VBM positions positive enough for water 

oxidation, I conclude that CaTaO2N OER performances will be highly improved by the three-

dimensional motif of the atomic ordering.  

 

 

 

 

 

 

Figure 3-7. Band edge positions of each anion ordering. The potentials were referenced to the normal 

hydrogen electrode (NHE). 
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3-4. Origin of the different nature of electronic structures 

In order to disclose the origin of the different nature of valence band structures and the 

relative maximum positions among aors, the band edges electronic composition were analyzed. The 

Density of States (DOS) and Projected Density of States (PDOS) are shown in Figure 3-8. 

As expected, in all aors, the VB mainly consists of X (= O, N) 2p orbitals, while the CB 

mainly of Ta 5d ones. However, while the CB DOS shape is very similar for all the systems taken into 

account, that of the VB is quite different. A consequence associated with this finding is the different 

lifetimes of the hole that increase (decrease) as the VB DOS values are small (large) below the VBM. 

There is indeed a straight relation between DOS shape and the number of carrier relaxation paths that 

induce longer/shorter carrier lifetimes [18, 51-53]. In the PDOS near the VBM, only the contributions 

of both N 2p and O 2p orbitals are observed in 2D aors, while an additional contribution of the Ta 5d 

orbital exists in 3D motifs, indicating orbital overlap among N 2p, O 2p, and Ta 5d orbitals in the latter 

ones. 

I have similarly compared several optimized structural parameters (reported in Table 3-3) to 

find out what type of interactions occur among these orbitals and checked the influence of aor 

dimensionality on such interactions. Comparing the∠Ta−O−Ta and ∠Ta−N−Ta angles, the latter 

clearly is larger in all aors. In addition, the Ta−N bond lengths (𝑟୘ୟି୒) are shorter than the Ta−O 

(𝑟୘ୟି୓) ones, in contrast with the ionic radius based expected trend (N3−: 1.46 Å; O2−: 1.38 Å [12]), 
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Figure 3-8. DOS and PDOS of each aor, calculated with the HSE06 level. The energies were 

referenced to the NHE.   
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suggesting further possible interactions, other than ionic, between Ta and X (=O, N). It is indeed well-

known that anions with reduced electronegativity (N in our case) tend to more easily form covalent 

bonds. Previous NMR analysis supports our finding, reporting the covalent character of Ta−N bonds 

in ATaO2N (A = Ca, Sr, Ba [55]). Such a covalent character can clearly take into account the larger ∠

Ta−N−Ta angles and the shorter 𝑟୘ୟି୒ bond lengths in CaTaO2N. More in detail, the two bonds 

formed from X (=O, N) toward two adjacent Ta cations have different lengths (see Figure 3-9(a)): such 

asymmetry can be similarly ascribed to covalent interactions between X 2p and Ta 5d, as depicted in 

Figure 3-9(b) for the case of X = N (d− pπ interaction [24, 25, 40, 55]). These features are also shown 

in the VBM wave function (See Figure 3-9(c)). 

 

Table 3-3. Optimized structural parameters of each anion ordering. 

  

 Lattice parameters (Å) Bond angles (deg) Bondlength (Å) Bondlength difference (Å) 

 a b c ∠Ta-O-Ta ∠Ta-N-Ta rTa-O rTa-N rTa-O rTa-N 

A1 5.66 7.95 5.56 150.4 155.1 2.08 1.99 0.03 0.01 

A2 5.66 7.94 5.57 150.6 155.8 2.08 1.98 0.06 0.03 

B1 5.68 7.95 5.57 150.8 154.7 2.09 1.98 0.07 0.05 

B2 5.65 7.97 5.57 149.3 156.7 2.08 1.98 0.08 0.04 

C 5.66 7.97 5.56 150.0 156.1 2.08 1.99 0.07 0.09 

D 5.66 8.00 5.57 148.8 157.7 2.09 1.98 0.14 0.14 

E1 5.65 7.97 5.55 150.6 155.2 2.08 1.98 0.04 0.04 

E2 5.65 7.98 5.55 150.6 155.2 2.08 1.98 0.06 0.07 

E3 5.66 7.96 5.56 150.1 156.4 2.08 1.98 0.09 0.07 

F1 5.66 7.98 5.56 150.3 156.2 2.09 1.98 0.09 0.05 

F2 5.67 8.00 5.56 150.0 155.6 2.10 1.97 0.13 0.12 

F3 5.66 7.98 5.56 150.3 156.3 2.09 1.98 0.09 0.05 

F4 5.65 8.01 5.56 148.6 158.5 2.09 1.98 0.14 0.12 

ave 5.65 7.97 5.56 150.0 156.1 2.08 1.98 0.08 0.07 
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Figure 3-9. (a) Asymmetry bond length around nitrogen. (b) d−pπ interaction. (c) Decomposed charge 

density at the VBM of F2. 
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 To further shed light on this feature, the asymmetry (∆𝑟୘ୟି୒) of the bond lengths among the 

anion orderings, i.e. the difference between the long and the short Ta−X bond length, have also been 

compared. From Table 3-3, 3D aors have larger asymmetry than 2D ones, indicating the increased 

covalent character in the former ones. Furthermore, more asymmetric aors have lower VBM positions 

(Figure 3-10), showing the relation between the VBM position and the degree of covalence between 

Ta and X. Noticeably, in 3D motifs, the much larger Ta−X d−pπ interactions induce the stabilization 

and thus the lowering of their VBM. 

 

 

 

 

 

 

 

 

 

Figure 3-10. Bond asymmetry and VBM positions of each anion ordering. ∆𝑟୘ୟିଡ଼ represents the 

average of the bond difference between two bonds from N or O to Ta (= (2 × ∆𝑟୘ୟି୓ + ∆𝑟୘ୟି୒ )/3). 
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Finally, the origin of the different magnitudes of the d−pπ interactions will be discussed. In 

2D aors, both N 2p orbitals and Ta 5d orbitals lie in the same plane, and thus, such symmetry does not 

allow their optimal overlap. On the other hand, the symmetry of the N 2p bands lowers in the VB of 

3D aors, since the nitrogen and tantalum atoms are not in the same plane: stronger stabilizing d−pπ 

interactions will originate as a consequence of the less hindered overlap between the N 2p and Ta 5d 

bands. Importantly, due to the fact that in all our systems Ca bands are very deep (high) in the valence 

(conduction) region (not shown here), these findings can be extended to all the perovskite oxynitrides 

of formula ATaO2N and analogous symmetry. 
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3-5. Conclusion 

Aiming to provide viable paths to improve its photocatalytic activity, I have investigated the 

relation between anion orderings and electronic properties in CaTaO2N. For several models assembled 

according to the available experimental data, I have focused on the photocatalytic oriented properties, 

comparing them among the different anion orderings here considered. I observed noticeable variations 

depending on the anion ordering: bandgaps become “tunable” in quite a wide range by controlling the 

structural motif. Carrier effective masses similarly vary among different anion orderings mainly for 

the hole, indicating that the oxygen evolution ability is significantly affected by the positions of the 

nitrogen and oxygen atoms in the crystal. Band edge positions vary as well, mainly in the valence 

region. Since three-dimensional anion orderings are associated with a more positive valence band 

maximum than two-dimensional ones, they are expected to be characterized by improved 

performances in the oxygen evolution reaction process. Therefore, through the optimization of its 

synthetic route, i.e. keeping either high temperature processing or slow cooling regime conditions, 

both reported to favor the three-dimensional anion ordering formation, CaTaO2N performances in 

photocatalysis will be highly improved. 
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Chapter 4.   

Effects of Octahedral-Tilting and Crystal 

Polymorphism: A Demonstration on MgTaO2N 

 

4-1. Revisiting the structural model of MgTaO2N: a theoretically 

predicted photocatalyt 

4-1-1. Computational material search in the research area of photocatalyts 

Recently, with the impressively enhanced availability of computational resources, 

computational screening of novel materials of technological relevance has become an extremely 

powerful procedure to predict the possible existence of yet unexplored materials. For instance, Ceder 

el al. succeeded in finding a novel compound that can be used as a cathode material for lithium 

batteries with a superior voltage and a lower cost, using first-principle calculations on several possible 

candidates [1]. There also exist other cases for high stability alloys [2], piezoelectrics [3], organic 

photovoltaics [4, 5] and inorganic scintillator materials [6], all of which demonstrate the benefits of 

recent computational material search. 

Such studies using computational screenings have also been adopted to the material search for 

photocatalysts [7-9]. For perovskite-type oxynitrides of formula ABO2N, a screening procedure on 

thermodynamic and electronic properties (bandgap and band edge position) initially involving 2704 



Chapter 4.  Effects of Octahedral-Tilting and Crystal Polymorphism: A Demonstration on MgTaO2N 

  91 

 

compounds has revealed four well established and investigated materials, CaTaO2N [10,11], SrTaO2N 

[10], BaTaO2N [10,12,13], LaTiO2N [14] and a new one, i.e. MgTaO2N, as promising candidates for 

photocatalysis [9].  
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4-1-2. Possible octahedral-tilting and crystal polymorphism in MgTaO2N 

However, with the enormous computational cost in mind, modeling of the compounds just 

in terms of thermodynamic stability and band edge positions may result not sufficient and a more 

detailed analysis is mandatory in order to shed light on the photocatalytic features of such materials. 

The first issue, indeed, is the oversimplified structural model used in the screening 

procedure: perovskite oxynitrides denoted by ABO2N were all considered in their cubic polymorph 

whose unit cell consists of only five atoms, and thus structural features, such as rotation of the 

octahedral unit TaO4N2 (octahedral-tilting [15], as illustrated in Figure 4-1) and characteristic anionic 

distribution (anion ordering [16], as explained in chapter 3) in the perovskite crystals were not taken 

into account. These structural factors are known to impact on the structures of both conduction [17,18] 

and valence bands [19], respectively, and thus they need to be considered in modeling and calculating 

the properties of MgTaO2N. 

 

 

 

 

Figure 4-1. Schematic illustration of the octahedral-tilting in perovskites where the dashed circles 

correspond to A-site cations.  
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The second issue is that only perovskite-type MgTaO2N was structurally modeled and other 

polymorphs have not been considered. Generally, a compound with the chemical formula ABX3 

assumes the perovskite structure only when its tolerance factor t (reported in Eq (4.1)) is close to one 

[20,21].  

𝑡 =  
𝑟୅ +  𝑟ଡ଼

√2(𝑟୆ +  𝑟ଡ଼)
 

where ri (i = A, B, X) is the ionic radius of the three species. However, compared to the A site cation 

of previously reported tantalum oxynitrides such as Ca2+, Sr2+, and Ba2+, the ionic radius of Mg2+ is 

clearly smaller and thus MgTaO2N is characterized by crystal structures other than perovskite [22]. 

Since the ionic radii of the MgTaO2N constituents (Ta5+: 0.64 Å, O2-: 1.38 Å, N3-: 1.46 Å [23]) are 

quite similar to those of MgTiO3 [24, 25] (Ti4+: 0.605 Å, O2-: 1.38 Å [26]) which has ilmenite structure, 

MgTaO2N is expected to have the same crystal structure. To confirm such idea, using the following 

ionic radii, i.e. for O2- 1.38, for N3- 1.46, for Mg2+ 0.72, and for Ti4.5+ 0.66 Å (in this case the algebraic 

average between +4 and +5 oxidation number of Ta was considered), value for t = 0.73 was obtained, 

which further supports the stability of the ilmenite‒like polymorph for MgTaO2N. Therefore, not only 

perovskite but also ilmenite has to be taken into account in order to fully predict the photocatalytic 

properties of MgTaO2N from first principles.  

  

(4.1) 
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4-1-3. Objective of this work 

Here, in this study, I aim to disclose the properties of MgTaO2N considering octahedral-

tilting, anion ordering, and the interplay between perovskite and ilmenite polymorphs, and thereby 

discussing its applicability as material for photocatalysis. In particular, photocatalyst related properties 

such as bandgaps, band edge positions, and carrier effective masses of MgTaO2N will be calculated 

from first principles. Then, a brief outline for MgTaO2N material design as a novel photocatalyst will 

be provided by identifying the factors that impact on each property.  
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4-2. Computational details 

4-2-1. Structural models 

The initial structure of perovskite-type MgTaO2N (hereafter also p-MgTaO2N) is modeled 

by imposing the crystal coordinates of CaTaO2N [27], whose unit cell has the space group Pnma, 

replacing Ca atoms with Mg ones. Since CaTaO2N already has intrinsic octahedral-tilting of TaO4N2, 

that of MgTaO2N was successfully modeled by imposing the former coordinates as the initial ones for 

the latter structure. For p-MgTaO2N, 13 different anion orderings (hereafter also aors) were prepared, 

from A1 to F4 as shown in Figure 3-1. in chapter 3, similarly to our previous analysis on the aors of 

CaTaO2N [19]. 

The initial structure of ilmenite-type MgTaO2N (hereafter also i-MgTaO2N) derives from 

the rhombohedral unit cell of MgTiO3 with space group R3ത [24], initially modeled replacing Ti atoms 

with Ta ones and one third of O atoms with N ones. Also, two different anion distributions, cis and 

trans (see Figure 4-2), were modeled in order to relate the electronic properties with its anion ordering. 

Density functional theory, as implemented in the VASP code [28-31], was employed in order 

to geometrically relax the initial structures. On top of the optimized geometries the electronic 

properties were calculated. The convergence was considered achieved once the forces on individual 

atoms were smaller than 0.01 eV/Å. The Brillouin Zone (BZ) was sampled with a 10 × 7 × 10 -

centered mesh for p-MgTaO2N and with a 11 × 11 × 4 one for i-MgTaO2N. In particular, the GGA-
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PBE exchange correlation functional [32] and the projected augmented wave (PAW) method [33, 34] 

were employed, along with an energy cutoff for the plane wave of 500 eV. 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Initial structures of i-MgTaO2N with two anion distributions. Brown: tantalum, red: 

oxygen, blue: nitrogen, orange: magnesium. 
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4-2-2. Calculation conditions 

In order to discuss the fundamental photocatalytic properties of both p-MgTaO2N and i-

MgTaO2N, I have calculated bandgaps (Eg), carrier effective masses, and band edge positions. 

Electronic properties were calculated on the optimized structures of both polymorphs, with a 12 × 9 × 

12 (p-MgTaO2N) and a 13 × 13 × 5 (i-MgTaO2N) mesh of the BZ, until the difference in the total free 

energy between two consecutive steps was lower than 10-5 eV. Besides, HSE06 hybrid functional [35] 

was also applied to compensate the methodological underestimation of the electronic properties in the 

pure-DFT calculations. 

Bandgaps were approximated as the Kohn-Sham ones, and carrier effective masses were 

estimated using band dispersions (see Eq (3.1) and (3.2) in chapter 3). Band edge positions were 

estimated as the orbital energies referenced to the vacuum potential [36] that was calculated by means 

of a slab approach. As already pointed in the previous studies, the calculated value of the vacuum 

potential strongly depends on the surface structure of the slab model [37]. Therefore, similarly to our 

previous study on CaTaO2N, only one slab model was used to calculate the vacuum potential and 

define the “effective” vacuum potentials of the other anion orders by assuming that the potential of 

the bulk model equals that of the bulk region of the slab model [19] (see also Eq. (3.4) to (3.6) in 

chapter 3).  

To calculate the vacuum potential, a slab model with zero net dipole along the normal to the 
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slab surface was used. The thickness of the vacuum region was set to 19 Å on all slab models in order 

to prevent Coulomb interactions among replicas of the slab along the same direction [36, 38], while 

the thickness of the slabs was set to 30 Å (= six-unit layers) on p-MgTaO2N and 42 Å (= three-unit 

layers) on i-MgTaO2N. I have considered six slab models for p-MgTaO2N (Figure 4-3) and two slab 

models for i-MgTaO2N (Figure 4-4) and adopted that with the smallest surface energy as calculated 

from Eq (3.3) in chapter 3. All the ionic positions of each slab were fully relaxed with a 4 × 4 × 1 

centered sampling of the BZ until the forces on single atoms were smaller than 0.05 eV/Å. On the 

optimized structures, electronic calculations were performed with a 4 × 6 × 1 -centered sampling of 

the BZ on the slab models of p-MgTaO2N and a 6 × 6 × 1 -centered sampling of the BZ for i-

MgTaO2N with a total free energy convergence criterion of 10-4 eV. For all the slab models the 

potential of the vacuum region was converged and the bandgaps at the bulk regions reproduced those 

of the corresponding bulk models within 0.12 eV. The surface energies and the bandgaps of each slab 

model are listed on Table 4-1. 
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Figure 4-3.  Unit cells of each slab models for p-MgTaO2N. Three-types of slab models E2(001), 

F2(100), F4(100) were prepared as non-polar ones. O-rich and N-rich surface were considered on each 

slab model: 6 slab models were used. Accordingly, F2(100) with O-rich surface (the smallest surface 

energy) was adopted in the vacuum level calculation. 
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Figure 4-4.  Unit cells of each slab models for i-MgTaO2N, two slab models, cis- and trans-(001), 

were prepared as non-polar ones, adopting the former in the vacuum level calculation. 

 

 

Table 4-1.  Surface energies and bandgaps calculated using each slab model. All the bandgaps in this 

table are calculated at DFT-PBE level of theory. 

 

 

 

 

 

 

 

  

 Esurf [mJ/m2] Eg (slab) [eV] Eg [eV] 

p-MgTaO2N    

E2(001)_Orich 1055.7 2.37 2.25 

E2(001)_Nrich 1250.9 2.29 2.25 

F2(100)_Orich 1030.5 2.78 2.66 

F2(100)_Nrich 1491.8 2.68 2.66 

F4(100)_Orich 1180.6 2.95 2.95 

F4(100)_Nrich 1406.6 3.02 2.95 

i-MgTaO2N    

cis(001) 839.5 3.13 3.05 

trans(001) 846.2 2.95 3.02 
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4-3. Impacts of octahedral-tilting 

Structural parameters, bandgaps, and carrier effective masses of each p-MgTaO2N aors are 

listed in Table 4-2. Compared to the initial structures i.e., those of CaTaO2N, as previously mentioned, 

lattice parameters are shorter by ~1-5 %, while bond angles ∠Ta-X-Ta (X = O, N) are narrower by 

~12-15°. On the other hand, their bond lengths 𝑟୘ୟି୒ and  𝑟 ୟି୓ remain almost unaltered, proving 

that the octahedral-tilting increases in p-MgTaO2N, compared to CaTaO2N.  

Bond angles ∠Ta-X-Ta (X = O, N) of p-MgTaO2N also vary among different aors: they 

differ up to 2.2°, proving that the magnitude of octahedral-tilting also depends on the aors. Bond 

angles ∠Ta-X-Ta of A~B2, E2, and E3 are smaller than the average bond angles of all aors (137.7°), 

while those of the remaining ones, i.e., C, D, E1, F1~F4 are larger than the same average value. Thus, 

I will refer to the former aors as “less-tilted” and to the latter as “more-tilted”.  

For all aors, average bond angles ∠Ta-N-Ta are always larger than ∠Ta-O-Ta ones, while 

average bond lengths 𝑟୘ୟି୒ are always shorter than  𝑟 ୟି୓ ones, in clear contrast with the order of 

the ionic radius of N3- and O2-. Additionally, most of the adjacent Ta-X bonds, i.e., Ta-X-Ta (X=O, N) 

differ by ~0.1 Å in average, as illustrated in Figure 4-5. Such structural characteristics can be explained 

by assuming the existence of a partial covalent nature of the Ta-X bond mainly associated with a d-

p interaction [39-42]. Nitrogen reduced electronegativity ‒ compared to oxygen ‒enhances the 

covalent nature of the Ta-N bond vs Ta-O bond, also resulting in bond angle opening and shortening  
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Figure 4-5.  Asymmetric bond lengths between the consecutive Ta-N bonds. 

 

the bond lengths.  

The magnitude of d-p  interaction can be described as the difference between the two bond 

lengths that connect X anion and Ta, i.e., ∆𝑟୘ୟି୓ and ∆𝑟୘ୟି୒. These values differ among the aors 

and interestingly correlate with the bond angles ∠Ta-X-Ta (see Figure 4-6) showing that the more 

tilted the octahedron the larger the Ta-X d-p  interaction. 

The octahedral-tilting also impacts on bandgaps. Those of p-MgTaO2N are more open, 

ranging from 2.6 eV to 4.1 eV, than those of analogous oxynitrides such as BaTaO2N (2.0 eV), 

SrTaO2N (2.1 eV), and CaTaO2N (2.5 eV ) [9] whose octahedral-tilting is rather small. Besides, in our 

case more-tilted aors shows much larger bandgaps. Both trends suggest the non-negligible positive 

correlation between bandgaps and octahedral-tilting. 
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Figure 4-6. Correlation between bond angles (∠Ta-X-Ta) and bond lengths differences in (a) Ta-O 

bond (∆𝑟୘ୟି୓) and (b) Ta-N bond (∆𝑟୘ୟି୒). ∆𝑟୘ୟି୓ and ∆𝑟୘ୟି୒ shows the larger value when ∠

Ta-X-Ta is rather small, indicating the increase of the covalent interaction.   
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The calculated carrier effective mass of p-MgTaO2N also indicates the strong relation 

between octahedral-tilting and the band dispersion, especially in the conduction region. For p-

MgTaO2N, electron effective mass of me
* range between 0.66 to 2.87 m0 (1.27 m0 in average) while 

the hole effective mass mh
* between 0.82 and 2.08 m0 (1.40 m0 in average). Electron and hole effective 

masses of p-MgTaO2N compared to those of CaTaO2N are shown in Figure 4-7 and 4-8, respectively. 

Compared to the effective mass of CaTaO2N (me
*: 0.63 m0 in average, mh

*: 1.75 m0 in average) [19], 

electron effective masses of p-MgTaO2N are quite larger, while its hole effective masses are rather 

similar. In addition, the bond angles ∠Ta-X-Ta (X = O, N) of p-MgTaO2N strongly correlate with the 

electron effective mass, while negligible correlation is observed with the hole effective mass, as shown 

in Figure 4-9. Thus, the picture that emerges from our analysis is that the octahedral-tilting mainly 

impacts on the structures of conduction bands (CBs).  
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Figure 4-7. Electron effective masses of p-MgTaO2N compared to CaTaO2N. 
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Figure 4-8. Hole effective masses of p-MgTaO2N compared to CaTaO2N. 
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Figure 4-9.  Correlation between bond angles (∠Ta-X-Ta) and carrier effective mass of (a) electrons 

and (b) holes.  
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The correlation between octahedral-tilting and the CB structures are also confirmed by the 

p-MgTaO2N band edge positions reported in Figure 4-10 for different aors, with VBMs lying between 

+1.16 VNHE and +2.10 VNHE, while CBMs between -1.45 VNHE and -2.04 VNHE, most of which straddle 

the water redox potentials. As shown in Figures 4-11 (a) and (b), CBM positions are strongly correlated 

with the ∠Ta-X-Ta bond angles, while VBM positions only slightly do it. All these results show that 

the octahedral-tilting is the main factor for the different CBM positions among the aors.  

 

 

 

 

 

 

 

 

Figure 4-10. Band edge positions of p-MgTaO2N. The vertical axis was set to the normal hydrogen 

electrode (NHE) potential.  
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Figure 4-11.  (a) Correlation between bond angles (∠Ta-X-Ta) and CBM positions. (b) Correlation 

between bond angles (∠Ta-X-Ta) and VBM positions. 
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The difference in CB electronic structures is also observed in the Density of States (DOS) 

and Projected Density of States (PDOS) of p-MgTaO2N, reported in Figure 4-12. CB dispersions of 

less-tilted aors i.e., A1~B2, E2, and E3, are relatively smooth, while those of more-tilted ones are 

sharp. Besides, the bottom regions of the CBs of the formers mainly consist of Ta 5d, while additional 

contribution of O 2p is observed in the same regions of the latter ones. These characteristics indicate 

that the uplift of the CBM positions with the increasing octahedral-tilting originates from the band 

dispersion reduction that is caused by the d-p  interaction between Ta 5d and O 2p in the CBs. Similar 

trends are also reported in previous report by Eng et al. [17], where the relation between the band 

dispersion reduction together with the octahedral-tilting increase are ascribed to the increase of the 

antibonding character at the CBM.  
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Figure 4-12. DOS and PDOS of p-MgTaO2N. Their energy positions are aligned with the band edge 

positions depicted in Figure 4-10. Black dotted line: total DOS, Red dashed line: O 2p, Blue dashed 

line: N 2p, Brown solid line: Ta 5d. 
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Now, based on the results above, the possible applicability and the material design guidelines 

of p-MgTaO2N can be discussed as follows. 

First, as mentioned in the previous section, most of the p-MgTaO2N configurations have 

suitable band edge positions for overall water splitting, since their VBM positions are lower than the 

OER potential and CBM positions are higher than the HER potential. In particular, larger potential 

differences between CBM positions and HER potential are fingerprint of their strong tendency towards 

the HER. Nevertheless, their bandgaps are still larger than the energy of visible light, except for A2, 

whose VBM does not exceed the oxygen evolution potential.  

 Accordingly, the bandgaps of p-MgTaO2N should be reduced mainly modifying their CBM 

positions. As demonstrated in the previous section, CBM positions are strongly correlated with 

octahedral-tilting of p-MgTaO2N i.e., the suppression of the tilting would lead to a CBM reduction. 

Furthermore, these less-tilted p-MgTaO2N are also promising as water splitting photocatalyts since the 

electron effective mass diminishes as the octahedral-tilting decreases, as reported in Figure 4-9. 

Therefore, a modified, tilting reduced p-MgTaO2N, is highly desirable: doping/alloying by replacing 

Mg2+ with different cations whose ionic radii is larger than Mg2+ will reduce the octahedral-tilting in 

p-MgTaO2N offering suitable band structures for visible light driven water splitting.  
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4-4. Impacts of crystal polymorphism 

  Structural parameters, bandgaps, and carrier effective masses of each i-MgTaO2N are 

reported on Table 4-3. Their formation energies were also compared to that of p-MgTaO2N in the most 

stable aor, and it was found that they are more stable by 249 meV/FU and 174 meV/FU in cis and 

trans arrangement, respectively. 

In both i-MgTaO2N, average bond lengths 𝑟୘ୟି୒ are always shorter than 𝑟 ୟି୓, like in p-

MgTaO2N, confirming the existence of a partial covalent nature of the bond in such class of 

compounds. In this case, at variance with the p-MgTaO2N, adjacent Ta‒X bond lengths i.e., Ta‒X‒Ta 

(X = O, N), are extremely different. Such differences (∆𝑟୘ୟିଡ଼, X = O, N) were more than twice larger 

than the same in p-MgTaO2N, and thus the enhanced covalent nature, that is, the enhanced overlap 

between tantalum and anion orbitals, are even larger in i-MgTaO2N. Such difference between the two 

polymorphs is ascribed to their different bond angles ∠Ta-X-Ta (X = O, N). In p-MgTaO2N, the 

overlap between Ta 5d and anion 2p is much hindered, since there is essentially a symmetry mismatch 

between such orbitals when they are in linear fashion [17,19] while the reduced bond angles in i-

MgTaO2N diminish the symmetry mismatch and thus lead to the enhanced overlap.  

Bandgaps of both i-MgTaO2N are larger than 4.2 eV, markedly larger than those of p-

MgTaO2N, with the material resulting a large gap semiconductor. Carrier effective masses are also 

larger in i-MgTaO2N, most of which are over 3.0 m0. Additionally, the band edge positions reveal 
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that i-MgTaO2N is unsuitable for both oxygen and hydrogen evolution reaction (OER and HER, 

respectively) according to their positioning towards the NHE (Figure 4-13). PDOS of i-MgTaO2N 

reported in Figure 4-14 shows that their VB top and CB bottom mainly consist of anion 2p and Ta 5d, 

respectively, as for p-MgTaO2N. Nevertheless, for i-MgTaO2N, Ta 5d contribution is also present in 

the top region of VBs, while that of O 2p and N 2p is similarly present in the bottom region of CBs. 

These results indicate that the overlap between Ta 5d and anion 2p occurs in both bands, similarly 

witnessing a reduced selectivity of the carriers with subsequent reduced applicability in devices for 

photoconversion. By comparing the DOS of p-MgTaO2N and i-MgTaO2N, dispersions are clearly 

small in the latter one, and based on previous results, the i-MgTaO2N bandgap opening is ascribed to 

the band dispersion decrease which is consequence of the Ta-X interaction increase. 

 In addition to the increased interaction between Ta and X, the decrease of band dispersion 

in i-MgTaO2N is mainly related to the layered (2D) nature of the structures: in the crystal of p-

MgTaO2N, TaO4N2 octahedral units share their apices forming a 3D network, while they share their 

sides in the crystal of i-MgTaO2N, thus resulting in a quasi 2D structure. As shown in Figure 4-15, the 

layered structures of i-MgTaO2N reduce their ionic density of both Ta cations and O, N anions 

compared to those of p-MgTaO2N. 
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Figure 4-13. Band edge positions of i-MgTaO2N. The vertical axis was set to the normal hydrogen 

electrode (NHE) potential. 

 

 

 

 

 

 

Figure 4-14. DOS and PDOS of i-MgTaO2N. Their energy positions are in line with the band edge 

positions depicted in Figure 4-13. Black dotted line: total DOS, Red dashed line: O 2p, Blue dashed 

line: N 2p, Brown solid line: Ta 5d.  



Chapter 4.  Effects of Octahedral-Tilting and Crystal Polymorphism: A Demonstration on MgTaO2N 

  118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15. The distribution of the distance between the two homologous ions. For p-MgTaO2N, each 

Ta has 12 other Ta ions and X has 75 other X anions within 5 Å distances (here, O and N are not 

distinguished). At variance, for i-MgTaO2N, each Ta cation has only 4 other Ta cations, while each X 

has only 44 other anions within the same distance.  
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Considering the use as a photocatalyst, there are some disadvantages in i-MgTaO2N in terms 

of its photocatalyst related properties. The bandgap of both i-MgTaO2N models is larger than 4.0 eV, 

which is markedly larger than the energy of visible radiation. Also, since the carrier effective mass of 

i-MgTaO2N is noticeably larger, its carrier mobility will clearly result reduced. Although the CBM 

positions of i-MgTaO2N are negative enough to exceed the HER potential, their VBM positions are 

not positive enough to exceed the OER potential, and thus they are expected to be less performing in 

oxygen evolution ability. Therefore, in contrast to p-MgTaO2N, i-MgTaO2N is not suitable as water 

splitting photocatalyst. 
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4-5. Conclusion 

Computational screening procedures have revealed MgTaO2N a promising candidate for 

visible light responsive water splitting photocatalysis. However, some structural features such as 

octahedral-tilting, anion ordering, and polymorphism have not been considered in the previous studies, 

and thus the properties of MgTaO2N as a photocatalyst material have been largely overlooked. 

I have here calculated the properties of MgTaO2N analyzing the mentioned features on 

different polymorphs and thereby discussed the applicability of MgTaO2N as a novel photocatalyst. 

Additionally, I have suggested a guideline to control and improve the properties of MgTaO2N in 

agreement with the results of the present analysis. 

Accordingly, I have shown that, in contrast with the intrinsic structural instability, most of 

the perovskite-type MgTaO2N have band structures highly suitable for overall water splitting. In 

particular, p-MgTaO2N with reduced octahedral-tilting similarly has reduced bandgap and band edge 

positions that straddle the water redox potentials, although its bandgap is still slightly larger than the 

energy of visible light. On the other hand, MgTaO2N in ilmenite polymorph, the thermodynamically 

more stable one, has a bandgap extremely larger than visible light energy and band edge positions that 

do not match with the water redox potentials. As consequence, i-MgTaO2N performances in solar-to-

energy devices will result quite poor.  

By comparing the structural features and the calculated properties, octahedral-tilting results 
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to highly impact on the conduction band structures. In particular, the larger the octahedral-tilting the 

more marked the interaction between Ta 5d and anion 2p in the conduction band. Doping/alloying the 

A-site cation of MgTaO2N in the perovskite polymorph with a larger ionic radius cation, A2+, forming 

isovalent A’xMg(1-x)TaO2N alloys is a way to reduce their octahedral-tilting, improving the 

performances of the final photocatalyst.  
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Chapter 5. 

Composition Dependence of Oxynitride Solid Solution: 

A Demonstration on LaMgxTa1-xO1+3xN2-3x 

 

5-1. Introduction to LaMgxTa1-xO1+3xN2-3x photocatalyst 

5-1-1. Development of solid solution-based photocatalysts 

Following the emerging photocatalysts consisting of oxynitrides, solid-solutions of such 

compounds are also attracting wide attention due to their improved photocatalytic activities. One of 

the noticeable examples of them is LaMgxTa1-xO1+3xN2-3x, which was developed by Domen’s group in 

2015 [1]. This compound had absorbed light with wider range of wavelengths (~ 600 nm) and had 

achieved overall water splitting without any sacrificial agent. 

LaMgxTa1-xO1+3xN2-3x is a solid solution between LaMg2/3Ta1/3O and LaTaO2N, all of which 

have perovskite structure. It had been prepared by synthesizing oxide precursors by citric acid method 

and subsequently nitriding them in a dry NH3 flow under a high temperature [1-4]. It was also reported 

that the water splitting activity of LaMgxTa1-xO1+3xN2-3x differs depending on its composition, and 

reaches the maximum at x = 1/3. 
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5-1-2. Important factors in modifying the solid solutions 

There are two key factors which led to a successful achievement of overall water splitting 

by LaMgxTa1-xO1+3xN2-3x. One is the fine-tuning of its band structure by changing its composition. In 

particular, the O/N ratio, both of which contribute their orbitals to the valence bands, and Ta content, 

which gives their orbitals to construct the conduction bands, will be varied depending on the 

composition. Thus, it is strongly expected that the band structures of LaMgxTa1-xO1+3xN2-3x will be 

changed due to the compositional variation.  

The other key factor is that unwanted side reactions such as the backward reaction of O2 and 

the self-oxidation of N3- was successfully suppressed by coating the photocatalyst surface with 

amorphous oxyhydroxide TiOXH (= TiO2-m(OH)2m·xH2O). It is thought that the layers of amorphous 

TiOXH had played a role like a molecular sieve since they have a porous structure. Such coating 

method can also be applied not only to LaMgxTa1-xO1+3xN2-3x but also to other photocatalyst materials, 

and have already succeeded in improving the water splitting activities of some other photocatalysts 

such as CaTaO2N [5] and LaScxTa1-xO1+2xN2-2x [2]. 

Nevertheless, there still remains a critical issue to be tackled in the former factor in order to 

consider the compositional tuning of the band structure of LaMgxTa1-xO1+3xN2-3x. The issue is that the 

dependence of the band structure of the solid solution on its composition has not been systematically 

investigated yet, and thus the factor that maximized its activity at the composition of x = 1/3 is not 
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fully understood yet. In other words, the guidelines to tune the photocatalyst related properties of solid 

solutions to their optimized ones for water splitting has not been established. Hence, in order to 

accelerate the material design in the field of solid solution photocatalysts, one need to relate their band 

structures to their compositions, and identify the positive and negative factors that exist at each 

composition. 
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5-1-3. Research objectives 

Here, in this study, I will systematically calculate and compare the band structures of 

LaMgxTa1-xO1+3xN2-3x by means of first principle calculations, using appropriate structural models of 

the solid solutions. Furthermore, I will estimate the photocatalyst related properties such as bandgaps, 

carrier effective masses, and band edge positions to understand the positive and negative factors at 

each composition and clearly articulate the reason why the water splitting activity of LaMgxTa1-

xO1+3xN2-3x reaches the highest at the composition of x = 1/3. 
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5-2. Computational details 

First, I prepared the structural model of LaMgxTa1-xO1+3xN2-3x at each composition, and then 

calculated its band structure from first principle. Subsequently, I estimated the photocatalyst related 

properties at each composition by analyzing the obtained band structure.  

5-2-1. Structural models  

The structural models of LaMgxTa1-xO1+3xN2-3x were prepared based on the crystal 

coordinate data previously reported by neutron diffraction. The unit cells of LaMgxTa1-xO1+3xN2-3x 

consists of 20 atoms with space group I2/m at x = 0 (LaTaO2N [6]) and with P21/n at the other 

compositions [7], both of which are monoclinic. In LaMgxTa1-xO1+3xN2-3x, Ta and Mg occupy the 

equivalent cation sites, and O and N occupy the equivalent anion sites. As mentioned later, the Ta/Mg 

ratio at each cation site has been already reported [7], and it has also been previously revealed that 

cations and anions in perovskite oxynitrides are generally arranged according to certain rules [6,8-10]. 

Thus, I prepared the structural models in accordance with such orderings of ions, using a 2 

× 1 × 3 supercell for LaTaO2N and 2 × 3 × 1 supercells for LaMgxTa1-xO1+3xN2-3x (x ≠ 0) (120 atoms). 

Here, I considered the compositions at x = 0, 1/6, 1/3, 1/2, and 2/3 (The number of constituent atoms 

at each composition are listed in Table 5-1). It should be noted that, at each composition, the ionic 

arrangement was determined individually, since LaMgxTa1-xO1+3xN2-3x is experimentally synthesized 

from the oxide precursor that differs depending on the composition [1,2].  
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Table 5-1. The number of the constituent atoms in the supercell at each composition 

 

 

 

 

The possible cation arrangements in the structural models were considered by following the 

reported Ta/Mg ratio at each site in the unit cell in the previous neutron diffraction measurements (See 

Table 5-2 [7] and Figure 5-1). Then, the most stable arrangements were determined with help from the 

insights on cation orderings in perovskite crystals previously reported, where the two-different cations 

(B’, B’’) at B sites (equivalent sites) are revealed to be delocalized to form a “rock-salt” type 

arrangement when their sizes or charges are significantly different [8, 9]. Such an arrangement occurs 

in order to minimize the Coulomb interaction between the cations with the greater charge, and to make 

the six anion sites adjacent to B equivalent to each other. Our preliminary calculation results also 

followed such rule, i.e. the more delocalization of Ta5+ cations, the smaller total energy of the structural 

model.  
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Table 5-2. The reported Ta/Mg ratio at each site in the unit cell [7] 

 

 

 

 

 

 

 

 

Figure 5-1. M1 and M2 sites in the 2 × 3 × 1 supercell for LaMgxTa1-xO1+3xN2-3x. For simplicity, La 

atoms are omitted. Hereafter, the two layers vertical to c-axis will be called “layer 1” and “layer 2”, 

respectively, as this illustrations in order to depict the structural models clearly in the following 

sections. 

 

On the other hand, the possible anion arrangements in the structural models were considered 

in accordance with some previous studies on anion orderings [6, 10], since the O/N ratios had not been 

experimentally measured. In a number of previous studies on perovskite oxynitrides, N3- was revealed 

to coordinate to the B site cation (central cation) in cis-configuration or fac-configuration. In addition, 

Layer 1 Layer 2 
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according to the study in chapter 3, it was demonstrated that N3- in perovskite oxynitrides prefers to 

be arranged in lower symmetric configurations. Our preliminary calculations on the structural models 

with different anion arrangements also confirmed that trans-configurations hardly occur at room 

temperature (78 meV/atom), and that the structures with delocalized N3- are more stable than those 

with rather localized N3-. Therefore, I only prepared the structural models of LaMgxTa1-xO1+3xN2-3x 

with the restriction that N3- can only take cis- or fac-configuration (It should be noted that at x = 1/6 a 

few pairs of N in trans-configuration were inevitably given since the N/Ta ratio is larger than three.). 

Then, finally, the relative positions between cations and anions were determined according 

to the previously reported insights, where N combines with Ta more strongly than with Mg, and O 

combines with Mg more strongly than with Ta [11]. A similar trend was also obtained from our 

preliminary calculations on the testing structural models, indicating that N-Mg bond will hardly be 

formed at room temperature. Thus, I prepared the structural models of LaMgxTa1-xO1+3xN2-3x without 

any N-Mg bonds in their supercells. 

Here, the process of determining the structural model at each composition will be provided. 

First, the structural model at x = 0 (LaTaO2N) was prepared in accordance with the crystal coordinates 

and the O/N ratio previously reported where the O/N ratio at Y1 sites (0.7394, 0.0, 0.6775), Y21 sites 

(0.0, 0.7818, 0.0), and Y22 sites (1/2, 0.2148, 0.0) were revealed to be 1:1, 1:1, and 0:1, respectively 

[6]. Though the number of possible anion arrangements that satisfy such O/N ratio is 22 × 22 = 16  
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Figure 5-2.  Possible anion orderings in LaTaO2N viewed from different angles with their relative 

total energies (E) and bandgaps (Eg) calculated within PBE level. Brown, red, and blue are Ta, O, 

and N atoms, respectively. La atoms are omitted.  

 

(where each 22 corresponds to the number of possible outcomes at Y1 and Y21 sites), some of them 

were essentially the same anion orderings due to their symmetries. Thus, they can be reduced to three 

different anion orderings (A-C) as shown in Figure 5-2. Here, C was revealed to be the most stable 

one, and A was revealed to have the smallest bandgap. 

 Second, the structural model at x = 2/3 (LaMg2/3Ta1/3O3) was determined following the 

Ta/Mg ratio listed in Table 5-2. At this composition, two-thirds of M1 sites are dominated by Ta, while 

all the M2 sites are dominated only by Mg. Hence, in the structural models prepared using 2 × 3 × 1 

A B C 

E = 27.0 meV/FU 

Eg = 0.96 eV 

E = 20.0 meV/FU 

Eg = 0.98 eV 

E = 0.0 meV/FU 

Eg = 1.35 eV 



Chapter 5.  Composition Dependence of Oxynitride Solid Solution: A Demonstration on  
LaMgxTa1-xO1+3xN2-3x 

  137 

 

supercells, eight of the twelve M1 sites were placed by Ta and the other B-cation sites were placed by 

Mg. Here, one can consider three different Ta arrangements in each layer and two different types of 

their sequence (“in” and “out”) as depicted in Figure 5-3. Among these six possible cation orderings, 

AOut was revealed to be the most stable one, and AIn in to have the smallest bandgap. 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. Possible cation orderings in LaMg2/3Ta1/3O3 with their relative total energies (E) and 

bandgaps (Eg) calculated within PBE level. Brown, orange, and red are Ta, Mg, and O atoms, 

respectively. La atoms are omitted. Solid and dotted lines correspond to the Ta sites on layer 1 and 

layer 2, respectively.  

AIn BIn CIn 

AOut BOut COut 

E = 83.0 meV/FU 

Eg = 2.81 eV 

E = 50.3 meV/FU 

Eg = 3.32 eV 

E = 42.0 meV/FU 

Eg = 3.32 eV 

E = 0 meV/FU 

Eg = 3.67 eV 

E = 33.0 meV/FU 

Eg = 3.56 eV 

E = 18.4 meV/FU 

Eg = 3.68 eV 
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Subsequently, the structural model at x = 1/2 (LaMg1/2Ta1/2O5/2N1/2.) was also discussed in 

line with the Ta/Mg ratio in Table 5-2. According to the constraint that N can only combine with Ta, 

Ta was considered to form a kind of linkage mediated by N. Additionally, since two-thirds of Ta 

occupy M1 sites, such linkage was assumed to be a branched one as depicted in Figure 5-4. Then, all 

the remaining anion sites around Ta in Figure 5-4 was placed by O in order to satisfy the number of 

each constituent atom listed in Table 5-1. Here, the possible structural models were prepared by 

arranging four [-N-TaO3(TaO5N)-N-TaO4-] units defined in Figure 5-4 in the supercell. These units 

can be arranged either on the two planes by half (as models A1-A6 in Figure 5-5) or on only single 

plane (as B1-B2 in Figure 5-5), and six and two different anion orderings can be introduced for each 

case, respectively. Then, among these eight candidates, it was revealed that A6 is the most stable one 

and B2 has the smallest bandgap. 

 

 

 

 

 

Figure 5-4. The assumed linkage unit [-N-TaO3(TaO5N)-N-TaO4-] in the structural models of 

LaMg1/2Ta1/2O5/2N1/2. For the simplicity, O atoms are omitted. 



Chapter 5.  Composition Dependence of Oxynitride Solid Solution: A Demonstration on  
LaMgxTa1-xO1+3xN2-3x 

  139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Possible arrangement of [-N-TaO3(TaO5N)-N-TaO4-] units in LaMg1/2Ta1/2O5/2N1/2 with 

their relative total energies (E) and bandgaps (Eg) calculated within PBE level. Brown, orange, red, 

and blue are Ta, Mg, O, and N atoms, respectively. La atoms are omitted. Solid and dotted lines 

correspond to the [-N-TaO3(TaO5N)-N-TaO4-] units on layer 2 and layer 1, respectively. 

E = 75.3 meV/FU 

Eg = 2.29 eV 

E = 76.7 meV/FU 

Eg = 2.28 eV 

A1 A2 A3 

A4 A5 A6 

E = 27.8 meV/FU 

Eg = 2.39 eV 

E = 143.7 meV/FU 

Eg = 2.34 eV 

E = 1.4 meV/FU 

Eg = 2.48 eV 

E = 143.7 meV/FU 

Eg = 2.35 eV 

E = 27.7 meV/FU 

Eg = 2.39 eV 

E = 0.0 meV/FU 

Eg = 2.47 eV 

B1 B2 
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 Next, the structural model at x = 1/3 (LaMg1/3Ta2/3O2N) was determined as well according 

to the Ta/Mg ratio shown in Table 5-2 and the constraints on the arrangements of N previously 

mentioned. First, since the N/Ta ratio is 3:1 at this composition, it was considered that all Ta were 

coordinated by three N in fac-configuration to form the linkage unit depicted in Figure 5-6. Then, such 

units were assumed to be arranged in “zig-zag” or “cylinder” orderings as depicted in Figure 5-7 and 

Figure 5-8, respectively, since the number of Ta placed at M1 and M2 sites are the same at this 

composition. Here, eight different arrangements of N were introduced for each case, and subsequently 

it was revealed that Z5 is the most stable one and C3 has the smallest bandgap. 

 

 

 

 

 

 

 

Figure 5-6. The assumed linkage in the structural models of LaMg1/3Ta2/3O2N. For the simplicity, O 

atoms are omitted. 
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Figure 5-7. Possible “zig-zag” arrangement of the linkage units in LaMg1/3Ta2/3O2N with their relative 

total energies (E) and bandgaps (Eg) calculated within PBE level. Brown, orange, red, and blue are 

Ta, Mg, O, and N atoms, respectively. La atoms are omitted. Solid and dotted triangles correspond to 

the N atoms surrounding Ta on layer 1 from the front and the back side, respectively.  

Z1 Z2 Z3 

Z4 Z5 Z6 

E = 5.0 meV/FU 

Eg = 2.03 eV 

E = 7.5 meV/FU 

Eg = 2.08 eV 

E = 0.8 meV/FU 

Eg = 1.97 eV 

E = 5.0 meV/FU 

Eg = 2.02 eV 

E = 0.0 meV/FU 

Eg = 2.00 eV 

E = 0.1 meV/FU 

Eg = 2.01 eV 

Z7 Z8 

E = 0.9 meV/FU 

Eg = 1.99 eV 

E = 1.0 meV/FU 

Eg = 1.99 eV 
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Figure 5-8. Possible “cylinder” arrangement of the linkage units in LaMg1/3Ta2/3O2N with their relative 

total energies (E) and bandgaps (Eg) calculated within PBE level. Brown, orange, red, and blue are 

Ta, Mg, O, and N atoms, respectively. La atoms are omitted. Solid and dotted triangles correspond to 

the N atoms surrounding Ta on layer 1 from the front and the back side, respectively.  
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E = 63.1 meV/FU 

Eg = 1.82 eV 

C7 C8 

E = 46.6 meV/FU 
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 Finally, the structural model at x = 1/6 (LaMg1/6Ta5/6O3/2N3/2) was determined as follows. 

Initially, the cation ordering was investigated using the same size of supercell (2 × 3 × 1) of a 

hypothetical compound, LaMg1/6Ta5/6ON2, where four Mg are surrounded by six O, and the other 

anion sites are occupied only by N. Here, the Ta/Mg ratio at M1 and M2 sites were assumed to be 5:1 

(= random arrangements) by analogy with those at x = 1/3 (see Table 5-2), and Mg was assumed be 

non-adjacent to each other in order to reflect its dilute concentration. Thus, eight different cation 

orderings were prepared as shown in Figure 5-9, and among them A was revealed to be the most stable 

one. Subsequently, six anion arrangements were considered as shown in Figure 5-10, and A2 was 

revealed to be the most stable one and A5 to have the smallest bandgap.  

 

 

 

 

 

 

Figure 5-9. Possible cation orderings in LaMg1/6Ta5/6ON2 with their relative total energies (E) 

calculated within PBE level. Brown, orange, and red are Ta, Mg, and O atoms, respectively. La atoms 

are omitted. Solid and dotted lines correspond to the Mg sites on layer 2 and layer 1, respectively. 

E F G H 

E = 0.0 meV/FU E = 10.6 meV/FU E = 8.5 meV/FU 

E = 19.7 meV/FU E = 20.2 meV/FU E = 10.2 meV/FU E = 20.2 meV/FU 

E = 18.2 meV/FU 

A B C D 
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Figure 5-10. Possible ionic arrangements in LaMg1/6Ta5/6O3/2N3/2 on layer 2 (top) and 1 (bottom) with 

their relative total energies (E) and bandgaps (Eg) calculated within PBE level. Brown, orange, red, 

and blue are Ta, Mg, O, and N atoms, respectively. La atoms are omitted. Solid and dotted triangles 

correspond to the O atoms surrounding Ta on each layer from the front and the back side, respectively. 
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Here, the structural model of LaMgxTa1-xO1+3xN2-3x at each composition with the most stable 

ionic arrangement were shown in Figure 5-11. The fundamental properties of LaMgxTa1-xO1+3xN2-3x 

such as band structures, density of states, carrier effective masses, were obtained by the calculation 

results of these most stable structural models. On the other hand, bandgaps and band edge positions 

were estimated not only from the most stable ones but also from the metastable structural model that 

has the smallest bandgap at each composition within an energy difference of 78 meV/atom (= 

vibrational energy per atom at room temperature), based on the consideration that the experimental 

absorption edge comes from the light absorption by the crystal domains with the smallest bandgap. 
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Figure 5-11. The structural models of LaMgxTa1-xO1+3xN2-3x in its most stable ionic arrangement 

viewed from different angles. Brown, orange, red, and blue are Ta, Mg, O, and N atoms, respectively. 

La atoms are omitted. 

  

x = 0 x = 1/6 x = 1/3 

x = 1/2 x = 2/3 
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5-2-2．Calculation procedures 

The optimized geometries and the electronic structures of LaMgxTa1-xO1+3xN2-3x were 

calculated by means of the density functional theory (DFT) as implemented in VASP code [12-15]. 

The exchange-correlation energies were described within the theory of general gradient approximation, 

and thus PBE (Perdew–Burke-Ernzerhof) functional [16] was adopted for the calculations. The 

projector augmented wave (PAW) method was also applied [17, 18], and thus eleven electrons (5s, 5p, 

5d, and 6s) in La, eight electrons (2p and 3s) in Mg, eleven electrons (5p, 6s, and 5d) in Ta, six electrons 

(2s and 2p) in O, and five electrons (2s and 2p) in N were treated as valence states. In the geometrical 

optimizations, k-point sampling was set to 1 × 2 × 2 and the structures were relaxed until the forces 

on all atoms were smaller than 0.01 eV/Å and their total energies were converged within 10-4 eV. On 

the other hand, in the single point calculations, k-point sampling was set to 2 × 3 × 4 (3 × 4 × 2 at x = 

0) and the electronic structures were calculated until their total energies were converged within 10-5 

eV. In all cases, a 500 eV cutoff energy was used.  

 The band structures and the carrier effective masses were evaluated from Kohn-Sham 

eigenstates obtained in the single point calculations mentioned above, and the thermodynamic 

stabilities of the crystals were estimated based on their Kohn-Sham eigenvalues. In addition, to obtain 

the bandgaps and the band edge positions, HSE06 hybrid functional [19-21] was also applied to the 

single point calculations in order that the underestimation of the pure DFT calculated bandgaps will 
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be compensated.  

 The band structures of LaMgxTa1-xO1+3xN2-3x were calculated along eight high symmetry 

points ((0.0, 0.0, 0.0), A0(0.5, 0.0, 0.5), B(0.0, 0.0, 0.5), C(0.5, 0.5, 0.0) D(0.0, 0.5, 0.5), E0(0.5, 0.5, 

0.5), Y(0.5, 0.0, 0.0), Z(0.0, 0.5, 0.0)) in the Brillouin zones. The same symmetry points were also 

used in the calculation of the band structure of LaTaON2 (x = 0) though it has a different space group 

(I2/m for x = 0, and P21/n for x > 0), since I2/m also belongs to monoclinic crystal system as same as 

P21/n and thus has a similar Brillouin zone. It should be noted that there generally occurs a Brillouin 

zone folding in a supercell, and in this case the eight symmetry points were folded and to any one of 

the four symmetry points, , A0, B, or Y. However, the eight high symmetry points mentioned above 

were also directly applied to the band structures of the supercells here, since the VBM and CBM 

appeared at any one of the four symmetry points after the Brillouin zone folding at all compositions. 

 The charrier effective masses were obtained from the curvatures of valence and conduction 

bands around their maximum and minimum, respectively, as was the case in chapter 3 and 4 (see Eq 

(3.1) in chapter 3). Also in this study, the band curvatures were calculated from the high symmetry 

point where CBM and VBM appears toward the other seven high symmetry points. In this manner, the 

carrier effective mass for each direction was obtained individually. Here, the curvatures of the bands 

were calculated within a k-point range of ± 0.05 Å-1 from CBM and VBM, and the averaged effective 

mass was obtained as a harmonic mean value (see Eq (3.2) in chapter 3).  
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The band edge positions (𝐸௏஻ெ , 𝐸஼஻ெ ) of LaMgxTa1-xO1+3xN2-3x relative to the redox 

potentials of water were estimated as following procedures. First, the band edge offsets (∆𝐸௏஻ெ and 

∆𝐸஼஻ெ) between different compositions were calculated only from first principles. Subsequently, the 

band edge positions of LaTaO2N (x = 0) were set to the experimentally reported values, 𝐸஼஻ெ = -

0.62 VNHE and 𝐸௏஻ெ = +1.31 VNHE, which had been obtained from photoelectron spectroscopies in 

air (PESA) [2], and consequently all the band edge positions at the other compositions were estimated. 

In order to calculate the band edge offsets ( ∆𝐸௏஻ெ  and ∆𝐸஼஻ெ ) between different 

compounds or structures, there exist three different methods to be performed: (A) Referencing the 

band energies to the vacuum potentials [22, 23], (B) Referencing the band energies to the bulk 

potentials [23- 25], and (C) Referencing the band energies to the core levels [26, 27]. Each approach 

has advantages and disadvantages as follows. 

In method (A), one can evaluate the band edge positions of a compound using the vacuum 

potential which is obtained from the calculation on a slab model that has both a crystal region and a 

vacuum region in its unit cell, as demonstrated in chapter 3 and chapter 4. Such approach is superior 

in terms of its ability to evaluate the band edge positions of various types of compounds and structures 

independently. However, as mentioned in the previous chapters, the vacuum potential obtained from 

the calculations on a slab model generally has a strong dependence on the slab surface structure [23, 

28]. Therefore, when one evaluates the band edge offsets between different two compounds the result 
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will also inevitably reflects the difference between their surface structures. 

 In method (B), the band edge offsets between two different compounds (A, B) are estimated 

using the bulk potential (𝑉ୠ୳୪୩
୧ , i = A, B) obtained from each unit cell and a bulk potential offset 

(∆𝑉ୠ୳୪୩) obtained from a superlattice, i.e. a structural model that consists of several units of A and B 

contacting to each other at their interface. Indeed, the band edge offsets are obtained as the following 

equations,  

∆𝐸୚୆୑ = ∆𝐸୚୆୑
୅ − ∆𝐸୚୆୑

୆ + ∆𝑉ୠ୳୪୩ 

∆𝐸େ୆୑ = 𝐸୥
୅ − 𝐸୥

୆ − ∆𝐸୚୆୑ 

where,  

∆𝐸୚୆୑
୅  = 𝜀୚୆୑

୅ − 𝑉ୠ୳୪୩
୅  

∆𝐸୚୆୑
୆  = 𝜀୚୆୑

𝐁 − 𝑉ୠ୳୪୩
𝐁  

∆𝑉ୠ୳୪୩ = 𝑉ୠ୳୪୩
୅ − 𝑉ୠ୳୪୩

𝐁  

𝜀୚୆୑
୧  and 𝐸୥

୧  are the VBM energy and the bandgap of compound i (= A, B), respectively, that are 

also obtained solely from the calculations on each bulk unit cell. It should be noted that this method 

can be only applied to the evaluation of the band edge offsets between the compounds with similar 

crystal structures and lattice parameters, since one need to prepare the superlattice cell consists of both 

ones. When the lattice mismatch between the two compounds is small enough, this method will be 

excellent as it never contains the unphysical error caused by the difference between the surface 

(5.2) 

(5.5) 

(5.1) 

(5.3) 

(5.4) 
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structures of the two compounds like method (A). Furthermore, when the bulk potential offset is 

assumed to be zero, as in the case of estimating the band edge offsets among the same compound with 

various ionic arrangements (= as was the case in chapter 3 and chapter 4.), one can obtain the band 

edge offset without performing any calculation on their superlattice. 

In method (C), the band edge offset between different two materials (A, B) are evaluated 

using the core level (𝜀ୡ
୧ , i = A, B) obtained from each unit cell and a core level offset (∆𝜀ୡ) obtained 

from a superlattice, as following equations,  

∆𝐸୚୆୑ = ∆𝐸୚୆୑,௖
୅ − ∆𝐸୚୆୑,ୡ

୆ + ∆𝜀ୡ 

∆𝐸େ୆୑ = 𝐸୥
୅ − 𝐸୥

୆ − ∆𝐸୚୆୑ 

where, 

∆𝐸୚୆୑,ୡ
୅ = 𝜀୚୆୑

୅ − 𝜀ୡ
୅ 

∆𝐸୚୆୑,ୡ
୆ = 𝜀୚୆୑

୆ − 𝜀ୡ
୆ 

∆𝜀ୡ = 𝜀ୡ
୅ − 𝜀ୡ

୆ 

Only ∆𝜀ୡ needs the calculation on their superlattice, and the other values can be obtained only from 

the calculations on each unit cell. With this approach, one can appropriately estimate the band edge 

offsets between the solid-solutions with different compositions, by adopting the deep bands that 

consist of composition-independent atomic states as their core levels. 

 Here, in this study, I evaluated the band edge offsets between the different compositions by 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 



Chapter 5.  Composition Dependence of Oxynitride Solid Solution: A Demonstration on  
LaMgxTa1-xO1+3xN2-3x 

  152 

 

method (C), and those between the structural models of the same composition with different ionic 

orderings by method (B). As the core level used in method (C), I chose La 5s since the La content in 

LaMgxTa1-xO1+3xN2-3x is exactly the same in any composition. Then, I obtained ∆𝜀ୡ by the calculation 

on the superlattice that consists of the supercell of two compositions conjugates on their bc plane 

where the lattice mismatch is the smallest, as depicted in Figure 5-12. In the superlattice, the lattice 

parameter of b and c were set to the average between those of the two compositions. 

 

 

 

 

 

 

Figure 5-12. The example of superlattice used in the calculation of ∆𝜀ୡ between two compositions 

(A and B). 
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Finally, the thermodynamic stability of LaMgxTa1-xO1+3xN2-3x at each composition was 

estimated from both the formation energy ∆𝐸୤ and the defect energy ∆𝐸ୢ defined in Eq (5.11) and 

Eq (5.12), respectively. 

∆𝐸୤ = 𝐸ୠ୳୪୩ − ෍ 𝑛୧

୧

𝜇୧ 

∆𝐸ୢ = 𝐸ୢୣ୤ୣୡ୲ + ෍ 𝑛୧

୧

𝜇୧ − 𝐸ୠ୳୪୩ 

Here, 𝐸ୠ୳୪୩  is the total energy of the bulk model of LaMgxTa1-xO1+3xN2-3x,  𝑛୧  is the number of 

constituent atom i in its supercell, 𝜇୧ is the energy of the element substance of i per atom, and 𝐸ୢୣ୤ୣୡ୲ 

is the total energy of the supercell with a defect. The structural data of the elemental substances (La, 

Mg, Ta, O2, and N2) were obtained from Inorganic Material Database (AtomWork) developed by 

National Institute for Materials Science [29 – 33]. For the estimation of the defect energies, only the 

N vacancy was taken into account since it is widely considered that the lattice nitrogen in oxynitrides 

are susceptible to the so called self-oxidation reaction to form N2 gases. Hence, the structural models 

at each composition x ≤ 1/2 with one N vacancy each at several inequivalent anion sites were prepared 

as shown in Figure 5-13.  

 

 

  

(5.11) 

(5.12) 
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Figure 5-13. The positions of possible inequivalent N vacancies in the structural models at each 

composition. Brown, orange, red, and blue are Ta, Mg, O, and N atoms, respectively. La atoms are 

omitted. 

  

x = 0 x = 1/6 

x = 1/3 x = 1/2 
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5-3. Photocatalyst related properties at each composition 

 First, calculated lattice parameters, bond angles, and bond lengths of the optimized structural 

models at each composition are listed in Table 5-3. The calculated lattice parameters decrease with 

increasing x, denoting the similar tendency to the experimental value [6,7]. Since the calculated bond 

angles ∠M-X-M (M = Ta, Mg and X = O, N) also monotonically decrease with increasing x, the 

shrink of the lattice was probably induced by such changes in their bond angles. By comparing the 

bond angles and the bond lengths around N to those around O, one can notice that ∠Ta-N-Ta is larger 

than ∠M-O-M in most cases and rTa-N is always shorter than rM-O. Such trends strongly indicate the 

covalency of Ta-N bonds as also discussed in chapter 3 and 4. On the other hand, focusing on the bond 

lengths around O, one can also find that rTa-O decreases with increasing x, while rMg-O and rTa-N remain 

almost unchanged. Such trend can be explained by assuming the ionic interactoin in Ta-O bonds, since 

with increasing x the effective charge of Ta becomes more positive due to the decreased number of N 

that combines to Ta, and consequently the Ta-O bonds get much stronger. Here, according to these 

discussion, the decrease in the bond angles ∠M-X-M with increasing x can be attributed to the 

decrease of anisotoropic bonds around N and the alternative increase of isotropic bonds around O.  
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Next, the bandgaps at different compositions were compared. Figure 5-14 shows the 

calculated bandgap of LaMgxTa1-xO1+3xN2-3x as a function of its composition. The bandgap of 

LaMgxTa1-xO1+3xN2-3x. monotonically increases with incrrease in compostion x. This is probably 

because the contribution of O 2p which has a deeper energy level increased in the valence band that 

consists of O 2p and N 2p orbitals, with increase in O/N ratio at larger x, as discussed in the later 

section. The calculated bandgap was 1.9 eV ~ at x = 0 and 4.2 eV ~ x = 2/3, both of which reproduce 

the experimentally reported absorption edge of LaMgxTa1-xO1+3xN2-3x (1.93 eV and 4.55 eV, 

respectively [2, 7]). Here, since the bandgaps at x ≥ 1/2 are much larger than the energy of visible light, 

x should be less than or equal to 1/3 in terms of the bandgap. It should be noted that the bandgap 

changes much more significantly between x = 1/2 and 2/3 than between the other two compositions. 

Such behavior was probably caused by the extinction of the contribution of N 2p that has a relatively 

higher energy level than O 2p. A similar trend, so-called “band bowing”, had also been observed in 

the previous experiments [3].  
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Figure 5-14  The calculated bandgap of LaMgxTa1-xO1+3xN2-3x as a function of its composition. 

 

 Next, the band structure at each composition was shown in Figure 5-15. At most 

compositions, CBM (Conduction Band Maximum) appears at  point except for at x = 1/3, whose 

CBM appears at Y point and its band energy is still quite similar to the one at  point. On the other 

hand, VBM (Valence Band Minimum) appears at different points depending on the compositions, 

though its band energy were found to be similar to those at several other symmetry points, as was the 

case for CBM.  
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Figure 5-15  The band structure of each composition. 
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 Subsequently, the carrier effective masses of LaMgxTa1-xO1+3xN2-3x with different 

compositions were listed in Table 5-4. The electron effective mass (𝑚ୣ
∗) monotonically decreased with 

increasing x, suggesting that the dispersion of the conduction band was reduced. This is probably due 

to the reduced overlap among Ta 5d orbitals, as also mentioned later, since the Ta/Mg ratio gets 

lowered with the increase in x. In particular, the electron effective mass at x = 2/3 is significantly large, 

and thus the electron diffusion at this composition is expected to be poor.  

 On the other hand, the hole effective mass ( 𝑚୦
∗ ) became smaller at the intermediate 

compositions (1/6 ≤ x ≤ 1/2), and thus an enhanced hole diffusion within such composition range was 

expected. Combined with the discussion on the electron effective mass, LaMgxTa1-xO1+3xN2-3 solid 

solutions at relatively smaller composition (1/6 ~ 1/3) will be efficient as a photocatalyst in terms of 

carrier diffusions. 

 Additionally, focusing on the carrier effective mass along each direction, one can find that 

they are partially anisotropic depending on the composition. For instance, at x = 2/3, the electron 

effective mass along  → Z (= the direction of b-axis) is rather small as 2.5, while that along  → Y 

(= the direction of a-axis) and  → B (= the direction of c-axis) and are extremely large. Such 

anisotropy probably corresponds to the cation ordering in the structural model where Ta are arranged 

only along the direction of b-axis (see Figure 5-11). Similarly, at x = 1/2 and x = 1/3 the electron 

effective mass along  → Y and Y → , respectively, is extremely large in accordance with the 
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separation of Ta along the direction of a-axis in their structural models. On the other hand, electron 

effective masses at the composition x ≤ 1/6 is nearly isotropic. This is probably because the Ta content 

is rather high at such compositions, and thus Ta cations are not divided along any directions. 

 

Table 5-4. (a) Electron effective masses 𝑚ୣ
∗  of LaMgxTa1-xO1+3xN2-3x with different compositions 

along each direction. Note that at x = 1/3 the VBM appeared on Y as shown in the parentheses. 

 

 

 

 

Table 5-4. (b) Hole effective masses 𝑚୦
∗  of LaMgxTa1-xO1+3xN2-3x with different compositions along 

each direction. Note that at x = 0, 1/6, 1/2 the VBMs appeared B, Y and A0, respectively, as shown in 

the parentheses. 
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 Next, the band edge positions of LaMgxTa1-xO1+3xN2-3x at each composition were shown in 

Figure 5-16. Their CBM positions were nearly constant over all compositions except x = 2/3, probably 

due to the common structure of their conduction bands that mainly consist of Ta 5d. The elevated 

CBM position at x = 2/3 is thought to be the consequence of the reduced band dispersion due to the 

decreased content of Ta in LaMgxTa1-xO1+3xN2-3x. Here, since all the CBM positions are far more 

negative than the hydrogen evolution potential (0 VNHE), it is expected that the photoexcited electrons 

in LaMgxTa1-xO1+3xN2-3x are active enough to produce hydrogen over all compositions. 

 On the other hand, the VBM positions of LaMgxTa1-xO1+3xN2-3x were monotonically lowered 

with increasing x, probably due to the reduced contribution of N 2p and the alternatively increased 

contribution of O 2p in the valence band. At x = 0, the VBM is positioned just below the oxygen 

evolution potential (1.23 VNHE), and thus the oxidation activity of LaMgxTa1-xO1+3xN2-3x is expected 

to be poor at this composition. By contrast, the VBM positions at the compositions more than or equal 

to 1/6 are sufficiently positive than the oxygen evolution potential. Hence, the holes generated in 

LaMgxTa1-xO1+3xN2-3x (x ≥ 1/6) are expected to have enough ability to oxidize water into oxygen. 
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Figure 5-16. The band edge positions of LaMgxTa1-xO1+3xN2-3x at each composition. The band edge 

positions were aligned by setting the VBM position of the structural model at x = 0 with the smallest 

bandgap (*) to the experimental value (+1.31 V vs. NHE) [3].  

 

Finally, the formation energies ∆𝐸୤ and the defect energy ∆𝐸ୢ of LaMgxTa1-xO1+3xN2-3x at 

different compositions are listed in Table 5-5. The formation energy monotonically decreases with 

increasing x, reflecting the general trend that oxides are more chemically stable than nitrides. Such 

trend indicates that the degradation of the crystals will more easily occur at smaller x due to the 

lowered stabilities. Besides, since the defect energy increases with increasing x, the easier formation 
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of N vacancies at smaller x is also indicated. Such trend is probably related to the stabilization of the 

TaX5 (X = O, N) unit where the N vacancy was formed, since the defect energy monotonically 

decreases with the increasing number of N in the TaX5 unit. All these results strongly indicate the 

greater susceptibility of LaMgxTa1-xO1+3xN2-3x to degradation at the smaller x, which is also confirmed 

from the experimental results where the self-oxidation of N3- was observed only at the composition x 

< 0.2 [3]. 

 

Table 5-5. The formation energies and the defect tolerances of LaMgxTa1-xO1+3xN2-3x at different 

compositions. The values in parentheses are the number of remaining N in the two TaX5 unit where 

the N vacancy was formed.  
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5-4. Detailed discussion on the variation of electronic structures 

 For further discussion on the electronic structure of LaMgxTa1-xO1+3xN2-3x at each 

composition, the density of states (DOS) and the projected density of states (PDOS) were shown in 

Figure 5-17. As already mentioned in the previous sections, it was found that the valence band and the 

conduction band consist of anion 2p and Ta 5d, respectively, over all compositions. 

 Figure 5-17 also shows that the width of the conduction band decreases with increasing x, 

probably reflecting the reduced overlap among Ta 5d orbitals due to the decreased content of Ta in 

LaMgxTa1-xO1+3xN2-3x. Additionally, the onset of the conduction band gets steeper as x increases, 

indicating the decrease of the band dispersion near the bottom of conduction bands and the consequent 

increase of the electron effective masses.  

 It should be noted that the conduction band width drastically decreases between x = 1/2 and 

x = 2/3, while their widths are not so different among the other compositions. This is probably because 

at the composition between x = 0 to x = 1/2 Ta5+ cations are connected to each other via the bonding 

units of Ta5+-N3--Ta5+, since N3- can only combine to Ta5+ (i.e. the chemical bond between N3- and 

Mg2+ are significantly weak), as mentioned in section 5-2-1. In other words, Ta5+ cations are partially 

localized in the crystals of LaMgxTa1-xO1+3xN2-3x (x ≤ 1/2) by gathering around N3- anions to prevent 

the formation of N-Mg bonds, although the Ta/Mg cations prefers delocalized arrangements in oxides. 

Then, such partial localization of Ta creates a kind of “Ta-rich domains” in the crystals, and 
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consequently 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17. The density of states (DOS) and the projected density of states (PDOS) calculated within 

HSE06 level. The energy positions are aligned with the band positions depicted in Figure 5-16. 
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consequently the wide dispersion of the conduction band remains due to the retained large overlap 

among Ta 5d, even when the Ta content is rather low.  

 On the other hand, for the valence bands in Figure 5-17, it was confirmed that the 

contribution of N 2p decreases and that of O 2p alternatively increases with increasing x. As already 

mentioned, such trend is consistent with the increasing O/N ratio in LaMgxTa1-xO1+3xN2-3x. It was also 

revealed that the onsets of the valence bands are obviously steep at x = 0 and x = 2/3, while they are 

relatively moderate at intermediate compositions. In particular, at x = 1/6 and x = 1/3, a small 

contribution of N 2p appeared around the upper region of the valence band, and the mixing between 

N 2p and O 2p was considered to be the origin of the smooth onsets of their valence bands. Such trend 

is also consistent with the calculated effective masses of holes shown in Table 5-3. 

 Here, it should be noted that at x ≤ 1/6, the DOS of the valence band around its upper region 

is almost dominated by the contribution of N 2p. This indicates that the holes generated by the 

photoexcitation will finally be localized only on N3-, which are more susceptible to the self-oxidation 

reaction (Eq (5.12)) than O2-. 

2𝑁ଷି + 6ℎା →  𝑁ଶ 

Thus, it is expected that at x ≤ 1/6 the generated holes will be consumed in the self-oxidation of N3- 

rather than in water oxidation. Indeed, such consideration supports the experimental results of the 

photocatalytic activity as the function of the composition [3]. On the other hand, at x ≥ 1/3, there 

(5.12) 
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appears not only the contribution of N 2p but also that of O 2p in the valence band around its upper 

region. Such mixing between the two states enables the holes to be delocalized over both anions, and 

thus the water oxidation activity will be improved due to the reduced self-oxidation of N3-.  

 Based on the results above, the maximized photocatalytic activity of LaMgxTa1-xO1+3xN2-3x 

at x = 1/3 can be explained as follows. Originally, the pure oxynitride LaTaO2N (x = 0) has smaller 

bandgap (1.9 eV ~ 2.2 eV) than the solid solution at any other composition, and this makes LaTaO2N 

an appealing candidate for a photocatalyst. However, as a trade-off for such a small bandgap, it also 

has a lot of drawbacks such as a VBM position which is too negative, a valence band whose upper 

region consists only of N 2p, poor chemical stability, and being susceptible to self-oxidations and 

defect formations. On the other hand, by increasing the O content by forming solid solutions with 

LaMg2/3Ta1/3O3, not only the VBM positions gets lowered but also the dispersion of the valence band 

increases and the self-oxidations of N3- are reduced due to the mixing between N 2p and O 2p. Note 

that, since the greatly increased O content will open the bandgaps and reduce the dispersion of the 

conduction bands, the composition x should not be more than 1/3. In other words, the drawbacks of 

LaTaO2N, an appealing narrow gap photocatalyst, are compensated by a partial substitution of N with 

O in the solid solutions LaMgxTa1-xO1+3xN2-3x, especially at x = 1/3. 
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5-5. Conclusion 

In this research, the dependence of the band structure of LaMgxTa1-xO1+3xN2-3x, a solid 

solution between LaMg2/3Ta1/3O and LaTaO2N, on its composition was investigated by means of first 

principle calculations. In particular, I aimed to identify the factors that make its activity reach the 

highest at the composition x = 1/3, by estimating and comparing the photocatalytic related properties 

such as bandgaps, band edge positions, carrier effective masses, and chemical stabilities of LaMgxTa1-

xO1+3xN2-3x at each composition. 

As a consequence, their VBM positions were demonstrated to be monotonically decreased 

with increasing x, accompanied with the widening of the bandgaps. This was caused by the decrease 

and the extinction of the N 2p contribution and the alternative increase of the O 2p contribution in 

their valence bands. On the other hand, by comparing the carrier effective mass at each composition, 

it was revealed that the electron effective mass monotonically increases with the increase in x, while 

the hole effective mass becomes smaller at the intermediate compositions. Such trends reflect the 

variation in the band dispersions near their edge regions due to the reduced or the increased overlap 

of their constituent orbitals.  

Based on these results, the reason why the photocatalytic activity of LaMgxTa1-xO1+3xN2-3x 

reaches the highest at x = 1/3 can be explained as follows. First, LaMgxTa1-xO1+3xN2-3x satisfies both a 

narrower bandgap that corresponds to the energy of visible light and a VBM position which is positive 
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enough to oxidize water at the composition between x = 1/6 to x = 1/3. Additionally, the mixing of N 

2p and O 2p in the valence band at x = 1/3 will increase its dispersion and reduce the self-oxidation of 

N3-. Hence, the carrier diffusion will be improved, and thus its activity will be maximized at this 

composition. 
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Chapter 6.  

Elucidation and Control of Defects in Solid Solution 

Photoelectrode: A Demonstration on 

(ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 

 

6-1. Introduction to (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathode 

6-1-1. Development of chalcopyrite-based photocathodes 

As already mentioned in the chapter 1, water splitting photoelectrode systems are getting 

wide attention as well as water splitting photocatalysts. Photoelectrode systems have several 

advantages over photocatalyst based ones, since their reaction sites of oxygen and hydrogen are 

separated, and less restrictions for their band edge positions make it possible to utilize the materials 

with narrower bandgaps that can absorb wider range of solar energy. 

As a photocathode material which is used for hydrogen evolution in photoelectrode system, 

Kumagai et al. had reported that CuIn0.7Ga0.3Se2(hereafter CIGS), a well-known chalcopyrite-based 

photovoltaic material, produced a remarkable cathodic photocurrent up to 30 mA cm-2 at 0 VRHE under 

AM 1.5G simulated sunlight [1]. However, the onset potential of CIGS photocathode is only about 

0.7 VRHE, which is still not sufficient to achieve high photocurrent when combined to photoanode 

material for oxygen evolution. 
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Then, Kaneko et al. had developed (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 (hereafter 

(ZnSe)x(CIGS)1-x) as a solid solution of CIGS and ZnSe, the latter of which has a lower VBM position, 

and achieved a higher onset potential up to 0.89 VRHE [2]. Note that CIGS and ZnSe can easily form a 

solid solution, since their basic structures are common (ZnSe: zinc blende, CIGS: chalcopyrite) and 

their lattice mismatch is only about 1 % [2]. (ZnSe)x(CIGS)1-x was synthesized by co-evaporation 

method onto a soda-lime glass substrate, and it showed the highest photocurrent at the composition of 

x = 0.85. Although its photocurrent is still only up to 12 mA cm-2 [3], (ZnSe)x(CIGS)1-x is thought to 

be a promising photocathode material and is now intensively studied to improve its activity by 

optimizing the synthesizing process [3,4]. 
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6-1-2. Unexplained behaviors of point defects 

However, there remains an important subject to understand the properties of 

(ZnSe)x(CIGS)1-x, i.e. the behaviors of the point defects in (ZnSe)x(CIGS)1-x have not been well studied 

yet, and thus the origin of its semiconductor characteristics is still unraveled. For instance, 

(ZnSe)0.85(CIGS)15 shows p-type characteristic though ZnSe itself, a constituent that dominates the 

most part of this material, is essentially an n-type semiconductor. Although the rest part of this material, 

CIGS, is still a p-type semiconductor due to Cu vacancy (VCu) acceptors [5], VCu is unlikely the 

dominant origin of the p-type characteristics of (ZnSe)0.85(CIGS)15 since the atomic content of Cu is 

only up to 15 %, and some antisite defects such as ZnCu can also be created. Furthermore, while CIGS 

shows enhanced p-type characteristics under Cu-poor conditions, (ZnSe)x(CIGS)1-x shows n-type 

characteristics under the same condition [6]. These differences are attributed to the different defect 

structures between solid solution ((ZnSe)x(CIGS)1-x) and non-solid solution (CIGS), but the details of 

their defects have not been confirmed by experiments. 
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6-1-3. Research objectives 

Here, in this research, I aimed to clarify the structures and the properties of the point defects 

in (ZnSe)x(CIGS)1-x solid solution by means of first principle calculations. In particular, I will identify 

the dominant defects that determine the properties of (ZnSe)x(CIGS)1-x by evaluating and comparing 

the formation energies of various defect structures. Furthermore, I will estimate the concentration of 

each defect and carrier from the calculated formation energies, to predict their dependence on growth 

conditions such as temperature and partial pressure, and to compare them to experimental results.  
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6-2. Computational details 

In this study, the structural models of defects in (ZnSe)x(CIGS)1-x were prepared and the 

defect formation energies were compared by means of first principle calculations. Subsequently, the 

dependence of the defect formation energies on the temperature and the partial pressure was 

investigated in order to provide the guidelines to control the defects in this material.  

6-2-1. Structural models 

First, I prepared the structural model of the bulk (ZnSe)x(CIGS)1-x solid solution. The bulk 

structures are created by multiplying the unit cell of ZnSe (space group F4ത3m, cubic, a = 5.62 Å, 8 

atoms [7]), and one fourth of its Zn atoms were substituted by Cu, In, and Ga atoms. Here, the Zn/Cu 

ratio was fixed to 6 in order to reflect the experimental value (15 %). 

To study the specific features of the cation ordering in bulk (ZnSe)x(CIGS)1-x, I initially 

prepared several structural models of the bulk using 1 × 1 × 2 supercell (16 atoms) and 1 × 2 × 2 

supercell (32 atoms). For simplicity, Ga atoms were not included, and indeed the bulk structural 

models of (ZnSe)x(CIS)1-x were prepared. All structural models are shown in Figure 6-1 and Figure 6-

2. Since ZnSe and CIGS are II-VI and I-III-VI semiconductors, respectively, (ZnSe)x(CIGS)1-x become 

a non-isovalent alloy [8, 9], where the octet-rule violation around Se atoms can occur depending on 

the arrangement of Zn, Cu, In and Ga in their structural models. Thus, the number of non-isovalent Se 

atoms (= Se atoms which break the octet-rule. Hereafter, a Se atom breaking the octet-rule with ±1 
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electron will be called “non-isovalent-1 Se” and that with ± 2 electron will be called “non-isovalent-2 

Se”) in each structural model was written below each figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1. Structural models of the (ZnSe)x(CIGS)1-x, using 1 × 1 × 2 supercell (16 atoms). The 

numbers in the parenthesis correspond to (The number of “non-isovalent-1 Se”, The number of “non-

isovalent-2 Se”). Gray, blue, pink, and light green are Zn, Cu, In, and Se atoms, respectively.  
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Figure 6-2. Structural models of the (ZnSe)x(CIGS)1-x, using 1 × 2 × 2 supercell (32 atoms). The 

numbers in the parenthesis correspond to (The number of “non-isovalent-1 Se”, The number of “non-

isovalent-2 Se”). Gray, blue, pink, and light green are Zn, Cu, In, and Se atoms, respectively.  
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Subsequently, all the above structures were geometrically optimized, and the total energy of 

each optimized structure was obtained by first-principle calculations as described later. As a 

consequence, it was found that the structures which obey the octet-rule are always more stable than 

those which violates the octet-rule. In addition, according to the Figure 6-3 and Figure 6-4 where “the 

number of non-isovalent Se vs. the total energy trend” was shown, it was also confirmed that the 

structural model becomes destabilized by 100 meV per four non-isovalent Se atoms. A similar trend 

was also reported by a previous study on CIGS using first principle calculations, where Cu, In and Ga 

atoms were found to be arranged to follow the octet-rule in the most stable structure [10]. So, hereafter, 

I will only consider the structural models without any octet-violation, whose Cu, In, and Ga atoms are 

always placed in planer arrangements as is the case in model A in Figure 6-1 and model i in Figure 6-

2. 
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Figure 6-3. The number of non-isovalent Se vs. the relative total energy trend obtained from the 

calculations on 1 × 1 × 2 supercells. The number of non-isovalent Se is defined as “the number of 

“non-isovalent-1 Se” + 2 × The number of “non-isovalent-2 Se”. 

 

 

 

 

 

 

Table 6-4.  The number of non-isovalent Se vs. the relative total energy trend obtained from the 

calculations on 1 × 2 × 2 supercells. The number of non-isovalent Se is defined as “the number of 

“non-isovalent-1 Se” + 2 × The number of “non-isovalent-2 Se”.  
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Next, I prepared several structural models of bulk (ZnSe)x(CIGS)1-x using 1 × 1 × 4 

supercells (32 atoms), 2 × 2 × 2 supercells (64 atoms) and 2 × 2 × 4 supercells (128 atoms) to determine 

the ordering among Cu, In, and Ga atoms. For simplicity, the In/Ga ratio was fixed to 1. All structural 

models were shown in Figure 6-5, Figure 6-6, and Figure 6-7.  

 

 

 

 

 

 

 

 

 

Figure 6-5. Structural models of the (ZnSe)x(CIGS)1-x, using 1 × 1 × 4 supercells. Gray, blue, pink, 

green, and light green are Zn, Cu, In, Ga, and Se atoms, respectively.   
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Figure 6-6. Structural models of the (ZnSe)x(CIGS)1-x, using 2 × 2 × 2 supercells viewed from three 

different angles. Gray, blue, pink, green, and light green are Zn, Cu, In, Ga, and Se atoms, respectively. 
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Figure 6-7. Structural models of the (ZnSe)x(CIGS)1-x, using 2 × 2 × 4 supercells. Gray, blue, pink, 

green, and light green are Zn, Cu, In, Ga, and Se atoms, respectively.  
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To these structural models, geometrically optimizations and energy calculations were also 

performed as the previous structural cells, and the obtained total energies are listed in Table 6-1. From 

these results, it was found that the cation orderings in (ZnSe)x(CIGS)1-x have some tendencies as 

described below. 

 

 

Table 6-1 The relative energies of each structural model with each relaxed structure. 
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First, from the results of the calculations on 1 × 1 × 4 supercells, it was confirmed that the 

cationic plane that consists of Cu, In, and Ga (hereafter, CIG plane) prefers to lie adjacent to each 

other than to be located separately. This is probably because the interface between ZnSe and CIGS is 

destabilized due to the mismatch in their lattice parameters. From such results, ZnSe and CIGS are 

presumed to be microscopically separated in the crystals of (ZnSe)x(CIGS)1-x, forming a kind of 

domains of each constituent compound. 

Next, from the result of the calculations on 2 × 2 × 2 supercells, it was found that In and Ga 

prefer the linear arrangement rather than the rock-salt arrangement. Such trend is considered to be 

caused by the different bond length between In-Se (2.62 Å) and Ga-Se (2.47 Å), which originates from 

the difference between their ionic radii (In3+: 81 pm, Ga3+: 62 pm) [11]. As can be seen in the encircled 

part in Figure 6-6, each structural model has [-MIII- Se-Cu-Se- MIII-Se-]n units. In the rock-salt model, 

these units are divided into two different ones, [-InIII- Se-Cu-Se- InIII-Se-]n and [-GaIII- Se-Cu-Se- 

GaIII-Se-]n , and the bond length difference between In-Se and Ga-Se causes large distortions among 

these units. On the other hand, in the linear arrangement model, such distortions are not induced since 

In and Ga atoms are placed at 1:1 ratio in all [-MIII- Se-Cu-Se- MIII-Se-]n units, and thus the structure 

becomes more stable than the other configuration. 

Similar trends were also obtained from the results of the calculations on 2 × 2 × 4 supercells. 

Structural models a1-a3 in Figure 6-7, whose CIG planes are facing adjacently to each other, are more 
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stable than b1-b6, whose CIG planes are arranged separately. Among the former ones, a3 was revealed 

to be the most stable structure. This is probably because [-In-Se-] units and [-Ga-Se-] units are never 

arranged in adjacent to the same units in structure a3, while some of the units are combined to a single 

Se atom in a1 and a2 structure (as encircled in Figure 6-7.). Therefore, in the crystal of (ZnSe)x(CIGS)1-

x, cations are presumed to be arranged like structure a3. 

Finally, in accord with these discussions, the structural model of bulk (ZnSe)x(CIGS)1-x was 

determined as depicted in Figure 6-8. Here, a 2 × 2× 6 supercell (192 atoms) with twelve cation layers 

was used so that the point defects inside the CIGS domains can be modeled by assigning them three 

layers. 

 

 

 

 

 

 

Figure 6-8. The structural model of the bulk of (ZnSe)x(CIGS)1-x, using a 2 × 2 × 6 supercell viewed 

from different angles. Gray, blue, pink, green, and light green are Zn, Cu, In, Ga, and Se atoms, 

respectively.  
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Subsequently, I prepared several defect structural models by using the this (ZnSe)x(CIGS)1-

x bulk model. I considered four types of vacancies (VZn, VCu, VIn, VGa), ten types of antisites (CuZn, 

InZn, GaZn, ZnCu, InCu, GaCu, ZnIn, CuIn, ZnGa, CuGa), and one interstitial Seint as defect models in 

(ZnSe)x(CIGS)1-x. The structural models of vacancies and anisites were prepared by removing or 

substituting an existing atom in the bulk model. On the other hand, the sites of the interstitials were 

determined according to a previous study on interstitials in Si [12], which has a quite similar crystal 

structure, and finally “tetragonal sites” and “split-(001) sites” were adopted for the structural models 

for Seint. Here, the defects at the inner and at the edge of the domain where they originally belong (= 

ZnSe domain or CIGS domain) were distinguished, and the structural models of them were prepared 

individually. Additionally, the difference in the adjacent atoms around the defects were also considered. 

Here, since a bulk model has 96 anions and cations, the concentration of the defects was set to 1 % 

only considering the number of either cations or anions.  
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6-2-2. Calculations of defect formation energies  

By using the defect structure models prepared in the previous section, the defect formation 

energy 𝐸୤(𝐷௤) defined by Eq (6.1) [13-16] was calculated. It should be noted that not only neutral 

but also charged structural models were calculated to estimate Eq (6.1) in order to take the donation 

and the acceptance of the electrons into account. Here, as the defect charges, the positive ones were 

considered for donors (which depicts the situations that the defect had donated the electrons) and the 

negative ones were considered for acceptors (which depicts the situations that the defect had accepted 

the electrons). All the energy terms in Eq (6.1) were calculated from the optimized structures.  

𝐸୤(𝐷௤) = 𝐸(𝐷௤) − 𝐸୮ − ෍ 𝑛୧𝜇୧ + 𝑞(𝜀୚୆୑ + 𝜀୊) 

𝐸(𝐷௤) is the total energy of the defect structural model with a charge 𝑞, 𝐸௣ is a total energy of the 

bulk structural model, 𝑛୧ is the number of reduced or added atoms of element i, 𝜇୧ is the chemical 

potential of element i, and 𝜀୊  is the Fermi energy which is referenced to VBM. Here, 𝜀୊  is 

considered as a variable, and thus 𝐸୤(𝐷௤) will be obtained as the function of the 𝜀୊. The value 𝜇୧ 

was referenced to the total energy of each elemental substance, and was determined by using a kind 

of phase diagram as explained in the following paragraph. 

First, the allowed range of the chemical potentials 𝜇୧ were determined by using the phase 

diagram shown in Figure 6-9. This diagram was depicted using the formation energies (Table 6-2) of 

the compounds that can be obtained as by-products in synthesizing (ZnSe)x(CIGS)1-x. The region in 

(6.1) 
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the diagram marked with diagonal lines shows the allowed value range of 𝜇୞୬, 𝜇େ୳, 𝜇ୋୟ, 𝜇୍୬, and 

𝜇ୗୣ, where point A, B(B’), and C correspond to the Cu-rich condition, In-rich (Ga-rich) condition, and 

Se-rich condition, respectively. All the crystal structures and coordinates of the compounds considered 

in the phase diagram were referenced from Inorganic Material Database (AtomWork) developed by 

National Institute for Materials Science [17,18].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9. The value ranges of each chemical potential.   
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Table 6-2.  The formation energies of CuIn0.5Ga0.5Se, ZnSe, and the compounds that can be obtained 

as by-products in synthesizing (ZnSe)x(CIGS)1-x.  

 

 

 

 

 

 

 

 

 

 

 

Next, the chemical potential of each element in the vapor deposition beam under the 

synthesize condition of (ZnSe)x(CIGS)1-x was estimated according to the following equations,  

𝜇୧(T) = 𝜇୧
୭(𝑇) + 𝑅𝑇𝑙𝑛

𝑝୧

𝑝୭
 

𝜇୧
୭(𝑇) = ∆୤𝐺୧

୭ − 𝑇𝑆୭ 

where ∆୤𝐺୧
୭ is the standard molar Gibbs energy of element i, 𝑝୭ is the standard pressure, 𝑝୧ is the 

(6.2) 

(6.3) 
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partial pressure of element i, and T is the temperature. The values of ∆୤𝐺୧
୭ were referenced from the 

literature [19], and 𝑝୧ were obtained as the estimated values from their deposition rates [2]. Thus, the 

chemical potentials of the element were estimated as ((𝜇େ୳, 𝜇୍୬, 𝜇ୋୟ, 𝜇୞୬, 𝜇ୗୣ) = (1.1, 0.1, 0.3, -0.9, 

0.0)). Here, since 𝜇େ୳ has the largest value (+1.1 eV) and 𝜇୞୬ has the smallest value (-0.9 eV), the 

chemical potential of each elements in this material corresponds to point A in Figure 6-9. Therefore, 

the chemical potentials at point A ((𝜇େ୳, 𝜇୍୬, 𝜇ୋୟ, 𝜇୞୬, 𝜇ୗୣ) = (0.0, -1.1, -1.4, -1.0, -0.6)) will used 

to calculate the defect formation energies in the following sections. 

 By the way, the defect structural model used in the calculation of Eq (6.1) consists of a 

supercell where an atom or an electron was removed or added from a bulk one. Therefore, the 

calculated shapes and occupancies of its bands are generally different from those of the bulk. 

Furthermore, the energies of its bands will also be shifted due to the potential shift associated with the 

changes of the number of atoms and electrons. Thus, the band energies and the total energies obtained 

from the defect structural model were corrected as follows.  

 First, the band energy at VBM was corrected according to Eq (6.4), where the correcting 

term was introduced as the difference between the potential of the bulk model (𝑉ୠ୳୪୩) and that in the 

bulk-like region of the defect model (𝑉 ୣ୤ୣୡ୲). Thus, the VBM energy was obtained using these 

potentials and the VBM energy of the bulk model (𝜀୚୆୑,ୠ୳୪୩) [13].  

𝜀୚୆୑ = 𝜀୚୆୑,ୠ୳୪୩  + (𝑉 ୣ୤ୣୡ୲ − 𝑉ୠ୳୪୩) (6.4) 
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Here, 𝑉 ୣ୤ୣୡ୲ was obtained by integrating the local potentials in the defect model at the positions 

where the distance from the defect is at least 5Å. 

 Next, the total energy of a defect structural model was corrected according to Eq (6.5), where 

the correcting term comes from the consideration that the energy of the excess charge will be 

overestimated (or under estimated) due to the potential shift in a defect supercell. Thus, the corrected 

energy (𝐸ୡ୭୰୰ୣୡ୲ୣୢ(𝐷௤)) was obtained by adding the unphysical shift to the original total energy 

(𝐸(𝐷௤)) of the defect supercell [13].  

𝐸ୡ୭୰୰ୣୡ୲ୣୢ(𝐷௤) = 𝐸(𝐷௤) + 𝑞(𝑉 ୣ୤ୣୡ୲ − 𝑉ୠ୳୪୩) 

  

(6.5) 
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6-2-3. Calculation Conditions 

All the calculations were performed by means of density functional theory (DFT) 

implemented in VASP (The Vienna Ab initio Simulation Package) [20-23] with the projector 

augmented wave (PAW) method [24,25] and the localized density approximation (LDA) exchange-

correlation functional [26, 27]. For Cu, In, Ga, and Zn, s and p electrons in the outermost shell and d 

electrons just below these electrons were treated as valence states. For Se, 4s and 4p electrons were 

treated as valence states. The k-point sampling of the Brillouin zone was set to 2 × 2 × 1 (Gamma-

centered sampling) and a 400 eV cutoff energy was used. In addition, in order to describe the d-

electrons nearby the defects more precisely, onsite Coulomb potentials [28-31] were added to Zn (U 

= 7.0 eV), Cu (U = 6.0 eV), In (U = 7.0 eV) and Ga (U = 9.0 eV), so that the positions of their d-band 

peaks in the valence bands will reproduce the experimental data as shown in Figure 6-10 [32,33]. The 

structures were optimized until the forces on all atoms were smaller than 0.05 eV/Å and the total 

energies were calculated until they converged within 10-4 eV. The lattice parameters of all the defect 

structure models were fixed to that of the optimized bulk model.  
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Figure 6-10. Calculated DOS of (a) ZnSe, (b) CuInSe2, and (c) CuGaSe2 with U parameters. The 

energy of VBM position was set to zero.  

Zn 3d: 9.12 eV vs VBM  

(Exp.: 9.2 eV vs VBM) 

In 3d: 17.91 eV vs VBM 

(Exp.: 17.65 eV vs VBM) 

Cu 3d: 0~5 eV vs VBM 

(Exp.: 0-5 eV vs VBM) 

Ga 3d: 19.39 eV vs VBM 

(Exp.: 19.35 eV vs VBM) 

Cu 3d: 0~5 eV vs VBM 

(Exp.: 0-5 eV vs VBM) 

(a) 

(b) 

(c) 
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6-3.  Comparison of the formation energy of each defect 

6-3-1. Site dependence 

 First, the fomation energies of the defects at different sites will be compared. The caclculated 

formation energies of vacancies (VZn, VCu, VIn, VGa), antisites (CuZn, InZn, GaZn, ZnCu, InCu, GaCu, ZnIn, 

CuIn, ZnGa、CuGa), and interstitials (Seint) were plotted as the functions of Fermi energy in Figure 6-

11, 6-12, and 6-13, respectively.  

 

 

 

 

 

 

 

 

 

Figure 6-11. The fomation energies of vacancies (VZn, VCu, VIn, VGa) at each site. 
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Figure 6-12. The fomation energies of antisites at each site.  
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Figure 6-13. The fomation energies of interstitials (Seint). 

 

 Comparing the formation energies among VZn vacancies (Figure 6-11), it was confirmed that 

they will be more easily created near the boundary region with the CIGS domains than inside the ZnSe 

domains. On the other hand, Figure 6-11 also shows that VCu, VIn, and VGa prefer to be created inside 

the CIGS domains rather than near the boundary with the ZnSe domains. From these results, it is 

indicated that the CIGS domains are more susceptible to creation of cation vacancies than the ZnSe 

domains in (ZnSe)x(CIGS)1-x solid solutions. 

 A similar trend was also observed in the site dependence of the antisite formation energies. 

From the comparison between CuZn, InZn, and GaZn in Figure 6-12, one can find that Zn cations near 

the boundary region with the CIGS domains are more easily substituted by the other cations than those 

inside the ZnSe domains. Besides, CuIn, CuGa, GaCu, and InCu, which are the internal antisites in CIGS 
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domains, also prefer to be formed inside the CIGS domains rather than near the boundary with the 

ZnSe domain as can be seen in Figure 6-12. However, for ZnCu, ZnIn, and ZnGa, the group of antisites 

where Zn cations substituted the other cations in the CIGS domains, the site dependence of the defect 

formation energies was hardly observed, indicating that these antisites are likely to be created to a 

similar extent at each cation site in the CIGS domain.  

 The site dependence of Seint was found to be very large from Figure 6-13. The variation of 

the defect formation energies at different sites was up to 2 eV, which was quite larger than that of 

vacancies and antisites. This is probably because the distance between a point defect and its nearest 

neighbor atom is smaller for Seint, and thus the size and the charge of the adjacent atom will strongly 

influence on the stability of the defect atom. Nevertheless, since the formation energies of any Seint 

are much larger than those of the other types of defects, there should exist only a little amount of Seint 

in the crystals of (ZnSe)x(CIGS)1-x.  
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6-3-2. Dominant defect in ZnSe/CIGS 

 Next, I will compare the formation energies among different defect species in order to 

indentify the dominant ones in the crystals of (ZnSe)x(CIGS)1-x. The formation energy of each defect 

at the most stable site is plotted in Figure 6-14. According to this plot, it was found that the formation 

energies of six antisites, CuZn, InZn, GaZn, ZnCu, ZnIn, ZnGa are especially small as can be seen in Figure 

6-14 (middle). It should be noted that none of these antisites can be created in ZnSe nor CIGS itself, 

but can only be created in their solid solution. Besides, since the formation energies of these antisites 

are much smaller than that of VCu (Figure 6-14 (left)), which is a well-known acceptor that gives the 

p-type characteristics to CIGS, they are presumed to be the dominant defects in (ZnSe)x(CIGS)1-x 

crystal which can be easily created.  

Among these defects, InZn, GaZn, and ZnCu work as donors and CuZn, ZnIn, and ZnGa work as 

acceptors, and one can find that the straight lines that correspond to the formation energies of these 

defects intersect at the energy position of 0.4 eV above VBM as pointed with an arrow in Figure 6-14 

(middle). This indicates that the position of its Fermi energy 𝜀୊ will be pinned nearby the intersection, 

since more donor will be created in the energy region of 𝜀୊ < 0.4 eV and more acceptors will be 

created in the energy region of 𝜀୊ > 0.4 eV, both of which cancelling the variation of the Fermi energy. 

In this material, the position of the intersection is closer to VBM than CBM, and thus (ZnSe)x(CIGS)1-

x is thought to be a p-type semiconductor. Such result supports the experimental fact that 
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(ZnSe)x(CIGS)1-x has a p-type characteristics though ZnSe itself, which dominates the most part of 

this material, is essentially an n-type semiconductor. 

At the end, it should be noted that the difference between the formation energies of these 

dominant defects and the other ones are more than 0.5 eV around the Fermi energy of 0.4 eV. Such 

difference in the formation energy corresponds to a 3000-fold difference in the carrier concentration 

according to Eq (6.8) mentioned later. Therefore, the defects other than the dominant ones can be 

neglected in the following discussion.   

 

 

 

 

 

 

 

 

 

Figure 6-14. The formation energies of each defect at its most stable site. Left: vacancies, middle: 

antisites, and right: Se interstitial.  
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6-4. Dependence on external conditions 

6-4-1. Thermal dependence 

 Now discuss the temperature dependence of the defect formation energy will be discussed. 

Since in Eq (6.1) only the term 𝜇୧will be varied with temperature, the temperature dependence of the 

chemical potentials was investigated here. The calculated chemical potentials of elements in the vapor 

deposition beam at each temperature (350~650 ℃) are listed in Table 6-5, and one can find that for 

all the chemical elements their chemical potentials decrease by 0.3 ~ 0.4 eV with increasing 

temperature by 100 ℃. Therefore, according to Eq (6.1), the formation energies of vacancies will be 

decreased under the high-temperature conditions, while those of interstitials will be increased under 

the same conditions. Such consideration matches with the experimentally observed tendencies where 

the efficiency of pure CIGS, whose dominant defects are VCu vacancies [5], increases with the 

temperature in the region below 600 ℃ [34-36]. On the other hand, the formation energies of antisites 

will hardly change with the temperature variation, since the changes in the chemical potentials of the 

added element and the removed one will be counterbalanced. Thus, the thermal dependence of the 

photocurrents is expected to be small in (ZnSe)x(CIGS)1-x, since their dominant defects are antisites.  

 Now, there are some cases where the chemical potentials of the elements in the vapor 

deposition beam become too low to shape crystals above a certain temperature. For instance, at the 

temperature above 550 ℃, the sum of 𝜇୞୬ and 𝜇ୗୣ becomes lower than the formation enthalpy of 
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ZnSe (-1.62 eV), indicating that the ZnSe crystals cannot be created thermodynamically in this 

temperature region. On the other hand, the value of 2𝜇େ୳ + 𝜇୍୬ + 𝜇ୋୟ + 4𝜇ୗୣ is always larger than 

the formation enthalpy of Cu2InGaSe4 (-4.77 eV) among all temperature region considered here. Thus, 

in was confirmed that CIGS can be crystalized under the high-temperature region above 550 ℃. From 

these results, it is expected that the crystallinity of (ZnSe)x(CIGS)1-x will be lower than that of pure 

CIGS in the temperature region above 550 ℃, and thus its photocurrent will also be decreased in such 

high-temperature region. 

 

 

Table 6-5. The calculated chemical potentials of the vapor deposition beam at each temperature. 
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6-4-2. Pressure dependence 

 Subsequently, the dependence of the defect properties on partial pressures will be discussed. 

Since the variations of the partial pressures will also be reflected in the chemical potentials, according 

to Eq (6.2), only the effects of the change in the chemical potentials of certain elements on the defect 

formation energies will be discussed here. Besides, since a 0.1 eV change of the defect formation 

energy corresponds to a five-fold difference in the partial pressure, I just changed the partial pressure 

within ±0.1 eV. Hereafter, only the effect of the variation in Cu and Zn, which are the dominant 

cations in the solid solution, will be considered.  

 First, the defect formation energies with different 𝜇େ୳ were shown in Figure 6-15. For 

simplicity, only the formation energies of six dominant defects (CuZn, InZn, GaZn, ZnCu, ZnIn, ZnGa) 

mentioned above were plotted. From Figure 6-15, one can find that as 𝜇େ୳  increases (= as pCu 

increases) the intersection between the straight lines which correspond to the formation energies of 

the donors and the acceptors gets much closer to VBM. This is probably because the CuZn, one of the 

dominant acceptors, becomes more easily to be created with increasing 𝜇େ୳, while ZnCu, one of the 

dominant donors, gets less easily to be created in the same situation. On the other hand, the formation 

energies of the other dominant acceptors (ZnGa, ZnIn) and donors (InZn, GaZn) remains almost 

unchanged. Therefore, it was indicated that the p-type characteristics of (ZnSe)x(CIGS)1-x will be 

increased with increasing pCu.  
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Figure 6-15. The defect formation energies with different 𝜇େ୳. 

 

 In order to confirm such consideration, I subsequently estimated the variations of Fermi 

energy 𝜀୊ and the carrier concentration Cp in (ZnSe)x(CIGS)1-x with increasing 𝜇େ୳. Fermi energy 

𝜀୊ and the carrier concentration Cp were calculated using the following equations [14], 

෍[𝐷௤] − 𝑛 + 𝑝 = 0

௑, ௤

 (electroneutrality condition) 

𝐶௣ =  −𝑛 + 𝑝 

where [𝐷௤], 𝑛, and 𝑝 are the concentrations of charged defect 𝐷௤, electron, and hole, respectively. 

Each of them are related to Fermi energy 𝜀୊ by the following formulas, 

𝜇େ୳ = -0.1 eV 𝜇େ୳ = 0.0 eV 𝜇େ୳ = +0.1 eV 

(6.6) 

(6.7) 
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[𝐷௤] = 𝑁଴exp ൬−
𝐸୤(𝐷௤)

𝑘୆𝑇
൰ 

𝑛 = ൬−
𝑚ୣ

∗𝑘୆𝑇

2𝜋ℏଶ
൰

ଷ
ଶ

exp ൬−
𝜀େ୆୑ − 𝜀୊

𝑘୆𝑇
൰ 

𝑝 = ቆ−
𝑚୦

∗ 𝑘୆𝑇

2𝜋ℏଶ
ቇ

ଷ
ଶ

exp ൬−
𝜀୊

𝑘୆𝑇
൰ 

where 𝑁଴  is the number of the sites where the defect can be incorporated, 𝑘୆  is Boltzmann’s 

constant, and 𝑚ୣ
∗ and 𝑚୦

∗  is the effective mass of electrons and holes, respectively. Here, 𝑚ୣ
∗ and 

𝑚୦
∗  was set to 0.21 and 0.60, respectively, which are the carrier effective masses of ZnSe [37]. It 

should be noted that only the effective masses of ZnSe were considered, since the most part of 

(ZnSe)x(CIGS)1-x is dominated by ZnSe and the effective masses of CIGS (𝑚ୣ
∗: 0.09, 𝑚୦

∗ : 0.73 [38]) 

are also similar to those of ZnSe. 

The calculated 𝜀୊ and Cp was listed in Table 6-6. The value of Cp ranged between 1015 to 

1017 cm-3, which is consistent with the experimental values reported for conventional p-type 

semiconductors [36,39-41]. As  𝜇େ୳ increases, 𝜀୊ gets lower and Cp gets larger. Therefore, these 

results also strongly support that the p-type characteristics of (ZnSe)x(CIGS)1-x will be improved with 

increasing pCu. 

 

Table 6-6. The calculated 𝜀୊ and Cp with different  𝜇େ୳. 

 

  

(6.8) 

(6.9) 

(6.10) 
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 Next, the defect formation energies with different 𝜇୞୬  were shown in Figure 6-16. In 

contrast to the case for 𝜇େ୳, the intersection between the lines of donors’ and acceptors’ formation 

energies was nearly unchanged with increasing 𝜇୞୬ (＝increasing pZn). This is probably because the 

changes in the formation energies of the dominant donors (InZn, GaZn, ZnCu) and the dominant 

acceptors (CuZn, ZnIn, ZnGa) with increasing 𝜇୞୬ were cancelled out. Therefore, it is expected that the 

p-type characteristics of (ZnSe)x(CIGS)1-x will hardly change with increasing pZn. The variations of 

𝜀୊ and Cp with increasing 𝜇௓௡ also showed the same trend (Table 6-7).    

 

 

 

 

 

 

 

 

 

 

Figure 6-16. The defect formation energies with different 𝜇୞୬.  

𝜇୞୬ = -1.1 eV 𝜇୞୬ = -1.0 eV 𝜇୞୬ = -0.9 eV 
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Table 6-7. The variations of 𝜀୊ and Cp with increasing 𝜇୞୬. 

 

 

 

 

From these results, it is strongly indicated that (ZnSe)x(CIGS)1-x should be synthesized under 

Cu-rich conditions in order to improve their p-type characteristics. Indeed, similar trends have also 

been observed in some experiments, where (ZnSe)x(CIGS)1-x had shown n-type characteristic under 

Cu-poor condition as previously mentioned, and where the photocurrent of (ZnSe)x(CIGS)1-x had 

improved with the increase of the relative deposition rate of Cu (JCu/JIn+JGa, where Ji gives the 

deposition rate of element i.) [5]. All these previous reports indicate that the guideline obtained in this 

research is of high validity.  
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Chapter 7.  

Concluding Remarks 

 In order to establish the hydrogen production process utilizing solar energy, achieving 

overall water-splitting using photocatalysts and photoelectrode systems have been a critical issue. In 

particular, materials consisting of mixed ion compounds such as oxynitrides and solid-solutions are 

attracting wide attention since there exists a broad range of controllability in their properties due to 

the varieties of their structural factors. So far, there have been reported many cases where well-

balanced properties were achieved by preparing solid-solutions and mixed ion compounds. Usually, 

such materials are designed in terms of the macroscopic final properties of the related materials, such 

as bandgaps, band edge positions, and their chemical stabilities.  

However, it is still difficult for researchers to understand their macroscopic properties based 

on the microscopic structural features, owing to the limit of the crystallographic measurements on 

such complex compounds. Yet, it is a great deal of importance to understand the relation between the 

properties and the structural features in order to realize more efficient material design, since such 

structural features generally have non-negligible influence on the final properties. 

 Here, in this thesis, I investigated the electronic structures of several mixed ion compounds 

from first-principle in order to figure out the characteristics and the origins their local structures. In 

addition, I aimed to relate their microscopic structural features to their macroscopic properties, in order 
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to provide the guidelines to control their properties and to enhance their activities as photocatalysts or 

photoelectrodes.  

In the first half of this thesis, I mainly focused on the local structural factors such as anion 

orderings and octahedral-tiltings in perovskite oxynitrides. As a result, I clarified the features of such 

local arrangements and distortions in the materials, and their influences on the materials’ electronic 

structures. In particular, it was revealed that the characteristic chemical bonds such as d-p interactions 

strongly relate to the structural factors and the photocatalyst related properties. 

In the latter half, I shifted the focus to the state-of-art photocatalysts and photoelectrode 

materials that consist of solid solutions, and investigated the impacts of their compositions on the 

properties and the roles of their point defects. Here, the structural models were determined considering 

the microscopic features of the chemical bonds and the local distortions, based on the insights obtained 

in the previous parts. As consequence, several crucial issues such as the explanation for the 

compositional dependence of the photocatalytic activities and the origin of the p-type semiconducting 

properties of the solid solutions were unraveled, and consequently the guidelines to enhance their 

activities were provided. 

 Through the researches presented in this thesis, it was clearly demonstrated that the 

calculation values of the properties strongly depend on the microscopic structures of the models. In 

other words, it was revealed that only a little difference in the structural model may also result in a 
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crucial difference in the calculated properties, and here, the importance of preparing adequate 

structural models was provided.  

 In this thesis, although the structural models of the mixed ion compounds were constructed 

from microscopic structural units consisting of several atoms as the building blocks, based on the 

insights of local structural features such as preferred ionic distributions, the arrangements of such 

fundamental units were determined only by hand, and thus this procedure is not applicable to much 

larger structural models or to the comprehensive studies on a large number of materials. Hence, in 

order to realize the modelization of more complex or various compounds in a feasible way, the future 

researchers should establish the advanced methods where the arrangements of such fundamental units 

are determined automatically and exhaustively, by introducing a kind of informatical methodologies.  
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