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1.1 Recent status of building and district energy systems 

1.1.1 Fundamentals of energy systems 

 Domestic energy systems are composed of electricity, space cooling and heating, and hot water 

systems. The electricity system is composed of an electricity grid (EG), a rechargeable battery (RB), 

and power generation equipment. The major types of RBs for building and district energy systems are 

lithium-ion batteries (LiB), nickel-metal hydride (NiMH) batteries, sodium-sulfur (NaS) batteries, and 

redox flow batteries. LiBs and NiMH batteries mainly serve building energy needs, while NaS and 

redox flow batteries are primarily used in district energy systems. 

 Major power generation equipment includes photovoltaic (PV) devices, wind turbine equipment, 

combined heat and power (CHP) equipment, geothermal power equipment, and other renewable 

energy sources. For building energy systems, PV devices and CHP equipment have been commonly 

used in recent years. The capacity of a PV device is 3–10 kW for ordinary residential and office 

buildings in Japan. In particular, the PV capacity for residential buildings has increased from 3.3 kW 

to 4.5 kW in recent years [1]. In accordance with the Japanese government’s policies, total installed 

capacity will continue to increase in the near future [2] and PV will play a significant role in building 

energy systems. 

 CHP systems are categorized into fuel cells and gas turbines. Fuel cells are often used in small 

residential buildings. The cumulative number of installed polymer electrolyte fuel cells (PEFCs) 

increased from 2,550 units in 2009 to 142,837 units in 2015 [3] in Japan. PEFCs can be easily used to 

generate electricity and utilize waste heat due to their relatively small capacity (5–20 kW), making 

them suitable for small residential buildings. 

 Solid oxide fuel cells (SOFCs), another CHP type, have become increasingly popular in recent 

years. The cumulative number of the installed SOFCs increased from 324 units in 2011 to 11,208 units 

in 2015 [3]. The typical temperature of the waste heat generated by SOFCs is 800–900 °C, higher than 

the corresponding value for PEFCs, as is the power generation efficiency. As a result, SOFCs are 

mostly used in condominiums. Hence, PEFCs and SOFCs are key emerging technologies for power 

generation systems in residential buildings. In large buildings such as offices, hotels, and hospitals, 

gas-turbine-type CHP systems are mostly used because of their large capacity (300–1,200 kW) and 

high efficiency. CHP systems have attracted significant attention, especially in Japan after the 2011 

earthquake, with regard to business continuity planning (BCP). For example, the Roppongi Hills in 

Tokyo, managed by Mori Building Corporation, is recognized as a state-of-the-art building with regard 

to the energy supply using a gas turbine instead of a commercial electricity grid [4,5]. Hence, large-
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size CHP systems will also be key technologies to improve the energy resilience of buildings and the 

urban energy infrastructure. 

 Space cooling and heating systems can be primarily categorized as central cooling and heating 

systems, or individually packaged heating, ventilation, and air conditioning (HVAC) systems. The 

packaged HVAC system [6,7] is often installed in small- and medium-sized buildings. In contrast, 

central cooling and heating systems are often installed in buildings in terms of installation costs and 

payback period. The central system has been widely used not only in office buildings but also in 

residential buildings in the U.S. for more than 60 years [8]. In terms of system optimization, the central 

system can be controlled optimally compared to the packaged system because the occupants have no 

access to set point controls in the former case. 

 The central system consists of heat source machines such as air-source heat pumps (ASHPs), 

centrifugal refrigerators (CRs). Thermal energy storage (TES) systems are used to charge or discharge 

thermal energy. In addition, some pumps are installed to circulate fluids from the heat source machines 

to a secondary system such as air-conditioned rooms. In particular, the energy system optimization 

focuses on the heat source machines and pumps, and is called a primary system. The optimization is 

used to determine when the machines will be operated and how much heat will be generated. 

 A central and an individual system are typically used in domestic hot water systems as well. The 

individual system is composed of instantaneous water heaters and is used in ordinary residential 

buildings in Japan. Central hot water systems are used in large buildings such as hotels and hospitals 

that have sufficient demand for hot water. The central system often consists of a gas boiler (GB), and 

waste heat is generated by other equipment such as the CHP equipment and double-bundle centrifugal 

refrigerators. 

 Energy systems can also be categorized by size, that is, for buildings or districts (Fig. 1-1). District 

energy systems can further be divided into two systems: district heating and cooling (DHC), and 

shared energy systems such as smart grids [9] and heat sharing networks [10]. 

 



CHAPTER 1 | Introduction 

14 

 

 

Fig. 1-1 | Conceptual diagram of system configurations: a) building energy system, b) DHC system. 

 

1.1.2 Green grid management and associated problems 

 The number of renewable energy installations has globally increased in recent years. In particular, 

solar energy utilization such as PV and solar collectors have significantly increased due to the adoption 

of feed-in-tariff (FIT) in many countries. However, the installation of some systems causes problems 

in the control of a commercial electricity grid. According to a report by the California Independent 

System Operator [11], a globally recognized grid manager, a duck curve is the most pressing issue of 

concern (Fig. 1-2). The electricity demand during the daytime drastically decreases compared to that 

in the morning hours (6 a.m. to 8 a.m.) because of the power generation by the PV system. After the 

power generation decreases as the amount of sunlight reduces, electricity demand increases sharply. 

Hence, there are two peak demand periods, the morning and evening hours. Although flexible 

electricity plants such as pumped-storage hydroelectricity plants and oil-fired electricity plants could 

theoretically meet the electricity balance, their operation is not easy to predict. 

 The same issue is encountered in Japan, especially in the Kyushu region [12]. As a result, storage 

equipment, such as RBs and TES, has been increasingly used to achieve peak-shift and peak-cut 

control. 
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Fig. 1-2 | Duck curve of electricity demand in California Independent System Operator [11]. 

 

1.1.3 Present state of FIT and dynamic pricing 

 FIT is a significant policy to promote the installation of renewable energy, which is used in many 

countries including Japan, the U.S., the U.K., Germany, and France. The installed capacity of PV 

equipment has increased from approximately 500 MW in 2011 to 2,500 MW in 2014 in Japan [12] 

due to the FIT system. Although a surplus electricity purchasing system was implemented in 2009 

before FIT came into force, the latter became a more attractive option for many users. As the amount 

of installed capacity increased, the electricity sale price generated from PV equipment is forecasted to 

decrease from 42 yen/kWh in 2012 to 24 yen/kWh in 2019 for capacities less than 10 kW. 

 Although FIT can achieve green energy power generation, it leads to issues, as indicated by the 

duck curves. Demand response (DR) is another significant policy to maintain the electricity balance. 

DR is mainly divided into two categories: dynamic pricing and demand-side management. The 

demand-side management controls the amount of electricity consumption in accordance with an order 

from grid operators or aggregators to managers in targeted buildings. Hence, the managers should 

decrease or increase the electricity consumption to meet the designated value. For proper management, 

it is important to determine how much incentive should be provided in DR. 

 The dynamic pricing system is intended to vary the price of purchased electricity at every time step, 

basically, one hour, or three or four times a day. The NordPool [13] in the Scandinavia region and the 

PJM Electricity Exchange [14] in eastern U.S. have adopted a typical dynamic pricing system.  
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Fig. 1-3 | Price variations of purchased electricity at peak day for the PJM [15]. 

 

 Fig. 1-3 shows the price variations of purchased electricity on a peak day for the PJM [15]. The 

price at the peak time (4 p.m.) was 16 times as high as the price at the off-peak time (5 a.m.). Hence, 

the empirical operation of an energy system using fixed-rate operations will be not suitable in the near 

future, and optimal control will be needed to handle the demand-side management and the dynamic 

pricing system. 

 

1.1.4 Progress and application of information and communication technologies 

 It is vital to achieve optimal operation using management tools that collect data from many 

measurement points (e.g., chillers, pumps, and PV equipment). In fact, some tools have already been 

used in actual systems. A building energy management system (BEMS) consists of a central monitor 

and many sensors. Although BEMS is a platform to monitor dynamic variations in electricity 

consumption, temperature, and mass flow rate of the building energy system, it can be used with an 

optimization software for daily or hourly optimizations. BEMS has already been a consolidated 

technology based on some international standards such as ISO 16484-2 for its hardware, ISO 16484-

3 for its function, and ISO 16484-5 for its data protocol. BEMS, which is basically an energy 

management system (EMS), will be applied to a larger district energy system called the community 

energy management system (CEMS) in Japan (Fig. 1-4). 

 The physical elements required to achieve the optimal operation have already been used in an 

actual system in Japan. However, a sophisticated and flexible software that can handle almost all 

energy system configurations has yet to be developed for integration into an EMS. 
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Fig. 1-4 | Conceptual diagram of the community energy management system (CEMS) [16]. 

 

1.1.5 Three phases for daily optimization of operating schedules 

 The software for daily optimization consists of three phases: 1) a prediction phase, 2) a day-ahead 

optimization phase, and 3) real-time control phase. 

 The prediction phase is to predict the elements that affect the demand curves and machine 

efficiency. Typical elements are outdoor temperature, outdoor humidity, demand, the price of 

purchased electricity under dynamic pricing, solar radiation, and wind velocity. In particular, the 

demand for electricity, cooling, heating, and domestic hot water directly depends on occupants’ 

behavior. The occupants’ schedule might also be the most valuable prediction target. 

 The day-ahead optimization phase is to optimize the operating schedule of each heat source 

machine for 24 h because the outdoor prediction and price variation are determined for the next day. 

This phase is more important when the system includes time-dependent equipment such as RBs and 

TES because the operating schedule of time-dependent equipment should be optimized during the day 

to minimize daily operating costs and primary energy consumption. When the system uses only 

flexible heat source machines such as heat pumps, it is sufficient to optimize the operating schedule 

for each time step, to minimize hourly operating costs and consumption. 

 The real-time control phase is intended to recalculate the operating schedule and meet a 

temperature constraint of secondary systems, because the predicted value used in the day-ahead 
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optimization phase is not always the same as the actual values. When the tolerance between the 

predicted and actual values is not acceptable for the system, the operating schedule should be modified 

to meet the conditions. 

 

1.2 Literature review 

1.2.1 Development of prediction methods and their applications 

 The development of prediction methods for electricity price and demand is a popular research area. 

There are many proposed methods that can be categorized as follows: 1) mathematical technique-

based methods, 2) neural network technique-based methods, and 3) classical statistical-technique 

based methods. 

 Mathematical technique-based methods have been studied by Xu et al. [17] for predicting the 

dynamic cooling load of a building. Xu et al. [17] created a mathematical model to predict the load as 

a quadratic polynomial exponential smooth equation. The golden section algorithm (0.618 algorithm) 

[18] was used to minimize the predicted sum of squared errors. The mathematical model predicted the 

load every 20 min while updating a coefficient of the equation. As a result, the mean square error 

(MSE) of the mathematical model was 0.0539, and the error of the static model for the day-ahead 

prediction without the use of any updating methods was 0.0605. The mean absolute error (MAE) of 

the proposed prediction method was 0.3034 and of the static model was 0.3660. Laouafi [19] proposed 

a Hampel filtering method to predict very short-term electricity demand. The method (HFCM-TM) 

showed the best results with 0.37–0.64% of the mean absolute percentage error (MAPE) compared to 

other seven methods including back-propagation neural network (BPNN), and adaptive neuro-fuzzy 

inference system (ANFIS). 

 The neural network technique-based approaches have been used by Laouafi et al. [20] to create a 

two-stage prediction technique that includes a first prediction method such as the feed-forward BPNN, 

nonlinear autoregressive neural network with external input (NARX), and ANFIS. The second 

prediction methods were the wavelet packet decomposition and the k-Nearest Neighbors algorithm to 

predict the peak load. They used the absolute percentage error (APE) and MAPE. The hybrid methods 

could forecast the peak load within 1.879% of tolerance on normal days and 3.283% of tolerance on 

public holidays. 

 Liu [21] evaluated various methods such as autoregressive integrated moving average (ARIMA), 

support vector regression (SVR), BPNN, radial basis function neural network (RBFNN), general 

regression neural network (GRNN), fuzzy ARTMAP (FA), wavelet transform (WT) with BPNN 

(WT+BPNN), WT with RBFNN, WT with GRNN, WT with FA, WT with the firefly algorithm (FF) 
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and FA, WT with two-stage mutual information (MI-MI) and neural networks. Finally, they proposed 

a novel shark smell optimization (NSSO) algorithm with an improved Elman neural network (IENN). 

These methods were used to predict building electricity load. As a result, MAPE of the proposed 

method, NSSO, was the best outcome with 0.87–1.12% compared to 15.21–16.43% for SVR. 

 Lahouar [22] used the random forest method, a machine learning technique, to predict the district 

electricity load in Tunisia. The random forest method was superior at predicting the electricity demand 

of the Tunisia power system and the PJM market compared to other methods such as ANN and SVM 

because of its accuracy (MAPE: 0.96–6.80%). Abedinia [23] proposed a new training method for 

optimizing the weights of combinational neural networks (CNNs) to predict electricity price variations 

after referring to the PJM market. They used weekly mean error (WME) and weekly peak error (WPE) 

to evaluate the proposed method and other methods such as ARIMA, ANN, and MI-MI. The WME of 

the proposed method was 3.97–4.12%, which was superior to those of the other techniques (e.g., the 

WME of ARIMA was 34.32–55.81%). Other studies [24–27] also applied ANN to predict loads. 

 Classical statistical models are also used to predict electricity demand. Short [28] integrated an 

open software to predict the price of electricity and loads using an exponentially weighted extended 

recursive least squares (EWE-RLS) method based on Kalman filter and to optimize the operating 

schedule of CHP using mixed integer linear programming (MILP). They also used MAPE to evaluate 

the accuracy of the prediction model. EWE-RLS could predict within 7.85% when the forecasting 

time horizon was one hour and 4.67% when the horizon was 23 h. 

 Rasmussen [29] used the RLS model to predict the electricity demand of a supermarket. Weather 

data used to predict the demand were provided by Danish Meteorological Institute. The prediction 

time horizon was 42 h and the business hour and off-business hour periods were separately predicted. 

The RMSE of the proposed method was 1.41 for 24 h prediction and 1.73 for 42 h prediction. However, 

the peak demand prediction caused more than 6 kW (25%) of tolerance. 

 Kaur [30] compared several classical statistical models including SVR and autoregressive model 

with exogenous input (ARX) to predict the time series of solar power and the net load demand based 

on the actual data from the University of California, Merced (UCM). MAPE of SVR was 30.47–

349.08% and that of ARX was 4.60%. The ARX was also used by Dahl [31] to predict the heat load 

of a district energy system. Other studies [32–34] adopted classical models (e.g., ARX) to predict not 

only loads but also fault detections. 

1.2.2 Development of day-ahead optimization methods and their applications 

 The day-ahead optimization methods can be categorized as follows: 1) scenario-based methods, 2) 

mathematical optimization methods, and 3) statistical or stochastic optimization methods. 
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 The scenario-based methods are often used when a target system is complex and the energy system 

simulation software such as TRNSYS, EnergyPlusTM, and Rhinoceros® is integrated because the 

detailed simulation is computationally expensive and it is difficult to conduct iterative calculations to 

find the optimal solution. There are many studies on scenario-based methods [35–51]. Dufo-López [36] 

targeted a grid-connected storage system in a district. The study aimed to optimize the size and control of 

the storage to minimize the net present cost and levelized cost of energy under the real-time pricing system. 

Oliveira [37] compared the following four scenarios to minimize the operating costs of generating hot water 

with electricity: 1) an ideal case, 2) maximum storage policy, 3) simple variable storage, and 4) optimal 

variable storage. Cui [43] integrated TRNSYS and scenario-based optimization to control a hybrid ground 

source heat pump (GSHP) system. In general, TRNSYS or other simulation software is used in the GSHP 

system because the temperature variations of the circulating fluid significantly affect the efficiency of 

GSHP. The decision variables include the fixed load ratio (FLR) of the hybrid system and the auxiliary 

cooling ratio (ACR) of the cooling tower. Five ACR values (10%, 30%, 50%, 70%, and 90%) and four 

FLR values (0, 0.3, 0.4, and 0.5) were tested. 

 The mathematical technique-based optimization methods have often been used in previous studies 

because of their ability to find the optimal solution and their low computational cost. Wakui [52] attempted 

to optimize two residential buildings that included thermal storage, combined heat and power, and gas 

boilers. The two buildings shared electricity and heat through connection pipes. Due to the low 

computational cost of mixed integer linear programming (MILP), Wakui could also run annual energy 

simulations for 20 residential bulidings [53]. MILP is one of the most commonly used optimization methods 

in the field of the energy system optimization. Many studies [52–66] optimized energy systems with 

MILP using major solvers such as CPLEX® [67] and GAMS [68]. Ameri [60] and Ashouri [57] used 

MILP to simultaneously optimize the design and operation of a district and a building. 

 In contrast, some studies used mixed integer nonlinear programming (MINLP) or nonlinear 

programming (NLP) [69–75] to make the machine’s characteristics nonlinear. MINLP and NLP are based 

on mathematical techniques, especially defferentiating an objective function such as Newton’s method and 

the steepest decent method. Although MINLP and NLP have limitations of use, they are suitable to 

realistically express the characteristics compared to MILP. 

 Dynamic programming (DP), also a mathematical theorem-based method, is a common optimization 

technique to determine the optimal combination of thermal and power outputs of devices. Some studies 

[76–81] used it because of its ability to optimize target systems without any limitations of use. Ranaweera 

[77] used the method to optimize the operating schedules of PV power generation and a rechargable battery. 

The system had nonlinear characteristics such as the efficiency of the power electronic converter and the 

open-circuit voltage of an LiB. DP requires discrete decision variables and an actual energy system usually 

has discrete set points. 
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 Stochastic optimization methods are one of the most popular methods because of their flexibility and 

adaptability. In particular, metaheuristic optimization methods, also called metaheuristics and nature-

inspired optimization techniques, are the most common methods in this field. Metaheuristics include many 

different types of methods such as particle swarm optimization (PSO), genetic algorithm (GA), bat 

algorithm (BA), differential evolution (DE), and cuckoo search (CS). Previous studies used PSO [82–90] 

and GA [91–100] to optimize energy systems. Tsukada [83] used PSO to optimize a CHP operation. The 

results of PSO could reduce total daily operating costs compared to a conventional method. A extended 

PSO (binary PSO, BPSO) was proposed by Elsied [84] to optimize the operating schedule of a wind 

generator, a fuel cell, and a PV in a microgrid. In fact, there are many extended models of PSO described 

in the next chapter. 

 BA [101,102], DE [103–109], and CS [110–114] were also used in some optimization studies, 

although these methods have been developed in recent years. Other metaheuristic methods were 

utilized in several studies [115–118]. Camargo [115] compared six different types of metaheuristics 

including the extended PSO and DE models for the optimization of hydrothermal system operation. 

Deihimi [116] proposed a new method, a multi-objective uniform water cycle algorithm, to minimize 

the operating costs and pollutant emissions of distributed generation in a microgrid. 

 Many methods can be used in the second phase, namely, the day-ahead optimization. They can be 

categorized into three approaches: deterministic with linear, deterministic with nonlinear, and 

stochastic regardless of the system configuration and machine’s characteristics. Although each method 

has unique advantages and disadvantages, we need to determine whether the algorithm is suitable for 

solving the target optimization problem. 

 

1.2.3 Development of real-time control methods and their applications 

 A real-time control method aims to recalculate or revise the operating schedule determined in the 

second phase consistent with the tolerance of the predicted value and the actual measurement value 

[119–130]. In recent years, the model predictive control (MPC) has been used to achieve real-time 

control. Hasikos [119] integrated the radial basis function artificial neural network (RBF-NN) and 

MPC to control fuel cells. RBF-NN predicted the net power and oxygen excess ratio using input data 

such as the stack current and the compressor voltage of the fuel cell. Although they used the dynamic 

matrix control (DMC) to realize the real-time control, DMC was based on the same concept as MPC. 

In the DMC procedure, an operating schedule was updated iteratively with system dynamic predictions 

using RBF-NN. 
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 Schirror [122] applied the MPC procedure, called a modular MPC (MMPC), to an actual building 

located in Vienna, Austria. The time-dependent characteristics were important because this building 

had the cooling and heating system of thermally activated building systems (TABS). They used a 

linear approximation model to reduce the computational complexity because the MPC procedure 

required an optimization for the operating schedule during several time intervals. Although the 

nonlinear behavior should be handled as a nonlinear approximation, the linear approximation 

technique was used in other studies, for instance in [126]. Sanjari [130] compared the day-ahead and 

hour-ahead optimized scheduling with demand forecast error in grid-connected residential buildings. 

They used a hyper-spherical search algorithm to find the optimal electricity dispatch. 

 

1.3 State-of-the-art projects with optimal operating management 

1.3.1 District cooling plant in Marina Bay, Singapore 

 A district cooling plant including Plant No. 1 and No. 2 at Marina Bay in Singapore has been 

operated by Mitsubishi Heavy Industries [131]. In this area, the Singapore Government requested that 

the system coefficient of performance (SCOP) be more than 5.4 (0.65 kW/USRT). Thus, an 

optimization method is used to accomplish this goal. The cooling capacity of Plant No. 1 is 20,000 

USRT and that of Plant No. 2 is 25,000 USRT. In addition, these two plants share the generated heat 

while considering a pressure balance of pipes. A specific feature of optimization for operating 

schedules of the energy system is to realize the online optimization by a software, which has two tasks: 

online and offline. In the online task, a central monitoring system collects real-time operating data. 

The system also provides measured data to an arithmetic unit and a control unit every 15 min. The 

arithmetic unit determines the combination of thermal outputs of each heat source machine and the 

fan speed of the cooling tower. 

 To control these thermal energy tasks, two different operating strategies are applied: 1) peak-

cutting and 2) constant discharge. However, the electricity market in Singapore uses a real-time pricing 

system, which means the electricity price is determined by real-time trading every 30 min. Thus, 

determining the day-ahead operating schedule of TES is difficult because the price changes every 30 

min. 

 The operation of heat source machines is optimized by PSO, which identifies the quasi-optimal 

combination of thermal outputs of each heat source machine. The computation time to determine the 

thermal output combination by PSO was only 10 s. Fig. 1-5 shows the search performance of PSO. To 

minimize energy consumption, the combination of load rates of each heat source varied as the number 

of calculation steps increased. 
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Fig. 1-5 | Performance of the optimal solution search by PSO (translated in English from [132]) 

 

 In the final calculation step, as per the quasi-optimal combination, the second and third CRs 

generated cooling heat at the rated capacity. CR No. 1 is not shown in Fig. 1-5 because the machine 

is designed to remain inactive to prevent the overworking of a specific machine, especially the most 

efficient one. The optimization could reduce the electricity consumption by 5.1% compared to the 

actual operation [132]. 

 

1.3.2 Comprehensive real-time optimization for building operations in Tokyo 

 Takenaka Corporation, one of the giant construction companies in Japan, developed an 

optimization structure, I. Smart Energy Management (I.SEM), to properly control electricity, space 

cooling, and heating systems (Fig. 1-6). They used I.SEM to comprehensively optimize three buildings 

located in Toyocho, Tokyo. I.SEM included a demand prediction unit and an optimization unit for 

machine operation. The prediction unit could forecast electricity and cooling/heating demands within 

5% of tolerance. The optimization unit could determine an optimal operation for the next 30 min to 

meet the forecasted demand. It can also be used in terms of DR because DR often requires a proper 

operation for 30 min. These units are controlled in a cloud platform. 
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Fig. 1-6 | Structure of I.SEM (translated in English from [133]) 

 

1.3.3 Other projects aiming energy optimization 

 SmartWatt contributed to the optimization of building and district energy systems in actual cases 

[134] (e.g., Coast College District with building automation technology). An energy system of the Yau 

Ma Tei Specialist Clinic at Queen Elizabeth Hospital [135] was optimized by PowerBoxTM, which 

could monitor and analyze the energy system online. The Pacific Northwest Smart Grid Demonstration 

Project [136] was a notable project supported by the U.S. Department of Energy. 

 For the development of an optimization software to achieve operational optimization, the TEMOA 

project [137–139] proposed an energy simulation tool. The tool has a protocol for problem formulation 

such as an objective function and constraints and also requires some linear programming such as 

CPLEX® and GurobiTM to be integrated [140]. REoptTM, which stands for renewable energy 

integration and optimization, is a techno-economic decision support model proposed by the National 

Renewable Energy Laboratory (NREL) [141] and also required the MILP model to simplify target 

models. The model could optimize the operation of an electricity system using PV equipment and RBs, 

to minimize life-cycle costs [142]. NREL also developed BEoptTM (building energy optimization) 

[143], supported by the U.S. Department of Energy, to minimize the life-cycle cost of target buildings 

integrated with EnergyPlusTM. 
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1.4 Current issues 

 Linear programming (LP) including MILP has strict limitations of use because it requires a linear 

configuration. Although MILP and LP can find an optimal solution rapidly and allow users to conduct 

long-term (annual and life-cycle) building energy simulations, the linearization of the system 

configuration is not easy to be conducted in dynamic or real-time controls. In addition, LP cannot be 

applied to a discrete optimization problem and MILP should consider the combinations of decision 

variables in the discrete problem, although actual systems consist of discrete set points. 

 DP can directly handle discrete variables and nonlinear configurations. However, the 

computational complexity of the method depends on the number of decision variables and resolution 

of discrete variables. Although the method is suitable for use in simple energy systems, it is not 

appropriate for complex energy systems. 

 More efficient methods should be developed and applied to complex systems. Deterministic 

optimization methods such as MILP and dynamic programming without any simplifications are 

computationally expensive (e.g., linearization and large size resolution of the discrete variables). 

Hence, other optimization approaches such as stochastic methods are strongly needed. Such stochastic 

methods, e.g., metaheuristics, were introduced in Section 1.2.2. Classical metaheuristic methods, such 

as GA, PSO, and DE, cannot always solve problems efficiently because of the various complex factors 

such as nonlinear configurations, discrete conditions, and many constraints. 

 This thesis proposes a new optimization method with a realistic computational cost, to solve the 

complicated issue of achieving day-ahead and real-time optimizations for complex building and 

district energy systems. In addition, a novel optimization strategy for the schedule recalculation in the 

real-time control is proposed. 

 

1.5 Structure of the thesis 

 This thesis is organized as follows. Chapter 2 introduces the basics of components and optimization 

methods. Detailed characteristics of each component and algorithms of some methods often used in 

previous studies are described. Chapter 3 describes the optimization of the operating schedules of a 

complex building energy system composed of electricity, space cooling, and domestic hot water 

systems. The system also consists of three different storage equipment such as RB, TES for cooling, 

and TES for hot water. An efficient multi-objective optimization method is proposed to minimize daily 

operating costs and primary energy consumption at once. Chapter 4 describes a new index to determine 

the optimal operating schedules of PV systems and RBs under various purchased electricity prices. 

The index allows users to easily determine the optimal operation without using any optimization 
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methods. Chapter 5 describes the development of a re-optimization framework for the uncertainty in 

demand and PV power generation. The framework is called two-time step recalculation (TtsR), which 

is used in the third phase for real-time control. Chapter 6 describes an improved robust optimization 

method and its application to the multiple GSHP systems. Although the GSHP system requires high 

computational costs to calculate temperature variations in circulating fluid, the proposed method can 

easily optimize the operating schedule of the GSHP system. Chapter 7 describes a hybrid technique 

of the optimization method proposed in Chapter 6 and machine learning such as artificial neural 

network (ANN) to minimize the daily operating costs of an energy system composed of multiple 

renewable energy systems. Chapter 8 aims to minimize the daily operating costs of the DHC system 

with the proposed hybrid method. Chapter 9 discusses the minimization of the daily operating costs 

of heat sharing network system with the proposed hybrid method. Chapter 10 presents the conclusions 

of this research and proposes ideas for future studies. 

2  
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2.1 Description of components 

 This section describes the characteristics of components such as heat source machines and pumps 

using mathematical models. The mathematical equations of the following machines are in accordance 

with the life cycle energy management (LCEM) tool provided by the Ministry of Land, Infrastructure, 

Transport, and Tourism, Japan [144]: centrifugal refrigerator, absorption refrigerator, heat recovered 

absorption refrigerator, air-source heat pump, gas heat pump, and ground source heat pump. These 

models in the LCEM tool use not only physical equations, but also empirical coefficients that were 

determined using actual machine data. Hence, these models have an advantage in simulating the actual 

phenomenon of energy system components. 

 

2.1.1 Centrifugal refrigerator 

 A centrifugal refrigerator (CR) typically has a larger capacity and more efficient performance than 

other machines such as air-source heat pumps and absorption refrigerators. Hence, CRs are often used 

in large buildings that have high cooling demands. Although there are many types of CR, a CR with 

inverter technology was used in this research as it has become increasingly popular in actual energy 

systems owing to its high part-load performance. The model is in accordance with the excel file “RC-

XX1-310L200-500_Ver310.xls” in the LCEM tool, which contains six capacities, as listed in Table 

2-1. 

 

Table 2-1 | Rated specification of CR in the LCEM tool 

Cooling capacity [kW] 703 879 1,090 1,231 1,582 1,828 

Mass flow rate of cooling water [L/min] 2,400 3,000 3,683 4,200 5,367 6,167 

Electricity consumption of CR itself [kW] 131 156 186 221 272 304 

Electricity consumption of sub-machine [kW] 0.75 0.75 0.75 0.75 1.20 1.20 

COP* 5.34 5.62 5.83 5.54 5.79 5.99 

*COP: coefficient of performance 

 

 This model has following constraints: 

1) Partial load rate: 20–100% 

2) Inlet temperature of cooling water: 12–32 °C 

 

 Although the LCEM tool has discrete capacities, a continuous capacity could be considered with 

trend-lines as shown in Fig. 2-1. The horizontal and the left and right vertical axes are rated cooling 

capacity, rated electricity consumption, and rated mass flow rate of cooling water, respectively. 
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Fig. 2-1 | Relationship of rated cooling capacity to rated electricity consumption and mass flow rate of 

cooling/chilled water. 

 

In contrast, a rated mass flow rate of chilled water could be determined using the temperature 

difference of inlet and outlet and the rated capacity. 

 The electricity consumption of the CR was calculated as shown in Eq. (2-1). 

𝑐E = 𝑐E,rd ∏𝛼𝑖,CR

5

𝑖

 (2-1) 

where, 𝑐E is the electricity consumption [kW], 𝑐E,rd is the rated electricity consumption of the CR 

itself [kW], and 𝛼𝑖,CR the coefficient with which to determine the CR’s performance. Each 𝛼𝑖,CR is 

defined as follows: 

𝛼1,CR = 17.9046644869913𝑅lr
6 − 67.0573761220053𝑅lr

5

+ 101.123764585813𝑅lr
4 − 77.8739337726255𝑅lr

3

+ 32.5714403900183𝑅lr
2 − 6.61431800228766𝑅lr

+ 0.945477028090787 

(2-2) 
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𝛼2,CR = −1.16416709971475 × 10−8𝑇in,co
6 − 7.37922244873432 × 10−7𝑇in,co

5

+ 0.000141564520003781𝑇in,co
4 − 0.00639083378124009𝑇in,co

3

+ 0.13274935442347𝑇in,co
2 − 1.30336858289761𝑇in,co

+ 5.00901140248692 

(2-3) 

𝛼3,CR = 0.413955451708935𝑅cw
2 − 1.04486182259178𝑅cw + 1.63090637088285 (2-4) 

𝛼4,CR = 0.0032169𝑇out,cw
2 − 0.0815249𝑇out,cw + 1.412122 (2-5) 

𝛼5,CR = −0.00081712𝑅co
2 + 0.02150023𝑅co + 0.97945391 (2-6) 

where, 𝑅lr is the partial load rate [-], 𝑇in,co is the inlet temperature of the cooling water [°C], 𝑅co 

is the ratio of the current mass flow rate to the rated mass flow rate of the cooling water [-], 𝑇out,cw 

is the outlet temperature of the chilled water [°C], and 𝑅cw is the ratio of the chilled water [-]. 

 

2.1.2 Absorption refrigerator 

 An absorption refrigerator (AR) is based on gas energy and has a relatively high capacity for both 

cooling and heating compared to heat pump machines. Thus, AR has been widely used, particularly 

to meet cooling and heating demands in large buildings. In addition, AR has been adopted together 

with electrical heat source machines, such as CR, to improve the flexibility of energy systems. The 

characteristics of AR are in accordance with the excel file with “RC-XX5-310A_150-500_Ver310.xls” 

in the LCEM tool, which contains ten capacities, as listed in Table 2-2. 

 This model has the following constraints: 

1) Partial load rate: 25% to 100% 

2) Inlet temperature of cooling water: 20–32 °C 

 To continuously determine specifications such as rated heating capacity, rated mass flow rate of 

cooling water, rated electricity, and gas consumption, trend-lines were created as shown in Fig. 2-2. 
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Table 2-2 | Rated specification of AR in the LCEM tool. 

Cooling capacity 

[kW] 
527 633 738 879 985 1,125 1,266 1,407 1,582 1,758 

Heating capacity 

[kW] 
348 418 487 580 650 743 835 928 1,044 1,160 

Mass flow rate of 

cooling water 

[L/min] 

2,500 3,000 3,500 4,170 4,670 5,330 5,770 6,410 7,210 8,010 

Electricity 

consumption for 

cooling [kW] 

5.18 6.13 6.13 7.08 7.08 7.92 11.98 12.95 14.67 14.67 

Electricity 

consumption for 

heating [kW] 

4.55 5.49 5.49 6.45 6.45 7.28 11.35 11.35 13.07 13.07 

Gas consumption 

for cooling [m3/h] 
31.3 37.5 43.8 52.1 58.3 66.6 75.0 83.4 93.8 104.2 

Gas consumption 

for heating [m3/h] 
31.9 38.3 44.6 53.2 59.5 68.1 76.6 85.0 95.7 106.3 

 

 

Fig. 2-2 | Relationship of rated cooling capacity to the following specifications: a) rated heating capacity, b) rated 

mass flow rate of cooling water, c) rated electricity consumption, d) rated gas consumption rate. 
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 Electricity consumption was calculated using the following linear equation, Eq. (2-7). 

𝑐E,AR = 𝑐E,rd,AR𝑅lr (2-7) 

where, 𝑐E,AR is the electricity consumption [kW] and 𝑐E,rd,AR the rated electricity consumption [kW]. 

 In contrast, the gas consumption was calculated using the following nonlinear equations. 

𝑐G,AR = 𝑐G,rd,AR ∏ 𝛼𝑖,AR

4

𝑖
 (2-8) 

where, 𝑐G,AR represents the gas consumption [m3/h], 𝑐G,rd,AR the rated gas consumption [m3/h], and 

𝛼𝑖,AR  the coefficients determined by testing an actual machine. Each coefficient was determined 

mathematically as follows: 

𝛼1,AR =
7.6𝑅lr

2 + 91.27𝑅lr + 1

100
 (2-9) 

𝛼2,AR =
0.0212𝑇in,co

2 − 0.1103𝑇in,co + 81.727

100
 (2-10) 

𝛼3,AR =
15𝑅co

2 − 38.08𝑅co + 122.81

100
 (2-11) 

𝛼4,AR =
−𝑇out,cw + 107

100
 (2-12) 

where, 𝑇in,co is the inlet temperature of the cooling water [°C], 𝑅co the ratio of the current mass 

flow rate to the rated mass flow rate of the cooling water [-], and 𝑇out,cw the outlet temperature of 

the chilled water [°C]. 

 

2.1.3 Heat recovered absorption refrigerator 

 A heat recovered absorption refrigerator (HRAR) is a state-of-the-art technology to improve 

machine efficiency through the utilization of waste heat; in particular, gas consumption for cooling 

could be reduced. 

 The characteristics of HRAR (Fig. 2-3) are in accordance with the excel file “RJ-XX1-310H_120-

500_Ver310.xls” in the LCEM tool, which contains five capacities, as listed in Table 2-3. This model 

has the following constraints: 

1) Partial load rate: 25% to 100% 

2) Inlet temperature of cooling water: 20–32 °C 
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Table 2-3 | Rated specification of HRAR in the LCEM tool 

Cooling capacity [kW] 422 738 949 1,407 1,758 

Heating capacity [kW] 338 591 844 912 1,140 

Mass flow rate of cooling water [L/min] 2,000 3,500 4,500 6,667 8,333 

Recovered heat [kW] 130 227 292 433 541 

Electricity consumption for cooling and heating [kW] 6.6 8.5 10.6 12.3 12.3 

Gas consumption for cooling [m3/h] 25.1 43.9 56.4 83.6 104.5 

Gas consumption for heating [m3/h] 30.9 54.1 77.3 83.6 104.5 

 

 
Fig. 2-3 | Relationship of various specification values to the rated cooling capacity: a) rated heating capacity, b) 

rated mass flow rate of cooling water and rated amount of recovered heat, c) rated gas and electricity consumption for 

cooling, d) rated gas and electricity consumption for heating. 

 

3) Inlet temperature of recovered heat: less than 95 °C 

 HRAR is generally used with a combined heat and power (CHP) system because the temperature 

of waste heat from a common type of CHP is less than 95 °C. To make the specification continuous, 

the following figures show trend-lines that indicate the relationships of the rated cooling capacity to 

various parameters. 
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 The electricity consumption was calculated linearly as follows: 

𝑐E,HRAR = 𝑐E,rd,HRAR(0.1𝑅lr + 0.9) (2-13) 

 In contrast, the gas consumption had nonlinear characteristics as follows: 

𝑐G,HRARcl
= 𝑐G,rd,HRARcl

𝑅G,HRARcl
−

0.8𝑃RH𝑅G,HRARcl
𝑐G,rd,HRARcl

𝑃HRARcl

 (2-14) 

𝑐G,HRARht
= 𝑐G,rd,HRARht

𝑅G,HRARht
 (2-15) 

where, 𝑐G,HRARcl
, and 𝑐G,HRARht

 represent the gas consumption of cooling and heating [kW], 

respectively; 𝑐G,rd,HRARcl
 and 𝑐G,rd,HRARht

 are the rated gas consumption of cooling and heating 

[kW], respectively; 𝑅G,HRARcl
 and 𝑅G,HRARht

 denote the gas consumption ratio of cooling and 

heating to the rated value [-], respectively; 𝑃RH is the amount of recovered heat [kW]; and 𝑃HRARcl
 

denotes thermal output of HRAR for cooling [kW]. When 𝑃RH is large and 𝑐G,HRARcl
 is negative, 

𝑐G,HRARcl
 should be zero. As shown in Eq. (2-14), 𝑃RH can reduce the gas consumption. 

 𝑅G,HRARcl
 and 𝑅G,HRARht

 are the gas consumption ratios for cooling and heating, respectively, to 

the rated gas consumption. These are calculated as follows: 

𝑅G,HRARcl
= (0.1𝑅lr

2 + 0.8576𝑅lr + 0.042672) × (0.000084𝑇in,co
2 + 0.006028𝑇in,co

+ 0.72107)
100

0.074533𝑅co + 92.545

×
100

0.001814𝑇out,cw
2 + 1.258145𝑇out,cw + 91.104

×
100

−0.013758𝑅cw + 101.379
 

(2-16) 

𝑅G,HRARht
= 𝑅lr (2-17) 

where, 𝑇in,co represents the inlet temperature of the cooling water [C], and 𝑅co and 𝑅cw are the 

ratios of mass flow rate to the rated values of cooling water and chilled water [-], respectively. 

𝑅G,HRARc has nonlinear characteristics, but 𝑅G,HRARht
 is linearly equal to the partial load rate. 

 

2.1.4 Air-source heat pump 

 An air-source heat pump (ASHP) is a common heat source machine used for both cooling and 

heating. In general, a unit of ASHP is not large (e.g., 3.5 kW). Hence, many units were gathered to  
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Table 2-4 | Rated specification of ASHP 

Cooling capacity [kW] 255 340 425 510 595 680 765 850 935 

Heating capacity [kW] 270 360 450 540 630 720 810 900 990 

Electricity 

consumption for 

cooling and heating 

[kW] 

71.1 94.8 119 142 166 190 213 237 261 

 

 

Fig. 2-4 | Relationship of various specification values to the rated cooling capacity: a) rated heating capacity, and 

b) rated electricity consumption for cooling and heating. 

 

generate a large amount of heat. In addition, the time interval required to initiate heat generation using 

ASHP is shorter than that for other machines such as CR and AR. Thus, ASHP is suitable for use in 

buildings with highly variable cooling or heating demand. 

 The characteristics of ASHP is in accordance with the excel file “RR-XX5-310S_225-

1020_Ver310” in the LCEM tool, which contains nine capacity models, as listed in Table 2-4. 

 This model has the following constraints: 

1) Partial load rate: 10% to 100% 

2) Outdoor temperature: -5–40 C 

 To make the specification relationship continuous, trend-lines were generated, as shown in the 

following figures (Fig. 2-4); they indicate the relationship of the rated cooling capacity to various 

parameters. 
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 The maximum cooling and heating capacities are dependent on the outdoor temperature as follows: 

𝑃max,ASHPcl
= 𝑃rd,ASHPcl

(−0.000000123𝑇out,cw
2 𝑇atm

2 + 0.0000010278𝑇out,cw𝑇atm
2

− 0.00031152𝑇atm
2 + 0.0000096773𝑇out,cw

2 𝑇atm

+ −0.00041981𝑇atm𝑇out,cw + 0.0071877𝑇atm − 0.00099621𝑇out,cw
2

+ 0.058391𝑇out,cw + 0.86301) 

(2-18) 

𝑃max,ASHPht
= 𝑃rd,ASHPht

(−0.000000422𝑇out,hw
2 𝑇atm

2 + 0.000016544𝑇out,hw𝑇atm
2

+ 0.000057912𝑇atm
2 + 0.000015522𝑇out,hw

2 𝑇atm

− 0.00098337𝑇atm𝑇out,hw + 0.034725𝑇atm − 0.00017832𝑇out,hw
2

+ 0.011552𝑇out,hw + 0.69076) 

(2-19) 

where, 𝑃max,ASHPcl
 and 𝑃max,ASHPht

 are the maximum capacity for cooling and heating, 

respectively; 𝑃Rd,ASHPcl
 and 𝑃Rd,ASHPht

 the rated capacity for cooling and heating, respectively; and 

𝑇atm, 𝑇out,cw, and 𝑇out,hw the atmosphere temperature [C], and the outlet temperature of the chilled 

and hot water [C], respectively. 

 The electricity consumption is calculated as follows: 

𝑐E,ASHPcl
= 𝑐E,rd,ASHPcl

(−0.00000013𝑇out,cw
2 𝑇atm

2 + 0.000002019𝑇out,cw𝑇atm
2

+ 0.0005665𝑇atm
2 + 0.000005159𝑇out,cw𝑇atm

− 0.00005125𝑇out,cw𝑇atm − 0.01236𝑇atm − 0.0002398𝑇out,cw
2

+ 0.01162𝑇out,cw + 0.6608) × (0.3021𝑅lr
3 − 0.2442𝑅lr

2 + 0.9516𝑅lr

− 0.0003) 

(2-20) 

𝑐E,ASHPht
= 𝑐E,rd,ASHPht

(−0.00000019𝑇out,hw
2 𝑇atm

2 + 0.00001592𝑇out,hw𝑇atm
2

− 0.0002736𝑇atm
2 + 0.000001611𝑇out,hw

2 𝑇atm
2

− 0.0001121𝑇out,hw𝑇atm + 0.004077𝑇atm + 0.0002619𝑇out,hw
2

− 0.001682𝑇out,hw + 0.5267) × (0.243𝑅lr
3 − 0.2903𝑅lr

2 + 1.0531𝑅lr

− 0.0022) 

(2-21) 

where, 𝑐E,ASHPcl
 and 𝑐E,ASHPht

 represent the electricity consumption for cooling and heating [kW], 

respectively; and 𝑐E,rd,ASHPcl
 and 𝑐E,rd,ASHPht

 the rated electricity consumption for cooling and 

heating [kW], respectively. 
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2.1.5 Gas heat pump 

 A gas heat pump (GHP) is a heat pump technology based on gas energy. The characteristics of 

GHP are in accordance with the excel file “GHPCA-XX1-310_20-25_Ver310.xls” in the LCEM tool, 

which contains two capacities, as listed in Table 2-5. 

 This model has the constraint that the partial load rate should be between 25% and 100%. To make 

the specification continuous, trend-lines were generated in the following figures (Fig. 2-5); these 

represent the relationship of the rated cooling capacity to various parameters. 

 The electricity consumption was calculated linearly as follows: 

𝑐E,GHP = 𝑐E,rd,GHP𝑅lr (2-22) 

where, 𝑐E,GHP and 𝑐E,rd,GHP are the electricity consumption [kW] and rated electricity consumption 

[kW], respectively. Gas consumption was calculated nonlinearly as follows: 

𝑐G,GHP = 𝑐G,rd,GHP ∏ 𝛼𝑖,GHP

3

𝑖
 (2-23) 

 

Table 2-5 | Rated specification of GHP 

Cooling capacity [kW] 50 71 

Heating capacity [kW] 60 80 

Electricity consumption for cooling [kW] 1.37 1.92 

Electricity consumption for heating [kW] 1.13 1.36 

Gas consumption for cooling [m3/h] 3.48 5.12 

Gas consumption for heating [m3/h] 3.68 5.36 

 

 
Fig. 2-5 | Relationship of various specification values to the rated cooling capacity: a) rated heating capacity, b) 

rated gas consumption for cooling and heating, and c) rated electricity consumption for cooling and heating. 
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where, 𝑐G,GHP  and 𝑐G,rd,GHP  are the gas consumption [m3/h] and rated gas consumption [m3/h], 

respectively; 𝛼𝑖,GHP  the coefficient with which to determine the gas consumption. Different 

coefficients are used for the cooling and heating operations; these are determined as follows: 

𝛼1,GHPcl
=

100𝑅lr

300𝑅lr
3 − 770𝑅lr

2 + 570𝑅lr − 0.0002
 (2-24) 

𝛼2,GHPcl
=

0.0941𝑇out,cw
2 − 2.5414𝑇out,cw + 113.1789

100
 (2-25) 

𝛼3,GHPcl
=

0.0939𝑇atm
2 − 4.8649𝑇atm + 155.244

100
 (2-26) 

𝛼1,GHPht
=

100𝑅lr

300𝑅lr
3 − 737𝑅lr

2 + 536𝑅lr + 0.9998
 (2-27) 

𝛼2,GHPht
=

0.0491𝑇out,hw
2 − 2.4509𝑇out,hw + 110.863

100
 (2-28) 

𝛼3,GHPht
=

0.0092𝑇atm
3 − 0.0226𝑇atm

2 − 1.8024𝑇atm + 109.6408

100
 (2-29) 

where, 𝛼1–3,GHPcl
 and 𝛼1–3,GHPht

 are the coefficients for cooling and heating, respectively. 

 

2.1.6 Ground source heat pump 

 GSHP is applicable to for both cooling and heating operations and is a notable technology due to 

its high performance [145]. GSHP is used in conjunction with a borehole heat exchanger (BHE) to 

inject heat into ground. The characteristics of GSHP are in accordance with the excel file “HB(VP)-

XX1-310_80-1000_Ver310.xls,” which contains the following model. 

 The rated cooling and heating capacity are 51.32 and 46.62 kW, respectively. In addition, the rated 

electricity consumption for cooling and heating are 10.8 and 15.2 kW, respectively. However, the 

maximum capacity of GSHP and the electricity consumption depend particularly on the temperature 

of the water circulating through the BHE. The maximum capacity for cooling and heating are 

determined as follows: 

𝑃max,GSHPcl
= 0.02251𝑇out,cw

2 − 0.01407𝑇out,cw𝑇in,cirw − 0.00126𝑇in,cirw
2

+ 1.738𝑇out,cw − 0.305𝑇in,cirw + 𝑃R,GSHPcl
 

(2-30) 
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𝑃max,GSHPht
= −0.001352𝑇out,hw

2 − 0.008325𝑇out,hw𝑇in,cirw + 0.02112𝑇in,cirw
2

+ 0.03779𝑇out,hw + 1.445𝑇in,cirw + 𝑃R,GSHPht
 

(2-31) 

where, 𝑃max,GSHPcl
 and 𝑃max,GSHPht

 are the maximum cooling and heating capacities, respectively. 

The electricity consumption can be calculated as follows: 

𝑐E,GSHPcl
= (−0.001418𝑇out,cw

2 + 0.005793𝑇out,cw𝑇in,cirw − 0.0001034𝑇in,cirw
2

− 0.1244𝑇out,cw + 0.2912𝑇in,cirw + 3.218)

× (4.899𝑅lr
4 − 12.81𝑅lr

3 + 12.05𝑅lr
2 − 3.792𝑅lr + 0.6557) 

(2-32) 

𝑐E,GSHPht
= (−0.0001136𝑇out,hw

2 + 0.005796𝑇out,hw𝑇in,cirw − 0.001418𝑇in,cirw
2

+ 0.264𝑇out,hw − 0.1393𝑇in,cirw + 2.48)

× (1.804𝑅lr
4 − 4.428𝑅lr

3 + 3.858𝑅lr
2 − 0.4286𝑅lr + 0.1962) 

(2-33) 

where, 𝑐E,GSHPcl
 and 𝑐E,GSHPht

 are the electricity consumption [kW] for cooling and heating, 

respectively; and 𝑇in,cirw the inlet temperature of the circulating water. Fig. 2-6 shows the variations 

in rated capacity and COP for inlet temperatures in the range of 2 C to 40 C. 

 

 
Fig. 2-6 | Capacity and COP variation as a function of the inlet temperature of the circulating water. 
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2.1.7 Gas boiler 

 GB is used to generate hot water using gas energy. The characteristics of GB are in accordance 

with the excel file “HB(VP)-XX1-310_80-1000_Ver310.xls,” which contains twelve capacity models, 

as listed in Table 2-6. To make the specification continuous, various trend-lines were generated in the 

following figures (Fig. 2-7); these indicate the relationship of the rated cooling capacity to various 

parameters. 

 

Table 2-6 | Rated specification of GB in the LCEM tool 

Heating 

capacity 

[kW] 

93 116 151 186 233 291 349 465 581 756 930 1,163 

Electricity 

consumpti

on of fan 

[kW] 

0.45 0.45 0.46 0.61 0.61 0.61 0.66 1.15 1.15 2.08 2.08 2.08 

Electricity 

consumpti

on of 

other 

equipment 

[kW] 

0.11 0.11 0.11 0.11 0.11 0.11 0.13 0.13 0.13 0.70 0.70 0.70 

Gas 

consumpti

on [m3/h] 

9.0 11.2 14.8 18.0 22.7 28.1 34.4 45.4 56.1 73.8 89.8 114 

 

 

 
Fig. 2-7 | Relationship of the rated cooling capacity to various specifications such as rated gas consumption, 

and electricity consumption of fans and other equipment. 

y = 0.0973x - 0.0053
R² = 0.9999

y = 0.0019x + 0.2103
R² = 0.9168

y = 0.0007x - 0.0367
R² = 0.7919

0.0

0.5

1.0

1.5

2.0

2.5

0

20

40

60

80

100

120

0 200 400 600 800 1,000 1,200 1,400

(Other equipment)

(Gas)

(Fan)

Rated heating capacity [kW]

R
a
te

d
 g

a
s
 c

o
n

s
u

m
p

ti
o

n
 [
m

3
/h

]

E
le

c
tr

ic
it
y
 c

o
n

s
u

m
p

ti
o

n
 o

f 
fa

n
s
 a

n
d

 

th
e

 o
th

e
r 

e
q

u
ip

m
e

n
t 
[m

3
/h

]



CHAPTER 2 | Basic theory 

41 

 

 The electricity consumption of GB (𝑐E,GB) was calculated linearly as follows: 

𝑐E,GB = 𝑐E,rd,FAN + 𝑐E,rd,other𝑅lr (2-34) 

where, 𝑐E,rd,FAN  and 𝑐E,rd,other  are the electricity consumption [kW] of the fans and other 

equipment. The gas consumption was calculated linearly as follows: 

𝑐G,GB = 𝑐G,rd,GB𝑅lr (2-35) 

 

2.1.8 Combined heat and power 

 CHP can generate electricity and heat energy simultaneously using gas energy. The rated efficiency 

of power generation and heat recovery are set to 40.5% and 34.5%, respectively. The power generation 

efficiency (𝜇E,CHP) is determined using Eq. (2-36). 

𝜇E,CHP = −0.216𝑅lr
2 + 0.434𝑅lr + 0.187 (2-36) 

 The gas consumption can be determined using the aforementioned rated gas consumption and 

power generation efficiency as follows: 

𝑐G,CHP =
3.6𝑅lr

45𝜇E,CHP
 (2-37) 

 Third, the heat recovery efficiency (𝜇ht,CHP) i calculated as follows: 

𝜇ht,CHP = 0.216𝑅lr
2 − 0.434𝑅lr + 0.563 (2-38) 

 Finally, the amount of recovered heat (𝑃RH [kW]) can be calculated as follows: 

𝑃RH =
45𝑐G,CHP𝜇ht,CHP

3.6
 (2-39) 

 

2.1.9 Photovoltaic system 

 A photovoltaic system (PV) is widely used globally to utilize solar energy efficiently. Although 

PV systems have a complex technology to improve their performance, such as maximum power point 

tracking (MPPT), the calculation of PV power generation is simplified in this research as follows: 

𝑃PV = 𝐴PV𝐼total𝜇PV𝜇PC (2-40) 
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where, 𝑃PV denotes the power generation of PV [kW], 𝐴PV is the PV area PV [m2]; 𝐼total the total 

solar radiation [kW/m2]; and 𝜇PV and 𝜇PC indicate the conversion efficiency of the PV panel and 

power conditioner, respectively. 𝐴PV  is set to 500 m2, and 𝜇PV  and 𝜇PC  to 0.13 and 0.97, 

respectively. 

 

2.1.10 Solar thermal system 

 A solar thermal system consists of a solar collector (SC) and circulating pumps, and is used to 

generate hot water using solar energy. The characteristics of SC are in accordance with the excel file 

“SCOL-XX-303XX-01_Ver303.xls” in the LCEM tool. The parameters of the solar thermal system 

are fixed in this research as follows: 

Location: Tokyo, Japan (35.69° N, 139.76° E) 

Panel angle: 35° to ground 

Panel area: 100 m2 

Fouling factor of the panel (𝜏): 3% 

The heat available for collection can be calculated as follows: 

𝑃SC = 𝐴SC𝐼total (1 −
𝜏

100
)𝜇SC (2-41) 

where, 𝑃SC denotes the thermal output of SC [kW], 𝐴SC is the area of the SC [m2], 𝜏 the fouling 

factor [-], and 𝜇SC the conversion efficiency of SC [-]. 𝜇SC can be calculated as follows: 

𝜇SC =
−338.4 {

∆𝑇
𝐼total(1 − 𝜏/100)860

} + 84

100
 

(2-42) 

where, ∆𝑇 is the temperature difference between the inlet and outlet circulating fluids of SC. 

 

2.1.11 Battery 

 The rechargeable Battery (RB) is becoming increasingly popular to reduce electricity costs and to 

achieve peak-shifting. Although many types of batteries have been developed in recent years, a Li-ion 

chargeable battery was applied in this research because it has advantages compared to other types; 

these include a low self-discharge rate and memory effects [146]. 

 Although the battery undergoes chemical change during charging and discharging operations, 

which is difficult to model, a simple linear model was adopted in this research. The remaining battery 

charge [kWh] at a certain time step can be formulated as follows: 
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𝑆RB
𝑡 = (1 − 𝜏RB)𝑆RB

𝑡−1 + 𝑃RB,c − 𝑃RB,d  (2-43) 

where, 𝑆RB
𝑡  is the remaining battery charge [kWh] at time step 𝑡; 𝜏RB the self-discharge rate which 

is fixed to 2 [%/h]; and 𝑃RB,c and 𝑃RB,d the power of the charge and discharge [kW], respectively. 

 

2.1.12 Stratified water thermal energy storage 

 A stratified water thermal energy storage (TES) is used to improve system efficiency and realize 

peak-shifting operations. The characteristics of TES are in accordance with Ref [147]. According to 

the reference paper, a stratified TES can be modeled as a multi-node model. The temperature variation 

of each node can be calculated using the following differential equation. 

𝑉𝑖

d𝑇TES,𝑖

d𝑡
= (

𝑈𝐴TES

𝛾
)
i

(𝑇atm − 𝑇TES,i) + 𝛼𝑖
HS𝑚HS(𝑇in,c − 𝑇TES,i)

+ 𝛼𝑖
L𝑚HS(𝑇in,d − 𝑇TES,𝑖)

+ {
𝑚net,𝑖(𝑇TES,𝑖−1 − 𝑇TES,𝑖)

𝑚net,𝑖+1(𝑇TES,𝑖 − 𝑇TES,𝑖+1)

if 𝑚net,𝑖 > 0

  if 𝑚net,𝑖+1 < 0
 

(2-44) 

where, 𝑉𝑖 is the volume of each node [m3], 𝑈 the overall heat transfer coefficient [W/m2/K] which 

is fixed to 0.5, 𝛾 the heat capacity [J/m3·K], 𝑇TES,𝑖 the water temperature of node 𝑖, 𝛼𝑖
HS and 𝛼𝑖

L 

the coefficients as shown below; 𝑚HS and 𝑚L the mass flow rate of the heat source and load side 

circulating fluid [m3/s], respectively; 𝑇in,c and 𝑇in,d the inlet water temperature of the charging and 

discharging fluid [C], respectively; 𝑚net,𝑖 the net mass flow rate during simultaneous charging and 

discharging operations; 𝑚net,𝑖 indicates the vertical direction of heat transfer within TES; 𝛼𝑖
HS is a 

binary number; 𝛼𝑖
HS is one at the node with the diffuser inlet during the charging operation and zero 

at the other node. In contrast, 𝛼𝑖
L is one at the node with the diffuser inlet during the discharging 

operation and zero at the other node as in 𝛼𝑖
HS. In this research, the diffuser inlets during charging and 

discharging operations are the bottom and top node, respectively. Hence, when there are a total 20 

nodes (𝑁node), only 𝛼20
HS and 𝛼1

L are one. 𝑚net,𝑖 is calculated using 𝛼𝑖
HS and 𝛼𝑖

L as follows: 

𝑚net,𝑖 = 𝑚HS ∑𝛼𝑗
HS

𝑖−1

𝑗=1

− 𝑚L ∑ 𝛼𝑗
L

𝑁node

𝑗=𝑖+1

 (2-45) 

 The 4th Runge-Kutta method was adopted to solve the differential equation. The time interval of 

the method was set to ten seconds to avoid unpredicted errors. 
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2.1.13 Cooling tower 

 Cooling towers (CT) are used with some refrigerators, such as CR and AR, to reduce the cooling 

water temperature. CT has a fan which consumes electricity. According to the LCEM tool, the 

electricity consumption of the fan can be calculated as follows: 

𝑐E,CT =
𝑇in,cw − 𝑇out,cw

𝑇in,cw − 𝑇out,lb,cw
𝑐E,rd,CT (2-46) 

where, 𝑐E,CT is the electricity consumption of CT [kW]; 𝑐E,rd,CT the rated electricity consumption 

[kW]; 𝑇in,cw and 𝑇out,cw the inlet and outlet temperatures, respectively, of the cooling water from 

CT [C]; and 𝑇out,lb,cw the lower bound of the outlet temperature of the cooling water from CT [C] 

which was fixed at  13 C. 𝑇out,cw is determined as follows: 

𝑇out,cw = {(−0.000004721794474𝑇in,cw
2 + 0.00029751111532𝑇in,cw

+ 0.00061832038261)𝑇atm,wb
2

+ (0.000084967776296𝑇in,cw
2 − 0.0067128829235𝑇in,cw

+ 0.23836348677)𝑇atm,wb − 0.006443915064𝑇in,cw
2

+ 0.95482871943𝑇in,cw − 1.1396350496}

× [1 − {1 − (−0.288961 (
𝑅cw

104
)
2

+
0.86331𝑅cw

104
+ 0.4370549)}]

×
𝑇in,cw − 𝑇atm,wb

0.5𝑇in,cw + 12
 

(2-47) 

where, 𝑇atm,wb is the outdoor wet bulb temperature [C]. The cooling water temperature variation is 

determined by iterative calculation. The initial value of 𝑇out,cw from CT was set to 32 C. 

 

2.1.14 Pumps 

 In this research, the pumps for chilled/hot water, the circulating fluid of GSHP, and cooling water 

have the same characteristics. The initial values of the rated mass flow (𝑚rd,pump) [L/min] and rated 

pump pressure (𝐻rd,pump) [kPa] should be determined. The electricity consumption (𝑐E,pump) of the 

pump is determined as follows: 

𝑐E,Pump =
𝑚pump𝐻pump

600𝜇pump
 (2-48) 
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where, 𝑚pump  is the mass flow rate [L/min], and 𝜇pump  the pump efficiency [-] calculated as 

follows: 

𝜇pump = (−0.92922968675125𝑅𝑚
2 + 1.79498334402997𝑅𝑚

+ 0.109364093104081)𝜇max,pump 
(2-49) 

𝜇max,pump = −8.58(log10

𝑚rd,pump

1000
)
2

+ 17.48 log10

𝑚rd,pump

1000
+ 74.23 (2-50) 

where, 𝑅𝑚  is the ratio of mass flow rate to rated value [-], and 𝜇max,pump the maximum pump 

efficiency determined using the rated mass flow rate. 𝐻pump is determined as follows: 

𝐻pump = 𝐻rd,pump (
𝜓

𝜓rd
)
2

(−0.394658899805463𝑅𝑚
2 + 0.096329067908277𝑅𝑚

+ 1.29350965543578) 

(2-51) 

𝜓 = {

𝜓lb

𝜓ub

𝜓req

if 𝜓req ≤ 𝜓lb 

if 𝜓req ≥ 𝜓ub

otherwise

 (2-52) 

𝜓req = 𝜓rd {
𝛼pump (

𝑚pump

60 )
2

𝐻Rd,pump
}

0.5

 (2-53) 

where, 𝜓 and 𝜓rd the pump frequency and rated pump frequency [Hz], respectively; 𝜓ub and 𝜓lb 

the upper and lower bound of the frequency which were set to 60 and 20 Hz, respectively; 𝜓req the 

required frequency [Hz]; and 𝛼pump the coefficient of the pump, which is determined as follows: 

𝛼pump =
𝐻rd,pump

(
𝑚rd
60 )

2  (2-54) 

 

2.2 Optimization methodology 

2.2.1 Basic optimization strategy for energy systems 

 When the operation of energy systems is optimized, the method of formulating the actual 

phenomenon in the mathematical models is important. For example, some parameters, such as 

machine load rate and distribution rate of a splitter, can be decision variables; however, mass flow rate 
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should be the decision variable instead of machine load rate, and bulb opening rate should be used 

instead of distribution rate. 

 The appropriate order of optimization methods that should be considered is as follows: 

1) Full-search algorithm 

2) LP (linear programming) 

3) DP (dynamic programming) 

4) Metaheuristic optimization method 

 First, a full-search algorithm is the simplest method to solve optimization problems. In addition, 

this algorithm can yield a theoretical optimal solution for problems under various conditions, such as 

nonlinear, linear, continuous, and discrete. However, this algorithm has the largest computation costs 

of all the methods. 

 Second, LP is a mathematical programming method that can be applied to reduce computation 

costs using a linearization technique. As mentioned in Section 1.2.2, although the characteristics of 

heat source machines and the other equipment are nonlinear, many previous studies attempted to 

simplify the optimization problem, particularly by using linearization. Hence, linear programming 

might be useful in an academic paper, but it is not suitable for use in actual systems. In addition, 

continuous linear programming can solve a problem quickly, but a discrete condition makes the 

problem complex. 

 Third, DP is powerful algorithm to solve linear and nonlinear functions, and it can derive a 

theoretical optimal solution based on a mathematical theorem. Although this method is limited to use 

in discrete decision variable applications, it can reduce the computation costs drastically compared to 

a full-search algorithm. However, it should be considered that the computation costs of DP have an 

exponential dependence on the number of decision variables because DP should set a multi-

dimensional matrix. 

 Finally, when an optimization problem is large and not easily solved using the aforementioned 

methods, alternative approximation methods should be applied. There are two common approximation 

methods: metaheuristic optimization methods and machine learning, where the latter involves 

reinforcement learning to determine a quasi-optimal result. The metaheuristic optimization method, 

which is simply called “metaheuristics,” consists of numerous methods such as genetic algorithm (GA), 

particle swarm optimization (PSO), differential evolution (DE), cuckoo search (CS), and bat algorithm 

(BA). 
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2.2.2 Mixed-integer linear programming (MILP) 

 MILP consists of a linear objective function, linear constraints, and at least one integer variables. 

In fact, the integer variables make the optimization problem difficult. Hence, relaxation methods are 

often used in an attempt to reduce the number of the integer variables. Although continuous variables 

can be transformed to discrete variables using a rounding technique, it cannot always guarantee 

optimality of the solution. Therefore, numerous researches have proposed suitable methods for MILP. 

First, a transformation of integer variables to continuous variables must be conducted; this is called 

continuous relaxation. Following this, linear programming (e.g., the simplex method and interior point 

method) is conducted on the relaxation model to determine an optimal solution. If the optimal solution 

unexpectedly meets the integer constraints, it is an optimal solution of the original problem. However, 

in practice such cases are rare. Thus, it is necessary to formulate the continuous variables using a 

branch-and-bound method [148,149] which is known as the most useful and powerful method 

employing an MILP algorithm. 

 Although theoretically, MILP does not always obtain the global optimum, the technique is often 

applied to complex optimization problems as a consequence of improvements to the algorithm and the 

performance of the personal computer. Alternative methods that have also been used with MILP 

include presolving [150], cutting planes [151], and heuristic methods. Moreover, a combination 

algorithm using these above methods is applied in some solvers such as GAMS, CPLEX, and 

MATLAB. 

 

2.2.3 Dynamic programming (DP) 

 DP was proposed by Bellman [152] in 1957. DP can be applied to almost all optimization problems, 

such as linear, nonlinear, continuous, and discrete conditions. DP is based on the “Principle of 

Optimality” which was also proposed by Bellman. Most scheduling problems that include energy 

system optimization or network modeling are based on the above principle, because it is composed of 

multi-stage decisions. DP has two algorithms: backward and forward algorithms. Fig. 2-8 shows both 

algorithms for optimization of a battery and thermal energy storage. 

 DP not only has the advantage of flexibility in applicable problems, but also has the ability to 

reduce computational complexity. When the full-search algorithm is applied to a problem with a 

number of decision variables (𝑁dv), number of time horizons (𝑁th), and number of discrete points 

(𝑁ds ), the computational complexity can be expressed as 𝑁ds
𝑁dv𝑁th ; it can also be expressed as 

𝛰(𝑁ds
𝑁dv𝑁th) in Landau notation. 
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Fig. 2-8 | Conceptual diagram of DP algorithm [153] 

 

 However, the computational complexity of DP can be reduced by 𝛰(𝑁ds
2𝑁dv) . Hence, the 

complexity of DP does not depend exponentially on the number of time horizons. 

 

2.2.4 Genetic algorithm (GA) 

 The genetic algorithm (GA), developed by Holland et al. [154] in the 1960s was inspired by 

biological evolution based on Charles Darwin’s theory of natural selection. The expression for 

individual modeling of GA is composed of two types: bit string and real-coded. The bit string GA is 

suitable for discrete optimization, whereas real-coded GA (RCGA) is suitable for continuous 

optimization. 

 The bit string GA uses the selection, crossover, and mutation method operators to determine the 

optimal solution. First, the algorithm conducts an initialization of the population, which is composed 

of individuals that assume the value of the decision variables. The individuals are scattered across the 

entire search space by using uniformly allocated random numbers.  

Second, some individuals are selected as parent individuals to create new solutions called child 

individuals. This selection is performed using a selection method such as roulette-wheel selection, 

tournament selection, or elitist selection. The roulette-wheel selection method involves the calculation 

of the selected probability of each individual by using Eq. (2-55). 
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𝑅sl,𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁pop

𝑗=1

 (2-55) 

where 𝑅sl,𝑖 ∈ [0, 1] denotes the selected probability of the 𝑖-th individual, 𝑓𝑖 the objective function 

value of the 𝑖-th individual, and 𝑁pop the number of populations. The elitist selection method leads 

to the preferential selection of the individual with the preferred value. This selection method can 

always locate the optimum point near the current best individual, but this is likely to be trapped in a 

local optimum. Third, the crossover method uses the crossover probability (𝛼cv) and employs methods 

such as one-point or two-point crossover. 

 Finally, the mutation method is performed for all individuals with a mutation probability (𝛼mt) by 

employing methods such as bit string mutation, flip bit, and uniform. The crossover probability is 

usually high and lies in the range of 0.70.9, which is larger than the mutation probability, for which 

the range is 0.001–0.05. The advantage of the mutation method is that individuals can be retrieved 

easily from the local optimum. 

 The RCGA uses the same approach as the bit string GA when using the crossover method for 

selection. In particular, the selection procedure is referred to as the “generation alternation model,” 

which is based on methods such as the minimal generation gap (MGG) [155] and the just generation 

gap (JGG) [156]. In the MGG method, parent individuals are selected randomly, after which child 

individuals are generated using the crossover method. Finally, the elitist method is used to replace the 

parent individuals with the top layer of individuals, which includes both parents and children. The 

advantage of the MGG method is its ability to obtain an optimal solution in the proximity of the 

preferred individuals; however, unfortunately the solution is often a local optimum. Considering this, 

JGG was developed to resolve this problem. In the JGG method, all parent individuals are replaced by 

child individuals with an objective value that is superior to those of the other children. This strategy 

maintains the diversity of the population. Although there are numerous crossover methods for use with 

the RCGA, the real-coded ensemble crossover (REX) [157] and adaptation of expansion rate REX 

(AREX) [156,157] were developed recently. AREX, which is an updated version of REX, adopts the 

Mahalanobis distance to handle the ill-scale problem efficiently. 

 The RCGA can be applied to continuous optimization problem with a high degree of accuracy, 

because of its powerful mathematical theory. However, it results in a long calculation time when the 

applied problem has a complicated objective function, such as an energy system, because of the high 

population and large number of generated child individuals. 
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2.2.5 Particle swarm optimization (PSO) 

 PSO was developed by Kennedy and Eberhart [158]. This method mimics the collective behavior 

of birds or fish. An individual uses three vectors when it moves to other positions: the current velocity 

vector (𝑣𝑖
𝑔

), best position vector for all particles (𝑥gb), and past best position vector for itself (𝑥pb,𝑖). 

Each individual (𝑥𝑖
𝑔

) moves iteratively as follows: 

𝑥𝑖
𝑔+1

= 𝑥𝑖
𝑔
+ 𝑣𝑖

𝑔+1
 (2-56) 

𝑣𝑖
𝑔+1

= 𝑣𝑖
𝑔
+ 𝛼PSO,1𝒰(𝑥pb,𝑖 − 𝑥𝑖

𝑔
) + 𝛼PSO,2𝒰(𝑥gb − 𝑥𝑖

𝑔
) (2-57) 

𝑣𝑖
𝑔+1

= 𝑤𝑣𝑖
𝑔
+ 𝛼PSO,1𝒰(𝑥pb,𝑖 − 𝑥𝑖

𝑔
) + 𝛼PSO,2𝒰(𝑥gb − 𝑥𝑖

𝑔
) (2-58) 

𝑣𝑖
𝑔+1

= {𝑣𝑖
𝑔+1

𝑣max

if 𝑣𝑖
𝑔+1

≤ 𝑣max

if 𝑣𝑖
𝑔+1

> 𝑣max

 (2-59) 

where 𝑤 is an inertia weight factor to control the velocity and has the same meaning as the step 

length, 𝛼PSO,1  and 𝛼PSO,2  are acceleration constants, 𝒰  a uniform random number [0, 1], and 

𝑣max  the maximum velocity. Although the inertia weight factor 𝑤  was not included when the 

method was first proposed by Kennedy, Shi and Eberhart [159] added it to the PSO method in 1998. 

Recently, a simplified version of the PSO was defined to include this factor, which is controlled by 

Eq. (2-63). 

𝑤 = 𝑤max −
𝑤max − 𝑤min

𝑁𝑔
𝑔 (2-60) 

 Although PSO has the advantage of high calculation and convergence speeds, it has a tendency to 

become trapped in a local optimum in multi-modal functions, a disadvantage which became possible 

to avoid when Higashi [160] added a mutation method to PSO according to: 

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗(1 + 𝒩(0, 𝜎)), 𝜎 = 0.1length(𝑛𝑗) (2-61) 

where, 𝑥𝑖,𝑗 denotes the 𝑗-th vector component value of the 𝑖-th individual, and length(𝑛𝑗) denotes 

a range of 𝑗-th decision variables. 

In addition, Stacey [161] proposed a modification to the velocity as follows: 
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𝑣𝑖
𝑔
=

{
 

 −
𝑣max

2
𝒰    if initialization(𝑔 = 0)

𝑣max𝒰   if 𝑣𝑖
𝑔
> 𝑣max               

𝑣𝑖
𝑔
                 otherwise                        

 (2-62) 

where, 𝒰 ∈ [0, 1]  denotes a uniformly distributed random number. Miranda [162] proposed 

evolutionary PSO (EPSO), which is a hybrid PSO method with an evolutionary strategy. In EPSO, the 

inertia weight factor 𝑤𝑖
𝑔

 and the best position vector of all particles 𝑥gb
𝑔

 are updated as follows: 

𝑤𝑖
𝑔+1

= 𝑤𝑖
𝑔
+ 𝛼EPSO𝒩(0,1) (2-63) 

𝑥gb
𝑔+1

= 𝑥gb
𝑔

+ 𝛼EPSO
′ 𝒩(0,1) (2-64) 

where, 𝛼EPSO ∈ [0, 1] denotes a learning dispersion constant, which is determined at initial iteration 

by a uniformly distributed random number; and 𝛼EPSO
′  denotes the noise dispersion parameter, which 

is a small value. To improve the ability of PSO, the author proposed mutation PSO (m-PSO) to 

optimize the operating schedule of a simple energy system [153]. m-PSO has a mutation operator to 

avoid trapping in a local optimum. The mutation operator is used at the final step of the procedure of 

the original PSO. When the mutation rate (𝛼mt) set to 0.9 is greater than a uniformly random number 

(𝒰), the position of the individual is changed randomly. 

𝑥𝑖,𝑗 = {
𝒰
𝑥𝑖,𝑗

  
if 𝒰 ≤ 𝛼mt

otherwise
 (2-65) 

 Fig. 2-9 shows the comparison of original PSO, EPSO, and m-PSO in a simple energy system. m-

PSO exhibits a better ability to determine a better solution than the other two methods. 

 

2.2.6 Cuckoo search (CS) 

 CS was developed by Yang et al. [163] in 2009. They showed that CS is superior to GA and c-

PSO, and Civicioglu et al. [164] showed that CS is superior to c-PSO and is as efficient as DE. The 

CS algorithm is based on the brood parasitism of a cuckoo. Initial individuals are selected randomly. 

Lévy flight is performed when generating a new individual in the next iteration. The best individual 

at each iteration carries over to the next iteration. Brood parasitic behavior is formulated in CS in terms 

of a single parameter, 𝛼CS, representing the probability of eggs being discovered by the host bird. In 

general, 𝛼CS is a large number, typically in the range of 0.80-0.90, to search a global optimum. Hence, 

CS has a good ability to search an optimal solution under not only a unimodal function, but also a 

multimodal function, although the conversion speed of CS is not as high as that of PSO and DE. 
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Fig. 2-9 | Comparison of three types of PSO [153] 

 

2.2.7 Self-learning bat algorithm (SLBA) 

 Bahman et al. [101] developed SLBA, which combines BA [165] and the self-learning method 

[102], in 2010. BA imitates the gulping behavior of a bat literally. The difference between BA and 

SLBA is the method of calculating the velocity. In BA, only Eq. (32) is used to create a new individual, 

as follows: 

𝜓𝑖
𝑔+1

= 𝜓min + (𝜓max − 𝜓min)𝒰 (2-66) 

𝑣𝑖
𝑔+1

= 𝑣𝑖
𝑔
+ (𝑥𝑖

𝑔
− 𝑥gb

𝑔
)𝜓𝑖

𝑔+1
 (2-67) 

𝑥𝑖
𝑔+1,new

= 𝑥𝑖
𝑔
+ 𝑣𝑖

𝑔+1
 (2-68) 

where 𝜓max and 𝜓min are frequency of bat’s echo set to two and zero, respectively. In contrast, four 

velocity-updating strategies are used in SLBA, as follows [101]. 

• Velocity updating strategy 1:  

𝑣𝑖
𝑔+1

= 𝑣𝑖
𝑔
+ (0.3𝜓𝑖

𝑔+1
+ 0.4) (𝑥gb

𝑔
− 𝑥𝑖

𝑔
) + (0.6𝒰 + 0.4)(𝑥gb

𝑔
− 𝑥gw

𝑔
) (2-69) 

• Velocity updating strategy 2:  
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𝑣𝑖
𝑔+1

= 𝑣𝑖
𝑔
+ {𝑥p1

𝑔
+ 𝒰(𝑥p2

𝑔
− 𝑥p3

𝑔
)} (2-70) 

• Velocity updating strategy 3:  

𝑣𝑖
𝑔+1

= 𝒰𝑣𝑖
𝑔
+ (0.3𝒰 + 0.2)𝜓𝑖

𝑔+1
(𝑥gb

𝑔
− 𝑥𝑖

𝑔
) (2-71) 

• Velocity updating strategy 4:  

𝑣𝑖
𝑔+1

= 𝒰𝑣𝑖
𝑔
+ 0.5(0.3𝒰 + 0.2)𝜓𝑖

𝑔
(𝑥gb

𝑔
− round(1 + 𝒰)𝑥

𝑔̅̅ ̅̅ ) (2-72) 

where, 𝑥
𝑔̅̅ ̅̅  is the mean value of all the individuals. The strategy to be used at each step is selected 

using a roulette wheel mechanism (RWM). 

 

2.2.8 Differential evolution (DE) 

 DE was developed by Storn and Price [166] to solve global optimization problems, regardless of 

the search domain landscape, such as linear, nonlinear, convex, concave, discrete, and continuous 

models. The DE optimization procedure is as follows: 1) initialize individuals (𝑁pop ) using a 

uniformly random number; 2) independently choose three individuals for each individual (𝑥p1, 𝑥p2, 

𝑥p3); 3) apply the mutation method to generate donor individual 𝑥𝑖
donor using Eq. (7), in which 𝛼mt 

denotes the mutation rate (=0.5); and 4) employ the crossover method to generate child individual 

𝑥𝑖
child  using Eq. (8). Here, 𝑥𝑖,𝑘  indicates the 𝑘 -th decision variable of individual 𝑖 , and 𝛼cv 

represents the crossover rate, which is set to decrease exponentially with an increase in the iteration 

number. 

𝑥𝑖
donor = 𝑥𝑝1 + 𝛼mt(𝑥𝑝2 − 𝑥𝑝3) (2-73) 

𝑥𝑖,𝑘
child = {

𝑥𝑖,𝑘         if 𝒰 ≤ 𝛼cv

𝑥𝑖,𝑘
donor, if 𝒰 > 𝛼cv

 (2-74) 
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2.2.9 Method of handling constraint conditions 

 A previous study [153] compared the six aforementioned methods, namely DP, GA, PSO, DE, CS, 

and SLBA. The paper showed that CS had the highest conversion ability, m-PSO had the fastest 

conversion speed, and the results of GA and SLBA were the worst. 

 Metaheuristic methods have an advantage in solving a complex nonlinear problem comparing to 

deterministic methods. However, the method of handling constraints is an issue because the general 

metaheuristic method was developed under no-constraint conditions. To solve many constraints, an 

epsilon constraint handling method was developed by Takahama [167]. In this method, constraint 

violation 𝜑(𝑥𝑖)  is applied to each individual using Eq. (2-75), in which ℎ𝑘,1(𝑥𝑖)  and ℎ𝑘,2(𝑥𝑖) 

signify the inequality and equality constraints, respectively, and 𝛼ε is a positive number set to 1.0. In 

addition, 𝑖-th individual 𝑥𝑖, which has objective function value and constraint violation (𝑓𝑖, 𝜑𝑖), is 

compared with 𝑥𝑖
𝑐ℎ𝑖𝑙𝑑, which has objective function value and constraint violation (𝑓𝑖

𝑛𝑒𝑤, 𝜑𝑖
𝑛𝑒𝑤), 

using Eq. (10). Fig. 2-10 shows a conceptual image of the algorithm. 

 The better of the two individuals, 𝑥𝑖 or 𝑥𝑖
child, is applied to the next iteration. It is important that 

the value of 𝜀 decreases exponentially as the number of iteration increases. When the value of 𝜀 is 

zero, the objective function values are compared regardless of the value of phi. This means a strict 

constraint optimization. 

𝜑(𝑥𝑖) = ∑max {0, ℎ𝑘,1(𝑥𝑖)}
𝛼𝛆

𝑘

+ ∑|ℎ𝑘,2(𝑥𝑖)|
𝛼𝛆

𝑘

 (2-75) 

(𝑓𝑖
new, 𝜑𝑖

new) <𝜀 (𝑓𝑖 , 𝜑𝑖) ⇔ {

𝑓𝑖
new < 𝑓𝑖 ,

𝑓𝑖
new < 𝑓𝑖 ,

𝜑𝑖
new < 𝜑𝑖 ,

    if 𝜑𝑖 , 𝜑𝑖
new ≤ 𝜀

if 𝜑𝑖 = 𝜑𝑖
new

otherwise

 (2-76) 
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Fig. 2-10 | Algorithm of epsilon constraint handling method 

 

2.2.10 𝜺-constrained differential evolution (𝜺DE) 

 In fact, the 𝜀-constrained method can be applied to alternative metaheuristics such as GA, PSO, 

and CS, but the 𝜀-constrained DE method is the most suitable method. For example, PSO uses a 

continuous generation model to select survived individuals as the next generation. The continuous 

generation model means that all individuals, parent and children, are compared simultaneously and 

superior individuals are survived. However, this model causes a conversion problem in that all 

individuals trap in a local optimum and the algorithm cannot find a feasible solution. In the 

optimization method, CS has a high mutation rate 𝛼CS. The mutation rate causes low conversion of 

minimizing the constraint violations. Finally, it results in no feasible solution to be found. Although 

GA has a low mutation rate, an original performance of GA to find a better solution is lower than that 

of alternative methods. Thus, εGA cannot be superior to εDE. The algorithm flow chart is shown in 

Fig. 2-11. 
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Fig. 2-11 | Flow chart of 𝛆DE algorithm 
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𝑐𝑝 = (−5 − log (𝜑20 )) log (0.05) 
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for 𝑖𝑡 𝑟 = 1 𝑁𝑔

Calculate 𝜀 E value

{
𝜀 E = 𝜑20 × (1 − 𝑖𝑡 𝑟 𝑁𝑔, ero )

𝜀 E = 0

, if 𝑖𝑡 𝑟 < 𝑁𝑔, ero

otherwise

Calculate crossover rate
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Evaluation
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𝑥𝑖
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𝑥𝑖,𝑘
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𝑥𝑖,𝑘

𝑥𝑖,𝑘
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     otherwise
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𝑥𝑖,𝑐    𝑝 𝑖𝑛𝑡
child = 𝑥𝑖,𝑐    𝑝 𝑖𝑛𝑡
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Loop of individuals

for 𝑖 = 1 𝑁

Evaluate 𝜑𝑖
𝑛𝑒𝑤 and 𝑓𝑖

𝑛𝑒𝑤

(𝑓𝑖
𝑛𝑒𝑤 , 𝜑𝑖

𝑛𝑒𝑤) <𝜀 (𝑓𝑖 , 𝜑𝑖) ⇔ {

 𝑓𝑖
𝑛𝑒𝑤 < 𝑓𝑖 ,

 𝑓𝑖
𝑛𝑒𝑤 < 𝑓𝑖 ,

 𝜑𝑖
𝑛𝑒𝑤 < 𝜑𝑖 ,

if 𝜑𝑖 , 𝜑𝑖
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if 𝜑𝑖 = 𝜑𝑖
𝑛𝑒𝑤

otherwise

Comparison

END
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2.2.11 Q-learning 

 Q-learning [168] is a reinforcement learning technique that is increasingly popular for the 

optimization of energy system operations. Q-learning is a model-free method, which means that the 

method can be applied to any type of problem. Q-learning is mathematically based on the Bellman 

equation in the same manner as DP. DP uses a deterministic approach to solve a target problem and it 

reaches a theoretical optimal solution. However, Q-learning uses an approximate approach to find a 

better solution. Hence, Q-learning can be applied instead of the metaheuristics. In fact, Q-learning is 

a fundamental technique used in recent artificial intelligent technology. Therefore, Q-learning was 

adopted in Section 10 to optimize an operating schedule of a district energy system. 

 In this section, the theorem of Q-learning is described. First, Q-learning is used for a discrete 

problem. Q-learning collects reward information with a certain action. For example, we think when a 

refrigerator generated a cooling heat of 100 kW at a certain time step 𝑡 and generated 200 kW at the 

next time step 𝑡+1. Both the thermal outputs are called “state”. In addition, operating costs were 

20,000 and 40,000 yen/h at time step 𝑡 and 𝑡+1, respectively. An “action” is defined as the increase 

in thermal output from 100 to 200 kW. In addition, a “reward” is defined as total operating costs of 

20,000 and 40,000 yen/h, respectively, in this case. Then, Q-learning stores the information in 

accordance with the action and reward into a Q-table as a Q-value. 

 The Q-value is updated as follows: 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼Q (𝑟𝑡+1 + 𝛾max
𝑎𝑡+1

𝑄(𝑆𝑡+1, 𝐴𝑡+1) −𝑄(𝑆𝑡, 𝐴𝑡)) (2-77) 

 where, 𝑄(𝑆𝑡, 𝐴𝑡) is the Q-value with the action (𝐴𝑡) and the state (𝑆𝑡); 𝛼Q and 𝛾 are the learning 

rate and discount rate as hyperparameters of Q-learning, respectively; and 𝑟𝑡+1 is the reward at time 

step 𝑡 +1. This equation is based on the Bellman optimal equation. Q-learning uses iterative 

calculation to update the Q-values in the Q-table. 

 

2.3 Conclusion 

 This chapter describes the basic theory for machine characteristics and optimization methods. In 

addition, εDE is a promising method which can be used to solve a constrained problem efficiently. In 

the following chapters, εDE is mainly used to optimize a complex energy system and the performance 

of εDE is validated in various energy systems through comparisons with alternative methods. Finally, 

a modified εDE to improve its stability is proposed in Chapter 6. 

3  
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3.1 Introduction 

 This chapter describes how to optimize the operating schedule of a complex building energy system 

that especially comprises several storage equipment. In addition, an efficiently constrained multi-

objective optimization method is proposed to minimize the operating costs and primary energy 

consumption simultaneously. The contents of this chapter is translated in English from my peer-

reviewed article published in Journal of Environmental Engineering of Architectural Institute of Japan 

[169]. 

 

3.2 Calculation conditions 

3.2.1 Description of energy system 

 Fig. 3-1 shows the configuration of the energy system. This system comprises electricity, space 

cooling, and domestic hot water supply systems. RB and two TES systems, i.e., TES for cooling TEScl 

and that for domestic hot water TEShw, were introduced as time-dependent equipment. The capacities 

of TEScl and TEShw were 10,000 and 1,200 kWh, respectively. These values were determined to be 

equal to 10% of the total cooling and hot water demand. Seven heat source machines were considered 

for this simulation: CR, AR, HRAR, two ASHPs (ASHP1 and ASHP2), CHP, and GB. The following 

four operating modes of TES and the other heat source machines were available at each time step: 1) 

only charging thermal energy from the heat source machines to TES, 2) only heat source machines 

supplying thermal energy to a secondary system, 3) only discharging thermal energy from TES to the 

secondary system, and 4) TES and the heat source machines supplying thermal energy. Above these 

were typical operating modes in an actual energy management. 

 The specification of the machines and devices is shown in Table 3-1. The inlet and outlet 

temperatures of the heat source machines were fixed, as shown in Fig. 3-1, to simplify the model. 

Chilled water and hot water could be varied with the machine’s partial load rate. Further, the mass 

flow rate and temperature of cooling water were varied because these values played a significant role 

in the efficiency of CR and AR. In the case of an optimal combination of cooling water temperature 

and mass flow rate, the following procedure was used: 1) the mass flow rate of cooling water was 

fixed and the temperature was varied in accordance with the outdoor wet bulb temperature and 

machine operations; 2) when the difference of inlet and outlet temperatures of cooling water in terms 

of the refrigerator was less than 3 °C, the mass flow rate was decreased to maintain the difference to 

more than 3 °C. The calculation for variations in cooling water temperature was referred from the 

component described in Chapter 2. 
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 In the electricity system, PV and RB were considered. The operation strategy of PV was as follows: 

1) supplying electricity to RB, 2) supplying electricity to the secondary system, and 3) selling it to the 

grid. The operation strategy of RB was as follows: 1) supplying electricity to the secondary system 

and 2) selling it to the grid. Each operation could be chosen at each time step. 

 Conversion coefficients of primary energy consumption were set to 9.97 MJ/kWh for electricity 

and 45 MJ/m3 for gas energy. The coefficients of CO2 emissions of electricity and gas were set to 

0.512 kg-CO2/kWh and 2.29 kg-CO2/m3, respectively. Operating costs of electricity and gas were set 

to dynamic pricing and fixed to 87.2 yen/m3. 

 The characteristics of all components that formed the energy system were referred from the 

machine models described in Chapter 2.1. 

 

 
Fig. 3-1 | System configuration: a blue line shows cooling water pipe, a red line shows domestic hot water pipe, and 

a yellow line indicates electricity. 
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Table 3-1 | Rated specification of each machinery 

Centrifugal refrigerator 

(CR) 

Cooling capacity 2,500  kW 

Electricity consumption 500  kW 

Absorption refrigerator 

(AR) 

Cooling capacity 1,500  kW 

Gas consumption 86.8  m3/h 

Electric consumption 15  kW 

Heat recovered AR 

(HRAR) 

Cooling capacity 1,000  kW 

Gas consumption 59.4  m3/h 

Electric consumption 9.85  kW 

Amount of recovered heat 307  kW 

Air-source heat pump 1 

(ASHP1) 

Cooling capacity 550  kW 

Electric consumption 153.4  kW 

Air-source heat pump 2 

(ASHP2) 

Cooling capacity 500  kW 

Electric consumption 139.5  kW 

Combined heat and 

power (CHP) 

Power generation capacity 363  kW 

Amount of recovered heat 300  kW 

Gas consumption 71.3  m3/h 

Gas boiler (GB) Heating capacity 750  kW 

Gas consumption 73  m3/h 

Electric consumption 2.1  kW 

Thermal energy storage 

for cooling (TEScl) 

Capacity 10,000  kWh 

Charging/discharging efficiency 100  %/cycle 

Self-heat loss rate 5  %/day 

Thermal energy storage 

for how water (TEShw) 

Capacity 1,200  kWh 

Charging/discharging efficiency 100  %/cycle 

Self-heat loss rate 5  %/day 

Rechargeable Battery 

(RB) 

Capacity 500  kWh 

Maximum charge/discharge 100  kW 

Rated charging/discharging efficiency 81  %/cycle 

Self-discharge rate 0  %/day 

Photovoltaic device 

(PV) 

Area 1,000  m2 

Conversion efficiency 13  % 

Conversion efficiency of power conditioner 97  % 

 

3.2.2 Demand and price profiles 

 A typical hotel building with a total floor space of 20,000 m2 is considered as a building model in 

this chapter because the hotel had enough domestic hot water demand. The calculation time horizon 

was set to 24 h and the time interval was set to 1 h. Demand curves were referred from CASCADE 

III, which was provided from the Society of Heating Air-Conditioning and Sanitary Engineers of Japan 

[170], as shown in Fig. 3-2. Outdoor conditions such as atmospheric temperature and solar radiation 

were referred from AMeDAS standard weather data in Tokyo (2005) provided by [171], as shown in 

Fig. 3-2(a). The variation in purchased electricity price is shown in Fig. 3-2(b). The dynamic electricity 

price with time was assumed, based on Ref. [153]. 

 To obtain the price of electricity, the type of power plant, the number of each type of power plant, 

the composition rate of each power plant, and the power generation costs of each type of power plant 

were considered: nuclear power plant (composition rate 20.4%, high generation costs 11.33 yen/kWh, 

and low generation costs 10.1 yen/kWh), liquid natural gas fired power plant (30%, 15.29 yen/kWh,  
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Fig. 3-2 | Outdoor and demand conditions: a) temperature and solar radiations, b) demands and price of purchased 

electricity 

 

13.4 yen/kWh), coal fired power plant (26%, 14.19 yen/kWh, 12.3 yen/kWh), and hydroelectric power 

plant (23.6%, 12.1 yen/kWh, 11 yen/kWh). These values were taken from a Japanese government 

report [172]. The number of each type of plants was set to three. The dynamic price was determined 

using a merit ordering of each plant’s generation cost. Thus, when the demand was high during day 

time, the price was also high. During night time, the price was low, which was a common price 

variation in the actual system. The same condition was used in the all later chapters. 
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3.3 Optimization method 

3.3.1 Problem formulation 

 This chapter aims to minimize the daily operating costs, which are the total of electricity and gas 

prices, as a single objective optimization problem. It can be transformed as follows: 

minimize  𝑓 = ∑𝑝E,pd
𝑡

𝑁th

𝑡

(𝐷E
𝑡 + 𝑃EGtoRB

𝑡 − 𝑃RBto𝐷E

𝑡 − 𝑃PVto𝐷E

𝑡 − 𝑃CHPto𝐷E

𝑡 )

− 𝑝E,sd
𝑡 (𝑃RBtoEG

𝑡 + 𝑃PVtoEG
𝑡 )

+ ∑𝑝E,pd
𝑡

𝑁th

𝑡

(𝑐E,TEScl

𝑡 + 𝑐E,CR
𝑡 + 𝑐E,AR

𝑡 + 𝑐E,HRAR
𝑡 + 𝑐E,ASHP1

𝑡

+ 𝑐E,ASHP2
𝑡 + 𝑐E,CHP

𝑡 + 𝑐E,GB
𝑡 ) + ∑𝑝G,pd

𝑡

𝑁th

𝑡

(𝑐G,AR
𝑡 + 𝑐G,CHP

𝑡 + 𝑐G,GB
𝑡 ) 

(3-1) 

where 𝑃XtoY
𝑡  indicates power and thermal output flows from a machine or device X to Y [kW]. 𝑝E,sd

𝑡 , 

𝑝E,pd
𝑡 , and 𝑝G,sd

𝑡  indicate the price of selling electricity, the price of purchasing electricity, and the 

price of gas, respectively. Although Eq. (3-1) can be seen as a linear objective function, each term 

such as 𝑐E,TEScl

𝑡  and 𝑐E,CR
𝑡  contains nonlinear and discontinuous characteristics, as shown in Chapter 

2.1. In a multi-objective optimization problem that aims to minimize the operating costs and primary 

energy consumption, an objective function of the minimization of primary energy consumption can 

be expressed as follows: 

minimize  𝑓 = ∑𝛼E

𝑁th

𝑡

(𝐷E
𝑡 + 𝑃EGtoRB

𝑡 − 𝑃RBto𝐷E

𝑡 − 𝑃PVto𝐷E

𝑡 − 𝑃CHPto𝐷E

𝑡 )

+ ∑𝛼E

𝑁th

𝑡

(𝑐E,TEScl

𝑡 + 𝑐E,CR
𝑡 + 𝑐E,AR

𝑡 + 𝑐E,HRAR
𝑡 + 𝑐E,ASHP1

𝑡 + 𝑐E,ASHP2
𝑡

+ 𝑐E,CHP
𝑡 + 𝑐E,GB

𝑡 ) + ∑𝛼G

𝑁th

𝑡

(𝑐G,AR
𝑡 + 𝑐G,CHP

𝑡 + 𝑐G,GB
𝑡 ) 

(3-2) 

where 𝛼E  and 𝛼G  indicate conversion coefficients of electricity (=9.97 MJ/kWh) and gas (=45 

MJ/m3), respectively. 

 The following are the constraint conditions: 

𝑃EGtoRB
𝑡 ≤ 𝑃max,RB (3-3) 
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𝑃RBtoEG
𝑡 ≤ 𝑃max,RB (3-4) 

𝑃RBto𝐷E

𝑡 ≤ 𝑃max,RB (3-5) 

{
𝑃PVtoRB

𝑡 = 0

𝑃PVtoRB
𝑡 ≤ 𝑃max,RB

      if discharging operation of RB
if charging operation of RB

 (3-6) 

𝑃RBto𝐷E

𝑡 + 𝑃PVto𝐷E

𝑡 + 𝑃CHPto𝐷E

𝑡 ≤ 𝐷E
𝑡  (3-7) 

𝐷cl
𝑡 + 𝑃TEScl,c

𝑡 − 𝑃TEScl,d
𝑡 − 𝑃AR

𝑡 − 𝑃HRAR
𝑡 − 𝑃ASHP1

𝑡 − 𝑃ASHP2
𝑡 ≤ 𝑃rd,CR (3-8) 

𝐷hw
𝑡 + 𝑃TEShw,c

𝑡 − 𝑃TEShw,d
𝑡 − 𝑃CHPto𝐷hw

𝑡 ≤ 𝑃rd,GB (3-9) 

 Eqs. (3-3) to (3-5) indicate constraints on maximum charging and discharging capacities of RB. 

Eq. (3-6) is a constraint on charging operations from PV to RB. When RB was operated in the charging 

mode, PV could provide electricity to RB. On the other hand, PV could not provide it when RB was 

operated in the discharging mode, because an ordinal rechargeable battery cannot work in the charging 

and discharging modes simultaneously. Eq. (3-7) indicates a constraint on electricity supply balance 

of the secondary system. It shows that the total amount of electricity supplied from PV, RB, and CHP 

should be less than the electricity demand. This is because the selling electricity (e.g., surplus 

electricity) was defined as different decision variables to consider a different unit price of selling 

electricity of each source. Hence, the surplus electricity production from these three components had 

to be considered separately. 

 As decision variables, the following 14 types were considered: 1) the amount of stored electricity 

in RB, 2) the distribution rate of discharged electricity from RB to the electric grid, 3) the distribution 

rate of discharged electricity from RB to the electricity demand, 4) the distribution rate of discharged 

electricity from PV to the grid, 5) the distribution rate of discharged electricity from PV to RB, 6) the 

distribution rate of discharged electricity from PV to the electricity demand, 7) the amount of stored 

energy in TEScl, 8) the amount of stored energy in TEShw, 9) the load rate of AR, 10) the load rate 

of HRAR, 11) the load rate of ASHP1, 12) the load rate of ASHP2, 13) the load rate of CHP power 

generation, and 14) the distribution rate of waste heat from CHP to HRAR. The load rate of CR and 

GB could be determined using the left-hand sides of Eqs. (3-7) and (3-8). Therefore, the number of 

decision variable was 336 (=14 types × 24 h). 
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3.3.2 Parameters of 𝜺DE for single-objective function 

 εDE was used to optimize the above decision variables for single-objective optimization. The 

number of generations was set to 10,000 and the number of individuals was set to 100. The mutation 

rate was set to 0.5 and 𝜀 E was expected to be zero at half of the maximum generation. 

 

3.3.3 Proposal of multi-objective 𝜺DE (𝜺MODE) 

 In general, an original algorithm of metaheuristics was created for a single-objective optimization. 

Hence, it had to be extended to a multi-objective optimization method. There are many previous 

studies that proposed it, as mentioned Chapter 1.1. However, these methods did not consider complex 

constraint conditions with multi-objective optimization. Hence, a new and efficient multi-objective 

optimization method is proposed in this chapter. 

 The method was named εMODE, which comprises εDE and multi-objective techniques such as 

non-dominated sorting (NDS) and crowding distance algorithm (CDA). NDS and CDA were proposed 

in [173] with the genetic algorithm NSGA-II, which is a well-known multi-objective optimization 

method. 

 NDS was used to create a pareto front and CDA was used to avoid gathering individuals in a certain 

position, as shown in Fig. 3-3. In NDS, all individuals were categorized as F1, F2, and so on. F1–F5 

in Fig. 3-3 indicate non-dominated ranks and F1 is the most superior group to create a pareto front. 

Hence, this algorithm aims at making individuals non-dominated. 

 In fact, a previous multi-objective optimization DE algorithm (MODEA) [174] used NDS and 

CDA with DE. However, MODEA could not handle many constraints and adopted a continuous 

generation model to select the survived individuals for the next generation. This continuous generation 

model is the biggest problem to be solved when MODEA is extended to εMODE. This is because the 

continuous generation model, as shown in Fig. 3-4(a), compares all individuals, parent and archive 

individuals, in terms of NDS ranks such as F1 and F2. Hence, how much the constraint violation is 

completely ignored. It causes a rapid unpredicted convergence and cannot find any feasible solution. 

 Hence, we proposed to use a discrete generation model, instead of the continuous generation model, 

to select individuals in the next generation, as shown in Fig. 3-4(b), when the individual is an infeasible 

solution. The comparison of NDS ranks was performed for feasible individual groups only. 
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Fig. 3-3 | Conceptual diagram of NDS and CDA: F1–F5 indicates a domination level. The individuals in F1 level 

consist of a pareto front. 

 

 
Fig. 3-4 | Conceptual diagram of continuous and discrete generation models: a) This graph shows a continuous 

generation model [173]. Pt and Qt indicate a parent individual group and an archive individual group, respectively. b) 

This graph shows a discrete generation model. 

 

3.4 Result 

3.4.1 Case setting and overview of results 

 The following three case studies were conducted: 

1) Case 1 (an energy system without CHP) 

An energy system in this case did not introduce CHP to clarify the effectiveness of the CHP system 

against the following two cases. However, the rated capacity of Table 3-1 was not enough to meet hot 

water demand, because CHP could not be introduced. Hence, the rated capacity of GB increased to 

900 kW. 

2) Case 2 (a predetermined scenario-based empirical operation) 

This case was similar to that of an actual energy management because an ordinal building energy 

system did not have optimization software and an expert operator often determined an operating 
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Fig. 3-5 | Operating schedule of the empirical case (Case 2): all storage devices charged thermal and electricity 

energy during early morning, 0 a.m. to 3 a.m., and discharged it during daytime. 

 

schedule empirically for the next day. 

The scenario used in this case is as follows: 

i) Power generated from PV was sold to the grid. 

ii) Discharged electricity from RB was supplied to the electricity demand during daytime because the 

peak demand occurred at that time. In addition, RB charged electricity and discharged it alternately 

during night time, especially 6 p.m. to 11 p.m., because this operation could earn maximum profits in 

this case. In addition, this was a fair condition when Case 2 was compared with Case 3, because Case 

3 would find a solution similar to this operating pattern. 

iii) The heat source machine, which had relatively high rated COP such as CR, worked in priority as 

compared to the other machines. Further, when the price of the purchased electricity was low, during 

0 a.m. to 7 a.m. and 6 p.m. to 11 p.m., the electric heat machines such as CR, ASHP1, and ASHP2 

were operated on priority. On the other hand, AR and HRAR were operated on priority when the price 

was high during 8 a.m. to 5 p.m. 

iv) RB, TEScl, and TEShw charged energy from 0 a.m. to 4 a.m. when the price was the lowest. 

During daytime, the equipment discharged energy to meet demands. The charging and discharging 

operations are shown in Fig. 3-5. 

3) Case 3 (optimization using εDE) 
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Table 3-2 | Results of single objective optimization 

 Operating costs (yen/day) Primary energy 

consumption (MJ/day) 

CO2 emissions 

(kg-CO2/day) 

Case 1 825,467 400,089 20,485 

Case 2 765,444 393,073 20,099 

Case 3 721,983 376,879 19,284 

 

 As shown in Table 3-2, the operating cost of Case 1 was 825,467 yen/day. In contrast, the costs of 

Case 2 and Case 3 could be reduced by 7.27% and 12.5% against Case 1, respectively. Hence, the 

effectiveness of CHP introduction was high. Additionally, Case 3 could the reduce operating costs by 

5.7% against Case 2, the empirical operation. Therefore, the applied optimization method, εDE, was 

a powerful method to achieve cost reduction under dynamic pricing and a complex energy system. 

 

3.4.2 Optimal operation of electricity system 

 This section focuses on an optimal operation of the electricity system. Fig. 3-6 shows the optimal 

operation given by εDE in Case 3. CHP worked at daytime to reduce the amount of purchased 

electricity from the grid. In contrast, CHP did not work at all from 0 a.m. to 6 a.m. and from 8 p.m. to 

11 p.m. because the price of purchased electricity was lower than that at daytime. 

 As shown in Fig. 3-7(a), the power generation of PV was sold to the grid from 4 a.m. to 7 a.m. and 

from 4 p.m. to 5 p.m. because the price of selling electricity was higher than that of purchasing it. 

Electricity distribution from PV to RB could not be chosen because the charging and discharging 

efficiency of RB was 81%, and would cause electricity loss. 

 As shown in Fig. 3-7(b), RB charged electricity from the grid during night and the operation of 

selling electricity was conducted. This operation was a typical one. Hence, εDE could recognize the 

relationship between the two prices without any pre-provided information, and thus, could find the 

operating schedule properly. 
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Fig. 3-6 | Optimal operation of electricity system in Case 3: 𝑃𝑋𝑡 𝑌 indicates power output from source X to source 

Y. 𝐷𝐸 indicates electricity demand, 𝑆𝑅𝐵 indicates electricity stored in rechargeable battery, and 𝑝𝐸 indicates price 

of purchased electricity. 

 

 

 
Fig. 3-7 | Optimal operation of PV and RB in Case 3: a) PV operation, b) RB operation 
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3.4.3 Optimal operation of cooling system 

 An optimal operation of TES did not depend on the variation in electricity prices, as compared to 

RB, because TES had a self-loss rate of only 2%, which was small as compared to that of RB. 

However, we cannot ignore the electricity consumption of pumps, especially in the discharging 

operation of TES. Hence, the same operating pattern as that of RB would be optimal in the cooling 

system. Fig. 3-8 shows an optimal operation of the cooling system given by εDE in Case 3. 

 Note that the charging operation of TES was conducted during night and early morning, 0 a.m. to 

7 a.m., while the discharging operation was conducted at daytime. In addition, the electric machines, 

CR and ASHPs, were mainly operated from 0 a.m. to 7 a.m. In contrast, the gas-based machines, AR 

and HRAR, were operated during daytime. However, the total demand at daytime was greater than the 

total rated capacity of AR and HRAR. Hence, CR and TEScl provided cooling heat to the secondary 

system to meet the demand. TEScl discharged considerable cooling heat from 10 a.m. to 0 p.m. 

because the price of purchased electricity was the highest during the day. Hence, this operating 

schedule can be considered as an optimal one. 

 Fig. 3-9 shows the optimal load rates of ASHP1 and ASHP2. When the two heat pumps worked 

simultaneously, we found the load rates to be very similar. This operation can be thought of as an 

optimal one because the same load rate of the same characteristic machine was mathematically optimal 

in accordance with Lagrange’s multiplier [175]. Hence, εDE could find a better solution in terms of 

mathematical fundamentals. 

 

 
Fig. 3-8 | Optimal operation of HVAC system in Case 3 
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Fig. 3-9 | Optimal operation of ASHP1 and ASHP2 in Case 3 in terms of partial load rate. 

 

3.4.4 Domestic hot water system 

 Fig. 3-10 shows an optimal operation of the domestic hot water supply system given by εDE in 

Case 3. In general, an optimal operation of GB and CHP does not depend on the variation in the price 

of electricity because these two machines are based on gas energy. However, we can find an operating 

schedule of TEShw similar to the results of the electricity and cooling system. This is because pumps 

with GB and CHP consumed electricity, although the consumption was lower than that of the other 

heat source machines. Hence, it is clarified that εDE could recognize the small factor and properly 

optimize all machines under the nonlinear conditions. 

 

 

Fig. 3-10 | Optimal operation of domestic hot water system in Case 3. 
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3.5 Multi-objective optimization using 𝜺MODE 

3.5.1 Analysis for searching performance of 𝜺MODE 

 In this section, the daily operating costs and primary energy consumption were set as dual objective 

functions. εMODE can find better solutions for these objective functions simultaneously. Parameters 

of εMODE are the same as those of single-objective εDE. 

 To evaluate the ability of εMODE, we focus on the following two factors: 

1) Variation in 𝜀 E and 𝜑, which is an εDE feature. 

2) Variation in the number of individuals of the each NDS rank. 

 Fig. 3-11(a) shows the variations in the two objective functions, 𝜀 E and 𝜑min. 𝑓min,oc indicates 

the minimum value of operating costs [yen/day] and 𝑓min,pe indicates the minimum value of primary 

energy consumption [MJ/day]. These two values decreased drastically during 0 to 500 of the rated 

number of the generation. After that, these values increased gradually during 500 to 1200 of the 

generation of 𝜀 E, while 𝜑 decreased. The two objective function values decreased slightly during 

1,500 to the last generation. This performance can be explained as follows. 

 First, there are many infeasible individuals during 0 to 500 generations. Although the minimum 

value of constraint violation (𝜑min ) was not zero, the individuals were optimized in terms of 

minimizing the objective function values. The infeasible solutions might have an operating schedule 

in which the amount of charged energy is more than the rated capacity. Thus, the objective value 

increased as 𝜑min decreased, because the surplus charged energy could not be allowed. 

 Fig. 3-11(b) shows the variation in the number of individuals in terms of various categories. When 

all individuals were infeasible (𝜑min > 0), the individuals with 𝜑 greater than 𝜀 E increased up to 

approximately 100. After that, the number of individuals decreased slightly until a feasible number of 

individuals was found. Before the generation reached 4,000, a feasible individual was found and the 

number of individuals (𝜑 ≥ 𝜀 E) rapidly decreased to approximately 10. In contrast, the number of 

feasible individuals drastically increased up to 190 including the parent and archive groups. After the 

first number of feasible individuals was found, the number became stable at 160. In terms of NDS 

ranks, the number of individuals at rank 1, which consisted of a pareto front, increased and was the 

largest compared to ranks 2 and 3. All parent individuals were in rank 1 because the number of 

individuals at rank 1 was more than 100. Hence, εMODE could find a feasible number of individuals 

efficiently and created the pareto front as shown in Fig. 3-12. 
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Fig. 3-11 | Performance of 𝛆DE. 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

0 2,000 4,000 6,000 8,000 10,000

0

20

40

60

80

100

120

140

160

180

200

0 2,000 4,000 6,000 8,000 10,000

Feasible

Rank1

Rank2

Rank3

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

O
p
e
ra

ti
n
g
 c

o
s
ts

 [
y
e
n
/d

a
y
] 

a
n
d
 

p
ri
m

a
ry

 e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 

[M
J
/d

a
y
]

O
p
e
ra

ti
n
g
 c

o
s
ts

 [
y
e
n
/d

a
y
] 

a
n
d
 

p
ri
m

a
ry

 e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 

[M
J
/d

a
y
]

(a)

(b)
Generation

Generation

𝑓min,oc

𝑓min,pe

𝜀 E

𝜑min

𝜑 > 𝜀 E



CHAPTER 3 | Development and application of single- and multi-objective optimizations for 

complex energy systems 

75 

 

 

Fig. 3-12 | Pareto-optimal solutions. 

 

3.5.2 Difference of optimal operations in terms of minimizing costs and primary 

energy consumption 

 Fig. 3-13(a) and (b) show the optimal operations of CHP to minimize the operating costs and 

primary energy consumption, respectively. To minimize the operating costs, the electric machines 

should be operated when the price of purchased electricity is low and the gas-based machines should 

be operated when the price is high. Fig. 3-13(a) shows the reasonable operation of CHP, while Fig. 3-

13(b) shows that CHP was operated during not only the high-price time but also the low-price time, 

such as 2 a.m., 4 a.m., and 6 p.m. to 8 p.m. In addition, the waste heat of CHP was used for HRAR, 

which is different from the operation shown in Fig. 3-13(a). The reason for this can be found in the 

characteristics of GB and HRAR. 

 The gas consumption of GB at below 20% partial load rate is constant. Hence, the reduction of gas 

consumption will be zero when GB operates at 0–20% partial load rate. On the other hand, the waste 

heat utilization from CHP to HRAR ( 𝑃CHPtoHRAR  [kW]) can reduce 3.5 MJ/kW of energy 

consumption of HRAR. Hence, the waste heat was provided to HRAR instead of the domestic hot 
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Fig. 3-13 | Optimal operation of CHP: a) the operation to minimize the operating costs, b) the operation to minimize 

the primary energy consumption. 

 

 
Fig. 3-14 | Optimal operation of GB: a) the operation to minimize the operating costs, b) the operation to minimize 

the primary energy consumption. 

 

 

amount of thermal output of 20% partial operations. However, the partial load rate of GB was 

maintained at 20%. This is because the energy consumption will be reduced by 5.75 MJ/kW when 

GB’s partial load rate increases beyond 20%. In contrast, the waste utilization from CHP to HRAR is 

3.5 MJ/kW, as mentioned above. Therefore, it is the most suitable that the waste heat is provided to 

the hot water supply system instead of HRAR when GB operates at more than 20% partial load rate. 
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3.6 Conclusion 

 This chapter shows an efficient constrained optimization method, εDE, to optimize a single-

objective optimization to minimize the operating costs of a complex energy system, which comprises 

electricity, cooling, and hot water supply systems. Although the system was difficult to be solved 

because of the several storage equipment, εDE could find a reasonable operating schedule of the 

components. The utilization of εDE could reduce the operating costs by 5.7% against an empirical 

and a typical operating schedule. 

 In addition, we proposed ε MODE to minimize the operating costs and primary energy 

consumption simultaneously. εMODE consisted of εDE [167], MODEA [174], and a proposed 

revised technique, which is a discrete generation model. The generation model was used instead of 

previous models, such as a continuous generation model, to avoid trapping in a local optimum. As a 

result, εMODE could create a pareto front that consisted of many individuals and the given optimal 

operations were reasonable in terms of the machine characteristics. 

 Therefore, εDE has a high ability to find a quasi-optimal solution for the complex energy system 

in realistic computation time, and εMODE can be used to find a pareto front in two objective 

functions. In fact, εMODE algorithm can be quickly extended to three-objective optimization. Hence, 

εMODE has high adaptability to multi-objective optimization problems. 
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4.1 Introduction 

 This chapter focused on electricity and space cooling systems which were consisted of renewable 

power generators, such as PV, and some storage devices such as TES and RB. As the installation of 

the PV systems has increased, business models for the sale of electricity generated from PVs have 

spread globally in recent years. In addition, RB have been gradually installed not only to manage the 

grid’s voltage and frequency, but also to minimize operational costs [176,177]. To achieve the goals, 

it is important to evaluate the effect of the relationship between the prices of the purchased and the 

sold electricity, as well as the effect of energy system connections. 

 However, it is not enough to merely evaluate the difference in the dynamic pricing models. The 

difference between the purchase and sale prices needs to be considered. Therefore, we conducted a 

great deal of optimization of the energy system under the various prices to address the results 

quantitatively. Thus, we applied εDE to three energy systems that had different connections of PVs, 

RB and HVAC systems, and 126 cases with varying electricity purchase and sale prices were 

investigated. Moreover, we propose a simple index for decision-making optimal operations of 

electricity systems. The content of this chapter is referred to my peer-reviewed article published in 

Sustainable Cities and Society [178]. 

 

4.2 Calculation conditions 

4.2.1 Description of energy system 

 The electricity system is consisted of EG, PV, RB, and electricity demand (𝑫𝐄). The capacity and 

maximum amount of electric charge to or discharge from the battery is set to 500 kWh and 100 kW, 

respectively. The charging and discharging efficiency is set to 0.9, so one cycle efficiency is 81%. 

 The HVAC system is consisted of ASHP, TES, and cooling demand (𝑫𝐜𝐥). RB and EG supply 

electricity to equipment in HVAC system. The power output of the ASHP depends on the outdoor 

temperature, with a maximum of 1000 kW. The inlet and outlet water temperature of ASHP were fixed 

at 12 °C and 7 °C. The amount of chilled water changed to consider the operation at partial load rate. 

 TES has a capacity of 3,000 kWh. Its charging and discharging efficiency were set to 1.0. Further, 

the self-loss rate was fixed at 5% per day (0.2% per hour) and respective inlet and outlet water 

temperature were fixed at 12 °C and 7 °C. Pumps for ASHP and TES can vary the amount of chilled 

water according to the power output of the ASHP and the amount of charging and discharging thermal 

energy in TES. We established three energy systems connections to be used as case studies, as 

illustrated in Fig. 4-1. 
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Fig. 4-1 | Three different types of energy system: (a) Case 1 (self-consumption model); (b) Case 2 (total amount 

purchased model); (c) Case 3 (full connectivity model). 

 

 

 In Case 1, PV power generation and discharged electricity from RB are provided to the electricity 

demand. The shortage in the provided electricity is compensated by EG. Case 1 indicates a self-

consumption model. In Case 2, electricity from these sources is sold to EG. This process is called the 

full-amount purchase model because all electricity for electricity demand is purchased from EG, and 

all electricity generated from PV and RB is sold to EG. In Case 3, we established full connectivity as 

follows: 1) PV-generated power is distributed to the electricity demand, EG, RB, and ASHP. 2) 

Electricity discharged from RB is also distributed to the electricity demand, EG, and ASHP. 

 

4.2.2 Demand and price profiles 

 An office building in Tokyo with a total floor area of 16,531.1 m2 was considered. The load and 

electricity demand were determined by NewHASP/ACLD [179] and CASCADEIII [170], respectively. 

The analyzed time horizon and interval were set to 24 hours and 1 hour, respectively on 15th August. 

The price of purchased electricity in each interval varied according to the dynamic pricing. The price 

of sold electricity was set to be constant at 26 yen/kWh. These profiles were shown in Fig. 4-2. It is 

important that we investigate the difference between two optimal operating scenarios: firstly, when 

the price of purchased electricity is lower than that of sold electricity at 0 a.m. to 7 a.m. and 6 p.m. to 

11 p.m.; and secondly, when the price of purchased electricity is higher than that of sold electricity 

during the day time. The reason for this is that PV generates electric power from 7 a.m. to 5 p.m., 

resulting in a difference in the purchase and sale price relationship in the two scenarios. We can 

therefore assume that there are different optimal PV operations for each scenario. 
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Fig. 4-2 | Demand and price of electricity 

 

4.3 Optimization method 

4.3.1 Problem formulation 

 The aim of the optimization is to minimize operating costs for a 24-hour period as follows: 

minimize 𝑓 = ∑{𝑝E,pd
𝑡 (𝐷E

𝑡 − 𝑃PVto𝐷E

𝑡 − 𝑃RBto𝐷E

𝑡 + 𝑐E,TES
𝑡 + 𝑐E,ASHP

𝑡 )

𝑁th

𝑡=1

− 𝑝E,sd
𝑡 (𝑃RBtoEG

𝑡 + 𝑃PVtoEG
𝑡 )} 

(4-1) 

and is subject to 

{
0 ≤

𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)

𝜇RB
≤ 𝑃max,RB,d

0 ≤ 𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)𝜇RB ≤ 𝑃max,RB,d

 if(𝑅RB
𝑡 − 𝑅RB

𝑡−1) ≥ 0
otherwise

 (4-2) 

{
𝑃PV

𝑡 × 𝑅PVtoRB
𝑡 ≤

𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)

𝜇RB
≤ 𝑃max,RB,c,d  if(𝑅RB

𝑡 − 𝑅RB
𝑡−1) ≥ 0

𝑃PV
𝑡 × 𝑅PVtoRB

𝑡                                                                   otherwise

 (4-3) 

{
𝐷E

𝑡 + 𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1) ≥ 𝑃PV
𝑡 (𝑅PVtoRB

𝑡 + 𝑅PVto𝐷E

𝑡 )       if(𝑅RB
𝑡 − 𝑅RB

𝑡−1) ≥ 0

𝐷E
𝑡 ≥ |𝐶B(𝑅RB

𝑡 − 𝑅RB
𝑡−1)| × 𝑅RBto𝐷E

𝑡                                        otherwise
 (4-4) 

0 ≤ 𝐶TES (𝑅TES
𝑡 − 𝑅TES

𝑡−1(1 − 𝜏TES)) ≤ 𝐶ASHP
𝑡  (4-5) 
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𝑅PVtoEG
𝑡 =

𝑅PVto𝐷E

𝑡

𝑅PVto𝐷E

𝑡 + 𝑅PVtoEG
𝑡 + 𝑅PVtoASHP

𝑡 + 𝑅PVtoRB
𝑡  (4-6) 

where 𝑡 denotes the time interval [h], 𝑁th represents the time horizon (= 24 h), 𝑝E,pd
𝑡  is the price 

of purchased electricity [yen/kWh], 𝑝E,sd
𝑡  indicates the price of sold electricity [yen/kWh], 𝑋𝑡 𝑌𝑡, 

as in RBtoEG, signifies the amount of electricity or cooling heat transferred from device 𝑋 to device 

𝑌  [kWh], and 𝐶𝑎  represents the capacity of device 𝑎 . Furthermore, 𝑅𝑎
𝑡 ∈ [0,1]  signifies the 

decision variables of device 𝑎, 𝜇RB indicates the battery’s charging and discharging efficiency (= 

0.9), 𝑃max,RB,c,d is the battery’s maximum amount of charging and discharging electricity (=100 kW), 

𝐷E
𝑡  denotes electricity demand [kW], 𝑃PV

𝑡  represents PV power generation [kW], 𝜏TES is the TES 

self-loss rate (= 0.05/day), and 𝑅𝑋𝑡 𝑌
𝑡 ∈ [0,1] signifies the power distribution rate from device 𝑋 to 

device 𝑌. For example, 𝑅PVtoEG
𝑡  is calculated using Eq. (4-6). Moreover, Eq. (4-2) refers to the 

constraints concerning the battery’s maximum electrical charge and discharge, Eq. (4-3) represents 

the necessary constraints to balance the amount of energy required to charge the battery and the amount 

provided from the PV to the battery, Eq. (4-4) is the electricity demand energy balance, and Eq. (4-5) 

indicates the maximum TES charging and discharging thermal energy. There are 216 decision 

variables (9 types × 24 hours), and 144 constraints. 

 

4.3.2 Parameters of 𝜺DE 

 The number of generation and individuals were set to 10,000 and 300, respectively. Also, the 𝜺𝐃𝐄 

were set to zero at 3,000 of the maximum generations. 

 

4.4 Results and discussion 

4.4.1 Case 1 (Demand connection) 

 The performance of the εDE is displayed in Fig. 4-3. Every individual in the first iteration is an 

infeasible solution. Thus, the minimum value of phi (green solid line) is greater than zero. The first 

feasible individual (purple solid line) is determined after 1,000 iterations because the minimum value 

of phi is zero. The number of feasible individuals drastically increases over the next 3,000 iterations. 

 Finally, the objective function value is 360,183 yen/day. Fig. 4-4(a) indicates that a similar 

phenomenon occurs with the HVAC system. The charging operation of the TES (negative values 

denoted by orange bars) occurs when the price of purchased electricity is low, and the discharging 
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operation (positive values) occurs when it is high. Fig. 4-5(a) shows that RB is charged (negative 

values depicted by gray bars) when the price of purchased electricity is low and RB is discharged 

(positive values) when the price is high. Thus, the amount of purchased electricity decreases during 

the day. All electricity produced from RB discharge and PV power generation is provided to the 

electricity demand (Fig. 4-5(a) and Fig. 4-6(a)). It can be seen that the operation of the PV and RB 

changes according to the relation of the purchase and selling prices of the electricity. 

 

 
Fig. 4-3 | Performance of 𝜺DE in Case 1: 𝑁fs  denotes the number of feasible individuals, 𝜑min  denotes the 

minimum value of constraint violations. 𝑓min,fs denotes the minimum objective function value of feasible individuals. 
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Fig. 4-4 | Optimal operating schedules of HVAC system: (a) Case 1, (b) Case 2, and (c) Case 3. 
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Fig. 4-5 | Optimal operating schedules of the rechargeable battery: (a) Case 1, (b) Case 2, and (c) Case 3. 
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Fig. 4-6 | Optimal power distributions of PV: (a) Case 1, (b) Case 2, and (c) Case 3. 
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4.4.2 Case 2 (Grid connection) 

 In Case 2, the objective function value is 365,137 yen/day, which exceeds that of Case 1 (360,183 

yen/day). This is because, in Case 2, all electricity produced from RB and PV system is sold to EG as 

shown in Fig. 4-5(b) and Fig. 4-6(b). We represent the price of purchased electricity using a red line 

in Fig. 4-4, Fig. 4-5, and Fig. 4-6. This price varies from 8.9 yen/kWh to 41.2 yen/kWh. On the other 

hand, the price of sold electricity is set to 26 yen/kWh for each time interval. Thus, during the day, 

electricity provided by RB and PV system should be provided to the electricity system or HVAC 

system, because the purchase price of electricity is less than the sale price during the night, and greater 

during the day. Therefore, the result for Case 2 is more than that for Case 1. 

 

4.4.3 Case 3 (Full connection) 

 The objective function value is 355,258 yen/day, a decrease of 1.4 and 2.7 % from Cases 1 and 2, 

respectively. The optimal RB operation is shown in Fig. 4-5(c). Electricity is discharged to EG 

(RBtoEG) at night. Full charging operations are conducted at 8 p.m. and 10 p.m., and full discharging 

operations are conducted at 9 p.m. and 11 p.m. to gain income from selling electricity. On the other 

hand, electricity is discharged to electric demand (RBto𝐷E) and HVAC devices (RBtoASHP) during 

the daytime hours. The optimal operation for the distribution of PV power generation is displayed in 

Fig. 4-6(c). 

 These results let us determine an operation strategy for the PV system that is similar to that for RB. 

Distribution from the PV system to RB was not examined because RB efficiency is less than 1.0. The 

total amounts of electricity discharged from RB and PV power generation during the day are 500 and 

329.7 kWh, respectively, and are provided not to EG, but to the electricity demand and HVAC system. 

Although 216 decision variables were used under the nonlinear condition, we were able to obtain the 

optimal solution within a short time period (16 minutes). All optimizations were performed using 

MATLAB R2015a, with the following computer specifications: Windows 8.1 Pro (64bit), 3.40GHz 

Core i7-4700 CPU, and 32GB RAM. 

 

4.5 Verification of relation between price of purchased and sold electricity 

4.5.1 Case study 

 In Section 4.4, we quantified the dependency of the operating costs on the energy system 

connection. Results indicate a notable difference between Case 1 (360,183yen/day) and Case 2 
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(365,137yen/day), which had an additional dependency on the price of purchased and sold electricity. 

Recently, some countries have implemented a feed-in-tariff to promote the installation of renewable 

resources such as PV, wind power, and geothermal energy. However, the results of Section 4.4 showed 

that Case 2, which was modeled as a total amount of purchased system, a typical feed-in-tariff model, 

depended on both the price of purchased and sold electricity. Thus, the total amount of the purchased 

system is not suitable for increased installation of renewable resources in the future because the price 

of feed-in-tariff has gradually decreased. In this situation, we need to optimize the operation or power 

distribution of each device. Thus, we should determine if it is best to sell the electricity to the power 

grid, to consume it directly, or to adopt both of these operations. Therefore, we conducted a parametric 

study on the effect of both prices on the operating costs, and propose a simple index “Area rate of 

prices (ARP)” to easily determine the quasi-optimal operating schedule over 24 hours. 

 For the parametric study, the price of sold electricity decreased from 35 to 15 yen/kWh to uncover 

the influence of the relationship between the electricity purchase and sale price. We examined 42 cases, 

evenly divided between Case 2 and Case 3, and evaluated the results from two perspectives: 1) the 

change of the objective function value in terms of electricity sale price, and 2) the reduction rates of 

the objective function value in two cases based on ARP. In this research, we propose an ARP defined 

as follows: 

ARP =
∑ (𝑝E,pd

ℎ − 𝑝E,sd
ℎ )

𝑁th,pd

ℎ=1

∑ (𝑝E,sd
𝑗

− 𝑝E,pd
𝑗

)
𝑁th,sd

𝑗=1

 (4-11) 

where, 𝑁th,pd [h] indicates the length of the time intervals when the price of purchased electricity is 

higher than that of sold in a 24-hour period. The numerator of Eq. (4-11) is shown as area (a) in Fig. 

4-7. 𝑁th,sd [h] indicates the length of the time intervals when the price of purchased electricity is 

lower than that of sold. The denominator of Eq. (4-11) is shown as area (b) in Fig. 4-7. Thus, we can 

assume from the results of Case 2 in Section 4.4 that the operating costs gradually become bigger as 

the ARP value increases. The reason for this is that the increasing ARP value indicates that the price 

of sold electricity is becoming low. On the other hand, the operating costs of Case 3 increase more 

slowly than that of Case 2 as the price of sold electricity decreases. This is because the PV and RB 

systems can distribute power not only to the power grid but also to electricity demand and the HVAC 

system, including AHP and TES. Further analysis involved conducting the optimization for Case 2 

and 3 to evaluate the relation between prices of purchased and sold electricity quantitatively. 

 However, it is difficult to clarify the relation of both prices with only one demand curve, even if 

we conduct 42 cases with varying price values. Therefore, we conducted further parametric study by 

applying a further two types of demand curves. Thus, we finally calculated 126 cases under three 
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different types of demand curves as shown in Fig. 4-8. The “Original” curve represents the cooling 

and electricity demand curve in previous section. “Rand01” and “Rand02” indicate new demand 

curves. These are created using Eq. 4-12. 

𝐷cl
𝑡,new = 𝐷cl

𝑡 + 0.1 × 𝐷cl
𝑡 × 𝒩(𝑎𝑣 , σ) (4-12) 

where, 𝐷cl
𝑡,new

 indicates a new value of cooling demand at t time interval [kW]. 𝐷cl
𝑡  indicates an 

original value of cooling demand [kW]. 𝒩(ave, σ) is a random number with normal distribution with 

a mean of 𝑎𝑣  and a standard deviation of 𝜎, to 0 and 0.5, respectively. 

 Fig. 4-9 shows the price of the purchased electricity for three cases using the dynamic pricing 

model. The price curves of “Rand01” and “Rand02” were obtained using the same calculation method 

used for the “Original” case. The original case (blue solid line) represents an ordinary day with a 

typical pricing structure. The “Rand01” price varies sharply due to the peak demand at 8 a.m., while 

“Rand02” has three peak prices at 8 a.m., 11 a.m. and 1 p.m. Therefore, these cases represent a number 

of assumed cases in one year. 

 

 

Fig. 4-7 | Conceptual diagram of definition of ARP. 
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Fig. 4-8 | Three types of demand curve: (a) cooling demand, (b) electricity demand. 

 

 

 

Fig. 4-9 | Three types of purchased electricity price. 
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4.5.2 Results of original data 

 In Fig. 4-10, the vertical and horizontal axes indicate operating costs and the price of sold electricity, 

respectively. In Case 2, the operating costs increased linearly from 355,048 to 377,691 yen/day (6.4%) 

as the sale price of electricity decreased from 35 to 15 yen/kWh. The reason was that the total income 

obtained selling electricity to the grid decreased with the decreasing sale price. On the other hand, the 

operating costs in Case 3, increased by less than 1.5%, from 353,700 to 359,088 yen/day. However, 

there was greater dispersion amongst the Case 3 results, as shown in Fig. 4-10. Finally, the difference 

in the operational costs of Cases 2 and 3 was 5.2% when the price of the sold electricity was 15 

yen/kWh. In addition, although the price of sold electricity drastically decreased, the operating costs 

in Case 3 are lower than that of Case 1 (360,183 yen/day). 

 In Fig. 4-11, the vertical and horizontal axes indicate operating costs and the value of ARP, 

respectively. The blue and red markers represent the Case 2 and Case 3 results, respectively, with each 

set comprising 21 data points. The green markers represent the reduction rate of Case 3 against Case 

2. The area of the purchased electricity price increases as the value of ARP increases. Case 2 showed 

a logarithmic increase, in contrast to the linear shape shown in Fig. 4-10. This is attributed to the 

nonlinear configurations of both the purchased and sold electricity. In the ARP range of zero to one, 

the operating costs increased sharply. An ARP value of one indicates that both areas of the two prices 

are equal. Thus, the power selling income of Case 2 decreases as the value of ARP increases. 

 In Case 3, the rate of increase was lower than that of Case 2, even when the price of sold electricity 

was low. The reason for this is that the Case 3 energy system can distribute electric power not only to 

EG, but also to the HVAC and TES systems. It can be assumed that the operating costs of Case 3 will 

finally increase up to the optimal solution of Case 1 when the price of sold electricity is low. The 

reduction rates were 3.5 and 5.0% at ARP values of 1 and 3, respectively. Moreover, when the ARP 

value is less than 0.2, the operating costs of Case 2 are lower than those of Case 1, which is a self-

consumption model. When the ARP value was the smallest (= 0.078), the operating costs of Case 2 

were lower than those of Case 1 by 1.45%. On the other hand, at ARP values greater than 0.2, this 

result was reversed. When the ARP value was the highest (=2.90), the operating costs of Case 1 were 

lower than those of Case 2 by 4.64%. 
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Fig. 4-10 | Results of each price of sold electricity. 

 

 

 

Fig. 4-11 | Comparison of results in terms of ARP (Original). 
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4.5.3 Results of various types of demand curve 

 The results of Case 2 and Case 3 for demand curves “Rand01” and “Rand02” are shown in Fig. 4-

12 and Fig. 4-13, respectively. Each result showed that the increase in operating costs of Case 2 was 

faster than that of Case 3, as per the results of the original case. However, the reduction rates of 

“Rand01” and “Rand02” increase faster than that of the original case. In terms of comparison between 

Case 1 (blue solid line) and Case 2, the results of “Rand01” and “Rand02” showed that the operating 

costs of Case 2 were lower than that of Case 1 when the ARP value was less than 0.2. In “Rand01,” 

when the ARP value was the smallest (= 0.037), the operating costs of Case 2 were lower than those 

of Case 1 by 1.7%. In “Rand02,” at the smallest value of ARP (= 0.062), those of Case 2 were lower 

than those of Case 1 by 2.6% 

 On the other hand, when the ARP value was greater than 0.2, Case 1 showed better results than 

Case 2, as per the original case. Thus, the priority of each operation strategy is the same for various 

types of demand curve. Therefore, the operators of an energy system in a certain building can easily 

determine the operating schedule simply by calculating the ARP value if they do not have the time or 

equipment to obtain the optimal solution. Moreover, in terms of comparison between Case 1 and Case 

3, the Case 3 results did not exceed the optimal result of Case 1. For example, in “Rand01”, the optimal 

solution of Case 1 is 295,070 yen/day and that of Case 3, when the price of sold electricity is the lowest 

(ARP of 1.89), is 293,791 yen/day. In “Rand02”, the former is 320,450 yen/day and the latter is 

319,269 yen/day. Although it was necessary to conduct detailed calculations for Case 3 due to the 

large number of distribution routes, εDE was able to obtain the optimal solution in all 126 cases. 

Therefore, this optimization method can be applied to complex nonlinear problem such as practical 

energy systems. 
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Fig. 4-12 | Comparison of results in terms of ARP (Rand01). 

 

 

 

Fig. 4-13 | Comparison of results in terms of ARP (Rand02). 
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4.6 Conclusion 

 In this chapter, we optimized energy systems that include RB and TES systems. Moreover, we 

clarified the effect of energy system connections and of the price of purchased and sold electricity. 

Firstly, we demonstrated the ability of the εDE to efficiently determine an optimal solution under the 

nonlinear condition, and we detailed its performance. Secondly, we confirmed that the total amount 

of a purchased system does not always minimize the operating cost and that it depends on the relation 

between the prices of purchased and sold electricity. 

 In addition, we proposed a simple index “ARP” as a value of comparison between the prices of 

purchased and sold electricity in order to validate the relation between the two prices. We compared 

the results of Case 1 (self-consumption model) and Case 2 (total amount of a purchased model) The 

results showed that Case 2 was superior to Case 1 up to an ARP value of 0.2. On the other hand, Case 

1 was superior to Case 2 when the value of ARP was greater than 0.2. Additionally, we conducted the 

same simulation under two different demand profiles: Rand01 and Rand02 in order to confirm the 

results. Finally, 126 cases were tested and the priority of operating strategies of Case 1 and Case 2 

changed at an ARP value 0.2. Thus, we can conclude that the ARP method is a suitable method for 

easily determining the most efficient operating strategy. 

 Therefore, we can conduct the optimization on everyday practical situations because εDE requires 

low computational cost. Even if the operators cannot conduct the optimization in practical energy 

management, they can easily determine the operation strategy by calculation of the ARP value. 

Therefore, the εDE and ARP methods have substantial advantages for energy system optimization. 

5  
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5.1 Introduction 

 This chapter describes an efficient recalculation strategy for handling uncertainty. Although there 

are some real-time optimization methods for short time horizons mentioned in Section 1.2.3, they are 

not capable of recalculating operating schedules which includes long time-dependent equipment such 

as TES and RB. When the operating schedule of the time-dependent equipment is revised, it has to be 

significantly considered to avoid energy shortage or excessive amount of heat. Thus, an efficient 

recalculation strategy for handling uncertainty and detailed calculations is needed to maintain the 

optimal energy balance. 

 A simple and effective method to recalculate operating schedules of all time steps at every time 

interval is called the “all-time steps recalculation strategy” (AtsR) in this thesis. The AtsR can be 

thought of as an ideal optimization strategy, but it requires large amounts of computation time. Thus, 

it cannot be easily applied to actual energy management systems, which require quick recalculations 

of the operating schedules when unpredicted demand changes occur. In this chapter, we propose a new 

recalculation strategy that is called the “two-time steps recalculation strategy” (TtsR). The TtsR aims 

to recalculate operating schedules in two-time steps, namely, when the changes occur and while fixing 

the results for the amounts of remaining battery power and TES effects; these later issues are treated 

as constraints. We compared TtsR and AtsR procedures and results to clarify the effectiveness of the 

new TtsR. The contents of this chapter is referred to my peer-reviewed article published in Energy and 

Buildings [180]. 

 

5.2 Calculation conditions 

5.2.1 Description of energy system 

 We considered an energy system consisting of RB, PV device, power conditioner, two 

centrifugal refrigerators (CR1 and CR2), three air-source heat pumps (ASHP1, ASHP2, and 

ASHP3), and TES for cooling; a schematic of the system is shown in Fig. 5-1. Further data for each 

component are shown in Table 5-1. 

 The PV device and RB were key components of the electricity system. The area of the PV panels 

and conversion rate were set to 1,000 m2 and 13%, respectively. Power from the PV devices was 

distributed to RB, to equipment with an electricity demand, and to EG simultaneously at each time 

step. The capacity and maximum amount of charging or discharging of RB were set to 1,500 kWh and 

300 kW, respectively. RB was charged with electricity from the PV device or EG, and it discharged 

power to meet the electricity demand or to EG as well. 
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 The capacity of the TES was 10,000 kWh, which met approximately 15% of the total amount of 

cooling demand for the day. The charging or discharging efficiency was 100%, and the self-heat loss 

rate was set to 0.2%/h. Heat source equipment consisted of the five aforementioned devices. The rated 

capacities of CR1 and CR2 were set to 2,000 kW and 1,500 kW, respectively; those of ASHP1, 

ASHP2, and ASHP3 were set to 1,200 kW, 1,000 kW, and 600 kW, respectively. To simplify the 

problem, the inlet and outlet temperatures of chilled water for each heat source were fixed to 7 ºC and 

12 ºC, respectively. In reality, the temperature of chilled water varies in accordance with the power 

output of the heat source machine in partial load operations. In calculations for the cooling tower, 

when the difference between the inlet and outlet cooling water temperatures was larger than 3 ºC, the 

amount of cooling water was set to the rated amount and water temperatures varied according to 

variations in the CR’s power output. In contrast, when the difference was less than 3 ºC, the amount 

of cooling water was reduced to keep the difference at 3 ºC. The cooling water temperature was 

allowed to be influenced by outdoor conditions and heat source power outputs. 

 

 

Fig. 5-1 | Schematic of the energy system. 
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Table 5-1 | Rated specifications of system components. 

PV Area 1000 m2 

Conversion efficiency 13 % 

Power conditioner efficiency 97 % 

Battery Capacity 1500 kWh 

Maximum charging/discharging 300 kW 

Self-discharge rate 0 % 

Efficiency 72 %/cycle 

TES Capacity 10,000 kWh 

Maximum charging/discharging 3000 kW 

Self-heat loss rate 0.2 %/h 

Efficiency 100 %/cycle 

CR1–2 Capacity 2000;1500 kW 

COP based on primary energy 2.04  

ASHP1–3 Capacity 1200; 1000; 600 kW 

COP based on primary energy 1.30  

 

5.2.2 Demand profile and electricity price 

 An office building in Tokyo with a total floor space of 20,000 m2 is considered. The time horizon 

and sampling interval were set to 24 h and 1 h, respectively. Electricity demand was determined by 

using CASCADE III [170]. The analyzed day represented a typical day in August. The price of 

purchased electricity in each time interval was set to vary with the total hourly predicted electricity 

consumption. Electricity and cooling demands, and the sold and purchased price of electricity, are 

shown in Fig. 5-2. In this chapter, these demand curves were set as predicted demands. When we 

considered unpredicted changes in the demand and solar radiation, we applied uniformly distributed 

random numbers to these demands to create new values for them. 

 

 

Fig. 5-2 | Electricity and cooling demands, and electricity prices. 
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5.3 Optimization method 

5.3.1 Problem formulation 

 In this chapter, the aim of the optimization was to minimize the operating costs for a 24-h operation 

period, and this was accomplished with the following equations: 

minimize 𝑓 = ∑{𝑝E,pd
𝑡 (𝐷E

𝑡 − 𝑃PVto𝐷E

𝑡 − 𝑃RBto𝐷E

𝑡 + 𝑐E,TES
𝑡 + 𝑐E,ASHP1

𝑡 + 𝑐E,ASHP2
𝑡

𝑁th

𝑡=1

+ 𝑐E,ASHP3
𝑡 + 𝑐E,CR1

𝑡 + 𝑐E,CR2
𝑡 ) − 𝑝E,sd

𝑡 (𝑃RBtoEG
𝑡 + 𝑃PVtoEG

𝑡 )} 

(5-1) 

and subject to 

{
0 ≤

𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)

𝜇RB
≤ 𝑃max,RB,d        if(𝑅RB

𝑡 − 𝑅RB
𝑡−1) ≥ 0

0 ≤ 𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)𝜇RB ≤ 𝑃max,RB,d                  otherwise

 (5-2) 

{
𝑃PV

𝑡 × 𝑅PVtoRB
𝑡 ≤

𝐶RB(𝑅RB
𝑡 − 𝑅RB

𝑡−1)

𝜇RB
≤ 𝑃max,RB,c,d    if(𝑅RB

𝑡 − 𝑅RB
𝑡−1) ≥ 0

𝑃PV
𝑡 × 𝑅PVtoRB

𝑡                                                                      otherwise

 (5-3) 

{
𝐷E

𝑡 + 𝐶B(𝑅RB
𝑡 − 𝑅RB

𝑡−1) ≥ 𝑃PV
𝑡 (𝑅PVtoRB

𝑡 + 𝑅PVto𝐷E

𝑡 )       if(𝑅RB
𝑡 − 𝑅RB

𝑡−1) ≥ 0

𝐷E
𝑡 ≥ |𝐶B(𝑅RB

𝑡 − 𝑅RB
𝑡−1)| × 𝑅Bto𝐷E

𝑡                                       otherwise
 (5-4) 

0 ≤ 𝐶TES (𝑅TES
𝑡 − 𝑅TES

𝑡−1(1 − 𝜏TES)) ≤ 𝐶CR1
𝑡 + 𝐶CR2

𝑡 + 𝐶ASHP1
𝑡 + 𝐶ASHP2

𝑡 + 𝐶ASHP3
𝑡  (5-5) 

𝐷cl
𝑡 + 𝑃TES,c

𝑡 − (𝑃TES,d
𝑡 + 𝑃CR2

𝑡 + 𝑃ASHP1
𝑡 + 𝑃ASHP2

𝑡 + 𝑃ASHP3
𝑡 ) ≤ 𝐶CR1 (5-6) 

Others include 

𝑅PVtoEG
𝑡 =

𝑅PVto𝐷E

𝑡

𝑅PVto𝐷E

𝑡 + 𝑅PVtoEG
𝑡 + 𝑅PVtoRB

𝑡  (5-7) 

where 𝑡 denotes the time step [h], 𝑁th represents the time horizon [24 h], 𝑝E,pd
𝑡  is the price of 

purchased electricity (yen/kWh), 𝑝E,sd
𝑡  indicates the price of sold electricity [yen/kWh], 𝑃XtoY

𝑡  is the 

power generation and thermal output [kW] from device X to device Y. 𝐶𝑎 represents the capacity 

of device 𝑎. Furthermore, 𝑅𝑎
𝑡 ∈ [0,1] signifies the decision variables of device 𝑎, 𝜇RB indicates 

the RB’s charging and discharging efficiency (= 0.9), 𝑃max,RB,c,d is the RB’s maximum amount of 

charging and discharging electricity (= 300 kW), 𝐷E
𝑡  and 𝐷cl

𝑡  denote the electric and cooling demand 
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[kW], respectively. 𝜏TES is the TES self-loss rate (= 0.02/h). 𝑅PVtoEG
𝑡  was calculated by using Eq. 

(5-7). In Eq. (5-6), 𝑃TES,c
𝑡  and 𝑃TES,d

𝑡  indicate the amount of charging or discharging energy of the 

TES. This value can be obtained by the difference between the amount of remaining battery power at 

𝑡 and 𝑡 − 1 time steps. Moreover, Eq. (5-2) refers to the constraints concerning the RB’s maximum 

amount of charging and discharging electricity, Eq. (5-3) represents the constraints needed to balance 

the amount of energy required to charge RB and the amount provided from the PV device to RB, Eq. 

(5-4) is the energy balance of the electricity demand, and Eq. (5-5) indicates the maximum amount of 

TES storing and releasing thermal energy. In this study, the number of decision variables was 240 (10 

types × 24 hours), and the number of constraints was 168. 

 

5.3.2 Decision variables 

The decision variables consisted of the following 10 factors: 1) rate of remaining battery, 2) 

distribution rate of RBtoEG, 3) distribution rate of PVtoEG, 4) distribution rate of PVtoRB, 5) 

distribution rate of PVto𝐷E, 6) rate of remaining TES, 7) machine load rate of CR2, 8) machine load 

rate of ASHP1, 9) machine load rate of ASHP2, and 10) machine load rate of ASHP3. The first 

variable indicates the remaining energy within RB, and the second variable was used to determine the 

power output of RBtoEG and RBto𝐷E. The third to fifth variables were used to determine the power 

output of each of the PV routes with Eq. (5-7). The sixth variable indicates the remaining TES power 

[kWh]. The seventh to tenth variables represent the partial load rate of the four pieces of heat source 

equipment; note that CR1 was excluded here. The power output of CR1 was determined by using the 

left-hand side of Eq. (5-6). 

 

5.3.3 Parameter of 𝜺DE 

 The number of individuals and generations were set to 100 and 5,000, respectively. The mutation 

rate and the crossover rate were set to 0.5 and 0.9, respectively. 
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5.4 Proposal of a new methodology for assessing the uncertainty of renewable energy 

sources and demand changes 

5.4.1 All time steps recalculation strategy (AtsR) 

 Unpredicted changes in power generation from PV devices can occur when outdoor conditions 

change; moreover, unpredicted changes in the electricity or cooling demand can be caused by changes 

in occupant behaviors. When those changes occur, a rescheduling of operations is needed to minimize 

the operating costs. To minimize the objective function value, the best strategy is to recalculate for all 

time steps under the changed conditions, as shown in Fig. 5-3. The horizontal axis indicates the 

recalculated time horizon, and the vertical axis indicates the time of recalculation. For example, three-

time intervals (9, 10, 11 p.m.) were recalculated at 9 p.m. Generally, long computation times are 

required to optimize a complex nonlinear problem with mathematical techniques. However, εDE can 

be used to obtain the quasi-optimal solution stochastically over short computation times. Thus, εDE 

was applied to the AtsR strategy. 

 

5.4.2 Two time steps recalculation strategy (TtsR) 

 AtsR yields an accurate quasi-optimal solution because this strategy recalculates at every time step. 

However, this requires long computation times, especially for former calculation times that are 

associated with long time horizon recalculations. Thus, this technique is not always practical to use 

with actual systems. Here, we propose a new recalculation strategy, that is, TtsR. We recalculated the 

operating schedules to match the energy balance during two hours for the current time interval (𝑡) and 

the next time interval (𝑡 + 1) as shown in Fig. 5-4. 
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Fig. 5-3 | Recalculation concept of AtsR. 

 

 

 

Fig. 5-4 | Recalculation concept of TtsR. 
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 Fig. 5-5 shows a flow chart of the TtsR algorithm. In the prediction phase, we obtained each type 

of demand and outdoor condition as shown in Fig. 5-2 by using thermal load calculations and weather 

forecast data. Secondly, the amount of power generation from the PV device was calculated by using 

solar radiation data. Then, εDE was used to optimize the operating schedules of each decision variable 

in a manner that minimized the total operating costs for 24 hours. Next, initialization and time step 

updates were conducted. In modeling the uncertainty, i.e., changes in the cooling demand, electricity 

demand, and power generation by the PV device, values were changed by using uniformly distributed 

numbers. In the TtsR algorithm, the new amounts of stored energy within RB and TES power at t + 1 

time step (𝑆RB
𝑡+1,new

 and 𝑆TES
𝑡+1,new

) were fixed to the same value as those obtained during the 

prediction phase (𝑆RB
𝑡+1,new

 and 𝑆TES
𝑡+1,new

), i.e., these values were used as constraints. Finally, the 

operating schedules for the two-time steps (𝑡 and 𝑡 + 1) were optimized by using εDE. 

 AtsR and TtsR are not optimization methods, but rather frameworks that enable problem 

formulation for the recalculation. Thus, these methods should work with various optimization method 

such as linear programming, mixed integer linear programming, genetic algorithm, and steepest decent 

method. In this study, we adopted εDE because the optimization problem contained nonlinear and 

iterative configuration, and many constraints. 

 In Fig. 5-6, the left-hand side shows the optimal operating schedule obtained during the prediction 

phase, while the right-hand side shows the unpredicted demand changes and the results of 

recalculations. When the current time step was 1 p.m., the demand at 2 p.m. increased. Then, we 

conducted optimization for two-time intervals (e.g., 2 p.m. and 3 p.m.). The power output of the TES 

and CR1 increased to meet the demand. However, this operational change caused the remaining TES 

(kWh) to decrease. Thus, in the next time step (3 p.m.), power output of TES decreased and CR1 

increased in comparison with the predicted values to match the TES remaining at 3 p.m. to the previous 

value obtained in the predictions. This procedure could rebalance the energy system while avoiding 

large-scale recalculations and thereby achieved reduced computation costs. 

 TtsR and AtsR can be used efficiently when the energy system includes devices that have time-

dependent characteristics, such as storage equipment and AR. This is because the stored energy in 

such equipment affects the subsequent time step, furthermore, an AR cannot rapidly start and stop 

generating heat, and it is sufficient to conduct a given optimization method at each time step when we 

do not consider the storage system. Moreover, another advantages of TtsR and AtsR strategies is that 

they do not require the number of heat sources and storage units to be specified. 
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Fig. 5-5 | Flow chart for the TtsR algorithm. 
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Fig. 5-6 | Conceptual diagram of the recalculation process under unpredicted demand change. 

 

5.5 Results and discussion 

5.5.1 Case study 

 We conducted three case studies to clarify the accuracy and effectiveness of the proposed TtsR. 

Case 1 (prediction) determined the quasi-optimal operating schedule under predicted conditions, the 

so-called “perfect prediction.” In Case 2 (uncertainty of PV), the power generation from the PV device 

was changed by a uniform random number in the range of the upper and lower 20%, as shown in Fig. 

5-7. In this figure, the blue bars (predicted PV) indicate the amount of power generated from the PV 

device during the prediction, and the red bars (changed PV) indicate the amount of power generated 

after modeling the uncertainty. The power level increased by 19.2% at 1 p.m. and decreased by 12–

14% at 9 a.m., 10 a.m., and 2 p.m. in Case 1. In the results for the uncertainty modeling, the total 

amount of power generation increased from 773.4 kWh/day (predicted PV) to 781.2 kWh/day 

(changed PV). Two cases were considered, namely, Case 2-1 (AtsR) and Case 2-2 (TtsR). 

 In Case 3 (uncertainty of demand), we used a model that accounted for the uncertainty of demand 

resulting from changes in occupant behaviors. In this scenario, three specific cases were considered: 

Case 3-1 (AtsR), Case 3-2 (TtsR), and Case 3-3 (Emp). Case 3-3 represented an empirical operation 

model for comparison with Case 3-1 and Case 3-2. The empirical model considered as follows: 1) 

when cooling demand exceeded the prediction, a heat source machine with the most efficient COP 

rating (CR in this chapter) generated heat to meet the additional demand, 2) when the demand 
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Fig. 5-7 | PV power generation variation. 

 

exceeded the total capacity of all machines, the TES discharged heat to meet this demand, 3) when the 

demand decreased, AHP3 that had the smallest capacity reduced generating heat to meet the demand. 

The demand changes were modeled by using a uniform random number in the range of the upper and 

lower 10%. Electricity demand and cooling demand changed as shown in Fig. 5-8 and Fig. 5-9, 

respectively. The results show that the total amount of electric demand increased from 12,614 

kWh/day to 12,794 kWh/day, while the cooling demand increased from 64,715 kWh/day to 67,736 

kWh/day. 

 Finally, we considered the uncertainty of both factors (i.e., power generation fluctuations and 

changes in demand) in Case 4 (uncertainty of both types). Case 4-1 (AtsR) and Case 4-2 (TtsR) were 

evaluated. The modeling results of Case 4 represent the combined results of Case 2 and Case 3. 
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Fig. 5-8 | Electricity demand (ED) variation. 

 

 

Fig. 5-9 | Cooling demand (CD) variation. 
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5.5.2 Result of Case 1 (predictions) 

 Fig. 5-10 shows the quasi-optimal operation of the electricity system. When the price of purchased 

electricity was lower than that sold (0–7, 9, 10 a.m. and 6–11 p.m.), the system could obtain income 

by charging electricity and immediately selling it to EG. However, in the early morning hours, 

charging and storage operations (green bars) were mainly conducted because the electricity was 

needed to reduce the operating costs during the daytime. Although discharging operations were 

conducted at 2 a.m., this was not a problem because RB was already charged to the full amount of 

electricity by 7 a.m. before the start of the business day. In daytime, electricity from RB (yellow bars) 

and PV device (pink bars) was supplied to meet the electricity demand of the building. At night (8–11 

p.m.), charging and discharging operations were conducted frequently to obtain income because no 

constraints for the number of charging or discharging events were used in this chapter. 

 Fig. 5-11 shows the quasi-optimal operation of the HVAC system. The TES charged the full 

amount of thermal energy before the start of the business day. When the charging operation was 

conducted, CR1 (light blue bars) mainly generated cooling heat because CR1 was highly efficient. In 

the daytime, the five heat source machines generated cooling heat because the amount of cooling 

demand was larger than the total rated capacities. We were able to obtain the quasi-optimal solution 

within a short time period (390 s). All optimizations were performed by using MATLAB R2015a 

software with the following computer specifications: Windows 8.1 Pro (64 bits), 3.40 GHz Core i7-

4700 CPU, and 32 GB RAM. 
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Fig. 5-10 | Quasi-optimal operation of the electric system in predictions. 

 

 

 

Fig. 5-11 | Quasi-optimal operation of the HVAC system. 
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5.5.3 Result of Case 2 (uncertainty of PV power) 

 The results for the operating costs and computation times per time step for Case 2-1 and Case 2-2 

are shown in Fig. 5-12. The computation times for Case 2-1 (blue line) decreased gradually from 382 

s at 0 a.m. to 14 s at 11 p.m. In contrast, the computation times for Case 2-2 (red line) stayed at 

approximately 40–50 s during all time intervals. The total computation times for Case 2-1 and Case 

2-2 were 4,608 s and 1,290 s, respectively. Thus, TtsR reduced the computation time by 73% compared 

to AtsR. The operating costs of Case 2-1 and Case 2-2 were 604,633 yen/d and 608,304 yen/d, 

respectively. Hence, no major differences in operating costs were detected (i.e., the cost increase was 

less than 0.61%). 

 

 

Fig. 5-12 | Comparison of the results for Case 2-1 and Case 2-2. 

 

5.5.4 Result of Case 3 (uncertainty of demand) 
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changes. Similar to Case 2, the computation time of Case 3-1 decreased gradually and that of Case 3-

2 stayed at 40–50 s during each time step. Here, TtsR reduced the computation time by 73% compared 

to AtsR. The computation time for Case 3-3 was very short, because it only involved the empirical 

operational scenario rather than an optimization procedure.  
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Fig. 5-13 | Comparison of the results for three cases. 

 

The total operating costs for Case 3-1, Case 3-2, and Case 3-3 were 640,985 yen/day, 641,129 yen/day, 

and 650,249 yen/day, respectively; no major differences in operating costs were detected between 

Case 3-1 and Case 3-2 (i.e., the cost increase was less than 0.02%). However, there was a substantial 

difference between the proposed method (Case 3-1 and Case 3-2) and Case 3-3. Therefore, AtsR and 

TtsR were superior to an empirical operation and TtsR provided an advantage over AtsR in terms of 

reduced computation time. Therefore, TtsR dealt effectively with the uncertainty of demand changes. 

 Focusing on Case 3-1 and Case 3-2, in terms of the differences in operations of the TES (Fig. 5-

14), the results for Case 3-2 (green line) were similar to those of Case 1 (blue line) because the 

algorithm for TtsR had constraints related to the amount of remaining TES as did Case 1. The results 

for Case 3-1 (red line) were, however, different from the other results because AtsR could freely 

calculate the operating schedules regardless of the results of Case 1. At 9 a.m., the amount of remaining 

TES in Case 3-1 did not change compared to 8 a.m. The reason for this was that the 

charging/discharging operations were not conducted because the cooling demand decreased compared 

to the predicted demand, and the demand at 10 a.m. increased compared to the predictions as shown 

in Fig. 5-9. Thus, the discharging operation was conducted not at 9 a.m., but at 10 a.m. Next, the 

reduction rates of remaining TES for Case 3-1 and 3-2 were slower than that of Case 1 from 8 a.m. to 

1 p.m. because the thermal energy from TES was used to supply the demand, and the amount of 

cooling demand increased at those time steps. 
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Fig. 5-14 | Variations in the amount of remaining TES [kWh]. 

 

 

Fig. 5-15 | Comparison of each solution for Case 1 and Case 3-2. 
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of that at 2 p.m. to maintain the amount of remaining TES at the end of the 2 p.m. interval. To meet 

the demand, ASHP2 and ASHP3 generated more cooling heat than in Case 1. 

 

5.5.5 Result of Case 4 (uncertainty of both types) 

 Finally, the results for Case 4-1 and Case 4-2, which considered both types of uncertainty, are 

shown in Fig. 5-16. The trend of each result was similar to the results of Case 2 and Case 3. The total 

operating costs for Case 4-1 and Case 4-2 were 636,536 yen/day and 641,087 yen/day, respectively, 

and no major differences in operating costs were detected (i.e., the cost increase was less than 0.7%). 

The computation times of Case 4-1 and Case 4-2 were 4,521 s and 1,234 s, respectively. Thus, TtsR 

reduced the computation time by 73%. In general, we found that TtsR performed well in dealing with 

common types of uncertainty while maintaining the computational accuracy for actual building 

scenarios. 

 

 

Fig. 5-16 | Comparison of Case 4-1 and Case 4-2. 
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5.6 Conclusion 

 In this chapter, we proposed a new strategy, TtsR, for recalculating the operating schedules of 

energy management systems to optimize energy production and minimize costs during periods of 

uncertainty caused by changes in renewable energy sources and changes in demand initiated by 

alterations in occupant behavior. These unpredicted changes are often encountered during the 

operation of actual energy systems. In TtsR, the operating schedules of two-time steps were optimized 

while fixing the amount of remaining battery power and TES at the second-time step. We compared 

TtsR with AtsR, which optimized the operating schedules of all-time steps and was a more time 

consuming but highly accurate procedure. Comparisons of the two calculation strategies showed that 

TtsR could obtain the quasi-optimal solution in 73% shorter computation times than AtsR while 

maintaining good accuracy. Therefore, TtsR should be a valuable technique to use for dealing with 

uncertainty when optimizing energy systems in actual buildings. 

6  
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6.1 Introduction 

 This chapter describes optimal operations of GSHP for cooling and hot water demands. Although 

a ground source heat pump (GSHP) has recently emerged as a promising heat source/sink for reducing 

energy consumption and carbon dioxide emissions [181,182] and many studies have been conducted 

with the aim of investigating and evaluating GSHP [183–188], when and how much heat should be 

generated from GSHP considering ground temperature variation has not been studied thus far. Pardo 

et al. [189] optimized an energy system component that included GSHP and TES throughout a long-

term calculation. Cui et al. [43] and Sayyaadi et al. [117] adopted a multi-objective evolutionary 

algorithm to find a pareto-front curve in terms of two objective functions: thermodynamic and 

economic. They set a fixed temperature difference between inlet and outlet temperatures of ground 

fluid loop and thus, dynamic variation of a GSHP performance corresponds to the inlet fluid 

temperature of heat pump was not considered. However, previous studies have not optimized the 

operating schedule. Instead of optimizing the operation, previous studies have only compared some 

operating scenarios to reduce the computation costs, because the calculation of ground temperature 

variation under multiple boreholes involves complicated calculations and high computation costs. 

 In terms of optimizing the operating schedule, although Edwards and Finn [35] proposed a 

decision-making strategy for optimal mass flow rates considering the partial load rate and ground 

temperature, they did not consider the thermal history of the ground temperature in determining the 

operation time of GSHP. Zeng [98] optimized the capacity and load rate of GSHP as constant values 

for a year under the condition of two energy systems that included GSHP. However, they did not 

discuss how they considered the change in ground temperature and the resulting COP changes of 

GSHP. Owing to a lack of information, their results cannot be evaluated in terms of realistic GSHP 

operation, and their work did not achieve optimal operation. 

 When conducting an optimization that determines when and how much heat should be generated 

by GSHP, it needs to compare infinite combinations of heat source operations as in the case of previous 

optimization studies that have not considered GSHP. Comparing infinite operation schedules is 

impractical; moreover, linear programming, which is often used in many studies, cannot be adopted 

for this problem because GSHP has highly nonlinear characteristics and the ground temperature 

calculation requires nonlinear and discrete iterative calculations. Although DP used in many studies 

can handle the characteristics, DP is not suitable to solve this problem because it requires numerous 

combinations of each discrete decision variable, which involves high computation costs. 

 Owing to the above-mentioned factors, optimization problems that involve GSHP operation cannot 

be solved easily, and sometimes, unrealistic assumptions are made in GSHP operation. For example, 
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GSHP is often assumed to be able to continuously generate the rated output corresponding to a 

dynamic load variation without performance degradation caused by thermal build-up or depletion in 

the ground. To reflect the actual behavior of GSHP in the optimization, the ground thermal history 

(i.e., past heat exchange rate between GSHP and ground) should be considered as an optimization of 

a system including a thermal storage tank whose thermal behavior is similar to that of the ground. 

 In this chapter, an efficient optimization method that can be applied to a problem that involves a 

nonlinear physical phenomenon is needed. The proposed optimization method is called epsilon-

constrained differential evolution with random jumping (εDE-RJ). It is an improved method based on 

εDE to be more stable for searching solutions. Using the proposed method, the optimal operation of a 

hybrid GSHP system is determined considering the dynamic variation in the ground temperature and 

machine performance. The system assumed in this study consists of ASHP, four GSHPs, and GB. The 

contents of this chapter is referred to my peer-reviewed article published in Applied Energy [190]. 

 

6.2 Calculation conditions 

6.2.1 Description of energy systems 

 A simple energy system consisting of an ASHP, four GSHPs, and a GB was considered, as shown 

in Fig. 6-1. The ASHP and three GSHPs (denoted by GSHPcl1–3) handled the cooling load, while one 

GSHP (denoted by GSHPht) and the GB handled the hot water demand. The inlet and outlet 

temperatures of chilled water were fixed at 6 °C and 11 °C, respectively. The temperature of publicly 

supplied water was assumed to be constant at 25.2 °C [191], and when this water passed through the 

heat exchanger (outlet temperature), its temperature was increased by 60 °C. To consider the approach 

temperature of 1°C, the GB and GSHPht generated hot water at 61 °C and the returning water 

temperature was fixed at 26.2 °C. Thirty vertical closed-loop borehole heat exchangers (BHEs) were 

installed; 20 BHEs were connected to GSHPcl and the remaining 10 BHEs were connected to GSHPht. 

The distance between the BHEs was set to 5.0 m in accordance with [188]. The specifications of the 

system components are listed in Table 6-1. The values of the rated capacity and electricity 

consumption of GSHP were calculated under the condition that the entering fluid temperatures were 

25°C and 10°C for cooling (GSHPcl) and heating (GSHPht), respectively. 

 The characteristics of each component including the pumps were modeled according to the 

nonlinear configuration described in Section 2.1. To carry out the partial load operation, the pump 

could vary the flow rate from 20% to 100% with a resolution of 5%. The maximum heat generation 

and COP of the GSHPs were affected by the ground water temperature, as shown in Fig. 2-6. Although 
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Fig. 6-1 | System configuration. 

 

Table 6-1 | Rated specification of system components (as given in [144]) 

ASHP Cooling capacity 180 kW 

 Electricity consumption 49.1 kW 

GSHPcl1, 2, 3 Cooling capacity 53 kW 

 Electricity consumption 10.8 kW 

 Mass flow rate of BHE loop 183 L/min 

GSHPht Heating capacity 61 kW 

 Electricity consumption 15.2 kW 

 Mass flow rate of BHE loop 133 L/min 

GB Heating capacity 46 kW 

 Gas consumption 4.5 m3 

 

 

GSHPcl had relatively high efficiency when the inlet fluid temperature was in the range of 2 °C–12 

°C, the COP decreased drastically as the temperature increased. GSHPht was not efficient compared 

to GSHPcl because the hot water supply temperature from GSHPht was set to 61 °C. The pumps for 

the heat sources (FP1–6) had a constant rated pressure of 100 kPa. The pressure was changed under a 

partial load condition by the inverter control. In the case of the pumps for the borehole heat exchanger 

(BHEP), the rated electricity consumption of BHEP1 and BHEP2 was 3.7kW and 2.2kW, respectively. 

These values were determined on the basis of catalogs published by pump manufacturers [192,193].

 When one GSHP generated heat at the rated load rate, the flow rate of the ground loop was 183 

11˚C

26.2˚C

25.2˚C

6˚C

GSHPcl1

GSHPcl2

GSHPcl3

To terminal

GB

GSHPht

Public 

water

To terminal

60˚C

61˚C

ASHP

7˚C12˚C

From terminal

1
5
0
m

5m

5
m

BHE for cooling

BHE for hot water

FP1

FP2

FP3

FP4

HSP5

HSP6

BHEP1
BHEP2



CHAPTER 6 | Proposal of improved and robust εDE method and application to multiple ground 

source heat pump system 

121 

 

L/min. The flow rate was zero when the operation of GSHP was halted. Therefore, the water flow rate 

changed in a discrete manner. When the number of operating GSHPcl was changed from 0 to 3, the 

flow rate changed in a discrete manner, i.e., 0, 183, 366, and 549 L/min. The electricity consumption 

of the pumps also changed in a discrete manner, i.e., 0, 1.25, 2.50, and 3.75 kW. The electricity 

consumption of BHEP2 was zero or 2.2 kW depending on whether GSHPht was off or on. 

 

6.2.2 Modeling of borefield 

 In this chapter, the outlet fluid temperature of the borefield (i.e., inlet temperature of GSHP) 

comprising 30 BHEs was calculated using the infinite line source (ILS) model [194,195]. This is an 

analytical solution derived from the one-dimensional thermal diffusion equation; thus, only heat 

conduction is considered. The ground is assumed to be an infinite, homogeneous, and isotropic 

medium. Using the ILS solution, the transient ground temperature changes with reference to a constant 

step pulse released from the infinite line source/sink is calculated. The inlet and outlet fluid 

temperatures can be respectively expressed in time-discretized form as follows.  

𝑇in
𝑡 = 𝑇b

𝑡 + 𝑅BHE
𝑡  b +

𝑃BHE
𝑡

2𝜅𝑚cirw
 (6-1) 

𝑇out
𝑡 = 𝑇b

𝑡 + 𝑅BHE
𝑡  b −

𝑃𝐵𝐻𝐸
𝑡

2𝜅𝑚cirw
 (6-2) 

where 𝑚cirw is the flow rate of the circulating fluid, 𝜅 is the volumetric thermal capacity of the 

fluid, and 𝑃BHE
𝑡 = 𝑅BHE

𝑡 𝐿BHE is the heat exchange rate between the BHE and the GSHP.  b denotes 

thermal resistance of the soil. In the cooling and heating operations, 𝑃BHE is calculated as follows: 

Cooling operation 

𝑃BHE
𝑡 = 𝑃GSHPcl

𝑡 +
𝑃GSHPcl

𝑡

COPcl
𝑡  

(6-3) 

Heating operation 

𝑃BHE
𝑡 = 𝑃GSHPht

𝑡 −
𝑃GSHPht

𝑡

COPht
𝑡  

(6-4) 

 Note that the heat rate 𝑃BHE
𝑡  is positive when the heat pump injects the heat to the ground (cooling 

mode) and negative when heat is extracted from the ground (heating mode). In addition, note that the 

BHE’s outlet temperature 𝑇out is equal to the GSHP’s inlet temperature 𝑇in. The BHE geometry and 

parameters used for the GSHP calculation are listed in Table 6-2. 
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Table 6-2 | Parameters of the borehole heat exchanger (BHE) setup and soil. 

Borehole heat exchanger Borehole depth 150 m 

Borehole diameter 100 mm 

U-tube: High-density polyethylene Outer diameter 34 mm 

Inner diameter 27 mm 

Shank spacing 44 mm 

Thermal conductivity 0.38 W/(m∙K) 

Heat carrier fluid: Water Thermal conductivity 0.6 W/(m∙K) 

Density 1,000 kg/m3 

Specific thermal capacity 4,200 J/(kg∙K) 

Ground Thermal conductivity 2.0 W/(m∙K) 

Volumetric heat capacity 2.5 MJ/m3K 

Grout Thermal conductivity 2.0 W/(m K) 

 

6.2.3 Demand and electricity price profiles 

 A virtual hotel building in Tokyo with a total floor space of 1,000 m2 was considered. Cooling and 

hot water loads for 24 h were calculated at time steps of 1 h. Although the hotel had cooling, heating, 

electricity, and hot water demands, we only focused on summer days and the corresponding cooling 

and hot water demands. The demand and price profiles are shown in Fig. 6-2. Demand curves are 

taken from [196] 

 

 

Fig. 6-2 | Demand and price profiles 
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6.3 Optimization method 

6.3.1 Problem formulation 

 In this study, the aim was to minimize the operating cost of the system as follows: 

minimize 𝑓 = ∑(𝑝E
𝑡  ∑(𝑐E,𝑖

𝑡 )

6

𝑖=1

+ 𝑐E,BHEP
𝑡 } + 𝑝G

𝑡 𝑐G,GB
𝑡 )

24

𝑡=1

 (6-5) 

where 𝑡 is the time step, 𝑝E represents the electricity price [yen/kWh], 𝑖 is the machine number (1: 

ASHP, 2: GSHPcl1, 3: GSHPcl2, 4: GSHPcl3, 5: GSHPht, 6: GB),  𝑐E,𝑖  represents the electricity 

consumption of machine  𝑖, which includes the electricity used by FP [kWh], 𝑐E,BHEP represents the 

electricity consumption of BHEP1 and BHEP2 [kWh], 𝑝G represents the gas price [yen/m3], which 

is constant at 82.7 yen/m3, and 𝑐G,GB represents the gas consumption of GB [m3].  

 The decision variables are described in Section 6.3.5. The following constraints were set: 1) upper 

and lower bounds of circulating fluid temperature of GSHP outlet and 2) maximum thermal output 

(i.e., rated capacity) of system components. The upper and lower bounds of the GSHP’s outlet 

temperature were set to 40 °C and 2 °C for GSHPcl and GSHPht, respectively (i.e., cooling and hot 

water demands, respectively). This restriction prevents system failure due to extremely high inlet 

temperature or freezing. Although the outlet temperature set point, 2 °C, has a risk of freezing in some 

extremely cold areas, the ambient temperature in many parts of Japan rarely drops below zero.  

Furthermore, the heat generation of ASHP and GB was restricted to be less than the rated capacity of 

each machine because these values are determined by the difference between the demand and the 

generated heat of the GSHPs. This restriction was applied because, when the determined power output 

of GSHP is significantly small and the remaining demand is thus larger than the rated capacity of 

ASHP and GB, there is a possibility that ASHP and GB will generate a larger amount of heat than 

their rated capacity. To prevent this undesirable situation, when the determined output of GSHP is 

extremely small, and the remaining demand is larger than the rated capacity of ASHP and GB, the 

GSHP is forced to generate more heat such that the remaining demand can be handled by ASHP and 

GB. 

 

6.3.2 Drawback of epsilon-constrained differential evolution (𝜺DE) algorithm 

 To handle the nonlinear characteristics of GSHP, we propose an efficient algorithm instead of using 

linear programming or dynamic programming, which are not suitable for solving the problem. 

Although εDE can handle the configuration without any simplifications, εDE has a critical drawback 
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in searching for a solution, which is based on the original DE algorithm. When a certain variable value 

is the same for all individuals (which has a low probability), the individuals cannot move to any other 

places because 

𝑥∗
p1,𝑗
𝑔

= 𝑥p2,𝑗
𝑔

+ 𝛼 E(𝑥p3,𝑗
𝑔

− 𝑥p4,𝑗
𝑔

) (6-6) 

where 𝛼 E indicates the mutation rate (=0.5); 𝑥p1−4,𝑗
𝑔

 is a temporary value of the 𝑗-th variable of 

individual (p1– p4) at generation 𝑔. 

 

6.3.3 Proposal of an improved algorithm (𝜺DE-RJ) 

 To avoid being trapped in a local optimum, an improved algorithm is proposed, namely εDE with 

random jumping (εDE-RJ). The random jumping strategy is inspired to the mutation method of GAs. 

Although m-PSO has already been developed from the same point of view in [153], εDE is more 

suitable for solving a constrained problem. When 𝑥p3,𝑗
𝑔

 is equal to 𝑥p4,𝑗
𝑔

, the following equation is 

applied: 

𝑥p1,𝑗
𝑔+1

=  
𝑥p2,𝑗

𝑔
+ 𝛼 E(𝑥p3,𝑗

𝑔
− 𝑥p4,𝑗

𝑔
)

𝑥p2,𝑗
𝑔

+ 𝒰

when |𝑥p3,𝑗
𝑔

− 𝑥p4,𝑗
𝑔

| > 1.0 × 10−3

when |𝑥p3,𝑗
𝑔

− 𝑥p4,𝑗
𝑔

| ≤ 1.0 × 10−3
 (6-7) 

where 𝒰 is a uniformly distributed random number within the range [0,1]. 

 Although this method is simple, it shows robust searching performance. The accuracy of εDE-RJ 

is almost the same as that of εDE [197] mentioned above because the possibility that would require 

use of the RJ method is low. An algorithm flowchart is shown in Fig. 6-3. 
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Fig. 6-3 | Flow chart of 𝜺DE-RJ algorithm (𝑁𝑔: number of generations, 𝑁dv: number of decision variables, 𝛼cv: 

crossover rate, 𝒰: uniformly distributed random number). 
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6.3.4 Optimization condition 

 Two stopping criteria were set as follows: 1) the search reaches the predefined number of 

generations, and 2) the objective function value does not change. The first one is a well-known 

criterion in the field of optimization. However, there is a possibility that the objective function value 

will not change when the individuals find the best solution. Thus, to reduce the computation costs, the 

search was terminated the search when the value did not change by more than 10% of the rated number 

of generations. The computer used for all simulations had the following specifications: Windows 10 

64-bit, 3.40 GHz Core i7-6700 CPU, and 16 GB RAM. All the simulations were performed using 

MATLAB R2016a and Parallel Computing Toolbox with four CPU cores. The population size and 

maximum number of generations were set to 20 and 500 in all the optimizations. 

 

6.3.5 Details of case studies and decision variables 

 To confirm the effectiveness of the proposed optimization method, two case studies were set up: 

Case 1 and Case 2. In Case 1, the calculation period was 24 h. In terms of operation, Case 1-1 set the 

GSHPs’ operation as the first priority; thus, GSHPcl and GSHPht first generated heat. Subsequently, if 

the total demand could not be handled by the GSHPs, the ASHP and GB handled the remaining 

demand. This operation strategy was considered as an empirical operation. In Case 1-2, εDE-RJ 

determined the start and stop times of operation. During the time interval, GSHPcl and GSHPht had the 

first priority in the operation, as with Case 1-1. Thus, there were four decision variables for one day: 

the start and stop times of GSHPcl and GSHPht. In Case 1-3, εDE-RJ determined the amount of heat 

generations of all the machines at each time step. Therefore, Case 1-3 had 96 decision variables (24 h 

× 4 machines). Case 2 had a calculation period of 7 days. However, the operation schedule of 168 h 

was not optimized at once. The optimization was conducted at intervals of 24 h; first, the optimal 

operation schedule of the first 24 h was set, and then, the optimization of the next 24 h (i.e., 25–48 h) 

was conducted with the ground condition including the 24 heat pulses of the first day. Similarly, the 

operation schedule for the third day was determined with the past 48 h of thermal history.  

 When the optimal heat generation of GSHPcl1–3 was determined, the heat generation ratio was 

optimized, defined as the ratio of the heat output to the total maximum capacity, and based on this 

ratio, the number of GSHPcl in operation was determined. For example, when the ratio was 0.8 and 

the total maximum capacity was 159 kW (= 53 kW × 3), the total heat generation of GSHPcl1–3 was 

127.2 kW and the load rate of each GSHP was 80%. When the ratio was 0.4, the total heat generation 

was 64 kW and GSHPcl1 and GSHPcl2 generated 32 kW at a load rate of 60%; GSHPcl3 did not operate. 
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 Furthermore, in Cases 1-1, 1-2, 2-1, and 2-2, when the outlet fluid temperature of GSHPht was 

lower than 2 °C and that of GSHPcl was greater than 40°C, the heat generation was reduced by 50% 

to keep the fluid temperature within the upper and lower bounds. 

 To confirm the differences in the results in terms of the calculation period, six cases were 

considered because the performance of GSHP systems depends on the thermal history (i.e., heat 

demand of past time steps). 

 

6.4 Results 

6.4.1 Comparison of Cases 1-1, 1-2, and 1-3 (one-day optimization) for cooling 

 The obtained optimal operations of Cases 1-1, 1-2, and 1-3 are shown in Fig. 6-4. The heat 

exchange rate of the BHE and the COP variations of each component are shown in Fig. 6-5 and Fig. 

6-6, respectively.  

 In Case 1-1, GSHPcl showed more efficient operation than ASHP during 1 a.m. to 2 p.m., as shown 

in Fig. 6-6 (a). However, the COP of GSHPcl became lower than that of ASHP after 3 p.m., because 

GSHPcl continuously operated from the start time of operation. Although the COP of ASHP was low 

during 1 p.m. to 3 p.m., because of the high outdoor temperature, the COP of ASHP gradually 

increased as the outdoor temperature decreased with time, as shown in Fig. 6-2. 

 In Case 1-2, the optimal results showed that GSHPcl started to operate from 1 p.m. and stopped at 

9 p.m. Meanwhile, ASHP continuously operated during the day (Fig. 6-4 (b) and Fig. 6-5 (b)). The 

COPs of ASHP were around 1.8 and 1.6 during night time and day time, respectively (Fig. 6-5 (b)). 

In accordance with the result of Case 1-1, GSHPcl showed better performance than ASHP from 1 a.m. 

to 3 p.m. In contrast to the result of Case 1-1, GSHPcl did not operate before 1 p.m., when the peak 

demand and price occur, to keep the ground temperature at an initial value 16 °C (Fig. 6-4 (b) and Fig. 

6-5 (b)). In addition, GSHPcl stopped working after 9 p.m. because the outlet fluid temperature of BHE 

increased by 32.9 °C and the COP of ASHP increased; thus, ASHP showed better performance than 

GSHP as the outdoor temperature decreased. The COP of GSHPcl was lower than that of ASHP from 

6 p.m. to 9 p.m. because εDE-RJ determined only the start and stop time in Case 1-2. 

 In Case 1-3, where εDE-RJ determined the optimal operation in each time step, a clear difference 

was found in the results compared to the other two cases in terms of the operation schedule and 

resulting COP variations (Fig. 6-4 (c), and Fig. 6-5 (c)). GSHPcl always showed better performance 

than ASHP because GSHPcl operated intermittently to avoid thermal build-up and maintain a good 

operating condition. In addition, unlike Cases 1-1 and 1-2, which operated under a load rate of 100% 
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during the peak load period, GSHPcl worked under various load rates to achieve high performance and 

low operation cost when the electricity price was high. The total operating costs for the cooling system 

are summarized in Table 6-3. The operating cost of Case 1-1 was 10,280 yen/day and that of Case 1-

2 was 9,738 yen/day, representing a reduction of 5.27%. The operating cost of Case 1-3 was 9,346 

yen/day, representing a reduction of 9.09% compared to Case 1-1. 

 

6.4.2 Comparison of Cases 1-1, 1-2, and 1-3 (one-day optimization) for heating 

 In all the cases, GSHPht continuously operated for 24 h and GB only operated during 9–10 p.m. to 

meet the peak hot water demand. Although the ground temperature gradually decreased, the 

performance degradation was very small, which shows the COP of GSHPht with respect to the inlet 

fluid temperature. There was a moderate variation in the COP of GSHPht because the hot water outlet 

temperature was set to a high value of 61 °C. Thus, the results showed that the continuous operation 

of GSHPht is an optimal solution. On the other hand, the operating cost in Case 1-3 was 4,027 yen/day, 

representing a reduction of 1.08% compared to Cases 1-1 and 1-2, owing to the difference in the partial 

load operation of GSHPht and GB at 9 and 10 p.m. (Fig. 6-5). This difference is small. However, when 

long-term optimization beyond 24 h is conducted, this difference would be much larger because the 

performance of GSHPht would be degraded compared to its initial condition. If the optimization for 

this hybrid GSHP system is conducted without considering the thermal history of the ground, such a 

difference would not be observed in the results. Therefore, to achieve optimal operation of the complex 

system, it is important to not operate GSHP as the first priority based on the empirical conception, but 

to find an optimal combination of the thermal outputs from the different components. 

 

6.4.3 Comparison of Cases 2-1, 2-2, and 2-3 (one-day iterative optimization for 7 days) 

for cooling 

 As described previously, Case 2-1 operates the GSHPs at the rated capacity and the remaining 

demand is handled by the other components. In Cases 2-2 and 2-3, which correspond to Cases 1-2 and 

1-3, the optimization was conducted for a period of 24 h and thus iteratively conducted for 7 days. The 

duration of 7 days was chosen to confirm the mid-term effects that are important for the GSHP 

operation. Fig. 6-7 shows the operating schedules of each case. Fig. 6-8 shows the variations in the 

ground temperature and heat exchange rate of the BHE, while Fig. 6-9 shows the COP variations of 

the GSHPs.  
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 In Case 2-1, although GSHPcl generated heat constantly for 7 days, the outlet fluid temperature 

never reached the upper bound of 40 °C (Fig. 6-8(a)). However, the COP of GSHPcl decreased 

gradually, and it can clearly be seen that the COP of GSHPcl was always lower than that of ASHP 

from the fourth day of operation. Although the temperature was recovered during night time owing to 

a low heat exchange rate, the continuous operation caused thermal build-up in the ground and degraded 

the performance. Therefore, the operation of GSHP was more expensive than that of ASHP (an 

empirical operation could not keep maintain the COP). 

 In Case 2-2, GSHP operated during the peak time period as in Case 1-2. The ground temperature 

was significantly recovered during night time because GSHP did not operate; thus, GSHPcl could 

achieve higher COP than ASHP during the peak time of 1–3 p.m. The total operating cost of cooling 

for 7 days was 68,740 yen, and it was reduced by 12.54% compared to Case 2-1 (Table 6-3). 

 In Case 2-3, GSHPcl worked intermittently and generated heat under partial load conditions to keep 

the COP of GSHPcl higher than that of ASHP over 7 days. The total reduction rate was 16.35% 

compared to Case 2-1. 

 

 

Table 6-3 | Results of all cases. 

 
Calc. period 

Operating costs (yen) 

 Cooling system Hot water system Total 

Case 1-1 1 day 10,280 4,071 14,351 

Case 1-2 1 day 9,738 4,071 13,809 

Case 1-3 1 day 9,346 4,027 13,373 

Case 2-1 7 days 78,596 29,500 108,096 

Case 2-2 7 days 68,740 29,162 97,902 

Case 2-3 7 days 65,748 28,851 94,599 
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6.4.4 Comparison of Cases 2-1, 2-2, and 2-3 (one-day iterative optimization for 7 days) 

for heating 

 In Cases 2-1 and 2-2, during the peak time period (8–11 p.m.) after the fourth day, GSHPht reduced 

its output in some time steps to prevent the outlet fluid temperature of GSHP from falling below 2 °C. 

However, there was a difference between the two cases on the seventh day. In Case 2-2, GSHPht 

stopped operation from 1 a.m. to 4 a.m. for recovery of the ground temperature under very low partial 

load; then, the peak load was handled fully during night time, which is an effective operation strategy 

to reduce the operation costs. In Case 2-3, partial load operation was mainly conducted during peak 

time to keep the temperature higher than 2 °C while maintaining high COP of GSHPht (Fig. 6-7). The 

operating costs of Cases 2-2 and 2-3 were reduced by 1.15% and 2.20% compared to Case 2-1, 

respectively. As mentioned in Section 7.4.2, the optimal combination of GSHPht and AB significantly 

reduces the operating costs.
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Fig. 6-4 | Operating schedule in each case study 

 

 

 

Fig. 6-5 | Variations in ground temperature and heat injection 

 

 

 

Fig. 6-6 | Primary energy-based COP variation in each case study (conversion rates are 9.97 MJ/kWh and 45 MJ/m3 for electricity 

and natural gas, respectively) 
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Fig. 6-7 | Operating schedule in each case study  
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Fig. 6-8 | Variations in ground temperature and heat injection  
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Fig. 6-9 | Primary energy-based COP variation over 7 days in each case study (conversion rates are 9.97 MJ/kWh, 45 MJ/m3 for 

electricity and natural gas, respectively) 
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6.5 Discussion 

 In this chapter, the operating optimizations of a hybrid GSHP system under various scenarios were 

conducted using the proposed εDE-RJ method. Although the problem includes the computation of 

the ground loop’s fluid temperature, which has nonlinear characteristics and requires iterative 

calculation, an optimal solution could be obtained without applying any relaxations, such as 

linearization or approximation. This is an important advantage of the proposed optimization algorithm 

over some previously used methods, such as linear programming and the Newton method, which 

requires a convex condition. 

 Owing to the advantage of the proposed optimization method, the optimal operation point of the 

system under different scenarios was found. Compare to the operating costs of Cases 1-1 and 2-1, 

where the GSHPs had higher priority in operation and were thus operated continuously, the other cases 

showed better results because Cases 1-2 and 2-2 operated intermittently and Cases 1-3 and 2-3 found 

the optimal combination of outputs from each heat source in every time step.  

From the comparison between Cases 1-2 and 1-3 (Fig. 6-4 (b, c), Fig. 6-5 (b, c), and Fig. 6-6 (b, c)), 

and Cases 2-2 and 2-3 (Fig. 6-7 (b, c), Fig. 6-8 (b, c), and Fig. 6-9 (b, c)), it was confirmed that the 

intermittent operation of GSHP is the key factor in achieving good performance and minimizing the 

operating costs, because in contrast to ASHP and other renewable heat sources, the thermal history 

exchanged between the ground and the GSHP has a long-lasting effect due to the large thermal 

capacity of the ground.  

 When only on the comparison between Cases 2-2 and 2-3 is considered, Case 2-3 clearly showed 

a solution superior to Case 2-2 in terms of minimizing the operating costs. However, it would be 

difficult to realize the result of Case 2-3 in practical operations because it requires frequent on–off 

operations with various partial load conditions. In such situations, the result of Case 2-2 is suitable for 

actual operation, and this simple optimization could reduce the operation cost by 5.27%–12.54% 

compared to the empirical operation.  

Moreover, from the viewpoint of computation costs, Cases 1-2 and 1-3 required only 3.6 min and 15.6 

min, respectively. Although 2024×4 × 2024 × 2024  (24 h of four GSHPs, ASHP, and GB) 

combinations should be considered when resorting to a full searching method (note that 20 represents 

a discrete value of heat generation with a resolution of 5% of rated capacity), εDE-RJ requires only 

10,000 (= 20 individuals × 500 iterations) combinations. Thus, the proposed εDE-RJ method can be 

used for day-ahead optimization in practical situations.  
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6.6 Conclusion 

 In this chapter, an optimization method for the operating schedules of a composite energy system 

including GSHP was proposed. The method, namely εDE-RJ, can efficiently solve highly nonlinear 

configurations and iterative calculations to calculate the ground temperature. In addition, it can be 

used in practical situations owing to its adaptability as well as its potential to reduce computation costs. 

The contributions of this study can be summarized as follows. 

 

• The simplified optimization strategy that determined only the start and stop times of the GSHP 

operation could reduce the operating costs compared to the empirical operation for a single day 

and 7 days by 3.78% and 9.59%, respectively. 

• The detailed optimization strategy that determined the load rates of all the components in each 

time step could reduce the operating costs compared to the empirical operation for a single day 

and 7 days by 6.81% and 12.56%, respectively. 

• When the mid-term optimization (7 days) was conducted, the performance of GSHPht was 

gradually degraded compared to its initial condition because of the thermal depletion of the 

ground. Therefore, to achieve an optimal operation of the complex system, it is important to not 

operate GSHP as the first priority, but to find an optimal combination of the thermal outputs from 

the different components. 

• εDE-RJ could solve a complex optimization problem while maintaining high computation 

accuracy. In addition, this method could account for the realistic behavior of the ground. Thus, 

the proposed method can be widely used in both theoretical and practical studies when users want 

to obtain an optimal operation schedule. 

 

 In future work, it remains to address how this method can be applied to a much longer period such 

as for an analysis of the life-cycle impact of GSHP, thermal interaction among BHEs, and optimal 

GSHP design. The proposed algorithm requires high computation costs because it uses iterative 

calculations to find a quasi-optimal solution and obtain the fluid temperature for the ground loop 

corresponds to the load assigned. Hence, consideration of a reduction in computation costs to carry 

out a long-term simulation for multiple years is highly required. 
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7.1 Introduction 

 This chapter describes the utilization of εDE-RJ to optimize the operating schedule of a heat 

recovered absorption refrigerator (HRAR), GSHP for cooling and heating, a solar collector (SC), a 

stratified thermal energy storage (TES) system, and a combined heat and power (CHP) system. In 

particular, the temperature variation should be considered because it affects the machine efficiency of 

the SC and the GSHP. However, a physical model, such as the ILS used in Chapter 6, suffered from 

long computation times to calculate this variation. It showed that the number of generations and the 

individual population of εDE-RJ should be small, compared to when an energy system that did not 

include GSHP was optimized. Hence, the artificial neural network (ANN) model was used in this 

chapter to reduce this computation cost. 

 

7.2 Calculation conditions 

7.2.1 Description of an energy system 

 Fig. 7-1 shows a configuration of an energy system that consists of both a cooling system and 

domestic hot water supply system. The CHP system could supply waste heat to both systems. The 

TES was connected to the hot water system, the waste heat circulation of the CHP system, and the SC 

system. 

 The waste heat from the CHP system was provided through heat exchanger No.1 (HEX1), with a 

rated area of 28.4 m2. The area was determined with the rated mass flow rate of the waste heat 

circulation of CHP (61.1 L/min) and an overall heat transfer coefficient of the HEX. The coefficient 

was fixed at 1,500 W/(m2∙K) [198], as follows: 

𝐴HEX =
4186𝑅mΔ𝑇

60 × 1500
 (7-1) 

where 𝐴HEX indicates the area of the HEX [m2], 𝑅m denotes the rated mass flow rate of waste heat 

circulation of CHP [L/min]. Δ𝑇 denotes the temperature difference of inlet and outlet water, which 

was fixed at 10 °C. 

The exchanged heat through HEX1 was separated into HEX2 and HEX3 using a splitter and mixture 

No.1 (SM1). The areas of HEX2 and HEX3 were 82.1 m2 and 27.9 m2, respectively. The area of HEX2 

depended on the rated mass flow rate of Pump 3 which was 176.5 L/min. The area of HEX3 depended 

on the rated mass flow rate of Pump 5 (60 L/min) which was used to charge the thermal energy to 

TES. 
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The thermal output of the SC depended on solar radiation (the input data) and the mass flow rate of 

Pump 4. The rated value of the area of the SC and the mass flow rate were 100 m2 and 57.3 L/min, 

respectively. Hot water from the SC was delivered through HEX3 to exchange heat with the TES. 

 The TES charged the thermal energy through HEX 3 and HEX 4. In general, the outlet temperature 

of the hot water from the SC was approximately 30 °C to 70 °C. In contrast, the outlet temperature of 

the waste water from the CHP unit was approximately 80 °C to 95 °C. Hence, HEX4 was set later than 

HEX3 to raise the temperature of the circulating fluid efficiently. The volume of TES was 43 m3. 

Discharged heat was provided to the hot water supply system through HEX5 which had an area of 

27.9 m2. This area was dependent on the rated mass flow rate of Pump 6. 

 In the hot water supply system, a ground source heat pump for hearing (GSHPht) could provide hot 

water to a secondary system through HEX 6 which had an area of 60.3 m2. In addition, the discharged 

heat directly supplied HEX6 through SM4. The distribution rule of SM4 was as follows: 

1) When the supply temperature through SM4 was greater than 65 °C, the hot water was supplied to 

HEX6 directly through Pump 8. 

2) When the temperature was less than 65 °C, the hot water was heated to 65 °C with GSHPht. 

Subsequently, it was supplied to HEX6. 

Because of the abovementioned distribution rule, a decision variable was not needed to operate SM4. 

The public water temperature was fixed at 25.5 °C, in accordance with [191]. 

 In the cooling system, the GSHP for cooling (GSHPcl) and the HRAR could supply cooling heat 

to the secondary system through HEX7. This had the largest area of 302.2 m2, as the cooling demand 

was greater than the hot water demand. Pump 9, with the HRAR, and Pump 10, with the GSHPcl, had 

a rated mass flow rate of 1146.7 L/min and 153 L/min, respectively, because the rated cooling capacity 

of the GSHP was smaller than that of the HRAR. 

 It was noted that the cooling system and the domestic hot water system were connected through 

both the GSHPcl and the GSHPht with a ground heat exchanger (BHE). The length of the BHE for 

cooling and heating were set to 150 m with circulating pumps with 183 L/min of the rated mass flow 

rate. There were eight BHEs for cooling and eight BHEs for heating. The distance between the BHEs 

was 5 m, to reduce each other’s effect, in accordance with [188]. 

 The specification of each machine is shown in Table 7-1. 
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Fig. 7-1 | Configuration of the energy system: red colored numbers indicate heat exchangers, blue colored numbers 

indicate pumps, and green colored numbers indicate splitters and mixtures. 

 

 

Table 7-1 | Specifications of each machine. 

Combined heat 

and power (CHP) 

Rated power generation 50 kW 

 Rated waste heat utilization 42.6 kW 

 Rated mass flow rate of circulating water 61.1 L/min 

Heat recovered 

absorption 

refrigerator 

(HRAR) 

Rated cooling capacity 400 kW 

 Rated heating capacity 398.7 kW 

 Rated electricity consumption for cooling 

and heating 

7.2 kW 

 Rated gas consumption for cooling 23.8 m3/h 

 Rated gas consumption for heating 36.5 m3/h 

Ground source 

heat pump 

(GSHP) 

Rated cooling capacity 53 kW 

 Rated heating capacity 61 kW 

 Rated electricity consumption for cooling 10.8 kW 

 Rated electricity consumption for heating 15.2 kW 

 Rated mass flow rate of circulating water 133 L/min 

Solar collector 

(SC) 

Panel area 100 m2 

 Rated mass flow rate 57.3 L/min 
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7.2.2 Demand and outdoor conditions 

 A hotel was used for this simulation because it had a large enough supply of domestic hot water. 

Demand curves at each time step were referred to as per [170]. The weather data was referred to as 

per [171]. The price of the purchased electricity was referred to a dynamic pricing system: the price 

was high at the peak period and the price was low at the off-peak period. Fig. 7-2 shows the 

temperature of the atmosphere (𝑇atm) [°C ], cooling demand (𝐷cl) [kW], domestic hot water demand 

(𝐷hw) [kW], and total solar radiation (𝐼total) [kW/m2]. 

 

 

Fig. 7-2 | Demand and price profiles 

 

7.2.3 Artificial neural network for BHE modeling 

 In Chapter 6.1, one issue using the numerical BHE model, such as the infinite line source model 

(ILS), was that it took long computation times to calculate a variation of the circulating fluid. Although 

ILS was the lowest computation cost model, εDE-RJ had only 1000 generations and took 56 min on 

an ordinal computer. Hence, longer computation costs are imposed to optimize a more complex 

system. 

 To reduce computation costs of the BHE model, an artificial neural network (ANN) was used in 

this chapter. When the BHE model is used, the outlet fluid temperature from BHE is the most 

important value. The ANN was used to predict the outlet temperature with a shorter computation time 

compared to the ILS model. 

 The ILS model could calculate the variation of circulating fluid temperature using the initial values 

of ground temperature, thermal history of the injection heat to the BHE, and the elapsed time. Although 
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the ILS had a lower computation complexity compared to an FEM model, the complexity can be 

expressed as 𝛰(𝑡 × 𝑁BHE
2 ). This exponentially depends on the number of introduced BHEs. 

However, the computation costs of the ANN do not depend on the number of BHEs or time horizons. 

The following three factors were used as input data into the ANN: 

1) Injected heat at the previous time step (𝑃BHE
t−1  [kW]) 

2) Injected heat at the current time step (𝑃BHE
t  [kW]) 

3) Outlet temperature of the circulating fluid from the BHE to the GSHP at the previous time step 

(𝑇out,BHE
𝑡−1 ) 

The output value, which was the same as the predicted value of the ANN, was the outlet temperature 

at the current time step (𝑇out,BHE
𝑡 ). 

 In fact, there are two GSHPs for cooling and heating in this system. There is the possibility that an 

operation GSHPcl affects the temperature variation of the GSHPht. Hence, the ANN had the above 

input and output data for both the cooling and heating. Therefore, the number of input and output data 

were six and two, respectively. 

 A structure of the ANN was shown in Fig. 7-3. It is most important to collect the learning data to 

improve the prediction accuracy of the ANN. Thus, εDE-RJ was used to create the learning data. 

Firstly, εDE-RJ optimized an optimization problem at 20 individuals and 50 generations. Although 

this was a very small problem compared to that of which we want to solve, there are 24,000 samples 

for the training ANN. To avoid over-fitting, 80% of 24,000 samples were used to train ANN and 20% 

of all samples were used to validate whether the ANN trapped in the over-fitting model or not. 

 

 

Fig. 7-3 | A structure of ANNBHE 
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7.2.4 Artificial neural network for TES modeling 

 The stratified water thermal energy storage is one aspect where we can reduce the computation 

cost, as well. The stratified model depends on the number of nodes and the resolution of the time steps. 

As mentioned in Section 2.1.12, we used the 4th Runge–Kutta method to solve the differential equation 

of temperature variation. Although it is a linear equation, the computation cost was relatively high, 

used with an iterative optimization method such as metaheuristics. Hence, the ANN was also used to 

predict the internal temperature of the TES, instead of using the physical model. 

 In a structure of the ANN, some of the following variables were set as input data: 

1) Water temperature at each node (1–20). 

2) Mass flow rate of Pumps 5 and 6. 

3) Inlet temperature of charging and discharging fluid (𝑇out,ls,HEX3
𝑡−1  : outlet temperature of low 

temperature circulation side of HEX3, 𝑇out,hs,HEX5
𝑡−1 : outlet temperature of high temperature circulation 

side of HEX5). 

The output variable was the water temperature of each node (1–20). In general, the number of nodes 

at a hidden layer is more than the output layer. Hence, 30 nodes were used and the number of hidden 

layers was set to three, as shown in Fig. 7-4. 

 

 

 

 

 

 

Fig. 7-4 | A structure of ANNTES 
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7.3 Optimization method 

7.3.1 Problem formulation 

 The objective function is as follows: 

minimize 𝑓 = ∑ 𝑝E
𝑡 (∑𝑐E,pump,𝑘

𝑡 + ∑𝑐E,GSHP,𝑘
𝑡

2

𝑘=1

+ 𝑐E,HRAR
𝑡

13

𝑘=1

)

𝑁th

𝑡

+ 𝑝G
𝑡 (𝑐G,CHP

𝑡 + 𝑐G,HRAR
𝑡 )} 

(7-2) 

where 𝑡 denotes the time step (=1 [h]), 𝑁th denotes the time horizon (=24 [h]), and 𝑝E
𝑡  and 𝑝G

𝑡  

denote the price of electricity and gas, respectively. The gas price was fixed at 87.2 yen/m3. 𝐸pump,𝑘
𝑡  

denotes the electricity consumption of the 𝑘 th pump [kW], 𝑐E,GSHP,𝑘
𝑡  denotes the electricity 

consumption of the GSHP ( 𝑘 =1: GSHPcl, 𝑘 =2: GSHPht), 𝑐E,HRAR
𝑡  denotes the electricity 

consumption of the HRAR and its cooling tower [kW]. 𝑐G,CHP
𝑡  and 𝑐G,HRAR

𝑡  were the gas 

consumption of the CHP unit and the HRAR [m3/h], respectively. 

 The decision variables were as follows: 

1) Mass flow rate of the pumps except for Pumps 8, 12, and 13. 

2) Power generation ratio of the CHP unit 

3) Distribution rate of SM1 

4) Distribution rate of SM6 

The number of decision variables were 288 (=12 types × 24 hours). All decision variables were 

normalized 0 to 1 with a 5% resolution because an actual operation system could not continuously set 

the parameters. 

Some constraints were set as follows: 

1) The circulating water temperature should be less than 100 °C. 

2) The above temperature should be greater than 3 °C. 

3) The outlet temperature from both the GSHPcl and the GSHPht should be less than 40 °C. 

4) The above temperature should be less than 3 °C. 

5) The supply water temperature through HEX6 should be greater than 60 °C because the required 

water temperature of the secondary system was set to 60 °C. 

6) The supply water temperature through HEX7 should be less than 7 °C because the space cooling 

secondary system required 7 °C cooling water. 



CHAPTER 7 | Development of hybrid method of εDE-RJ with artificial neural network for 

temperature-dependent energy systems 

145 

 

The total number of constraints were 192. If the full-search algorithm was conducted, the 

computational complexity was 20288. This complexity was not realistic for an ordinal computer. 

Hence, εDE-RJ was used to find an optimal or quasi-optimal solution with the iterative calculation. 

 

7.3.2 Parameters of 𝜺DE-RJ 

 The number of the individual population was 40. The number of generations was 2,000. The 

mutation rate was set to 0.5 and the 𝜀 E should be zero at 70% of the number of generations. 

 

7.4 Results and discussions 

7.4.1 Optimal operation of the domestic hot water supply system 

 Fig. 7-5 shows the optimal operation of the domestic hot water supply system. 𝑃GSHPht
 denotes 

the thermal output of GSHPh [kW], 𝑃TES denotes the thermal output from TES through pump 8 

directly, and 𝑇HEX6to𝐷hw
 denotes public water temperature from HEX6 to the secondary system after 

rising at HEX6. 𝑇SM5toHEX6  denotes the hot water inlet temperature of HEX6 from SM5. 𝑚pw 

denotes mass flow rate of the public water [L/min] and 𝑚HEX6 denotes mass flow rate through HEX6 

[L/min]. 𝑝E denotes the price of purchased electricity [yen/kWh]. 

 As shown in Fig. 7-5, 𝑇HEX6to𝐷hw
 was always greater than 60 °C. Thus, the supply water 

temperature constraint was met completely. Although 𝑇out,hs,HEX6 was not controlled as a decision 

variable, 𝑇out,hs,HEX6 was always greater than 40 °C. Hence, the hot water stored thermal energy, 

based on the public water inlet temperature of HEX6, was 25.5 °C. This result shows that the thermal 

energy is stored not only in the TES but also inside of pipes. 

 In terms of the heat source machine operation, the discharged energy from TES was provided 

through Pump 8 to HEX6 when the price of purchased electricity was high, especially between 2 p.m. 

and 4 p.m. During these time intervals, HRAR did not work at all. 

Therefore, it is concluded that εDE-RJ could optimize the hot water system considering the price 

variation while maintaining the constraints. 
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Fig. 7-5 | Optimization results of the domestic hot water 

 

7.4.2 Optimal operation of the cooling system 

 Fig. 7-6 shows the result of the cooling system operation. 𝑚hs and 𝑚ls denote the mass flow 

rates of both the temperature high side circulation and the low side circulation [L/min], respectively. 

𝑇in,hs,HEX7 and 𝑇out,hs,HEX7 denote the inlet and outlet temperatures of the temperature high side 

circulation, respectively. 𝑇in,ls,HEX7  and 𝑇out,ls,HEX7  denote the inlet and outlet temperature of 

temperature low side circulation, respectively. 𝑃HRAR and 𝑃GSHPc denote the thermal output of the 

HRAR and the GSHPc [kW], respectively. Fig. 7-7 displays the conceptual image explaining the 

above variables. 𝑇in,ls,HEX7 was always 6 °C because the outlet temperature of chilled water from the 

heat source machines was fixed at 6 °C. In addition, 𝑇out,hs,HEX7 was always less than 7 °C. This 

shows that the temperature constraint was completely met. During 1 p.m. to 10 p.m., 𝑇out,hs,HEX7 was 

approximately 7 °C because the cooling demand at that time was higher than the other time steps. 

Hence, this operation could reduce the thermal output of the heat source machines to minimize primary 

energy consumption as well as minimizing operating costs while maintaining 𝑇out,hs,HEX7 at less than 

7 °C. 
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Fig. 7-6 | Optimization result of the cooling system 

 

 

Fig. 7-7 | Conceptual diagram of variables 

 

7.4.3 Validation of the ANN models for computation costs reduction and prediction 

accuracy 

 Due to the utilization of the ANN, the total computation cost could be reduced by 95.7% from 132 

s of the ILS model to 5.62 s of the ANN model per generation. The calculation was conducted on an 

ordinal PC with CPU Core i7-6700 (3.40 GHz) and RAM 16 GB using MATLAB R2016a with 

Parallel Computing Toolbox and Neural Network Toolbox. 

 In ANNGSHP, the computation cost was reduced by 76% from 0.97 s to 0.23 s per generation. The 

accuracy of the results were 0.04 °C and 0.10 °C for the GSHPc and GSHPh, respectively. As shown 

in Fig. 7-8, the temperature variations of the GSHPc (Fig. 7-8(a)) and the GSHPh (Fig. 7-8(b)) were 

predicted properly. 
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Fig. 7-8 | Prediction result of the ANNBHE: a) variations of circulating water temperature of the GSHPcl. An orange 

colored line denotes the result of the ANNBHE and a blue colored line denotes the result of the ILS. b) variations of the 

circulating water temperature of the GSHPht. The orange and blue lines denote the same as a). 

 

 

 Fig. 7-9 and Fig. 7-10 show the predicted results of the 20 layers. Fig. 7-9(a) to (j) describe the 

temperature variation of the 1st to the 10th layers. Fig. 7-10(a) to (j) describe the temperature variation 

of the 11th to the 20th layers.  

 Although the temperature variation of the top layer (layer 1) was the most intense, the tolerance 

between the target value and the predicted value was small. A mean value of the tolerance of the first 

layer was 0.67 °C. In general, the top layer has the hottest water in terms of hot water storage. Hence, 

it is important that the predicted accuracy of the top layer is high. 

 In contrast, layers 4 and 5, as shown in Fig. 7-9(d) and (e), respectively, had relatively large 

differences between the target and predicted values. The reason is that the return water temperature 

from HEX5 was around 40 to 60 °C at the time steps. It makes the layer 4 and 5 inlet layers of the 

return water at the time. Hence, the temperature variation is higher than the other layers, and the ANN 

could not predict the exact temperatures. Further, the prediction tolerance had increased gradually 

from noon to the end of the day, as the cooling and hot water demand increased(shown in Fig. 7-11). 

In particular, the upper layer’s accuracy was decreased. This is due to the temperature variation 

through HEX5 and HEX6 being high and affecting the prediction accuracy. However, the tolerance 

affected only 0.02% of the daily operating costs. Hence, the advantage of a reduction in computation 

time of the ANN is greater than the tolerance of predicted values in this case. 

 Finally, we should focus on the lower layers, such as layers 16 to 20. Basically, the temperature 

variation of these layers was not high compared to the other upper layers, because the initial 

temperatures of the TES were set to 30 °C, and the charging water temperature through HEX3 and the 
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return water temperature through HEX5 was often more than 35 °C. Hence, the lower layers could not 

be inlet layers at 24 hours, which stabilizes the temperature. As shown in Fig. 7-10(j), the predicted 

variations of the ANN decreased compared to the target variation, especially at 10 p.m. and 11 p.m. 

This is because a prediction for stable values is a problem for ANN. Although the prediction accuracy 

from 1 a.m. to 6 p.m. was relatively high compared to the other upper layer, the accuracy at the last 

three-time steps were not precise.  

 In an actual system, the inlet layer and outlet layer are often fixed, e.g. as the top or bottom layer, 

in terms of construction adaptability or maintenance feasibility. Hence, the ANN structure in this 

chapter should be modified to predict the temperature variation at only reasonable and suitable layers. 

In the next chapter, revised input and output data of ANN are discussed through a district energy 

optimization. 

 

7.5 Conclusion 

 This chapter investigates a method to optimize the operating schedule of multiple renewable heat 

sources, while reducing the computation costs. A key factor in this is that the energy system consists 

of some mechanisms that were highly affected by the temperature variation of the circulating fluid. 

Hence, we must think about the variation without fixing the temperature or the temperature difference 

between the inlet and outlet of the heat exchangers. However, naturally, the simulation that considered 

temperature variation incurred high computation costs. Therefore, the artificial neural network model 

was used to reduce the costs instead of using physical models. 

 Although the ANN incurred training computation costs, it could quickly calculate or predict the 

temperature variation. This makes the solution of the optimization problem simple, using an iterative 

optimization algorithm. Finally, the ANN models could reduce computation costs by 95% against the 

physical model. Due to this advantage of the ANN, εDE-RJ could find a quasi-optimal solution in a 

realistic computation time on an ordinal computer. 

 In fact, there are some additional modification methods for the ANN model to correctly predict the 

temperature variation of the TES. They will be proposed in the next chapters, 8 and 9, through a district 

energy optimization problem. 

8  
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Fig. 7-9 | Predicted results of ANNTES at the 1st note (a) to the 10th (j) note from the top layer. 
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Fig. 7-10 | Predicted results of ANNTES at the 11th note (a) to the 20th note (j) which is the bottom layer. 

 

25

35

45

1 3 5 7 9 11 13 15 17 19 21 23

ANN Physical model

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

35

1 3 5 7 9 11131517192123

25

27

29

31

33

35

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

25

27

29

31

33

1 3 5 7 9 11131517192123

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

Time [h]

T
e

m
p

e
ra

tu
re

 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]

T
e

m
p

e
ra

tu
re

 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]
T

e
m

p
e

ra
tu

re
 [
 C

]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

ANNGSHP ILS



CHAPTER 7 | Development of hybrid method of εDE-RJ with artificial neural network for 

temperature-dependent energy systems 

152 

 

 

Fig. 7-11 | Predicted tolerance of each time step: layer 1 is the top layer and layer 20 is the bottom layer. 
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8.1 Introduction 

 District energy systems for cooling and heating have become increasingly popular to improve 

energy efficiency [199]. District heating and cooling systems (DHCs) have long histories compared 

to other district energy systems, such as the micro-distributed energy system [200,201] and heat 

sharing network [202]. Within these systems, many issues should be considered, such as peak-shifting, 

peak-cutting, resilience of the system, demand response, and dynamic pricing. 

 Properly controlling machines can be challenging in the context of district and building energy 

management. Generally, the operating schedule has depended on the operator, based on empirical 

observations rather than mathematical principles. However, as energy systems become more complex, 

empirical operation becomes more challenging. To address these issues, many studies have been 

performed, as presented in Section 1.2. These prior works have described limited case studies, simple 

linearized models, or continuous decision variables. 

 Therefore, in this chapter, the hybrid method proposed in Chapter 7.1 is applied to optimization 

problems, such as daily operation of a DHC system. The contents of this chapter is translated in 

English from my peer-reviewed article published in the transactions of the Society of Heating, Air-

Conditioning and Sanitary Engineers of Japan [203]. 

 

8.2 Calculation conditions 

8.2.1 Description of the target district and energy system 

 The target virtual district is comprised of six buildings, two office buildings, two commercial 

buildings, a hospital, and a hotel. The total floor areas of each building are as follows: office building 

1 is 10,000 m2, office building 2 is 15,000 m2, commercial building 1 is 8,000 m2, commercial building 

2 is 12,000 m2, the hospital is 20,000 m2, and the hotel is 20,000 m2. 

 The DHC plant was placed at the same location as office building 1. The plant has multiple heat 

source machines, which generate cooling and heating for the buildings through a district pipe network, 

consisting of a central pipe (Pipe 7 in Fig. 8-1) and six branch pipes (Pipe 1 to Pipe 6). The cooling 

and heating are distributed through Pipes 2–6 after Pipe 1, as shown in Fig. 8-1. The distance between 

each building is fixed at 50 m and the pipes are set at right angles within the district. 

 Fig. 8-2 shows the system configuration of the district plant. There are nine heat source machines, 

three centrifugal refrigerators (CR1, CR2, and CR3), two air-source heat pumps (ASHP1 and ASHP2), 

two gas heat pumps (GHP1 and GHP2), and two absorption refrigerators (AR1 and AR2). Thermal 

energy storage (TES), e.g., stratified water tank, is also included. Each heat source machines has an 
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associated pump. The refrigerators (CR1–CR3 and AR1–AR2) have associated cooling towers and 

cooling water pumps. The number of cooling towers was determined as follows. First, the rated mass 

flow rate of one cooling tower was fixed to 2,000 L/min. Second, the number of cooling towers was 

determined to meet the rated mass flow rate of the refrigerator. For example, when the rated mass flow 

rate of cooling water from CR1 is 8,600 L/min, five cooling towers are required. 

 The component specifications are described in Table 8-1. 

 

 

 

Fig. 8-1 | Building and plant locations. 
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Fig. 8-2 | System configuration of the plant. 

 

 

Table 8-1 | Specifications for each component. 

Thermal energy storage 

(TES) 

Rated capacity* 50,000 kWh 

Maximum mass flow rate of charging and 

discharging fluid 

38,364 L/min 

Centrifugal refrigerator 

(CR1; CR2; CR3) 

Rated cooling capacity 5,000; 3,400; 3,000 kW 

Rated COP 5.8  

Rated mass flow rate of cooling water 16,950; 11,526; 10,170 L/min 

Absorption refrigerator 

(AR1; AR2) 

Rated cooling capacity 2,000; 1,500 kW 

Rated gas consumption 118.6; 88.95 m3/h 

Rated electricity consumption 17.2; 12.9 kW 

Rated mass flow rate of cooling water 9229.8; 6922.4 L/min 

Air-source heat pump 

(ASHP1; ASHP2) 

Rated cooling capacity 2,000; 1,500 kW 

Rated COP 3.59  

Gas heat pump 

(GHP1; GHP2) 

Rated cooling capacity 1,600; 1,200 kW 

Rated gas consumption 114.08; 85.56 m3/h 

Rated electricity consumption 43.36; 32.52 kW 

* Note that the TES rated capacity was calculated using a 10 °C temperature difference between the top and bottom 

nodes. 
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8.2.2 Pressure drop between the central and branch pipes 

 In accordance with [204,205], heat loss from each central and branch pipe was calculated using the 

Darcy-Weisbach Equation as follows: 

∆𝜏pressuredrop =

0.0055{1 + (20000
𝛼pipe

2𝑟 +
106

Re )
1 3 

}

2𝑟
×

𝜌𝑣2

2
 

(8-1) 

where, ∆𝜏pressuredrop is the pressure drop per meter [Pa/m], 𝜌 is water density (1,000 kg/m3), 𝑟 is 

the pipe radius, 𝑣 is fluid velocity (2.0 m/s), and 𝛼pipe is the pipe wall equivalent roughness (2 × 

10-4). The radius of each pipe is determined using the maximum mass flow rate and the temperature 

difference between the inlet and outlet of each pipe. First, the maximum cooling demand of each 

building ( 𝐷max,cl,𝑖 ) is determined using Eq. (8-2). Subsequently, the maximum demand and 

temperature difference (𝑇in − 𝑇out) are used to determine the maximum mass flow rate for each pipe 

as follows: 

𝐷max,cl,𝑖 = max(𝐷cl,𝑖
1 ,  , 𝐷cl,𝑖

24) (8-2) 

𝑚𝑖 =
𝐷max,cl,𝑖

4186 × (𝑇in − 𝑇out)
 (8-3) 

where, 𝑖 denotes the building number. 

 Finally, the pipe radii are determined using 𝑚𝑖  and velocity (𝑣). The temperature difference 

depends on the set point of the outlet temperature of the heat source machines and the return 

temperature set point from the secondary system. Hence, the pipes radii varied in accordance with the 

set points in each case study. 

 ∆𝜏pressuredrop can be calculated using the previously defined parameters. After ∆𝜏pressuredrop is 

calculated for each pipe, ∆𝜏pressuredrop is multiplied by two to determine the total distance of the 

supplying and returning pipes. In addition, the doubled ∆𝜏pressuredrop is then multiplied by 1.5 to 

account for a local pressure drop and 50 kPa is added to address the heat exchanger pressure drop 

between the branch pipes and buildings. Finally, the final ∆𝜏pressuredrop is used to determine the 

rated pump pressure for four parallel pumps. Although there were some optimization problems, e.g., 

pump allocation, the four pumps are fixed as parallel in this study. 
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8.2.3 Heat loss between the central and branch pipes 

 The pipe material is 20 mm thick stainless steel, which has a heat transfer coefficient of 20 

W/(m·K). In addition, the pipe was wrapped with 40 mm thick insulation material, which has a heat 

transfer coefficient of 0.021 W/(m·K). Heat loss, or heat gain during cooling, is determined as follows: 

∆𝜏heatloss =
2𝜋𝐿(𝑇sr − 𝑇cw)

∑
1
𝜆𝑖

2
𝑖=1 ln

𝑟𝑖+1
𝑟𝑖

 
(8-4) 

where 𝐿 is the pipe lengths [m], 𝑇sr is the temperature of the surrounding environment [°C], 𝑇cw is 

the chilled water temperature in the pipes [°C], 𝑟𝑖 is radius [m] (𝑟1 is the radius of the stainless pipe 

and 𝑟2 is the total radius of the stainless pipe and insulation material). 𝑇sr is fixed at 20 °C because 

the DHC pipes are located underground, where the temperature is relatively stable compared to 

atmosphere temperature. 

 The heat loss can be considered as additional heat demand for the DHC plant. Here, the additional 

heat demands are: 0 kW for office building 1 because the plant is located onsite, 2.37 kW for office 

building 2, 3.25 kW for commercial building 1, 1.41 kW for commercial building 2, 2.44 kW for the 

hospital, and 3.36 kW for the hotel. These values are small compared to the net demand of each 

buildings because of the insulation material. For example, without insulation, the additional heat 

demand of the hotel would be 123 kW. Hence, the insulation material results in a significant reduction 

in heat loss. 

 

8.2.4 Demand and price profiles 

 The calculation time horizon and time interval are set to 24 hours and 1 hour, respectively. Demand 

profiles were referenced from [170] and atmosphere temperature was referenced from [171]. Although 

the office buildings and commercial buildings have no cooling demands around midnight (12 a.m. to 

3 a.m.), early morning (4 a.m. to 7 a.m.), and late evening (10 p.m. to 11 p.m.), the hospital and hotel 

have cooling demands for the full 24 hours. In addition, the hotel demand curve is clearly different 

from the other demand curves. For example, the cooling demand before noon is low, but the demand 

after 7 p.m. is clearly higher than the other building demands. 
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Fig. 8-3 | Demand and electricity price profiles: a) the total cooling demand for the district and price variation for 

purchased electricity and b) cooling demand for each building. 

 

8.2.5 Regression models to predict inside TES temperature  

 The stratified TES was based on [147] and the number of nodes was set to 20. An inlet node for 

charging operation and an outlet node for discharging operation are fixed to a bottom node. An outlet 

node for charging operation and an inlet node for discharging operation are fixed to a top node. 

Here, only the bottom temperature was required to determine when to cease discharging the TES 

because the bottom temperature is generally considered the TES outlet temperature. The outlet 

temperature must be less than a certain temperature (e.g. a set point temperature) required by the 

secondary system. An upper set point of chilled water temperature of the secondary system is usually 

6 °C or 7 °C in actual energy systems. Hence, optimal operation should control the bottom temperature 

to less than the set point temperature. 
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 The rated capacity of the TES is determined as follows: 

1) The initial temperature of all nodes is set to the return temperature from the secondary system, e.g., 

11 °C. Hence, the initial remaining thermal energy in the TES is zero. 

2) An upper bound for the outlet chilled water temperature from the TES is set to 6 °C. Hence, the 

difference between 6 °C and 11 °C results in unavailable remaining energy in the TES. In practice, 

this is termed the dead water region. 

3) The amount of daily heat shortage is 37,000 kWh in this district because the total cooling capacity 

from all heat sources is 20,500 kW. Thus, the TES should have a rated capacity more than the shortage, 

while considering the dead water region. In this study, the dead water region for the charging mode is 

set to 3%. 

4) The available capacity is 37,000 kWh and the theoretical capacity is 38,144 kWh. The TES volume 

is determined using the theoretical capacity and a temperature difference of 5 °C. 

The final volume is 8,416 m3, 23.7 × 23.7 m in length and width and 15 m tall. 

To reduce computational cost when using the physical model described in Chapter 2, some 

approximation methods are utilized. First, some data were input: 

Input data 1: the maximum stored heat in the TES for a day (𝑆max,TES). 

Input data 2: the remaining heat from 3 p.m. to 7 p.m. (𝑆TES
15 ,  , 𝑆TES

19 ). 

Input data 3: the bottom temperature from 3 p.m. to 7 p.m. (𝑇bottom
15 ,  , 𝑇bottom

19 ). 

Second, four methods are used as regression models: 1) a multiple linear regression model (MLR), 2) 

a coefficient assimilation using m-PSO, 3) utilizing the curve fitting toolbox in MATLAB (CF), and 

4) an artificial neural network (ANN). 

 To generate a training dataset, 2,000 available operating schedules are created using random 

numbers, as shown in Fig. 8-4. 

 Then, 10,000 combinations of 𝑆max,TES , 𝑆TES
𝑡 , and 𝑇bottom

𝑡  are exploited from the 2,000 

operating schedules. To train the models, 80% of the 10,000 combination dataset are used, and the 

remaining 20% are used to evaluate the models, as shown in Fig. 8-5. In the m-PSO and CF regression 

models, the following quadratic equation is considered: 

𝑇bottom,TES
𝑡 = 𝛼1,TES𝑆max,TES

2 + 𝛼2,TES𝑆max,TES + 𝛼3,TES(𝑆TES
𝑡 )2 + 𝛼4,TES𝑆TES

𝑡

+ 𝛼5,TES 
(8-5) 

 Where the m-PSO and CF models optimize the coefficients (𝛼1–5,TES) to minimize the sum of the 

squared errors of the prediction. Fig. 8-5 shows the results from the four regression models. Although 

the coefficients of determination (R2) for each regression model are greater than 90%, the ANN clearly 

produces the best results. In addition, the online learning in the ANN model does not need batch 
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Fig. 8-4 | 2,000 operating patterns created using random numbers. 

 

 

Fig. 8-5 | Prediction results from each regression model. 

 

learning, which always has high computational costs, whereas the other three methods require this 

batch learning strategy. Therefore, the ANN model is superior to the other three methods in terms of 

prediction accuracy and training computational costs. 
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8.3 Optimization method 

8.3.1 Problem formulation 

 The objective function minimizes the daily operating costs of the district as follows: 

minimize 𝑓 = ∑(𝑝E
𝑡 ∑𝑐E,𝑖

𝑡

9

𝑖=1

+ 𝑝G ∑𝑐G,𝑗
𝑡

4

𝑗=1

)

24

𝑡=1

 (8-4) 

where, 𝑝E
𝑡  and 𝑝G are the prices of electricity [yen/kWh] and gas [yen/m3], respectively. Here, 𝑝G 

is fixed at 87.2 yen/m3. 𝑐E,𝑖
𝑡  and 𝑐G,𝑗

𝑡  are electricity [kW] and gas [m3/h] consumption at time step 

𝑡 , respectively. 𝑖  and 𝑗  denote the number of machines that consume electricity and gas, 

respectively. 𝑐E,𝑖
𝑡  incorporated the electricity consumption of the machine, cooling tower fan, and 

pumps for cooling and chilled water. The constraints are as follows: 

∑ 𝑃𝑚
𝑡

9

𝑚=1

≥ 𝐷cl
𝑡  (8-5) 

max{𝑇bottom
15 ,  , 𝑇bottom

24  } ≤ 6.0 (8-6) 

 Eq. (8-5) shows the heat balance between the total thermal output of the heat source machines and 

total cooling demand of the buildings, including the additional heat. 𝑇bottom
15–24  indicates the bottom 

temperature of the TES. In addition, CR and AR should continue working at least two or three 

consecutive hours, respectively, in accordance with actual machine conditions. 

 There is a total of 216 decision variables (8 machines × 24 hours) in accordance with the problem 

formulation shown in Eq. (8-4). If the full-search algorithm is used, the available combinations of 

decision variables would be 518×24, i.e., 51 operating load rates with 2% resolution, 8 machines, and 

24 hours. However, the metaheuristics method does not always try the maximum number of 

combinations due to the stochastic searching algorithm. 

 This optimization problem has the following features. 

1) Dependence of the decision variables 

As mentioned in Chapter 1, the dependence of the decision variables creates challenges. In this chapter, 

the time dependence of the TES, CR, and AR machines are the dependence of the decision variables. 

The dynamic programming method (DP) has been often applied to this type of the problem. However, 

the DP’s computational complexity depends on the number of decision variables, as indicated in 

Chapters 1 and 2. For the DP to be used, the complexity would be 1.51 × 1025 (= 24 × 219×2); therefore, 
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it is unrealistic to use DP in this problem. 

2) Discrete decision variables 

All decision variables are formulated as discrete variables. Hence, a typical linear programming 

method was not applied because the method only handles continuous problems. Although mixed 

integer linear programming (MILP) could be applied, there are 9792 decision variables, 51 operating 

load rates with 2% resolution × 8 machines × 24 hours. Hence, the using MILP is unrealistic due to 

the total number of decision variables and nonlinearity of machine characteristics. 

1. Adaptability for utilizing complex regression models 

To reduce computational cost, ANN is a complex mathematical model that has been utilized in this 

chapter. ANN could not be absolutely adopted if MILP was also used. Hence, an optimization method 

with high adaptability is strongly needed. 

 

8.3.2 Parameters of the 𝜺DE-RJ 

 The εDE-RJ can manage all of the described features. The numbers of generations and individuals 

are set to 4,000 and 40 in this chapter. The 𝜀 E  value should be zero at 70% of the maximum 

generation. 

 

8.4 Results and discussions 

8.4.1 Setting case studies 

 Four case studies are conducted. In Case 1, an empirical operating schedule is considered with a 

fixed temperature difference of 10 °C and chilled water outlet temperature of the machines fixed at 4 

°C. In Case 2, the εDE-RJ optimizes an operating schedule with the same temperature difference and 

the same outlet temperature as Case 1. In Case 3, the εDE-RJ is conducted with a 15 °C temperature 

difference and 3 °C outlet temperature. This case considers the largest temperature difference to 

maximize TES capacity. In Case 4, εDE-RJ is conducted with the same conditions as Case 2 with the 

addition of a peak-cutting constraint. The results from all cases are shown in Table 8-2. 

 

Table 8-2 | Results from the four conducted case studies 

 Operating costs [yen/day] Peak electricity consumption [kW] 

Case 1 1,312,985 3,145 

Case 2 1,172,943 3,088 

Case 3 1,235,722 3,158 

Case 4 1,223,094 2,562 
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8.4.2 Case 1 

 A scenario based operation of Case 1 is as follows: 

1. Machine priority: when the electricity price is low between 1 a.m. and 12 p.m. and 5 p.m. to 12 

a.m., the electric based machines are operated in priority. In particular, CR, which has the highest rated 

COP is top priority. When prices are high, from 1 p.m. to 4 p.m., the gas based machines, such as AR 

and GHP, are operated in priority. If the total capacity of the gas based machines does not meet the 

district cooling demand, CR also contributes. 

2. TES operation: TES charges cooling heat by 8 a.m. and discharges it when prices are high, as 

shown in Fig. 8-6(a). In Case 1, the primary energy based COPs for CR, AR, ASHP, and GHP are 

approximately 1.0 to 2.0, 1.2, 1.5 to 1.7, and 1.0 to 1.2, respectively, as shown in Fig. 8-7(a). The daily 

operating costs are 1,312,985 yen/day and the peak electricity demand is 3,145 kW. 

 

 

Fig. 8-6 | Operating schedules: a) Case 1 (empirical operation) and b) Case 2 (εDE-RJ) 
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Fig. 8-7 | Hourly variation in COP for each heat source machine: a) Case 1 (empirical operation) and b) Case 2 

(εDE-RJ) 

 

8.4.3 Case 2 

 Fig. 8-6(b) shows the results from optimizing using the hybrid εDE-RJ - ANN method in Case 2. 

Although the multiple heat source machines generate cooling heat and charge the TES from 1 a.m. to 

8 a.m., the operating load rates are not at the rated value. Because of the partial load operation, the 

COP from each machine is improved comparing to the result from Case 1, as shown in Fig. 8-6(a). 
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 Fig. 8-8 and Fig. 8-9 show the temperature profiles inside the TES and the temperature variation 

of the bottom node of the TES, respectively. Here, the profile is unaffected by any disturbances 

because the simulation only depends on the physical model. The vertical axis indicates the node 

number and the horizontal axis indicates the temperature of stored water. The nonlinear lines indicate 

the time steps: the deepest color is the first time-step and the lightest color line is the last time-step. 

When the charging operation ceases, the temperatures of 9th to 20th node are 4 °C, while the 1st to 8th 

node are not 4 °C, e.g., the top node is 6.3 °C at 8 a.m. This observation indicates the presence of a 

dead water area. Furthermore, at the end of the discharging operation, such as at 24th time step, stored 

energy remains. 

 As shown in Fig. 8-9, the bottom temperature does not exceed 6 °C, which indicates that the 

constraint condition is completely satisfied while optimizing the operating schedule. At the end of the 

discharging operation, such as at 7 p.m., the temperature predicted with ANN is 5.88 °C, whereas the 

physical model result is 5.95 °C, with the same operating schedule as Case 2. Hence, ANN can be 

utilized for energy management because the prediction tolerance is only 0.07 °C. 

 The computational time is 615 s using MATLAB with the Parallel computing toolbox running on 

a Core i7-6700 (3.4 GHz) CPU with 16 GB of RAM. In comparison, the computation time is 7200 s 

when the physical model is used instead of ANN. 
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Fig. 8-8 | Temperature profiles inside the TES; colors vary from darker to lighter as time progresses from early time 

steps to the last time step. 

 

 

 

Fig. 8-9 | Temperature variation of the bottom node of the TES 
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8.4.4 Case 3 

 The temperature difference between the supply and returning fluid is set to the largest, 15 °C, in 

Case 3. The supply temperature is set to 3 °C. The daily operating cost is 1,235,722 yen/day, which is 

a 5.88% reduction compared to Case 1, but a 5.08% increase compared to Case 2. This difference is 

due to the large temperature difference, which requires more energy and causes a reduction in 

efficiency for each machine to generate cooling heat. 

 

8.4.5 Case 4 

 This case requires cost optimization while reducing the peak electricity consumption more than 

15% against Case 2. Significantly, the peak demand is directly associated with the base charge for 

electricity in Japan. 

 As shown in Table 8-2, the daily operating costs in Case 4 are 1,223,094 yen/day and the peak 

demand is 2,562 kW, a 17% reduction compared to Case 2. The multi-objective optimization proposed 

in Chapter 3 can be applied to this problem to minimize the operating costs and peak demand 

simultaneously. However, the peak demand should considered as a constraint instead of the objective 

function in the context of optimization stability and computation speed. 

 

8.5 Conclusion 

 This chapter conducted an optimization of daily operating schedules for multiple heat source 

machines to minimize operating costs. The district energy system contains complex machines, such 

as time dependent equipment and thermal energy storage. The optimization method incorporated the 

εDE-RJ, a type of metaheuristic method, and ANN, a machine learning method. The εDE-RJ was 

used to identify a quasi-optimal solution and ANN was used to predict the bottom temperature of the 

TES while reducing computational cost. 

 The optimal operation identified using the εDE-RJ can reduce operating costs by more than 10% 

compare to empirical operation. The prediction tolerance of ANN was less than 0.1 °C. Hence, the 

accuracy of ANN is appropriate for use in an actual management system. The computational costs 

from using εDE-RJ with ANN showed a drastic reduction, more than 90%, compared to the physical 

model used. 

 Although ANN has many advantages, the ANN model is a complex mathematical model. Hence, 

common optimization methods, such as linear programming and quadratic optimization methods 

cannot integrate ANN. In contrast, εDE-RJ implement ANN easily, with superior optimization results 
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to the empirical operation and physical model, as described above. Therefore, εDE-RJ with ANN has 

the notable ability to optimize both building and district energy systems. 
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9.1 Introduction 

 Although the district heating and cooling system (DHC) is one of the most common district energy 

systems, others, such as distributed energy or heat charging network systems, have received attention 

for reducing primary energy consumption and operating costs. The heat sharing network system is 

particularly promising due to its flexibility and resilience [10]. 

 However, it is difficult to optimize an operating schedule for the district heat sharing network 

system as it consists of many components, such as heat source machines and pumps with nonlinear 

characteristics, as shown in Section 2.1. Hence, a hybrid εDE-RJ and ANN optimization method was 

applied to address the optimization problem. ε DE-RJ was used to determine a quasi-optimal 

combination of thermal outputs from each heat source machine. ANN was used to predict variation in 

the bottom temperature of thermal energy storage (TES) to reduce the computation costs for 

calculation using a physical model, such as the ILS model. In addition, the Q-learning method 

[168,206], which has increasingly been used in recent years in building energy optimization studies 

[207–209], was used to compare the suitability of the hybrid and Q-learning methods for addressing 

this problem. 

 This chapter, therefore, describes a method for optimizing a complex district energy system using 

εDE-RJ and assesses the advantages of εDE-RJ against Q-learning. 

 

9.2 Calculation conditions 

9.2.1 Description of the energy system and demand conditions 

 Fig. 9-1 presents the configuration of the virtual district heat sharing network used for this 

simulation. The district consisted of the same six buildings as those presented in the previous chapter, 

including two office buildings, two commercial buildings, the hospital, and the hotel. The purchase 

price of electricity and the cooling demands of each building were also the same as those in the 

previous chapter, as shown in Fig. 9-2. 

 The energy system had two central circulation pipes for low and high-temperature fluids. Heat 

exchangers were used to provide and receive thermal energy between the buildings and the central 

pipes. In the basic operation strategy, all of the heat generated at a certain building was used in the 

building itself. Surplus heat should be provided to the other buildings through the pipes to meet 

demand. In contrast, heat shortage at a certain building should be met by receiving heat through the 

pipes from the heat exchangers. 
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 TES acted as a compensation tank, not for a specific building, but the whole district. For example, 

TES received heat from the central pipe when the total heat generation was greater than the total 

cooling demand. In contrast, TES discharged heat to buildings experiencing energy shortage through 

the central pipe when the total heat generated was less than the total cooling demand. Heat loss, also 

indicated by heat gain in the cooling system, was not considered in this chapter as loss minimal, as 

shown in the previous chapter. 

 The temperature difference between the inlet and outlet fluids transferred through the heat 

exchangers was fixed to 10 °C. Hence, the frequency of the central pumps (CP9–CP22 as shown in 

Fig. 9-1) could be controlled to achieve the desired amount of heat exchange determined by the 

optimization method. 

 The mass flow rate of CP9–CP22 was determined using the maximum cooling demand of each 

building. The rated pump pressure of these pumps was set to 250 kPa. The central pipes (CP1–CP8) 

were installed in the central circulating pipes. The rated pump pressure and the mass flow rate of these 

pumps were set to 500 kPa and 47,190 L/min, respectively. 

 

 

Fig. 9-1 | Configuration of the district heat sharing network energy system. 
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Fig. 9-2 | Demand and price profiles (the same as Fig. 8-3). 
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Table 9-1 | Specification of heat source machines. 

Thermal energy storage (TES) Rated capacity 6,000 m3 

Centrifugal refrigerator (CR1–CR8) Rated cooling capacity CR1: 2,300, CR2: 2,000, 

CR3: 1,500, CR4: 2,200, 

CR5: 2,200, CR6: 3,000, 

CR7: 3,000, CR8: 2,500 

kW 

Rated COP* 2.18 - 

Absorption refrigerator (AR1, AR2) Rated cooling capacity AR1: 2,000, AR2: 1,700 kW 

Rated COP 1.32 - 

Air-source heat pump (ASHP1–

ASHP3) 

Rated cooling capacity ASHP1: 1,180, 

ASHP2: 1,200 

ASHP3: 1,170 

kW 

Rated COP 1.47 - 

Gas heat pump (GHP1–GHP4) Rated cooling capacity GHP1: 900, GHP2: 900 

GHP3: 1,230, GHP4: 1,230 

kW 

Rated COP 1.09 - 

*Note that the rated COP was based on primary energy. 

 

9.2.2 Optimization strategy for the cooling tower system 

 In this chapter, an integrated multiple cooling tower system was considered, which shared a cooling 

water system with multiple heat source machines. For example, CR2 and AR1 shared one cooling 

water system and multiple cooling towers in office 2. 

 To optimize the cooling water system, decision variables were set for the mass flow rate of cooling 

water [L/min] and the number of activated cooling towers. The mass flow rate was set as discrete 

variables of 0%, or 50–100% (rated mass flow rate), which were optimized by a full-search algorithm 

as the computation complexity was low. 

 

9.2.3 Improved prediction model for the bottom temperature using artificial neural 

network 

 An artificial neural network (ANN) was utilized to predict the bottom temperature of thermal 

energy storage, which was the same as the ANN discussed in the previous chapter. Although the 

former ANN model had high prediction accuracy, its use was limited by a unimodal TES operation. 

The unimodal operation means that charging was only conducted before business hours began, and 

discharging was only conducted during the daytime. However, there was a possibility that charging 

would be conducted during daytime in an actual energy system. 

 Hence, an improved ANN model was created, as follows. A multimodal TES operation, as shown 

in Fig. 9-3, was considered for creating the training dataset. For example, the bottom temperature 

(𝑇bottom) at the current time step, vortex 𝐶2, was predicted using the maximum stored heat (𝐴1) and  
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Fig. 9-3 | Conceptual diagram of the creation of the training dataset: 𝑆𝑇𝐸𝑆 denotes the energy stored in thermal 

energy storage. 𝑇𝑏 𝑡𝑡 𝑚 denotes the bottom temperature of thermal energy storage. 

 

 

 

Fig. 9-4 | Relationship between the input and output dataset. 
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 The ANN structure is shown in Fig. 9-5. The ANN consisted of an input layer, three hidden layers, 

and an output layer. The number of nodes in each hidden layer was set to 10. The model using the 

three hidden layers model was superior to a simple layer model, and the use of 10 nodes in this case 

was also superior to using other numbers, such as 20 or 30. The computational costs of the ANN 

generally depended on the numbers of layers and nodes. Hence, the ANN adopted three hidden layers 

with 10 nodes for computation accuracy and speed, although such a structure could be extended with 

more layers and nodes. 

 

 

 

Fig. 9-5 | ANN structure diagram 
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9.3 Optimization method 

9.3.1 Problem formulation 

 The objective of this chapter is to minimize operating costs, as follows: 

minimize  𝑓 = ∑(𝑝E
𝑡

24

𝑡=1

× (∑ 𝑐E,Machine,𝑖1
𝑡

17

𝑖1=1

+ ∑( ∑ 𝑐E,CT,𝑖3,𝑖2
𝑡

𝑁 T,𝑖2

𝑖3

+ 𝑐E,CTP,𝑖2
𝑡 )

6

𝑖2

)

+ 𝑝G ∑ 𝑐G,Machine,𝑖4
𝑡

4

𝑖4=1

) 

(9-1) 

where 𝑝E
𝑡  and 𝑝G  denote the price of electricity [yen/kWh] and gas [yen/m3]. 𝐶E,Machine,𝑖1

𝑡  and 

𝐶G,Machine,𝑖4
𝑡  denote the electricity and gas consumption of the heat source machine, respectively. 

𝑁CT,𝑖2 denotes the number of cooling towers at the 𝑖2-th building. 𝑁CT,𝑖2 depended on the total mass 

flow rate of the heat source machines at a certain building. 𝐶E,CT,𝑖3,𝑖2
𝑡  and 𝐶E,CTP,𝑖2

𝑡  denote the 

electricity consumption of the cooling towers and cooling water pumps, respectively. 

 The decision variables were the loading rates of all heat source machines, producing 408 decision 

variables in total (17 machines × 24 hours). There were three constraints: 1) the upper bound of the 

TES’ capacity, 2) the upper bound of the bottom temperature (7 °C) at the end of the discharging 

operation, and 3) minimum consecutive operating time steps of CR (2 hours) and AR (3 hours). 

 When the full-search algorithm was used for this problem, the total computational complexity was 

2117×24 = 21408, which is difficult to calculate on an ordinal computer. Dynamic programming (DP) 

could then be used in this problem, but this produced a complexity of 2117×2×24 = 24×2134. Although 

the complexity of DP was significantly lower than that of the full-search algorithm, conducting it was 

still difficult. Therefore, the hybrid optimization method was applied. 

 

9.3.2 Parameters of 𝜺DE-RJ with ANN 

 The number of generations and individuals were 4,000 and 40, respectively. At 70% of the 

maximum possible generation, 𝜀 E  should be zero. The total complexity of this method was, 

therefore, 160,000 (40 individuals × 4,000 generations). 
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9.3.3 Q-learning 

 Q-learning is one of the free model algorithms which are the same as metaheuristic optimization 

methods. The Q-learning algorithm was based on the Bellman’s principle of optimality to 

approximately solve a problem. Hence, Q-learning is similar to DP as DP deterministically solves a 

problem based on the same principle. Fig. 9-6 shows the DP and Q-learning algorithms. Firstly, DP 

calculated all of the available combinations of thermal outputs between two-time steps, such as the 

current time step (𝑡) and the previous time step (𝑡 − 1). Following this, the most optimal combination 

was saved, and the other combination results were ignored due to “principle of optimality”. Therefore, 

the computation complexity of DP exponentially depended on the number of machines. 

 Q-learning, however, did not exponentially depend on the number of machines; instead, it linearly 

depended on the number of time steps and machines, and the resolution of discrete variables. 

 

 

Fig. 9-6 | Conceptual diagram of the DP and Q-learning algorithms: a) DP algorithm based on the Bellman’s 

principle of optimality, b) proposed formulation of the Q-learning problem, consisting of hierarchal searching steps, 

such as the time and decision steps of the thermal output of each machine. 
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 In this case, the total number of combinations was 8,568 (21 discrete points of each machine × 17 

machines × 24 time steps). In particular, a learning step (𝑁𝑙) could be defined as 17 machines × 24 

time steps (408). As shown in Fig. 9-6(b), Q-learning iteratively searches an optimal route of machine 

load rates. The following two criteria were considered for stopping Q-learning searching: a) criteria I: 

480 s, referred to as the computation time using εDE-RJ, which will be discussed later; and b) criteria 

II: the number of episodes set to 160,000, which was the same as the number of generations in εDE-

RJ. The ε-greedy method [168] was also utilized to select the next action. 

 Fig. 9-7 presents an example of the Q-learning code, written in MATLAB. First, a Q-table, which 

was used to save information about rewards, states, and actions, should be initialized. Generally, there 

are two initialization approaches: zero and random. In this research, the Q-table elements should be 

zero. 

 Second, parameter 𝜀Q was initialized to one. During the searching solution, 𝜀Q generally linearly 

and exponentially decreased. Two 𝜀Q variations were tested in this research; the first was with 𝜀Q 

fixed to 0.8, and the second was with 𝜀Q fixed to 1.0 during 0%–25% of the numbers of episodes. 

During 25%-75% of the episodes, 𝜀Q decreased linearly. Finally, 𝜀Q was fixed to 0.1 during 75%–

100% of the episodes. 

 Third, the episode and learning step loops were started. In the learning step loop, the next action 

should be determined using the ε-greedy method. Following that, constraint violation, defined as 

εDE-RJ, was calculated. Then, a reward was calculated using an operating schedule determined by Q-

learning. The daily operating costs could not be known during the learning steps due to the time 

dependence of machines including TES, CR, and AR. Hence, the reward (𝑅𝑙) was zero when the 

learning step was not the final step. When the learning step was the final step (𝑁𝑙), the reward could 

be calculated as shown in Fig. 9-7. 

 Finally, the value of the Q-table (Q-value) was updated using the following equation: 

𝑄(𝑆𝑙 , 𝐴𝑙) = 𝑄(𝑆𝑙 , 𝐴𝑙) + 𝛼Q (𝑅𝑙 + 𝛾max
𝑎𝑙+1

𝑄(𝑆𝑙+1, 𝑎𝑙+1) − 𝑄(𝑆𝑙 , 𝐴𝑙)) (9-2) 

where 𝑄(𝑆𝑙 , 𝐴𝑙) denotes the Q-value at state (𝑆𝑙) and action (𝐴𝑙). 𝛼Q and 𝛾 were the parameters of 

Q-learning that were tested as case studies. 𝑅𝑙 was the reward at learning step (𝑙). 
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Fig. 9-7 | Example Q-learning code written in MATLAB 

 

9.4 Results and discussions 

9.4.1 Searching performance of 𝜺DE-RJ 

 Table 9-2 shows the results of all cases. Case 1 presented the case of εDE-RJ, the results of which 

differed due to the randomness of εDE-RJ. Some statistical values, such as the mean and standard 

deviation (SD), were used to evaluate the method. The mean of the results generates by εDE-RJ was 

1,408,726 yen/day, and the SD was 8,221. The minimum operating cost was 1,394,063 yen/day. The 

computation time using the same computer as that used in Chapter 8.1 was 480 s. The searching 

performance of the minimum operating cost case is shown in Fig. 9-8(a). 𝜑min denotes the minimum 

constraint violation value at every time step. 𝑓min,all denotes the minimum operating costs of all 

individuals, including the feasible and infeasible individuals. 𝑓min,fb denotes the minimum operating 

costs of the individual that had the minimum constraint violation. Therefore, 𝑓min,fb was always 

greater than 𝑓min,all. 𝑁fb indicated the number of feasible individuals. The upper bound of 𝑁fb was 

40, as the number of individuals was set to 40. 

Initialization of Q-table to zero

Initialization of 𝜀Q (𝜀Q = 1)

for 𝑔 = 1 𝑁episode

Update 𝜀Q
for 𝑙 = 1 𝑁𝑙 *Update of learning step

Set a variable, 𝑘, randomly

Select actions (𝐴𝑙) using 𝜀-greedy method

{
𝐴𝑙 = argmax

𝑎𝑙

𝑄(𝑆𝑙, 𝑎𝑙) 

𝐴𝑙 = 𝑘   

if 𝑘 > 𝜀Q

else
Update state of next learning step: 𝑆𝑙+1 = 𝑆𝑙 + 𝐴𝑙

if 𝑙 = 𝑁𝑙

Calculate a constraint violation (𝜑𝑚)

end

Calculate a reward (𝑅𝑙)

   

𝑅𝑙 = 0

𝑅𝑙 =
1010

dail  operating cost
              

𝑅𝑙 = −𝜑𝑚  

if 𝑙 < 𝑁𝑙  

if 𝑙 = 𝑁𝑙  and 𝜑𝑚 = 0
if 𝑙 = 𝑁𝑙  and 𝜑𝑚 > 0

Update Q-table(𝑄 𝑆𝑙, 𝑎𝑙 ) as follows:

𝑄 𝑆𝑙, 𝐴𝑙 = 𝑄 𝑆𝑙, 𝐴𝑙 + 𝛼 𝑅𝑙 + 𝛾max
𝑎𝑙+1

𝑄 𝑆𝑙+1, 𝑎𝑙+1 − 𝑄 𝑆𝑙 , 𝐴𝑙

end

end
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Table 9-2 | Results of all cases. 

 Method (𝛼Q, 𝜀Q) Stopping criteria Mean (SD) 

Case 1  εDE-RJ - 4,000 generation 1,408,726 (8,221) 

Case 2-1 Q-learning (0.01,0.8) 480 s Feasible solutions were not found 

Case 2-2 Q-learning (0.01, decrease) 480 s 1,736,584 (9,760) 

Case 2-3 Q-learning (0.90,0.8) 480 s Feasible solutions were not found 

Case 2-4 Q-learning (0.90, decrease) 480 s 1,736,775 (5,811) 

Case 3-1 Q-learning (0.01, 0.8) 160,000 

episode 

Feasible solutions were not found 

Case 3-2 Q-learning (0.01, decrease) 160,000 

episode 

1,724,174 (13,011) 

Case 3-3 Q-learning (0.90, 0.8) 160,000 

episode 

Feasible solutions were not found 

Case 3-4 Q-learning (0.90, decrease) 160,000 

episode 

1,724,131 (9,974) 

 

 

 

Fig. 9-8 | Searching performance: a) 𝜀DE-RJ, b) Q-learning. 
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 All individuals were infeasible during the early generation steps because 𝜑min was greater than 

zero. As the generation step increased, 𝜑min and 𝜀 E  gradually decreased. Then, some feasible 

individuals occurred at approximately 1,600 generation steps. When 𝜑min was greater than zero, 

𝜑min, 𝑓min,all, and 𝑓min,fb decreased immediately due to the εDE-RJ searching algorithm. Hence, 

εDE-RJ could efficiently optimize constraint violation and objective functions, compared to other 

methods that first aimed to minimize constraint violation, and then minimize the objective function. 

 

9.4.2 Searching performance of Q-learning 

 Table 9-2 shows the results of Q-learning. There were eight case studies covering different 

parameter values and stopping criterion. When the 𝛼Q  parameter was small, trapping in a local 

optimum can easily be avoided, but convergence of the results tends to be slower. In contrast, when 

the 𝛼Q parameter was large, it would trap in a local optimum, but convergence of the results was 

quicker. 

 Fig. 9-8(b) shows the searching performance of Q-learning. In the cases where 𝜀Q was fixed to 

0.8, no feasible solutions were not found. In contrast, feasible solutions were found in all cases with 

varying 𝜀Q. Therefore, a value of 0.8 for the 𝜀Q parameter was too low to identify a feasible solution 

to this problem, which had a long learning step (𝑁𝑙 = 408), and 𝜀Q should be 1.0 during the early 

episodes. 

 In terms of stopping criterion, although the computational complexity of Case 3-1 to 3-4 increased 

by a magnitude of seven times of that in Cases 2-1 to 2-4, there was a difference of only 0.7% between 

the results. In terms of parameter 𝛼Q, the SD of the cases where 𝛼Q was 0.90 was smaller than that 

of the cases where 𝛼Q was 0.01. Thus, Case 3-4 was the most stable and could obtain the minimum 

result.  

 Fig. 9-8(b) shows the minimum result of Case 3-4, in which the operating cost was 1,707,947 

yen/day. 𝑓max,𝑄  indicates the maximum value of the objective function of Q-learning. 𝑄max and 

𝑄mean are the maximum and mean values of the Q-table, respectively. The Q-table was suitably 

updated because 𝑄mean increased gradually, however, 𝑄max was not suitably optimized because its 

value oscillated. 

 Q-learning could not fully optimize the problem due to the large number of learning steps. In 

previous studies, there were only four or five learning [209,210]. The computation time in Case 3-1 to 

Case 3-4 was 5,900 s when the computation complexity was the same as that for εDE-RJ. Therefore, 

Q-learning was not suitable for application to the complex energy system. 
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9.4.3 Comparison of operating schedules between 𝜺DE-RJ and Q-learning 

 Fig. 9-9 shows the operating schedules produced by εDE-RJ and Q-learning. Fig. 9-9(b) contains 

the result of εDE-RJ. TES discharged a larger amount of heat to the district at 3 p.m. and 4 p.m. when 

the electricity price was high compared to the other time steps. In contrast, in the result produced by 

Q-learning, TES did not discharge heat at these time steps, as shown in Fig. 9-9(c). The Q-learning 

result allowed TES to discharge heat at 9 a.m., when the price of electricity was low. Hence, the result 

from εDE-RJ was superior to that from Q-learning. 

 The machine efficiency of εDE-RJ was superior to that of Q-learning. Fig. 9-10 shows the 

frequency and distribution of system coefficient of performance (SCOP) based on the primary energy 

at each time step. SCOP included the electricity consumption of machines, pumps, and cooling tower 

fans, and the gas consumption of machines. In the result of εDE-RJ, SCOP ∈ [1.4,1.7] accounted for 

96% of all operations. In contrast, SCOP ∈ [1.3,1.5] accounted for 75% of all operations in the Q-

learning result. The operation given by εDE-RJ was, therefore, more efficient than that given by Q-

learning. 
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Fig. 9-9 | Operating schedules given by two optimization methods: a) variation of electricity price, b) εDE-RJ, c) 

Q-learning. 

 

 

 

Fig. 9-10 | Cumulative distribution of the frequency of system COP. 
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9.4.4 Analysis of heat balance of districts 

 Table 9-3 shows the heat balance of each building in the solution given by εDE-RJ. “Received” 

refers to the amount of heat received from the district, and “provided” refers to the amount of heat 

provided from a building to the district. 

 Commercial building 2 provided the greatest amount of heat to the district because the building 

had two gas heat pumps (GHP) with a relatively large cooling capacity. The GHPs were used to 

generate heat instead of electric-based machines when the electricity price was high. CR8 generated 

heat with highly efficient COP during the morning and night. Hence, the other buildings provided the 

largest total amount of heat. Although the hospital and hotel had efficient CRs, these buildings also 

received heat from other efficient CRs during the night. Therefore, the total amount of provided and 

received energy was balanced. 

 

Table 9-3 | Heat balance of each building. 

 Office 1 Office 2 Commercial 1 Commercial 2 Hospital Hotel 

Received 3.7 16.4 10.4 11.4 17.4 14.7 

Provided 17.6 12.4 13.4 21.9 16.0 15.5 

 

9.4.5 Prediction accuracy of ANN 

 𝑇bottom(ANN) and 𝑇bottom(ILS) in Fig. 9-9 indicate the bottom temperature of TES in the ANN 

and ILS, respectively. To obtain 𝑇bottom(ILS), a daily simulation was conducted using the operating 

schedule produced by εDE-RJ and the ILS model. 

 In Fig. 9-9(b), ANN predicted a bottom temperature of 6.99 °C at 8 p.m. In contrast, the ILS model 

provided a temperature of 6.68 °C at that time. Hence, the prediction tolerance was 0.30 °C. In Fig. 9-

9(c), ANN predicted a bottom temperature of 6.97 °C at 5 p.m. In contrast, the ILS model provided a 

temperature of 6.69 °C at that time. Hence, the prediction tolerance was 0.28 °C. 

 Both εDE-RJ and Q-learning could suitably generate a TES operating schedule, because both 

predicted temperatures (6.99 °C and 6.97 °C) were close to upper bound (7 °C). In addition, ANN can 

be used in an actual energy management system as it has high prediction accuracy. 
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9.5 Conclusion 

 This chapter discusses the application of the proposed hybrid method, consisting of εDE-RJ and 

ANN, to a complex district energy system, such as a heat sharing network. To evaluate the feasibility 

and accuracy of the hybrid method, Q-learning, which has increasingly been used in building energy 

optimization studies, was compared. 

 εDE-RJ had clear advantages for quickly identifying a quasi-optimal operating schedule compared 

to Q-learning. The objective function and daily operating costs of εDE-RJ with ANN could be 

reduced by 18.3% from those of Q-learning. The computation times of εDE-RJ with ANN and Q-

learning were 480 s and 5,900 s, respectively. Moreover, ANN could suitably predict a TES bottom 

temperature with a tolerance of less than 0.3 °C. 

10  
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10.1 Conclusions 

 This thesis focused on developing efficient and flexible optimization methods for building and 

district energy operations. A detailed discussion and conclusions are given in Chapter 3–9; the main 

results of this thesis are summarized and highlighted as follows. 

 

 Chapter 3.1 considered the issue of how to determine the operating schedules for a building energy 

system that consisted of three parts: electricity, cooling, and hot water supply systems. This system 

had 336 decision variables and both nonlinear and discontinuous conditions. Although a linearization 

technique has been typically adopted in previous studies when a complex energy system was 

optimized, a flexible optimization method—ε-constrained differential evolution (εDE) algorithm—

was applied in this study. This algorithm had advantages as it solved almost all constrained objective 

functions. As a result, εDE could find a quasi-optimal operation for the three systems at once, which 

reduced daily operating costs by 5.7% when compared with an empirical operation. Moreover, an 

efficient multi-objective optimization method— ε-constrained multi-objective differential evolution 

(εMODE)—was proposed to minimize the daily operating costs and primary energy consumption. In 

previous studies, εDE was proposed as a solution for constrained problems, while the MODE 

algorithm (MODEA) was proposed as a solution for multi-objective problems. However, a method for 

solving a constrained multi-objective optimization problem had not been proposed previously because 

it was difficult to determine a method that could minimize both constraint violations and objective 

functions at the same time. A new approach, εMODE, was therefore proposed by integrating the εDE 

algorithm and MODEA. In addition, the new algorithm was revised to find a feasible solution allowing 

comparison with the original MODEA. As a result, εMODE could find a pareto-front for the two 

objective minimizations. 

 

 In Chapter 4.1, a novel simple index was proposed to determine an optimal operating strategy for 

electricity systems, such as photovoltaic (PV) devices connected to a rechargeable battery (RB). For 

an ordinary residential building with PV and RB, once the feed-in-tariff period has expired, the 

occupants should identify the self-consumption or total amount purchased operations that are most 

suitable to change so as to minimize their daily operating cost. Although εDE can be applied to 

determine the optimal operation in practical computation time, it is not always user-friendly for non-

expert users, particularly typical ordinary building occupants. In this situation, an index—an area ratio 

of prices (ARP)—was used to determine the most suitable operation, without requiring any 

optimization calculations. Although ARP was tested under various demand curves and price profiles 
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of purchased electricity, it showed the same threshold value. Therefore, it would be sufficient to use 

ARP once a day to provide optimal control. 

 

 In Chapter 5.1, a new recalculation strategy—two-time steps recalculation (TtsR)—for real-time 

controls was proposed. This strategy can be used for energy systems, including time-dependence 

equipment such as RB and thermal energy storage (TES), as a model predictive control methodology. 

It can be used with other optimization methods, such as mathematical programming and metaheuristic 

optimization methods, and can handle uncertainty of demand and PV power generation. Although all-

time steps recalculation (AtsR), which is a typical model predictive control methodology, can derive 

the most optimal operating schedules, it also has high computational costs because the operating 

schedules for all time steps are updated at each step. In contrast, TtsR reduced the computational cost 

by 73% against AtsR, while the daily operating cost of TtsR only increased by 0.61% compared with 

AtsR. Therefore, TtsR provided a flexible recalculation framework and low computational costs for 

updating operating schedules while meeting demands. 

 

 In Chapter 6.1, a new stable optimization method— εDE with random jumping (εDE-RJ)—was 

proposed. This method inspired a mutation method of genetic algorithm. This is because the original 

εDE algorithm had a fundamental drawback as it was unable to drop in a local optimum. Hence, the 

mutation method was added to the original εDE to avoid trapping a local optimum. The new εDE-

RJ method was applied to a complex building energy optimization, which included time-dependent 

heat sources, including a ground source heat pump (GSHP) system. Although previous studies applied 

various simplification methods for GSHP models to reduce computational costs, εDE-RJ could 

optimize the system without need for any simplifications. As a result, weekly operating costs were 

reduced by 16.35% using εDE-RJ when compared with empirical operation of the GSHP system. 

 

 In Chapter 7.1, a hybrid method of εDE-RJ and an artificial neural network (ANN) was proposed 

to optimize a building energy system that consisted of several time-dependent devices, including a 

GSHP and a solar collector. The ANN was used as a borehole exchanger (BHE) model with the GSHP, 

which reduced computational costs by 95% when compared with the physical model used in Chapter 

6. The number of optimization iterations could then be increased due to the reduction in computational 

costs for the BHE and GSHP calculation. In addition, due to the lower computational costs, detailed 

temperature variations, which affected the efficiency of the GSHP and solar collector, could be 

calculated for each iteration to provide a quasi-optimal solution. 
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 Chapter 8.1 and Chapter 9.1 focused on district energy optimizations and so differed from the 

previous chapters, which dealt with building energy optimizations. Although the district energy system 

contained multiple heat source machines, making it more difficult to identify an appropriate 

optimization method, εDE-RJ with ANN could be readily applied to this more complex optimization. 

This approach resulted in a reduction in daily operating cost of more than 10% compared with an 

empirical operation. The computational time was only 480 s on an ordinary personal computer. Hence, 

this method could be used in daily optimization procedures for actual energy systems. In addition, 

εDE-RJ was compared to Q-learning, which is a well-known reinforcement learning technique that 

has been used in many recent studies into energy system optimization. As a result, the daily operating 

cost using εDE-RJ was reduced by 18.3% compared with Q-learning, while the computational cost 

of εDE-RJ was only 480 s, compared with 5,900 s for Q-learning.  

 It is therefore concluded that εDE-RJ had an advantage over other optimization methods for 

finding quasi-optimal solutions, in terms of practical computational time on an ordinary computer; 

this advantage applied to complex energy systems that consist of nonlinear, discrete, and 

nondifferentiable configurations, and time-dependence machines.  

 

10.2 Recommendations for future studies 

 This thesis focused on simulation-based building and district energy optimizations. The use of 

εDE-RJ and TtsR provided advantages over other methods, as summarized in the previous section. 

Recommendations for further studies are as follows: 

 

1) ANN modeling for actual equipment 

 While ANN was used to create models of BHE and TES using data obtained from physical models, 

actual measurement data should be used to train ANN so as to produce an extended ANN for use in 

actual energy systems. As described in a previous co-authored conference paper [211], actual 

measured data has previously been used to train ANN; however, a wider range of situations should be 

studied to further demonstrate the flexibility of the ANN model and reduction in computational costs. 

 

2) Application of εDE-RJ and TtsR to actual energy management 

 All cases investigated in this thesis considered realistic conditions associated with energy systems, 

such as nonlinear characteristics of heat source machines, discrete set points of partial load rates, mass 

flow rates, and the number of available machines. However, it is strongly recommended that the 
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methods described are assessed in real-world situations rather than for empirical operations, as well 

as for other optimization technologies as described in [212–220]. 

 

3) Annual and life cycle simulation for planning optimizations 

 This thesis aimed to optimize only the operating schedules for building and district energy systems. 

However, energy system planning optimization is also important due to the numerous combinations 

of machine types, capacity, and system configurations that could be applied. Approximation methods 

such as εDE-RJ would provide a suitable approach for this. However, such a study would need to 

consider a longer time horizon, such as annual or multiple year periods. The study could validate the 

εDE-RJ approach for use in system planning optimization and should also consider how to integrate 

two-stage optimizations for both system planning and operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 10 | Conclusions and future studies 

194 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 

195 

 

REFERENCES 
 

[1] Kaizuka I. Residential PV Market in Japan. Int. Energy Agency Photovolt. Power Syst. Program., 

RTS Corporation; 2014. 

[2] The Ministry of Economy Trade and Industry. Japan’s Energy Plan 2015. 

http://www.enecho.meti.go.jp/en/category/brochures/pdf/energy_plan_2015.pdf. 

[3] The Ministry of Economy Trade and Industry. Roadmap of utilization strategy of hydro-energy 

and fuel cell revised edition (in Japanese). 2016. 

[4] International Energy Agency (IEA). CHP/DHC Country Scorecard : Japan. 2008. 

[5] Pales AF. The IEA CHP and DHC Collaborative. Int Energy Agency Insights Ser 2013 2013. 

[6] Aganda AA, Coney JER, Sheppard CGW. Airflow maldistribution and the performance of a 

packaged air conditioning unit evaporator. Appl Therm Eng 2000;20:515–28. doi:10.1016/S1359-

4311(99)00038-1. 

[7] Daikin AC. Packaged HVAC Systems n.d. http://www.daikinac.com/content/light-commercial. 

[8] Sustainable Dwelling. A Brief History of Heating and Cooling America’s Homes n.d. 

https://sunhomedesign.wordpress.com/2007/10/26/a-brief-history-of-heating-and-cooling-

americas-homes/. 

[9] U.S. Department of Energy. The Smart Grid: An Introduction. 2010. doi:10.1016/B978-1-59749-

570-7.00011-X. 

[10] ICAX (International Heat Transfer). Heat Sharing Networks n.d. 

http://www.icax.co.uk/Heat_Sharing.html. 

[11] California Independent System Operator. What the duck curve tells us about managing a green 

grid. vol. Fact Sheet. 2016. doi:CommPR/HS/10.2013. 

[12] New Energy and Industrial Technology Development Organization (NEDO). Renewables and 

Clean Energy for Industries – Japanese Case for Variable Renewable Energy Highly Penetrated 

Energy System and for Replacement of Fossil-fuel Fired Boilers-. 2016. 

[13] Nord Pool. Official website of Nord Pool 2017. http://www.nordpoolspot.com/. 

[14] PJM. Official website of PJM 2017. http://www.pjm.com/. 

[15] Imaizumi D. Why is demand response needed and what is its effect? (in Japanese). J Infrastruct 

Invest 2012. 

[16] Mitsubishi Electric Corporation. Business Overview and Environmental Issues for Which Risks 

and Opportunities Have Been Recognized and Evaluated n.d. 

http://www.mitsubishielectric.com/company/environment/business/information/index_print.html. 



REFERENCES 

196 

 

[17] Xu X, Huang G, Liu H, Chen L, Liu Q. The study of the dynamic load forecasting model about 

air-conditioning system based on the terminal user load. Energy Build 2015;94:263–8. 

doi:10.1016/j.enbuild.2015.01.018. 

[18] Kiefer J. Sequential Minimax Search for a Maximum. Proc Am Math Soc 1953;4:502. 

doi:10.2307/2032161. 

[19] Laouafi A, Mordjaoui M, Haddad S, Boukelia TE, Ganouche A. Online electricity demand 

forecasting based on an effective forecast combination methodology. Electr Power Syst Res 

2017;148:35–47. doi:10.1016/j.epsr.2017.03.016. 

[20] Laouafi A, Mordjaoui M, Laouafi F, Boukelia TE. Daily peak electricity demand forecasting 

based on an adaptive hybrid two-stage methodology. Int J Electr Power Energy Syst 

2016;77:136–44. doi:10.1016/j.ijepes.2015.11.046. 

[21] Liu Y, Wang W, Ghadimi N. Electricity Load Forecasting by an Improved Forecast Engine for 

Building Level Consumers. Energy 2017;139:18–30. doi:10.1016/j.energy.2017.07.150. 

[22] Lahouar A, Ben Hadj Slama J. Day-ahead load forecast using random forest and expert input 

selection. Energy Convers Manag 2015;103:1040–51. doi:10.1016/j.enconman.2015.07.041. 

[23] Abedinia O, Amjady N, Shafie-Khah M, Catalão JPS. Electricity price forecast using 

Combinatorial Neural Network trained by a new stochastic search method. Energy Convers 

Manag 2015;105:642–54. doi:10.1016/j.enconman.2015.08.025. 

[24] Lusis P, Khalilpour KR, Andrew L, Liebman A. Short-term residential load forecasting: Impact 

of calendar effects and forecast granularity. Appl Energy 2017;205:654–69. 

doi:10.1016/j.apenergy.2017.07.114. 

[25] Mocanu E, Nguyen PH, Kling WL, Gibescu M. Unsupervised energy prediction in a Smart Grid 

context using reinforcement cross-building transfer learning. Energy Build 2016;116:646–55. 

doi:10.1016/j.enbuild.2016.01.030. 

[26] Javed F, Arshad N, Wallin F, Vassileva I, Dahlquist E. Forecasting for demand response in smart 

grids: An analysis on use of anthropologic and structural data and short term multiple loads 

forecasting. Appl Energy 2012;96:150–60. doi:10.1016/j.apenergy.2012.02.027. 

[27] Ertugrul ÖF. Forecasting electricity load by a novel recurrent extreme learning machines 

approach. Int J Electr Power Energy Syst 2016;78:429–35. doi:10.1016/j.ijepes.2015.12.006. 

[28] Short M, Crosbie T, Dawood M, Dawood N. Load forecasting and dispatch optimisation for 

decentralised co-generation plant with dual energy storage. Appl Energy 2017;186:304–20. 

doi:10.1016/j.apenergy.2016.04.052. 

[29] Rasmussen LB, Bacher P, Madsen H, Nielsen HA, Heerup C, Green T. Load forecasting of 

supermarket refrigeration. Appl Energy 2016;163:32–40. doi:10.1016/j.apenergy.2015.10.046. 



REFERENCES 

197 

 

[30] Kaur A, Nonnenmacher L, Coimbra CFM. Net load forecasting for high renewable energy 

penetration grids. Energy 2016;114:1073–84. doi:10.1016/j.energy.2016.08.067. 

[31] Dahl M, Brun A, Andresen GB. Using ensemble weather predictions in district heating operation 

and load forecasting. Appl Energy 2017;193:455–65. doi:10.1016/j.apenergy.2017.02.066. 

[32] Ma W, Fang S, Liu G, Zhou R. Modeling of district load forecasting for distributed energy 

system. Appl Energy 2017;204:181–205. doi:10.1016/j.apenergy.2017.07.009. 

[33] Perez KX, Baldea M, Edgar TF. Integrated HVAC management and optimal scheduling of smart 

appliances for community peak load reduction. Energy Build 2016. 

doi:10.1016/j.enbuild.2016.04.003. 

[34] Turner WJN, Staino A, Basu B. Residential HVAC fault detection using a system identification 

approach. Energy Build 2017;151:1–17. doi:10.1016/j.enbuild.2017.06.008. 

[35] Edwards KC, Finn DP. Generalised water flow rate control strategy for optimal part load 

operation of ground source heat pump systems. Appl Energy 2015;150:50–60. 

doi:10.1016/j.apenergy.2015.03.134. 

[36] Dufo-López R. Optimisation of size and control of grid-connected storage under real time 

electricity pricing conditions. Appl Energy 2015;140:395–408. 

doi:10.1016/j.apenergy.2014.12.012. 

[37] de Oliveira V, Jäschke J, Skogestad S. Optimal operation of energy storage in buildings: Use of 

the hot water system. J Energy Storage 2016;5:102–12. doi:10.1016/j.est.2015.11.009. 

[38] Rahiminejad A, Vahidi B, Hejazi MA, Shahrooyan S. Optimal scheduling of dispatchable 

distributed generation in smart environment with the aim of energy loss minimization. Energy 

2016;116:190–201. doi:10.1016/j.energy.2016.09.111. 

[39] Oh SD, Kim KY, Oh SB, Kwak HY. Optimal operation of a 1-kW PEMFC-based CHP system 

for residential applications. Appl Energy 2012;95:93–101. doi:10.1016/j.apenergy.2012.02.019. 

[40] Jing ZX, Jiang XS, Wu QH, Tang WH, Hua B. Modelling and optimal operation of a small-scale 

integrated energy based district heating and cooling system. Energy 2014;73:399–415. 

doi:10.1016/j.energy.2014.06.030. 

[41] Calvillo CF, Sánchez-Miralles A, Villar J, Martín F. Optimal planning and operation of 

aggregated distributed energy resources with market participation. Appl Energy 2016;182:340–

57. doi:10.1016/j.apenergy.2016.08.117. 

[42] Fang F, Wang QH, Shi Y. A novel optimal operational strategy for the CCHP system based on 

two operating modes. IEEE Trans Power Syst 2012;27:1032–41. 

doi:10.1109/TPWRS.2011.2175490. 

[43] Cui W, Zhou S, Liu X. Optimization of design and operation parameters for hybrid ground-source 



REFERENCES 

198 

 

heat pump assisted with cooling tower. Energy Build 2015;99:253–62. 

doi:10.1016/j.enbuild.2015.04.034. 

[44] Hu B, Li Y, Mu B, Wang S, Seem JE, Cao F. Extremum seeking control for efficient operation of 

hybrid ground source heat pump system. Renew Energy 2016;86:332–46. 

doi:10.1016/j.renene.2015.07.092. 

[45] Li M, Mu H, Li N, Ma B. Optimal design and operation strategy for integrated evaluation of 

CCHP (combined cooling heating and power) system. Energy 2016;99:202–20. 

doi:10.1016/j.energy.2016.01.060. 

[46] Liu M, Shi Y, Fang F. A new operation strategy for CCHP systems with hybrid chillers. Appl 

Energy 2012;95:164–73. doi:10.1016/j.apenergy.2012.02.035. 

[47] Ondeck AD, Edgar TF, Baldea M. Optimal operation of a residential district-level combined 

photovoltaic/natural gas power and cooling system. Appl Energy 2015;156:593–606. 

doi:10.1016/j.apenergy.2015.06.045. 

[48] Thangavelu SR, Myat A, Khambadkone A. Energy optimization methodology of multi-chiller 

plant in commercial buildings. Energy 2017;123:64–76. doi:10.1016/j.energy.2017.01.116. 

[49] Roldán-Blay C, Escrivá-Escrivá G, Roldán-Porta C, Álvarez-Bel C. An optimisation algorithm 

for distributed energy resources management in micro-scale energy hubs. Energy 2017;132:126–

35. doi:10.1016/j.energy.2017.05.038. 

[50] Tavakoli SD, Mahdavyfakhr M, Hamzeh M, Sheshyekani K, Afjei E. A unified control strategy 

for power sharing and voltage balancing in bipolar DC microgrids. Sustain Energy, Grids 

Networks 2017;11:58–68. doi:10.1016/j.segan.2017.07.004. 

[51] Hein P, Kolditz O, Görke UJ, Bucher A, Shao H. A numerical study on the sustainability and 

efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl Therm 

Eng 2016;100:421–33. doi:10.1016/j.applthermaleng.2016.02.039. 

[52] Wakui T, Sawada K, Kawayoshi H, Yokoyama R, Iitaka H, Aki H. Optimal operations 

management of residential energy supply networks with power and heat interchanges. Energy 

Build 2017;151:167–86. doi:10.1016/j.enbuild.2017.06.041. 

[53] Wakui T, Yokoyama R. Optimal sizing of residential gas engine cogeneration system for power 

interchange operation from energy-saving viewpoint. Energy 2011;36:3816–24. 

doi:10.1016/j.energy.2010.09.025. 

[54] Lindberg KB, Doorman G, Fischer D, Korpås M, Ånestad A, Sartori I. Methodology for optimal 

energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy 

Build 2016;127:194–205. doi:10.1016/j.enbuild.2016.05.039. 

[55] Siemer L, Schöpfer F, Kleinhans D. Cost-optimal operation of energy storage units: Benefits of a 



REFERENCES 

199 

 

problem-specific approach. J Energy Storage 2016;6:11–21. doi:10.1016/j.est.2016.01.005. 

[56] Beck T, Kondziella H, Huard G, Bruckner T. Optimal operation, configuration and sizing of 

generation and storage technologies for residential heat pump systems in the spotlight of self-

consumption of photovoltaic electricity. Appl Energy 2017;188:604–19. 

doi:10.1016/j.apenergy.2016.12.041. 

[57] Ashouri A, Fux SS, Benz MJ, Guzzella L. Optimal design and operation of building services 

using mixed-integer linear programming techniques. Energy 2013;59:365–76. 

doi:10.1016/j.energy.2013.06.053. 

[58] Marzband M, Alavi H, Ghazimirsaeid SS, Uppal H, Fernando T. Optimal energy management 

system based on stochastic approach for a home Microgrid with integrated responsive load 

demand and energy storage. Sustain Cities Soc 2017;28:256–64. doi:10.1016/j.scs.2016.09.017. 

[59] Zare Oskouei M, Sadeghi Yazdankhah A. Scenario-based stochastic optimal operation of wind, 

photovoltaic, pump-storage hybrid system in frequency- based pricing. Energy Convers Manag 

2015;105:1105–14. doi:10.1016/j.enconman.2015.08.062. 

[60] Ameri M, Besharati Z. Optimal design and operation of district heating and cooling networks 

with CCHP systems in a residential complex. Energy Build 2016;110:135–48. 

doi:10.1016/j.enbuild.2015.10.050. 

[61] Pazouki S, Haghifam MR. Optimal planning and scheduling of energy hub in presence of wind, 

storage and demand response under uncertainty. Int J Electr Power Energy Syst 2016;80:219–39. 

doi:10.1016/j.ijepes.2016.01.044. 

[62] Majidi M, Nojavan S, Zare K. Optimal stochastic short-term thermal and electrical operation of 

fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response 

program. Energy Convers Manag 2017;144:132–42. doi:10.1016/j.enconman.2017.04.051. 

[63] Gu W, Lu S, Wu Z, Zhang X, Zhou J, Zhao B, et al. Residential CCHP microgrid with load 

aggregator: Operation mode, pricing strategy, and optimal dispatch. Appl Energy 2017;205:173–

86. doi:10.1016/j.apenergy.2017.07.045. 

[64] Kim Y, Norford LK. Optimal use of thermal energy storage resources in commercial buildings 

through price-based demand response considering distribution network operation. Appl Energy 

2017;193:308–24. doi:10.1016/j.apenergy.2017.02.046. 

[65] Stadler P, Ashouri A, Maréchal F. Model-based optimization of distributed and renewable energy 

systems in buildings. Energy Build 2016. doi:10.1016/j.enbuild.2016.03.051. 

[66] Fujimoto T, Yamaguchi Y, Shimoda Y. Energy management for voltage control in a net-zero 

energy house community considering appliance operation constraints and variety of households. 

Energy Build 2017;147:188–99. doi:10.1016/j.enbuild.2017.05.009. 



REFERENCES 

200 

 

[67] IBM. IBM ILOG CPLEX Optimization Studio n.d. https://www.ibm.com/us-en/marketplace/ibm-

ilog-cplex. 

[68] GAMS. GAMS Solvers n.d. https://www.gams.com/optimization-solvers/. 

[69] Gu W, Wang J, Lu S, Luo Z, Wu C. Optimal operation for integrated energy system considering 

thermal inertia of district heating network and buildings. Appl Energy 2017;199:234–46. 

doi:10.1016/j.apenergy.2017.05.004. 

[70] Sichilalu SM, Xia X. Optimal power dispatch of a grid tied-battery-photovoltaic system 

supplying heat pump water heaters. Energy Convers Manag 2015;102:81–91. 

doi:10.1016/j.enconman.2015.03.087. 

[71] Nwulu NI, Xia X. Optimal dispatch for a microgrid incorporating renewables and demand 

response. Renew Energy 2017;101:16–28. doi:10.1016/j.renene.2016.08.026. 

[72] Behzadi Forough A, Roshandel R. Multi objective receding horizon optimization for optimal 

scheduling of hybrid renewable energy system. Energy Build 2017;150:583–97. 

doi:10.1016/j.enbuild.2017.06.031. 

[73] Wamalwa F, Sichilalu S, Xia X. Optimal control of conventional hydropower plant retrofitted 

with a cascaded pumpback system powered by an on-site hydrokinetic system. Energy Convers 

Manag 2017;132:438–51. doi:10.1016/j.enconman.2016.11.049. 

[74] Tveit TM, Savola T, Gebremedhin A, Fogelholm CJ. Multi-period MINLP model for optimising 

operation and structural changes to CHP plants in district heating networks with long-term 

thermal storage. Energy Convers Manag 2009;50:639–47. doi:10.1016/j.enconman.2008.10.010. 

[75] Luo N, Hong T, Li H, Jia R, Weng W. Data analytics and optimization of an ice-based energy 

storage system for commercial buildings. Appl Energy 2017;204:459–75. 

doi:10.1016/j.apenergy.2017.07.048. 

[76] Farrokhifar M. Optimal operation of energy storage devices with RESs to improve efficiency of 

distribution grids; technical and economical assessment. Int J Electr Power Energy Syst 

2016;74:153–61. doi:10.1016/j.ijepes.2015.07.029. 

[77] Ranaweera I, Midtgård O-M. Optimization of operational cost for a grid-supporting PV system 

with battery storage. Renew Energy 2016;88:262–72. doi:10.1016/j.renene.2015.11.044. 

[78] Wegmann R, Döge V, Becker J, Sauer DU. Optimized operation of hybrid battery systems for 

electric vehicles using deterministic and stochastic dynamic programming. J Energy Storage 

2017;14:22–38. doi:10.1016/j.est.2017.09.008. 

[79] Facci AL, Andreassi L, Ubertini S. Optimization of CHCP (combined heat power and cooling) 

systems operation strategy using dynamic programming. Energy 2014;66:387–400. 

doi:10.1016/j.energy.2013.12.069. 



REFERENCES 

201 

 

[80] Chen H-J, Wang DWP, Chen S-L. Optimization of an ice-storage air conditioning system using 

dynamic programming method. Appl Therm Eng 2005;25:461–72. 

doi:10.1016/j.applthermaleng.2003.12.006. 

[81] Keefe MPO, Markel T. Dynamic Programming Applied to Investigate Energy Management 

Strategies for a Plug-in HEV. Present 22nd Int Batter Hybrid Fuel Cell Electr Veh Symp Exhib 

2006. 

[82] Chen S-Y, Hung Y-H, Wu C-H, Huang S-T. Optimal energy management of a hybrid electric 

powertrain system using improved particle swarm optimization. Appl Energy 2015;160:132–45. 

doi:10.1016/j.apenergy.2015.09.047. 

[83] Tsukada T, Tamura T, Kitagawa S, Fukuyama Y. Optimal operational planning for cogeneration 

system using particle swarm optimization. Proc. 2003 IEEE Swarm Intell. Symp. SIS’03 (Cat. 

No.03EX706), IEEE; 2003, p. 138–43. doi:10.1109/SIS.2003.1202259. 

[84] Elsied M, Oukaour A, Gualous H, Lo Brutto OA. Optimal economic and environment operation 

of micro-grid power systems. Energy Convers Manag 2016;122:182–94. 

doi:10.1016/j.enconman.2016.05.074. 

[85] Tang J, Wang D, Wang X, Jia H, Wang C, Huang R, et al. Study on day-ahead optimal economic 

operation of active distribution networks based on Kriging model assisted particle swarm 

optimization with constraint handling techniques. Appl Energy 2017;204:143–62. 

doi:10.1016/j.apenergy.2017.06.053. 

[86] Hosseinnezhad V, Rafiee M, Ahmadian M, Siano P. Optimal day-ahead operational planning of 

microgrids. Energy Convers Manag 2016;126:142–57. doi:10.1016/j.enconman.2016.07.076. 

[87] Kitamura S, Mori K, Shindo S, Izui Y. Modified multiobjective particle swarm optimization 

method and its application to energy management system for factories. Electr Eng Japan 

2006;156:33–42. doi:10.1002/eej.20269. 

[88] Bhattacharyya B, Raj S. PSO based bio inspired algorithms for reactive power planning. Int J 

Electr Power Energy Syst 2016;74:396–402. doi:10.1016/j.ijepes.2015.07.037. 

[89] Kerdphol T, Qudaih Y, Mitani Y. Optimum battery energy storage system using PSO considering 

dynamic demand response for microgrids. Int J Electr Power Energy Syst 2016. 

doi:10.1016/j.ijepes.2016.03.064. 

[90] Ardakani  a. J, Ardakani FF, Hosseinian SH. A novel approach for optimal chiller loading using 

particle swarm optimization. Energy Build 2008;40:2177–87. doi:10.1016/j.enbuild.2008.06.010. 

[91] Haddadian H, Noroozian R. Optimal operation of active distribution systems based on microgrid 

structure. Renew Energy 2017;104:197–210. doi:10.1016/j.renene.2016.12.018. 

[92] Foroutan VB, Moradi MH, Abedini M. Optimal operation of autonomous microgrid including 



REFERENCES 

202 

 

wind turbines. Renew Energy 2016. doi:10.1016/j.renene.2016.07.008. 

[93] Jin X, Mu Y, Jia H, Wu J, Xu X, Yu X. Optimal day-ahead scheduling of integrated urban energy 

systems. Appl Energy 2016;180:1–13. doi:10.1016/j.apenergy.2016.07.071. 

[94] Rouholamini M, Mohammadian M. Heuristic-based power management of a grid-connected 

hybrid energy system combined with hydrogen storage. Renew Energy 2016. 

doi:10.1016/j.renene.2016.04.085. 

[95] González A, Riba J-R, Rius A. Combined heat and power design based on environmental and 

cost criteria. Energy 2016;116:922–32. doi:10.1016/j.energy.2016.10.025. 

[96] Pu L, Qi D, Xu L, Li Y. Optimization on the performance of ground heat exchangers for GSHP 

using Kriging model based on MOGA. Appl Therm Eng 2017;118:480–9. 

doi:10.1016/j.applthermaleng.2017.02.114. 

[97] Huang W, Lam H. Using genetic algorithms to optimize controller parameters for HVAC 

systems. Energy Build 1997;26:277–82. 

[98] Zeng R, Li H, Liu L, Zhang X, Zhang G. A novel method based on multi-population genetic 

algorithm for CCHP–GSHP coupling system optimization. Energy Convers Manag 

2015;105:1138–48. doi:10.1016/j.enconman.2015.08.057. 

[99] Wieczorek M, Lewandowski M. A mathematical representation of an energy management 

strategy for hybrid energy storage system in electric vehicle and real time optimization using a 

genetic algorithm. Appl Energy 2017;192:222–33. doi:10.1016/j.apenergy.2017.02.022. 

[100] Sanaye S, Fardad A, Mostakhdemi M. Thermoeconomic optimization of an ice thermal storage 

system for gas turbine inlet cooling. Energy 2011;36:1057–67. doi:10.1016/j.energy.2010.12.002. 

[101] Bahmani-Firouzi B, Azizipanah-Abarghooee R. Optimal sizing of battery energy storage for 

micro-grid operation management using a new improved bat algorithm. Int J Electr Power Energy 

Syst 2014;56:42–54. doi:10.1016/j.ijepes.2013.10.019. 

[102] Baziar A. A Novel Self Adaptive Modification Approach Based on Bat Algorithm for Optimal 

Management of Renewable MG. J Intell Learn Syst Appl 2013;5:11–8. 

doi:10.4236/jilsa.2013.51002. 

[103] Singh H, Srivastava L. Modified Differential Evolution algorithm for multi-objective VAR 

management. Int J Electr Power Energy Syst 2014;55:731–40. doi:10.1016/j.ijepes.2013.10.015. 

[104] Tamilselvi S, Baskar S. Modified parameter optimization of distribution transformer design using 

covariance matrix adaptation evolution strategy. Int J Electr Power Energy Syst 2014;61:208–18. 

doi:10.1016/j.ijepes.2014.03.039. 

[105] Lee W-S, Chen Y-T, Kao Y. Optimal chiller loading by differential evolution algorithm for 

reducing energy consumption. Energy Build 2011;43:599–604. 



REFERENCES 

203 

 

doi:10.1016/j.enbuild.2010.10.028. 

[106] Acharjee P. Optimal power flow with UPFC using security constrained self-adaptive differential 

evolutionary algorithm for restructured power system. Int J Electr Power Energy Syst 

2016;76:69–81. doi:10.1016/j.ijepes.2015.09.025. 

[107] Ramli M a. M, Ishaque K, Jawaid F, Al-Turki Y a., Salam Z. A modified differential evolution 

based maximum power point tracker for photovoltaic system under partial shading condition. 

Energy Build 2015;103:175–84. doi:10.1016/j.enbuild.2015.06.058. 

[108] Basu M. Multi-objective optimal reactive power dispatch using multi-objective differential 

evolution. Int J Electr Power Energy Syst 2016;82:213–24. doi:10.1016/j.ijepes.2016.03.024. 

[109] Abou El Ela A a., Abido M a., Spea SR. Optimal power flow using differential evolution 

algorithm. Electr Power Syst Res 2010;80:878–85. doi:10.1016/j.epsr.2009.12.018. 

[110] Nguyen TT, Vo DN, Dinh BH. Cuckoo search algorithm for combined heat and power economic 

dispatch. Int J Electr Power Energy Syst 2016;81:204–14. doi:10.1016/j.ijepes.2016.02.026. 

[111] Piechocki J, Ambroziak D, Palkowski A, Redlarski G. Use of Modified Cuckoo Search algorithm 

in the design process of integrated power systems for modern and energy self-sufficient farms. 

Appl Energy 2014;114:901–8. doi:10.1016/j.apenergy.2013.07.057. 

[112] Sekhar P, Mohanty S. An enhanced cuckoo search algorithm based contingency constrained 

economic load dispatch for security enhancement. Int J Electr Power Energy Syst 2016;75:303–

10. doi:10.1016/j.ijepes.2015.09.018. 

[113] Basu M, Chowdhury  a. Cuckoo search algorithm for economic dispatch. Energy 2013;60:99–

108. doi:10.1016/j.energy.2013.07.011. 

[114] Berrazouane S, Mohammedi K. Parameter optimization via cuckoo optimization algorithm of 

fuzzy controller for energy management of a hybrid power system. Energy Convers Manag 

2014;78:652–60. doi:10.1016/j.enconman.2013.11.018. 

[115] Camargo MP, Rueda JL, Erlich I, Añó O. Comparison of emerging metaheuristic algorithms for 

optimal hydrothermal system operation. Swarm Evol Comput 2014;18:83–96. 

doi:10.1016/j.swevo.2014.04.001. 

[116] Deihimi A, Keshavarz Zahed B, Iravani R. An interactive operation management of a micro-grid 

with multiple distributed generations using multi-objective uniform water cycle algorithm. 

Energy 2016;106:482–509. doi:10.1016/j.energy.2016.03.048. 

[117] Sayyaadi H, Amlashi EH, Amidpour M. Multi-objective optimization of a vertical ground source 

heat pump using evolutionary algorithm. Energy Convers Manag 2009;50:2035–46. 

doi:10.1016/j.enconman.2009.04.006. 

[118] Singh M, Dhillon JS. Multiobjective thermal power dispatch using opposition-based greedy 



REFERENCES 

204 

 

heuristic search. Int J Electr Power Energy Syst 2016. doi:10.1016/j.ijepes.2016.03.016. 

[119] Hasikos J, Sarimveis H, Zervas PL, Markatos NC. Operational optimization and real-time control 

of fuel-cell systems. J Power Sources 2009;193:258–68. doi:10.1016/j.jpowsour.2009.01.048. 

[120] Wang X, El-Farra NH, Palazoglu A. Optimal scheduling of demand responsive industrial 

production with hybrid renewable energy systems. Renew Energy 2016. 

doi:10.1016/j.renene.2016.05.051. 

[121] Bizon N. Energy optimization of fuel cell system by using global extremum seeking algorithm. 

Appl Energy 2017;206:458–74. doi:10.1016/j.apenergy.2017.08.097. 

[122] Schirrer A, Brandstetter M, Leobner I, Hauer S, Kozek M. Nonlinear model predictive control for 

a heating and cooling system of a low-energy office building. Energy Build 2016;125:86–98. 

doi:10.1016/j.enbuild.2016.04.029. 

[123] Zhu J, Vaghefi SA, Jafari MA, Lu Y, Ghofrani A. Managing demand uncertainty with cost-for-

deviation retail pricing. Energy Build 2016;118:46–56. doi:10.1016/j.enbuild.2016.02.025. 

[124] Razmara M, Maasoumy M, Shahbakhti M, Robinett RD. Optimal exergy control of building 

HVAC system. Appl Energy 2015;156:555–65. doi:10.1016/j.apenergy.2015.07.051. 

[125] Kim SH. Building demand-side control using thermal energy storage under uncertainty: An 

adaptive Multiple Model-based Predictive Control (MMPC) approach. Build Environ 

2013;67:111–28. doi:10.1016/j.buildenv.2013.05.005. 

[126] Mayer B, Killian M, Kozek M. Management of hybrid energy supply systems in buildings using 

mixed-integer model predictive control. Energy Convers Manag 2015;98:470–83. 

doi:10.1016/j.enconman.2015.02.076. 

[127] Yun K, Cho H, Luck R, Mago PJ. Real-time combined heat and power operational strategy using 

a hierarchical optimization algorithm. Proc Inst Mech Eng Part A J Power Energy 2011;225:403–

12. doi:10.1177/2041296710394287. 

[128] Petrollese M, Valverde L, Cocco D, Cau G, Guerra J. Real-time integration of optimal generation 

scheduling with MPC for the energy management of a renewable hydrogen-based microgrid. 

Appl Energy 2016;166:96–106. doi:10.1016/j.apenergy.2016.01.014. 

[129] Rossi I, Banta L, Cuneo A, Ferrari ML, Traverso AN, Traverso A. Real-time management 

solutions for a smart polygeneration microgrid. Energy Convers Manag 2016;112:11–20. 

doi:10.1016/j.enconman.2015.12.026. 

[130] Sanjari MJ, Karami H, Gooi HB. Micro-generation dispatch in a smart residential multi-carrier 

energy system considering demand forecast error. Energy Convers Manag 2016. 

doi:10.1016/j.enconman.2016.04.092. 

[131] Hida Y, Shibutani S, Amano M, Maehara N. District Cooling Plant with High Efficiency Chiller 



REFERENCES 

205 

 

and Ice Storage System. Mitsubishi Heavy Ind Ltd Tech Rev 2008;45:37–44. 

[132] Maehara N, Shimoda Y. Optimum chiller system control methods: research of optimum control 

system for district cooling plant using PSO optimization methods (in Japanese). Trans Soc 

Heating, Air-Conditioning Sanit Eng Japan 2014;209:1–11. 

[133] Takenaka Corporation. Development and aapplication of new energy management system for the 

electric power system reform (in Japanese) 2015. 

http://www.takenaka.co.jp/news/2015/09/04/index.html. 

[134] SmartWatt. Case studies 2017. https://www.smartwatt.com/case-studies/. 

[135] REC GREEN Energy Solutions Co. Ltd. New Project – Energy Optimization Solutions for 

HVAC System and Energy Efficient Products 2014. http://www.rec-

gt.com/en/news/detail/20/?page=10. 

[136] Hammerstrom D, Johnson D, Kirkeby C, Agalgaonkar Y, Elbert S, Kuchar O. Pacific Northwest 

Smart Grid Demonstration Project: Technology Performance Report Highlights. 2015. 

[137] DeCarolis J, Hunter K, Sreepathi S. The TEMOA Project: Tools for Energy Model Optimization 

and Analysis. Int Energy Work 2010 2010:1–18. 

[138] Hunter K, Sreepathi S, DeCarolis JF. Modeling for insight using Tools for Energy Model 

Optimization and Analysis (Temoa). Energy Econ 2013;40:339–49. 

doi:10.1016/j.eneco.2013.07.014. 

[139] DeCarolis JF, Babaee S, Li B, Kanungo S. Modelling to generate alternatives with an energy 

system optimization model. Environ Model Softw 2016;79:300–10. 

doi:10.1016/j.envsoft.2015.11.019. 

[140] Gurobi Optimization Inc. Gurobi optimizer 7.5 2017. http://www.gurobi.com/. 

[141] Simpkins T, Cutler D, Anderson K, Olis D, Elgqvist E, Callahan M, et al. REopt: A Platform for 

Energy System Integration and Optimization. Vol 2 Econ Environ Policy Asp Altern Energy; 

Fuels Infrastructure, Biofuels Energy Storage; High Perform Build Sol Build Incl Sol Clim 

Control Sustain Cities Communit 2014;2:V002T03A006. doi:10.1115/ES2014-6570. 

[142] Diorio N, Cutler D, Butt B. Increasing Resiliency Through Renewable Energy Microgrids. J 

Energy Manag 2017;2:22–38. 

[143] National Renewable Energy Laboratory (NREL). BEopt 2017. http://beopt.nrel.gov/home. 

[144] The Ministry of Land Infrastructure Transport and Tourism. Life cycle energy management tool 

(LCEM tool) 2014. 

[145] Sarbu I, Sebarchievici C. General review of ground-source heat pump systems for heating and 

cooling of buildings. Energy Build 2014;70:441–54. doi:10.1016/j.enbuild.2013.11.068. 

[146] Simpson C. Characteristics of Rechargeable Batteries. Natl Semicond 2011:1–12. 



REFERENCES 

206 

 

[147] Duffie J a., Beckman W a., Worek WM. Solar Engineering of Thermal Processes, 4nd ed. 2013. 

doi:10.1002/9781118671603. 

[148] Land AH, Doig AG. An Automatic Method of Solving Discrete Programming Problems. 

Econometrica 1960;28:497–520. 

[149] Dakin RJ. A Tree Search Algorithm for Mixed Integer Programming Problems. Comput J 

1965;8:250–5. 

[150] Andersen ED, Andersen KD. Presolving in linear programming. Math Program 1995;71:221–45. 

doi:10.1007/BF01586000. 

[151] Cornuéjols G. Valid inequalities for mixed integer linear programs. Math Program 2007;112:3–

44. doi:10.1007/s10107-006-0086-0. 

[152] Richard E. Bellman. Dynamic Programming. Princeton University Press; 1957. 

[153] Ikeda S, Ooka R. Metaheuristic optimization methods for a comprehensive operating schedule of 

battery, thermal energy storage, and heat source in a building energy system. Appl Energy 

2015;151:192–205. doi:10.1016/j.apenergy.2015.04.029. 

[154] Holland J. Adaptation in natural and artificial systems. Cambridge, USA: MIT Press; 1975. 

[155] Takahashi T, Kawai K, Nakai H, Ema Y. Development of the Automatic Modeling System for 

Reaction Mechanisms Using REX+JGG. Phys Procedia 2013;46:239–47. 

doi:10.1016/j.phpro.2013.07.060. 

[156] Akimoto Y, Sakuma J, Ono I, Kobayashi S. Adaptation of expansion rate for real-coded 

crossovers. Proc 11th Annu Conf Genet Evol Comput - GECCO ’09 2009:739. 

doi:10.1145/1569901.1570004. 

[157] Uemura K, Nakashima N, Nagata Y, Ono I. A new real-coded genetic algorithm for implicit 

constrained black-box function optimization. 2013 IEEE Congr Evol Comput 2013:2887–94. 

doi:10.1109/CEC.2013.6557920. 

[158] Kennedy J, Eberhart R. Particle swarm optimization. Proc ICNN’95 - Int Conf Neural Networks 

1995;4:1942–8. doi:10.1109/ICNN.1995.488968. 

[159] Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE Int Conf Evol Comput 

Proceedings IEEE World Congr Comput Intell (Cat No98TH8360) 1998:69–73. 

doi:10.1109/ICEC.1998.699146. 

[160] Higashi N, Iba H. Particle swarm optimization with Gaussian mutation. Proc 2003 IEEE Swarm 

Intell Symp SIS’03 (Cat No03EX706) 2003:72–9. doi:10.1109/SIS.2003.1202250. 

[161] Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation. 2003 Congr Evol 

Comput 2003 CEC ’03 2003;2:1425–30. doi:10.1109/CEC.2003.1299838. 

[162] Miranda V, Fonseca N. EPSO-evolutionary particle swarm optimization, a new algorithm with 



REFERENCES 

207 

 

applications in power systems. IEEE/PES Transm. Distrib. Conf. Exhib., vol. 2, IEEE; 1995, p. 

745–50. doi:10.1109/TDC.2002.1177567. 

[163] Yang X-S. Cuckoo Search via Lévy flights. 2009 World Congr. Nat. Biol. Inspired Comput., 

IEEE; 2009, p. 210–4. doi:10.1109/NABIC.2009.5393690. 

[164] Civicioglu P, Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm 

optimization, differential evolution and artificial bee colony algorithms. vol. 39. 2011. 

doi:10.1007/s10462-011-9276-0. 

[165] Yang X-S, Gandomi AH. Bat algorithm: a novel approach for global engineering optimization. 

Eng Comput 2012;29:464–83. doi:10.1108/02644401211235834. 

[166] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global 

optimization over continuous spaces. J Glob Optim 1997;11:341–359. 

[167] Takahama T, Sakai S. Constrained optimization by the ε constrained differential evolution with 

an archive and gradient-based mutation. IEEE Congr. Evol. Comput., IEEE; 2010, p. 1–9. 

doi:10.1109/CEC.2010.5586484. 

[168] Watkins CJCH. Learning from Delayed Rewards. Doctral Thesis (King’s Coll 1989. 

[169] Ikeda S, Ooka R. Development of a metaheuristic nonlinear multi-objective optimization method 

for operating energy systems including CGS and energy storage systems. J Environ Eng Archit 

Inst Japan 2016;81:101–10. 

[170] The Society of Heating Air-Conditioning and Sanitary Engineers of Japan. CASCADE III: 

Computer Aided Simulation for Cogeneration Assessment & Design. Tokyo, Japan: The Society 

of Heating Air-Conditioning and Sanitary Engineers of Japan; 2003. 

[171] Meteorological Data System Co. Ltd. Expanded AMeDAS Weather Data (in Japanese) n.d. 

http://www.metds.co.jp/. 

[172] The Ministry of Economy Trade and Industry. Report of power plants’ generation costs (in 

Japanese) 2015. 

[173] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: 

NSGA-II. IEEE Trans Evol Comput 2002;6:182–97. doi:10.1109/4235.996017. 

[174] Ali M, Siarry P, Pant M. An efficient Differential Evolution based algorithm for solving multi-

objective optimization problems. Eur J Oper Res 2011;217:404–16. 

doi:10.1016/j.ejor.2011.09.025. 

[175] Crow ML. Computational Methods for Electric Power Systems, Second Edition (Electric Power 

Engineering Series). 2 edition. CRC Press; 2009. 

[176] Toshiba Corporation. Smart Grid Progress in Japan & US. US-Japan Renew. Energy Policy Bus. 

Roundtable, 2012. 



REFERENCES 

208 

 

[177] Panasonic Corporation. Energy Solutions for Homes 2015. http://panasonic.net/es/solution-

works/HouseEnergy/. 

[178] Ikeda S, Ooka R. Optimal Operation of Energy Systems Including Energy Storage Equipment 

under Different Connections and Electricity Prices. Sustain Cities Soc 2016;21. 

doi:http://dx.doi.org/10.1016/j.scs.2015.10.007. 

[179] The Society of Heating Air-Conditioning and Sanitary Engineers of Japan (SHASE). 

NewHASP/ACLD Ver.20091117. Japanese Association of Building Mechanical and Electrical 

Engineers; 2009. 

[180] Ikeda S, Ooka R. A New Optimization Strategy for the Operating Schedule of Energy Systems 

under Uncertainty of Renewable Energy Sources and Demand Changes. Energy Build 

2016;125:75–85. doi:10.1016/j.enbuild.2016.04.080. 

[181] Bojić M, Cvetković D, Bojić L. Decreasing energy use and influence to environment by radiant 

panel heating using different energy sources. Appl Energy 2015;138:404–13. 

doi:10.1016/j.apenergy.2014.10.063. 

[182] Genchi Y, Kikegawa Y, Inaba A. CO2 payback-time assessment of a regional-scale heating and 

cooling system using a ground source heat-pump in a high energy-consumption area in Tokyo. 

Appl Energy 2002;71:147–60. doi:10.1016/S0306-2619(02)00010-7. 

[183] Han C, Yu XB. Performance of a residential ground source heat pump system in sedimentary 

rock formation. Appl Energy 2016;164:89–98. doi:10.1016/j.apenergy.2015.12.003. 

[184] Ozyurt O, Ekinci DA. Experimental study of vertical ground-source heat pump performance 

evaluation for cold climate in Turkey. Appl Energy 2011;88:1257–65. 

doi:10.1016/j.apenergy.2010.10.046. 

[185] Yan L, Hu P, Li C, Yao Y, Xing L, Lei F, et al. The performance prediction of ground source heat 

pump system based on monitoring data and data mining technology. Energy Build 

2016;127:1085–95. doi:10.1016/j.enbuild.2016.06.055. 

[186] Capozza A, Zarrella A, De Carli M. Long-term analysis of two GSHP systems using validated 

numerical models and proposals to optimize the operating parameters. Energy Build 2015;93:50–

64. doi:10.1016/j.enbuild.2015.02.005. 

[187] Luo J, Rohn J, Xiang W, Bertermann D, Blum P. A review of ground investigations for ground 

source heat pump (GSHP) systems. Energy Build 2016;117:160–75. 

doi:10.1016/j.enbuild.2016.02.038. 

[188] Gultekin A, Aydin M, Sisman A. Thermal performance analysis of multiple borehole heat 

exchangers. Energy Convers Manag 2016;122:544–51. doi:10.1016/j.enconman.2016.05.086. 

[189] Pardo N, Montero Á, Martos J, Urchueguía JF. Optimization of hybrid - ground coupled and air 



REFERENCES 

209 

 

source - heat pump systems in combination with thermal storage. Appl Therm Eng 

2010;30:1073–7. doi:10.1016/j.applthermaleng.2010.01.015. 

[190] Ikeda S, Choi W, Ooka R. Optimization method for multiple heat source operation including 

ground source heat pump considering dynamic variation in ground temperature. Appl Energy 

2017;193:466–78. doi:10.1016/j.apenergy.2017.02.047. 

[191] Bureau of Waterworks Tokyo Metropolitan Government. Public water temperature (in Japanese) 

2016. http://www.waterworks.metro.tokyo.jp/suigen/topic/03.html. 

[192] Himeji city. Pipes pressure loss (in Japanese) n.d. 

http://www.city.himeji.lg.jp/var/rev0/0032/3805/3-3-3.pdf. 

[193] EBARA Corporation. Pump catalogue (in Japanese) n.d. 

https://www.ebook.ebara.com/handbook/pump/50Hz/html/index.html#page=33. 

[194] Carslaw HS, Jaeger JC. Conduction of Heat in Solids. 2nd ed. UK: Oxford University Press; 

1959. 

[195] Ingersoll LR, Zobel OJ, Ingersoll AC. Heat conduction with engineering, geological, and other 

applications. Madison: University of Wisconsin Press; 1954. 

[196] The Society of Heating Air-Conditioning and Sanitary Engineers of Japan. Computer Aided 

Simulation for Cogeneration Assessment & Design III (in Japanese). Maruz Publ 2003. 

[197] Pickering B, Ikeda S, Choudhary R, Ooka R. Comparison of Metaheuristic and Linear 

Programming Models for the Purpose of Optimising Building Energy Supply Operation 

Schedule. CLIMA2016 Proc 12th REHVA World Congr Vol 6 Aalborg Aalborg Univ Dep Civ 

Eng 2016. 

[198] Engineering page. Typical overall heat transfer coefficients (U-values) n.d. 

http://www.engineeringpage.com/technology/thermal/transfer.html. 

[199] International Energy Agency (IEA). Cogeneration and District Energy. IEA Rep 2009:60. 

doi:10.1787/9789264077171-en. 

[200] Abedini M, Moradi MH, Hosseinian SM. Optimal management of microgrids including 

renewable energy scources using GPSO-GM algorithm. Renew Energy 2016;90:430–9. 

doi:10.1016/j.renene.2016.01.014. 

[201] Jirdehi MA, Tabar VS, Hemmati R, Siano P. Multi objective stochastic microgrid scheduling 

incorporating dynamic voltage restorer. Int J Electr Power Energy Syst 2017;93:316–27. 

doi:10.1016/j.ijepes.2017.06.010. 

[202] ICAX (International Heat Transfer). Heat Sharing Networks n.d. 

[203] Ikeda S, Ooka R. Hybrid method of metaheuristics with machine learning for optimal operation 

of district energy systems Part 1 - Day-ahead optimization for district heating and cooling system 



REFERENCES 

210 

 

including thermal energy storage. Trans Soc Heating, Air-Conditioning Sanit Eng Japan 

2017;241:11–20. 

[204] Shimoda Y, Mizuno M, Kametani S, Kawamura S. Evaluation of Distribution System 

Performance in District Heating and Cooling System. Build Simulation’99, Kyoto 1999. 

[205] Rohsenow WM, Hartnett JP, Cho YI. Handbook of Heat Transfer. 3rd ed. McGraw-Hill 

Education; 1998. 

[206] Watkins CJCH, Dayan P. Q-learning. Mach Learn 1992;8:279–92. doi:10.1007/BF00992698. 

[207] Kofinas P, Doltsinis S, Dounis AI, Vouros GA. A reinforcement learning approach for MPPT 

control method of photovoltaic sources. Renew Energy 2017;108:461–73. 

doi:10.1016/j.renene.2017.03.008. 

[208] Li F-D, Wu M, He Y, Chen X. Optimal control in microgrid using multi-agent reinforcement 

learning. ISA Trans 2012;51:743–51. doi:10.1016/j.isatra.2012.06.010. 

[209] Kuznetsova E, Li YF, Ruiz C, Zio E, Ault G, Bell K. Reinforcement learning for microgrid 

energy management. Energy 2013;59:133–46. doi:10.1016/j.energy.2013.05.060. 

[210] Raju L, Sankar S, Milton RS. Distributed optimization of solar micro-grid using multi agent 

reinforcement learning. Procedia Comput Sci 2015;46:231–9. doi:10.1016/j.procs.2015.02.016. 

[211] Lee D, Ooka R, Ikeda S, Choi W. Development of optimization method for district heat-sharing 

network with thermal energy storage (Part 1) ANN model of stratified thermal storage based on 

physical model and measured data (in Japanese). Proc AIJ Annu Conf 2017 2017;41558:1173–4. 

[212] Hitachi Plant Services Co. Ltd. OH Saver 2017. http://www.hitachi-

hps.co.jp/business/office_commercial/ohsaver/index.html. 

[213] IBM. IBM TRIRIGA Energy Optimization 2017. http://www-

03.ibm.com/software/products/en/tririga-energy-optimization. 

[214] Honeywell. UniSim Optimization Suite 2017. https://www.honeywellprocess.com/en-

US/explore/products/advanced-applications/unisim/Pages/unisim-optimization-suite.aspx. 

[215] NTT FACILITIES. SmartStream (in Japanese) 2017. http://www.ntt-f.co.jp/service/building/ss/. 

[216] Azbil Corporation. Optimization controller for heat source machines (in Japanese) 2017. 

http://www.azbil.com/jp/product/building/system/controller/paraconductor/index.html. 

[217] Mitsubishi Heavy Industries Thermal Systems Ltd. Ene-Conductor (in Japanese) 2017. 

https://www.mhi-mth.co.jp/products/detail/turbo_freezer_after_solution_enecon.html. 

[218] SIEMENS. Energy Management and Energy Optimization in the Process Industry. 2011. 

[219] Scheneider Electric. EcoStruxure Building Advisor 2017. https://www.schneider-

electric.com/b2b/en/services/field-services/building-management-system/optimize/. 

[220] Johnson Controls. Central Chiller Plant Optimization 2017. 



REFERENCES 

211 

 

http://www.johnsoncontrols.com/buildings/services-and-support/optimization-and-retrofit-

services/central-plant-optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 

212 

 

 

 

 

 

 

 

 

 

 

 

 

 



PUBLICATIONS 

213 

 

PUBLICATIONS 
 

Peer-reviewed journals 

 

[1] Shintaro Ikeda, Ryozo Ooka, Hybrid Method of Metaheuristics with Machine Learning 

for Optimal Operation of District Energy Systems Part 1 – Day-ahead Optimization for 

District Heating and Cooling System Including Thermal Energy Storage, Transactions of 

the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, No. 214, 

pp.11–20, 2017 (in Japanese) 

[2] Shintaro Ikeda, Wonjun Choi, Ryozo Ooka, Optimization method for multiple heat 

source operation including ground source heat pump considering dynamic variation in 

ground temperature, Applied Energy, 193, pp.466-478, 2017 

[3] Shintaro Ikeda, Ryozo Ooka, Development of a Metaheuristic Nonlinear Multi-objective 

Optimization Method for Operating Energy Systems Including CGS and Energy Storage 

Systems, Journal of Environmental Engineering, Vol. 81, No. 719, pp.101–110, 2016 (in 

Japanese) 

[4] Shintaro Ikeda, Ryozo Ooka, A new optimization strategy for the operating schedule of 

energy systems under uncertainty of renewable energy sources and demand changes, 

Energy and Buildings, 125, pp.75–85, 2016 

[5] Shintaro Ikeda, Ryozo Ooka, Optimal operation of energy systems including energy 

storage equipment under different connections and electricity prices, Sustainable Cities 

and Society, 21, pp.1–11, 2016 

[6] Ryozo Ooka, Shintaro Ikeda, A review on optimization techniques for active thermal 

energy storage control, Energy and Buildings, 106, pp.225–233, 2015 

[7] Shintaro Ikeda, Ryozo Ooka, Metaheuristic optimization methods for a comprehensive 

operating schedule of battery, thermal energy storage, and heat source in a building 

energy system, Applied Energy, 151, pp.192-205, 2015 

[8] Shintaro Ikeda, Ryozo Ooka, Development of Metaheuristic Optimization Methods for 

Operating Energy Systems Including Residual Battery and Thermal Storage Tank, 

Journal of Environmental Engineering, Vol. 79, No. 705, pp.957–966, 2014 (in Japanese) 

 

 

 

 

 



PUBLICATIONS 

214 

 

Conference proceedings (International) 

 

[1] Shintaro Ikeda, Ryozo Ooka, A New Index for Decision-making : an Optimal Operation 

Strategy of Batteries and Photovoltaic Systems in Buildings, IAQVEC 2016, Songdo 

(South Korea), 2016.10 

[2] Bryn Pickering, Shintaro Ikeda, Ruchi Choudhary, Ryozo Ooka, Comparison of 

Metaheuristic and Linear Programming Models for the Purpose of Optimising Building 

Energy Supply Operation Schedule, CLIMA 2016, Aalborg (Denmark), 2016.5 

[3] Shintaro Ikeda, Ryozo Ooka, Optimal Adjustment Strategy for Operating Schedule of 

Energy System under Uncertainty of Renewable Sources and Demand Changes, CLIMA 

2016, Aalborg (Denmark), 2016.5 

[4] Shintaro Ikeda, Ryozo Ooka, Optimal operation of energy systems including thermal 

energy storage and battery under different connections, 6th IBPC, Turin (Italy), 2015.6 

[5] Shintaro Ikeda, Ryozo Ooka, Optimal Operating Schedule of Shared Battery and TES in 

Two Different Types of Buildings under Unpredicted Demand Change, Greenstock, 

Beijing (China), 2015.5 

[6] Shintaro Ikeda, Ryozo Ooka, Development of Optimization Method for Operating Heat 

Source Systems Including Thermal Energy Storage and a Storage Battery Using Cuckoo 

Search, Grand Renewable Energy 2014, Tokyo (Japan), 2014.8 

 

 

Conference proceedings (Japan) 

 

[1] Shintaro Ikeda, Ryozo Ooka, Lee Doyun, Wonjun Choi, Development of Model 

Predictive Control Method using ANN and Metaheuristics Part 2 Validation of the 

Benefits of ANN in Day-ahead Optimization for Energy Systems, Technical papers of 

annual meeting, the Society of Heating, Air-Conditioning and Sanitary Engineers of 

Japan, Kochi University of Technology, E-40, pp.161–164, 2017 (in Japanese) 

[2] Lee Doyun, Ryozo Ooka, Shintaro Ikeda, Wonjun Choi, Development of Model 

Predictive Control Method using ANN and Metaheuristics Part 1 Accurate Prediction of 

Heat Source Water Temperature of GSHP using ANN, Technical papers of annual 

meeting, the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, 

Kochi University of Technology, E-39, pp.157–160, 2017 (in Japanese) 

[3] Tetsuya Kawamura, Ryozo Ooka, Shintaro Ikeda, Development of Design Optimization 

Method for A Detached House Considering Thermal Performance Using Metaheuristics, 



PUBLICATIONS 

215 

 

Technical papers of annual meeting, the Society of Heating, Air-Conditioning and 

Sanitary Engineers of Japan, Kochi University of Technology, E-41, pp.165–168, 2017 

(in Japanese) 

[4] Mingzhe Liu, Ryozo Ooka, Shintaro Ikeda, Wonjun Choi, Development of distributed 

water source heat pump system for renewable energy (Part6) Analysis of pressure loss in 

piping system based on CFD, Technical papers of annual meeting, the Society of Heating, 

Air-Conditioning and Sanitary Engineers of Japan, Kochi University of Technology, C-

3, pp.9–12, 2017 (in Japanese) 

[5] Tetsuya Kawamura, Ryozo Ooka, Shintaro Ikeda, Research on shape optimization of 

houses considering thermal performance using metaheuristic, Proceedings of AIJ annual 

conference at Hiroshima Institute of Technology, 41028, pp.85–86, 2017 (in Japanese) 

[6] Mingzhe Liu, Ryozo Ooka, Wonjun Choi, Shintaro Ikeda, Study on energy saving 

potential of decentralized pump system for water transport in HVAC system, Part 3: 

Analysis of pressure loss in piping system based on CFD, Proceedings of AIJ annual 

conference at Hiroshima Institute of Technology, 41563, pp.1183–1184, 2017 (in 

Japanese) 

[7] Shintaro Ikeda, Ryozo Ooka, Wonjun Choi, Development of optimization method for 

district heat-sharing network with thermal energy storage (Part 2) Hybrid method of 

metaheuristics and ANN for day-ahead optimization, Proceedings of AIJ annual 

conference at Hiroshima Institute of Technology, 41559, pp.1175–1176, 2017 (in 

Japanese) 

[8] Doyun Lee, Ryozo Ooka, Shintaro Ikeda, Wonjun Choi, Development of optimization 

method for district heat-sharing network with thermal energy storage (Part 1) ANN model 

of stratified thermal storage based on physical model and measured data, Proceedings of 

AIJ annual conference at Hiroshima Institute of Technology, 41558, pp.1173–1174, 2017 

(in Japanese) 

[9] Shintaro Ikeda, Ryozo Ooka, Wonjun Choi, Self-learning algorithm for optimal operation 

of heat source system with multiple renewable sources, Proceedings of Japanese Joint 

Conference on Air-conditioning and Refrigeration (Tokyo), Tokyo University of Marine 

Science and Technology, 28, pp.123–126, 2017 (in Japanese) 

[10] Shintaro Ikeda, Ryozo Ooka, Optimal Operation of Heat Source and Thermal Energy 

Storage in Two Systems: District Heating and Cooling and Heat-sharing Network, 



PUBLICATIONS 

216 

 

Technical papers of annual meeting, the Society of Heating, Air-Conditioning and 

Sanitary Engineers of Japan, Kagoshima University, IS-6, pp.1–4, 2016 

[11] Mingzhe Liu, Ryozo Ooka, Shintaro Ikeda, Wonjun Choi, Masao Masuda, Development 

of distributed water source heat pump system for renewable energy (Part3) Energy saving 

potential of decentralized pump system for water transport in HVAC system, Technical 

papers of annual meeting, the Society of Heating, Air-Conditioning and Sanitary 

Engineers of Japan, Kagoshima University, B-55, pp.221–224, 2016 (in Japanese) 

[12] Ryozo Ooka, Mingzhe Liu, Wonjun Choi, Shintaro Ikeda, Study on energy saving 

potential of decentralized pump system for water transport in HVAC system, Part 1: 

Outline of experimental system, Proceedings of AIJ annual conference at Fukuoka 

University, 41617, pp.1301–1302, 2016 (in Japanese) 

[13] Shintaro Ikeda, Ryozo Ooka, Optimisation for Annual Operation Schedule of Energy 

System Including Storage Equipment and CHP, Proceedings of AIJ annual conference at 

Fukuoka University, 41682, pp.1431–1432, 2016 (in Japanese) 

[14] Mingzhe Liu, Ryozo Ooka, Wonjun Choi, Shintaro Ikeda, Study on energy saving 

potential of decentralized pump system for water transport in HVAC system, Part 2: 

Comparison of decentralized pump system and valve control central pump system, 

Proceedings of AIJ annual conference at Fukuoka University, 41618, pp.1303–1304, 

2016 (in Japanese) 

[15] Shintaro Ikeda, Ryozo Ooka, Optimization methods: algorithms of metaheuristics Part 

1—Basic theory and their categories, Proceeding of Architectural Research Meetings, 

Kanto Chapter, Architectural Institute of Japan, 4003, pp.9–12, 2015 (in Japanese) 

[16] Shintaro Ikeda, Ryozo Ooka, Optimization methods: algorithms of metaheuristics Part 

2—Evolutionary algorithm, Proceeding of Architectural Research Meetings, Kanto 

Chapter, Architectural Institute of Japan, 4004, pp.9–12, 2015 (in Japanese) 

[17] Shintaro Ikeda, Ryozo Ooka, Optimization methods: algorithms of metaheuristics Part 

3—Swarm intelligence, Proceeding of Architectural Research Meetings, Kanto Chapter, 

Architectural Institute of Japan, 4005, pp.9–12, 2015 (in Japanese) 

[18] Shintaro Ikeda, Ryozo Ooka, Development of Operating Optimization Method for 

Nonlinear Energy System Including CGS and Energy Storage under Dynamic Pricing, 

Technical papers of annual meeting, the Society of Heating, Air-Conditioning and 

Sanitary Engineers of Japan, Osaka University, D-48, pp.77–80, 2015 (in Japanese) 



PUBLICATIONS 

217 

 

[19] Shintaro Ikeda, Ryozo Ooka, Multi-objective optimization for nonlinear energy system 

including storage equipment and several heat sources, Proceedings of AIJ annual 

conference at Tokai University, 41672, pp.1401–1402, 2015 (in Japanese) 

[20] Shintaro Ikeda, Ryozo Ooka, Metaheuristic optimization methods for operating energy 

system including residual battery and thermal storage tank and comparison among results 

of these methods, Technical papers of annual meeting, the Society of Heating, Air-

Conditioning and Sanitary Engineers of Japan, Akita University, F-58, pp.113–116, 2014 

(in Japanese) 

[21] Shintaro Ikeda, Ryozo Ooka, Development of Optimization Method for Operating 

Energy Systems Including a Residual Battery and a Thermal Storage Tank Using Cuckoo 

Search, Proceedings of AIJ annual conference at Kobe University, 41695, pp.1441–1442, 

2014 (in Japanese) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PUBLICATIONS 

218 

 

 

 



ACKNOWLEDGEMENTS 

219 

 

ACKNOWLEDGEMENTS 
 

 

 

 Five years have passed since I first came to the laboratory and this period has left me with 

wonderful memories. I would like to express my gratitude to all the people who have supported me in 

producing this thesis. 

 

 First and the foremost, I really appreciate the support of my supervisor, Prof. Ryozo Ooka. I am 

sure that your continual good advice has greatly benefited me and my research. In addition, your 

support with applications and in participating in architectural society committees have helped me to 

grow. These experiences are indispensable for me as I develop as an academic researcher. I will 

continue to do my best to improve my skills and knowledge so that I can work with you again in the 

future. 

 

 I also thank Prof. Shinsuke Kato, who served as co-advisor for my postgraduate and doctoral 

courses. While at the laboratory, I have been impressed with your deep knowledge and insight, not 

only in architectural engineering but also in many other subjects, including electrical and mechanical 

science. This inspires me to develop a broad knowledge. 

 

 I extend my appreciation to my advising committee members, Prof. Kazuyuki Aihara, Prof. 

Yasunori Akashi, and Lecturer Hideki Kikumoto for giving their time and providing excellent 

comments and suggestions. 

 Prof. Kazuyuki Aihara, you are a leading scientist all over the world in the fields of mathematics, 

life-sciences, and informatics, and it is my honor that you read my thesis and delivered invaluable 

comments. 

 Prof. Yasunori Akashi, I thank you for providing me with priceless advice on how I could find 

practical applications. Your comments made my research more realistic and was a key factor behind 

my decision to apply the proposed methods to actual situations in both my master’s and doctoral 

courses. 

 Lecturer Hideki Kikumoto, I greatly respect you because of your enthusiastic attitude towards both 

your research and the care you take towards the laboratory students. I will never forget the precious 

time during the laboratory seminar camp when we talked about many things, including your research 

and daily life. 



ACKNOWLEDGEMENTS 

220 

 

 I also express my appreciation to my Kato Lab., Ooka Lab., and Kikumoto Lab. colleagues and 

staff, and especially the following: 

 Dr. Toshiyuki Hino and Mr. Takeo Takahashi your deep knowledge of practical engineering 

always inspired me, and I will never forget your eager attitude towards your research. 

 Dr. Weirong Zhang, it was rewarding to talk to you about presentation skills, teaching students, 

and daily life, when we attended international conferences. 

 Dr. Wonjun Choi, I learned many things from you, such as good research methods, presentation 

styles, English-language skills, and pioneering knowledge of many gadgets. In particular, I feel that 

my IT skills have grown in the past five years. I am looking forward to the next opportunity for us to 

work together again. 

 Dr. Keigo Nakajima and Dr. Yusuke Arima, I thank you for your kindness in helping me with 

many things. I will never forget the precious time when Dr. Nakajima, Mr. Suzuki and I went to the 

commercial batting cage at Jingu gaien, and when Dr. Arima and others, including myself, organized 

the laboratory’s Halloween party. I will follow your attitude and will actively engage with my 

colleagues in the future to deepen friendships. 

 My seniors, Mr. Kazuo Kodama, Mr. Togo Yoshidomi, Mr. Hisahide Touma, and Ms. Aya 

Yaegashi, I appreciate your kindness and also really enjoyed listening to you, not only before your 

graduation, but also afterwards (e.g., Seiken open house, etc.). 

 My colleagues in the same period, Mr. Shinpei Suzuki, Mr. Masamichi Oura, Ms. Miko Kobayashi, 

and Ms. Naoko Kiyono (nee Sugisaki), I would like to express my deep appreciation for your support. 

Let’s keep in touch and I hope to work with you one day. 

 

 Very special appreciation goes to Prof. Tatsuo Nagai, who was my supervisor on my undergraduate 

course in the Tokyo University of Science. My thesis is based on the motivation that I gained as an 

undergraduate student. Your guidance brings me to here. 

 

 I also thank Dr. Ruchi Choudhary and Mr. Bryn Pickering, who I worked with for short periods of 

my doctoral course. I am really inspired by your research and these periods are a priceless time I will 

remember forever. 

 

 I also appreciate the help of SHASE committee members Prof. Hideki Tanaka, Mr. Masato Sasaki, 

Mr. Noriyasu Maehara, Mr. Masaki Shioya, Mr. Naoki Asari, Mr. Masahide Fukui, Mr. Hiroshige 

Kikuchi, and Mr. Masaya Nishikawa. I learned many practical things about the design and operation 

of building and district energy systems from you. This experience has been very rewarding. 



ACKNOWLEDGEMENTS 

221 

 

 Finally, I express my honest appreciation to my family, who always supported me and allowed me 

to do what I wanted to do. Thanks to your support, I could completely focus on my work and you have 

been a great source of encouragement. I will return the favor to my mother and my wife. 

 

 Thank you for all your encouragement. 

 

 

February 2018 

 

 

 


