
学位論文（要約） 

 

 

 

Studies of RAB GTPases in the basal land plant, Marchantia 

polymorpha 

（基部陸上植物ゼニゴケの RAB GTPaseの研究） 

 

 

 

 

 

 

 

平成 29年 12月博士（理学）申請 

 

 

 

 

 

 

 

 

 

 

 

 

東京大学大学院理学系研究科 

生物科学専攻 

南野 尚紀 



 

Table of contents 

Abstract ........................................................................................................................... 1 

Acknowledgements ......................................................................................................... 3 

Abbreviations .................................................................................................................. 4 

General introduction ...................................................................................................... 6 

Experimental procedures .............................................................................................. 11 

Tables ............................................................................................................................. 22 

Chapter 1: Characterization of RAB GTPases of M. polymorpha ........................... 30 

Introduction ............................................................................................................... 31 

Results ........................................................................................................................ 33 

Discussion ................................................................................................................... 38 

Figures ........................................................................................................................ 44 

Chapter 2: Functional analyses of RAB21 in M. polymorpha ................................... 59 

Introduction ............................................................................................................... 60 

Results ........................................................................................................................ 61 

Discussion ................................................................................................................... 69 

Figures ........................................................................................................................ 75 

Chapter 3: Organelle dynamics during speramtozoid formation and RAB23 

function in M. polymorpha ........................................................................................... 89 

Introduction ............................................................................................................... 90 

Results ........................................................................................................................ 92 

Discussion ................................................................................................................. 103 

Figures ....................................................................................................................... 111 

General Discussion ..................................................................................................... 129 

References .................................................................................................................... 132 

 

  



1 

 

Abstract 

The RAB GTPase is an evolutionarily conserved machinery component of membrane 

trafficking, which is the fundamental system for cell viability and higher-order biological 

functions. The composition of RAB GTPases in each organism is closely related to the 

complexity and organization of the membrane-trafficking pathway, which has been 

developed uniquely to realize the organism-specific membrane trafficking system. 

Comparative genomics has suggested that diversification of the membrane trafficking 

system has been partly achieved by the increase in the number of RAB GTPases followed 

by functional diversification. Meanwhile, a considerable number of subgroups of RAB 

GTPases were secondarily lost during evolution, which suggests that secondary loss of 

RAB GTPases could be another method for specialization of the membrane trafficking 

system. However, it remains mostly unknown how novel acquisition and secondary loss 

of RAB GTPases were involved in evolution and diversification of the membrane 

trafficking system. To obtain insights into diversification of the membrane trafficking 

system during green plant evolution, I analyzed RAB GTPases encoded in the genome of 

the liverwort, Marchantia polymorpha in a comprehensive manner. I isolated all genes 

encoding RAB GTPases in M. polymorpha and analyzed their expression patterns and 

subcellular localizations in thallus cells. MpRAB2b, which contains a sequence similar 

to that of an intraflagellar transport protein at the carboxyl (C)-terminal region, is 

specifically expressed in the male reproductive organ. This type of RAB GTPases has not 

been identified in other organisms, suggesting that it was a uniquely acquired member of 

RAB GTPase in liverworts. MpRAB21, whose homolog is absent in Arabidopsis thus this 

could be an example of secondarily lost RAB GTPases during plant evolution, exhibited 

endosomal localization with RAB5 members in M. polymorpha. Further functional 
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analyses revealed that MpRAB21 plays and essential role for normal thallus development 

of M. polymorpha, although most of angiosperms lost this RAB GTPase. Furthermore, I 

found that MpRAB21 could function in a secretory pathway from late endosomes. These 

results suggest that mechanisms of endosomal transport have been diverged among land 

plant species. I also demonstrated that in antheridia in the male reproductive organ, 

spermatozoids are generated through drastic reorganization of the plasma membrane and 

organelles including the Golgi apparatus and endosomes by live imaging. Intriguingly, 

the RAB23 homolog in M. polymorpha, another example of secondarily lost RAB 

GTPases during plant evolution, is specifically required for spermatozoid functions. 

Genetic and cell biological analyses indicated that MpRAB23 is required for organizing 

microtubule-containing structures in spermatozoids including the axoneme in flagella. In 

a consistent manner, the distribution of the RAB23 group in green plants is tightly 

correlated with the presence of flagella in male gametes. These results indicated that the 

loss of RAB23 is associated with the evolution of male gamete motility in plants. 
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Abbreviations 

BODIPY 493/503; 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene 

BSA; bovine serum albumin 

CaMV; cauliflower mosaic virus  

C-terminus; Carboxyl-terminus 

EDTA; ethylene diamine tetraacetic acid 

EGTA; ethylene glycol tetraacetic acid 

EE; early endosome 

ESCRT; endosomal sorting complex required for transport 

FM1-43; N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) Pyridinium 

Dibromide 

GAP; GTPase activating protein 

GEF; guanine nucleotide exchange factor 

GMP-PNP; guanylyl imidodiphosphate 

gRNA; guide RNA 

GST; glutathione S-transferase 

HEPES; N-2-hydroxyethylpiperazine-N’-2-ethane sulfonic acid 

IFT; intraflagellar transport 

Mant-GDP; 2’-(or-3’)-O-(N-Methylanthraniloyl) Guanosine 5’-Diphosphate 

MLS; multilayered structure 

mGFP; monomeric green fluorescent protein 

mRFP; monomeric red fluorescent protein 

MS; mass spectrometry 

MVE; multivesicular endosome 
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NLS; nuclear localization signal 

ORF; open reading flame 

PAM; protospacer adjacent motif 

PO; propylene oxide 

RT-PCR; reverse transcription PCR 

PBS; phosphate buffer saline 

PFA; paraformaldehyde 

PIPES; Piperazine-1,4-bis(2-ethanesulfonic acid) 

SDS; sodium lauryl sulfate 

Shh; Sonic hedgehog 

SNARE; soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

ST; sialyltransferase 

TGN; trans-Golgi network 
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General introduction 

Membrane trafficking is the fundamental system in eukaryotic cells for transporting 

proteins and lipids among single-membrane-bounded organelles and across the plasma 

membrane, and it plays a pivotal role in various fundamental and higher-order 

physiological phenomena, including development, stress response, and immunity. A 

single membrane trafficking event between donor and target organelles consists of several 

sequential processes, including 1) forming vesicles from the donor membrane, 2) 

transporting vesicles, 3) tethering vesicles to the target membrane, and 4) fusing the 

transport vesicles to the target membrane. These processes involve several highly 

conserved machinery components in eukaryotes, which include RAB GTPase (Figure 

1A). RAB GTPase acts as a molecular switch by cycling between GTP-bound active and 

GDP-bound inactive forms, which is mediated by a guanine nucleotide exchange factor 

(GEF) and a GTPase-activating protein. Activated RAB GTPase interacts with a specific 

set of effector proteins, which evoke downstream reactions, including tethering of 

transport vesicles to the target membrane mediated by tethering factors (Figure 1B) 

(Fujimoto and Ueda, 2012; Grosshans et al., 2006; Hutagalung and Novick, 2011; Saito 

and Ueda, 2009). While RAB GTPase is a highly conserved machinery component 

essential for membrane trafficking, it has also been reported that each organism harbors 

a specific repertoire of RAB GTPases, suggesting that diversification and specialization 

of the set of RAB GTPases is tightly associated with diversification of the membrane 

trafficking system during evolution.  

Comparative genomic analyses proposed that diversification of membrane 

trafficking system in the plant lineage could be associated with terrestrialization and 

multicellularization (Rutherford and Moore, 2002; Sanderfoot, 2007). However, 
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information from basal land plants is still limited to firmly conclude it. Marchantia 

polymorpha is the liverwort, which is one of the basalmost land plants (Figure 2). M. 

polymorpha is an emerging model plant, whose genome information and various genetic 

techniques are already available. In Chapter 1, I identified genes for RAB GTPases in the 

genome of M. polymorpha, and then examined expression patterns and subcellular 

localizations of all members of RAB GTPases in this plant. I demonstrated that M. 

polymorpha harbors some RAB GTPases with distinctive characteristics as well as a 

fundamental set of RAB GTPases shared with other green plants with low redundancy. 

Recent comparative genomics proposed that larger numbers of RAB subgroups were 

present in the last eukaryotic common ancestor (LECA), and many RAB GTPases were 

secondarily lost in the process of diversification of eukaryotic lineages (Elias et al., 2012; 

Klopper et al., 2012). It suggests that secondary loss of RAB GTPase would substantially 

contribute to the diversification and specialization of the membrane trafficking system. 

RAB21 and RAB23 in M. polymorpha, whose homologous products were secondarily 

lost in most of angiosperms including Arabidopsis, should be suitable targets to unravel 

the significance of secondary loss of RAB GTPases during land plant evolution. 

Furthermore, precise molecular functions of RAB21 and RAB23 remain unclear even in 

non-plant systems including animals. For insights into functions of these RAB GTPases 

in M. polymorpha, I performed functional analyses of MpRAB21 in Chapter 2, and 

revealed that MpRAB21 is involved in a trafficking pathway from endosomes probably 

to the plasma membrane, which is essential for normal development of M. polymorpha. 

In Chapter 3, I firstly observed the behavior of organelles during spermatid formation, 

because MpRAB23 was specifically expressed in the male reproductive organ, 

antheridiophores, and found that cell-autonomous degradative pathways are highly active 
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during spermiogenesis, which could be involved in removal of plasma membrane proteins 

and the cytoplasm. I then carried out analyses of MpRAB23, and found that MpRAB23 

is essential for the proper organization of the microtubule-related structures in 

spermatozoids including the axoneme in flagella. These findings indicated that 

neofunctionalization and secondary loss of RAB GTPases played important roles in 

diversification and evolution of the membrane trafficking system during land plant 

evolution.  
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Figure 1. Framework of general mechanisms of membrane traffic 

(A) A scheme of vesicle-mediated transport between organelles. Coat protein complexes 

mediate cargo selection and vesicle budding. RAB GTPase promotes tethering of the 

vesicle to the target membrane, which is mediated by effector proteins. Then SNARE 

proteins execute membrane fusion between the vesicle and target membrane. (B) RAB 

GTPase cycles between inactive GDP-bound and active GTP-bound forms. The guanine 

nucleotide exchange factor (GEF) and GTPase activating protein coordinate the GTPase 

cycle. Activated RAB GTPase interacts with specific effector molecules to evoke 

downstream events including vesicle tethering.  
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Figure 2. Life cycle of the liverwort, M. polymorpha 

An overview of the life cycle of M. polymorpha is illustrated. In the life cycle of M. 

polymorpha, the haploid gametophyte generation is dominant. The thallus is a main plant 

body, and asexually reproduces through the formation of gemmae. M. polymorpha is a 

dioecious plant forming male and female reproductive organs (antheridiophores and 

archegoniophores) on different thalli. An antheridium and archegonium are male and 

female gametangia, respectively. Numerous motile gametes, spermatozoids are produced 

in antheridia, which swim to eggs in water to accomplish fertilization. After fertilization, 

a zygote develops into a sporophyte in the archegonium. After the sporophyte undergoes 

meiosis, numerous spores are formed in a capsule under the receptacle of the 

archegoniophore. A unicellular spore germinates and develops into the thallus. 
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Experimental procedures 

Plant materials and Transformation 

Male and female accessions of M. polymorpha, Takaragaike-1 (Tak-1) and Takaragaike-

2 (Tak-2), respectively, were used in this study. These plants were grown on 1/2× 

Gamborg’s B5 medium containing 1.4% (w/v) agar at 22°C under continuous white light. 

F1 spores generated by crossing Tak-1 and Tak-2 were used for transformation. Induction 

of sexual organs by far-red irradiation was performed as described previously (Chiyoda 

et al., 2008). Transgenic lines expressing Citrine-MpRAB5 and MpARA6-Venus were 

previously described (Era, 2012). Transgenic lines expressing ST-mRFP, mRFP-

MpSYP6A or mCitrine-MpSYP2 were previously described (Kanazawa et al., 2016). 

Transgenic lines expressing sec-mRFP, mCitrine-MpVAMP71 or mCitrine-MpPIP2 were 

provided by Dr. Takehiko Kanazawa (Kanazawa 2016, and Kanazawa, unpublished). 

 

Phylogenetic analysis and domain search 

The genome databases used to collect amino acid sequences are described in Table 1. 

Collected amino acid sequences were aligned with the MUSCLE program version 3.8.31 

(Edgar, 2004). After removing alignment gaps using Gblocks 

(http://molevol.cmima.csic.es/castresana/Gblocks_server.html), phylogenetic analysis 

was performed using PhyML 3.0 (http://www.atgc-montpellier.fr/phyml/) under the LG 

+ G model which was selected by Smart Model Selection in PhyML. The bootstrap 

analysis was performed by resampling 1,000 sets. Prediction of the NLS and lipid 

modification sites was performed at NLS Mapper (http://nls-mapper.iab.keio.ac.jp/cgi-

bin/NLS_Mapper_form.cgi) and GPS-lipid (http://lipid.biocuckoo.org/webserver.php), 

respectively. The genome and transcriptome databases used to examine the distribution 
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of RAB21 and RAB23 in green plants are described in Table 1.  

 

RT-PCR 

The primers used in this study and numbers of PCR cycles for the RT-PCR analysis are 

listed in Experimental procedures. RT-PCRs were performed using KOD FX neo 

(Toyobo) using cDNA prepared by Dr. Takehiko Kanazawa (Kanazawa et al., 2016) as 

templates according to the manufacturer’s protocol.  

 

Constructs and transformation  

Open reading frames (ORFs) of RAB GTPases and MpVPS35 were amplified by PCR 

using cDNA prepared from Tak-1 or Tak-2 thalli or antheridiophores as templates. 

Amplified fragments were subcloned into the pENTRTM/D-TOPO vector (Invitrogen). 

The fragments of RAB GTPases of M. polymorpha were introduced into pKI-GWB2, 

pKI-GWB3, pMpGWB302, pMpGWB305, or pMpGWB306 using the Gateway LR 

ClonaseTM II Enzyme Mix (Invitrogen) according to the manufacturer’s instructions. 

GTP-fixed or GDP-fixed type of MpRAB21 was constructed by PCR-mediated 

mutagenesis using the ORF of MpRAB21 subclomed in the pENTRTM/D-TOPO vector. 

The GTP-fixed type of MpRAB21 was introduced into pMpGWB305 using the Gateway 

LR ClonaseTM II Enzyme Mix. 

To construct mCitrine-MpRAB5, mCitrine-MpRAB21, mCitrine-MpRAB23, 

MpIFT52-mGFP, MpTUG1-mGFP, and MpKIN2-mGFP, the genomic sequences 

comprising the 5’ sequences (5.1 kb for MpRAB21, 4.1 kb for MpRAB23, 5.4 kb for 

MpIFT52, 5.1 kb for MpTUG1, and 5.3 kb for MpKIN2), protein-coding regions (2.2 kb 

for MpRAB21, 2.4 kb for MpRAB23, 5.3 kb for MpIFT52, 4.2 kb for MpTUG1, and 6.5 



13 

 

kb for MpKIN2), and 3’ flanking sequences (2.2 kb for MpRAB21, 1.4 kb for MpRAB23, 

2.5 kb for MpIFT52, 2.2 kb for MpTUG1, and 2.4 kb for MpKIN2) were amplified by 

PCR and subcloned into the pENTRTM/D-TOPO vector. The genomic sequence of 

MpRAB21 was mutated in the PAM sequence by PCR-mediated mutagenesis to generate 

the CRISPR-resistant construct. Each of DNAs for fluorescent proteins was then inserted 

in front of the start codon or in front of the stop codon using the In-Fusion HD Cloning 

System (Clontech) according to the manufacturer’s instructions. The GTP-fixed type of 

MpRAB23 and MpRAB23 whose NLS-like sequence was mutated were constructed by 

PCR-directed mutagenesis. The chimeric genes were introduced into pMpGWB101 or 

pMpGWB301 (Ishizaki et al., 2015), using the Gateway LR ClonaseTM II Enzyme Mix.  

 cDNAs for MpGOS11, MpSYP6A, and MpTUB2 were introduced into 

pMpGWB101 or pMpGWB301-based binary vectors containing proMpSYP2:mCitrine-

Gateway (Minamino et al., 2017, and Kanazawa, unpublished). to obtain 

proMpSYP2:mCitrine-MpGOS11, proMpSYP2:mCitrine-MpSYP6A, and 

proMpSYP2:mCitrine-MpTUB2.  

The pENTRTM/D-TOPO vectors containing MpSYP6A, MpRAB5, MpARA6, or 

MpRAB21, and the constructs for expression of Citrine-MpRAB5 and MpARA6-Citrine 

under the regulation of the cauliflower mosaic virus (CaMV) 35S promoter were provided 

by Dr. Atsuko Era. The pENTRTM/D-TOPO vectors containing MpRAB11a1, 

MpRAB11a2 or MpRAB11b were provided by Dr. Rin Asaoka. The pENTRTM/D-TOPO 

vector containing MpTUB2 was provided by Dr. Ryuichi Nishihama. The pENTRTM/D-

TOPO vector containing MpGOS11, the construct for expression of sec-mRFP under the 

regulation of the MpEF1α promoter, and the constructs for expression of mCitrine-

MpSYP12A, mCitrine-MpSYP13A, mCitrine-MpSYP2, mCitrine-MpVAMP71, and 
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mCitrine-MpPIP2 under the regulation of native promoters were provided by Dr. 

Takehiko Kanazawa (Kanazawa et al., 2016, Kanazawa, 2016, Kanazawa, unpublished). 

To generate the construct for genome editing in the MpRAB21 gene, the 

sequence of guide RNA (gRNA) was inserted into the BsaI site of pMpGE En03 (Sugano, 

unpublished) using the DNA ligation kit Ver.2.1 (Takara), and then introduced into the 

pMpGE010 binary vector (Sugano, unpublished) using the Gateway LR ClonaseTM II 

Enzyme Mix (Invitrogen) according to the manufacturer’s instructions. 

To generate the construct for deletion of the MpRAB23 gene, the 3.7 kb 

MpRAB23 5’-flanking sequence was amplified by PCR from genomic DNA, and inserted 

into the PacI site of the pJHY-TMP1 vector (Ishizaki et al., 2013) using the In-Fusion HD 

Cloning System (Clontech) according to the manufacturer’s instructions. Subsequently, 

the 3.6 kb MpRAB23 3’-flanking sequence amplified by PCR was inserted into the AscI 

site of the vector using the In-fusion System. 

Transformation of M. polymorpha was performed according to the previously 

described method (Ishizaki et al., 2008; Kubota et al., 2013). Transgenic lines were 

selected with 10 mg l-1 hygromycin B and 100 mg l-1 cefotaxime for pKI-GWB2, pKI-

GWB3, pMpGWB101, pMpGE010, and pJHY-TMP1, and 0.5 μM chlorsulfuron and 100 

mg l-1 cefotaxime for pMpGWB301, pMpGWB302, pMpGWB303, pMpGWB305, and 

pMpGWB306.  

 

Microscopy 

Subcellular localizations of fluorescently tagged proteins in thallus cells were observed 

in 4~5-day-old gemmalings of transgenic M. polymorpha grown on the 1/2× Gamborg’s 

B5 medium containing 1% (w/v) sucrose and 1.4% (w/v) agar at 22°C under continuous 
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white light under a confocal microscope (LSM780, Carl Zeiss) with an oil immersion lens 

(×63). To visualize endocytic compartments, thalli were soaked in 1 μM N-(3-

Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) Pyridinium Dibromide (FM1-43, 

Thermo Scientific) diluted in distilled water and incubated for 30 min ~ 3 h at room 

temperature. Spectral unmixing and processing of obtained images were performed using 

the ZEN2012 software (Carl Zeiss). Samples were excited at 488 nm (Argon 488) and/or 

561 nm (DPSS 561-10) and emitted fluorescence between 482 nm and 650 nm was 

recorded. To observe forming cell plates, thallus cells were observed under a BX51 

microscope (Olympus) equipped with the confocal scanner unit CSU10 (Yokogawa 

Electric). 

For imaging of antheridial cells of transgenic lines, the antheridial receptacles 

between stages 3 and 5 (Higo et al., 2016) were sliced manually with a razor blade, placed 

on a glass slide, and then covered with a cover slip. To observe the spermatids of the 

MpIFT52-mGFP expressing line, antheridia were fixed for 60 min with 4% (w/v) 

paraformaldehyde (PFA) in PME buffer (50 mM PIPES-KOH, 5 mM EGTA, and 1 mM 

MgSO4, pH 7.0), and treated for 30 min with cell wall digestion buffer (1% (w/v) cellulase, 

0.25% (w/v) pectolyase Y-23, 1% (w/v) BSA, 0.1% (w/v) IGEPAL CA-630, 1% glucose, 

and 1× cOmpleteTM EDTA-free protease inhibitor cocktail (Roche Applied Science) in 

PME buffer). The samples were placed on a MAS-coated glass slide (Matsunami) and 

then covered with a cover slip. Antheridia and fixed spermatids were observed under a 

confocal microscope (LSM780, Carl Zeiss) with an oil immersion lens (×63).  

For immunostaining, antheridia were fixed for 60 min with 4% (w/v) PFA in 

PME buffer and treated for 30 min with the cell wall digestion buffer. Cells were then 

treated with permeabilization buffer (0.1% (v/v) Triton X-100 and 1% (w/v) BSA in PME 
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buffer) for 10 min. After washing with PME buffer three times, cells were placed on a 

MAS-coated glass slide, and incubated for 60 min at room temperature with blocking 

solution (1% (w/v) BSA in PBS buffer). After removing blocking solution, cells were 

incubated with the monoclonal anti-acetylated tubulin antibody in PBS buffer at 4oC 

overnight. After washing with PBS buffer three times, the samples were incubated for 60 

min at 37oC with the Alexa Fluor 405 goat anti-mouse IgG in PBS buffer. After washing 

with PBS buffer three times, slides were mounted using the ProLong Gold Antifade 

reagent (Thermo Fisher Scientific). Samples were observed under a confocal microscope 

(LSM780, Carl Zeiss) with an oil immersion lens (×63). 

To trace movement of spermatozoids, spermatozoids were observed under a dark 

field microscope (Olympus) equipped with an ORCA-Flash4.0 V2 camera (Hamamatsu 

photonics). 

The obtained images were processed with ImageJ (National Institute of Health) 

and Photoshop (Adobe Systems) softwares. The trajectories of spermatozoids were 

obtained by using the ImageJ macro, Color Footprint Rainbow. 

 

Electron microscopy 

Tak-1 antheridia at different stages were collected and fixed with 2% (w/v) PFA and 2% 

(w/v) glutaraldehyde in 0.05 M cacodylate buffer pH 7.4 at 4°C overnight. The fixed 

samples were washed 3 times with 0.05 M cacodylate buffer for 30 min each and were 

then post-fixed with 2% (w/v) osmium tetroxide in 0.05 M cacodylate buffer at 4°C for 3 

h. The samples were dehydrated in graded ethanol solutions (50 and 70% (v/v) ethanol 

for 30 min each at 4°C, 90% (v/v) for 30 min at room temperature, 4 times of 100% (v/v) 

for 30 min each at room temperature, and 100% (v/v) overnight at room temperature). 



17 

 

The samples were infiltrated with propylene oxide (PO) two times for 30 min each, and 

then placed into a 70:30 mixture of PO and resin (Quetol-651; Nisshin EM Co.) for 1 h. 

The caps of tubes were opened overnight to volatilize PO. The samples were transferred 

to fresh 100% (v/v) resin and polymerized at 60°C for 48 h. Ultra-thin sample sections 

were mounted on copper grids, stained with 2% (w/v) uranyl acetate and lead stain 

solution (Sigma–Aldrich), and observed under a transmission electron microscope (JEM-

1400Plus; JEOL Ltd) at an acceleration voltage of 80 kV. Digital images (2048 × 2048 

pixels) were obtained using a CCD camera (VELETA; Olympus Soft Imaging Solutions 

GmbH). 

 

Yeast Two-hybrid Assay 

The cDNAs for wild-type and mutant versions of MpRAB21 were subcloned into pBD-

GAL4-GWRFC. pBD-GAL4 vectors containing MpRAB5, MpARA6, and MpRAB7, and 

the pAD-GAL4 vector containing MpVPS9 were provided by Dr. Mariko Sunada (Sunada, 

2015). Plasmids containing each of RAB GTPases and MpVPS9 were introduced into the 

AH109 strain (Clontech). Empty vectors were used for negative controls. At least three 

colonies were checked for interaction for each transformation. 

 

Expression and purification of GST Fusion Proteins 

GST-fused MpRAB21 was expressed in the E. coli Rosetta strain using the pGEX-6p-1 

vector (GE Healthcare). Cells expressing GST fusion proteins were collected and 

resuspended in lysis buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 1% Triton X-100, 

0.1% mercaptoethanol, and 1× cOmpleteTM EDTA-free protease inhibitor cocktail (Roche 

Applied Science)), sonicated, and centrifuged at 10,000×g for 30 min. Supernatants were 
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mixed with glutathione-Sepharose 4B beads and incubated with rotation for 2 h at 4°C. 

The beads were washed with wash buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 

1% Triton X-100), and then fusion proteins were eluted with elution buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, and 100 mM glutathione). The extracted protein was desalted 

with a PD-10 column (GE Healthcare). MpRAB5, MpRAB7, and MpVPS9, which were 

fused with GST, were provided by Dr. Mariko Sunada (Sunada, 2015). 

 

Nucleotide-Exchange Assay 

Nucleotide exchange on purified GST-tagged RAB GTPases was measured by 

monitoring the total fluorescent change of the fluorescent GDP analogue 2’-(or -3’)-O-

(N-Methylanthraniloyl)-GDP (Mant-GDP, Thermo Fisher Scientific). Each purified RAB 

GTPase was preloaded with Mant-GDP for 2 h and incubated with or without GST-

MpVPS9 in reaction buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.5 mM MgCl2) 

for 100 s at 25oC. Then, GMP-PNP was added to 0.1 mM to start the nucleotide-exchange 

reaction. The fluorescence change was detected with a fluorescence spectrophotometer 

(model F-2500; Hitachi High Technologies) at an excitation wavelength of 360 nm and 

an emission wavelength of 440 nm. 

 

Antibodies 

The antibody against Citrine was prepared by the purifying anti-GFP polyclonal antibody  

(Kanazawa et al., 2016) by affinity column chromatography. The antibodies against 

MpVPS9 was provided by Dr. Mariko Sunada (Sunada, 2015). The anti-GDI antibody 

was from the lab stock (Ebine et al., 2011). The polyclonal antibody against MpSYP2 

was provided from Dr. Takehiko Kanazawa. The antibody against AtVPS35 was provided 
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by Dr. Ikuko Hara-Nishimura (Shimada et al., 2006). The monoclonal antibody against 

GFP (JL-8) was purchased from Clontech. The monoclonal antibody against acetylated 

tubulin was purchased from Sigma-Aldrich. The Alexa Fluor 405 goat anti-mouse IgG 

was purchased from Thermo Fisher Scientific. The dilution of each antibody in western 

blotting was as follows: anti-Citrine, 1:500; anti-MpVPS9, 1:500; anti-GDI, 1:1000; anti-

MpSYP2, 1:500; anti-AtVPS35, 1:500; anti-GFP, 1:5000; anti-acetylated tubulin, 1:1000; 

and the Alexa Fluor 405 goat anti-mouse IgG, 1:1000. 

 

Immunoprecipitation 

7-day-old thalli grown on 1/2× Gamborg’s B5 medium containing 1% (w/v) sucrose and 

1.4% (w/v) agar were ground in immunoprecipitation buffer (50 mM HEPES-KOH, 400 

mM sucrose, 5 mM MgCl2, 1× cOmpleteTM EDTA-free protease inhibitor cocktail (Roche 

Applied Science), pH 7.5) and protein concentration was adjusted at 0.5 g l-1. Lysates 

were centrifuged at 1,000×g for 10 min followed by centrifuging at 3,000×g for 10 min 

at 4oC to eliminate cell debris. Triton X-100 was then added to the supernatants to 1%, 

and the samples were rotated for 60 min at 4oC. The samples were centrifuged at 20,000×g 

for 30 min at 4oC, and the supernatants were subjected to co-immunopresipitation using 

the μMACS GFP Isolation Kit (Miltenyi Biotec), according to the manufacturer’s 

instructions. 

 

Preparation for Mass spectrometory (MS) 

Immunoprecipitates obtained with the above method were separated by SDS-PAGE and 

stained with Flamingo Fliorescent Gel Stain (Bio-Rad). After lanes were cut from the gel, 

the gel-sliced samples were dehydrated with acetonitrile and dried in a vacuum desiccator. 
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The samples were deoxidized with 10 mM DTT in 25 mM NH4HCO3 for 1 h at 56 oC. 

After washing with 25 mM NH4HCO3 for 10 min, the samples were alkylated with 55 

mM iodoacetamide in 25 mM NH4HCO3 for 45 min at room temperature in the dark. 

After washing with 25 mM NH4HCO3 for 10 min, the samples were dehydrated with 50% 

(v/v) acetonitrile in 25 mM NH4HCO3 for 10 min twice, and then dried in a vacuum 

desiccator. After incubating with 10 μg/ml trypsin in 50 mM NH4HCO3 for 30 min on ice, 

excess solution was removed, and the samples were incubated overnight at 37 oC. 

Digested peptides were extracted with 50% (v/v) acetonitrile and 5% (v/v) trifluoroacetic 

acid for 30 min at room temperature, and then extraction was repeated with new solution. 

The peptides were dissolved in 30% (v/v) acetonitrile and 0.1% (v/v) formic acid and 

then analyzed with Orbitrap Elite (Thermo Fisher Scientific) using Mascot ver.2.5.1 

(Matrix science, London W1U 7GB, UK). 

 

Fractionation  

7-day-old thalli grown on 1/2 Gamborg’s B5 medium containing 1% (w/v) sucrose and 

1.4% (w/v) agar were ground in grinding buffer (50 mM HEPES-KOH, 250 mM sorbitol, 

2mM EGTA, and 5 mM MgCl2, pH 7.5) and adjusted to the protein concentration at 0.5 

g l-1. Lysates were centrifuged at 1,000×g for 10 min followed by centrifuging at 3,000×g 

for 10 min at 4oC to eliminate cell debris. The total cell lysate (T) was centrifuged at 

100,000×g for 1 h at 4oC to obtain soluble cytosolic (S) and pelleted membrane (P) 

fractions. 

 

Expression of MpVPS35 in yeast 

The ORF of MpVPS35 was inserted into the BglII site of pTU1containing the constitutive 



21 

 

TDH3 promoter (Ueda et al., 2001). YPH500 cells expressing MpVPS35 under the 

control of TDH3 promoter were cultured in SD -Ura for 2 days, and were collected by 

centrifuging at 10,000×g for 1 min. Yeast cells were resuspended in 0.1 N NaOH, 

incubated for 15 min on ice, and then centrifuged at 10,000×g for 1 min (Kushnirov, 2000). 

Yeast cells were resuspended in sample buffer (65 mM Tris-HCl (pH6.8), 3% (w/v) SDS 

and 10% (v/v) glycerol), boiled for 5 min, and then centrifuged at 10,000×g for 1 min to 

eliminate the cell debris to apply to immunoblotting. 
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Tables 

Table 1. A list of genome and transcriptome datasets used in this study 

 

  

Deposited Data Source Identifier

Arabidopsis thaliana

genome TAIR10
Phytozome https://phytozome.jgi.doe.gov/pz/portal.html#

Nicotiana tabacum genome NCBI https://www.ncbi.nlm.nih.gov/

Nelumbo nucifera genome Ming et al., 2013 https://www.ncbi.nlm.nih.gov/

Brachypodium distachyon genome

Phytozome

(International

Brachypodium, 2010)

https://phytozome.jgi.doe.gov/pz/portal.html#

Zea mays genome
Phytozome

(Schnable et al., 2009)
https://phytozome.jgi.doe.gov/pz/portal.html#

Oryza sativa genome

RAP DB

(Sakai et al., 2013,

Kawahata et al., 2013)

http://rapdb.dna.affrc.go.jp/

Amborella trichopoda

genome v1.0
Amborella Genome, 2013 http://amborella.huck.psu.edu/home

Ginkgo biloba genome Guan et al., 2016 http://gigadb.org/dataset/100209

Selaginella moellendorffii

genome v1.0

Phytozome

(Banks et al., 2011)
https://phytozome.jgi.doe.gov/pz/portal.html#

Marchantia polymorpha

genome v3.1

MarpolBase

(Bowman et al., 2017)
http://marchantia.info/

Physcomitrella patens

genome v3.0

Phytozome

(Rensing et al., 2008)
https://phytozome.jgi.doe.gov/pz/portal.html#

Spirogyra pratensis transcriptome Ju et al., 2015
https://www.ncbi.nlm.nih.gov/

Traces/wgs/?val=GBSM01

Coleochate orbicularis

transcriptome
Ju et al., 2015

https://www.ncbi.nlm.nih.gov/

Traces/wgs/?val=GBSL01

Nitella mirabilis  transcriptome Ju et al., 2015
https://www.ncbi.nlm.nih.gov/

Traces/wgs/?val=GBST01

Klebsormidium nitens genome
Hori et al., 2014;

Ohtaka et al., 2017

http://www.plantmorphogenesis.bio.titech.ac.jp/

~algae_genome_project/klebsormidium/

kf_download.htm

Mesostigma viride transcriptome Ju et al., 2015
https://www.ncbi.nlm.nih.gov/

Traces/wgs/?val=GBSK01

Chlamydomonas reinhardtii

genome

Phytozome

(Merchant et al., 2007)
https://phytozome.jgi.doe.gov/pz/portal.html#

Coccomyxa subellipsoidea

genome

Phytozome

(Blanc et al., 2012)
https://phytozome.jgi.doe.gov/pz/portal.html#

Ostreococcus tauri genome Derelle er al., 2006
https://bioinformatics.psb.ugent.be/gdb/

ostreococcus/

Homo sapiens genome NCBI https://www.ncbi.nlm.nih.gov/
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Table 2. A list of MpRAB members and their gene IDs 

  

name geneID

MpRAB1a Mapoly0072s0030.1

MpRAB1b Mapoly0007s0067.1

MpRAB2a Mapoly0170s0032.1

MpRAB2b Mapoly0100s0038.1

MpRAB5 Mapoly0036s0134.1

MpARA6 Mapoly0077s0027.1

MpRAB6 Mapoly0141s0004.1

MpRAB7 Mapoly0946s0001.1

MpRAB8a Mapoly0116s0012.1

MpRAB8b Mapoly0057s0033.1

MpRAB8c Mapoly0015s0029.1

MpRAB11a1 MapolyY_A0041.1

MpRAB11a2 Mapoly0018s0008.1

MpRAB11b Mapoly0050s0009.1

MpRAB11c Mapoly0007s0069.1

MpRAB18 Mapoly0167s0019.1

MpRAB21 Mapoly0001s0443.1

MpRAB23 Mapoly0020s0116.1
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Table 3. A list of primers used in this study 

 

Purpose Frangment primer 1 (5' to 3') primer 2 (5' to 3') PCR 

cycles 

Plasmid 

construction for  

ORF sequences 

MpRAB1a CACCATGAATCCCG

AGTATGATTACC 

TCATGTGCAACAGC

CTTGCTTTTG 

 

MpRAB1b CACCATGAACCCCG

AATATGATTATC 

TCAGGAGCAACACC

CACCGCTCTG 

 

MpRAB2a CACCATGTCTTACG

CGTACCTCTTC 

TCAACCACAGCAAC

CACCTTTGG 

 

MpRAB2b CACCATGCCTTCGA

CATCGCCGTC 

CTAAATCCCGCACT

TCAACA 

 

MpRAB5 CACCATGGCCACCG

CGGGAACGAA 

CTAGACGCAGCACA

TGCTTG 

 

MpARA6 CACCATGGGTTGTG

CTGCCTCAGC 

AGGCTTCTGGGTTG

GCTGT 

 

MpRAB6 CACCATGGCGTCAG

CAGGAATGGGGAC 

TTAGCAGGCGCAGC

CCCCCGCT 

 

MpRAB7 CACCATGTCAGCTC

GTAAACGAAC 

TCAGCATTCACAGA

CAGATG 

 

MpRAB8a CACCATGGCAGCAG

GAGCAGCGAGAGC 

CTAACTGCAGCAAG

CTGATTTTTG 

 

MpRAB8b CACCATGGCGGACA

GTGATTACCGCATG 

TCACCCGCAGCAGT

TTTGGTAATTG 

 

MpRAB8c CACCATGGGGAACC

CGGACTATTGC 

TTACGAGGCACCGC

AGCAGCCAG 

 

MpRAB11a CACCATGGCTTATA

GATCCGACGATG 

TTACGCTGAGCAAC

ATCCTAC 

 

MpRAB11b CACCATGATGTCAA

ACGGATATGGAG 

CTAAGTTGAACAGC

AAGCTTTC 

 

MpRAB11c CACCATGGGGTACG

GTGACGATGAGAAG 

TTAACAGCAGCCAA

ATCTCTTTG 

 

MpRAB18 CACCATGGCCGGGG

GCAGTGGTGC 

TCAACATGTACAGT

TACCAGC 

 

MpRAB21 CACCATGAGGCCTG

GCCCGACATT 

TCAAGAACAACACT

TCGAAG 
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MpRAB23 CACCATGCTGTCGA

TGCAGGAAGAAG 

CTACAAAATTGAAC

ACTCGGACTGC 

 

MpVPS35 CACCATGCAGCCTC

AAGGCGAGGTG 

CTATATTTGTATTGC

GGCATATCG 

 

RT-PCR  MpRAB1a CACCATGAATCCCG

AGTATGATTACC 

TCATGTGCAACAGC

CTTGCTTTTG 

30 

MpRAB1b CACCATGAACCCCG

AATATGATTATC 

TCAGGAGCAACACC

CACCGCTCTG 

29 

MpRAB2a CACCATGTCTTACG

CGTACCTCTTC 

TCAACCACAGCAAC

CACCTTTGG 

31 

MpRAB2b ATGCCTTCGACATC

GCCGTCAATGC 

CTAAATCCCGCACT

TCAACACCTCC 

34 

MpRAB5 CACCATGGCCACCG

CGGGAACGAA 

CTAGACGCAGCACA

TGCTTG 

28 

MpARA6 CACCATGGGTTGTG

CTGCCTCAGC 

AGGCTTCTGGGTTG

GCTGTC 

30 

MpRAB6 CACCATGGCGTCAG

CAGGAATGGGGAC 

TTAGCAGGCGCAGC

CCCCCGCT 

30 

MpRAB7 CACCATGTCAGCTC

GTAAACGAAC 

TCAGCATTCACAGA

CAGATG 

29 

MpRAB8a CACCATGGCAGCAG

GAGCAGCGAGAGC 

CTAACTGCAGCAAG

CTGATTTTTG 

30 

MpRAB8b CACCATGGCGGACA

GTGATTACCGCATG 

TCACCCGCAGCAGT

TTTGGTAATTG 

31 

MpRAB8c CACCATGGGGAACC

CGGACTATTGC 

TTACGAGGCACCGC

AGCAGCCAG 

33 

MpRAB11a CACCATGGCTTATA

GATCCGACGATG 

TTACGCTGAGCAAC

ATCCTAC 

28 

MpRAB11b CACCATGATGTCAA

ACGGATATGGAG 

CTAAGTTGAACAGC

AAGCTTTC 

32 

MpRAB11c CACCATGGGGTACG

GTGACGATGAGAAG 

TTAACAGCAGCCAA

ATCTCTTTG 

30 

MpRAB18 CACCATGGCCGGGG

GCAGTGGTGC 

TCAACATGTACAGT

TACCAGC 

32 

MpRAB21 CACCATGAGGCCTG

GCCCGACATT 

TCAAGAACAACACT

TCGAAG 

34 
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MpRAB23 ATGCTGTCGATGCA

GGAAGAAGACTTC 

CTACAAAATTGAAC

ACTCGGACTGCAAT

C 

38 

mCitrine-

MpRAB23 

ATGGTGAGCAAGGG

CGAGGA 

CTACAAAATTGAAC

ACTCGGACTGCAAT

C 

 

MpEF1a TCACTCTGGGTGTG

AAGCAGATGA 

GCCTCGAGTAAAGC

TTCGTGGTG 

24 

Plasmid 

construction for  

genomic 

sequences 

MpRAB5 

promoter + 5' 

UTR 

GCAGGCTCCGCGGC

CGCATTAAGGCATG

ATATTGAAGATAAG 

GTGAAGGGGGCGG

CCCCTCGCTACCCT

TCAATCACACGCT 

 

MpRAB5 

protein 

coding region  

+3' flanking 

sequence  

CCAAGGGTGGGCG

CGGCATGGCCACCG

CGGGAACGAATCAG 

AGCTGGGTCGGCGC

GGAATGTGACTGAA

CTCCGTCAGC 

 

MpRAB5 

fragment for 

mCitrine 

insertion 

GCCCTTGCTCACCA

TCCTCGCTACCCTTC

AATCAC 

AAGGGAGGATGCG

GAATGGCCACCGCG

GGAACGAATC 

 

MpRAB21 

promoter + 5' 

UTR 

AAAAGCAGGCTCC

GCTGGAACTAGAGA

ATGTGGTCGCTC 

GTGAAGGGGGCGG

CCGCTGCCCCGCCC

AAAGAAATCG 

 

MpRAB21 

protein 

coding region  

+3' flanking 

sequence  

CACCCCCGGGGGA

AGCGGAATGAGGCC

TGGCCCGACATTTA

AG 

CTGTTAGCTTGTGA

GCTATTGCCAG 

 

MpRAB23 

genomic 

region 

CACCGCAAGCTGTC

CTCGTCTCAACAAC 

CCTTCAGACCAGCA

AGTATACAC 

 

MpRAB23 

fragment for 

mCitrine 

insertion 

AAGGGAGGATGCG

GAATGCTGTCGATG

CAGGAAGAAGAC 

GCCCTTGCTCACCA

TGATGTCACCGCTT

AG 

CGCACTC 

 

MpIFT52 CACCGGTTAACATC CTTGAGGAACGCGA
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genomic 

region 

CGATAGATTTGTGG

AAG 

AGACTTCTCC 

MpIFT52 

fragment for 

mGFP 

insertion 

GACGAGCTGTACAA

GTAGGTTTATGACC

TGACCGG 

CACTCCGCTTCCTC

CCTCCTCAATATTTT

CCGAATGAC 

 

MpTUG1 

genomic 

region 

CACCATGTAGAATG

AAATCATGGTCACT

G 

CGGTACAGACAACT

AATCGCAGTC 

 

MpTUG1 

fragment for 

mGFP 

insertion 

GACGAGCTGTACAA

GTAGATTTTCCGGA

AGCTGCGC 

CACTCCGCTTCCTC

CCAGAAGGGGCGC

TCTTGAATC 

 

MpKIN2 

promoter + 5' 

UTR 

AAAAGCAGGCTCC

GCCTTGTCTCTACAT

TGAAGTCACTGG 

GTGAAGGGGGCGG

CCTATTTCTCTTTAT

TCGATGAAAACTTG 

 

MpKIN2 

protein 

coding region  

+3' flanking 

sequence  

CACCATGTCGAAGA

TCATGAAAGAAAC 

CACTATGTTCACATA

ATCCAGTGG 

 

MpKIN1 

fragment for 

mGFP 

insertion-1 

ACGAAACTGAAGTT

GGATCCTTCAGCAC 

CACTCCGCTTCCTC

CTCTTGTTGCAGTT

TTTGGGC 

 

MpKIN1 

fragment for 

mGFP 

insertion-2 

GACGAGCTGTACAA

GTAACAAAATAAAA

TCAGTTGTCTGG 

AGCTGGGTCGGCGC

GCCCACCCTTCACT

ATG 

 

mCitrine + 

linker 

ATGGTGAGCAAGGG

CGAGGA 

TCCGCATCCTCCCTT

GTACAGCTCGTCCA

TGC 

 

linker + 

mGFP 

GGAGGAAGCGGAG

TGAGCAAGGGCGA

GGAGC 

CTTGTACAGCTCGT

CCATGC 
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Plasmid  

construction for  

generation of 

mutants 

MpRAB21gR

NA 

CTCGAATAGATCGG

CCCGAGTGCA 

AAACTGCACTCGGG

CCGATCTATT 

 

Insertion for 

MpRAB23 

gene targeting  

at Pac I site  

CTAAGGTAGCGATT

AATGAACGTCGTTA

CGGAGCTGTGCTTG 

CCGGGCAAGCTTTT

AATCATTTCCAACC

ACAACAACTTTCAC 

 

Insertion for 

MpRAB23 

gene targeting  

at Asc I site  

TAAACTAGTGGCGC

GCCTGCGAAGTTTC

GCTCGGAATTTCA 

TAAACTAGTGGCGC

GCCTGCGAAGTTTC

GCTCGGAATTTCA 

 

CRISPR-

resistant 

mutation for 

MpRAB21 

AGGAACGCTTTCAT

GCACTC 

CATGAAAGCGTTCC

TGACCTG 

 

GTP-fixed 

mutation for 

MpRAB21 

CACTGCAGGTCTGG

AACGCTTCC 

GGAAGCGTTCCAGA

CCTGCAGTG 

 

GDP-fixed 

mutation for 

MpRAB21 

GCGTCGGGAAAAA

CTCTATGGTGTTACG 

CGTAACACCATAGA

GTTTTTCCCGACGC 

 

GTP-fixed 

mutation for  

MpRAB23 

genomic 

region-1 

GGAGCACTTCCATC

TCGAGACG 

CTGCTCCAGCCCTG

CAGTATC 

 

GTP-fixed 

mutation for  

MpRAB23 

genomic 

region-2 

GCAGGGCTGGAGC

AGTTTCATG 

GGTGTCGAATGGAT

CCGTTATTG 

 

 MpRAB23 

222-229 Ala 

genomic 

region-1 

CAGCAATAACGGAT

CCATTCGAC 

AGCGGCTGCGGCG

GCGATGTTGATGAC

TTTCGATC 

 

 MpRAB23 GCCGCCGCAGCCGC ACAAGAAGTTGAC
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222-229 Ala 

genomic 

region-2 

TGCAGCCTTGCAGT

CCGAGTGTTCAATT

TTG 

GTCGAACTTG 

Others a-b fragment 

of 

MpRAB23ge

notyping 

CGAAGTCGAATGCG

GTTGAGCA 

CCAGACCTGAGGCA

AGAACAGTC 

 

c-d fragment 

of 

MpRAB23ge

notyping 

GTATAATGTATGCTA

TACGAAGTTATGTTT 

CTACCATGCATAAG

CATATAACTC 

 

MpRAB21 

for pGEX6p-

1 

GGGCCCCTGGGATC

CATGAGGCCTGGCC

CG 

GAATTCCGGGGATC

CTCAAGAACAACAC

TTCG 

 

BglI site + 

MpVPS35 

GGCAGATCTATGCA

GCCTCAAGGCGAG

GTG 

GGCAGATCTCTATAT

TTGTATTGCGGCATA

TCG 
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Chapter 1 

 

 

Characterization of RAB GTPases in M. polymorpha 
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Introduction 

The composition of RAB GTPases in the plant lineage has distinctive characteristics. For 

example, the RAB11 group (also known as the RABA group in Arabidopsis) has 

dramatically expanded compared to other organisms; 26 members of RAB11 are encoded 

in the Arabidopsis genome, whereas only two or three RAB11 members exist in budding 

yeast and mammalian species (Rutherford and Moore, 2002). Diversified RAB11/RABA 

members in angiosperms have been shown to be involved in various biological functions 

specific to plants, such as salinity stress tolerance, elongation of root hairs and pollen 

tubes, cell plate formation, and polar cell expansion (Asaoka et al., 2013; Chow et al., 

2008; de Graaf et al., 2005; Kirchhelle et al., 2016; Preuss et al., 2004). The RAB5 group 

(also known as RABF in Arabidopsis) represents another example of plant-unique 

diversification of RAB GTPases; in addition to canonical RAB5, the green plant lineage 

harbors a plant-unique RAB5 group, the ARA6 group. For example, Arabidopsis harbors 

two canonical RAB5 members, RHA1/RABF2a and ARA7/RABF2b, and the plant-

specific ARA6/RABF1 (Ueda et al., 2001). Canonical RAB5 mediates endosomal 

transport in endocytic and vacuolar transport pathways in plant cells, whereas ARA6 acts 

in the trafficking pathway from endosomes to the plasma membrane (Ebine et al., 2011; 

Kotzer et al., 2004; Sohn et al., 2003). It was also recently shown that a function of 

canonical RAB5 is fulfilled through interaction with a plant-specific effector molecule 

(Sakurai et al., 2016), highlighting plant-specific methods of regulating endosomal 

transport. Thus, diversification of RAB GTPases in plants should be closely related to 

diversification of membrane trafficking systems during plant evolution. 

Comparative genomics proposed that expansion of RAB GTPases in the plant 

lineage could be associated with terrestrialization and multicellularization, mainly based 
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on the increased number of RAB GTPases in land plants, including Arabidopsis and the 

moss Physcomitrella patens compared to that of green algal species (Dacks and Field, 

2007; Rutherford and Moore, 2002). However, P. patens has been shown to undergo 

whole genome duplication during evolution (Rensing et al., 2007; Rensing et al., 2008), 

which could result in the increased number of RAB GTPases without functional 

differentiation or neofunctionalization. To precisely understand the relevance between 

diversification of the membrane trafficking component and plant evolution, information 

about other basal plant lineages would be useful.  

The liverwort, M. polymorpha is an emerging model plant whose genome was 

sequenced recently (Bowman et al., 2017) and for which various molecular genetical and 

cell biological techniques are applicable (Chiyoda et al., 2008; Ishizaki et al., 2008; 

Ishizaki et al., 2013; Ishizaki et al., 2015; Kanazawa et al., 2016; Kubota et al., 2013; 

Nishihama et al., 2016; Sugano et al., 2014). For information on the organization of RAB 

GTPases in this plant, I sought genes encoding RAB GTPases in the genome of M. 

polymorpha. I then examined the expression pattern and subcellular localization of all 

members of RAB GTPases in this plant. My results revealed that M. polymorpha harbors 

a fundamental set of RAB GTPases shared with other green plant lineages with low 

redundancy. Furthermore, I found that M. polymorpha harbors RAB GTPases that were 

secondarily lost in Arabidopsis. M. polymorpha also harbors a RAB-like protein 

containing an intraflagellar transport protein-like domain. The unique repertoire of RAB 

GTPases suggests that the unique membrane trafficking system of M. polymorpha 

developed during its evolution to fulfill conserved and specific biological roles in the 

plant. 
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Results 

The M. polymorpha genome encodes 17 predicted RAB GTPases 

To gain insight into the diversification of membrane trafficking pathways during land 

plant evolution, I searched the genome database of M. polymorpha for genes predicted to 

encode RAB GTPases. I identified 17 genes for putative RAB GTPases, which were 

classified into 10 subgroups as follows: RAB1/RABD, RAB2/RABB, RAB5/RABF, 

RAB6/RABH, RAB7/RABG RAB8/RABE, RAB11/RABA, RAB18/RABC, RAB21, 

and RAB23 (Figure 3, 4 and Bowman et al., 2017). The names and gene IDs in 

MarpolBase (marchantia.info) of these members are listed in Table 2. I detected highly 

similar sequences for RAB11a/RABA1 with two nonsynonymous and several synonymous 

substitutions. M. polymorpha is dioecious, and male and female plants harbor the X and 

Y chromosome, respectively (Bischler, 1986). Each of the RAB11a genes was mapped on 

the X or Y chromosome (Bowman et al., 2017); thus, I concluded that these two RAB11a 

genes are allelic and that male and female M. polymorpha plants harbor different alleles 

of RAB11a with slight variation (Figure 5).  

Eight subgroups of RAB GTPases, RAB1/RABD, RAB2/RABB, RAB5/RABF, 

RAB6/RABH, RAB7/RABG, RAB8/RABE, RAB11/RABA, and RAB18/RABC, are 

well conserved in green plant lineages, and M. polymorpha possessed all of these 

subgroups with low redundancy (Figure 3, and Bowman et al., 2017). M. polymorpha 

possesses genes for RAB21 and RAB23, which have not been identified in genomes of 

Arabidopsis. The RAB21 and RAB23 genes are found in a wide range of eukaryotic 

lineages, including metazoa, suggesting an ancestral origin for these RAB subgroups, 

whereas these RAB GTPases were independently secondarily lost several times during 

green plant evolution (Figure 6, and (Klopper et al., 2012). Notably, the distribution of 
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RAB23 gene is closely associated with the presence of a motile flagellum (Figure 6). A 

uniquely acquired RAB-like gene was also identified in M. polymorpha. The protein that 

I named MpRAB2b is larger than other RAB GTPases and contains a domain at the C-

terminal region with high similarity to the INTRAFLAGELLAR TRANSPORT 43 

(IFT43) protein (Figure 7). The conserved motifs responsible for nucleotide binding and 

the GTPase activity conserved in the Ras-superfamily are largely conserved in MpRAB2b, 

and a lipid modification site was also predicted at the C-terminus (Figure 7). IFT43 is a 

subunit of the IFT-A complex, which regulates retrograde transport in intra-flagellar 

transport (IFT) (Taschner et al., 2012). This type of RAB-like protein has not been 

reported in any other organisms, suggesting that this is a specific innovation of liverworts. 

 

Expression patterns of M. polymorpha RAB GTPases 

I examined the expression profiles of M. polymorpha RAB GTPases in several organs (5-

day-old thalli, antheridiophores, archegoniophores, and 7-day-old sporelings) using 

reverse transcription (RT)-PCR, with constitutive MpEF1α as a positive control (Althoff 

et al., 2014; Kanazawa et al., 2013). All M. polymorpha RAB genes were ubiquitously 

transcribed in these organs under our experimental conditions, with the exception of 

MpRAB2b and MpRAB23 (Figure 8). MpRAB2b and MpRAB23 transcripts were strongly 

accumulated only in the antheridiophores and were scarcely detected in the other organs 

(Figure 8) as previously described (Higo et al., 2016), suggesting specialized functions of 

MpRAB2b and MpRAB23 in the antheridiophores.  

 

Subcellular localization of RAB GTPases in M. polymorpha 

Subcellular localization is essential information for elucidating the functions of RAB 
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GTPases. To determine the subcellular localization of M. polymorpha RAB GTPases, I 

expressed Citrine (a variant of yellow fluorescent proteins)-fused RAB GTPases under 

the regulation of the cauliflower mosaic virus (CaMV) 35S promoter in thallus cells of M. 

polymorpha. As organelle markers, I utilized the transmembrane domain of rat 

sialyltransferase-fused monomeric red fluorescent protein (ST-mRFP) and mRFP-

MpSYP6A, which are the Golgi apparatus and trans-Golgi network (TGN) markers, 

respectively (Kanazawa et al., 2016). For endosomal localization, I employed a lipophilic 

fluorescent dye, FM1-43, which stains endosomal compartments during endocytosis 

toward vacuoles. Based on colocalization with these markers and the tracer, I classified 

the subcellular localizations of M. polymorpha RAB GTPases into four groups. 

 

Secretory RAB GTPases  

Three RAB GTPases, MpRAB2a, MpRAB8a, and MpRAB8b exhibited punctate 

localization in thallus cells of M. polymorpha and colocalized with the Golgi apparatus 

marker ST-mRFP (Figure 9A, 9C, and 9E). The punctate structures were frequently and 

closely associated but not co-localized with the TGN marker mRFP-MpSYP6A (Figure 

9B, 9D, and 9F). Citrine-MpRAB8c driven by the CaMV 35S promoter was dispersed 

into the cytosol, with punctate localization partly colocalized with ST-mRFP but not with 

mRFP-MpSYP6A (Figure 9G and 9H). 

The subcellular localization of MpRAB1a, MpRAB1b, and MpRAB6 was 

slightly different from those of Golgi-localized RAB GTPases. These proteins were 

localized to disc-shaped compartments and smaller punctate structures that were 

frequently associated with the disc-shaped compartments. The disc-shaped compartments 

also bore ST-mRFP, and the punctate structures exhibited colocalization with mRFP-
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MpSYP6A (Figure 10A-10F). This result indicates that MpRAB1a, MpRAB1b, and 

MpRAB6 localize at the Golgi apparatus and the TGN in thallus cells. 

 

The MpRAB11/RABA group localizes to the TGN and TGN-associated 

compartments 

There are three RAB11 genes in M. polymorpha that are classified with the RABA1, 

RABA4, and RABA5 subclasses of Arabidopsis (Figure 3, 4, and Bowman et al., 2017). 

Citrine fusion of these RAB11 members, MpRAB11a1 (the male allele), MpRAB11b, 

and MpRAB11c, driven by the CaMV 35S promoter localized to punctate compartments 

with variations in their sizes in thallus cells. All three RAB11 members were partly co-

localized or closely associated with the TGN marker mRFP-MpSYP6A (Figure 11B, 11E, 

and 11H). Intriguingly, however, these RAB11 members exhibited distinct localizations 

in relation to the Golgi apparatus marker ST-mRFP; Citrine-MpRAB11c was co-localized 

with ST-mRFP (Figure 11G), but Citrine-MpRAB11a1 and Citrine-MpRAB11b were not 

(Figure 11A and 11D). A subpopulation of Citrine-MpRAB11a1-, 11b-, and 11c-positive 

compartments were accessible by FM1-43 (Figure 11C, 11F, and 11I), suggesting the 

endosomal identity of these compartments.  

Some RAB11/RABA members in Arabidopsis have been localized to the 

forming cell plate and are involved in cell plate formation (Asaoka et al., 2013; Chow et 

al., 2008; Qi and Zheng, 2013). When I observed the meristematic zones of thalli, 

accumulation at forming cell plates was also observed for all of three RAB11 members 

in M. polymorpha (Figure 11J). This localization suggests that MpRAB11 members could 

also be involved in cell plate formation. 
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Endocytic/vacuolar RAB GTPases 

The existence of two types of RAB5 is a distinctive feature of RAB GTPases in green 

plants. In addition, in M. polymorpha, the canonical MpRAB5 and plant-unique 

MpARA6 were identified, whose fluorescent protein-tagged versions were localized to 

endosomal punctate compartments stained by FM1-43 (Figure 12A and 12D). These 

proteins were not colocalized with ST-mRFP nor mRFP-MpSYP6A (Figure 12B, 12C, 

12E, and 12F), whereas some MpRAB5-positive domains were observed in close vicinity 

to the MpSYP6A-positive TGN. When MpRAB5 driven by the CaMV 35S promoter and 

MpARA6 driven by the MpEF1α promoter were coexpressed in thalli tagged with 

different fluorescent proteins, only partial colocalization was observed (Figure 12G), as 

shown for RAB5/RABF2 and ARA6/RABF1 in Arabidopsis (Ebine et al., 2011; Ueda et 

al., 2004). The previous study demonstrated that these proteins are localized to 

multivesicular endosomes (MVEs) in thallus cells (Era, 2012), therefore MpRAB5 and 

MpARA6 reside on distinct population of MVEs with partial overlap as orthologous 

products in Arabidopsis. 

The other three RAB GTPases, MpRAB7, MpRAB18, and MpRAB21, were 

also localized to endocytic organelles. Citrine-fused MpRAB7 driven by the CaMV 35S 

promoter was localized on the vacuolar membrane and punctate compartments in thallus 

cells. A portion of the punctate compartments were stained with FM1-43, whereas the 

other MpRAB7-positive compartments remained unstained (Figure 13A). The unstained 

structures likely represent Golgi apparatuses because ST-mRFP but not mRFP-MpSYP6A 

was colocalized with Citrine-MpRAB7 (Figure 13B and 13C). These results suggest that 

MpRAB7 was localized at the Golgi apparatus, endosomal compartments (probably the 

late endosome/MVE), and the vacuolar membrane. 
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Citrine-fused MpRAB18 driven by the CaMV 35S promoter was localized to 

punctate compartments, which were stained with FM1-43 (Figure 13D). MpRAB18 did 

not show colocalization with ST-mRFP or mRFP-MpSYP6A (Figure 13E and 13F), 

suggesting that MpRAB18 localizes on endosomal compartments in M. polymorpha 

thallus cells. 

Citrine-fused MpRAB21 expressed under the control of the CaMV 35S promoter 

was localized at punctate structures accessible by FM1-43 (Figure 13G), which did not 

bear ST-mRFP or mRFP-MpSYP6A (Figure 13H and 13I), although MpRAB21-positive 

domains were sometimes observed to be closely associated with the MpSYP6A-positive 

TGN, similar to the localization pattern of MpRAB5.  

 

Antheridiophore-specific RAB GTPases ectopically expressed in thalli 

I also generated transgenic lines expressing Citrine-tagged MpRAB2b and MpRAB23 

under the regulation of the CaMV 35S promoter, although expression of the genes for 

these proteins was only detected in antheridiophores by RT-PCR (Figure 8). Citrine-

MpRAB2b was observed dispersed in the cytosol in thallus cells (Figure 14A), and 

Citrine-MpRAB23 accumulated in the nuclei of the thallus cells (Figure 14B). I found 

that MpRAB23 contained a nuclear localization sequence (NLS)-like domain rich in 

arginine and lysine residues near the C-terminus (Figure 15), because of which 

MpRAB23 could be localized in the nuclei of the thalli.  

 

Discussion 

In this study, I identified 17 genes for RAB GTPases in the genome of M. polymorpha. I 

demonstrated that M. polymorpha harbors fundamental sets of RAB GTPases, which are 
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conserved in other plant lineages with low redundancy. Previous studies proposed that 

expansion of genes for membrane trafficking components could be associated with 

adaptation to land and/or multicellularization of an ancestor of land plants (Rutherford 

and Moore, 2002; Sanderfoot, 2007). My results partly support this idea: the number of 

RAB GTPases in M. polymorpha is greater than that of unicellular algal species, and 10 

and 9 RAB GTPases are encoded in the genomes of Chlamydomonas reinhardtii and 

Ostreococcus tauri, respectively. However, the number of RAB GTPases in Arabidopsis 

is much greater than that in M. polymorpha, which suggests that the expansion of RAB 

GTPases is not simply associated with terrestrialization and/or multicellularization. A 

similar result was also obtained in the systematic analysis of soluble N-ethylmaleimide-

sensitive factor attachment protein receptor (SNARE) proteins in M. polymorpha 

(Kanazawa et al., 2016). It will be interesting to investigate what physiology and 

functions of land plants were associated with the diversification, specialization, or 

neofunctionalization of RAB GTPases during their evolution. 

 

Conserved and Unique features of RAB GTPases in M. polymorpha 

I examined the subcellular localizations of all RAB GTPases by fusion with florescent 

proteins and expression under the regulation of the constitutive CaMV 35S promoter in 

the thallus cells of M. polymorpha (Figure 16). Many of RAB GTPases whose expression 

was detected in the thalli exhibited similar subcellular localizations to orthologous 

products reported in other land plant species with a few exceptions, which suggested that 

this expression condition did not markedly affect the localization of the examined proteins. 

For example, MpRAB2a and MpRAB8 localized to the Golgi apparatus in the M. 

polymorpha thalli, whose orthologous products in Arabidopsis and tobacco were also 
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reported to reside on the Golgi apparatus and to function in the secretory pathway 

(Cheung, 2002; Speth et al., 2009; Zheng et al., 2005). 

In mammalian cells, Rab1 is attached to the cis-Golgi membrane and 

endoplasmic reticulum-Golgi intermediates and functions in the early secretory pathway 

(Saraste et al., 1995). However, RAB1/RABD members in Arabidopsis localize at the 

Golgi and the TGN (Pinheiro et al., 2009). In this study, I confirmed that M. polymorpha 

RAB1 also localizes to the Golgi and the TGN. The distinct localization patterns between 

land plants and mammals suggest divergent functions of RAB1 homologs among 

eukaryotic lineages. The precise functions of RAB1/RABD members in plants at the TGN 

should be elucidated in future studies, and M. polymorpha would be a suitable material 

given that it harbors only two RAB1 members (Figure 3). In angiosperms, functional 

differentiation could have occurred in the RAB1/RABD clade: Arabidopsis RABD 

members are divided into two subgroups, which could function in distinct biochemical 

pathways in early secretory trafficking (Pinheiro et al., 2009). A comparative analysis 

between M. polymorpha and Arabidopsis would also be useful to identify the significance 

of the functional differentiation in this clade. 

MpRAB6 was localized to the Golgi apparatus and the TGN in thallus cells. In 

Arabidopsis, a member of the RAB6/RABH group, RABH1b, is localized to the Golgi 

apparatus and unknown compartments, possibly endosomal compartments, whereas 

another member RABH1c is exclusively localized to the Golgi apparatus (Johansen et al., 

2009). The distinct localizations of these RABH members might reflect differentiated 

functions of these proteins in Arabidopsis. M. polymorpha harbors only one member in 

the RAB6/RABH group, which, therefore, would be a good reference in analyses of the 

plant RAB6/RABH group. 
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The existence of two types of RAB5, the canonical RAB5 and plant-specific 

ARA6 groups, is an outstanding characteristic in the organization of plant RAB GTPases, 

which also holds true in M. polymorpha. In this study, I confirmed that MpRAB5 and 

MpARA6 localize to distinct populations of endosomes with partial overlap as described 

previously (Era, 2012). Whereas it is similar to the subcellular localization of Arabidopsis 

canonical RAB5/RABF2 and ARA6/RABF1 (Ebine et al., 2011; Ueda et al., 2004), the 

previous study demonstrated that the function of ARA6 could have diverged between 

Arabidopsis and M. polymorpha (Era, 2012). Furthermore, it should be noted that M. 

polymorpha harbors MpRAB21, which also localizes to the endosome. The secondary 

loss of RAB21 might have resulted in distinctive functional differentiation of 

RAB5/RABF2 and ARA6/RABF1 in descendent lineages. Rab21 is also conserved in 

animals (Klopper et al., 2012). However, animals do not harbor the ARA6 group, which 

suggests distinct coordination of endosomal RAB functions between animals and plants. 

It would be an intriguing project to analyze the function of MpRAB21 in M. polymorpha, 

which would elucidate how these RAB GTPases coordinate endosomal transport in M. 

polymorpha and how such mechanisms developed during land plant evolution.  

It is known that the RAB11/RABA group dramatically diversified during land 

plant evolution. Twenty-six genes of the RAB11/RABA members are encoded in the 

Arabidopsis genome, which are classified into 6 subgroups (RABA1-RABA6). Although 

distinct functions in post-Golgi trafficking have been reported among the RABA 

subgroups in Arabidopsis (Choi et al., 2013; Chow et al., 2008; Kirchhelle et al., 2016), 

the processes and mechanisms of neofunctionalization of expanded RAB11 members 

remain unclear. Three M. polymorpha RAB11 members, MpRAB11a, MpRAB11b, and 

MpRAB11c, were grouped into the RABA1, RABA4, and RABA5 groups, respectively 
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(Figure 3, 4, and Bowman et al. 2017). It was proposed that RABA2 is an ancient 

subgroup of RAB11/RABA (Kirchhelle et al., 2016; Rutherford and Moore, 2002); thus, 

the RABA2 group may have been secondarily lost in M. polymorpha. Although three 

members of MpRAB11 have the same localization on TGNs and forming cell plates, 

Golgi localization was observed only for MpRAB11c. The distinct subcellular 

localization underpins functional differentiation among MpRAB11 members, which 

should be verified in future studies.  

 

Toolbox for analyses of diversification and evolution of membrane traffic 

RAB and RAB-like proteins with distinctive characteristics found in M. polymorpha 

would also be suitable tools to elucidate the mechanisms of functional diversification and 

neofunctionalization of RAB GTPases. MpRAB2b has an amino acid sequence similar to 

that of IFT43 (Figure 7), and such proteins have not been found in other eukaryotic 

lineages thus far. IFT43 is a subunit of the IFT-A complex involved in retrograde transport 

along the axoneme of cilia and flagella (Taschner et al., 2012). Other proteins similar to 

IFT43 have not been found in M. polymorpha, MpRAB2b thus may play a role in 

intraflagellar transport. Consistent with this notion, the expression of MpRAB2b was 

specifically detected in the male reproductive organ, which produces sperm equipped 

with flagella (Figure 8). Further localization analysis of MpRAB2b in the male 

reproductive organ would be needed for precise localization of this protein. This type of 

RAB GTPase might be specific to liverworts, given the absence of such proteins in other 

organisms. The genome information of neighboring species such as other liverworts and 

hornworts would be a good clue for clarifying whether it is specific to liverworts or not. 

Functional analyses of MpRAB2b would lead us to an understanding of how newly 
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acquired machinery components of membrane trafficking have been recruited to 

distinctive biological functions during plant evolution.  

Another remarkable feature of the composition of RAB GTPases in M. 

polymorpha is the existence of the RAB21 and RAB23 groups, which do not exist in 

Arabidopsis (Figure 3). These RAB GTPases are conserved in a wide range of eukaryotic 

lineages, including metazoa (Klopper et al., 2012), suggesting an ancient origin for these 

RAB groups. Because of the secondary loss in Arabidopsis, the functions of these RAB 

groups in plants remain totally unexplored. It has been proposed that the last eukaryotic 

common ancestor possessed a larger number of RAB GTPases than extant organisms, and 

lineage-specific secondary loss of RAB GTPases, as well as lineage-specific acquisition 

of novel RAB groups, could have played important roles in diversification and 

specialization of membrane trafficking systems during evolution (Elias et al., 2012; 

Klopper et al., 2012). MpRAB21 and MpRAB23 would be sound models to identify the 

significance of the secondary loss of RAB GTPases during land plant evolution.  
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Figure 3. Composition of RAB GTPases in M. polymorpha 

Number of RAB GTPases in green plants. Plant RAB GTPases are classified into 10 

groups: RAB1/RABD, RAB2/RABB, RAB5/RABF, RAB6/RABH, RAB7/RABG 

RAB8/RABE, RAB11/RABA, RAB18/RABC, RAB21, and RAB23. RAB11/RABA and 

RAB5/RABF are further divided into subfamilies, RABA1-RABA6 and RABF1 and 

RABF2, respectively. 
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Figure 4. The maximum-likelihood phylogenetic tree of the RAB GTPases in selected 

species 
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The maximum-likelihood phylogenetic analysis was performed using sequences of RAB 

GTPases from A. thaliana, M. polymorpha, and Homo sapiens. The bootstrap 

probabilities with greater than 50% support are indicated as a percentage on each branch. 

The color of the label is according to the species, red: A. thaliana, black (bold): M. 

polymorpha, blue: H. sapiens. 
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Figure 5. Alignment of sequences of MpRAB11a1 and MpRAB11a2 

Amino acid sequences of MpRAB11a1 (MapolyY_A0041.1) and MpRAB11a2 

(Mapoly0018s.0008.1) are aligned. Asterisks indicate identical amino acid residues. 
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Figure 6. Distribution of RAB21 and RAB23 genes in green plants 

Distribution of RAB21 and RAB23 genes in representative species of green plants is 

shown. Red, blue, cyan, and green colors in the phylogenic tree indicate vascular plants, 

bryophytes, charophytes, and chlorophytes, respectively. A black line indicates that 

phylogenetic relationship of bryophytes has been unresolved. Black circles and white 

circles indicate the presence and absence of genes, respectively. Dotted-line circles 

indicate that genes are not found in transcriptomes publicly available. 
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Figure 7. The schematic diagram of primary sequences of MpRAB2a and 

MpRAB2b 

Yellow boxes indicate amino acid sequences conserved in the Ras superfamily 

(GXXXXGK, DXXG, NKXD, and EXSAX). A green box indicates the region similar to 

IFT43, and the orange boxes indicate predicted lipid modification sites. 
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Figure 8. Transcription patterns of M. polymorpha RAB GTPase genes 

Total RNA products were prepared from 5-day-old thalli (lane 1), antheridiophores (lane 

2), archegoniophores (lane 3), and 7-day-old sporelings (lane 4). The amount of template 

cDNA was adjusted with the MpEF1α expression. Primer sets and cycles for PCR are 

listed in Materials and Methods. 
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Figure 9. Golgi apparatus-localized RAB GTPases in M. polymorpha 

Colocalization of Golgi-localized RAB GTPases with the marker for the Golgi apparatus 

(ST-mRFP) or the TGN (mRFP-MpSYP6A). (A, C, E, and G) Single confocal images of 

thallus cells expressing ST-mRFP (magenta) and Citrine-MpRAB2a (A), Citrine-

MpRAB8a (C), Citrine-MpRAB8b (E), or Citrine-MpRAB8c (G) (green). (B, D, F, and 

H) Single confocal images of thallus cells expressing mRFP-MpSYP6A (magenta) and 

Citrine-MpRAB2a (B), Citrine-MpRAB8a (D), Citrine-MpRAB8b (F), or Citrine-

MpRAB8c (H).  Scale bars = 10 μm. 
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Figure 10. Subcellular localization of MpRAB1 and MpRAB6 members 

(A, B, and C) Single confocal images of thallus cells expressing ST-mRFP (magenta) and 

Citrine-MpRAB1a (A), Citrine-MpRAB1b (B), or Citrine-MpRAB6 (C) (green). (D, E, 

and F) Single confocal images of thallus cells expressing mRFP-MpSYP6A (magenta) 

and Citrine-MpRAB1a (D), Citrine-MpRAB1b (E), or Citrine-MpRAB6 (F) (green). 

Insets are higher magnification images of squared areas. Scale bars = 10 μm. 
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Figure 11. Subcellular localization of MpRAB11 members 

(A, D, and G) Single confocal images of thallus cells expressing ST-mRFP (magenta) and 

Citrine-MpRAB11a1 (A), Citrine-MpRAB11b (D), or Citrine-MpRAB11c (G) (green).  

(B, E, and H) Single confocal images of thallus cells expressing mRFP-MpSYP6A 

(magenta) and Citrine-MpRAB11a1 (B), Citrine-MpRAB11b (E), or Citrine-MpRAB11c 

(H) (green). (C, F, and I) Single confocal images of thallus cells expressing Citrine-

MpRAB11a (C), Citrine-MpRAB11b (F), or Citrine-MpRAB11c (I) (green) stained with 

FM1-43 (magenta). (J) Single confocal images of forming cell plates with Citrine-

MpRAB11 members. Scale bars = 10 μm. 
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Figure 12. Subcellular localization of MpRAB5 and MpARA6 

(A and D) Single confocal images of thallus cells expressing Citrine-MpRAB5 or 

MpARA6-Venus (green) stained with FM1-43 (magenta). (B and E) Single confocal 

images of thallus cells expressing ST-mRFP (magenta) and Citrine-MpRAB5 or 

MpARA6-Citrine (green). (C and F) Single confocal images of thallus cells expressing 

mRFP-MpSYP6A (magenta) and Citrine-MpRAB5 or MpARA6-Citrine (green). (G) 

Single confocal images of a thallus cell expressing Citrine-MpRAB5 (green) and 

MpARA6-mRFP (magenta). Scale bars = 10 μm. 

. 
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Figure 13. RAB GTPases localized to endocytic compartments 

(A, D, and G) Single confocal images of thallus cells expressing Citrine-MpRAB7 (A), 

Citrine-MpRAB18 (D), or Citrine-MpRAB21 (G) (green) stained with FM1-43 

(magenta). (B, E, and H) Single confocal images of thallus cells expressing ST-mRFP 

(magenta) and Citrine-MpRAB7 (B), Citrine-MpRAB18 (E), or Citrine-MpRAB21 (H) 

(green). (C, F, and I) Single confocal images of thallus cells expressing mRFP-MpSYP6A 

(magenta) and Citrine-MpRAB7 (C), Citrine-MpRAB18 (F), or Citrine-MpRAB21 (I) 

(green). Scale bars = 10 μm. 
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Figure 14. Subcellular localization of MpRAB2b and MpRAB23 ectopically 

expressed in thallus cells 

(A) A single confocal image of thallus cells expressing Citrine-MpRAB2b. (B) A single 

confocal image of thallus cells expressing Citrine-MpRAB23. Scale bars = 10 μm. 
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Figure 15. The amino acid sequence of MpRAB23 

The region indicated in red is the NLS-like domain predicted by cNLS Mapper. 
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Figure 16. Subcellular distribution of RAB GTPases expressed in thallus tissues of 

M. polymorpha 
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Chapter 2 

 

 

Functional analyses of RAB21 in M. polymorpha 
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Introduction 

本章については，5年以内に雑誌等で刊行予定のため，非公開．  
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Chapter 3 

 

 

Organelle dynamics during spermatozoid formation 

and RAB23 functions in M. polymorpha 
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Introduction 

The RAB23 group is secondarily lost during land plant evolution. Animal RAB23 is 

essential for viability and plays critical roles in Sonic hedgehog (Shh) signaling 

(Eggenschwiler et al., 2001). It has been also shown that RAB23 is involved in cilia 

formation, and ciliary transport of Smoothened (Boehlke et al., 2010; Yoshimura et al., 

2007). In Trypanosoma brucei, RAB23 is localized to the flagellum (Lumb and Field, 

2011). These facts strongly suggest that RAB23 is required for normal ciliary and flagellar 

functions. Consistently, RAB23 is highly conserved in organisms possessing motile cilia 

and/or flagella (Lumb and Field, 2011), which also holds true in plant lineages: RAB23 

is conserved in plants that use flagella-equipped gametes for sexual reproduction (Chapter 

1, and Bowman et al., 2017). However, the precise molecular function of RAB23 still 

remains ambiguous.  

Some plant lineages including liverworts generate motile sperms called 

spermatozoids as male gametes, each of which harbors a helical cell body and two or 

more motile flagella (Figure 31A). A common feature of the plant spermatozoids is a 

helically shaped cell body, which confers the name “Streptophyta” to the taxon consisting 

of charophytes and land plants (Embryophyta). The architecture of plant spermatozoids 

has been investigated by many electron microscopic studies (Carothers and Kreitner, 

1968; Graham and McBride, 1979; Li et al., 1989; Renzaglia and Duckett, 1987; 

Renzaglia and Garbary, 2001; Ueda, 1979; Vaughn and Renzaglia, 2006), which revealed 

that the spiral morphology is rendered by the spline, which is a band of microtubules 

extending from the multilayered structure (MLS) located at the apical region of the 

spermatozoid. The MLS is characteristic to spermatozoids formed in Streptophyta, above 

which basal bodies associated with flagella are located (Carothers and Kreitner, 1968; 
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Graham and McBride, 1979; Li et al., 1989; Renzaglia and Duckett, 1987). The number 

of flagella is divergent among land plants: bryophytes and some pteridophytes generate 

biflagellate spermatozoids, while spermatozoids of other pteridophytes and some 

gymnosperms harbor larger numbers of flagella (Renzaglia and Garbary, 2001). 

The liverwort, M. polymorpha is a suitable model organism representing basal 

land plants to analyze plant spermatozoids. The processes of spermatozoid formation 

(spermatogenesis) have been described through histological observations. Antheridia, 

which are composed of outer jacket cells and inner reproductive cells, are buried in 

antheridial receptacles (Figure 31B). Within an antheridium, spermatogenous cells divide 

transversely and vertically to increase the number of cells that form spermatid mother 

cells. A spermatid mother cell then divides diagonally to generate two spermatids, which 

then undergo transformation into the individual spermatozoid (Figure 31C and 

(Shimamura, 2016). The transformation sequence is accompanied by complete 

morphological alteration in a process called spermiogenesis. Spermiogenesis in 

liverworts comprises various dynamic cellular events including reduction of the 

cytoplasm, condensation of the nucleus, replacement of organelles, and formation of the 

locomotory apparatus (Renzaglia and Duckett, 1987; Renzaglia and Garbary, 2001; Ueda, 

1979). The completion of spermiogenesis culminates in the formation of mature 

spermatozoids, which are released into the water and move towards the female gametes 

produced in the female reproductive organ, the archegoniophore. The process of sperm 

development in liverworts has been of great interest to cell and developmental biologists 

(Higo et al. 2016; Renzaglia and Garbary 2001). However, details of cell and organelle 

dynamics during plant spermatogenesis remain largely unknown. This is in part because 
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of a lack of appropriate tools with which to visualize cellular dynamics and structures in 

cells undergoing spermatogenesis.  

In this study, I firstly investigated organelle dynamics during spermatogenesis in 

M. polymorpha using fluorescently tagged SNARE proteins, RAB GTPases, and flagellar 

components as organelle markers. I then attempted to uncover the function of MpRAB23 

in M. polymorpha through genetic and cell biological studies, which demonstrated that 

MpRAB23 is essential for formation and function of the spermatozoid in M. polymorpha. 

 

Results 

Dynamic relocalization of MpSYP1 members during spermiogenesis 

Given a conserved function of RAB GTPases in membrane trafficking and the specific 

expression in the male reproductive organ, RAB23 could be involved in membrane 

trafficking and/or organelle dynamics during spermatogenesis in M. polymorpha. 

Therefore, I observed behaviors of organelle markers during spermatogenesis. To analyze 

morphological changes in cells undergoing spermatogenesis, I firstly visualized cell 

shapes using a fluorescent marker targeted to the plasma membrane. To achieve this, I 

employed mCitrine-MpSYP12A, which is a member of the SYP1 group mediating 

membrane fusion at the plasma membrane (Kanazawa et al., 2016; Sanderfoot, 2007). In 

thallus cells, mCitrine-MpSYP12A driven by its own promoter was localized on the 

plasma membrane (Figure 32A). However, I did not detect any fluorescence from 

mCitrine-MpSYP12A on the plasma membrane of the spermatozoid (Figure 32B). I then 

examined if I could detect mCitrine-MpSYP12A in actively dividing spermatogenous 

cells and found that mCitrine-MpSYP12A was expressed at this stage and was localized 

to the plasma membrane (Figure 32C). These results suggested that mCitrine-MpSYP12A 



93 

 

is degraded during spermatozoid formation in M. polymorpha. To determine the stage at 

which mCitrine-MpSYP12A disappears from the plasma membrane, I observed 

spermatogenous tissues at different stages of spermatogenesis. Since antheridia are 

aligned from young to mature starting from the edge of the antheridiophore (Shimamura, 

2016), I could observe antheridia at different developmental stages in a single 

antheridiophore. Plasma membrane localization of mCitrine-MpSYP12A was also 

observed in spermatids just after the last cell division occurred in a diagonal direction. 

The localization on punctate structures in the cytoplasm was also detected (Figure 32D). 

When the cytoplasm of spermatids began to shrink, the plasma membrane localization of 

MpSYP12A was gradually decreased. Instead, large spherical structures containing 

mCitrine fluorescence became evident in the cytoplasm (Figure 32E). In the later stage, 

MpSYP12A completely disappeared from the plasma membrane and instead accumulated 

in the spherical structures (Figure 32F).  

To examine whether this relocalization from the plasma membrane to the 

spherical structures was an event specific to MpSYP12A, I examined the subcellular 

localization of another SYP1 member, MpSYP13A. While mCitrine-MpSYP13A was 

localized almost exclusively in the plasma membrane during the proliferative phase 

(Figure 32G), it accumulated only in the spherical structures at the later stages (Figure 

32H). These results indicated that the protein content of the plasma membrane was 

completely reorganized during spermiogenesis in M. polymorpha. 

 

Other organelle proteins also accumulate in the spherical structures 

To observe the behavior of other organelles during spermatogenesis, I observed 

transgenic lines of M. polymorpha expressing a fluorescently tagged Golgi-resident 
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SNARE protein, MpGOS11, under the regulation of the MpSYP2 promoter (mCitrine-

MpGOS11) (Kanazawa et al., 2016), or mCitrine-MpRAB5, driven by its own promoter. 

mCitrine-MpGOS11 was localized to the disc- or ring-shaped structures during the early 

stages of antheridia development (Figure 33A). At the later stages of antheridia 

development, during spermiogenesis, mCitrine-MpGOS11 accumulated in the larger 

spherical structures similar to the observations with MpSYP12A and MpSYP13A (Figure 

33B). Similar translocation from punctate structures in the cytoplasm to larger spherical 

structures during spermiogenesis was also observed for mCitrine-MpRAB5 (Figure 33C 

and 33D). These data suggested that the organelles and cytoplasmic components 

including the Golgi apparatuses and endosomes were transported to the spherical 

structures during spermatogenesis. I considered that these spherical structures represent 

vacuoles because of their sizes and spherical shapes. Therefore, I next observed the 

transgenic plants expressing mCtirine-MpVAMP71 or mCitrine-MpSYP2, which were 

vacuolar SNARE proteins, under the regulation of their own promoters. Both of these 

SNARE proteins were localized at the vacuolar membrane during the early stages of 

antheridia development (Figure 33E and 2H) and were localized to the membrane on the 

larger spherical structures in later stages (Figure 33F and 33I). These results showed the 

vacuolar nature of the spherical structures. Intriguingly, the localization of mCitrine-

MpSYP2 fluorescence changed from being limited to the membrane of the spherical 

structures to including the luminal spaces as spermiogenesis progressed (Figure 33J), 

whereas mCitrine-MpVAMP71 remained on the membrane of the spherical structures 

(Figure 33G). The distinct dynamics of the two vacuolar SNARE proteins may indicate 

that these two SNAREs play different roles during spermiogenesis. 
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Degradative organelles observed in spermatids undergoing spermiogenesis 

To obtain more information on the spherical structures, I performed electron microscopic 

observations of the developing antheridia. Antheridia from antheridiophores were divided 

into two groups according to their developmental stages, those at the young stage and 

those at the maturing stage. The samples at the young stage contained antheridia that had 

dividing spermatogenous cells, spermatid mother cells, and spermatids before shrinkage 

of the cytoplasm but contained no spermatids undergoing spermiogenesis (Figure 34A). 

Antheridia at the maturing stage contained spermatids undergoing spermiogenesis and 

were associated with shrinking cytoplasm (Figure 34B). Spermatids at the maturing stage 

contained large vacuole-like compartments with sizes comparable to those of the 

spherical structures observed in fluorescence microscopy (Figure 34B). The MVEs were 

also observed in the spermatids (Figure 34C), suggesting that the endocytic degradation 

pathway was active during spermiogenesis. Notably, autophagy-related structures such as 

autophagosomes (Figure 34D) and autophagic bodies (Figure 34E) were observed 

frequently in antheridia cells at the maturing stage. I also observed vacuoles containing 

the Golgi apparatus in the luminal space (Figure 34F and 33G), suggesting that active 

degradation of cytoplasmic components including whole organelles occurred during 

spermiogenesis. The enhanced autophagic degradation during spermiogenesis was also 

supported by the result of quantification. A significantly larger number of 

autophagosomes was observed in cells in the maturing stage than in the young stage 

(Figure 34H). These results indicate that autophagy became highly active and degraded 

cytoplasmic components during spermiogenesis in M. polymorpha. I also noted that 

autophagic bodies and residuals of the cytosol were present between the plasma 

membrane of shrinking cell bodies and the cell wall (arrowheads in Figure 34D). These 
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might represent remnants of cytoplasm that are internalized into the spherical structures 

by the autophagic processes and released during fusion between the membrane of 

spherical structures and the plasma membrane of spermatids. 

 

本章の以降の部分については，5年以内に雑誌等で刊行予定のため，非公開． 
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Figures 

Figure 31. Spermatozoid architecture and development of M. polymorpha 

(A) A diagram of the spermatozoid of M. polymorpha. The cell body of a spermatozoid 

possesses a helical shape and contains an elongated nucleus and some organelles and 

subcellular structures. At the anterior region, there are a large mitochondrion, a 

multilayered structure (MLS), and two basal bodies from which motile flagella elongate. 

An upper layer of the MLS is a spline, which is a band of microtubules and elongates 

along the nucleus to act as a framework of the helical shape of the spermatozoid. The 

posterior region contains a posterior mitochondrion and a large plastid. (B) Drawing of 

an antheridium of M. polymorpha. In an antheridium, the spermatogenous tissue is 

surrounded by outer jacket cells (jackets). Each antheridium is connected with the 

antheridiophore by a stalk. (C) Scheme of spermatozoid formation of M. polymorpha. In 
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the spermatogenous tissue, spermatogenous cells divide transversely and vertically to 

increase the number of cells to form spermatid mother cells. Centrosomes are newly 

synthesized in spermatid mother cells. Spermatid mother cells divide diagonally to 

generate spermatids, and spermatids then undergo dynamic morphological changes called 

spermiogenesis, and transform into spermatozoids.   
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Figure 32. Relocalization of PM-proteins during spermatogenesis 

(A) mCitrine-MpSYP12A localized on the plasma membrane (PM) in thallus cells. (B) 

Differential interference contrast (DIC) and fluorescent (FL) images of a spermatozoid 

collected from the transgenic line expressing mCitrine-MpSYP12A. Green dots in the FL 

image are image noise. (C, D, E, and F) Relocalization of mCitrine-MpSYP12A during 

spermatogenesis. Single confocal images were aligned in a young-to-mature order. (G 

and H) Subcellular localization of mCitrine-MpSYP13A at the young (G) and mature (H) 

stages during spermatogenesis. Scale bars = 10 μm. 
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Figure 33. Dynamic relocalization of organelle markers during spermatogenesis 

(A and B) Subcellular localization of mCitrine-MpGOS11 in the early (A) and late (B) 

stages of spermatogenesis. (C and D) Subcellular localization of mCitrine-MpRAB5 in 

the early (C) and late (D) stages of spermatogenesis. (E, F, and G) Subcellular localization 

of mCitrine-MpVAMP71 in the early (E) and late (F and G) stages of spermatogenesis. 

(H, I, and J) Subcellular localization of mCitrine-MpSYP2 in the early (H) and late (I and 

J) stages of spermatogenesis. Scale bars = 10 μm. 
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Figure 34. Electron microscopic observation of antheridial cells in M. polymorpha 

(A) An image of spermatogenous cells of M. polymorpha. (B) An image of spermatid 

cells of M. polymorpha. Arrowheads and arrows indicate spherical structures and 

autophagosomes, respectively. (C) Multivesicular endosomes in the spermatid 

undergoing spermiogenesis. (D) Autophagosomes were frequently observed in 

spermatids undergoing spermiogenesis. Arrowheads indicate an autophagic body-like 

structure (right) and remnants of the cytoplasm (left) in the paramural space. Arrows 



116 

 

indicate the cell wall (CW) and plasma membrane (PM). (E) An autophagic body in the 

luminal space of a spherical structure. (F) The Golgi apparatus in the luminal space of a 

spherical structure. (G) A high magnification image of the Golgi apparatus shown in (F). 

Scale bars = 5 μm (A, B), 500 nm (C-F), and 250 nm (G). (H) The average number of 

autophagic structures in a unit area (24.9 μm × 24.9 μm). Cells were classified into two 

groups; young cells (young) in which the cytoplasm was not shrunk (n = 11 images), and 

maturing cells (maturing) in which the cytoplasm was shrinking (n = 8 images). ***P 

<0.001, Student’s t test. 
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General Discussion 

Recent genomic analyses proposed that diversification and specialization of membrane 

trafficking components including RAB GTPases are closely associated with 

diversification of the membrane trafficking system during evolution, which could be also 

associated with diversification of physiology and/or development of eukaryotes (Dacks 

and Field, 2007). Also for land plant evolution, it is speculated that the expansion of 

membrane trafficking components is tightly related to terrestrialization and/or 

multicellularization (Rutherford and Moore, 2002; Sanderfoot, 2007), which, however, 

was not properly supported because of limited information from basal land plant species. 

In this study, I made use of the emerging model liverwort, M. polymorpha, to address this 

subject through studies of RAB GTPases, which is a key machinery component of 

membrane trafficking. I identified all genes for RAB GTPases in the M. polymorpha 

genome, which revealed that M. polymorpha possesses a fundamental set of RAB 

GTPases conserved in green plants with low redundancy. I also found that the repertoire 

of RAB GTPases in M. polymorpha is clearly distinct from those in other land plants. A 

sound example is the number of RAB11/RABA members. M. polymorpha harbors only 

three genes for RAB11/RABA members, whereas this subgroup is extremely expanded 

in Arabidopsis; 26 members are encoded in its genome. This fact suggests that expansion 

of RAB GTPases was not simply related to terrestrialization and/or multicellularization. 

Further comparative analyses of RAB GTPases among various land plants should be 

performed for better understanding of the significance of diversification of RAB GTPases 

during land plant evolution. 

Whereas increase in a number of RAB GTPases followed by functional 

differentiation would play important roles in evolution of the membrane trafficking 
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system, secondary loss of RAB GTPases should be also an important method for 

diversification and specialization of the membrane trafficking system (Elias et al., 2012; 

Klopper et al., 2012). To obtain insights into significance of secondary loss of RAB 

GTPases, I performed functional analyses of MpRAB21 and MpRAB23, whose 

homologs were secondarily lost several times independently during land plant evolution. 

I demonstrated that RAB21 is required for normal thallus development of M. polymorpha, 

suggesting that the reason why RAB21 was lost is not simply because it is not important 

for membrane trafficking. My results also indicated that post-Golgi membrane trafficking 

pathways have been substantially diversified among land plant lineages. Further 

functional analyses of this RAB group would be needed for understanding how 

endosomal membrane trafficking pathways have been diversified during evolution and 

the reason why RAB21 could be lost in some plant lineages.  

The distribution of RAB23 genes among land plants and the function of 

MpRAB23 strongly supports the idea that the loss of RAB23 gene is closely correlated 

to loss of flagella during land plant evolution. In animals, the cilium is not only a motile 

structure but also a sensor of environmental and developmental cues. Mainly because of 

essential and complex functions of cilia, the precise molecular function of RAB23 in 

formation of flagella and cilia has still been ambiguous in animals. Analyses of RAB23 

functions in formation and functions of flagellar using plant spermatozoids should be 

quite effective and informative to understand the basic function of the RAB23 group. I 

also demonstrated that MpRAB23 also plays important roles in formation of a plant-

specific structure, the MLS. Previous electron microscopic analyses indicated that the 

MLS is a distinctive structure in spermatozoids, however, how the MLS is organized is 

still unknown. Clarification of the relationship between RAB23 function and the MLS 
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organization would lead us to understanding how this plant-unique microtubule-

containing structure was acquired during evolution.  

This study demonstrated that M. polymorpha has a simple but unique membrane 

trafficking system, which would be a sound system for analysis of diversification and 

evolution of the membrane trafficking system. This system would be also suitable for 

unraveling the fundamental functions of conserved machinery components such as 

RAB21 and RAB23. Moreover, M. polymorpha would be an ideal system to understand 

the significance of secondary loss of RAB GTPase in diversification of membrane 

trafficking system. Similar approaches could be also applied for other biological functions 

and gene families than membrane trafficking and RAB GTPases. M. polymorpha is a 

classical research target of botany, which was already described in literatures in ancient 

Greece. Now the new era of M. polymorpha studies has opened, which could be called 

the Renaissance of M. polymorpha by future generations of plant scientists. 
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